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 This dissertation quantifies and analyzes the environmental and human health impacts 

associated with healthcare through assessment of the physical built environment of a hospital as 

well as the processes and procedures conducted within the building.  Healthcare, especially in the 

United States, seeks to reduce cost and improve human health in part by reducing waste and 

improving building design and operational practices.  This work shows that sustainability 

engineering tools help assess the effects of green design considerations in whole hospital 

performance and can identify areas of high environmental loading in the operating room (OR). 

A comparative longitudinal assessment showed the hospital performance impacts of 

green, holistic hospital design.  Following the move into the new, green facility, the Children’s 

Hospital of Pittsburgh of UPMC significantly improved their productivity, quality of care, and 

staff satisfaction.  The utility use per square foot dropped over 50% for electricity, heating 

energy, water, and sewer, while hospital expenses per patient in bed remained stable.  This and 

other contributions to the field of Evidence-Based Design inform future design decisions which 

optimize hospital energy use and maximize positive patient outcomes and staff satisfaction. 

This research established process and hybrid life cycle assessment (LCA) frameworks to 

assess hospital operating room procedures.  Case studies of infant birth procedures and 

hysterectomies at Magee-Womens Hospital of UPMC show that production and disposal of 

single-use materials and devices as well as heating, ventilation, and air conditioning systems 

have the highest environmental loading within the OR. 
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The hysterectomy study, in particular, pointed to upstream material manufacturing as an 

area for large environmental improvements in healthcare facilities.  For example, single-use 

cotton materials such as towels and gauze make up only 9% of vaginal and 11% of abdominal 

hysterectomy municipal solid waste by weight, but the production of these cotton materials 

accounts for 55-90% of the total environmental impacts of vaginal and abdominal hysterectomies 

in nearly all categories analyzed.  A Monte Carlo assessment of the hysterectomy LCA showed 

ranges of environmental impacts based on variability of OR procedures and uncertainty in 

impact assessment methods.   
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1.0  INTRODUCTION 

1.1 MAKING HEALTHCARE HEALTHY: THE BUILT ENVIRONMENT, 

HOSPITALS, AND SUSTAINABILITY 

The size and cost of healthcare is increasing.  Expenses for all personal healthcare services and 

products in each state have been growing 4.4% to 7.3% per capita annually. In each state, 

healthcare spending ranges from $5,000 to $10,400 per person per year. Healthcare spending 

accounted for 17.9% of the US Gross Domestic Product (GDP) in 2011, and 36.3% of those 

national healthcare expenditures are for hospital care specifically (CMS 2011; Kaiser Family 

Foundation 2011).  In 2011, the healthcare sector employed nearly 12 million people, making up 

6.4% to 11.7% of each state’s total workforce (Kaiser Family Foundation 2011).  Hospitals 

employ nearly a third of the healthcare sector (BLS 2013). 

As environmental sustainability becomes a greater priority for the American public, the 

healthcare industry, with its relative size, costs, and expected growth, is under pressure to 

improve its economic, social, and environmental sustainability.  With these challenges and 

growing health concerns in the general population, public healthcare providers are turning 

towards a preventative model of care, part of which involves environmental health or the healthy 

interaction of humans with their environment (Fani Marvasti and Stafford 2012).  Hospitals, in 

particular, are called upon to be designed more sustainably and to improve the environmental 

1 



sustainability of their processes and procedures (Ficca, Chyun et al. 2000; Phelps, Horman et al. 

2006; Verderber, Fauerbach et al. 2008; Younger, Morrow-Almeida et al. 2008; Stichler 2009).  

In order to implement more environmentally sustainable hospital building design and medical 

practices, healthcare decision-makers need proper tools and information about the industry’s 

current environmental footprint, which aspects of hospital design and function contribute most 

significantly to environmental and human health impacts, and how changes to the healthcare 

system might impact its overall sustainability. 

1.2 RESEARCH GOALS AND OBJECTIVES 

The overarching goal of this research was to analyze and improve the environmental and human 

health impacts associated with healthcare through analysis of the physical built environment of a 

hospital as well as the processes and procedures conducted within the building.  This research 

utilized common hospital reporting metrics to compare building performance and health and 

safety effects of a new, green hospital and its former, traditional facility.  By specifically 

studying green hospitals, this research expands current knowledge on the performance and 

human-related effects of green buildings (Evidence-Based Design, EBD) and increases our 

understanding of the impacts of hospital design on employee performance and patient outcomes. 

This research also applies an environmental sustainability scientific assessment tool, Life Cycle 

Assessment (LCA), to hospital operating room (OR) procedures, specifically comparing vaginal 

and cesarean section births as well as four modes of hysterectomy.  The use of LCA at the OR 

scale allows hospital decision-makers to identify areas of performance with relatively high 

environmental impacts and target those areas as they move towards more environmentally 

2 



sustainable practices.  The objectives of this research, and the specific questions related to each 

objective are to: 

1) Determine the effect of cohesive, green building hospital design on building performance, 

hospital employees, and patients through a comparative longitudinal assessment of an 

older, traditional hospital with its new, LEED-certified (Leadership in Energy and 

Environmental Design) replacement. 

• How does sustainable hospital design affect hospital performance?  

• How can hospital performance metrics help determine the effects of sustainability 

initiatives within hospitals?  

2) Develop and test a life cycle assessment (LCA) framework specific to hospitals using case 

study data collected from vaginal births done in labor and delivery rooms (LDR) and 

cesarean section births performed in operating rooms (OR). 

• How can LCA determine environmental sustainability of the healthcare industry?  

3) Modify and apply the LCA framework to analyze the environmental impacts of common 

surgical procedures using four modes of hysterectomies- laparoscopic, robotic, vaginal, and 

abdominal- as the case study. 

• What aspects of hospital operating procedures contribute the most to a 

procedure’s environmental impacts?  

4) Identify advantages and limitations of the life cycle human health impact categories when 

applying LCA to healthcare. 

• What are the advantages and limitations of life cycle impact categories such as 

human health when applying LCA to healthcare issues? 
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The first three objectives are addressed in Chapters 3, 4, and 5 respectively.  Objective 4 

is addressed in an extended segment of the literature review found in Chapter 2. 

1.3 BROADER IMPACTS 

This research brings together a diverse professional team of engineers, nurses, physicians, 

hospital facility managers, and hospital “green team” members, a majority of whom are women.  

It advances our understanding of green building performance and healthier hospital design as 

well as the life cycle impacts of surgical practice.  This work verifies the efficacy of managerial 

and building design decisions in our Evidence-Based Design case study and potentially 

influences design decisions in future hospital building projects.  The Children’s hospital EBD 

study was disseminated through journal publications and in oral presentations at Engineering 

Sustainability 2013 and ISSST 2013 (International Symposium on Sustainable Systems and 

Technology).  This research was also presented in poster format in São Paulo, Brazil at 

SASBE2012 (Smart and Sustainable Built Environments: Emerging economies), a conference 

hosted by the CIB (International Council for Research and Innovation in Building and 

Construction) Work Commission 116.  The EBD study also led to an additional PhD-level, EBD 

research project currently being conducted at the University of Pittsburgh in partnership with 

Magee-Womens Hospital. 

The work pertaining to the application of LCAs in hospitals provides a methodology for 

the industry-expressed need of quantifying environmental impacts of hospital procedures.  In 

doing so, this work aids hospitals in establishing baseline environmental performance 

measurements and assists in identifying aspects of procedural practice with relatively high 
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environmental impacts.  Specifically, the green team at Magee-Womens Hospital is 

incorporating LCA results of their surgeries into environmentally sustainable policy changes and 

hospital greening initiatives to target material purchasing and waste disposal.  

Two undergraduate students at the University of Pittsburgh and one at the University of 

Arkansas participated in the data collection and analysis phases of this project, learning about 

research methods, statistics, and technical writing. One of the students utilized this work to 

complete her honors thesis for her Bachelor’s Degree.  The LCA studies support a growing 

healthcare sustainability research partnership between the University of Pittsburgh, Arizona State 

University (ASU), and Northeastern University. Additional collaborations were established with 

healthcare sustainability researchers at the University of Washington, the Yale University School 

of Medicine, the University of British Columbia, and the organization Practice Greenhealth.  The 

methodology and results of these Life Cycle Assessments were presented at CleanMed 2011 and 

2013, ISSST 2012, Engineering Sustainability 2013, and LCA XII, and were published in peer-

reviewed journals and conference proceedings.  

Elements of this research and environmental sustainability awareness are now 

incorporated into training for nurses at the Community College of Allegheny County (CCAC) in 

Pennsylvania.  This research contributed and continues to contribute to a variety of lectures and 

undergraduate class projects for courses such as Design for the Environment, Green Building 

Design, Introduction to Life Cycle Assessment, and Engineering & Sustainable Development at 

Pitt, and the Engineering Projects in Community Service (EPICS) program at ASU. Content is 

also included in public community lectures and programs at Magee-Womens Hospital and 

disseminated through the medical community via Practice Greenhealth, a nonprofit organization 

focused on improving the environmental sustainability of healthcare. 
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1.4 INTELLECTUAL MERIT  

This work advances understanding of green building performance and healthcare sustainability 

while enhancing existing literature on evidence-based hospital design and the environmental 

impacts of medical procedures.  The hospital metrics used in the EBD study establish an 

effective methodology for monitoring the performance of green building design and for 

measuring the overarching human-related effects of hospital design.  Our novel application of 

LCA methodology to the operating room (OR) advances our understanding of OR waste 

composition and the full range of associated environmental impacts of common surgical 

procedures.  Though significant future research is needed to make broad, lasting changes to 

healthcare material and resource consumption, this study introduces a scientific, analytical 

framework to healthcare professionals as a means of monitoring their environmental baseline and 

assessing the efficacy of policy and programmatic changes. 
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2.0  BACKGROUND AND LITERATURE REVIEW 

This section discusses previous research in healthcare and its environmental impacts.  The first 

subsection focuses on green building performance monitoring and the psycho-social impacts of 

green building design.  It summarizes Evidence-Based Design studies focused on the human 

health impacts of changes to standard hospital design. Section 2.2 summarizes existing concerns 

in hospital consumption patterns, such as waste generation, energy use, and wastewater effluent.  

The third subsection contains an overview of life cycle assessment methodology and studies 

which have applied LCA methodology to healthcare.  Section 2.3 also contains an extensive 

literature review related to Objective 4: identifying the advantages and limitations of the life 

cycle human health impact categories when applying LCA to healthcare.  For this reason, section 

2.3.2 is longer than a standard literature review segment.  It covers existing LCIA methodology 

in LCIA as well as human health measurement methodologies outside of the field of sustainable 

engineering. 

2.1 GREEN BUILDING PERFORMANCE ANALYSIS AND EVIDENCE-BASED 

DESIGN OF HOSPITALS 

The built environment has a profound impact on the natural world as well as individuals’ 

physical health and well-being (Devlin and Arneill 2003; Tester 2009; Feng, Glass et al. 2010).  
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Buildings are responsible for up to 40% of the total energy use and 70% of the total electricity 

use in the United States (US DOE 2009; Juan, Gao et al. 2010).  Building construction and 

demolition account for anywhere from 25% to 65% of Municipal Solid Waste streams in the US 

(Beachey 1998; Cascadia Consulting Group 2003; MARC 2009).  Beyond that, people spend 

90% of their time indoors and are exposed to air pollutant levels 2 to 5 (or more) times higher 

than outdoor values (EPA 2010).  Many studies confirm a connection between safe, walkable 

community designs and decreased risk of chronic diseases such as asthma and diabetes, 

improved weight and body mass indices of residents, and increased social engagement (Tester 

2009; Feng, Glass et al. 2010; Napier, Brown et al. 2011), but what are the environmental and 

human health effects of individual buildings? 

In 1998 the USGBC released the first green building rating system, LEED (Leadership in 

Energy and Environmental Design) to incentivize design which more wisely utilizes natural 

resources and materials (USGBC 2006). Studies began analyzing the environmental impacts of 

buildings and building products at each stage of a building’s life cycle (Citherlet, Di Guglielmo 

et al. 2000; Peuportier 2001; Junnila and Horvath 2003; Scheuer, Keoleian et al. 2003; Prek 

2004; Guggemos and Horvath 2005; Nyman and Simonson 2005; Maydl, Passer et al. 2007; 

Blengini 2009; Nolan, Hamilton et al. 2009; Sandrolini and Franzoni 2009).  Research focused 

on the energy costs and efficiencies during the use of a building (Sherif and Kolarik 1981; Ucar 

and Doering 1983; Bourassa and Phillips 1984; Abel 1994; Cole and Kernan 1996; Adalberth 

1997; Levin 1997; Suzuki and Oka 1998; Thormark 2002; Yohanis and Norton 2002; 

Venkatarama Reddy and Jagadish 2003; Sartori and Hestnes 2007; Kofoworola and Gheewala 

2008; Pérez-Lombard, Ortiz et al. 2008; Blengini and Di Carlo 2010; Blengini and Di Carlo 

2010; Ramesh, Prakash et al. 2010; Aktas and Bilec 2012).  Health concerns associated with the 
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indoor environment, such as “sick building syndrome,” gave rise to studies on the effects of 

individual buildings and green design on immediate health and welfare (Au Yeung, Chow et al. 

1991; Thirumalaikolundusubramanian, Shanmuganandan et al. 1991).  Though the causes of 

SBS symptoms are not entirely known, researchers believe it is a combination of chemical, 

physical, biological, and psychosocial factors- meaning it is not only exposure to mold and 

toxins that can cause SBS, but also a person’s psychological interaction with their built 

environment (Lahtinen, Huuhtanen et al. 1998; Norbäck 2009). 

The social and health benefits of green buildings can be difficult to quantify, and it is 

unknown if green buildings are performing as intended (Needy, Gokhan et al. 2007).  To better 

understand the effects of green buildings, studies have analyzed metrics such as worker 

productivity, developing surveys or analyzing company-collected data such as employee 

absenteeism or sick leave (Kats, Alevantis et al. 2003; Ries, Bilec et al. 2006; Seppänen and Fisk 

2006; Loftness, Hakkinen et al. 2007; Wiik 2011).  Using a questionnaire to monitor occupant 

health, Breysse, et al. found that green home renovations improved the health of residents 

(Breysse, Jacobs et al. 2011). 

One aspect of green building design in particular, the indoor air and environmental 

quality (IAQ and IEQ), have been linked to worker health and productivity in multiple studies 

(Mitchell, Zhang et al. 2007; Singh, Syal et al. 2010; Sundell, Levin et al. 2011). In separate 

studies, Kosonen, et al. and Seppänen, et al. found a direct correlation between decreased IAQ 

and decreased worker productivity (Kosonen and Tan 2004; Seppänen and Fisk 2004).  Studies 

also showed that thermal discomfort, either too high or too low an air temperature, also 

decreased worker productivity and possibly increased perceived stress levels (Seppänen, Fisk et 

al. 2005; Lan, Lian et al. 2010).  Seppänen, at al. found the rate of ventilation and quantity of 
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outdoor air to be directly proportional to employee productivity (Seppänen, Fisk et al. 2006).  

Other studies have found that natural and sustainable daylighting not only reduces energy 

demands, but also help employees with perceptual and circadian functions and result in a more 

positive perception of their work environment (Figueiro 2008; Hua, Oswald et al. 2011).   

2.1.1 Environmental Human Health Effects within Hospitals  

As a place that serves a vulnerable subset of the population, many reports extol that hospitals, in 

particular, should be the most rigorous in implementing environmentally sustainable design 

practices (Phelps, Horman et al. 2006; Vittori and Houghton 2007; Verderber, Fauerbach et al. 

2008; Younger, Morrow-Almeida et al. 2008; Stichler 2009).  In a survey of design 

professionals, healthcare professionals, administrators, and patient groups, Cohen and Allison 

found that perceived critical areas in a hospital setting include patient care issues (addressing 

clinical, treatment, and recovery problems), patient safety and security (hospital acquired 

infection, errors, and falls), patient and user satisfaction issues (reducing stress and increasing 

physical, social and psychological comfort of patients and family), and operational efficiency 

issues (patient care flow) (Cohen and Allison 2009).  Green and sustainable design of healthcare 

buildings such as hospitals can have a large effect, not only on the building’s sustainability 

performance and energy consumption, but also on these critical areas of patient care and on the 

productivity and wellbeing of staff within the structure.  To what extent building design and 

sustainability principles contribute to these concerns is not entirely known, but current literature, 

summarized in Figure 1, begins to assess the effects of aesthetic and functional building design 

decisions on both patients and staff.  
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Figure 1: Building Metrics Literature Summary, * = not a healthcare specific study 

 

 

In an influential 1984 study, Ulrich found that patients randomly assigned to a corridor 

with windows overlooking trees went home almost one day sooner than those assigned to rooms 

with windows overlooking a brick wall (Ulrich 1984).  Since then, studies have emerged 

confirming positive effects of more sustainable medical facility design using hospital 

performance metrics such as employee and nursing turnover, medication dispensing errors, and 

hospital acquired infection rates (Williams 1988; Berry, Parker et al. 2004; Joseph and Rashid 

2007; Rechel, Buchan et al. 2009; Huisman, Morales et al. 2012).   
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Bartley et al. summarized the research done in this area, pointing to strong evidence that 

access to daylight, appropriate lighting, views of nature, and noise reduction, in addition to 

single-bed rooms has positive effects on healthcare outcomes for both patients and staff (Bartley, 

Olmsted et al. 2010).  Positive outcomes for staff may be considered an additional benefit for 

patients, with multiple studies finding correlation between nursing turnover rates and patient 

falls, patient satisfaction, and rates of medication errors (Trinkoff, Johantgen et al. 2005; Bae, 

Mark et al. 2010; Hayes, O’Brien-Pallas et al. 2012).  These and the following environmental 

health studies contribute to a growing design methodology called Evidence-Based Design 

(EBD).  EBD in healthcare uses existing research and knowledge to make design decisions in 

healthcare structures in an effort to improve performance outcomes while simultaneously testing 

the impacts of design decisions to promote future EBD projects (Cama 2009).  Testament to the 

rising evidence suggesting the benefits of environmental design, the US Green Building 

Council’s new 2011 building design standards for healthcare, LEED for Healthcare, adds points 

towards green building certification for daylighting  as well as noise control (Pradinuk 2009; 

U.S. Green Building Council (USGBC) 2009; U.S. Green Building Council (USGBC) 2011).   

A large portion of existing literature focuses on the effects of noise and lighting within 

healthcare settings.  The next subsection focuses on daylighting and natural views, and 

subsection 2.1.1.2 focuses on noise-related studies.  The final subsection summarizes studies 

which focus on the effects of other building design characteristics such as indoor air quality, 

hospital or ward layout, and ergonomic design.   

2.1.1.1 Effects of Lighting and Views 

Many studies attempt to quantify the psychosocial human health effects of green building design 

features such as daylighting and natural views.  Hua, et al. found that daylighting results in a 
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much more positive perception of a university laboratory work environment (Hua, Oswald et al. 

2011). Another study suggested that sustainable lighting not only reduces energy demands, but 

also helps people with perceptual and circadian functions (Figueiro 2008).  Verderber and 

Reuman confirmed this and found that patients were more negatively affected by lack of 

accessible windows in rooms than were hospital staff (Verderber and Reuman 1987).  Staff, 

however, and their performance can also benefit from increased lighting.  Especially during 

nighttime shifts, improved lighting is associated with reduced human errors and enhanced 

nursing care (Rashid and Zimring 2008; Kamali and Abbas 2012). 

Studies suggest that in addition to improved circadian rhythms, daylighting can serve as 

effective light therapy for seasonal affective disorder or other types of depressive illnesses 

(Benedetti, Colombo et al. 2001).  One study found that depressed patients staying on the sunny 

side of a psychiatric unit were discharges after 16.9 days compared to the patients staying in the 

other half of the unit who’s average length of stay was 19.5 days (Beauchemin and Hays 1996). 

Additionally, increased daylighting and other evidence-based, stress-reducing hospital 

characteristics have been found to reduce aggression and the need for physical restraints with 

psychiatric patients (Ulrich, Bogren et al. 2012) and reduce patients’ perceived stress and pain 

medication rates (Walch, Rabin et al. 2005).  Some studies, however, suggest that windows and 

ambient light conditions might not affect critical care outcomes or sedative use in Intensive Care 

Units (ICUs) (Verceles, Liu et al. 2013).  

Multiple studies conclude that the presence of indoor plants or images of nature in the 

healthcare environment can reduce stress, anxiety and fatigue and may help control postoperative 

pain (Dijkstra, Pieterse et al. 2008; Park and Mattson 2009; Beukeboom, Langeveld et al. 2012). 

Artwork and art therapy in hospitals were found to have a positive impact on healing (Favara-
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Scacco, Smirne et al. 2001), though specific colors have not been directly linked to patient or 

staff mood, and other needs, such as acoustics, temperature, and cleanliness, are considered 

much more important to emotional well-being than artwork or color (Tofle, Schwarz et al. 2004; 

Lankston, Cusack et al. 2010). 

2.1.1.2 Effects of Noise 

Studies indicate that noise levels in hospitals have been increasing over the past 45 years and that 

no difference exists in daytime and nighttime noise levels (Busch-Vishniac, West et al. 2005; 

Beyea 2007).  Noise levels in hospitals are often above internationally recommended decibel 

measures (Robertson, Cooper-Peel et al. 1998; Allaouchiche, Duflo et al. 2002; Ryherd, Waye et 

al. 2008).  Multiple studies show a relationship between noise levels in hospitals and the sleep 

cycles and health effects of patients such as headaches, irritability, prolonged healing, and 

increased pain sensitivity in some patients (Topf 1985; Biley 1994; Aaron, Carlisle et al. 1996; 

Topf, Bookman et al. 1996; Graven 1997; Gabor, Cooper et al. 2003; Sánchez, Ausejo et al. 

