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Abstract

Many cooperative control problems ranging from for-
mation following, to rendezvous to flocking can be ex-
pressed as consensus problems. The ability of an oper-
ator to influence the development of consensus within
a swarm therefore provides a basic test of the quality
of human-swarm interaction (HSI). Two plausible ap-
proaches are : Direct- dictate a desired value to swarm
members or Indirect- control or influence one or more
swarm members relying on existing control laws to
propagate that influence. Both approaches have been
followed by HSI researchers. The Indirect case uses
standard consensus methods where the operator exerts
influence over a few robots and then the swarm reaches
a consensus based on its intrinsic rules. The Direct
method corresponds to flooding in which the operator
directly sends the intention to a subset of the swarm
and the command then propagates through the remain-
der of the swarm as a privileged message. In this paper
we compare these two methods regarding their conver-
gence time and properties in noisy and noiseless con-
ditions with static and dynamic graphs. We have found
that average consensus method (indirect control) con-
verges much slower than flooding (direct) method but
it has more noise tolerance in comparison with simple
flooding algorithms. Also, we have found that the con-
vergence time of the consensus method behaves errat-
ically when the graph’s connectivity (Fiedler value) is
high.

Introduction
Human control of swarms is a problem of particular dif-
ficulty because there is no ready correspondence between
human goals, swarm behaviors, and actions an operator
might take to influence a swarm. Robots coordinated as
swarms rely on simple control laws replicated across plat-
forms which interact with each other to give rise to emer-
gent organized behavior. Flocking behavior, for example,
can be generated from three simple rules: 1) move away
from any sensed robot closer than d1, 2) move toward any
sensed robot further away than d2, 3) adjust heading to av-
erage heading of sensed robots. The balancing of attractive
and repulsive forces and consensus on heading leads to a
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swarm that sticks together and moves in common, perhaps
changing, directions.

Flocking is an example of biomemetic control because the
control laws were chosen to mimic the behavior of flocking
animals with the presumption that the animals, themselves,
use some similar mechanism to coordinate their behavior.
Swarm behavior can also be generated from analogs to phys-
ical laws by treating robots as point masses and using attrac-
tive/repulsive forces and artificial potential fields to produce
emergent coordinated behavior. In this case the swarm is re-
ferred to as physicomemetic. In either case swarm behavior
can be influenced by altering the behavior of some mem-
bers, altering the control laws, or altering the environment
in which the swarm operates.

A basic distinction among approaches to Human-Swarm
interaction lies in the ontological status of operator(s) com-
munications in their influence on swarm behavior. One
approach, Direct Influence (Kolling, Nunnally, and Lewis
2012), allows operators privileged communications that on
receipt, directly alter a swarm members control laws and/or
parameters to influence swarm behavior. This approach nat-
urally distinguishes two basic roles of control laws: 1) main-
taining swarm coherence and 2) producing behaviors that
can be exploited to perform human desired tasks. Laws gov-
erning coherence specify the constraints on robot movement
needed to maintain connectivity of the swarm. The severity
of these constraints can range from a disc which requires
that a robot never move to any position that takes it out of
communication range of any robot to which it is currently
connected to a minimum spanning tree that allows a robot to
move to any position that maintains at least one link to the
swarm. Human desired tasks are then performed by request-
ing behaviors subject to these and other constraints. Direct
control has the advantage of unambiguously expressing the
operators intent to any robot receiving the privileged mes-
sage thereby accelerating convergence to the operators in-
tent.

