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Batch effects refer to the systematic non-biological variability that is introduced by experimental 

design and sample processing in microarray experiments.  It is a common issue in microarray 

data and could introduce bias into the analysis, if ignored.  Many batch effect removal methods 

have been developed.  Previous comparative work has been focused on their effectiveness of 

batch effects removal and impact on downstream classification analysis.  The most common type 

of analysis for microarray data is differential expression (DE) analysis, yet no study has 

examined the impact of these methods on downstream DE analysis, which identifies markers that 

are significantly associated with the outcome of interest.  In this project, we investigated the 

performance of five popular batch effect removal methods, mean-centering, ComBat_p, 

ComBat_n, SVA, and ratio based methods, on batch effects reduction and their impact on DE 

analysis using three experimental datasets with different sources of batch effects.  We found that 

the performance of these methods is data-dependent: simple mean-centering method performed 

reasonably well in all three datasets, but the more complicated algorithms such as ComBat 

method’s performance could be unstable for certain dataset and should be applied with caution.  

Given a new dataset, we recommend either using the mean-centering method or carefully 

investigating a few different batch removal methods and choosing the one that is the best for the 

data, if possible.  This study has important public health significance because better handling of 

batch effect in microarray data can reduce biased results and lead to improved biomarker 

identification. 
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1.0  INTRODUCTION 

Microarray techniques have been widely employed in biological and medical research since its 

invention in the middle 1990s.  The ability of processing thousands of probes at one time has 

brought a revolution to both biological research and statistical analysis of high-throughput data.  

Many studies require the use of multiple microarrays, with experiments performed at different 

times, by different technicians, or even at different sites, which introduces batch effects.  Here, 

we refer “batch effects” to any systematic non-biological variability that is introduced by 

experimental design and sample processing.  There are many different sources of batch effects.  

Some common sources include samples processed at different times, on different chips, at 

different sites, and by different technicians, and samples coming from differentially processed 

tissues (e.g. frozen vs. paraffin fixed tissues).   

 Often, batch effects were ignored in microarray data analysis: Chen et al. pointed out 

that less than ten percent of 219 papers published in the first half of 2010 addressed batch effects 

[1].  The goal of employing microarray techniques in biological and medical research is to 

identify expression heterogeneity among different groups, but the presence of batch effects add 

variability to expression profile and may lead to biased results.  Batch effects still exist even after 

the microarray signal intensity normalization, so formal removal methods are required to remove 

batch effects [2].   
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Many batch effect removal methods have been developed and several papers compared 

the performances of some of these method [1, 3, 4]. Mean-centering method is a simple ANOVA 

method that sets the mean of each batch to zero across groups [5].  Standardization method goes 

one step further beyond mean-centering method: it normalizes the standard deviation within each 

batch to unity across samples [6].  Ratio-based methods scale expression level by dividing the 

arithmetic mean (Ratio-A) or geometric mean (Ratio-G) of the control group within each batch.  

Distance-weighted discrimination (DWD) finds a separating hyper-plane between two batches 

and projects the batches onto the DWD plane planes, finds the mean, and then subtracts the 

DWD plane multiplied by this mean [7].  Surrogate variable analysis (SVA) constructs surrogate 

variables from significant eigenvectors of the residual matrix from which the effect of primary 

variable has been removed [8].  ComBat (Combating Batch Effects When Combining Batches of 

Gene Expression Microarray Data) is an empirical Bayes method that includes a parametric prior 

method (ComBat_p) and a non-parametric method (ComBat_n), and the model includes both 

additive and multiplicative batch effects [9]. 

Chen et al. [1] compared six methods, DWD, mean-centering, SVA, Ratio-G, ComBat_p, 

and ComBat_p, on two simulated datasets and two experimental datasets with batch effects 

coming from different processing dates and sites.  They aimed to assess data integration 

improvement measured by batch effects reduction, accuracy, precision, and overall performance.  

Using these four criteria, Chen et al. found that the ComBat performed satisfactorily on all 

measures, and the mean-centering method was a close second.  Other methods had at least one 

major drawback, for example, the Ratio-G performed worst in removing batch effects from one 

experimental data.  They focused on the “removal” of batch effect regardless of downstream 
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analysis, which is only one side of the story. The method that removes the batch effect most 

effectively may “over correct” and mask the true biological signal.   