2009; Xie, Kang et al. 2009).  Studies also point to noise-induced hearing impairment, adverse 

physiological effects, and mental health effects (Berglund, Lindvall et al. 1999).  

Noise and the hospital acoustic environment were also largely associated with higher 

stress levels and increased anxiety in hospital staff and patients (Topf 1985; Van Servellen and 

Topf 1994; Bayo, García et al. 1995; Morrison, Haas et al. 2003; Ryherd, Ackerman et al. 2012).  

Applebaum, et al. confirmed this in a study comparing noise, perceived stress, job satisfaction, 

and turnover intention of nursing staff (Applebaum, Fowler et al. 2010).  However, in specific 

hospital environments, such as radiology, noise was found to have a neutral effect on hospital 

employee performance (McEntee, Coffey et al. 2010).  
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In general, most reports acknowledge that noise is an issue, especially for patients, and 

solutions must be employed to monitor and control noise in hospitals (Montague, Blietz et al. 

2009; Pope 2010; Salandin, Arnold et al. 2011). Some studies point towards the increased use of 

music and music therapy as a means of reducing the adverse effects of noise and utilizing the 

associated benefits of reduced blood pressure, breathing rate, emotional anxiety, and pain 

(Cabrera and Lee 2000; Mazer 2010).  Others suggest the increased need to design or retrofit 

hospitals with sound absorbing or anti-reflective materials to improve patient outcomes and staff 

performance and satisfaction (Blomkvist, Eriksen et al. 2005; Hagerman, Rasmanis et al. 2005; 

Sánchez, Ausejo et al. 2009).  

2.1.1.3 Effects of Air Quality, Floor Layout, and Ergonomic Design 

Hospital staff and patients are exposed to infectious diseases from airborne and surface 

contamination, which is why strict ventilation and sterilization standards exist for facilities in 

most countries (The American Institute of Architects (AIA) 2006; Wirtanen, Nurmi et al. 2012; 

Fernstrom and Goldblatt 2013).  Low ventilation rates are associated with increased infection 

risk, for example hospital cases involving SARS outbreaks, tuberculosis infection, and nasal 

inflammation due to Aspergillus fumigatus (Menzies, Fanning et al. 2000; Smedbold, Ahlen et 

al. 2002; Lutz, Jin et al. 2003; Zimring, Joseph et al. 2005).  Increased filtration is also associated 

with better health outcomes and reduced infection rates (Seppänen and Fisk 2006; Balaras, 

Dascalaki et al. 2007; Khalil 2008; Abdul Salam, Karlin et al. 2010; Campion, Thiel et al. 2012).  

Proper maintenance of ventilation systems, as well as humidification of hospital air during 

heating seasons, also positively influences hospital staffs’ perception of indoor air quality and 

can have a positive impact on worker health, especially related to sick building syndrome 

15 



(Nordström, Norbäck et al. 1994; Nordström, Norbäck et al. 1995; Hellgren, Hyvärinen et al. 

2011). 

Building design decisions should incorporate the needs of the people who occupy the 

space and the work patterns of the environment, particularly for the highly specialized hospital 

environment.  Pierce, Rogers, et al. show that appropriate pharmacy layouts improve work flow, 

reduce waiting times, and increase patient satisfaction (Pierce, Rogers et al. 1990).  Another 

study found new psychiatric ward design correlated with improved behavior in nursing staff and 

decreased burnout (Tyson, Lambert et al. 2002).  Nurses appear to prefer single-occupancy 

patient rooms as they result in better privacy and accommodation for family members and 

reduced risk of dietary or medicinal errors (Chaudhury, Mahmood et al. 2006).  Sufficient space 

around patient beds potentially reduces the risk of patient falls and infection transmission though 

not enough empirical evidence exists to confirm the exact amount of space required (Hignett and 

Lu 2010). Designers should employ workspace design principles in order to assess staff and 

patient needs to create a safe and functional work environment (Carayon, Alvarado et al. 2003). 

For many doctors, nurses, and healthcare providers, the aesthetic components of design 

are secondary to design factors which impact safe and efficient care delivery. These include 

design elements which increase ease of maintenance and cleaning, reduce noise level, increase 

thermal comfort, and give caregivers easy access to patient wards (Mourshed and Zhao 2012).  

Patient perspective, however, is somewhat shifted, but no less important.  A survey of adolescent 

patients found that patient-focused ward design in which the needs of all users are incorporated 

(in this case: the inclusion of private space, locations for extended cell phone use, and access to 

kitchens) could result in less stress and anxiety for the patients (Hutton 2005). A survey of 
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advanced cancer patients suggested multi-bedded ward design and increased contact with the 

outdoors might improve quality of life for that patient-group (Rowlands and Noble 2008). 

Job satisfaction of nursing staff has been of particular interest to researchers, given the 

importance of nurses in patient care and safety. Some research focuses on the relationship 

between the hospital ward or unit layout and the amount of time nurses spend walking, as 

previous studies indicate nurses may spend over a quarter of their work time walking (Burgio, 

Engel et al. 1990).  Short travel time for nurses and increased nurse-patient interactions are 

associated with effective and efficient care (Seelye 1982).  Nurse’s visibility of patient rooms, 

the presence and location of nursing substations, and the location of medications are all factors of 

building design which can reduce walking for nurses (Choudhary, Bafna et al. 2010; Seo, Choi et 

al. 2011).  The physical layout of a hospital is thought to have an effect on nursing satisfaction 

and patient outcomes, but may be dependent on the patient case-types typically treated at the 

hospital (Devlin and Arneill 2003).  

Garg and Owen conducted multiple studies of manual patient lifting techniques 

conducted by nurses in nursing homes as this often results in physical injury or stress in the staff.  

Ergonomic interventions to prevent physical stress in nursing staff, such as incorporating patient-

handling devices and modifying the toilets and shower areas, decreased the incident rate for staff 

back injuries by nearly 50% in their study facility (Garg, Owen et al. 1992; Garg and Owen 

1994). Ergonomics and its integration into hospital safety hazard identification policies and 

special hospital teams have reduced employee injury rates and also reduced hospital waste 

(Evanoff, Bohr et al. 1999; Missar, Metcalfe et al. 2012; Selis, Vanacker et al. 2012).   
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2.2 ENVIRONMENTAL CONCERNS OF HEALTHCARE PRACTICES 

Environmental impacts of healthcare should focus not only on the effects of building design, but 

also on the operations and processes conducted within the building.  When assessing the 

sustainability of healthcare, many studies focus on the impacts of medical waste disposal 

(Townend and Cheeseman 2005; Mohan, Spiby et al. 2006; Shaner-McRae, McRae et al. 2007).  

A 1992 study estimates that US hospitals generate about 6,670 tons of waste per day (Rutala and 

Mayhall 1992).  A majority of this waste appears to be generated from disposable or single-use 

medical supplies which could be replaced with reusable or multi-use materials (Souhrada 1988; 

Gilden, Scissors et al. 1992).  Further studies maintain that American health facilities are 

responsible for the landfilling and incineration of over 3.4 billion pounds of waste annually (EPA 

2005; DiConsiglio 2008).   

Regulated Medical Waste (RMW), otherwise known as “red bag” or infectious waste 

must be disposed of either by incineration or sterilization and landfilling. A 1988 study of RMW 

waste found that polyvinyl chloride or PVC plastic accounted for nearly 10% of the waste stream 

which, when incinerated would lead to a release of dioxins and other chemicals hazardous to 

human health (Marrack 1988).  With this risk, many hospitals have been treating RMW through 

non-incineration alternatives such as autoclaving and landfilling waste (Sattler 2002). However, 

a recent LCA-based study suggests that incineration, especially with energy capturing, may be a 

better option than sterilization and landfilling (Zhao, Van Der Voet et al. 2009; James 2010).  

Alternately, the use of ash from hospital waste in concrete production and new methods of 

incineration could offset the carbon-based environmental impacts of the disposal method 

(Genazzini, Zerbino et al. 2003; Liu, Ma et al. 2006). 
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Though the disposal method itself has implications on environmental impacts, multiple 

studies analyzed the recycling or diversion potential of RMW.  Tiesczen and Gruenberg sorted 

through surgical trash in 1992 to analyze the composition, and they estimated that by using 

reusable linens and implementing recycling programs, waste could be reduced 73% by weight 

(Tieszen and Gruenberg 1992).  Wong and Narasimhan found in 1994 that 32% of red bag waste 

was plastic, 24% was paper, and 35% was cotton (Wong, Narasimhan et al. 1994).  McGain, et 

al. found that though anaesthetic waste is less than 10% of the OR waste, as much as 30% of it is 

recyclable and less than 10% would be considered infectious (McGain, Hendel et al. 2009). In 

2002, an analysis of the recyclability of medical plastics, found that 60% of OR wastes were 

recyclable plastics, but due to its designation as RMW, this waste must be treated according to 

law (Lee, Ellenbecker et al. 2002). Laws, however, give a vague definition of RMW, which 

leaves its designation open to interpretation (Mühlich, Scherrer et al. 2003).   

Currently in the US, each state mandates proper disposal of medical waste with 

guidelines from the US Environmental Protection Agency (EPA) as established through the 

Medical Waste Tracking Act (MWTA) of 1988 (United States Environmental Protection Agency 

1988).  For example, in Pennsylvania, medical waste management is regulated through the PA 

Department of Environmental Protection’s Bureau of Waste Management, which uses definitions 

for infectious or medical wastes and proper disposal techniques as established by the EPA.  

Pennsylvania has also created the Infectious and Chemotherapeutic Waste (ICW) Disposal Law, 

Act 93 of 1988 which requires an ICW disposal plan to review of ICW incinerators or issuance 

of disposal permits (Casey 1988).  Other states have set up similar management structures; for 

example, the Colorado Department of Public Health and Environment established the Hazardous 

Materials and Waste Management Division to ensure compliance with state regulations on 
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proper handling and treatment of infectious wastes.  Though proper caution should be used to 

handle and treat truly infectious waste, guidelines with a clearer definition of RMW could result 

in significant monetary savings, as estimated by Ponka, et al. (Pönkä, Kaski et al. 1996).    

Much of this waste generation is the result of advances in technology and plastics 

manufacturing, increasing ease of use and disposal of products, and a focus on reducing short 

term costs which lead to increased purchase of disposable and single-use materials (Greene 

1986).  Reuse and reprocessing of surgical supplies, though having a greater perceived risk of 

contamination, have positive implications for environmental and economic impacts of hospitals.  

In an assessment of disposable and reusable trocars, scissors, and Veress cannulas used in 

surgical procedures, Adler, et al. found that disposable instruments cost 19 times more than the 

reusable and perhaps also result in greater environmental impacts (Adler, Scherrer et al. 2005).  

Though proper sterilization techniques need to be enforced, the reprocessing of single-use 

medical devices could result in monetary and environmental savings for hospitals (De Oliveira 

and Lucas 2008; DiConsiglio 2008; Jacobs, Polisena et al. 2008; Barnett and Rios 2009; US 

Food and Drug Administration (FDA) 2009; Kwakye, Pronovost et al. 2010; Plisko 2010; 

Kwakye, Brat et al. 2011).  

Some studies also point to the un-needed waste in operating rooms with the required 

disposal of unopened or unused materials (Weinger 2001; Esaki, Macario et al. 2009).  Other 

reports suggest changes to purchasing practices can improve environmental outcomes (Kaiser, 

Eagan et al. 2001; Kumar, DeGroot et al. 2008; Brusco and Ogg 2010). Messelbeck and Whaley 

believe that the healthcare industry has the ability to collectively pressure materials suppliers into 

better environmental performance (Messelbeck and Whaley 1999), while in a study of disposable 

and reusable materials within the NHS, Ison and Miller conclude that analysis of environmental 

20 



impacts throughout a product’s life cycle has potential as a supportive tool for material purchases 

(Ison and Miller 2000).  

While waste is a relatively well-covered topic of hospital sustainability, other aspects of 

healthcare impacts also have considerable impact.  Though not often addressed in scientific 

literature, Heating, Ventilation, and Air Conditioning (HVAC) demands for a hospital must meet 

building codes, but generally account for a large portion of energy requirements in a building’s 

life cycle (Junnila and Horvath 2003; Khalil 2008; Saporta, Ellis et al. 2008; Ruparel 2010).  As 

shown in Figure 2, the energy consumption and intensity per square foot of healthcare buildings 

is much larger than other commercial buildings (US Energy Information Administration 2003).  

Large hospitals, or buildings over 200,000 sf, consumed 458 trillion Btus from all major fuel 

sources in 2007, or about 5.5% of the total energy used in the commercial sector that year (US 

Energy Information Administration 2012). 
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Figure 2: Energy Consumption of Healthcare Buildings Relative to Commercial Building Sector, (US 

Energy Information Administration 2003) 

 

 

Direct hospital effluents can represent unique challenges in healthcare as well. Jolibois 

and Guerbet tested the genotoxicity of hospital wastewater and found that 82% of samples 

contained at least one of the tested chemical compounds (Jolibois and Guerbet 2006).  A 2010 

study of hospital effluent in Taiwan found high occurrences of controlled drugs such as 

methamphetamine, codeine, and ketamine (Lin, Wang et al. 2010).  Hospital and pharmaceutical 

manufacturing effluents are associated with an increase in antibiotic resistant bacteria found in 

sewage (Guardabassi, Petersen et al. 1998).  Additionally, cleaning products and pesticides used 

within and around a hospital structure can have adverse health effects on cleaning staff, hospital 

employees, and patients (Wilding, Curtis et al. 2009; Gilden 2010).  

While many studies begin to focus on the human health and environmental impacts 

associated with healthcare, there is still a great void in the literature relating to the sustainability 
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of hospital facilities (Pierce and Kerby 1999).  More data is needed to provide meaningful 

information to practitioners and policy makers within the healthcare industry.  One tool used to 

quantify multiple environmental impacts of a system is Life Cycle Assessment. This tool has 

many potential applications within the field of healthcare, and proper use of LCA results could 

greatly improve the sustainability of medical practices. 

2.3 LIFE CYCLE ASSESSMENT 

Life Cycle Assessment (LCA) quantifies the environmental impacts of a product or process 

throughout its life cycle, including the production of raw materials, manufacturing, use, disposal, 

and any transportation between these steps. Sectors such as manufacturing, building 

construction, biofuel production, and waste management use LCA to analyze their environmental 

impacts.  Life cycle thinking has been applied to healthcare based studies, but the healthcare 

system has a distinct need for data relating to its environmental impacts (Weinhold 2001; 

Velagaleti and Burns 2007; Kwakye, Pronovost et al. 2010; Kwakye, Brat et al. 2011).  There are 

three basic approaches for conducting an LCA. They include process LCA, Economic Input-

Output LCA (EIO-LCA), and hybrid LCA.   

Process LCA follows guidelines set forth by the International Organization for 

Standardization (ISO 14040 and 14044) and are conducted in four stages as shown in Figure 3 

(International Organization for Standardization 1997). Stage one includes establishing the 

boundary conditions of the system and defining a functional unit for the system.  This stage 

standardizes LCA results and enables equivalent comparison with other products or processes.  

During stage two, Life Cycle Inventory (LCI), all raw data are compiled with respect to system 

23 



inputs and outputs.  The LCI quantifies the materials and energy used as well as the emissions 

associated with each input and output.  LCA practitioners generally use professional product 

databases to help identify inventory input and output data for each inventory item.   

 

 

 

Figure 3: Stages of Life Cycle Assessment as Defined by ISO 14040 

 

 

Stage three, Life Cycle Impact Assessment (LCIA), is the stage where the environmental 

emissions of the inventory data are aggregated and translated into impact categories (e.g. 

ecotoxicity and global warming potential).  Several tools and models are available to aid in 

calculating LCIA results.  One commonly used, US-based tool is TRACI (Tool for the Reduction 

and Assessment of Chemical and Other Environmental Impacts) developed by the US 

Environmental Protection Agency (EPA) (Bare, Norris et al. 2003).  More details on the LCIA 
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stage can be found in Section 2.3.2.  The fourth and final stage is called interpretation.  This 

iterative stage analyzes the accuracy and suitability of all previous stages and also identifies 

areas of the life cycle or subsystems that have relatively high environmental impacts. 

Process LCA is limited by the quality of available data, the accessibility of data, the 

definition of system boundaries, and time constraints associated with data acquisition. Such 

limitations have led to criticism of the suitability of process LCA for analysis of complex 

systems (Wong 2004). Another limitation of process LCA is inclusion of Scope 3 emissions, or 

the emissions downstream from product production and manufacture (i.e. use and disposal) 

(Ranganathan, Corbier et al. 2004; Huang, Weber et al. 2009).  

Economic Input-Output LCA (EIO-LCA) was developed partially to make up for the 

shortcomings of process LCA. EIO-LCA uses aggregated data from economic sectors and 

attributes an environmental loading associated with the production of a product based on how 

much each sector purchases from other sectors (Rosenblum, Horvath et al. 2000; Suh, Lenzen et 

al. 2004; Hendrickson, Lave et al. 2006; Carnegie Mellon University Green Design Institute 2011).  

Limitations to EIO-LCA appear during detailed analysis as a result of the aggregation of 

economic sectors and uncertainty of data, and so it is better suited for high level analysis (Lenzen 

2000; Bilec, Ries et al. 2006; Lenzen 2006; Bilec 2007).  Hybrid-LCA is the combination of both 

process and EIO-LCA, each of which serves to make up for the other methods’ limitations.  

Hybrid-LCA has been used to analyze building construction and service industries and will be 

applied to some of the work in this thesis (Suh, Lenzen et al. 2004; Bilec, Ries et al. 2006; 

Junnila 2006; Suh 2006). 
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2.3.1 Life Cycle Assessment Methods Applied to Healthcare  

As global warming and carbon emissions have become a focus, some hospitals and healthcare 

systems have adopted carbon and ecological footprinting tools as a means to analyze the 

environmental impact of their operations and facilities.  An ecological footprint study titled 

Material Health found that the National Health Services (NHS) in England and Wales consumed 

1.3 million tonnes of products, generated 385,000 tonnes of waste, and released 3.18 million 

tonnes of emissions to air (J. Barrett 2004). Material Health does not include the extraction of 

raw materials or the manufacturing of those materials, instead focusing on consumption of 

resources and waste generation.  Citing methodology from the Material Health study and other 

ecological footprints of hospitals, the Global Health and Safety Initiative released guidelines for 

conducting environmental footprints of hospitals (Germain 2002; Berg, Lapinski et al. 2009).  

In a 2007 EIO-LCA study focusing on the carbon footprint of the US Healthcare Sector, 

Chung and Meltzer found that healthcare activities account for 8% of total US greenhouse gas 

emissions and 7% of US carbon dioxide emissions (Chung and Meltzer 2009).  Power, et al. 

calculated the annual CO2 emissions of the US’s minimally invasive surgeries (MIS) to be 

355,924 metric tons per year, which would make it 189th on the United Nation’s 2008 list of 

annual carbon emissions of individual countries (Power, Silberstein et al. 2012; United Nations 

(UN) 2012). Global use of anesthetics gases was found to be a major contributor to healthcare’s 

carbon footprint, with annual global warming potential equivalent to CO2 emissions from one 

coal fired power plant (Sulbaek Andersen, Sander et al. 2010).  

Using UK-based Carbon Trust methodology Blanchard, et al. conducted a carbon 

footprint of two North American emergency medical services, finding that nearly 40% of carbon 

emissions were the result of diesel fuel use and 23% was due to electricity (Blanchard and 
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Brown 2009). Karlsson and Ohman developed a life cycle based carbon assessment tool for 

Region Scania health center in Sweden, enabling the hospital to strategize their CO2 reduction 

efforts (Karlsson and Öhman 2005).  The study determined that 41% of Region Scania’s CO2 

emissions were related to material consumption (Karlsson and Pigretti-Ohman 2005).  

Environmental footprints are useful for locating sources of carbon dioxide (CO2) emissions 

within a system, but they do not analyze other environmental impacts, such as effects to human 

health or ecotoxicity.   

Full process LCA methodology has been used to analyze individual products within the 

healthcare industry.  A 1999 LCA comparison of single use and reusable surgical drapes found 

that single use drapes produced more clinical waste while reusable drapes resulted in more total 

energy consumption, water use, and CO2 emissions (Dettenkofer, Grießhammer et al. 1999).  

McGain, et al. found in 2010 that reusable plastic anaesthetic drug trays cost less and emitted 

less CO2 than single-use trays (McGain, McAlister et al. 2010).  A study on reusable and 

disposable surgical scissors found that the reusable stainless steel scissors were the more “eco-

efficient” choice (Ibbotson, Dettmer et al. 2013).  Similarly, a 1996 comparative study of the life 

cycle inventory of reusable and disposable laparotomy pads found the disposable pads had a 

larger impact on the environment than reusable pads (Kümmerer, Dettenkofer et al. 1996). 

(Kümmerer, Dettenkofer et al. 1996).  A 2012 special issue of Anesthesia and Analgesia reported 

on a number of life cycle based studies comparing the life cycle environmental impacts of 

reusable and single use laryngeal mask airways, perioperative textiles, and central venous 

catheter insertion kits (Eckelman, Mosher et al. 2012; McGain, McAlister et al. 2012; Overcash 

2012). These studies identify impacts associated with individual products, but more research is 
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needed to describe the current situation in healthcare at a larger scale so that decision makers can 

make better overarching decisions related to environmental performance of medical operations.  