An alternate approach, Indirect Influence, limits opera-
tors to controlling or influencing a subset of swarm mem-
bers and uses unaltered control laws to propagate this influ-
ence to the remainder of the swarm. In one version of this
approach (Goodrich et al. 2011) the operator controls real
or virtual swarm members called leaders or predators that
stand in a special relationship with other members who (a)



are attracted to and follow leaders and (b) are repelled by
and flee predators. Operators influence the system by select-
ing agents to control and designating those agents as lead-
ers/predators to the remainder of the swarm. In this case
privileged communication of the operators intention is lim-
ited to special members controlled directly and those ad-
ditional members in direct communication with the special
members. In a weaker variant of this scheme operators com-
municate an influence to some swarm members that con-
tributes but does not fully determine their behavior. These
members referred to by (Goodrich 2012) as stakeholders
and pacesetters are peers and their communications to other
swarm members are not privileged. Goodrich (2012) argues
that ceding full authority to a human operator can cause
undesirable results such as accelerating members at rates
that lead to loss of coherence and break-up of the swarm
or highly inefficient state transitions that might be achieved
much more smoothly if done in consonance with ongoing
behaviors. By acknowledging that a swarm may have better
knowledge of its situation than a remote human operator that
operator may achieve her goals more effectively by work-
ing within the system by injecting control through a small
number of agents and allowing the system to adjust to these
inputs over time.

Analysis of Swarm Consensus
Our focus is on two distinct approaches to swarm control.
In the Direct approach, the operator controls the swarm by
sending a command to one or more robots. This command
is assumed to be a privileged message and is given prece-
dence over competing influences. For example, if the oper-
ator desires that flocking robots move in a new direction,
that intention is expressed in a message to the swarm. Upon
receipt each robot changes its heading to the desired value.
In the Indirect approach the user expresses intent to one or
more specialized leaders or predators that attract or repel
other robots. This influence is then propagated through the
remainder of the swarm through existing control laws. In
both of these approaches, the swarm has an intrinsic set of
rules that manages the low level functionality of the swarm.
In current swarm robotics, this low level often is comprised
of connectivity maintenance and obstacle avoidance rules.
The operator commands function at a higher level, usually
by giving a new direction to the swarm or assigning a new
destination. Therefore the operator commands can only be
performed in the set of performable operations by swarm
(e.g. those operations that does not contradict with connec-
tivity constraints of swarm or does not force robots to move
into obstacles).

In either control approach, the operators’ main desire is to
observe a consensus on her intention in the swarm. For ex-
ample if she sends a new orientation command to the swarm,
she expects to see all the robots gradually change their ori-
entation into her intended value. The reminder of this paper
studies the effects of the aforementioned control methods on
the consensus quality of the swarm. We analyse the “consen-
sus quality” based on these aspects: How long does it take
for the swarm to converge on the intended value/command
of the operator? How robust is the convergence algorithm

in the presence of noisy communication? What are the ef-
fects of graph size and graph connectivity on the conver-
gence time? What happens when robots start to move and
the connectivity graph of the swarm changes during time?

For doing our analyses we have used the simplest case in
which the operator initiates influence through a single robot.
In the Indirect case this influence is exercised in its weakest
form through an influenced robot that lacks any special des-
ignation to attract or repel other robots that Goodrich (2011)
refers to as a stakeholder. The only difference of this robot
with others is that it keeps its designated value during time
while other robots constantly change their information state
based on the information state of their neighbors. On the
other hand in the Direct control method, robots can distin-
guish between normal messages and privileged ones. A mes-
sage from the operator is considered a privileged one and
updates the internal information state of the recipient upon
arrival. This privileged message is being adopted by other
robots as soon as they get in contact with any of the previ-
ous holders of the message.

We can define a swarm as a set of robots occupying spatial
positions in a plane during time: S(t) = {si(t)|si(t) ∈ R2}.
Robots also have an internal state which represents their
knowledge at any moment in time. For example their in-
ternal state may reflect their destination or an enumerator
defining each robots set of internal rules (e.g. for switching
between flocking and rendezvous behaviors). In our example
this internal state is the robots orientation at each time step:
X(t) = {xi(t)|xi(t) ∈ (−π, π)}. Our goal is to start from
an arbitrary initial state X(0), choose a random orientation
value as our intention, x∗, send it to the swarm and wait
until the swarm converges on our intention. Convergence is
achieved if there exists a time τ , which after that the internal
values of all robots remains in an error tolerance range δ∗ of
x∗:

∀t ≥ τ,∀i |xi(t)− x∗| ≤ δ∗
Robots communicate with each other through a limited

disk connectivity graph. Meaning that robots that are in
range κ can see each other and robots farther away would
not be able to communicate directly. It results in a connec-
tivity graph G = (N,E) which has N nodes (the number
of robots in our swarm) and there is an edge eij ∈ E iff
‖si − sj‖ ≤ κ.

