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Abstract. In practical applications of robot swarms with bio-inspired
behaviors, a human operator will need to exert control over the swarm
to fulfill the mission objectives. In many operational settings, human
operators are remotely located and the communication environment is
harsh. Hence, there exists some latency in information (or control com-
mand) transfer between the human and the swarm. In this paper, we
conduct experiments of human-swarm interaction to investigate the ef-
fects of communication latency on the performance of a human-swarm
system in a swarm foraging task. We develop and investigate the con-
cept of neglect benevolence, where a human operator allows the swarm to
evolve on its own and stabilize before giving new commands. Our exper-
imental results indicate that operators exploited neglect benevolence in
different ways to develop successful strategies in the foraging task. Fur-
thermore, we show experimentally that the use of a predictive display
can help mitigate the adverse effects of communication latency.

1 INTRODUCTION

Swarm robotic systems are composed of simple individual units and generate col-
lective behavior that is robust to failure of individual robots [1, 2]. However, for
practical use of such systems in large and complex human-supervised missions,
key problems that arise in human-swarm interaction need to be understood and
solved. In application scenarios, the human operator may be remotely located
and there may be communication constraints due to the hardware limitations
of the robots (e.g., communication radios of limited power) and the environ-
mental properties (e.g. underwater environments). This will lead to delay in the
communication of information between the swarm and the human. The delay in
communication results in the human neither knowing perfectly the current state
of the swarm nor the effect of her action on the robots. The extant literature
on Human-Swarm Interaction (HSI) [3–10] has not studied the performance and
behavior of human operators in the presence of delayed information transmis-
sion between the swarm and the human and vice versa. Therefore, in this paper,
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we create an experimental scenario to study the effects of latency and error on
human performance in controlling swarm robotic systems. We also study the use
of predictive displays to mitigate the effect of latency.

In our experimental foraging scenario, a human operator guides a swarm
to find unknown targets in a given area. The robots have a single behavior,
namely flocking, and the operator applies inputs (a) to give a desired direction
of flocking to the robots and (b) to enforce cohesiveness among the robots (by
activating constraints for attracting neighbors that are far away and repelling
neighbors that are very close). In our experiment, each subject performs the
mission under three conditions, namely, (a) without any latency (control con-
dition), (b) with equal latency in the human to swarm and swarm to human
communication channel (c) the same latency as (b) but with a predictive dis-
play. In all conditions, each robot has some error in transforming the orientation
heading to its own reference frame (due to localization errors), which is modeled
as a Gaussian distribution. Our experimental results indicate that, as expected,
there is a degradation of performance due to latency. However, when using the
predictive display, the performance of the operators can be as good as it was in
the absence of delay (control condition). We also found that the users exhibited
different strategies for effectively controlling the swarm.

The human operator needs to influence the swarm without adversely disturb-
ing the swarm (such as breaking it into many small connected components). The
effect of an operator command is dependent on swarm state, which gradually
evolves to a steady state after a command has been issued. To capture the idea
that humans may need to observe the evolution of the swarm state before acting,
we investigate a novel concept called neglect benevolence, whereby neglecting the
swarm to allow for stabilization before issuing new commands may be benefi-
cial to overall mission performance. An analogous but different concept called
neglect tolerance [11, 12] is used in human robot interaction. For independently
operating multiple robots, neglect tolerance is defined as the time a human can
neglect a robot without degradation in system performance. For neglect toler-
ance, it is assumed that the performance of an individual robot degrades with
time and hence the attention of the operator needs to be scheduled so that the
time between servicing robots is minimized [13, 14]. In contrast, neglect benev-
olence captures the concept that it may be beneficial to leave the swarm alone
for a certain length of time after issuing an instruction to allow the behavior to
stabilize (since the swarm state may not degrade monotonically with time). Our
results show evidence of neglect benevolence.

2 TASK DESCRIPTION

Our study investigates the ability of a human operator to effectively influence
a swarm operating under algorithms that require time to exhibit emergent be-
haviors. In particular, we investigated (1) the effect of communication latency
in human-swarm performance, (2) the effect of predictive displays, and (3) the
existence of neglect benevolence as a new notion in HSI. We created a foraging



task that requires users to direct a swarm around an open environment using
instructions to change swarm heading and flocking constraints. We also use this
study to look at the effect of communication latency on this ability.

2.1 The Environment

The overall task of the experiment is to guide the swarm around an open, 100x100
meter environment to find targets of different colors. We use three different
environments divided into six regions, with each region containing one of three
target frequencies: low (0-4 targets), medium (5-9 targets), or high (10+). The
target distribution is different across the search missions that each participant
solves, but each environment contains 1 high, 2 low, and 3 medium frequency
regions. There are 40 targets in total in each of the three environments, and each
participant receives a worksheet indicating the target frequency of each region.