2.3.2 Current Limitations to the Use of Life Cycle Assessment in Healthcare Settings: 

Human Health Impact Categories 

Most LCIA tools, such as TRACI, contain impact categories related to human health impacts.  

The accuracy of LCIA methodology of human health impact categories are still debated today, 

and their resultant units are not easy to translate into practical application, especially when 

reporting to medical professionals (Owens 1998; Hauschild, Huijbregts et al. 2008; Reap, Roman 

et al. 2008; Thiel, Campion et al. 2012).  Correlation exists between the various emissions at 

each stage of a product’s life cycle and the emissions’ effects on human health, morbidity, and 

mortality.  However, actual effects vary based upon exposure pathway, duration, and biological 

factors, thus limiting the accuracy of causal statements.  Regardless of the final reporting units, 

when analyzing the human health effects resulting from operations within the medical field, it is 

critical to understand the underlying calculations.   

This section of the literature review explores existing methodologies to analyze human 

health impacts within LCA and in other fields.  This section addresses Objective 4 of this thesis 

and answers the research question ‘What are the advantages and limitations of life cycle impact 

categories such as human health when applying LCA to healthcare issues?’ 

2.3.2.1 Life Cycle Impact Assessment Methodology 

As seen earlier in this literature review, Life Cycle Impact Assessment (LCIA) is the third of 

four stages in conducting a LCA (ISO 1997). The LCIA translates and aggregates inventory 
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input and output data from the LCI stage into impact categories to help stakeholders assess the 

environmental impacts of a product or process.  LCIA is similar to risk assessment; however, 

LCIA does not determine absolute risk.  The models used within LCIA allow LCA practitioners 

to calculate potential harm or damage, or the probability of human health or environmental 

impacts, whereas risk assessment traditionally focuses on a single chemical in a given location 

and time frame which results in more certain predictions of health and environmental risks 

(Margni and Curran 2012).  As seen in Figure 4, the impact assessment stage of LCA contains 

following components according to ISO 14042: category definition, classification, 

characterization, and valuation/weighting (ISO 1997). 

 

 

 

Figure 4: Components of the Life Cycle Impact Assessment Stage of LCA 
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Impact categories are defined and considered for inclusion in the LCA during the 

category definition stage.  Many environmental impact categories exist, and some LCIA 

methodologies have standardized categories, which will be further discussed below.  Category 

selection should be consistent with the study’s goal and scope and should consider completeness 

(include all relevant environmental issues), practicality (prioritize necessary categories), 

independence (avoid double counting dependent impacts), and relation to the characterization 

step (choose impact categories that relate to available characterization methods) (Jensen, 

Hoffman et al. 1998).   

The classification stage assigns inventory input and output data to potential 

environmental impacts, i.e. specific impact categories.  This qualitative assignment does not 

consider issues such as potency or environmental persistence, which are accounted for in the 

next LCIA stage (ISO 1997; Jensen, Hoffman et al. 1998).  Some of the inventory data may be 

assigned to multiple impact categories, in which case “double counting” needs to be monitored 

and avoided.  During the classification stage, impacts may be analyzed on geographical scales, 

such as global impacts, regional impacts, and local impacts.  The assignment of geographic scale 

can be related to the method of exposure (ie global exposure) and certain impacts are more 

strongly correlated with a specific geographic scale (ie global warming potential).  Time scales 

must also be considered for certain impact categories.  For example, global warming potential is 

often analyzed on either a 20 year or a 100 year time scale and this affects the characterization 

factors of each of the inventory input and output data.  There is currently no consensus on a 

single list of impact categories (Jensen, Hoffman et al. 1998; Finnveden, Hauschild et al. 2009). 
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The characterization stage of LCIA models impact categories in terms of indicators (or 

characterization factors, CFs) and usually provide a basis for aggregating the input and output 

data assigned to each category.  The indicator or CF assigns the relative contribution of each 

input and output to the selected impact category.  Various models or methods exist which specify 

the relationship between the inventory input and output data and the indicator, and these methods 

can have a large effect on the results of the LCA (Dreyer, Niemann et al. 2003; Finnveden, 

Hauschild et al. 2009).  Spatial and temporal compatibilities between the impact category and the 

inventory data affect the accuracy of each method, but each characterization factor’s relationship 

to the inventory data is based on quantitative, scientific information with a few simplifying 

assumptions.  For some impact categories, the characterization factors are more accepted and 

standardly utilized across the LCA community (for example, global warming potential).  

However, impact categories such as land use and resource depletion have not gained consensus 

in appropriate characterization factors.   

The valuation or weighting stage of LCIA aims to rank, weight, and aggregate the results 

of different LCIA categories to simplify analysis of the relative importance of total results.  The 

weighting process uses a variety of scientifically-based analytical techniques and approaches; 

however, it is generally based on the subjective priorities of the stakeholders and can complicate 

further analyses of the LCA (Jensen, Hoffman et al. 1998).  This LCIA stage is optional. 

The overall goal of LCIA is to help assess environmental significance by providing 

additional information about a product’s or processes’ emissions.  Since LCIA does not 

determine absolute risk, proper interpretation of LCIA results is crucial, especially as results are 

reported in absolute values which might suggest greater certainty (Margni and Curran 2012).  A 
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variety of LCIA models and methodologies have been developed and commonly utilized since 

1984 as seen in Figure 5 from Margni and Curran, 2012.  

 

 

 

Figure 5: Timeline of Most Common LCIA Methodologies by Introduction Date from (Margni and 

Curran 2012) 

 

 

2.3.2.2 Impact Midpoints versus Endpoints 

Within the LCIA stage, the impacts of inventory inputs and outputs can be reported at various 

points in the chain from source to effect.  A midpoint, or “intermediate variable” in Europe, 

represents a point in an impact category’s cause-effect chain at which characterization factors 

can be used to directly calculate the relative importance of the LCI inputs and outputs.  The 
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uncertainty in midpoint valuation is kept within an acceptable range (Haes, Jolliet et al. 1999; 

Bare, Hofstetter et al. 2000; Finnveden, Hauschild et al. 2009).  An endpoint, or “damage level,” 

reports the effects of inventory inputs and outputs on society, or the resulting effects further 

down the chain of correlated, cause-effect impacts. For example, midpoint categories might 

include concentrations of toxic substances, but not their impact on human health, while endpoint 

categories might include incidence rate of illnesses, species extinction estimates, etc., as seen in 

Figure 6.   

 

 

 

Figure 6: Midpoint to Endpoint LCIA Example 
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Endpoints facilitate a more informed weighting structure across impact categories.  For 

example, the effects to human health of chemical exposure, global warming, and smog formation 

can be compared using a common unit such as Disability Adjusted Life Years, making it easier 

for a stakeholder to analyze and interpret LCA data and results (Margni, Gloria et al. 2008).  

Opponents to the use of endpoints in LCA assert that extending LCIA models to endpoints 

reduces their accuracy and thus comprehensiveness.  Endpoint models are generally based on 

unsubstantiated assumptions, and the uncertainties beyond well-characterized midpoints are too 

high to make endpoints a valuable reporting metric (Bare, Hofstetter et al. 2000; Finnveden, 

Hauschild et al. 2009).  Uncertainty, though present in all forms of impact or risk assessment, 

can be difficult to meaningfully and clearly present to the general public, and it is best kept to a 

minimum where possible (Johnson and Slovic 1995). 

2.3.2.3 Current Life Cycle Impact Assessment Methods for Analyzing Toxicological 

Human Health Impacts 

In terms of impact categories, human health impacts can be one of the most difficult and most 

delicate to model.  For this thesis work, which focuses on the environmental impacts of 

healthcare facilities and procedures, human health is one of the more interesting and compelling 

measurements of environmental impacts for a number of our stakeholders.  In commonly-used 

LCIA methodologies, human health impact categories center on two components- toxic effects 

of chemical exposure and respiratory impacts due to particulate matter.  This section will focus 

on LCIA methods related to toxic exposures, as characterization models for respiratory effects 

have greater levels of acceptance by LCA practitioners and are more easily understood by 

diverse audiences (Hauschild, Goedkoop et al. 2013). 

34 



Toxicity impact categories focus on cancerous and non-cancerous effects related to direct 

exposure to chemicals, and do not include health effects from other agents or effects already 

allocated to other impact categories (Crettaz, Pennington et al. 2002).  For example, impacts 

from fine particles are included in impact categories such as “respiratory impacts,” and the health 

effects of noise exposure are often unanalyzed within LCA. Human health effects due to fine 

particles, tropospheric ozone, and radiation use comparable effect indicators, however, and 

similar methodologies are applied to those impact categories.   

The mechanisms of interaction and the effects of toxic chemicals on organisms differ 

drastically based on the chemical in question. Toxicologists create chemical effect designations 

based on local or systemic effects (for example acid burns vs. lead poisoning) and acute, 

repeated, or chronic exposures.  Different organisms, and even unique individuals within a 

species, respond to toxic chemicals differently.  Sensitive groups include those with asthma or 

existing illnesses, the old, and the young, and toxic chemicals can have a more severe impact on 

these groups.  Thus, a single designation or impact category for toxic effects is difficult to 

justify, yet has been developed by government and industry for use in risk management and is 

the basis for the LCIA of human health (Hertwich and Hammitt 2001). 

For cancer- and non-cancer-related human health impacts, the chemical fate, the 

exposure, the likelihood (potency), and the consequences (severity) of toxicological effects 

(shown in Figure 7) must all be considered when creating characterization factors for LCIA 

(Crettaz, Pennington et al. 2002; Krewitt, Pennington et al. 2002).  Environmental health impacts 

are calculated as the product of the emission rate of a chemical, the Intake Fraction (iF), and the 

toxicity.  Intake fraction is a metric defined as the total mass of the chemical inhaled or ingested 

divided by the total mass of the chemical emitted. It is a function of a given chemical’s fate and 
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exposure, from Figure 7. Intake fraction is unit-less and can be used to evaluate individual or 

population exposures over short or long durations (Marshall and Nazaroff 2006).  Typically, iF 

accounts for inhalation or ingestion exposure, but usually does not include dermal exposure as 

this route lacks toxicological data and is commonly thought to be negligible (Krewitt, 

Pennington et al. 2002).  Most LCIA methods assume chronic exposure rather than acute toxicity 

effects (Rosenbaum, Huijbregts et al. 2011). 

 

 

 

Figure 7: Stages Used to Calculate the Toxicology Effect of Chemicals on Human Health  

 

 

In LCIA, the potency of a chemical is derived from toxicological data.  For carcinogens 

or cancer-causing chemicals, likelihood of adverse effects is measured off of a slope factor based 
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on risk per unit dose of a given effect (Krewitt, Pennington et al. 2002). Toxicity assessment for 

cancer effects of chemicals first determines whether a chemical does or does not cause cancer in 

humans.  A toxicity assessment then elucidates the carcinogenic potency of an alleged 

carcinogen by quantifying the increases in the number of cancers in exposed populations 

(animals and humans) with increased dosage of the chemical.  This creates a dose-response curve 

for the cancer effects of a chemical, with an assumption that there is no dose threshold below 

which the risk of cancer is negligible.  The cancer-related potency of a chemical is the slope of 

this dose-response curve, called Slope Factor (SF), which is measured in “risk of cancer per unit 

dose”.  The slope is generally linear until high doses are encountered, so in risk assessment, the 

EPA uses the upper 95% confidence limit of the slope as the SF to increase the margin of safety 

in risk estimates (US EPA 2013).  LCIA methods generally assume that the SF and dose-

response curve have “no threshold” and are linear, but this eliminates considerations of 

background (or existing) concentrations of a given chemical at a specific site (Krewitt, 

Pennington et al. 2002).   

 In LCIA for non-carcinogenic chemicals, the likelihood of adverse health effects (or 

potency) is based on the dose-response gradient of that chemical (Pennington, Crettaz et al. 

2002).  All chemicals have adverse health effects if a person is exposed with a high enough dose, 

so the risk of non-cancerous effects is calculated via threshold doses.  These thresholds generally 

include the highest dose that does not produce an observable adverse effect (the No Observed 

Adverse Effect Level, NOAEL or No Observed Effect Level, NOEL) and the lowest does which 

does produce an effect (the Lowest Observed Adverse Effect Level or LOAEL).  Doses below 

the threshold value are considered safe in standard risk assessment while doses above the 

threshold are likely to cause an effect.  Conservative risk evaluations will use an Acceptable 
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Daily Intake (ADI) or a Reference Dose (RfD) value to estimate the adverse effects over a 

lifetime of daily exposures (Krewitt, Pennington et al. 2002).  RfD is calculated by dividing the 

NOAEL by an uncertainty factor which can span an order of magnitude, but the uncertainty 

factor ensures that the RfD value contains a margin of safety for describing the risk of adverse 

health effects (US EPA 2013). 

Some LCIA methodologies utilize only these potency-based indicators to describe and 

aggregate the risk of potential health effects due to a related chemical emission, but the relative 

severity of health effects due to multiple emissions is not considered.  To make up for this 

limitation, some LCIA methodologies assess the damage to human health both in terms of 

potency-indicators and severity-indicators (Burke, Doull et al. 1996; Krewitt, Pennington et al. 

2002; Huijbregts, Rombouts et al. 2005).   

Potency-based indicators reflect the probability, likelihood, or risk of people to be 

potentially affected by an emission.  Toxicology potency factors are based on test data such as 

No Observed Effect Levels (NOELs) which are determined in laboratory studies of rodents and 

extrapolated to human measures (Krewitt, Pennington et al. 2002).  In LCA, these 

characterization methods are based on policy thresholds such as reference dose (RfD), acceptable 

daily intake (ADI), and tolerable daily intake (TDI) (Pennington, Crettaz et al. 2002). 

Severity-based indicators or “damage indicators” build on potency-based indicators to 

include the likelihood and expected severity of the human health effects (Pennington, Crettaz et 

al. 2002).  In that sense, they are analogous to endpoint reporting in LCIA.  Severity-based 

indicators usually express effects in terms of Years of Life Lost (YOLL), Disability Adjusted 

Life Years (DALY) and Quality Adjusted Life Years (QALY) (Krewitt, Pennington et al. 2002).  

Severity-based indicators make up for the limitations of potency-based indicators by 
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incorporating the differences between potential consequences of human health effects.  Damage 

indicators also provide a more relevant idea of the resultant hardships and societal concerns of 

chemical releases for decision makers. 

2.3.2.4 Human Health Impact Categories for Commonly Utilized LCIA Methods 

Many methodologies exist to assess the risk and damage to human health as the result of toxic 

chemicals.  Table 1 summarizes commonly used base models, such as eco-indicator and USEtox.  

Table 2 lists common LCIA methodologies and tools and specifies their human health impact 

assessment models.  Discussion in this section will focus on the Tool for the Reduction and 

Assessment of Chemical and other Environmental Impacts (TRACI) from the US Environmental 

Protection Agency (US EPA), as this is the accepted LCIA method for North America and the 

LCIA tool used for the analyses in chapters 4.0 and 5.0 of this dissertation. 

Some Life Cycle Impact Assessment tools, such as older versions of TRACI, present 

midpoint categories in terms of a reference unit such as kg of benzene equivalents for cancerous 

impacts and kg of toluene equivalents for noncancerous impacts. Benzene is an organic chemical 

compound (C6H6) naturally found in crude oil.  Inhalation and ingestion of benzene is associated 

with increased risk of cancer and other illnesses.  Toluene is a benzene-derived solvent whose 

inhalation is associated with neurological problems such as weakness, nausea, hearing and vision 

loss, unconsciousness, and death. Toluene, however, has very little carcinogenic potential (Dees, 

Askari et al. 1996; National Library of Medicine 2011).  While a reference unit is useful in 

assessing the relative health impacts of a variety of substances, its meaning can be lost on those 

unfamiliar with the substance itself. 
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Table 1: Commonly-Used Human Health Toxicological Impact Assessment Base Models 

 LCIA Method Release 
Year 

Release 
Organization 

Human Health 
Impact Category 

(unit) 

Endpoint 
or 

Midpoint 

Geographic 
Scale 

Number of 
Substances Reference 

To
xi

co
lo

gi
ca

l I
m

pa
ct

s B
as

e 
M

od
el

s 

USEtox 2010 

USEtox Team, 
Task Force on 
Toxic Impacts 
UNEP/SETAC 

Life Cycle 
Initiative 

Human Health 
Cancer & 
Noncancer 

(Comparative 
Toxic Units 

human, CTUh) 

Midpoint regional > 3000 

(Hauschild, Huijbregts 
et al. 2008; 

Rosenbaum, Bachmann 
et al. 2008; Henderson, 
Hauschild et al. 2011; 

Rosenbaum, Huijbregts 
et al. 2011) 

USES-LCA 2.0 
(Uniform 

System for the 
Evaluation of 

Substances 2.0) 

2006 

Netherlands 
Center For 

Environmental 
Modeling 

Damage to Human 
Health (Disability 

Adjusted Life 
Years, DALY) 

Midpoint 
and 

Endpoint 
regional 

3393 
(potency) / 

1192 
(damage) 

(Huijbregts, Rombouts 
et al. 2005; Huijbregts, 
Struijs et al. 2005; van 
Zelm, Huijbregts et al. 

2008) 

Impact 2002+ 2003 

Swiss Federal 
Institute of 
Technology 

(EPFL) 

Damage to Human 
Health (Disability 

Adjusted Life 
Years per person 

per year, 
DALY/pers/yr) 

Midpoint 
and 

Endpoint 

regional, 
global 769 

(Jolliet, Margni et al. 
2003; Humbert, Margni 

et al. 2005) 

Eco-indicator 
99 1999 PRé 

Consultants 

Damage to Human 
Health (Disability 

Adjusted Life 
Years, DALY) 

Endpoint local, 
regional 52 

(Goedkoop, Effting et 
al. 2000; Goedkoop and 

Spriensma 2001) 
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Table 2: Commonly-Used Impact Assessment Models and Methodology and the Human Health Toxicological Impact Categories 

 LCIA Method Release 
Year 

Release 
Organization 

Human Health Impact 
Category (unit) 

Endpoint 
or 

Midpoint 

Geographic 
Scale Reference 

To
xi

co
lo

gi
ca

l I
m

pa
ct

 A
ss

es
sm

en
t T

oo
ls

 

ReCiPe 2008 v 
1.08 

(USES-LCA base) 
2012 

RIVM, CML , PRé 
Consultants, 

Radboud 
Universiteit 

Nijmegen and CE 
Delft 

Damage to Human Health 
(Disability Adjusted Life 

Years, DALY) Midpoint 
and 

Endpoint 

local, 
regional, 

global 

(Goedkoop, Heijungs et 
al. 2009) 

Human Toxicity (1,4-
dichlorobenzene equivalents) 

TRACI 2.1 
(USEtox base) 2012 USEPA 

Human Health Cancer & 
Noncancer (Comparative 

Toxic Units human, CTUh) 
Midpoint regional, 

global (US EPA 2012) 

TRACI 
(CalTOX from 
California EPA 

base) 

2003 USEPA 

Human Health Cancer 
(benzene equivalents) 

Midpoint regional 

(McKone 1993; 
Maddalena, McKone et 
al. 1995; Bare, Norris et 

al. 2003; Bare and 
Gloria 2006; Bare 2011) 

Human Health Noncancer 
(toluene equivalents) 

BEES 3.0 
(TRACI 1.0 base) 2003 

US regional 
Institute for 

Standards and 
Technology 

(NIST) 

Potential Human Health 
Effects  (toluene equivalents) Midpoint regional (Curran and Lippiatt 

2002) 

CML 2001 
(USES-LCA base) 2001 

Institute of 
Environmental 

Sciences, Leiden 
University, The 

Netherlands 

Human Toxicity (1,4-
dichlorobenzene equivalents) Midpoint 

local, 
regional, 

global 

(Frischknecht, 
Jungbluth et al. 2007) 

41 



Studies recommend USEtox as a preferred LCIA model for calculating human cancer and 

non-cancer impacts, as it is most up-to-date, offers the largest selection of chemical 

characterization factors, and allows for geographic scaling from global to urban effects 

(Hauschild, Goedkoop et al. 2013).  USEtox utilizes Human Toxicity Potential (HTP) per 

kilogram of chemical as the unit for the characterization factor for each of its chemicals. HTP is 

the product of Intake Fraction (iF) and Human Effect Factor (EF).  The iF (kgintake/kgemitted) is the 

product of chemical fate and human exposure from Figure 7, while the EF (Comparative Toxic 

Unit for humans, CTUh/kgintake) is the product of the dose response or potency and the severity 

(Rosenbaum, Huijbregts et al. 2011).  

The reported Comparative Toxic Unit (CTUh) for human health is an estimate of the 

increased morbidity as a result of the emissions of a product or process and can be thought of as 

the disease cases per kg of chemical emitted (Rosenbaum, Bachmann et al. 2008).  Effect factors 

of substances in the USEtox database vary by up to ten orders of magnitude increasing the 

uncertainty associated with potential human health impacts (Rosenbaum, Huijbregts et al. 2011).  

As seen in Table 2, the US EPA previously used CalTOX, a California EPA chemical toxicology 

assessment model, as the base for human health cancer and noncancer impact analyses in TRACI 

(McKone 1993). The US EPA currently utilizes USEtox in TRACI 2.1, the most recent version 

of the EPA’s impact assessment methodology (US EPA 2012).   