The operator chooses a random robot φ as her initial point
of influence and updates the internal value of that robot with
her desired random value:

xφ(0) = x∗

In the Direct control method, also known as flooding ap-
proach, a swarm has an additional internal state set P (t)
which indicates which robots have received the privileged
information from the operator. Thus after the user sends x∗
to φ, we would have pφ(0) = 1 while ∀i 6= φ pi(0) = 0.
The internal states X and P are updated by this rule: ∀i, j if
eij ∈ E and pj(t) = 1 and pi(t) = 0 then pi(t+1) = 1 and
xi(t+ 1) = xj(t). In case a robot has more than one neigh-
bors with privileged information, it adopts the information
from the first one.



In the Indirect control method, also known as averaging
consensus, the internal state of each robot is updated by av-
eraging over internal values of all of its neighbors (including
itself). The only robot that doesn’t change its internal value
is φ (i.e. the robot which receives x∗ from operator). The
averaging algorithm works based on the method presented
in (Xiao and Boyd 2003). Here, we have a weight matrix W
which defines the averaging coefficients. Thus at each time
t we have:

X(t) =W tX(0)

The optimal solution can be expressed as a semidefi-
nite programming problem, which often results in differ-
ent edge weights (even negative ones) for the edges in the
connectivity graph G. As the current swarm robots are usu-
ally very limited in computational capabilities, this optimal
approach is not plausible for actual experiments with real
robots. Instead, we can use a more common approach which
assigns a fixed weight to all edges. Xiao (2003) demon-
strates that if the swarm remains connected during time,
any edge weight smaller than 1 will guarantee a conver-
gence. He also proves that the optimal constant edge weight
is α∗ = 2

λ1(L)+λn−1(L)
where λ(.) denotes the ith largest

eigenvalue of a symmetric matrix and L is the Laplacian ma-
trix of the connectivity graph G. In our experiments, we use
this edge weight in our Indirect approach.

We assume that the swarm is operating in an obsta-
cle free environment and always maintains its connectivity
(even when robots move). We start our analysis by assum-
ing noiseless communication in a fixed connectivity graph.
After comparing Direct and Indirect methods and finding
some lower bounds on the worst case convergence time,
we expand our analysis by assuming noisy communication
and moving robots resulting in dynamic connectivity graphs.
As (Wang and Liu 2009; Ren, Beard, and Atkins 2005) have
demonstrated, even in the presence of noise, the averaging
consensus method will converge as long as swarm’s con-
nectivity graph remains connected. Therefore our analysis
would focus on its convergence time and its relation to the
Direct method’s convergence time.

Flooding in Noiseless and Static Communication
Graph
Operator sends her intention to one robot and then it prop-
agates from there with a breadth first search (BFS) graph
traversing algorithm. As the graph is fixed, it takes at most
the size of graph diameter steps (D) until the information
from the first robot reaches all the other robots.

Averaging Consensus in Noiseless and Static
Communication Graph
Here also the information propagates with a BFS. But in-
stead of sending the complete information to the next layer
of robots, only a fraction of information would be sent to
them as the robots average the intended information with
their own internal states. Therefore at least we need D steps
until the information from φ can have any effect on the far-
thest robot. But as the consensus method works by averag-

ing, the actual convergence needs more steps. As a result,
in general it always takes more steps for the swarm to reach
consensus in Indirect method in comparison with the flood-
ing method.