We use Stage v. 3.2.2 [15] to simulate the environment, the targets, and a
swarm of 40 differential drive P2AT robots. Robot controllers are implemented
using the Robot Operating System (ROS) [16]. Each robot is equipped with
a color sensor with a range of 4 meters to detect the colored targets. We also
simulate an additional sensor that allows the robots to sense the location of a
neighbor within 4 meters. This allows each robot to estimate the direction of
motion of its neighbors from repeated observations of their location.

The graphical user interface is also implemented in ROS. This interface dis-
plays the known targets and positions of the robots; however, it does not display
the region boundaries. During the trial, each robot transmits its position and
observations from its color sensor to the user interface. A target is considered
found only if six or more robots detect it simultaneously, at which point the
target is shown on the map and a counter on the side is incremented.

2.2 Human Influence

Users can influence the swarm with three commands: stop, heading, and apply-
constraints. The heading command broadcasts a global heading to the swarm.
To simulate a localization error, every robot interprets the global heading with
respect to a local coordinate frame to compute its goal heading. The orientation
of this local coordinate frame differs from the true orientation of the robot by
an error sampled from the Gaussian distribution N (0, 4π

9 ). Upon receiving the
command, the robots turn toward their respective goal heading and begin moving
(Fig. 1a). In order to correct for the erroneous interpretations of the global
heading, each robot also executes a consensus algorithm at a frequency of 0.5
Hertz. Robots sense the direction of motion of their neighbors and update their
goal heading to the average goal heading of their neighbors and themselves (Fig.
1b). Finally, the user can issue an apply-constraints command, which applies
biologically-inspired flocking constraints similar to those in [1], [2], and [10].
These constraints force robots to repel from each other if they were closer than
1.5 meters, and, if none were this close, to attract to neighbors further than 3



meters (fig. 1c). Otherwise, the robots execute the consensus algorithm described
previously.

Fig. 1. The swarm in each of the three possible states: when the user first issues a
heading command (a), after the consensus algorithm has stabilized (b), and after the
user has just issued the constraints command (c). Before a heading command is issued,
the robots headings (indicated by the solid line coming out of the circles) can be in
different directions (a). After consensus, all the headings align in the same direction
(b). When a constraints command is issued, headings may drift away from consensus
temporarily as the robots adjust to the constraints.

2.3 Experimental Design

The experiment consists of three conditions—the control, latency, and predictive
conditions. In all conditions, the operator begins with a swarm of 40 robots
positioned randomly in a 10x10 meter box.

In the control condition, there is no latency in either of the human-to-swarm
or swarm-to-human channels.

In the latency condition each channel—operator-to-swarm and swarm-to-
operator—has a latency of 10 seconds, meaning that operator-issued commands
will not reach the robots until 10 seconds after issuing, and the state of the
swarm displayed in the interface for the user is 10 seconds old. Therefore, from
the operator’s point of view, the swarm will not begin executing the command
until 20 seconds after the heading instruction is issued, as the message will take
10 seconds to reach the swarm, and the reflection of this command will take 10
more seconds to return to the operator.

In the predictive condition, the latency of 10 seconds for each channel remains
present; however, the interface gives the user a prediction of where each member
of the swarm will be in 20 seconds, or when the next command is received,
by taking the heading and speed (which is a constant 0.5 m/s) of each swarm
member and extrapolating the robot’s position that far in the future.



Each participant has a different environment for each of these conditions,
and the order of both the conditions and the maps are randomized for each
participant in order to remove any learning biases. 21 participants (8 men and
13 women) were recruited from the greater Pittsburgh area to participate in the
study. Each participant was given a short explanation of the controls and goals
of the study and a 10-minute training session to familiarize themselves with the
interface, after which they completed each of the three conditions.

3 RESULTS AND DISCUSSION

The overall mission performance for each participant is measured in terms of the
number of targets found and the coverage of the high-frequency target regions.
In the control condition participants found 19.86 targets and covered 1.47m2/s
of the high-frequency target regions on average, both of which were significantly
higher than in the latency condition, where participants found 16.71 targets
(p = .021) and covered 0.98m2/s of the high-frequency regions (p = .007). In
the predictive condition, however, participants found 18.86 targets on average
and covered 1.24m2/s of the high-frequency regions, neither of which were signif-
icantly different from the control condition (p = .467 and p = .196, respectively).
These results show that the latency of 10 seconds significantly impedes perfor-
mance, but that the predictive display in the predictive condition removes this
impediment.

An indirect measure of an operator’s ability to control the swarm is the
swarm’s overall connectivity. To determine the overall connectivity of the swarm
at any given time, we represented the swarm as a simple graph, G, and used the
second eigenvalue of the graph’s Laplacian as the connectivity measure. Keeping
the swarm connected has two benefits. First, such a swarm is less likely to break
off into smaller connected components, which allows the user to meet the six-
robot threshold for sensing a target more easily. Secondly, a highly-connected
swarm will reach consensus faster, as each robot will have more neighbors to
average with during each consensus round.

