
Human Control Strategies for Multi-Robot Teams 
 

Katia Sycara Michael Lewis 
Robotics Institute School of Information Sciences 

Carnegie Mellon University University of Pittsburgh 
5000 Forbes Ave, Pittsburgh PA 15213 135 N Bellefield Ave, Pittsburgh, PA 15260 

U.S.A. U.S.A. 
katia@cs.cmu.edu   www.cs.cmu.edu/~sycara ml@sis.pitt.edu   www.sis.pitt.edu/~mlewis 

 

Abstract: - Expanding human span of control over teams of robots presents an obstacle to the wider 
deployment of robots for practical tasks in a variety of areas.  One difficulty is that many different 
types of human interactions may be necessary to maintain and control a robot team.  We have 
developed a taxonomy of human-robot tasks based on complexity of control that helps explicate the 
forms of control likely to be needed and the demands they pose to human operators.  In this paper we 
use research from two of these areas to illustrate our taxonomy and its utility in characterizing and 
improving human-robot interaction. 
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1 Introduction 

The basic problem of expanding use of 
unmanned vehicles (UVs) lies in increasing 
the span of control of UV operators.  As the 
number of UVs increases, the needs to 
coordinate activities among UVs and provide 
operator judgment and assistance at crucial 
points rapidly exceeds our current 
capabilities.  There have been a variety of 
proposed answers and experimental 
implementations addressing the problem of 
scaling operators’ span of control.  
Unfortunately, these point solutions do little 
to organize the field or provide guidance on 
where and how any particular approach is 
likely to work or fail.  Over the past five 
years we have been developing a 
comprehensive theory of human interaction 
with multiple UVs that sheds light on these 
problems.  Our theory, based on the 
complexity of the operator’s task, identifies 
three types of interactions, namely O(1) 
control where UVs coordinate autonomously 
and could be controlled as a group/swarm, 
O(n) control where UVs can be controlled 
independently, and O(>n) control where the 
operator must be directly involved in  
coordinating UV activities.    Each of these 
forms of control poses its own problems.  In 
O(1) control the swarm of autonomously 

coordinating UVs is difficult to command 
because, except in very limited scenarios 
(e.g. commanding the whole swarm to move 
from its current area to a new particular 
location), their goals and behaviors have 
been predetermined.  For O(n) control the 
problem becomes trying to organize the 
operators’ interactions with UVs for greatest 
efficiency.  Earlier experiments [1] suggest 
that O(>n) control is likely to be extremely 
difficult even for small N therefore our 
research focuses on the two more tractable 
forms of control. 

1.1 A Model of Multi Human-Robot 
Interaction (M-HRI) 

In computer science the notion of 
computational complexity, the time that must 
be used to solve a problem as a function of 
the size of its input, has proved fruitful for 
weeding out bad algorithms.   Algorithms 
with high complexity may work for small 
problems, but fail or grow inefficient for 
even slightly larger ones.  The task of 
controlling multiple robots is similar to an 
algorithm in that the operator must perform a 
repetitive sequence of decisions and actions 
to control a robot.  If the robots are 
performing independent activities, the 
operator can devote the same attention to 



each in turn, resulting in a complexity of 
Order n, written O(n), because each of the n 
robots requires the same set of actions and 
the total operator effort is proportional to the 
number of robots.  Another benefit of 
independence is that more UVs can be 
controlled simply by adding more operators.  
A different form of control, such as 
designating a region to be searched by 
drawing it on a map, can command an 
arbitrary number of robots with a single act.  
Because the number of actions the operator 
must take are independent of the number of 
robots, control of this sort is O(1) and has a 
constant effort.  Dependent tasks such as box 
pushing, by contrast, can be arbitrarily 
difficult with command complexity, O(>n), 
because dependencies among robots create 
cascading demands.  When one robot pushes 
one corner of a box, for example, the 
operator must control the other robot to push 
the other corner to straighten its path, after 
which the first robot needs attention again. 