Luo et al. [3] compared five methods, mean-centering, standardization, Ratio-A, Ratio-G, 

and ComBat, on six datasets from the MAQC-II project [2] with various sources of batch effects 

including different hybridization time, different generations of chips, different channels, different 

platforms, and different tissues. Their goal was to evaluate cross-batch prediction performance 

using the Matthews Correlation coefficient (MCC) as evaluation criteria.  They concluded that 

the ratio-based methods are preferred based on the consensus results of all the 120 cases across 

six different types of datasets and four different feature selection and classification methods.  

However, the performance is classifier and data dependent, which is also demonstrated by their 

results.  If different datasets and classification methods were employed, they may reach different 

results, thus their results may not be generalized to other datasets or different downstream 

analyses.    

As described above, the two published work had focused on different outcomes when 

comparing a variety of batch effect removal methods. The conclusions of the two papers are 

inconsistent, indicating that the choice of the methods is dependent on the downstream analysis 

and different types of datasets.  The most common type of analysis for microarray data is 

differential expression (DE) analysis, where the expression levels of the genes are compared 

among different groups. Yet, no comparative studies have been done on the impact of batch 

effect removal methods on DE analysis.  In this project, we applied and compared five of the 

most popular methods, mean-centering, ComBat_p, ComBat_n, SVA, and ratio-based methods, 

on three array datasets, with batch effects introduced by various sources.  We first measured how 

much each method reduces the variation caused by batch effects using principal variation 
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component analysis (PVCA).  In order to evaluate their impact on DE analysis, we compared the 

DE analysis results generated from data processed by batch effect removal methods to those 

generated from original data using other three strategies: (1) Perform DE analysis on original 

data regardless of batch effects.  This is our “negative control”.  (2) Perform DE analysis on each 

batch’s data (original data without batch effect removal) separately and combine the results using 

meta-analysis technique. (3) Analyze original data using linear regression and adjust for batch 

effects as a regression covariate.    
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2.0  MATERIALS AND METHODS 

2.1 DATASETS 

Three datasets from three different arrays with different sources of batch effects were used.   

2.1.1 Head and neck expression data 

This is an Illumina gene expression array data on 29 head and neck cell lines. Profile group is 

normal cell fibroblast (NNF) vs. tumor cell associated fibroblast (TAF).  Two batches were 

processed at different times: there are 17 (7 TAF and 10 NNF) samples in the first batch, and 12 

TAF samples in the second batch.  

2.1.2 Melanoma methylation data 

Methylation level was assayed by the Illumina H27K array on 65 formalin fixed and paraffin 

embedded (FFPE) and 19 frozen tumor samples from melanoma patients.  Here the batch effects 

were introduced by different tissue processing methods: frozen and FFPE.  This experiment aims 

to study the methylation profile of tumor tissues with BRAF mutation versus those of wild type.  

All the 84 samples were used for batch effect removal; however, 24 samples were filtered out for 

DE analysis (see next section for details). 
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2.1.3 Lung cancer micro RNA data 

It is an Agilent micro RNA (miRNA) expression array data on 120 tumor and 85 normal lung 

tissue samples of Lung cancer patients.  Two batches were processed on two generations of 

chips, and only the common probes of the two chips were used for analysis.  All the 205 samples 

were used for bath effect removal, however, only the 109 tumor samples with disease-free 

survival information were used in DE analysis. 

 

2.2 DATA PROCESSING 

2.2.1 Normalization and Transformation 

The head and neck expression data and lung cancer miRNA data were both quantile normalized.  

The melanoma methylation was background normalized. Log transformed head and neck 

expression data was used in all the analysis, and logit transformed melanoma methylation data 

was used in the regression analysis.  The lung cancer miRNA data was analyzed in its original 

scale.  

2.2.2 Missing value imputation 

 Missing values were imputed by the k-nearest neighbor (KNN) method with k=10 using 

impute.knn function of the R package impute. 
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2.2.3 Filtering  

In order to remove markers of poor experimental quality and markers that do not fluctuate across 

samples, the following filtering procedures were applied to the melanoma methylation data prior 

to the DE analysis: (1) Only pre-treatment samples were used.  (2) Only samples with 75% 

percentile of detection p-value < 10e-5 were kept.  (3) Only sites with median detection p-value 

< 0.05 were kept.  (4) Sites with all average beta values less than 0.2, or greater than 0.8 i.e., 

maximum average beta value less than 0.2 or minimum greater than 0.8 were removed.   

For the lung cancer miRNA data, samples with excessive zero values were removed for 

DE analysis. 

2.3 BATCH EFFECT REMOVAL METHODS 

The following batch effect removal methods were considered in this comparative study. 

Although certain filtering criteria were applied to the data for the DE analysis, we used all 

available samples and markers for batch effect removal. 