2.3.2.5 Limitations of Current Human Health Characterizations in LCIA 

Because LCA inventory input and output data are reported in total mass for each chemical 

emission, the location and timing of each emission are not often given.  The integration of the 

temporal and spatial exposure differs from traditional health and risk assessments which analyzes 

risk for a given location and point in time.  It may be, for example, that the chemicals released 
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over the lifetime of a product meet regulatory requirements for exposure levels at each point in 

the product’s life cycle (eg. emissions do not exceed regulations during the manufacturing stage, 

or during transport or during use), but when aggregated and removed from spatial considerations, 

an LCA may suggest damaging health consequences from a given product (Crettaz, Pennington 

et al. 2002).  This is especially important because while many commonly-used LCIA human 

health impact models utilize existing quantitative methods of health risk assessment, they do not 

present actual risk but rather the relative potential or probable risk (Burke, Doull et al. 1996; 

Margni and Curran 2012).  LCIA methods are also unable to account for background or existing 

environmental sources of chemicals, which may increase the local human health risks of 

relatively small emissions from the analyzed product. 

Additionally, experimental toxicological data is only available for a small percentage of 

the chemicals currently and previously used (Krewitt, Pennington et al. 2002).  In 1998, the US 

EPA estimated that of the roughly 3000 chemicals imported or produced at over one million 

pounds per year, only 7% have complete basic toxicity profiles and 43% have no testing data 

whatsoever (US EPA 1998).  In addition, most experiments which assess the toxicological risk of 

chemicals are conducted on species other than humans, and many of those test protocols are not 

standard between chemical types (Owens 2002).  This results in large factors of uncertainty in 

available data.  

Beyond the limitations inherent in current LCIA methodology are limitations in 

meaningfully reporting adverse health outcomes to a diverse audience or healthcare professionals 

(Thiel, Campion et al. 2012).  Some professionals suggest an impact category such as “cancerous 

effects” is too arbitrary, as there are multiple types of cancers with various rates of 

aggressiveness.  In traditional medicine, health indicators vary by medical specialty.  For 
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example, a urologist will be most interested in those chemicals or emissions affecting the 

function of the kidney, bladder and reproductive organs.  An overarching concern within the 

profession is mortality or death.  However, there is obvious analytical and political complexity in 

attaching a designation such as “mortality” to the potential impacts within life cycle assessment.   

Some expert panels believe that aggregating different toxic effects into a single category, such as 

mortality, is “inherently impossible on a scientific basis” (Owens 1998) yet aggregation may be 

necessary to yield meaningful data for the healthcare field. Additionally, most LCIA methods 

overlook other, non-toxicological human health impacts such as quality of life or individual and 

community autonomy.  While more difficult to quantify, these social sustainability metrics may 

be equally valuable when talking about overall or long-term impacts to human health. 

2.3.2.6 Approaches to Improving Human Health Impact Assessment 

Given the general limitations of human health impact assessment methodology, what can be 

done to improve the impact assessment phase to make life cycle assessment more meaningful in 

a healthcare setting? This subsection outlines potential approaches which exist in literature.  It is 

not a complete assessment of improvement options, but rather points to pathways which might 

be worth pursuing.  The first part highlights Health Impact Assessment methods, a policy-based 

human health assessment method from outside the field of LCA.  The second part focuses on a 

position paper from SETAC-Europe (Society for Environmental Toxicology and Chemistry) 

which identified qualitative and quantitative approaches to incorporate severity into existing 

LCIA methods.  Finally, the third part highlights a thrust in risk assessment to incorporate more 

human-based studies from epidemiology, and the potential impact of green chemistry to the 

effectiveness of LCIA methods.   
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Measuring Health Consequences of Projects and Policies through Health 

Impact Assessment 

Following the form of Environmental Impact Statements established by the National 

Environmental Policy Act of 1969, Health Impact Assessments (HIA) analyze the unintended 

health consequences of major projects and policies (Collins and Koplan 2009).  Though specific 

definitions vary, an HIA is a decision-making tool designed analyze the potential effects of a 

policy on the health of a population and the distribution of those effects (WHO 1999). It is 

intended to be a catalyst to engage policymakers, academics, and affected populations in 

participatory strategic planning (Krieger, Northridge et al. 2003), and follows other forms of risk 

and impact assessment such as health risk assessment, environmental impact assessment, 

integrated environmental health impact assessment, social impact assessment, and economic 

assessment (Mindell and Joffe 2003; Briggs 2008; Negev, Levine et al. 2012). 

The first step of an HIA is screening, where it is determined if a HIA will be conducted 

on a proposed policy or project.  No standardized criterion for policy selection exists.  The 

second step of HIA is scoping and assessment where the potential health impacts are identified 

and literature is reviewed for evidence related to health impacts.  In this stage, key stakeholders 

and experts from a variety of fields are consulted and results are tabulated to indicate possible or 

probably health impacts.  The final step is policy modification and evaluation where the 

proposed project is modified to maximize positive health effects and minimize the negative 

(Lock 2000; Parry and Stevens 2001). 

Lack of standardization in the selection and application of HIA remains a limiting factor 

in its effectiveness. The assessment of potential or probable health impacts is subject to 

inaccurate information and personal biases which reduce the validity of health impact 
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predictions.  Similar to LCA, HIA reports health risks of chemicals in cause-effect chains for 

emissions and impacts, sometimes utilizing toxicological data as in LCIA, which makes HIA 

equally ineffective with short exposures to chemicals (Krieger, Northridge et al. 2003). HIA 

includes other human health determinants, however, such as community cohesion, job security, 

and quality of life, which can portray a more complete picture of human health impacts (Negev, 

Levine et al. 2012). Like LCA, HIA encounters difficulties in quantifying other health and social 

effects such as discarded syringes or graffiti in a community, though through the feedback of 

proper focus groups throughout the analysis, the relative importance of such factors within a 

community becomes more visible (Parry and Stevens 2001; Briggs 2008).   

Health Impact Assessment can have meaningful results for a community policy or project 

and incorporates health effects outside of toxicology.  However, HIA is still subject to the 

limitations of toxicological interpretation as in existing LCIA methodologies. 

Creating Finer Detail in Existing Human Health LCIA 

Rather than aggregating human health toxicological impacts into a single group, health 

impacts could be reported in more meaningful subcategories.  A position paper for SETAC-

Europe identified three subcategories of human toxicity impacts based on general severity- 

irreversible or life-shortening effects, maybe reversible or life-shortening, and generally 

reversible or non-life-shortening (Krewitt, Pennington et al. 2002). Possible endpoints for the 

irreversible or life-threatening effects include cancer, reproductive and teratogenic effects, acute 

fatal effects or acute severe effects.  This sub-categorization, though somewhat based in value 

judgment, would increase the relevance of results for decision-makers.  Sub-categorization has 

some issues, namely concerns with double counting individual chemicals and not having detailed 

enough information about each chemical to make a subcategory designation.  The limitations of 
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toxicology and risk assessment create challenges for effective or meaningful life cycle 

assessments. 

Incorporating Epidemiology and Green Chemistry in Risk Assessment to 

Reduce Uncertainty and Broaden Chemical Scope 

The data behind human health risk assessment include a variety of research fields, such 

as toxicology, epidemiology, clinical medicine, mode of action studies, molecular studies, and 

environmental exposure studies.  Epidemiological studies, however, provide evidence of health 

impacts based on studies of human populations, which reduces the large uncertainties associated 

with extrapolating health effects of individual chemicals from cross-species laboratory 

experiments.  Proper evaluation and integration of epidemiological study results greatly enhance 

risk assessment, risk management, and, therefore, life cycle assessment, especially for 

assessments of known human carcinogens (WHO Working Group 2000; Swenberg, Moeller et 

al. 2013). Unfortunately, epidemiological studies vary in consistency, making it difficult to 

extract meaningful causal inferences of the risk of exposures to chemicals and pollutants.  

Groups, such as the World Health Organization and the Johns Hopkins Risk Sciences and Public 

Policy Institute, are creating recommendations for improving consistency in reporting and 

interpreting epidemiological data (White, Fox et al. 2013). 

Conducting extensive studies of each individual chemical as it enters the market is not an 

efficient method of assessing toxicological human health impact (US EPA 1998).  The field of 

green chemistry analyzes potential carcinogenicity of chemicals based off of molecular 

structures and other molecular properties (Fjodorova, Vračko et al. 2010; Rusyn, Sedykh et al. 

2012).  This predictive modeling allows chemical and drug developers to avoid potentially 

carcinogenic molecules and identifies classes of chemicals already in use which should be better 
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monitored and analyzed (Judson, Richard et al. 2009; Benigni, Bossa et al. 2013), though 

research needs to focus more on the unknown chemicals rather than on the well-studied, “hot 

topic” substances (Grandjean, Eriksen et al. 2011).  Improvements to these fields will lead to 

improvements in life cycle assessment, though the static nature of LCA requires incremental 

updates to LCI databases and LCIA methodology as external data become better.   

The methods behind LCIA and their inherent limitations are important to bear in mind 

when presenting and interpreting LCA data for a healthcare audience.  Life cycle impact 

assessment allows hospitals to identify and better understand the environmental and human 

health impacts of their existing and potential consumption patterns, but proper utilization of 

results depends on understanding the assumptions and methodologies inherent in the tool.  The 

advantages and limitations of LCIA methods were shown in this chapter, in fulfillment of 

research Objective 4.  As LCA and the fields supporting LCIA continue to improve and develop, 

the use of LCA in the healthcare setting will become more valuable.   
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3.0  EFFECTS OF HOLISTIC, GREEN DESIGN ON PERFORMANCE OF HOSPITAL 

FACILITY 

The research presented here addresses research Objective 1.  Specifically, it answers the 

questions ‘How does sustainable hospital design affect hospital performance?’ and ‘How can 

hospital performance metrics help determine the effects of sustainability initiatives within 

hospitals?’ 

3.1 INTRODUCTION 

The design and aesthetics of a medical treatment facility impact not only the energy consumption 

of the hospital but also the performance of the staff and the recovery of the patient receiving 

treatment within the facility.  As a place that serves a vulnerable subset of the population, reports 

assert that hospitals should be the most rigorous in implementing environmentally sustainable 

design practices and environmental stewardship (Ficca, Chyun et al. 2000; Phelps, Horman et al. 

2006; Verderber, Fauerbach et al. 2008; Younger, Morrow-Almeida et al. 2008; Stichler 2009).  

Many studies point to sustainable and Evidence-Based Design (EBD) as a method of improving 

hospitals’ performance and healthcare outcomes. However, continued investigation is needed to 

show the relationship between health and building design and to monitor the actual performance 
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of green buildings, especially green healthcare facilities (Ries, Bilec et al. 2006; Loftness, 

Hakkinen et al. 2007).   

For the past 7 years, researchers worked with the Children’s Hospital of Pittsburgh of 

UPMC (Children’s) to quantify the effects of holistic, sustainable building design on the function 

and performance of a children’s healthcare facility. Using a range of standard hospital reporting 

metrics in this longitudinal comparative analysis, data was collected to compare the old 

Children’s hospital to their new, LEED-certified facility (Leadership in Energy and 

Environmental Design) (Bilec, Geary et al. 2010).  With metrics of hospital expenses, 

productivity, quality of care, staff satisfaction, and utilities, researchers show the actual 

performance of a green hospital as well as the effects of green building design and managerial 

practice on the health and safety of the building’s occupants. 

3.1.1 Green Hospital Design 

The benefits of green buildings can be difficult to quantify, and it is unknown if green buildings 

are performing as intended, especially in regards to health concerns associated with the indoor 

environment (Needy, Gokhan et al. 2007).  To better understand the effects of green buildings, 

studies have analyzed metrics such as worker productivity, developing surveys or analyzing 

company-collected data such as employee absenteeism or sick leave (Kats, Alevantis et al. 2003; 

Ries, Bilec et al. 2006; Seppänen and Fisk 2006; Loftness, Hakkinen et al. 2007; Wiik 2011).  

One aspect of green building design in particular, the indoor air and environmental quality (IAQ 

and IEQ), has been linked to worker health and productivity in multiple studies (Mitchell, Zhang 

et al. 2007; Singh, Syal et al. 2010; Sundell, Levin et al. 2011). Other studies have found that 

natural and sustainable daylighting not only reduces energy demands, but also helps people with 
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perceptual and circadian functions and results in a more positive perception of the work 

environment (Figueiro 2008; Hua, Oswald et al. 2011).   

Studies confirm the positive effects of sustainably-designed medical facilities by 

analyzing changes in employee and nursing turnover, medication dispensing errors, and hospital 

acquired infection rates (Williams 1988; Berry, Parker et al. 2004; Joseph and Rashid 2007; 

Rechel, Buchan et al. 2009; Bartley, Olmsted et al. 2010; Huisman, Morales et al. 2012).  Two 

design aspects in particular, noise control and natural or appropriate lighting, have been well-

studied and are associated with increased staff satisfaction and performance, and improved 

patient outcomes including reduced stress, shorter hospital stays, and reduced pain medication 

rates (Topf 1985; Verderber and Reuman 1987; Biley 1994; Graven 1997; Benedetti, Colombo et 

al. 2001; Walch, Rabin et al. 2005; Sánchez, Ausejo et al. 2009; Hua, Oswald et al. 2011; Ulrich, 

Bogren et al. 2012).  This growing field of Evidence-Based Design uses existing research and 

knowledge to make design decisions in healthcare structures in an effort to improve performance 

outcomes.  These outcomes are monitored, tested, and reported to promote future EBD projects 

(Cama 2009).   

In 2007, the United States Green Building Council (USGBC) partnered with the Green 

Guide for Health Care (GGHC) to create a green building standard and certification program 

specifically for healthcare facilities.  The LEED 2009 for Healthcare (Leadership in Energy and 

Environmental Design) standards are based on LEED for New Construction and awards points 

for location and public transportation accessibility, water efficiency, energy performance, the 

reuse of existing buildings and materials, and reduction in building materials containing certain 

chemicals to improve indoor human health (Weinhold 2001).  LEED for Healthcare also issues 

points for design features like natural daylighting, acoustic control, and thermal comfort control 
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(Pradinuk 2009; U.S. Green Building Council (USGBC) 2009; U.S. Green Building Council 

(USGBC) 2011).  LEED for Healthcare aims specifically to provide nurses, doctors, and hospital 

staff with a safe and comfortable working environment which is “vital both to their health and to 

the health of their patients” (Holowka 2007). 

Research Question 

Children’s 2005 decision to build a brand-new, LEED certified facility created a unique 

opportunity to examine the actual performance of green buildings and the effects of green design 

on hospital users and occupants.  The aim of this study was to measure and analyze the 

performance of this green hospital as a whole, relative to its previous, traditional counterpart.  

This study also evaluated the factors contributing to changes in patient outcome and employee 

performance and satisfaction metrics (Bilec, Geary et al. 2010).  In summary, the overarching 

research question was how much impact do green building design features have on the intended 

outcomes?   

3.1.2 Children’s Hospital of Pittsburgh of UPMC Case Study 

Built in 1926, the original Children’s Hospital of Pittsburgh of UPMC (Children’s) was located 

in the Oakland neighborhood of Pittsburgh, Pennsylvania.  After multiple renovations, it was 

decided the 260-bed, 400,000 square foot hospital would be replaced entirely with a new facility 

in Pittsburgh’s Lawrenceville neighborhood as shown in Figure 8.  The new Lawrenceville 

campus was built using an existing healthcare structure and features nearly 1.5 million square 

feet of hospital and administrative space, 296 patient beds, and the 300,000 square foot John G. 

Rangos Sr. Research Center.  The large increase in size was due to expansion needs, private 
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patient rooms, and large waiting areas containing distraction techniques and technologies (Koller 

and Goldman 2012).   

 

 

Figure 8: Children's Hospital of Pittsburgh of UPMC Pre-Move, Traditional Structure and Post-

Move, Green Structure 

 

 

With features such as a green roof and healing garden, individual patient rooms, mobile 

nursing stations, and daylighting in every room, the new facility became one of the first LEED-

certified (version 2.1) pediatric hospitals in the US and an ideal case study to better understand 

the impacts of hospital design decisions on the hospital’s performance.  The new hospital was a 

critical component in fulfilling Children’s values: patients and families first, responsibility, 

innovation, dignity and respect, and excellence (Children's Hospital of Pittsburgh of UPMC 

2011). 
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3.2 METHODS 

In order to perform this comparative longitudinal assessment of the two Children’s facilities, 

metrics were collected, statistically analyzed, and validated with hospital staff via the methods 

described in this section. 

3.2.1 Comparative Longitudinal Assessment 

In 2006, researchers collaborated with Children’s executive management team to identify a host 

of metrics to monitor in the study. Metrics were sorted into the following categories: Expenses, 

Productivity, Quality of Care, Staff Satisfaction, and Utilities.  These metrics, a sampling shown 

in Table 3 and full definitions listed in Appendix A, were chosen for multiple reasons.  

Children’s already collected these data for management and reporting purposes, which 

minimized time and cost concerns for data collection and retrieval, and enabled retrospective 

data collection and analyses (Powell, Davies et al. 2003).  The use of standard hospital metrics 

also made the study methodology easily applicable to similar studies at other healthcare 

facilities.  Additionally, these data analyzed the costs and benefits of green building design in a 

more tangible sense, directly influencing green economic methodology (Bilec, Geary et al. 

2010).   
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Table 3: Hospital Metrics Used to Compare Children’s Old, Traditional Hospital Design with New, 

Green Hospital Design 

 

 

 

Children’s Hospital generally provided researchers with data in the identified metrics 

from July 1999 until November 2012. The hospital reported data on a monthly, quarterly, and 

yearly basis, depending on the metric, as seen in Table 17 of Appendix A.  Data prior to May 

2009 were considered “pre-move” or old hospital data, data from May 2009 to present were 

considered “post-move” or new, green hospital data.   

Some data, due to changes in collection methods or facility size and function, needed to 

be normalized to ensure an even comparison.  All expenses and monetary data were normalized 

to the value of the 2009 US dollar.  Utility data was collected for functionally equivalent spaces 

Metric Metric
Gas/Steam (kbtu) Regular Hours (all staff)
Electric (kWh) Overtime Hours (all staff)
Water (kgal) Total Direct Care Hours per PIB
Sewage ($) RN Productivity
Salaries and Wages Patient Care Technician Productivity
Total Labor Expenses per PIB Total Direct Care Productivity
Medical / Surgical Supply Expense per PIB Total Paid Hours per PIB
Total Operating Expenses by PIB Average Length of Stay
Tenure Doses Dispensed per Hour
Time to Fill Adverse Drug Events (ADEs)
Turnover - Number of Employees Non-ADEs
Turnover - Years of Service Medical Administration Record (MAR) Corrections
Vacancy - Number of Openings Significant Prescribing Errors
Vacancy - Average Postion Age Blood Stream Infection Rate
Admissions Case Mix Index
Total Patients in a Bed Actual Mortalities
Average Daily Census Expected Mortalities
Vancancy Rate RN Mortality Rate
Turnover Rate RN Mortality Index
Human Resources Turnover Rate RN PIB = Patient in Bed
RN Reassigned Hours RN = Registered Nurse
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in the two Children’s facilities.  For example, the main hospital in the old Children’s campus 

contained space for administration, standard hospital care, and testing laboratories.  Equivalent 

space in the new, green facility and the utilities consumed in that space were included in the 

comparison as seen in Table 16 of Appendix A.   

Children’s former facility was not conditioned in every space and was functioning under 

older hospital codes.  The new, green facility is performing beyond current hospital operation 

codes in terms of air ventilation and filtration, which complicates an even comparison of the two 

facilities.  Additionally, heating methods changed between the two Children’s facilities.  The old, 

Oakland campus purchased steam generated from a nearby plant which utilized coal and natural 

gas. The new, green campus generates heating on-site using natural gas.  The quantity of coal 

and natural gas used to generate the steam purchased by Children’s was converted into energy 

units and compared to the energy consumed through natural gas heat generation at the new 

Children’s hospital.   

All utility data was normalized using a number of factors including: heat degree days, 

cooling degree days, number of patient beds, floor area, and number of patients in a bed (PIB) 

during a month-long period.  In collaboration with Children’s Facilities Maintenance, it was 

determined that the most significant normalization was floor area.  This also enabled comparison 

with national statistics related to energy consumption in hospitals.  If data were available in finer 

detail, interesting normalizations could be made based on individual spaces- for example, 

comparing the energy and water consumption of the old and new hospitals’ administrative spaces 

or operating rooms.  Other suggested normalizations, if possible, might include per inpatient, 

total number of patients, or total number of building occupants. 
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3.2.2 Statistical Analysis 

Metrics were separated into two populations.  One set of data represented the old facility or data 

collected before May 2009 and was labeled “Pre-Move.” Data collected after May 2009 was 

labeled “Post-Move” and represents the new, LEED-certified hospital’s performance.  Two 

sample t-tests with a 95% confidence interval were conducted to compare the populations’ 

means.  Where population distributions were non-normal, the variances unequal, or where 

sample sizes were less than 10, a Mann Whitney test with a 95% confidence interval was 

conducted to compare sample populations’ medians. Distributions were considered non-normal 

when the Anderson Darling value for normality was less than 0.05.  Equality of variance in the 

two populations was determined using an F-Test (for normal distributions) or a Levene’s Test 

(for non-normal variance).   

Figure 9 shows which test was used on select study metrics, as well as the significance or percent 

change in each metric between the old facility and the new, green hospital. A full list of study 

metric results and the statistical tests used on each can be found in the Supplemental Information. 