O(1) tasks require substantial autonomy 
on the part of the robots but impose only a 
constant demand on the human operator.  In 
general, O(1) control is appropriate where a 
large number of UVs must be tightly 
coordinated with a relatively simple goal 
such as formation following or area search .  
O(n) tasks, such as approving targets, or 
identifying victims, are robot-centric tasks 
that can be performed independently by one 
or more operators and impose a predictable 
additive demand.  O(>n) tasks, by contrast, 
cannot be specified simply and, depending 
on the task, could require arbitrarily large 
control effort on the part of the operator.  
Figure 1 illustrates the hypothesized relation 
between number of robots and their demand 
on the operator’s cognitive resources. 

 
2 O(n) Sequential Control 
 

A wide class of multirobot control tasks 
involve operator interactions with individual 
robots.  Where the robots’ actions are 
independent, as for example in some forag- 
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Figure 1 Command Complexity: The figure illustrates the 
hypothesized relationship between task types and 
command complexity. 
 

 

 

 
 

 

 

 

 

 

 

 

ing tasks, the operator can interact with 
robots sequentially in a round robin fashion.  
The Neglect Tolerance model describes 
repeated interactions of this sort in which the 
operator raises a robot’s performance above 
a threshold during an interaction period, IT, 
and then allows the robot’s performance to 
decline over a neglect period, NT.  If the 
need for interaction can be detected by the 
robot through self-reflection, the robot could 
communicate its need for interaction to the 
operator.  The resulting human-robot system 
would be a queuing system in which the 
operator is the server and the queue of robots 
requesting interaction, the jobs.  As a 
queuing system, performance might be 
optimized using standard techniques 
providing the operator’s attention could be 
appropriately directed.  

Operator 
Resources 

Figure 2 Examples from 
multi-UAV control using 
FalconView..  
O(1) designating search 
area,  
O(n) setting waypoints, 
O(>n) coordinating way- 
points for synchronized 
attack  
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2.1 USAR Experiments 

We have conducted a series of studies to 
identify techniques and conditions necessary for 
directing operator attention.  Our experiments 
used USARSim, a validated [3,4] high-fidelity 
simulation of urban search and rescue (USAR) 
robots and environments developed as a 
research tool for the study of human-robot 
interaction (HRI) and multi-robot coordination. 
USARSim supports HRI by accurately 
rendering user interface elements including 
video, laser rangefinder, sonar, and audio.  In 
our experiments robots simulated in USARSim 
were controlled through the MrCS (Multi-robot 
Control System), a multi-robot communications 
and control infrastructure with accompanying 
user interface, developed for experiments in 
multirobot control and RoboCup competition 
[5].   

Figure 3 shows the MrCS user interface for 8 
robots in alarm condition. Thumbnails of robot 
camera feeds are shown on the top, a video feed 
of interest in the bottom right. A GUI element 
in the middle right allows teleoperation and 
camera pan and tilt. Current locations and paths 
of the robots are shown on the Map Viewer 
(middle) in which allows operators to mark 
victims. The augmented elements, team status 
window (left) shows each robot’s current  

condition in different colors and briefly 
summarizes it. Green color indicates the robot 
is in autonomous condition, yellow shows the 
robot is in an abnormal condition, such as stuck 
at a corner, and when a robot is manually 
controlled its tile turns white. The operator 
selects the robot to be controlled from the 
colored team status window.   

The initial study [6] found that HRI 
performance was improved by communicating 
requests for interaction to the operator, 
however, a more directed first-in-first-out 
(FIFO) display showing only a single request at 
a time led to poorer performance than one 
showing the entire (Open) queue of robots 
reporting difficulties.  Because failures were 
homogeneous and required equal times to 
repair, the FIFO condition should have 
produced at least as good performance as the 
 

Figure 3. Open queue condition -failures are shown in toolbar 
on left, In FIFO condition failures are shown one at a time . 
Open queue if attention were being 

efficiently directed.  The second experiment 
incorporated four types of errors with varying 
times to repair allowing the interface to direct 
operator attention according to shortest job first 
(SJF), a discipline proven [7] to maximize 
throughput. 