2.3.1 Mean-centering 

Within each batch, mean expression is calculated across all samples for each gene, and 

expression level of each sample is adjusted by subtracting the mean expression so that all batches 

have zero means.  It is implemented in the R package pamr. 
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2.3.2 Ratio-based  

Within each batch, the geometric mean expression of the reference group is calculated for each 

gene, and the expression level of each sample is scaled by dividing this geometric mean (referred 

to as Ratio-G).  Arithmetic mean can also be used (referred to as Ratio-A). Luo et al. has shown 

that Ratio-A is inferior to Ratio-G [3], thus we choose to use Ratio-G in our analysis when 

possible.  The geometric means were calculated by geometric.mean function in the R package 

Psych. 

2.3.3 SVA 

This method combines the method of singular value decomposition (SVD) and the linear model. 

SVD is applied on a residual expression matrix obtained by removing the effect of the primary 

variable (here profile group variable) to identify eigengenes, and “surrogate variables” are 

constructed based on these eigengenes [8].  The main goal of the SVA algorithm is to identify 

and estimate these surrogate variables.   

Let 𝑥𝑖𝑗 denote expression level of gene i on sample j, and 𝜇𝑖 denote the baseline level of 

expression of gene i. Let 𝑦𝑗 represent the primary variable of interest (e.g. case-control status), 

and 𝑓𝑖�𝑦𝑗� gives the relationship between primary variable and expression level of gene i.  

Vectors gl=(gl1, …gln) are L unmodeled biological and experimental factors.  The linear model 

including primary variable and other unmodeled factors can be written as following, 

𝑥𝑖𝑗 = 𝜇𝑖 + 𝑓𝑖�𝑦𝑗� + �𝛾𝑙𝑖𝑔𝑙𝑗

𝐿

𝑙=1

+ 𝑒𝑖𝑗∗   𝑖 = 1, … ,𝑚   𝑗 = 1, … , 𝑛  𝑙 = 1, … , 𝐿 
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Instead of directly estimating gl, which is often impossible, an orthogonal set of vectors hk, 

k=1,….K that spans the same linear space as the gl are identified and the model now can be 

written as 

𝑥𝑖𝑗 = 𝜇𝑖 + 𝑓𝑖�𝑦𝑗� + �𝜆𝑘𝑖ℎ𝑘𝑗

𝐾

𝑘=1

+ 𝑒𝑖𝑗∗   𝑖 = 1, … ,𝑚   𝑗 = 1, … , 𝑛  𝑘 = 1, … , 𝐾 

Vectors hk are called “surrogate variables”, and they should be included as covariates in 

subsequent analyses. 

The algorithm can be implemented in five steps: (1) fit a linear model with only primary variable 

𝑥𝑖𝑗 = 𝜇𝑖 + 𝑓𝑖�𝑦𝑗� + 𝑒𝑖𝑗  and calculate the residual expression matrix R.  (2) Apply SVD to R to 

obtain eigenvalues and eigengenes 𝒆𝑘.  Evaluate the significance of each eigengene based on 

their corresponding eigenvalues by a permutation procedure.  (3) For each significant eigengene 

𝒆𝑘, perform a significance analysis of associations to find a subset of  genes whose expression 

levels are associated with this particular eigengene.  (4) Apply SVD on the reduced residual 

matrix and use the eigengene 𝒆𝑗∗𝑟 that is most correlated with 𝒆𝑘 to construct a surrogate variable. 

(5) Include surrogate variables in subsequent analyses. 

SVA is implemented in the R package sva. 

2.3.4 ComBat 

ComBat is an empirical Bayes (EB) method developed for adjusting for batch effects in small 

size data [9].  The model includes both additive and multiplicative batch effects.  Let 𝑌𝑖𝑗𝑔 

represents the expression level of gene g on sample j from batch i.  𝑌𝑖𝑗𝑔 can be modeled by a 

location and scale model as following, 
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𝑌𝑖𝑗𝑔 = 𝛼𝑔 + 𝑋𝛽𝑔 + 𝛾𝑖𝑔 + 𝛿𝑖𝑔𝜀𝑖𝑗𝑔 

Where 𝛼𝑔 is the overall gene expression, X is a design matrix for sample conditions, and 𝛽𝑔 is 

the vector of regression coefficients corresponding to X.  The error term 𝜀𝑖𝑗𝑔 is assumed to 

follow a normal distribution with mean zero and variance σg
2.  The 𝛾𝑖𝑔 and 𝛿𝑖𝑔 represent the 

additive and multiplicative effect of batch i for gene g.  The batch-adjusted data, 𝑌𝑖𝑗𝑔∗  is given by 

𝑌𝑖𝑗𝑔∗ =
𝑌𝑖𝑗𝑔 − 𝛼�𝑔 − 𝑋𝛽̂𝑔 − 𝛾�𝑖𝑔

𝛿𝑖𝑔
+ 𝛼�𝑔 + 𝑋𝛽̂𝑔 

Where 𝛼�𝑔, 𝛽̂𝑔, 𝛾�𝑖𝑔, and 𝛿𝑖𝑔 are estimators of corresponding parameters. 