We see that the latency condition had an average connectivity of 0.111, which
was significantly higher than in control condition, which had an average connec-
tivity of 0.084, p < .001. Similarly, average connectivity in the predictive condi-
tion was also significantly higher than in the control condition, with a value of
0.116, p < .001, see Fig. 2. This points to the existence of neglect benevolence,
as it demonstrates that communication latency helped enforce swarm connec-
tivity by causing operators to wait to see the results of their heading command
before deciding whether to issue a new one. As a consequence, each command
has a longer duration, thus giving the swarm more time to stabilize after each
command. We find this is indeed true, with users issuing significantly more com-
mands on average in the control condition (M = 27.81) than in the latency
condition (M = 17.76, p = .028), and significantly more than in the predictive
condition (M = 18.86, p = .052).
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Fig. 2. These graphs display the connectivity of the swarm at the end of each heading
command issued. Connectivity is significantly different across conditions (left), with
the latency conditions generally having more connected swarms. The average time
to constraints also impacts connectivity (right), with participants choosing to enforce
constraints more often generally having better connected swarms. The boxes in each
figure represent the bottom three quartiles, and the outliers are marked as black dots.

To investigate the various behaviors and strategies of the operators, we in-
vestigated the duration and timing of the heading and apply-constraints in-
structions. We analyzed the average time between a heading and a subsequent
apply-constraints command (hereafter referred to as time to constraints), or the
next heading command (duration). Because these instructions involve altering
the current state of the swarm at the time they are issued, even two identical
commands (i.e., two heading commands with the same heading) can lead to
drastically different effects depending on the state of the swarm.

As demonstrated by the previous results, because the number of heading
commands were different across condition, the duration of the commands are
similarly different. The apply-constraints instruction, however, can be more flex-
ible, and operators may decide to issue constraints at any point in time after
a heading command, or issue a new heading command without activating con-
straints at all. To investigate the effect of the application of constraints, we
clustered the data into three equal-sized groups across all missions into a high
(100% to 78%), medium (78% to 45%), or low (45% to 0%) group corresponding
to the number of heading commands for which constraints were later applied.

Performance in terms of targets found does not differ between these groups,
but the total area swept is significantly different, with fewer constraints (low)
leading to less overall area covered by at least six sensors (p = .040). On the
other hand, many constraints (high) lead to a larger error between the heading
of the swarm and the operator’s goal heading (p = .011), and fewer constraints
(low) have more heading instructions leading to a consensus (74%, p < .001).



These results suggest that operators employ different strategies to find a
larger number of targets, with some operators using constraints earlier and more
often, increasing coverage at the expense of higher heading errors, while others
preferred the opposite.

We expected a difference in heading duration and time to constraints between
the two latency conditions and the control condition, as participants must wait
20 seconds to see the results of their commands. Interestingly, however, across
all instructions, only 27% in the latency condition and 30% in the predictive
condition have constraints activated later than 20 seconds, neither of which
were significantly different from control, meaning that, unlike with the heading
commands, operators often issued the constraints prior to seeing the effect of
the heading instruction on the swarm. Swarm connectivity was also significantly
impacted by the application of constraints as well, with the high constraints
group having significantly better connectivity than the medium or low group
(p = .043), see Fig. 2.

These results provide considerable support for neglect benevolence. Frequent
and short commands provide an operator more control, but sacrifice swarm co-
hesion as reflected in the lower connectivity value and the higher number of
connected components. This is largely due to the fact that new heading com-
mands reintroduce error into the swarm members’ estimated heading and require
several rounds of consensus to stabilize. Activating the constraints too early and
often, however, leads to higher heading errors, and thus may make the swarm
more difficult for the human to control. We found that operators develop two dif-
ferent strategies around neglect benevolence: either stabilize the consensus and
lower the heading error, or maintain swarm cohesion and improve coverage. It
appears operators were able to use either method to their advantage and obtain
a good performance, and that, while latency can degrade performance overall,
it does not impact one strategy more than the other.

4 CONCLUSIONS AND FUTURE WORK

This study provides support for the idea of neglect benevolence, with the com-
mands in the study leading to strategies with different costs and benefits depend-
ing on the state of the swarm at the time the commands were issued. Frequent
heading commands provided the user more control over the direction and loca-
tion of the swarm at the expense of total coverage and swarm connectivity. Due
to the nature of the swarm algorithms, high position and heading accuracy and
high swarm cohesion were not possible simultaneously. Therefore, participants
had to decide which characteristics were more important. For the present study,
both strategies achieved success; however, other tasks may be better achieved
with one or the other. This will be the subject of future study.

Latency had a negative effect on the number of targets found; however, using
a predictive display mitigated the negative effects. Latency also seemed to signif-
icantly impact the frequency with which an operator issues heading commands,
but not apply-constraints commands. As this is the first study to investigate



latency in human-swarm interaction, future work will address latency issues for
human control of other tasks and swarm algorithms.
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