The results support the conclusion that 
operator attention can be effectively directed for 
interaction with individual robots. Based on 
paired t-tests, SJF tied with Open-queue in 
besting FIFO performance in false positive 
identifications (p=.012), time to mark victims 
(p=.061), and recovered failures (p=.057) and 
tied with FIFO by missing fewer victims than 
the Open-queue (p=.003). 

 
2.2 Scheduling Algorithms 
 

While our experiments demonstrate that 
human-multirobot performance can be 
improved by following SJF, other scheduling 
policies might improve performance under 
other conditions.  We have developed 
scheduling algorithms to address two of these 
situations.   
 
2.2.1 Service Level Differentiation  
 

The neglect tolerance model posits fixed 
thresholds, yet there is no reason to believe that 
the mechanism by which interaction improves 
performance and neglect causes it to decline are 
limited in this way.  An operator, for example, 
might take more time interacting with a robot 
during a slack period increasing its supra-
threshold performance and neglect it longer 



usual when busy.  We have developed a model 
[8] relating IT  and  NT  to  optimal  system  
performance by  allowing  the individual 
thresholds to vary.    This increased flexibility 
not only  improves  team  performance  but  
agrees  with  human data  [9,10]  showing  
performance  per  robot  to  decrease smoothly  
with  increasing  team  size  rather  than  
dropping abruptly upon reaching the fan-out 
threshold. 

Our first model for an open queue system  
allows  us to find exact analytic solutions.   
Our second closed system model is more 
realistic  since  it models  the  inter-
dependency  between  the service  process  
and  arrival  process.  For this model   we   
were   only   able   to   find   solutions 
algorithmically.    Experimental   results   
comparing   system performance for different 
values of system parameters show that a 
mixed strategy is a general way to get 
optimal system performance for a large 
variety of system parameter settings (e.g.; 
values of λ,  number of robots) and in all 
cases is no worse than a pure strategy. 
 
2.1.1 Individual Differences & Variation in tasks  

Matching limited human resources with 
multiple heterogeneous UVs is challenging for 
a variety of reasons: First, human operators 
staffing different positions may have varying 
skill levels likely to result in different relations 
between NTs and ITs. In addition, different 
tasks may have different service requirements. 
Second, the human operators may need to make 
trade-offs between service quality and speed: 
providing a slower service rate (i.e., a longer 
IT) increases the service value  (i.e., NT) for 
each UV, but would make UVs wait longer in 
the queue. Third, task information is stochastic 
in the sense that the human operator may have 
no prior knowledge of the types of tasks.  

We have addressed these problems through a 
game-theoretic queuing model in which the 
robot chooses the time and operator to pose a 
request [11]. The single-human/multi-robot  
system is modelled as an open queuing system 
in which different types of arriving UVs require 
varying degrees of attention (reservation utility) 
with differing costs of continuing to operate in 

their degraded mode (waiting costs). This 
corresponds to the various forms of degraded 
performance the operator may need to address. 
An unmanned ground vehicle (UGV) that has 
rolled over, for example, may require extensive 
attention to right and will exert a high waiting 
cost because it can make no useful contribution 
while it is immobilized. Another UGV that 
continues exploring a largely covered area due 
to difficulty in passing through a narrow 
aperture may require significantly less operator 
attention to correct while providing somewhat 
useful information while operating in its 
degraded mode.  We have found equilibria for 
this model for both homogeneous and 
heterogeneous cases varying reservation 
utilities and waiting costs.  
 
3 O(1) Command of coordinating 
robots 

Automated coordination of UVs is a complex 
control problem particularly for highly 
interdependent tasks.  The first screen shot 
shown in Figure 2 illustrates an O(1) command 
interface for UAVs coordinating using the 
Machinetta [12] multiagent infrastructure.  This 
form of role-based coordination has been a 
widely studied in human-multirobot control 
with systems such as Playbook© [13] and 
Machinetta.   Unfortunately communication 
requirements slow these architectures 
prohibitively as the number of robots grows 
large.  While Xu et al. [14] showed that 
subteams can be effectively formed and 
coordinated within very large populations; the 
population itself cannot be effectively 
coordinated. 