 ComBat algorithm is implemented in threes steps.  

(1) Standardize the data Estimators 𝛼�𝑔, 𝛽̂𝑔, 𝛾�𝑖𝑔 were obatained using a gene-wise ordinary least- 

squares approach, constraining ∑ 𝑛𝑖𝛾�𝑖𝑔 = 0 𝑖 for all g=1, …, G.  Estimator of the variance σg
2 is 

given by 𝜎 �𝑔2 = 1
𝑁
∑ �𝑌𝑖𝑗𝑔 − 𝛼�𝑔 − 𝑋𝛽̂𝑔 − 𝛾�𝑖𝑔�𝑖𝑗

2
.  The standardized data is calculated by 𝑍𝑖𝑗𝑔 =

𝑌𝑖𝑗𝑔−𝛼�𝑔−𝑋𝛽�𝑔
𝜎�𝑔

, and it is easy to show that it follows a normal distribution with mean γig
new=γig/σg 

and variance 𝛿𝑖𝑔2 . 

(2) Estimate Parameters For parametric prior method, assume the batch parameters have the 

following prior distributions 𝛾𝑖𝑔𝑛𝑒𝑤~𝑁(𝛾𝑖, 𝜏𝑖2) and 𝛿𝑖𝑔2 ~𝐼𝑛𝑣𝑒𝑟𝑠𝑒 𝐺𝑎𝑚𝑚𝑎 (𝜆𝑖, 𝜃𝑖).  Parameters 

𝛾𝑖, 𝜏𝑖2, 𝜆𝑖, 𝜃𝑖 are estimated empirically from standardized data Zijg using the method of moments. 

Then the EB estimates for 𝛾𝑖𝑔𝑛𝑒𝑤 and 𝛿𝑖𝑔2  are given by conditional posterior means.  For non-

parametric prior method, EB estimates for 𝛾𝑖𝑔𝑛𝑒𝑤 and 𝛿𝑖𝑔2  are given by estimates of the posterior 

expectations of the parameters.  For both methods, the EB estimates for batch effect parameters 

are denoted as𝛾𝚤𝑔∗�  and 𝛿𝚤𝑔2∗�  

(3) Adjust the data Using EB estimated batch effects, adjusted data is calculated as   
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𝑌𝑖𝑗𝑔∗ =
𝜎�𝑔(𝑍𝑖𝑗𝑔 − 𝛾�𝑖𝑔∗ )

𝛿𝑖𝑔∗
+ 𝛼�𝑔 + 𝑋𝛽̂𝑔 

ComBat method is implemented using ComBat.R script that can be downloaded at 

http://www.bu.edu/jlab/wp-assets/ComBat/Download.html 

2.3.5 Regression Method 

Adjust the batch effects by including the batch as a covariate in the regression model.   

2.4 EVALUATION OF BATCH EFFECT REMOVAL METHODS 

2.4.1 Effectiveness of batch effect removal 

Principle component analysis (PCA) plots were used to visualize batch effect before and after 

batch effect removal.  Principle variance component analysis (PVCA) was employed to measure 

the amount of variability attributable to batch effect [4, 10].  It combines the methods of 

principle component analysis (PCA) and variance component analysis (VCA).  First, top 

principle components that explain a proportion of variation just above a preset threshold (60% 

here) were selected.  Then for each retained principle component, fit a mixed model with all 

factors of interest including interactions as random effects.  For each factor, estimate variance 

components for each model and average estimates across all retained principle components using 

the corresponding eigenvalues as weights.  Finally, weighted average variance components 

estimates for each factor, interaction term, and the residual variance, were standardized by diving 
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their sum, thus can be represented as a proportion of the total variance.  These proportions can be 

displayed as bar charts. 