3.2.3 Data Considerations and Validation 

Researchers held in-person meetings with Children’s staff to validate the consistency of data 

collection and calculations throughout the project period and to identify influences to study 

metrics. Any outliers and sudden, time-based variations for a study metric were identified and 

reviewed with appropriate Children’s staff to determine the cause.   

As this was a longitudinal study, the seven-year study period encompassed shifts in 

staffing and management policies.  With the move to a new facility, Children’s modified their 
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hiring practices, requiring potential employees to complete a survey which tests the individuals’ 

alignment with Children’s overall mission and vision.  Changes to staff satisfaction metrics could 

be affected by Children’s new recruitment model, which shifted most hiring from posting job 

announcements and waiting for responses to headhunting. Children’s also updated management 

and accountability standards, putting a cap on the amount of time in which a manager could 

review position applicants.  

Additionally, and perhaps most significantly, in 2012, Children’s earned Magnet 

recognition from the American Nurses Credentialing Center (ANCC) an honor shared with only 

6% of hospitals nationwide.  Magnet status recognizes the hospital’s dedication to quality patient 

care, nursing excellence, and a collaborative, empowering nursing environment (American 

Nurses Credentialing Center (ANCC) 2012).  To be initiated in the Magnet Recognition 

Program, hospitals must develop an organizational culture and strategic plan which empowers 

the professional development of nurses, and transform managerial policies and structure to 

encourage nursing leadership.  Magnet status is associated with higher rates of specialty 

certification of nursing staff, reduced adverse drug events for patients, and lower patient 

mortality (Boyle, Gajewski et al. 2012; McHugh, Kelly et al. 2012).  Children’s new, innovative 

hospital environment aided in their drive towards Magnet distinction, but the organizational and 

managerial changes required to achieve Magnet status also influenced the changes observed in 

the study metrics.  
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3.3 RESULTS 

This section discusses results of the study according to metric categories: utilities, expenses, 

productivity, staff satisfaction, and quality of care. The limitations and applicability of this study 

are highlighted at the end of this section.  A summary of significant results can be seen in  

Figure 9, and a complete listing of results as well as metric definitions can be found in Appendix 

A.   
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Figure 9: Selection of Significant Changes in Children’s Hospital Performance Metrics from the Old 

Hospital (Pre-Move) to the New, Green Hospital (Post-Move) 
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3.3.1 Utilities Energy and Water Intensity Improve Substantially in New, Green Building 

on a Comparative Square-Foot Basis 

Children’s raw electricity consumption increased by about 70% (P<0.001), but with the addition 

of over 1 million square feet of functionally-equivalent space (a nearly 300% increase in size), 

Children’s electricity consumption per square foot was actually reduced approximately 50% to 

2.9 kWh/sf (P<0.001) as seen in Figure 10.  Other utilities at Children’s follow a similar pattern.  

While total usage of water at Children’s increased by 43% (P<0.001), their usage per square foot 

decreased more than 60% to 2.9 gallons of water per square foot (P<0.001).  Sewage data are 

measured in expenses rather than quantity; however, as seen in Figure 11, sewage closely 

correlates with water usage, as expected.  Following the move to the new facility in June 2009, 

there were some errors in the water and sewage metering resulting in a deficit.  The error was 

found and corrected in the December 2009 billing cycle, resulting in the visible peak in Figure 

11.  The dotted lines represent an average of that 8 month period for water and sewage 

consumption.  The statistical comparison included original data from this 8 month period in the 

Post-Move category. 
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Figure 10: Electricity and Energy Consumption of Traditional (Pre-Move) and Green (Post-Move) 

Children's Hospital on a per square foot basis 

 

 

Heating production at Children’s varied between the old, Oakland campus hospital and 

the new, green hospital.  The old hospital purchased steam for heating from a nearby steam 

generation plant.  The new hospital utilizes natural gas to produce heat on-site.  Using data from 

the steam generation facility, this study converted the amount of coal and natural gas used in 

Children’s steam generation to estimate the amount of energy Children’s required for heating.  A 

comparison of Children’s energy consumption shows an 86% increase in the total kBtu’s 
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consumed monthly (P<0.001) but a 50% decrease in energy consumption per square foot 

(P<0.001) to 16.2 kBtu/sf as displayed in Figure 10. 

 

 

 

Figure 11: Water and Sewage Consumption of Traditional (Pre-Move) and Green (Post-Move) 

Children's Hospital on a per square foot basis 

 

 

A US Energy Information Administration (EIA) report using 2007 data shows that large 

hospitals, or hospital buildings with more than 200,000 sf, consume an average of 234.1 kBtu of 

energy per square foot from all major fuel sources in a year and hospitals in the northeast region 

of the US have an average energy intensity of 241.9 kBtu (Lewis, Swenson et al. 2012).  
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Through the move to their green building, Children’s combined energy consumption from all 

major fuel sources was reduced over 50% to 252.5 kBtu/sf in Fiscal Year (FY) 2012.  As a 

portion of total energy consumption, Children’s reduced their electricity needs from 76.8 

kWh/sf-year in FY 2007 to 30.4 kWh/sf-year in FY 2012, nearly matching the EIA’s reported 

average of 29.1 kWh for large hospitals.   

The increase in overall, absolute utility consumption is due in part to the expansion of the 

hospital, but also to the updates in mechanical systems.  The old Children’s hospital functioned 

under older building codes and regulations.  As such, not all rooms were conditioned.  The new 

hospital not only performs beyond current hospital building codes, but also utilizes energy-

efficient HVAC systems in all areas of the hospital, indoor air quality monitors, and an 

integrated building management system. 

3.3.2 Expenses per Patient in Bed Remain Unchanged 

Despite a three-fold increase in hospital size and nearly 15% increase in patient capacity, 

no statistically significant changes were found in Children’s medical and surgical supply 

expenses per patient in bed (P=0.802) or total operating expenses per patient in bed (P=.995).  

Additionally, this study found a statistically significant rise in the patient length of stay based on 

inpatient day; however, the change represents only a 4% increase in a 5.4 day average. 

Due to programmatic shifts, Children’s reduced the number of “agency” hires or temporary 

hires, thus resulting in significantly decreased spending in purchased personnel metrics and an 

increase of about 7% (P<0.001) in total, non-normalized staff salaries and wages.  These staffing 

policy changes offset each other in Children’s expenses, as seen by the total labor expenses per 

PIB metric which had no significant changes between the old facility and the new (P=0.970). 
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3.3.3 Productivity Improves as Direct Care Hours Increase 

Children’s productivity metrics are calculated by dividing the number of hours required (based 

on patient acuity and nursing workload data) by the number of hours employees provided.  

Productivity levels in hospitals should be close to 100%.  Levels in excess of 100% may signify 

greater employee efficiency but might also imply staffing shortages.  Productivity of Children’s 

RNs remained the same (approximately 100%) in both facilities (P=0.508) while patient care 

technicians (PCT) productivity dropped from 115% to 107% (P<0.001).  The drop in post-move 

PCT productivity reflects an increased staffing capacity due to reductions in vacancy and 

turnover rates as seen in the Staff Satisfaction section below. 

Children’s staff experienced an 11% increase in regular hours with no change in overtime 

hours (P<0.001 and 0.280, respectively).  With the significant decreases in purchased personnel 

metrics mentioned in the Expenses section above and a slight increase in the number of patients, 

this change was expected. The number of direct care hours, or the amount of time spent directly 

with patients, increased 10% in the new, green facility (P<0.001).  An increase in the direct care 

hours, especially for RNs, has been shown to reduce adverse drug events (ADEs) and the risk of 

hospital-related deaths and failures to rescue (Needleman, Buerhaus et al. 2002; Kane, 

Shamliyan et al. 2007). This relationship is reinforced in the Quality of Care section below.   

3.3.4 Staff Satisfaction Increases as Seen in Reduction in Turnover and Vacancy Rates 

Indicators of staff satisfaction show a 5% increase in employee tenure (P=0.004) and a 25% 

reduction in general employee turnover (P=0.031).  Additionally, the number of position 

vacancies and the average age of open staff positions have decreased by over 30% (P<0.001 for 
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both).  During the study period, the number of patients served increased.  Metrics  of patient in a 

bed and of average daily census of patients increased by 5% (P=0.027 and 0.030 respectively). 

 

 

Figure 12: Turnover Rate and Vacancy Rate for Registered Nurses (RN) at the Traditional (Pre-

Move) and Green (Post-Move) Children's Hospital 

 

 

Specific to nursing, Figure 12 shows the average vacancy rate for registered nurse (RN) 

positions decreased over 60% (P<0.001) and the average RN turnover has decreased 43% 

(P=0.001) to just 9.5%.  This is less than the average turnover rate of 10.9% in other 201-300 

licensed bed Magnet designated hospitals (American Nurses Credentialing Center (ANCC) 

2012).  Studies show that reduction in nursing turnover has a positive effect on patient 
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satisfaction and reduces the likelihood of medical errors, as seen in the following Quality of Care 

section (Bae, Mark et al. 2010).   

3.3.5 Quality of Care Shows Reduced Error Rates and Improved Mortality Index 

This study found a 70% decrease in the blood stream infection rate at the new Children’s hospital 

(P<0.001) and a 49% reduction in the number of corrections to the Medication Administration 

Record (MAR) per 1000 doses dispensed (P=0.028). No statistical changes were detected in the 

number of medication doses dispensed per hour.  Low sample sizes in some of the quality of care 

metrics prevented a more rigorous analysis of adverse drug events and prescribing errors, which 

previous studies show to be common and costly in hospitals with increased potential to harm 

pediatric patients (Kaushal, Bates et al. 2001; Fortescue, Kaushal et al. 2003).  However, the 

Mortality Index indicates substantial achievements in Children’s new green facility. 

The expected mortality rate, or the number of critically-ill patients not expected to 

survive, increased 11% (P=.007) due to an increase in the severity of patient cases drawn to the 

new facility.  However, the actual mortality rate at Children’s decreased almost 20% (P=.005), a 

metric confirmed by the Mortality Index, which decreased nearly 30% for Children’s (P<.001) as 

seen in Figure 13.  The mortality index is the actual mortality divided by the expected mortality 

where a number less than 1 is a hospital’s goal.  In their new facility, Children’s index average is 

0.59.   
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Figure 13: Expected and Actual Mortalities of a Traditional (Pre-Move) and Green (Post-Move) 

Children's Hospital 

 

 

3.3.6 Study Limitations and Applicability 

Changes in energy and utility efficiency are directly attributable to changes in hospital design 

and improvements to mechanical systems. However, the length of the study period reduces the 

ability to isolate metric changes influenced solely by building and design-related sources.  
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Children’s leadership, policies, and programs have changed, most notably with the achievement 

of Magnet nursing status, and these changes inherently also effect this study’s metrics.   

According to a senior administrator in nursing, who has worked at Children’s for nearly 

twenty years, the physical prominence of this green structure is thought to have catalyzed and 

reinforced managerial and programmatic changes. They believe Children’s unusual commitment 

to breaking the status quo in hospital design cannot be excluded from the improvements to staff 

satisfaction, employee productivity, and quality of patient care identified in this study.  For 

future studies, researchers recommend the additional analysis of data such as employee and 

patient surveys or focus groups to better understand the perceived and psycho-social impacts of 

the structure’s design, as well as additional modeling which might better predict the relative 

importance of leadership, policy, and green building design changes. 

3.4 SUMMARY AND CONCLUSIONS 

Following the move into a new, LEED-certified facility, Children’s Hospital significantly 

improved their productivity, quality of care, staff satisfaction, and utility use per square foot 

while their expenses per patient in bed remained stable.  Energy and electricity use per square 

foot decreased 50% (P<0.001 for both) in the new, green facility and water consumption per 

square foot decreased 64% (P<0.001).  The amount of time that Children’s staff spend directly 

with patients increased 10% (P<0.001) in the new hospital, while vacancy rates dropped 30% 

(P<0.001) and turnover dropped 25% (P=0.031).  Blood stream infection rates dropped 70% 

(P<0.001) in the new, green hospital and while expected mortalities increased 11% (P=0.007), 

actual mortalities decreased 19% in the new facility (P=0.005). 
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The length of this longitudinal assessment limited the ability to separate the impacts of 

green building design from the effects of managerial and programmatic changes to the hospital.  

Over the study period, organizational and individual changes related to Magnet nursing 

designation and modified hiring practices greatly affected Children’s hospital performance 

metrics.  The relative effect of behavioral and organizational changes or green building design 

decisions is unknown, but there may also be a reinforcing symbiosis between the two elements in 

regards to improved employee performance and patient outcomes. Since Magnet designation 

required significant cultural change for Children’s, the new, green hospital may have helped 

catalyze or foster those changes.  Green hospital design and new, more efficient technologies, 

however, directly influenced the improvements to utility-related metrics.  

Children’s continues to improve their quality of care and the environmental sustainability 

of their services through green purchasing and alternative cleaning products, and they credit the 

building with increased safety, improved staff satisfaction, and reduced patient and parent stress 

(Children's Hospital of Pittsburgh of UPMC).  Children’s new, green campus is emblematic of 

their dedication to being a model of environmental sustainability and health for the Pittsburgh 

community and other hospitals nationwide.   
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4.0  EVALUATING ENVIRONMENTAL IMPACTS OF MEDICAL PROCEDURES: LIFE 

CYCLE ASSESSMENT OF BIRTHING AN INFANT 

The work presented in this chapter addresses research Objective 2 and the question ‘How can 

Life Cycle Assessment determine environmental sustainability of the healthcare industry?’  This 

work was published in Science of the Total Environment as “Life Cycle Assessment Perspectives 

on Delivering an Infant in the US” (Campion, Thiel et al. 2012). 

4.1 INTRODUCTION 

Healthcare represents a rapidly growing economic sector in the United States, accounting for 

17% of the total US GDP in 2009 (Bureau of Economic Analysis 2009).  In 2008, US hospitals 

employed over 5.3 million people and spent nearly $320 billion on goods and services from other 

businesses (AHA 2011).   To support this level of activity, the healthcare sector is estimated to 

consume 73 trillion kWh of electricity annually, and its hospital facilities are the second most 

energy-intensive facility type per square foot in the US (US DOE 2009; Esmaeili, Jahromi et al. 

2011).  The emissions from this electricity use alone result in estimated tens-of-thousands of 

adverse health effects (AHA 2010; National Research Council (U.S.), Committee on Health et al. 

2010).  In addition, medical facilities face unique infection control challenges that have led to 
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increasing use of disposable materials and escalating waste production. Consideration of the 

effect on the environment, and potential subsequent health effects, is an important consideration.  

The healthcare industry has begun estimating environmental impacts with studies 

analyzing the carbon footprint of hospitals (Maverick Lloyd Foundation 2009; Subaiya, Hogg et 

al. 2011) and the entire industry (Chung and Meltzer 2009).   England’s National Health 

Services, NHS, found their 2004 carbon footprint to be about 25% of England’s total public 

sector emissions at 18.6 thousand kilograms of carbon dioxide equivalent (CO2 eq) (Sustainable 

Development Commission 2008).  A recent study calculated the total global warming potential 

(GWP) directly caused by the US healthcare sector to be 254 billion kilograms of CO2 eq.  

Approximately 80% of the GWP in the healthcare sector is attributed to carbon dioxide (CO2), 

which is one-tenth of the total CO2 emissions in the US (Chung and Meltzer 2009; Patrick 

2011).  Although estimating GWP is important, expanding the scope of environmental impacts to 

include other negative environmental effects will create a more comprehensive understanding of 

the healthcare industry.  In this study, we will introduce Life Cycle Assessment (LCA) as a tool 

that can analyze healthcare sustainability using multiple environmental impact categories. 

4.1.1 Background on Process Life Cycle Assessment 

Life Cycle Assessment (LCA) analyzes the environmental impacts of a product or process 

throughout its life cycle, including the production of raw materials, manufacturing, use, disposal, 

and any transportation between these steps. Process LCA follows guidelines set forth by the 

International Organization for Standardization (ISO 14040 and 14044) and is conducted in four 

stages (ISO 1997; ISO 1997). Stage one establishes the boundary conditions of the system and 

defines a functional unit for the system. This stage standardizes the results and enables 
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equivalent comparison with other products or processes.  During stage two, Life Cycle Inventory 

(LCI), all raw data are compiled with respect to system inputs and outputs.  The LCI quantifies 

the materials and energy used as well as the emissions associated with each input and output.  

Stage three, Life Cycle Impact Assessment (LCIA), is the stage where the inventory data are 

translated into impact categories (e.g. ecotoxicity and global warming potential).  The fourth and 

final stage is interpretation, where the inventory and impact assessment results are analyzed for 

areas within the system that have relatively high environmental impacts. 

4.1.2 Case Study: Delivering a Baby 

This research uses process LCA to quantify the environmental impacts of a vaginal delivery in a 

labor and delivery room (LDR) and a cesarean birth in an operating room (OR) at Magee-

Womens Hospital (Magee) of the University of Pittsburgh Medical Center (UPMC).  This case 

study was chosen to help direct the sustainability efforts for this hospital which delivers over 

10,000 infants per year and is developing robust greening efforts throughout the hospital. Our 

goal was to help understand the relative environmental consequences of each component of the 

birth process in order to optimally target areas for improvement for the most common procedure 

in this hospital. 

In order to achieve this goal, the first objective was to create a process LCA framework specific 

for hospitals. The second objective was to quantify the LCA data and evaluate the results for 

vaginal delivery and a cesarean delivery.    
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4.2 METHODS 

The complexities and challenges of combining life cycle assessment with the healthcare industry 

required that the project framework be well established.  The first step was to develop 

collaborative partnerships between engineers and hospital staff. The second step was to establish 

the process LCA framework, which included data collection, LCI database selection, and LCIA 

results.  

A research team was developed including engineers with expertise in LCA, physicians, nurses, 

and the hospital’s facility manager.  Cultivating these relationships was necessary for obtaining 

an insider’s perspective of hospital operations and managerial complexities and discussing how 

hospital personnel could use the LCA framework and results. 

4.2.1 Life Cycle Assessment Framework 

4.2.1.1 Goal, Scope, and System Boundaries 

The functional unit of this study was the birth of one baby. The boundaries of the study (Figure 

14) focused on a single birth including components such as energy consumption, material 

production, sterilization, and material disposal. Due primarily to scarcity of LCI data regarding 

laundry services, cleaning chemicals, and anesthetics, the use and manufacturing of these items 

were not included in the study.  For the purpose of this research, the environmental impacts due 

to the hospital’s construction or building materials as well as the manufacturing of large 

machines within the OR and LDR were not included.  With respect to the construction of the 

hospital, LCA studies are inconsistent (Bilec, Ries et al. 2010). Some existing research has 

assumed that the impacts of the construction phase are negligible (Junnila and Horvath 2003); 
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others report that environmental impacts associated with construction are underestimated 

(Hendrickson and Horvath 2000).   

 

 

 

Figure 14: Data Flowchart for Cesarean Section and Vaginal Births 

 

 

To provide system boundaries on the birth itself, this study defined vaginal birth as the 

expulsion of the infant and placenta only (stage 2 and 3 labor) and cesarean section as the 

activities occurring door to door during the surgery.  This system boundary excluded the labor 

prior to delivery due to its poorly defined onset, wide variability in duration, location in or out of 
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the hospital, and variability in medical interventions leading up to the birth. Setting this limit on 

the system boundary limits our conclusions to the birth itself, but also allowed the LCA to be 

feasible while still providing usable information to assist environmental efforts in our birth 

center.  This system boundary also allowed for a comparison of the birth itself with the 

understanding that labor prior to delivery, and post-birth care can vary dramatically for women 

in both groups. 

Based on a review of approximately 15,000 healthy, full term births performed over 8 

years at a single institution, the duration of vaginal birth used in this study was assumed to be 65 

minutes (Janakiraman, Ecker et al. 2010); placental delivery was assumed to be 15 minutes 

(Jangsten, Mattsson et al. 2011). We assumed a ratio of women having their first birth to women 

who have previously given birth of 40/60 based on Magee’s delivery patterns. Assumptions for 

the cesarean section were based on a door to door time for all comers of 75 minutes, including 

repeat and primary cesarean (Ismail and Huda 2009). Consideration of anesthetic choices was 

excluded. 

4.2.1.2 Life Cycle Inventory 

Data from the hospital were collected to develop the LCI.  Data collection included weighing of 

disposable custom packs and reusable surgical instrument packs, observing machine electrical 

consumption, and obtaining information from hospital specifications for lighting and heating, 

ventilation, and air conditioning (HVAC) parameters.  In general, each component was then 

translated into the appropriate LCI unit process.  As mentioned in Section 1.2, the LCI stage 

compiles the inputs and outputs of a product or process. Various published databases house the 

unit processes that correspond to a specific product or process, therefore database selection is 

important. The LCI unit processes were selected based on the following logic: (1) use US based 
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databases (USLCI) (NREL 2010); (2) use the most robust database (ecoinvent) (Frischknecht, 

Jungbluth et al. 2005); (3) use other database if unit process was not available in either USLCI or 

ecoinvent.  The other databases used when USLCI or ecoinvent were not applicable or available 

were determined by comparing the physical description and application of the material to the unit 

process description.  

The following section is divided into two parts: LCI materials and LCI energy 

consumption.  LCI materials describes the methods used to account for the production and end of 

life of the disposable custom packs and the reusable surgical instrument packs for both the 

cesarean section and vaginal births.  The LCI energy consumption section explains methods used 

to determine electrical loading of machines and the energy consumption due to HVAC in both 

the OR in the case of cesarean section births and the LDR in the case of vaginal births.  