Flooding in Noiseless and Dynamic
Communication Graph
When we have a dynamic graph, the connectivities between
robots changes during time, but based on our assumption,
the total graph remains connected. In each time step there
are two sets: privileged set and uninformed set. At the begin-
ning, the privileged set has only 1 member: φ. As the graph
is connected, there must be at least one member from the un-
informed set that is adjacent to a member of the privileged
set. Thus in the next step that robot will receive the infor-
mation from its informed neighbor. It will then be removed
from the uninformed set and be added to the privileged set
at the next time step. Consequently, at each time step at least
one more robot will receive x∗. Therefore the total conver-
gence time will be at most N , the number of robots in the
swarm.

Averaging Consensus in Noiseless and Dynamic
Communication Graph
Like the flooding method, in the worst case scenario it takes
N steps for the information from the leader to reach all
robots, but again as the internal value of robots does not
change suddenly to the desired level x∗, we need more steps
until the actual convergence happens.

Flooding in Noisy and Static Communication
Graph
We assume that our noise is a uniform distribution variable
ε ∈ (−δ, δ). When the information xi(t) is transmitted from
each robot to its neighbours, they will receive xi(t) + ε. As
the maximum number of hops from φ is D, we would have
at most ±Dδ noise added to the value of the farthest node.
If we want to keep this value below our maximum error tol-
eration δ∗, we should have δ ≤ δ∗/D. If the noise value
exceeds this threshold, convergence guarantee is lost.

The time of convergence is still D as it takes at most D
steps for the information from the initial robot φ to reach the
farthest robots in the swarm.

Averaging Consensus in Noisy and Static
Communication Graph
Here, whenever a robot averages over its neighbors and its
own value, at the end a uniform error ε ∈ (−δ, δ) is added
to its value. As the graph is connected, the swarm will even-
tually converge on x∗. The only logical assumption that we
have to make here is δ ≤ δ∗. Otherwise the local perturba-
tion of the internal state of the robot may exceed the error
acceptance level. The important issue about the consensus
method is that as robots average their values, most of the
time the noise cancels out. This makes this method of con-
trolling more robust in the presence of noise.

The time of convergence is still at leastD in the worst case
as it takes D steps for the information to have any effect on



the farthest nodes in the swarm and then it takes more steps
until the swarm converges on operators’ intention.

Flooding in Noisy and Dynamic Communication
Graph
When the graph is dynamic, the number of hops for a com-
plete information propagation may increase. In the worst
case scenario, there is only 1 robot that is added to the priv-
ileged set at each time step. In this case, we have N hops
until the information is propagated and the swarm reaches
consensus. Therefore in order to compensate for noise, we
should have δ ≤ δ∗/N . If the noise level gets above this
upper bound, we lose our convergence guarantee.

Averaging Consensus in Noisy and Dynamic
Communication Graph
As our graph remains connected at each time step, it will
reach consensus (Wang and Liu 2009). Like the flooding
method, we need at least N steps in the worst case scenario
until information reaches all robots and then we have to per-
form more steps until the swarm converges.

Experiments
In order to test Direct and Indirect control approaches, we
have created several random swarm configurations. Then we
have analysed their convergence time in comparison to each
other. The swarm is created by arbitrarily choosing from 1 to
50 robots and placing them randomly in a 200× 200 board.
Then we start with a connectivity range κ = 1 and create
the connectivity graph. We will gradually increase κ until all
robots form a single connected graph. We also assign some
random values as internal state X to robots. These internal
state values are selected from (−π, π) in order to simulate
an orientation value. Then we choose a random robot as the
leader and communicate our random intention x∗ to it. Both
Direct and Indirect methods are performed by the swarm and
their convergence time is measured. Our error acceptance
value is δ∗ = 0.1. The results are averaged over 10,000 ex-
periments.

The convergence times are compared based on the num-
ber of nodes in the graph and the Fiedler value. Fiedler value
is the second smallest eigenvalue of the Laplacian of the
connectivity graph (i.e. λ1(L(G))) (Gross and Yellen 2003).
Fiedler value is also called the algebraic connectivity. A
larger Fiedler value means that the graph is more connected
and one has to remove more edges in order to cut the graph
into independent components (Jamakovic and Uhlig 2007).
Therefore Fiedler value gives us a good estimate about the
order of connectivity of the communication graph.