2.4.2 Impact on downstream DE analysis 

To further evaluate the impact of batch effect removal methods on DE analysis, we compared the 

results of DE analysis generated by four different strategies: (1) Perform DE analysis on original 

data regardless of batch effects. (2) Perform DE analysis on each batch’s data (original data 

without batch effect removal) separately and combine the results using meta-analysis technique. 

(3) Analyze original data using linear regression and adjust for batch effects as a regression 

covariate. (4) Perform DE analysis on data processed by batch effect removal methods.  Top-100 

differentially expressed markers were obtained according to the rank of p-values of statistical 

tests for each strategy.  Lacking the knowledge of true DE markers, we used the top list 

generated by the meta-analysis strategy as our “gold standard”. Top-100 markers obtained using 

other three strategies were compared to the “true” top list generated by the meta-analysis, and a 

large percentage of overlap with the “true” top list is desirable. 

2.4.3 DE analysis  

For binary outcomes, e.g., BRAF mutation and wild type, two-sample Wilcoxon Rank Sum test 

was employed to identify DE markers.  For disease-free survival (DFS), the Cox regression was 

used.  The likelihood ratio tests (LRTs) were used to test the association between each marker 

and the DFS outcome. 
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2.4.4 Meta-analysis  

Fisher’s method [11] was employed to combine p-values from individual batch.  Specifically, for 

two-batch case, test statistic χ2 = −2[log(𝑝1) + log (𝑝2)], where 𝑝1and 𝑝2 are the p-values from 

first and second batch respectively, χ2 has a chi-squared distribution with 4 degrees of freedom, 

and the p-value can be determined.   
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3.0  RESULTS 

3.1 BATCH EFFECT EVALUATION  

PCA was applied to the three datasets before any batch effect removal to visualize batch effect 

(Figure 1a, 1c, 1e).  Using top three principle components (PCs), we can separate different 

batches perfectly on the PCA score plots for all three datasets.   

The PVCA (Figures 1b, 1d, 1f) reveals that before any batch effect removal, main batch 

effect is very large and it accounts for 50.3%, 39.2%, and 26.8% of the overall variation in three 

datasets, while main group effect is very small and it only accounts for 2.2%, 2.1%, and 9.3% of 

the overall variation, respectively.  Variability attributable to the interaction term is small in all 

three dataset and explains 1.1%, 0.9%, and 1.7% of the overall variation. 
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Figure 1. PCA and PVCA results of three datasets before batch effect removal 

a b 

c d 

e f 
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3.2 BATCH EFFECT REMOVAL EVALUATION 

After batch effect removal, batch effects are no longer obvious (see Figure A-4, A-5, and A-6), 

indicating that all removal methods are capable of removing batch effects to some degree.   

To quantitatively measure how much each method reduces batch effects, the PVCA was 

applied to each dataset before and after batch effect removal (see Figure A-7, A-8, and A-9 for 

details).  As described in materials and methods section, PVCA is a method combining principle 

component analysis and variance component analysis to estimate how much variation in the 

expression data is attributable to batch effects and other factors.  Here we consider three factors: 

main batch effect, main profile group effect, and the interaction between batch and group effects.  

Group effect is the factor of interest, and we want to study differences in expression profile 

induced by it; while batch effect is the non-biological differences when samples are processed in 

different batches, and we want to get rid of it.  The PVCA results were summarized in Figure 2 

to demonstrate the variation due to (a) main batch effect, (b) batch related factors, i.e., main 

batch effect and the interaction term considered together, (c) main group effect, (d) group related 

factors, i.e., main group effect and the interaction term considered together before and after the 

batch effect removal for each dataset.   

The PVCA revealed that main batch effect and the interaction term together explained 

51.4% of the overall variation in the head and neck expression data without batch effect removal.  

All four batch removal methods reduced that variation to less than 2%, and ComBat_n and 

ComBat_p eliminated it completely.  This reduction made the biological variation due to main 

group effect more apparent, increasing it from 2.2% to 3.2% (mean-centering), 15.3% 

(ComBat_p), 14.6% (ComBat_n), and 4.4% (SVA) of the overall variation after batch effect 

removal (Figure A-7).  Notice that mean-centering method increased the variation due to the 
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interaction term from 1.1% to 1.6%, but this increase was not as serious as the ones we observed 

later.  Ratio-based methods were not applied on this dataset because the second batch did not 

have a reference group.   