LCI Materials. There are two unique custom packs, a disposable and a reusable, used in 

both types of birth at our case study hospital. Items in a disposable cesarean custom pack and 

disposable vaginal birth custom pack were weighed and separated by product material type. A 

summary of the materials, products, material production databases, and material disposal 

databases is shown in Table 4. If a product was comprised of more than one material, then the 

total weight of the product was divided evenly by the number of materials in the product. For 

example, a cautery tip polisher, 2.6 grams, is made of aluminum grit and polyurethane plastic; 

therefore, each material was assumed to be 1.3 grams of the total product. This method was used 

because many of the mixed material products were difficult to disassemble and accounted for a 

small percentage of the total custom pack. The custom packs were believed to represent the 

majority of the waste produced during a delivery with the exception of gloves, masks and 
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sutures. These materials were not included in the study as they were considered to represent a 

small proportion of the waste. 
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Table 4: Disposable Custom Pack; RNA = North American geographical code; RER = Europe 

geographical code; S = system process; a = (Moreno, Weidema et al. 2011); b = (IDEMAT); c = (NREL 2010); d = (Lalive 1996) 

Material Product 
Examples 

Material Production Material Disposal Cesarea
n Pack 
(g) 

Vaginal 
Pack (g) LCI 

Database 
Database 
Process Name 

LCI 
Database 

Database Process 
Name 

Cotton OR towels, lap 
sponge, gauze 

IDEMAT 
2001b  Cotton fabric I 

ecoinvent 
System 
Processes 
2.0a 

Disposal, inert 
material, 0% water, 
to sanitary 
landfill/CH S 

491.2 110.7 

Polyvinyl-
chloride 
(PVC) 

Umbilical cord 
clamp, 
ear/ulcer 
syringe 

USLCI 
1.6c 

Polyvinyl 
chloride resin, 
at plant/RNA 

ecoinvent 
System 
Processes 
2.0a 

Disposal, 
polyvinylchloride, 
0.2% water, to 
sanitary 
landfill/CH S 

342.7 36.5 

Low-density 
polyethylene 
(LDPE) 

CSR wrap, 
gowns, drapes 

USLCI 
1.6c 

Low density 
polyethylene 
resin, at 
plant/RNA 

ecoinvent 
System 
Processes 
2.0a 

Disposal, 
polyethylene, 0.4% 
water, to sanitary 
landfill/CH S 

1633.1 281.9 

High-impact 
polystyrene 
(HIPS) 

Needle counter USLCI 
1.6c 

High impact 
polystyrene 
resin, at 
plant/RNA 

ecoinvent 
System 
Processes 
2.0a 

Disposal, 
polystyrene, 0.2% 
water, to sanitary 
landfill/CH S 

17.3 12.5 

Ethylene 
vinyl acetate 

Light handles, 
needle counter 

ecoinvent 
System 
Processes 
2.0 a 

Ethylene vinyl 
acetate 
copolymer, at 
plant/RER S 

ecoinvent 
System 
Processes 
2.0 a 

Disposal, plastics, 
mixture, 15.3% 
water, to sanitary 
landfill/CH S 

21.4 12.5 

Polypro- 
pylene (PP) Trays USLCI 

1.6c 

Polypropylene 
resin, at 
plant/RNA 

ecoinvent 
System 
Processes 
2.0a 

Disposal, 
polypropylene, 
15.9% water, to 
sanitary 
landfill/CH S 

38.2 61.1 

Polyester/ 
Rayon 

Combine 
dressing 

IDEMAT 
2001b 

Polyester 
fabric I 

ecoinvent 
System 
Processes 
2.0a 

Disposal, plastics, 
mixture, 15.3% 
water, to sanitary 
landfill/CH S 

17.3 - 

Stainless 
Steel Cautery Pencil IDEMAT 

2001b 
X90CrCoMoV
17 I 

ecoinvent 
System 
Processes 
2.0a 

Disposal, 
aluminium, 0% 
water, to sanitary 
landfill/CH S 

29.4 - 

Aluminum 
grit 

Cautery tip 
polisher 

ecoinvent 
System 
Processes 
2.0a 

Aluminum 
oxide, at 
plant/RER S 

ecoinvent 
System 
Processes 
2.0a 

Disposal, 
aluminium, 0% 
water, to sanitary 
landfill/CH S 

1.3 - 

Paper 
Labels, 
inventory 
sheet 

BUWAL 
250d 

Paper woody 
C B250 

ecoinvent 
System 
Processes 
2.0a 

Disposal, paper, 
11.2% water, to 
sanitary 
landfill/CH S 

6.4 -  

Poly- 
urethane 
(PU) foam 

Cautery tip 
polisher 

ecoinvent 
System 
Processes 
2.0a 

Polyurethane, 
flexible foam, 
at plant/RER S 

ecoinvent 
System 
Processes 
2.0a 

Disposal, 
polyurethane, 0.2% 
water, to sanitary 
landfill/CH S 

1.3 - 
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The contents of the disposable custom pack were assumed to have entered Magee’s waste 

streams. Magee calculates that 80% of their waste is disposed of in the Municipal Solid Waste 

(MSW) stream, and 20% enters the Regulated Medical Waste (RMW) or “Red Bag” waste 

stream.  The MSW from Magee is transported 20 km to a municipal solid waste landfill.  RMW 

from Magee travels approximately 50 km in total, first to an autoclave facility for sterilization 

and then to the municipal solid waste landfill for disposal.    Placentas are disposed of according 

to state law, which includes transporting them nearly 600 km to an incineration plant located in 

North Carolina.  The LCI databases chosen to represent disposal of individual materials are 

shown in Table 4.  Databases used in waste calculations not shown in this table include: Franklin 

USA 98 (Franklin Associates Ltd 1998) for transportation of wastes to disposal facilities, 

ecoinvent system process 2.0 (Frischknecht, Jungbluth et al. 2005) for biowaste incineration to 

represent disposal of chemo/pathogenic waste, and USLCI 1.6 (NREL 2010) for the electrical 

consumption of autoclaving RMW.  This case study assumed that births at Magee did not 

generate waste for disposal in other waste streams such as recycling, hazardous waste, and 

electronic waste. 

Items in a reusable surgical instrument pack for both a cesarean birth and a vaginal birth 

were weighed and summarized, results shown in Table 5.  The reusable surgical instrument 

packs are largely comprised of stainless steel instruments.  However, the reusable packs are 

wrapped in a disposable wrap and, in the case of the cesarean pack, contain OR towels which are 

generally disposed of in MSW rather than sterilized and reused.  Databases were identified for 

the production of the materials within the reusable surgical instrument packs.  The LCI of the 

disposable materials within the reusable surgical instrument pack included material production 

with no allocations for reuse, as well as disposal in MSW stream.   
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Table 5: Reusable Surgical Instrument Pack Data; RNA = North American geographical code; RER = 

Europe geographical code; a = (NREL 2010); b = (IDEMAT) 

Materials LCI 
Database 

Database 
Process Name 

Cesarean 
Pack 

Vaginal 
Pack Assumptions Data 

Source 
CSR Wrap (g) USLCI 

1.6a 
Low density 
polyethylene 

resin, at 
plant/RNA 

300.0 0.0 Disposable Weighed 

OR Towels (g) IDEMAT 
2001b 

Cotton fabric I 200.0 - Disposable Weighed 

Stainless Steel 
Allocation 

LCI 
Database 

Database 
Process Name 

Cesarean 
Pack 

Vaginal 
Pack Assumptions Data 

Source 
Stainless Steel 

Instruments 
(g) 

IDEMAT 
2001b 

X90CrCo 
MoV17 I 

5054.8 1956.3 Reusable Weighed 

Decontaminati
on Electrical 
Consumption 
(kWh/cycle/ 

pack) 

USLCI 
1.6a 

Electricity, at 
grid, Eastern 

US/US 

2.43 2.43 1 cycle per 
pack 

Machine 
Specs 

Autoclave 
Electrical 

Consumption 
(kWh/Cycle 

/pack) 

USLCI 
1.6a 

Electricity, at 
grid, Eastern 

US/US 

0.14 0.14 1/10 cycle 
per pack 

Machine 
Specs 

 

 

 

The LCI of the reusable stainless steel instruments included the production of the 

stainless steel, allocated over the anticipated life span of the instruments, as well as the electrical 

consumption of the cleaning process that occurs in between each use of the instruments.  The 

stainless steel instruments were assumed to have a life span of 10 years, based on repurchasing 

estimates, and to be sterilized once per day, resulting in 3,650 procedures and sterilization 

washes per custom pack. This calculation was used to allocate the production costs of the 

stainless steel instruments per functional unit.   
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In order to assess the environmental loading from the sterilization process, the electrical 

consumption of the standard decontamination and autoclaving procedures was also acquired. 

This data collection included the electrical loading associated with the sterilization process in the 

“LCI Materials” section because the results of the reusable materials were impacted by the 

electrical consumption, while HVAC electrical loading was a separate entity. The first step in 

cleaning the reusable instruments is a decontamination washer. Only the electrical consumption 

required to run the machine was considered in the LCI, and this included the electricity to power 

the drying system. The second step is sterilization of the reusable instruments with an autoclave. 

At Magee, there are 3 industrial size autoclaves, 2 Amsco 3043 vacamatics and 1 Steris Amsco 

Century V160H prevac steam sterilizer, that run approximately 10 to 12 times per day. The 

autoclaves reach a high “over kill” temperature of 274°F to ensure 100% sterilization. For the 

allocation of the autoclave, only the electricity consumption was considered, which included the 

control system and vacuum pump for the autoclave. Based on observations at Magee, it was 

assumed that 10 kits are sterilized during each autoclave cycle.  

LCI Energy Consumption. In order to estimate the electrical consumption of the 

machinery during each birth, the machines in the OR and in the LDR were inventoried, and 

Magee facilities engineer and hospital staff verified the use of the equipment for each procedure. 

Researchers recorded machine manufacture, model, medical function, and power rating, which 

can be seen in Table 6 and Table 7. 
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Table 6: Machine Information for Operating Room (Cesarean Section) 

Machine Information 
Operating Room (Cesarean Section) 

Type of Equipment Manufacturer Watts 

Infant Warmer Datex Ohmeda 7.98 
Baby Scale Olympic 10 

ESG: Electrosurgical 
Generator 

Valleylab 800 

Anesthesia Machine Datex Ohmeda / 
GE Medical 

1200 

BIS Machine Aspect 84 
Gas Machine Phillips 45 

Bedside Monitor with 
modules 

Phillips 30 

Patient Warmer Cincinnati SubZero 1000 
Fluid Warmer Sims Level 1 115 
SCD Machine Kendall 50 

OR Table Skytron 600 
Infusion Pump Cardinal Health 

Alaris 
150 

Gravity Convection 
Incubator 

Precision 100 

Computer Screens Generic 720 
Computer Towers Generic 2340 
Power Conditioner Powervar 252 
OR Light System Skytron 500 

Vaporizor Datex Ohmeda / 
GE Medical 

n/a 

Fetal Monitor Phillips n/a 
Infant Extraction Machine Gyrus n/a 
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Table 7: Machine Information for Labor and Delivery Room (Vaginal Birth) 

Machine Information 
Labor and Delivery Room (Vaginal Birth) 

Type of Equipment 
 Manufacturer Watts 

Travel monitor WYSE 45.6 
Travel Movitors WYSE 1575 

Computer monitor Planar 144 
Unkown Datascope 36-72 

Patient Bed Hill Rom 816 
Epidural Machine MedPat 4.5 

Baby Scale Detecto 10 
TV Phillips 144 

Fetal Monitor Phillips n/a 
Blanket Warmer Olypmic Medical 180 

Infant Warmer System/ 
Neontal System 

Ohmenda 759 

 

 

For both the OR and LDR, the fetal heart monitor with printable readouts were not 

included in the machine load totals because electronic monitoring is generally favored except in 

rare situations. The patient beds have an electrical input when used to adjust the bed; however, it 

is not being constantly adjusted throughout each birth and was therefore excluded. The television 

and radio in the LDR were assumed to be off during the birth and also not included.  The 

electrical loading of certain variable-draw machines, such as cauterizing tools, was calculated as 

a maximum, and therefore conservative, value.  

The electrical loading for vaginal and cesarean section births was a summation of the 

LDR and OR machines’ power in watts, see Table 8. Lighting information was obtained through 

the hospital lighting specifications.  The machine loading was then multiplied by the study’s 

assumed birth durations- 80 minutes for vaginal birth and 75 minutes for cesarean section birth 

(Ismail and Huda 2009; Janakiraman, Ecker et al. 2010; Jangsten, Hellstrˆm et al. 2010).   The 
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USLCI 1.6 database process “Electricity, at grid, Eastern US/US” was modified to match 

Pennsylvania’s electricity production mix, see Table 9. 

 

 

Table 8: Machine and Lighting Information 

  OR LDR Data Source 
Number of 
Machines 

17 10 Observation 

Machine Load 
(watts) 

7889 3738 Machine Specifications 

Number of 
Lights 

10 11 Hospital Specifications 

Lighting Load 
(watts) 

1942 507 Hospital Specifications 

 

 

 

Table 9: Pennsylvania Power Generation Mix from (USEPA 2007) 

Electricity Mix PA % 
Hydro 0.6 
Nuclear 22.3 
Oil 0.3 
Gas 2.9 
Coal 72.9 
Non-hydro renewables 0.5 

 

4.2.1.3 Bin Energy Model Setup 

In order to attribute the heating, ventilation and air conditioning (HVAC) energy expenditure of 

a single room in a complex hospital system, a fundamental approach to load calculation was 
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taken.   A bin type model was used, which assumed steady-state and calculated heating, cooling 

and dehumidification load in a specific space.  This enabled accurate estimation of HVAC 

loading while avoiding HVAC system modeling that would create difficulties in allocation.  Bin 

models are well documented and commonly used in systems load calculations and sizing 

(American Society of Heating 2009).  

The model calculated the energy use for several "bins" representing finite intervals of 

weather conditions.  The energy consumption from the bins was summed by the Equation 1: 

   

 

E = Ni
Qi

ηi
∑  Equation 1 

  

Where E is the annual energy use for heating or cooling, Ni is the number of hours for the 

ith bin, Qi is the heating or cooling load for the bin, and η is the HVAC efficiency.  The model 

created for the OR and LDR used the bin approach while adding some complexity in the form of 

internal load and humidity calculations.  The bins were 1.8 °F intervals from 1.4 to 93 degrees, 

and in calculations the temperature for each bin was the midpoint and the humidity was the 

average humidity for hours falling in that bin.  The bin frequencies (Ni) and humidities were 

calculated from hourly weather data for Pittsburgh's typical meteorological year (National 

Renewable Energy Lab 2011). 

The load Qi for each bin had a heating and a cooling component.  The model calculated 

the cooling load (Qi,AHU) on the air handling unit (AHU) to precondition air and the heating load 

on the reheat box to maintain the temperature set point in the room (Qi,RH).  The AHU supplies a 

mixture of outside air and re-circulated return air to reheat boxes throughout the hospital at 52 

°F.  The load on the AHU that can be attributed to the room was determined using Equation 2. 
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AHUi hhVQ −=  Equation 2 

  

The volume flow rate (VY) was calculated from the air change rate and room volume 

provided by facilities staff.  The mixed air enthalpy (hi,MA) was calculated for each bin as a 

mixture of outside air at the bin temperature and humidity, and return air at the internal set 

points.  The supply air enthalpy (hi,SA) was calculated from the enthalpy of air at the supply set 

point of 52°F with moisture content of the mixed air, but limited by an upper set-point.  The ratio 

of outside air to return air was obtained from facilities staff.  The AHU economizes from 40 to 

50°F, meaning that it brings extra outside air in to reduce the cooling load, and this was 

accounted for in the model.  The air handling unit has only a cooling load even in the coldest 

weather because of the high fraction of re-circulated return air. 

The second part of the load was the heating provided by the reheat box, which was purely 

a heating load from the natural gas powered boiler plant.  To maintain the temperature set point, 

the cold supply air is reheated using thermostat control in the room.  The reheat box heating load 

(Qi,RH) was determined by solving an energy balance (Equation 3) for the air in the room for each 

bin. 

    

ILENViSPSAi
Y

RHi QQhhVQ ++−+= ,,, )(0  Equation 3 

  

The heat introduced by the reheat box (Qi,RH) was found by setting the sum of the heat 

flows into and out of the room equal to 0, which must hold true for steady-state conditions in the 

room.  The heat removed by the ventilation system was VYhSP.  Heat added was represented with 
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terms for the supply air (VYhi,SA), internal energy gains (QIL) from people and equipment, and 

heat gain through the windows and walls (Qi,ENV).  The latter was calculated for each bin as the 

external to internal temperature difference for the bin divided by the thermal resistance of the 

external wall.  Only the LDR rooms have an external wall.  

For a summary of the HVAC and input variables, see Table 10.  The heating and cooling 

loads were summed separately, because the heating source is a gas boiler and the cooling source 

is an electric chiller plant.  The total annual consumption value was normalized using the number 

of hours the OR and LDR are in use per year to determine the energy consumption per 

procedure. 
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Table 10: Bin Energy Model Input Variables 

Input Variable Description Unit OR Data LDR 
Data 

Wall 
Constructiona 

Wall area ft² - 86 
Wall U-value (ASHRAE 2004) W/m²K - 0.36 

Occupancy Average number of people in 
room 

people 9 5 

Equipment Heat 
Load 

Electricity consumption of 
machines and lighting  

Watts 9231 3429 

Air Changes Number of air changes in the 
room per hour (ANSI 2010) 

Air 
changes/hour 

20 10 

Flow Rate/ Room 
Volume 

Volume of the room ft3 4200 3200 

Inside 
Temperature 
(avg) 

(ANSI 2010) °F 66-70 68-73 

Air Temperature 
Prior to room 
Entrance 

Air temperature in circulating 
air before it is heated at room 
entrance 

°F 52 52 

Outside 
Temperature 
(avg) 

Yearly average from local 
weather station (National 
Renewable Energy Lab 2011) 

°F Pittsburgh 
Weather 

Pittsburgh 
Weather 

Humidity Set 
Point 

(ANSI 2010) % 45-60 30-60 

Chiller Efficiency Specific to hospital chiller % 80 80 
Boiler Efficiency  Specific to hospital boiler % 80 80 
Duration Single year, 24 hours/day Hours 8765.8 8765.8 

a. Because the OR has no exterior walls, wall construction was not used in bin calculations. 
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4.2.2 Life Cycle Impact Assessment 

Environmental impacts from the inputs and outputs of both birth procedures were calculated 

using TRACI 2 version 3.01 (Tool for the Reduction and Assessment of Chemical and Other 

Environmental Impacts) developed by the US Environmental Protection Agency (EPA) (Bare, 

Norris et al. 2003).  Impact categories analyzed and reported include global warming, 

acidification, carcinogenics, non-carcinogenics, respiratory effects, eutrophication, ozone 

depletion, ecotoxicity, and smog.   

4.3 RESULTS AND DISCUSSION 

The production of the disposable custom packs makes up a significant percentage of the ozone 

depletion and smog categories, due largely to the production of cotton and manufacturing of 

polyvinylchloride components in the packs. Waste disposal and transportation are the main 

contributors in the impact categories of carcinogens, non-carcinogens, eutrophication, and 

ecotoxicity. Machine, lighting, and HVAC loading contributed the highest percentage for both 

modes of delivery in the categories of global warming potential, acidification, and respiratory 

effects categories (see Figure 15). This was due to the production and consumption of electricity 

and natural gas required to run the machines, lighting, and HVAC system.  
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Figure 15: Environmental Impacts of Cesarean Section (C/S) and Vaginal (Vag) Births.        

 * Waste calculated for the disposable custom packs and placenta disposal. 

 

 

4.3.1 Disposable and Reusable Materials 

The production of disposable and reusable materials of both birthing modes is summarized 

Figure 16. The production of disposable materials contributes the highest in every impact 

category for the cesarean section birth and five out of nine categories for the vaginal birth. 

Minimizing any infrequently used materials in the custom pack, and substituting reusable 

supplies when possible, is a high yield area for intervention.  The proportionally greater effects 
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of the vaginal reusable surgical pack are the result of a lesser quantity of disposable materials.  

While the cesarean section reusable surgical pack requires the same sterilization process, the 

larger quantity of materials in the cesarean section disposable custom pack minimizes the 

relative impacts of the reusable instruments in these categories.  

 

 

 

Figure 16: Cesarean Section (C/S) and Vaginal (Vag) Birth Disposable and Reusable Material 

Impacts 
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Significant variations in the assumed lifespan of the reusable surgical packs did not affect 

overall results.  A sensitivity analysis of the assumed 10 year lifespan reveals negligible variation 

in the relative environmental impacts of reusable stainless steel instruments.  Assuming a 

stainless steel instrument lifespan of 5 years resulted in an overall increase of 0.04% in the 

environmental impacts relative to the impacts of a 10 year lifespan.  An assumed lifespan of 15 

years resulted in a 0.1% relative decrease in environmental impacts of the stainless steel 

instruments. This further supports that the sterilization process, rather than the material 

production process, is a significant contributor to the environmental impacts associated with the 

reusable surgical packs.  