The graph diameter distribution of communication graphs
used in our experiments is demonstrated in figure 1. As it can
be seen, when E ≈ 2N graphs are less connected and the
graph diameters are higher:D ≈ N

2 . WhenE ≈ 4N , graphs
are highly connected with D ≈ N

10
The convergence time for the Direct and Indirect methods

are presented in figure 2.
While the Direct method takes at most about 15-18 steps

till it converges, Indirect method takes much more time,

Figure 1: Average graph diameter based on the number
of nodes and edges. This random graph distribution has
been used in the experiments. This data is based on 10,000
randomly generated swarms. Swarm size is uniformly dis-
tributed between 1 to 50 robots. All graphs are connected.

(a) Flooding Convergence Time

(b) Averaging Consensus Convergence Time

Figure 2: Convergence time of (a) flooding (Direct control)
vs (b) average consensus (Indirect control).

sometimes even more than 2000 steps. The Direct method is
also much more robust. As the Fiedler value increases (the



graph is more connected), the direct method converges faster
regardless of the number of nodes. Also when the Fielder
value is small, the convergence time of Direct method has
a linear relationship with the number of nodes in the graph.
On the other hand, the Indirect method behaves differently.
When the Fiedler value is small, the convergence time in-
creases exponentially with the number of nodes. Also, even
when the Fiedler value is high and graph is well connected,
sometimes the convergence time spikes. It seems that the
Indirect method convergence time does not behave linearly
versus the connectivity level of the graph.

Figure 3: Convergence time of average consensus divided
by convergence time of flooding. Region A shows a stable
and linear relationship between two control methods while
region B shows an erratic and unpredictable behavior in
the convergence properties of the indirect control method of
swarm.

Figure 3 shows the ratio of the convergence time of the
Indirect method divided by the convergence time of the Di-
rect method. There is a region A that is fairly stable: the
convergence time of the Indirect method is usually around
2 ∗ N times of the convergence time of the Direct method.
But there are some unstable regions too. For example when
Fiedler value is very small and the graph is loosely con-
nected, the convergence time of the indirect method is con-
siderably higher than the direct method. Also in region B in
which the Fiedler value is high and the graph is highly con-
nected, the Indirect method behaves erratically. One reason
for this behavior is that in a large graph, the total connec-
tivity of the graph may be high while some small regions
of it may be loosely connected to the rest of the graph. If
φ is selected from these regions, it takes much more time
for the swarm to reach a consensus as the information must
propagate from a few number of edges and then it has to
overcome the initial values of the rest of the robots which
are highly connected to each other.

The experiments had the same results for the case with
noise. The only important issue about the introduction of
noise to the system is regarding the swarms noise tolerance.
The Direct method is very sensitive to the amount of noise.

The noise must be less than 10% of the error tolerance level
or the swarm may not converge. On the other hand, the indi-
rect method is very robust when presented with noise. It can
even tolerate noise levels up to the error tolerance threshold.

Discussion
We have seen that the flooding method has much faster con-
vergence time (around 100 times faster than the averaging
consensus method). It is also very stable in respect to graph
size and as the graph size grows, it behaves linearly based
on the connectivity level of the graph (Fiedler value). On
the other hand the Indirect method takes more time to reach
convergence and it behaves erratically when the graph gets
larger, even if it is still well connected. It may be due to
the fact that in larger graphs, the leader (φ) may be poorly
connected while the other robots are well connected. Then
it takes much more time for the leader to have influence on
other robots.

The simple flooding algorithm performs poorly in the
presence of noise while the consensus method has a higher
tolerance. It may be better to combine the flooding method
with the consensus method and create a hybrid one that also
averages between the value of each robot’s privileged neigh-
bours in order to compensate for noise and increase the noise
tolerance of the swarm algorithm. Hybrid methods of this
sort have been used in a number of HSI studies (Kira and
Potter 2009; Ding et al. 2009) and determining the most ef-
fective ways to combine the advantages of Direct and Indi-
rect influence is a promising research direction.
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