Main batch effect and the interaction term explained 39.2% and 0.9% of the overall 

variation in the melanoma methylation data, respectively before batch effect removal.  Only the 

mean-centering method was able to reduce both of these two variations to 0.8% and 0.4%, 

respectively.  All the other methods either greatly increased the variation attributable to the 

interaction term, e.g., ComBat_n increased it to 12.4%, or was not very effective in reducing 

main batch effect, e.g. main batch effect still accounted for 15.4% of the overall variation for the 

data processed by SVA (Figure A-8).  The signal of this dataset is relatively weak.  After 

applying mean-centering method to the data, the variation attributable to main group effect 

increases from 2% to 4%.  Although this variation was also increased to 4.1% by the ComBat_n 

method, it was still far less than 12.4%, the variation due to the interaction term.  For ComBat_p, 

SVA, and ratio-G, increase in variation due to group related factors were mostly because of the 

increase in the interaction terms instead of the increase in main group effect. 

For the lung cancer miRNA data, the ComBat_p, and the ComBat_n methods increased 

variation attributable to the interaction term even more severely. This variation accounted for 

over 35% of the total variation in ComBat_p processed data and over 25% of the total variation 

in ComBat_n processed data (Figure A-9). For this dataset, the mean-centering and the SVA 

methods performed better: they produced data with reduced variations attributable to both main 

batch effect and the interaction term and increased variation due to the main group effect, with 

the latter doing better.  The Ratio-A method didn’t reduce batch effects as effectively as the 

 17 



previous two methods.  We used the Ratio-A instead of the Ratio-G method for this dataset 

because there were samples with zero values. 

 

 

 

Figure 2. PVCA results of three datasets before and after batch effect removal 
 

a b 

c d 
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3.3 DE ANALYSIS RESULTS 

To study the impact of different batch effect removal methods on the DE analysis, we 

compare the results of the following four strategies.  (1) Perform DE analysis on original data 

regardless of batch effects.  This is our “negative control”.  (2) Perform DE analysis on each 

batch (original data without batch effect removal) separately and combine the results using meta-

analysis technique. This is our “gold standard”. (3) Analyze original data using linear regression 

and adjust for batch effects as a regression covariate. (4) Perform DE analysis on data processed 

by batch effect removal methods.  Here, we focused on one simple batch effect removal method, 

mean-centering, and one complex method, ComBat_n.  SVA was also evaluated for the lung 

cancer miRNA data for its good performance on that data. 

Top-100 differentially expressed marker list was obtained according to the rank of p-

values for each strategy.  For comparison purpose, results of the individual batch data are also 

included.  We refer the top list produced by meta-analysis as the “true” top list and recorded the 

percent of markers on the top-100 list generated by other strategies that are also on the true top 

marker list. We consider a larger percentage of overlap between the top lists generated by other 

strategies and this true top marker list an indication of more reliable results.   

Given the experimental design used in the study that provided the head and neck 

expression data, it was not included for DE analysis. 

3.3.1 Analysis of the melanoma methylation dataset 

As stated in materials and methods section, the melanoma methylation data was filtered prior to 

the DE analysis, and there are 18303 candidate sites and 60 samples left.  The results were 

 19 



summarized in Table 1.  Without any batch effect removal/control, 38% of the top markers 

generated were also on the true top marker list.  When we analyzed the frozen tissue batch and 

the FFPE tissue batch separately, we observed a 21% and 43% overlap with the meta-analysis 

results, respectively. This is expected given the small number of frozen tissues (19 samples) and 

relatively large number of FFPE tissues (41 samples). We also noticed that none of the top-100 

marker lists of these two separate analysis overlapped, demonstrating the differences between 

these two types of tissues. The overlap between the top marker lists generated by different batch 

effect removal/control methods and the true top lists ranged from 34-49%, with the simple mean-

centering processed data giving the most reliable list.  Overall this dataset has very weak signal: 

almost all the strategies gave zero significant markers controlling false discovery rate (FDR) at 

20% (q-value<0.2).  One interesting thing we noticed is that for the ComBat_n processed data, 

we obtained 128 significant associated markers controlling FDR at 20%.  However, given the 

fact that other than residual variation, most of the variation is attributable to the interaction term 

(see Figure A-8d), we cannot distinguish the batch effect and the group effect well.  For this 

reason, we think these discoveries are likely to be false discoveries. Overall, the mean-centering 

method performed most satisfactorily for this dataset.  
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Table 1. Comparison of DE results for the melanoma methylation dataset 

Method Percentage of overlap with 
“true” top-100 marker list 

Number of markers with 
q-values<0.2 

Meta-Analysis 
(60 samples) Gold Standard 0 

Frozen Batch Only 
(19 samples) 21 0 

FFPE Batch Only 
(41 samples) 43 0 

Original Data 
(60 samples) 38 0 

Mean-centering Processed 
Data 

(60 samples) 
49 0 

ComBat_n Processed Data 
(60 samples) 34 128 

Regression 
(60 samples) 42 0 

 

3.3.2 Analysis of the lung cancer Micro RNA dataset 

For the lung cancer miRNA data (Table 2), pairs of normal and tumor tissues were sampled. We 

used the normal vs. control status as the profile group effect when running batch effect removal 

algorithms and the subsequent PVCA analysis. This is reasonable because this variable probably 

affects the miRNA expression level more than any other factors that are measured in this dataset. 