The alternative of size-independent swarms 
whose coordination emerges from interaction 
among local control laws avoids this bottleneck.  
Unfortunately, such systems have their behavior 
“baked in” at design time and are therefore 
difficult for humans to influence or control at 
run time.   

We have made novel distinctions in order to 
systematically explore the range of mechanisms 
proposed for human control of swarms. The 
first of these is separating the function of 
connectivity maintenance from algorithmic 
objective.  So flocking behavior [15], for 



example, which requires matching velocity and 
heading with neighbors while maintaining a 
fixed distance would be achieved by combining 
a primitive connectivity maintenance procedure 
(maintaining fixed distance) with a consensus 
algorithm for velocity and heading.   

We make a second distinction between 
influence based on identity, selection, and 
influence based on location, beacon to 
accommodate the variety of mechanisms 
commonly used to influence swarms. Linking 
influence to identity allows control through 
splitting the swarm and switching among 
algorithms and parameters.  The beacon 
mechanism directly implements potential fields 
and can simulate leader or predator models 
(actual or virtual) by using beacons that attract 
or repel nearby robots.   

Our initial experiments [16] conducted with 
32 participants from the University of 
Pittsburgh community compared selection and 
beacon control (distinction 2) for operators who 
assisted (distinction 3) the swarm in a 
scavenging task in which the robot team 
acquired information appearing at random 

 

Figure 4. NetLogo interface for swarm experiments 
locations.  For beacon control the operator 
could place, move, set the mode of, change the 
range of, and remove beacons. The heading 
mode requires an additional mouse click to 
determine the heading.  For selection control 
the operator could select a rectangular set of 
robots, clear the current selection, and set the 
mode of all robots in the current selection.  The 
come, leave and heading modes require an 

additional click to determine the target location 
or direction.  Operators were tested across five 
environments of progressive complexity 
ranging from completely open to cluttered 
(many obstacles) and structured (walls and 
hallways).  A task congruent algorithm leaving 
all robots in the random mode unless they were 
currently within information range of a source 
was developed as a performance benchmark. 

As Figure 5 shows human assistance 
switching between generic algorithms and 
modes of influence was less effective than the 
task-customized algorithm in simple 
environments.  As environments grew more 
complex, however, human contributions 
increased leading to superior performance for 
control based on selection.   

 

Figure 5.  Foraging scores 
Participants were free to choose among 

control algorithms but showed a marked 
preference for only three.  Figure 6 shows 
frequent use of random walks and attraction and 
somewhat less frequent use of the deploy 
dispersion algorithm.  Rendezvous, repulsion, 
and the stop command, by contrast, were rarely 
used. The key differences between selection and 
beacons are their spatial and temporal 
persistence and the resulting active or passive 
influence on the robot swarm, enabling different 
control strategies. Our results showed that 
novice human operators perform better with 
selection control.  Both types of control enabled 
human operators  to  adapt  to  environments  
with  complex obstacles and their  drop in 
performance was less than  that of a simple task 
congruent algorithm that  performed better  than 
human operators  in open environments. 



 

Figure 6. Use of commands 
4 Conclusion 
 

In this paper we have presented a taxonomy of 
human-robot tasks for multi-robot teams and 
illustrated its utility.  In the case of sequential 
control of independent robots we have shown that 
human attention can be directed so that 
sophisticated scheduling algorithms can be used to 
improve performance.  In the case of large teams 
relying on emergent coordination we have 
demonstrated that human control using a small set 
of algorithmic objectives can produce comparable or 
better performance than a specialized task-
congruent algorithm.  These examples illustrate both 
the variety of tasks found in controlling multiple 
robots and the usefulness of a taxonomy for 
identifying feasibility and requirements. 
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