Of the disposable materials, cotton, LDPE (low density polyethylene), and PVC 

(polyvinyl chloride) were the most consequential materials in all of the impact categories as 

shown in Figure 17.  Specifically, blue OR towels represented 90% of the cotton, gowns and 

drapes represent 92% of the LDPE, and suction tubing represented 69% of the PVC. Minimizing 

blue towel use, or substituting a more sustainable material, such as dye-free 100% biodegradable 

cotton, would lessen the environmental impact of this material. Although the laundry process 

was not considered in this LCA, as blue towels are typically disposed of in waste, consideration 

should be given to washing and reusing blue towels given the high environmental burden of 

producing cotton.  The second major category for disposable materials was LDPE plastic, used in 

gowns and drapes. Reusable gowns and drapes would minimize use of this plastic, but further 

LCA analysis is needed to help quantify the degree to which this might be expected to lessen 

environmental impacts. 
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Figure 17: Environmental Impacts for the Production of Cesarean Section Disposable Materials   

 

 

Cost effective alternatives to PVC tubing are being used in Magee’s Neonatal Intensive 

Care Units (NICU’s) to avoid neonatal exposure.  These alternatives should be further researched 

and considered for use in the operating room as well. 

The results show that the cesarean section birth has a higher environmental footprint 

compared to a vaginal birth, which is an indication of procedure complexity. The increasing 

reliance on disposable materials for both procedures contributes to higher levels of hospital 

waste, which could be diverted through the use of reusable materials. Efforts to reduce reliance 

on disposable products have the potential to reduce waste and environmental cost. Developing 
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custom disposable packs that eliminate unused supplies, substitute equivalent materials with a 

lower environmental footprint, and are designed for efficiency is another important target area 

for environmental efforts.  

4.3.2 Waste and Disposal 

The total impacts from Figure 15 suggest that waste disposal, which includes transportation and 

the actual disposal process, contributes the highest percentage to the impact categories 

carcinogens, non-carcinogens, eutrophication, and ecotoxicity.  With the exception of 

ecotoxicity, these categories are made up of over 60% plastic disposal to landfill, with 

polyethylene (PE) representing at least half of that number (see Figure 18).   PE is a major 

component, by weight, of both disposable custom packs. The disposal of aluminum from 

cesarean section custom packs represents over 70% of the ecotoxicity category for cesarean 

section waste transportation and disposal.  The RMW waste at Magee is landfilled at the same 

site as the MSW waste; thus, this transportation related impact is combined in Figure 18.  

Transportation of waste does not contribute significantly to the four impact categories examined 

in Figure 18 as transportation usually results in CO2 emissions associated with global warming 

potential and other impact categories not examined.  
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Figure 18: End of Life Impacts for Cesarean Section (C/S) and Vaginal (Vag) Births 

 

 

There is no comprehensive US LCI database for waste disposal and for this reason 

ecoinvent 2.0 was used in this study (Moreno, Weidema et al. 2011).  Ecoinvent uses data from 

Switzerland and includes short-term emissions to air from incineration of landfill gas and 

leachate as well as treatment of leachate in wastewater treatment systems and municipal 

incineration of sludge.  It is not standard practice in the US to incinerate municipal solid waste 

sludge, so this category may overestimate US landfill emissions.  Additionally, ecoinvent 2.0 
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accounts for long-term emissions to groundwater after the base lining of the landfill fails, 

resulting in the allocation of a range of environmental impacts to a specific material type.  For 

example, leaching of heavy metals into groundwater is included in the impacts from cotton 

disposal when cotton itself contains no heavy metals.  Available literature may help create more 

accurate waste disposal models for the US (Barlaz 2006; Gentil, Damgaard et al. 2010). 

4.3.3 Machines, Lighting, and HVAC 

Because of the associated impacts with consuming fossil fuels, the machines, lighting, and 

HVAC loading contributed the highest percentage to global warming potential, acidification, and 

respiratory effects for both modes of delivery.  The HVAC system is in operation 24 hours a day, 

regardless of whether or not a birth is occurring and would, therefore, be expected to have an 

even higher relative impact when looking at the entire birthing unit over time. Optimizing the 

HVAC, instituting set back programs when the room is not in use and basing the number of 

required air turnovers on evidence in the infectious disease literature would be high yield areas 

for intervention, resulting in significant environmental and cost savings.  Similarly, 

implementing occupancy sensors and low energy lighting could reduce the amount of electricity 

consumed and associated impacts.   

In order to assess which components had the greatest effect on the HVAC bin model, 

individual variables were isolated and their values incrementally increased and decreased.  These 

values relative to the consumption of both gas and electricity (in kWh) are shown in Figure 19.  

When air changes per hour is increased 10%, for example, the overall energy consumption 

increases 12% (to 200,000 kWh) in the OR and nearly 12% (to 90,000 kWh) in the LDR. 
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Decreasing the value of some variables, such as equipment loading and number of people 

in the room, actually results in a minor increase in the HVAC system’s energy demand.  For 

example, when the electrical loading of the equipment within the LDR is decreased by 20%, 

there is only a 2% rise in the HVAC’s annual energy consumption.  Similarly, if the number of 

people in the OR decreases by 30%, there is only a 3% increase in the energy demand of the 

HVAC system.   

These results are due to the structure of the hospital HVAC system.   Air entering the OR 

needs to be heated (reheat), therefore, reducing the electrical loading of the machines means 

more reheat needs to be added to the incoming air, resulting in higher energy demands.  This 

model also shows that if that supply air temperature were increased 10% (from 11.1°C to 

12.2°C), the energy demand of the LDR would drop 19% (to 68,000 kWh per year).  A similar 

increase in the supply air temperature in the OR, however, would lead to only a 1.5% rise in 

annual HVAC energy demand since the ORs must run at a lower temperature according to 

regulated standards. 
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Figure 19: Effect of Input Variables on HVAC Annual Energy Consumption 

 

 

Figure 19 suggests that the variables having the most impact on the energy consumption 

are temperature set point, equipment loading, air changes per hour, and supply temperature.  

Since the temperature set point, air changes per hour, and supply temperature are regulated 

within a very narrow range, improvements to this system may require more efficient HVAC 

developments or changes to hospital regulations.   

4.4 SUMMARY AND CONCLUSIONS 

For all births, the processes contributing the most to environmental impacts were energy 

consumption due to HVAC, the end of life impacts of the disposable custom packs, and the 
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production of the disposable custom packs.  Therefore strategies should target these categories to 

reduce the overall the environmental impact of birthing options. 

The production of both the disposable custom pack and reusable surgical pack for the 

cesarean section resulted in higher environmental impacts than the disposable and reusable 

materials in the vaginal birth packs. Understanding the differences in environmental impacts 

between disposable and reusable materials is an important consideration when evaluating the 

assembly of the custom packs and the necessity of certain materials and products contained 

within them. Future studies of the products and material composition in the disposable packs will 

further assist in preferred purchasing and environmentally conscious hospital decision-making.  

For consistency in this research, standard LCI databases were used to represent waste 

impacts, but in future work, the LCI processes should be refined using cite specific data to more 

accurately portray end of life of medical materials.  In addition to waste audits, energy auditing 

of medical equipment may increase the accuracy of LCA results. 
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5.0  ENVIRONMENTAL IMPACTS OF ADVANCING SURGICAL TECHNOLOGIES: LIFE 

CYCLE ASSESSMENT OF HYSTERECTOMIES 

The research presented here addresses research Objective 3.  It seeks to answer the question 

‘What aspects of hospital operating procedures contribute the most to a procedure’s 

environmental impacts?’ 

5.1 INTRODUCTION 

The size and cost of healthcare is increasing, which increases the environmental and human 

health impacts of hospital care.  Expenses for all privately and publicly funded personal 

healthcare services and products in each state have been growing 4.4% to 7.3% per capita 

annually. In each state, spending ranges from $5,031 to $10,349 per person. Pennsylvania’s 

spending on healthcare is $7,730 per resident. Healthcare spending accounted for 17.9% of the 

US Gross Domestic Product (GDP) in 2011, and 36.3% of those national healthcare expenditures 

are for hospital care  (CMS 2011; Kaiser Family Foundation 2011).  In 2011, the healthcare 

sector employed nearly 12 million people, making up 6.4% to 11.7% of each state’s total 

workforce, with hospitals employing a third of the healthcare workforce (Kaiser Family 

Foundation 2011; BLS 2013).  Yet the size and spending on healthcare has done little to improve 

the health of the general US population relative to other wealthy countries (Berwick and 

101 



Hackbarth 2012). Growing concerns over obesity and related chronic diseases leave healthcare 

providers seeking new health delivery paradigms, such as the preventative care model, which 

involves environmental health or the healthy interaction of humans with their environment 

(Arnrich, Mayora et al. 2010; Fani Marvasti and Stafford 2012). 

As environmental sustainability becomes a greater priority for the American public, focus 

falls on the healthcare industry due to its relative size, costs, expected growth, and status within 

individual communities (Rich, Singleton et al. 2013).  Hospitals, in particular, as large generators 

of waste and other emissions, are called upon to be designed more sustainably and to improve 

the environmental sustainability of their processes and procedures (Ficca, Chyun et al. 2000; 

Phelps, Horman et al. 2006; Verderber, Fauerbach et al. 2008; Younger, Morrow-Almeida et al. 

2008; Stichler 2009).  Improved environmental performance within hospitals is estimated to 

reduce healthcare spending. A study commissioned by the Healthcare Research Collaborative 

estimates that implementing sustainable practices within all US hospitals could save over $5.4 

billion in the next 5 years (Kaplan, Sadler et al. 2012). Proper tools and research are needed to 

establish the healthcare industry’s baseline environmental performance at various levels and to 

measure the impact of sustainability improvement efforts. 

This study focuses on the environmental impacts related to a hospital Operating Room 

(OR), which is one of the most costly and waste-intensive areas of a hospital (Elixhauser A 

2010).  The materials, energy, and processes required to perform four types of hysterectomies 

were analyzed using a sustainability analysis tool called Life Cycle Assessment (LCA).  Using 

LCA to identify the elements of an OR surgery which contribute the most to a hospital’s life 

cycle environmental impacts, researchers and healthcare workers can target those elements to 

maximize environmental benefits. 
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5.1.1 Life Cycle Assessment  

Life Cycle Assessment (LCA) quantifies the environmental impacts of a product or process 

throughout its life cycle. LCA of an individual product identifies which life cycle stage (i.e.: 

resource acquisition, manufacturing, use and end of life) has the highest impact and makes 

recommendations for lowering such impacts. A comparative LCA compares two or more related 

products and makes a recommendation as to which one is environmentally preferable.  

Standards for performing a LCA are defined by the Environmental Protection Agency 

(EPA), Society for Environmental Toxicologists and Chemists (SETAC), the American National 

Standards Institute (ANSI), and the International Organization of Standardization (ISO) (Fava, 

Denison et al. 1991; Vigon, Tolle et al. 1992; UNEP/SETAC 2005; ISO 2006). According to 

ISO 14040 and 14044, there are four steps to conducting a process LCA (ISO 1997; ISO 2006).  

The first step is setting the study scope, boundaries, and functional unit.  The functional unit is 

often used to define the function of the product or process being analyzed in order to compare it 

to a functionally-equivalent product or process.  Each stage of a product’s or process’s life cycle 

is characterized by inflowing resources and energy, as well as outflowing products and by-

products.  These inflows and outflows are quantified in the Life Cycle Inventory (LCI) step of 

the LCA. Characterization factors are then applied to the LCI results during the Life Cycle 

Impact Assessment (LCIA) step in order to convert all material flows to a common unit so that 

they can be compared. Characterization factors are based on the varying environmental stresses 

caused by individual materials, emissions and energy flows. The result of the LCIA is a 

standardized list of environmental impacts in categories such as greenhouse gas emissions, 

acidification, human health and ecotoxicity. The final step in an LCA is to analyze and interpret 

the results. 
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Limitations of process LCA arise due to lack of data quality and accessibility, poorly 

defined system boundary definitions, and time constraints associated with data acquisition. Such 

limitations have led to criticism of the suitability of process LCA for analysis of complex 

systems (Wong 2004). Another limitation of process based LCA is the complication of including 

Scope 3 emissions, which are the emissions associated with a product downstream of production 

(i.e. use and disposal) (Ranganathan, Corbier et al. 2004; Huang, Weber et al. 2009). 

To make up for the shortcomings of process LCA, researchers developed Economic 

Input-Output LCA (EIO-LCA). EIO-LCA employs an economic input-output model, combined 

with environmental data, to give sector-specific energy and environmental impacts associated 

with the production of a product (Rosenblum, Horvath et al. 2000; Suh, Lenzen et al. 2004; 

Carnegie Mellon University Green Design Institute 2011). Limitations to EIO-LCA appear during 

detailed analysis as a result of the aggregation of economic sectors and uncertainty of data, and 

so it is better suited for high level analysis (Lenzen 2000; Bilec, Ries et al. 2006; Lenzen 2006; 

Bilec 2007). 

Hybrid-LCA is the combination of both process and EIO-LCA, each of which serves to 

make up for the other methods’ limitations (Suh, Lenzen et al. 2004; Bilec, Ries et al. 2006; 

Junnila 2006; Suh 2006).  This research benefits from the use of Hybrid-LCA through detailed 

product analysis via process LCA and comprehensive process analysis of complex materials by 

EIO-LCA. 

5.1.2 Medical Applications of LCA 

Life Cycle Assessments have been used to compare individual single-use and reusable products 

and materials in the healthcare industry (Dettenkofer, Grießhammer et al. 1999).  McGain, et al. 
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found that reusable plastic anesthetic drug trays cost less and emit less CO2 than single-use trays 

(McGain, McAlister et al. 2010). A study on reusable and disposable surgical scissors found that 

the reusable stainless steel scissors were the more “eco-efficient” choice (Ibbotson, Dettmer et al. 

2013).  Similarly, a comparative study of the life cycle inventory of reusable and disposable 

laparotomy pads found the disposable pads had a larger impact on the environment than reusable 

pads (Kümmerer, Dettenkofer et al. 1996).  A 2012 special issue of Anesthesia and Analgesia 

reported on a number of life cycle-based studies comparing the life cycle environmental impacts 

of reusable and single use laryngeal mask airways, perioperative textiles, and central venous 

catheter insertion kits (Eckelman, Mosher et al. 2012; McGain, McAlister et al. 2012; Overcash 

2012).  

Hospitals and healthcare systems have also adopted carbon and ecological footprinting 

tools as a means to analyze the life cycle carbon-use impacts of their operations and facilities 

(Karlsson and Öhman 2005).  A 2007 Economic Input-Output LCA of the entire US healthcare 

sector found that healthcare activities account for 8% of total US greenhouse gas emissions 

(Chung and Meltzer 2009). Power, et al. calculated the annual CO2 emissions of the US’s 

minimally invasive surgeries (MIS) to be 355,924 metric tons per year, which would rank MIS 

as 189th on the United Nations 2008 list of countries’ annual carbon dioxide emissions (Power, 

Silberstein et al. 2012; United Nations (UN) 2012). The use of anesthetics gases significantly 

contributes to the carbon footprint of surgical procedures as a whole.  The global warming 

potential of anesthetic gases used annually worldwide is equivalent to the CO2 emissions from 

one coal fired power plant (Sulbaek Andersen, Sander et al. 2010). Carbon footprints are useful 

for locating sources of potential global warming contributors within a system, but they do not 

account for other environmental impacts, such as effects to human health or ecotoxicity.   

105 



5.1.3 Case Study: Hysterectomies at Magee-Womens Hospital 

This research used a hybrid-LCA approach to quantify the environmental impacts of a vaginal, 

an abdominal, a laparoscopic, and a robotic hysterectomy in the operating rooms (OR) at Magee-

Womens Hospital (Magee) of the University of Pittsburgh Medical Center (UPMC).  US News 

and World Reports ranked Magee 5th in the nation for gynecology in 2012 and Practice 

Greenhealth presented Magee with the Environmental Leadership Circle Award in 2013 (US 

News and World Report 2012; Practice Greenhealth 2013). This case study incorporated 

Economic Input Output LCA (EIO-LCA) methods into the previous LCA framework developed 

for analysis of infant birthing procedures (Campion, Thiel et al. 2012).  This study additionally 

developed waste audit methodology and applied Monte Carlo uncertainty and variability 

assessments to help understand the relative environmental consequences of each component of a 

hysterectomy.   

Hysterectomies were chosen for multiple reasons.  As previously stated, the OR is one of 

the most costly and waste-intensive areas of a hospital (Elixhauser A 2010).  While OR waste 

generation rates vary drastically between individual hospitals, ORs account for between 20-73% 

by mass of hospital waste streams (Goldberg, Vekeman et al. 1996; U. S. Air Force Institute for 

Environment Safety and Occupational Health Risk Analysis 2001; Lee, Ellenbecker et al. 2002).  

Hysterectomies are also the second most common OR procedure for women, with more than 

600,000 performed annually in the US (of the nearly 51.4 million total annual inpatient surgeries 

in the US) (Reynolds and Advincula 2006; Wu, Wechter et al. 2007; Elixhauser A 2010; US 

CDC 2010).  Nearly a quarter of American women will undergo a hysterectomy by age 60 (Brill 

2006).   
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There are four general methods of conducting hysterectomies.  Abdominal 

hysterectomies, or the removal of the uterus through a large incision in the abdomen, remain the 

most common type of hysterectomy.  In 2000, 68% of all hysterectomies in the US were done 

abdominally (Whiteman, Hillis et al. 2008).  By 2010, that number fell to 47%, due to advancing 

technologies and newer, “minimally invasive” surgeries (MIS) (Wright, Ananth et al. 2013).  

Removal of the uterus through the vagina, or a vaginal hysterectomy, represented 21-32% of 

hysterectomies nationally in 2003 (Wu, Wechter et al. 2007).  In minimally invasive surgeries, 

such as laparoscopic and robotic techniques, surgical tools are inserted into the body through 

small incisions in the abdomen.   The primary difference between a laparoscopic and robotic 

surgery is that surgical tools in a robotic hysterectomy are controlled remotely by a physician.   

Laparoscopic hysterectomies represented nearly one-third of hysterectomies in the US in 

2010 (Wu, Wechter et al. 2007; U.S. DHHS and CDC 2012; Wright, Ananth et al. 2013).  

Following approval by the US Food and Drug Administration (FDA), rates of robotic 

hysterectomies rose from 0.5% of all US hysterectomies in 2007 to 9.5% in 2010, with hospitals 

who first adopted the new technology utilizing the robot in over 22% of their annual 

hysterectomy cases (Liu, Lu et al. 2012; Wright, Ananth et al. 2013).  

Following the technological trends of medicine, robotic and robot-assisted laparoscopic 

hysterectomies are becoming more common.  Robotic procedures can overcome some of the 

challenges of laparoscopic surgeries – such as a two dimensional working plane – while 

maintaining minimally-invasive status (Reynolds and Advincula 2006; Visco and Advincula 

2008; Göçmen, Şanlikan et al. 2012).  Despite these benefits, the trend towards ever-increasing 

technology in the operating room is being called into question (Breeden 2013).   
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Magee conducts hysterectomies using all four generic surgical methods, which allows 

this study to analyze the environmental impacts associated with most surgical procedures 

conducted in ORs in the United States today.  This study aims to create baseline measurements 

of environmental performance in the OR and to identify areas of common surgical procedures 

where environmental improvements might have large-spread effect. 

5.2 MATERIALS AND METHODS 

This section is divided into three subsections.  It begins by establishing the system boundaries for 

the hysterectomy LCA and then by describing the data collection methods including waste 

auditing and energy estimates.  The final subsection explains the LCI and LCIA steps utilized 

during the life cycle assessment and the Monte Carlo methods used to estimate the uncertainty 

and variability of the study data. 

5.2.1 System Boundaries  

This study can be thought of as four individual LCAs, one for each generic type of 

hysterectomy- vaginal, abdominal, laparoscopic, and robotic.  The functional unit of this study 

was one hysterectomy. The boundaries of the study focused on a single hysterectomy including 

components such as energy consumption, material production, material sterilization, and material 

disposal. Due to the scarcity of LCI data regarding cleaning chemicals and anesthetics, the use 

and manufacturing of these items were not included in this study.   
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Previous LCA studies debate the life cycle importance of a building’s construction phase 

(Hendrickson and Horvath 2000; Junnila and Horvath 2003; Bilec, Ries et al. 2010).  Because 

this study aims to understand the environmental impacts related to surgical procedures and the 

physical rooms in which they are conducted are nearly identical, the environmental impacts due 

to the hospital’s construction or building materials was not included in this study.  Due to limited 

information on the manufacturing of large machines and equipment within the OR, these impacts 

were also not included in the study as per previous study methodologies (Campion, Thiel et al. 

2012; Morris, Wright et al. 2013).   

Unlike previous medical LCAs, this study collected material data through waste auditing 

and additional boundaries were set around the analysis of collected hysterectomy waste.   The 

audits involved data collection from individual patients’ medical cases; therefore, the project 

team applied for and was granted Internal Review Board (IRB) approval under 45 CFR 

46.110.(4) and 45 CFR 46.110.(5 (IRB#: PRO11010250).  Potential study participants were 

limited to those over age 18, undergoing a hysterectomy for non-cancer reasons, and those not 

undergoing any other surgical procedures in addition to the hysterectomy.  The study team 

purposely limited exclusions. 

5.2.2 Data Collection Methods 

The following sections describe the methodologies utilized in collecting data from the four types 

of hysterectomies performed at Magee.  It is divided into waste auditing, reusable material and 

tool data collection, and power or electricity data collection.  Waste auditing enabled researchers 

to estimate the environmental impacts from the production and disposal of materials used during 

a single hysterectomy.  Energy auditing assessed the electricity use of the surgical machines and 
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lighting in the OR, and bin modeling, as described in the following section, estimated the energy 

consumption in an OR due to heating, ventilation, and air conditioning. 