 21 



However (and fortunately), paired samples of the same patient were always assayed in the same 

batch in our data.  Thus for the comparison between the tumor and normal tissue, batch effect 

would be automatically taken care of by the subtraction of expression levels of paired samples 

coming from the same person.  Therefore, for our purpose of comparing different batch removal 

methods, we chose to use the 109 tumor samples at baseline and conducted DE analysis to look 

for markers associated with disease free survival (DFS) outcome.  The cox regression and 

likelihood ratio tests were used.   Again, using meta-analysis result as our gold standard, results 

of the batch1 data (46 samples) overlapped with 59% of true top list, and results of the batch 2 

data (63 samples) overlapped with 53% of true top list.  When data from the two batches were 

combined without any batch removal, resulted top differentially expressed marker list overlapped 

with only 30% of the true top list.  None of the batch effect removal/control methods were able 

to improve this result significantly: we found 32% for the mean-centering processed data, 34% 

for both ComBat_p and ComBat_n processed data, 32% for the SVA processed data, and 39% 

for the regression method.  This result is somewhat surprising.  It indicates that the effects of 

each marker on DFS in the two batches are qualitatively different, i.e. the directions of the effect 

size of some of the markers on the top lists are different in these two batches. Among the 100 

markers on batch 1 only analysis top list, 64 showed an association with the DFS of opposite 

direction in batch 2 data.  Similarly, among the 100 markers on batch 2 only analysis top list, 73 

showed an association with the DFS of different direction in batch 1 data. In addition, the time-

to-event endpoint is often tricky to deal with at the presence of batch effects.  Luo et al. also 

noted that batch removal methods may not improve performance if time to event endpoint was 

used [3].  
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Table 2. Comparison of DE results for the lung cancer micro RNA dataset 

Method Percentage of overlap with 
“true” top-100 marker list 

Number of markers with 
q-values<0.2 

Meta-Analysis  
(109 samples) Gold Standard 0 

Batch1 Only 
(46 samples) 59 0 

Batch2 Only 
(63 samples) 53 0 

Original Data 
(109 samples) 30 0 

Mean-Centering Processed 
Data 

(109 samples) 
32 0 

ComBat_p Processed Data 
(109 samples) 34 0 

ComBat_n Processed Data 
(109 samples) 34 0 

SVA Processed Data 
(109 samples) 32 2 

Regression 
(109 samples) 39 0 
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4.0  DISCUSSION 

Batch effect is a common issue in microarray data, and it could introduce bias into the analysis, 

if ignored.  Previous comparative work has been focused on effectiveness of batch effect 

removal [1] and impact on downstream classification analysis [3].  In this project, we 

investigated the performance of five popular batch effect removal methods, mean-centering, 

ComBat_p, ComBat_n, SVA, and ratio based methods, on batch effects reduction and their 

impact on DE analysis using three experimental datasets with different sources of batch effects.   

We found that the performance of these methods is data dependent. All four methods 

were able to remove batch effects in the head and neck expression data effectively, with Combat 

methods slightly outperforming the others.  On the other hand, the Combat methods didn’t 

perform well in either of the remaining two datasets in terms of reducing the variation due to the 

interaction between batch and group effect. For the melanoma methylation data, the mean-

centering method performs the best regarding both batch effect reduction and the DE analysis.  

The SVA removes batch effect most effectively in the lung cancer micro RNA dataset, followed 

by the mean-centering method.  Looking across the three datasets, we noticed that the mean-

centering method consistently generates reasonable results while the Combat methods, although 

more sophisticated, failed on two out of the three datasets. SVA method’s performance also 

heavily depends on the dataset: it was effective in two out of the three datasets, but not the other 

one.  Ratio-G (or Ratio-A) didn’t stand out in either of the two datasets that we applied it to, 
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probably due to the fact that our experiment is not ideally designed for this method. If we have 

true internal control that was run in every batch, we will expect to see much better performance 

of this method.  

Similar to Chen et. al 2011 [1], we observed a better biological signal after the batch 

effect removal represented by an increase in the variability due to main group effect in most 

cases (Figure 2c). However, theoretically, it could go either way depending on the distribution of 

the cases and the magnitudes and directions of the group and batch effects.  For example, when 

the true signal is very weak, we may end up with group effects that is slightly higher or lower 

after the batch effect removal (Figure 2c). 

To investigate the impact of batch effect removal methods on DE analysis, we compared 

the top lists generated by different strategies to the “true” top list generated by the meta-analysis 

of the two batches. Interestingly, for the methylation data, the mean-centering processed data 

generated the most reliable results followed by simple regression adjustment of batch effect. Of 

concern, the Combat_n method seemed to increase the power greatly by declaring 128 

significant markers (compared to none for all the other methods) at FDR=0.2. However, given 

the relatively large variation attributable to the interaction between the batch and the group 

effect, the signals here are most likely to be false positive. This behavior for the Combat method 

is also observed in the lung cancer micro RNA dataset. Therefore, we should be cautious when 

using the more complicated model based batch effect removal methods.  

Given a new dataset, we recommend either using the mean-centering method or carefully 

investigating a few different batch removal methods and choosing the one that is the best for the 

data, if possible.   
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In our analysis of the melanoma methylation data, we noted an interesting result.  We 

started with a total of 58 FFPE samples. However, 17 FFPE samples didn’t meet our quality 

control filtering. When we included these samples in the analysis, a large proportion (>70%) of 

the markers became significant (FDR=0.2).   When we take a close look at the PCA plots of the 

FFPE samples, we can clearly see that these 17 samples separate from the rest of the samples 

(the green and yellow points on Figure 3). More interestingly, these samples also happened to 

separate the two groups perfectly, which caused the large amount of significant signals. This 

interesting result emphasized the importance of appropriate preprocessing of data. 

 

 
Figure 3. PCA score plot of the FFPE samples in the melanoma methylation dataset 

 

 

Last, we would like to shed some light on the study design. When the only option is to 

run the samples in multiple batches, it is important to balance the cases and controls across the 
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batches and make sure that sample are randomly assigned to the batches to avoid any systematic 

differences between the samples assigned to different batches. When cases and controls are 

completely separated, we simply cannot distinguish the group effect from the batch effect. For 

paired study design, e.g. our lung cancer micro RNA dataset, running the paired samples from 

the same subjects in the same batch will efficiently minimize the batch effects.  The inclusion of 

technical replicas across different batches is also important in the assessment and the correction 

of batch effects.  

4.1 LIMITATION AND FUTURE WORK  

The main limitation of this work lies in the lack of “true positives”.  As a compromise, we used 

the meta-analysis results as our “gold standard” to evaluate the impact of batch effect removal 

methods on DE analysis.  However, the method we used to combine p-values, the Fisher’s 

method, has its own limitations: it can be dominated by extreme small p-values in one batch; in 

addition, it doesn’t count for different directions of effect sizes. This becomes a problem 

especially for our lung cancer micro RNA data. In the future we plan to conduct simulation 

studies.  Specifically, we will spike in true signals on null data generated from permutation of 

real datasets so that we know the true positives.  
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APPENDIX A 

ADDITIONAL FIGURES 
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Figure A-4. PCA score plots for head and neck expression data 
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Figure A-5. PCA score plots for melanoma methylation data 
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Figure A-6. PCA score plots for lung cancer miRNA data 
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Figure A-7. PVCA results in head and neck expression data 
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Figure A-8. PVCA results in melanoma methylation data 
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Figure A-9. PVCA results in lung cancer miRNA data 
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APPENDIX B 

ABBREVIATIONS 

ComBat_n  non-parametric ComBat method 
ComBat_p  parametric ComBat method 
DE  differential expression 
DFS   disease-free survival 
DWD   distance-weighted discrimination 
EB   empirical Bayes 
FDR   false discovery rate 
FFPE   formalin fixed and paraffin embedded 
KNN   k-nearest neighbor 
LRT   likelihood ratio test 
MAQC-II MicroArray Quality Control Consortium Phase II 
MCC  Matthews Correlation Coefficient 
NNF   normal cell fibroblast 
PC   principal component 
PCA   principal component analysis 
PVCA   principal variance component analysis 
Ratio-A  ratio-based method (using arithmetic mean) 
Ratio-G ratio-based method (using geometric mean) 
SVA  surrogate variable analysis 
SVD   singular value decomposition 
TAF   tumor cell associated fibroblast 
VCA   variance component analysis 
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