5.2.2.1 Material Waste Auditing for Single-Use and Disposable Items 

In order to characterize the products and materials entering Magee’s municipal solid waste 

(MSW) and recycling streams, detailed waste audits were conducted.  Researchers collected and 

sorted the waste from 15 cases of vaginal, abdominal, and robotic hysterectomies and 16 cases of 

laparoscopic hysterectomies (61 total audits).  An additional 9 cases were collected but were 

withdrawn from the study prior to sorting due to changes in surgery type during the procedure or 

the presence of cancer found during post-surgery pathology reports. The following methodology 

was used in obtaining and sorting the MSW and recycling from each hysterectomy case. 

Using the Preparatory to Research Waiver through the IRB, the project’s Research 

Coordinator reviewed the surgical schedules on a weekly basis to identify eligible subjects, who 

were approached on the day of surgery and asked to participate in the study. The Research 

Coordinator explained the study protocol, discussed the risks and benefits of the study, and 

answered any questions.  If the patient agreed to participate in the study, she signed the Informed 

Consent Form.  The Study Coordinator also signed the ICF and gave the patient a copy.  A copy 

of the ICF was sent to Medical Records for incorporation into the subject's medical record, and 

the informed consent process was documented in the patient’s surgical chart.  

Once a patient consented to participating in the study, researchers conducted a visual 

sweep of the OR prior to the surgery to ensure all previously generated waste was eliminated.  

Immediately following the surgery, the MSW and recycling was collected, labeled with the case 

identification number, and moved to a secure storage location for sorting.  The researcher also 

verbally collected data from the OR nurses including number of employees in the OR during the 

110 



procedure, number of linens used, and the number and types of reusable surgical instrument trays 

used.  Following the procedure, information about the patient, such as Body Mass Index (BMI), 

surgical complications, and uterine weight was recorded.  Uterine weight was used to calculate 

environmental impacts of the chemo and pathogenic waste stream, or the transportation and 

incineration of the uterus. 

Once or twice weekly, a team of trained researchers would physically sort the collected 

waste from the individual patient cases.  Researchers participating in the sorting completed 

University of Pittsburgh’s Environmental Health and Safety Bloodborne Pathogen Training 

module.  All sorters were required to wear personal protective equipment (PPE) in addition to 

long-sleeve outfit, closed-toed shoes, and hair tie-backs.  PPE included face masks with splash 

shield, surgical gowns, surgical gloves, and shoe covers, as shown in Figure 20.  

 

 

 

Figure 20: Researchers conduct waste audit of municipal solid waste and recycling from a single 

hysterectomy 
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Before sorting commenced, the total MSW and recycling were weighed on an industrial 

floor scale.  This total weight includes any fluids produced/acquired during surgery.  All 

subsequent weights of individual materials within each waste stream were taken on a digital 

scale with 30lb capacity and 0.1 ounce accuracy.  The recycling was divided and weighed in the 

following categories: Plastic #5, Plastic #1, Plastic #6, and inappropriate materials or materials 

which are not actually recyclable but were found in the recycling stream.  The MSW was divided 

and weighed according to the following method, which can also be seen in graphical format in 

Appendix B.1 Waste Audit Procedures. 

Researchers spread a protective cloth on the floor of the waste storage area, removed 

items from a single case’s MSW, and separated the items according to material type.  MSW 

items that were wet or contained fluids were set aside and counted.  Locum material weights 

were taken of dry items and subsequently attributed to each case.  This was done to ensure an 

accurate estimate of the material production impacts during the Life Cycle Assessment.  MSW 

materials which were composed of multiple materials, such as grounding pads, cautery pens, and 

insuflators, were also counted.  Sample “mixed material” items were later dismantled in a 

controlled laboratory setting and  the component materials were weighed to estimate the impacts 

associated with each case as seen in Figure 21.  MSW which was not wet or of mixed material 

production were sorted into the following material categories: gowns and drapes (SMS PP, 

Spunbound-Meltblown-Spunbound Polypropylene), cotton, blue wrap, gloves (sorted by color), 

rubber, hard plastic (generally #5), soft or thin-film plastic, Styrofoam, polyurethane foam or 

foam rubber, cardboard and paperboard, glass, paper, aluminum, metal (stainless steel), syringes, 

and wood.  Any MSW that was too soiled to be safely removed from the collection bags were 
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labeled as “leftovers,” photographed, and weighed as a whole.  Leftovers represent less than 2% 

of the average total weight of all cases.  Waste auditors also noted those cases whose waste 

contained batteries or metal utensils which should typically be disposed of in other waste streams 

or reused. 

 

 

 

Figure 21: Mixed Material products were disassembled and measured in a controlled laboratory 

setting 

 

 

In order to estimate the impacts associated with the “sharps” waste stream, “peel packs” 

were sorted out of the MSW.  These are paper labels affixed to the packaging of electrical tools 

which are used to cut into the patient.  The paper labels are thrown into the MSW stream while 

the electrical tools themselves are sent into the non-needles sharps waste stream.  While the 

research team was unable to safely assess the sharps stream, counting the number of tools used 
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through representative peel packs gives an accurate estimate of the amount of waste being 

directed to this stream. As with mixed materials in the MSW stream, locum sharps tools were 

disassembled in a laboratory setting and weighed according to material type, though it was 

ultimately decided to base this portion of the LCA off of cost data due to the complexity of the 

tools.  Cost data for these laparoscopic and robotic tools was obtained through Magee’s 

purchasing department and the EIO-LCA methods are described below in Section 5.2.3.1 Life 

Cycle Inventory and Impact Assessment. 

5.2.2.2 Reusable Materials and Instruments 

Reusable materials include hospital linens and surgical steel instrument trays.  Hospital linens 

were cotton-based products such as the patient gown, OR sheet, blanket, pillowcase, and under-

patient chuck.  Blue towels were found in both the MSW, where they were appropriately 

incorporated into the material waste audits, and in the reusable hospital linens.  The number of 

linen products used during each patient case was collected from the nursing staff during the 

material waste audits and the weight of a representative linen item was used to calculate the 

weight of reusable cotton products used on average per hysterectomy type.  The lifespan of 

individual cotton products was estimated by Magee staff and is listed in Table 11.  Variability in 

individual linen lifespans was incorporated into the Monte Carlo Assessment. 
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Table 11: Estimated weight and lifespan of reusable surgical linens 

Linen/Cotton 
Product 

Representative 
weight (kg) 

Estimated 
Lifespan 
(Uses) 

Patient Gown 0.344 48 
Sheet 0.292 50 
Blanket 0.698 52 
Pillowcase 0.098 32 
Under-Patient Chuck 0.51 42 
Blue Towel 0.054 10 

 

 

The name and number of stainless steel surgical instrument trays used in each patient 

case was recorded during the material waste auditing as seen in Table 12.  A representative tray 

was weighed to estimate the weight and all materials inside were assumed to be stainless steel.  

The lifespan of surgical instruments was difficult to quantify as each kit contains a wide range of 

instruments and the individual lifespan of those instruments varies based on its handling and 

care, its design, its ability to be re-sharpened, and its condition.  The lifespan of each kit was 

therefore estimated at 300 uses based on a 2012 study and variability of this estimate was 

incorporated into the Monte Carlo Assessment (McGain, McAlister et al. 2012).  We did not 

incorporate impacts due to repairs such as sharpening of stainless steel surgical instruments. 
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Table 12: Reusable Stainless Steel Surgical Instrument Weight and Quantity per Hysterectomy 

Stainless Steel Surgical 
Instrument Tray Name 

Weight 
(kg) 

Abdominal 
(# trays / 14 
cases) 

Vaginal 
(# trays / 
16 cases) 

Laparoscopic 
(# trays / 13 
cases) 

Robotic (# 
trays / 16 
cases) 

Cysto Pan Tray 2.032 2 4 0 5 
Vaginal Hyst Tray 10.6 0 16 2 0 
Book Walter 1 10.7 1 0 0 0 
Book Walter Table Post 
Set 

10.7 1 0 0 0 

Laparomtoy Tray 11.1 15 0 0 0 
Laparomtoy Mayo 
String 

5.0 9 0 0 0 

Mini-Laparotomy Tray 9.71 1 0 0 0 
Oncology Tray 3.0 5 0 0 0 
0 Degree Cysto Scope 0.492 3 0 0 0 
Hd Camera 2.132 3 2 10 5 
Advanced Laparoscopy 5.7 0 0 13 5 
Olympus Operative 
Laparoscopy 

4.732 0 0 13 1 

D&C Pan 10.1 0 1 13 2 
Morcellator Knife 2.432 0 0 3 0 
Karl-Strotz Morcillator 4.132 0 0 4 0 
Cysto Pan Tray 2.032 0 0 3 4 
Pellosi Uterine 
Manipulator 

2.5 0 0 9 0 

Bariatric High Def 
Scope 

2.432 0 0 5 0 

0-Degree Bariatric 
Scope 

2.253 0 0 11 0 

Abdominal Sacropexy 8.232 0 0 1 0 
0-Degree Gyne Scope 2.432 0 0 1 4 
Davinci Scope 2.432 0 0 0 16 
Davinci General Top 8.7 0 0 0 15 
Davinci General Bottom 8.7 0 0 0 16 
Rigid Davinci Tray 8.2 0 0 0 3 
Average number of trays per case 3 2 7 5 
Ave. weight per case allocated over 
300 uses 

0.064 0.040 0.105 0.088 
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5.2.2.3 Power and Energy Data from OR Equipment 

In order to accurately estimate the electrical consumption of an OR during surgery, an 

assessment of the machines and lighting was conducted in a single OR at Magee.  A table 

showing the OR machine inventory and estimated wattage of all machines can be found in Table 

18 of Appendix B.2 Data Collection and Analysis Tables.  Initially, all machines and light bulbs 

were inventoried and the power ratings from the back of each machine were recorded.  From 

this, a maximum energy load was estimated.   

Due to IRB and hospital-based restrictions on placing electrical monitoring devices on 

medical equipment during surgery, the research team used watt meters to measure the equipment 

in an unused OR at Magee.  This assessment resulted in a 66% reduction of estimated electricity 

consumption compared to the use of power ratings on the backs of the machines.  

In order to further fine-tune the assessment, the team identified machines that run 

intermittently throughout a surgery.  For example, equipment such as the Valleylab Force FXc 

electrical grounding machine and the Ethicon / Gynecare morcellator constantly draw a low 

voltage throughout the procedure but are only used during a portion of the surgery, at which time 

they draw a significantly higher voltage.  The electrical draw of these intermittent-use machines 

was measured using watt meters and a mock surgery during which the tools were tested on raw 

meat as shown in Figure 22.  This test showed that the Valleylab Force Fxc electrical grounding 

machine draws about 15W in its idle state but while in use can draw as much as 131W.  For 

these machines, the team also monitored two locum surgeries per hysterectomy type to estimate 

the percentage of time they are used over the course of the entire procedure.  The results of this 

secondary survey show that these machines draw a higher voltage for only about 5% of the total 

surgery duration, as shown in Table 21 of Appendix B.2 Data Collection and Analysis Tables.   
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Figure 22: Reading power draw of variable-electricity surgical equipment 

 

 

The energy consumption due to Heating, Ventilation, and Air Conditioning was 

estimated using a bin type model which assumed steady-state and calculated heating, cooling, 

and dehumidification load in the OR.  This model is recommended to calculate system loads and 

sizing and has been used in previous studies (American Society of Heating 2009; Campion, Thiel 

et al. 2012).  Inputs to the model include measured electricity consumption data, average OR 

occupancy per hysterectomy collected during waste auditing, and boiler and chiller efficiencies 

as reported by Magee facilities personnel. 
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5.2.3 Data Assessment Methods 

The following subsections describe the Life Cycle Assessment for environmental impacts of 

hysterectomies and Monte Carlo Assessment methods for variability and uncertainty employed 

in this study. 

5.2.3.1 Life Cycle Inventory and Impact Assessment 

The LCI stage of life cycle assessment compiles the inputs and outputs at all life cycle stages of a 

product or process.  Published databases contain the unit processes which correspond to a 

specific product or process and its associated inputs and outputs. Database selection is important 

to accurately reflect the environmental impacts of the system.  Data collected via the methods 

described above were translated into appropriate LCI unit processes for both production and 

disposal of the materials, as shown in Table 19 and Table 20 of B.2 Data Collection and Analysis 

Tables.  

 For this study, researchers gave preference first to US based databases, i.e. USLCI 

(NREL 2010); the most robust database (ecoinvent) was considered second (Frischknecht, 

Jungbluth et al. 2005); and finally, a different database was selected if unit processes were not 

available in either USLCI or ecoinvent.  All database selections were determined by comparing 

the physical description and application of the material to the unit process description. Impacts 

due to the transportation of material wastes were calculated using distances from the hospital 

facility to the landfill and recycling facilities based on waste hauling quantity data provided by 

Magee’s facility management.  All transportation impacts were calculated using ecoinvent 

processes. 
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The selection of environmental impact database processes for reusable materials was 

identical to that of single-use or disposable materials.  Allocation of impacts due to production 

and disposal of reusable materials was allocated based on the estimated lifespan of the materials, 

as listed in Table 11 for linens and Table 12 for stainless steel.  Limited information was 

available on the environmental impacts of the sterilization process and associated products for 

reusable materials.  In the case of linen sterilization, a quantity of 27.4 g of detergent per kg of 

cotton laundered and 0.2 kWh of electricity per kg of cotton laundered was assumed based on 

previous literature, specifically a 1999 study based in Germany (Barrie 1994; Dettenkofer, 

Grießhammer et al. 1999; Bajpai and Tyagi 2007). Though a US-based literature of domestic 

laundry estimates the electrical consumption per kilogram of cotton at 0.87 kWh, lower estimates 

are expected for industrial laundry facilities (Blackburn and Payne 2004).  The sterilization of 

surgical trays was based off of an energy consumption estimate (2.57 kWh per stainless steel 

surgical instrument tray) of the sterilizing and autoclaving machines at Magee (Campion, Thiel 

et al. 2012).  No estimate was available for the types or numbers of chemicals or solvents used to 

sterilize the stainless steel surgical instruments.  

Certain processes were modified based on literature to more accurately reflect the product 

or process being represented.  The USLCI electricity process was modified to match the energy 

mix of Pennsylvania (EPA 2007).  Disposable gowns, drapes, and bluewrap from the OR are a 

type of polypropylene fabric also known as spunbond-meltblown-spunbond or SMS.  SMS 

polypropylene accounted for an average of 23% of the MSW by weight for all hysterectomy 

types as shown in Section 5.3.2 Material Composition of Hysterectomy Cases.  Standard LCI 

databases model the impacts of polypropylene up to its pellet form. In order to account for the 

impacts due to the manufacture of the textile beyond pelletization of the plastic, the dissertation 
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work of Celia M. Ponder was used to modify the existing PP process within the USLCI database 

(Ponder 2009).   

Hybrid LCA Setup 

Certain medical equipment used in laparoscopic and robotic hysterectomies was too 

complex to be broken down accurately into representative components.  To account for the 

impacts due to the manufacture of these “sharps” items, this study utilized Economic Input-

Output LCA (EIO-LCA) (Carnegie Mellon University Green Design Institute 2013).  This 

combination of process LCA and EIO-LCA is called Hybrid LCA and is used to address issues 

that may be encountered using each method alone as mentioned in previous sections (Lenzen 

2002; Bilec, Ries et al. 2006).   

The monetary values were evaluated using the purchaser price model in EIO-LCA, as the 

prices were reflective of what the hospital paid, and not the cost to the manufacturer.  The value 

was assessed using the corresponding sectors designated by the North American Industry 

Classification System (NAICS).  The NAICS classification system is the method for classifying 

businesses in order to collect and assess data related to the US economy and its performance.   

For the production of complex medical devices, NAICS sector 339112 Surgical and Medical 

Instrument Manufacturing was selected.    

The price paid per unit for each piece of medical equipment was collected from Magee 

purchasing staff and matched to the number of medical equipment used in each hysterectomy 

based off of collected peel pack data as seen in Figure 46, Figure 47, Table 23, and Table 24 of 

Appendix B.2 Data Collection and Analysis Tables.  In this manner, a range of disposable 

medical equipment costs was estimated and incorporated into the Monte Carlo Assessment as 

described below. The monetary values were converted from 2012 US dollars to 2002 dollars, the 
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basis for the most recent EIO-LCA model, using a percent change of 94.9% for medical 

instrument manufacturing according to Producer Price Index Industry (PPI) Data from the 

Bureau of Labor Statistics (BLS 2013).  While this monetary conversion is necessary to ensure 

accuracy, it does not completely exclude EIO-LCA’s reliance on historical values where process 

demands and environmental impacts can change significantly.   

The disposal of these devices in Magee’s sharps waste stream was also evaluated with 

EIO-LCA through NAICS sector 562000: Waste Management and Remediation Services, which 

includes the processing of sharps-designated medical equipment.   Magee staff reported the cost 

of this disposal at $0.21/lb in 2012 US dollars, or $0.38/kg in 2002 US dollars, again using PPI 

data (BLS 2013).  The average quantity of non-needle sharps waste generated was estimated 

using the peel pack data and estimated weights in kg of each peel pack item. The impacts from 

disposal of these sharps were calculated by multiplying the estimated weight of sharps waste in 

each case by the EIO-LCA impacts from $0.38 in the NAICS sector 562000. 

The EIO-LCA data in these two sectors was analyzed using TRACI 2.1 version 4.00 

(Tool for the Reduction and Assessment of Chemical and Other Environmental Impacts) and the 

Energy analysis function found on the EIO-LCA online tool (US EPA 2012; Carnegie Mellon 

University Green Design Institute 2013).  Unit conversion was necessary to match the impact 

categories Acidification, Carcinogenics, NonCarcinogenics, and EcoToxicity with the process 

LCA results as seen in Table 13.  A characterization factor of 50.79 kg SO2 eq / H+ mole was 

used for acidification potential conversion.  EIO-LCA reports human health toxicity impacts 

(cancer and non-cancer) in benzene and toluene equivalent emissions to air.  For this reason, 

TRACI characterization factors of 2.97e-7 CTUh / kg benzene to air and 5.3e-8 CTUh / kg 

toluene to air were chosen, where CTUh stands for Cumulative Toxicity Unit for humans.  EIO-
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LCA reports ecotoxicity as kg 2,4D to continental freshwater, and a characterization factor of 

8.60e2 CTUe / kg 2,4D was used, where CTUe stands for Cumulative Toxicity Unit for the 

environment.  For the EIO-LCA portion of this study, the effects of chemicals’ fate to soil and 

water were not considered in the categories related to human toxicity, nor were chemicals’ fate to 

air and soil for ecotoxicity. 

 

 

Table 13: Impact Category Characterization and Conversion for EIO-LCA and Process LCA 

Impact Category EIO-LCA 
Units 

Process LCA 
Units 

(TRACI) 

EIO-LCA 
Impacts 

per 
$1US2002 
Purchaser 

CF 
(TRACI) 

EIO-LCA 
Impacts per 
$1US2002 
Purchaser 

(Converted) 
Ozone depletion kg CFC-11e   kg CFC-11 eq 0.000002 1 0.000002 
Global warming kg CO2e   kg CO2 eq 0.403317 1 0.403317 
Smog kg O3e   kg O3 eq 0.000002 1 0.000002 
Acidification kg SO2e   mol H+ eq 0.002117 50.79 0.10752243 
Eutrophication kg Ne   kg N eq 0.000068 1 0.000068 
Carcinogenics kg benzene eq   CTUh 0.000037 2.97E-07 1.0989E-11 
Non carcinogenics kg toluene eq   CTUh 0.023076 5.3E-08 1.22303E-09 
Respiratory effects kg PM10e   kg PM10 eq 0.000698 1 0.000698 
Ecotoxicity kg 2,4D   CTUe 0.000018 860 0.01548 
Energy MJ MJ 5.87 1 5.87 

 

 

 

Environmental impacts from the inputs and outputs of the four types of hysterectomy 

were calculated using TRACI 2.1 version 4.00 for both process- and EIO-LCA (Bare, Norris et 

al. 2003).  Embodied energy or a summation of all energy used during the material’s life cycle, 

was calculated using Cumulative Energy Demand (CED) version 1.08 developed by ecoinvent 
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version 2.0 and PRé Consultants (Frischknecht R. 2003; Frischknecht, Jungbluth et al. 2007). 

Impact categories analyzed and reported include global warming potential (or, more 

appropriately, greenhouse gas emissions), acidification, carcinogenics, non-carcinogenics, 

respiratory effects, eutrophication, ozone depletion, ecotoxicity, smog, and CED. 

5.2.3.2 Monte Carlo Assessment of Variability and Uncertainty 

Researchers utilized Monte Carlo Assessment (MCA), or random number sampling, to account 

for the uncertainty inherent in life cycle inventory data and the variability of material and energy 

consumption for each type of hysterectomy.  The use of MCA allows this study to more 

accurately depict the range of potential environmental impacts which can result from a typical 

hysterectomy.  A graphical flowchart of the MCA process specific to this project can be found in 

Figure 48 of Appendix B.2 Data Collection and Analysis Tables. 

The material data collected from each hysterectomy allowed researchers to statistically 

estimate probability distributions for the prevalence of this material in an average surgery using 

the Anderson Darling Test in an Individual Distribution Identification tool.   Distributions of 

materials in each type of hysterectomy were normal, lognormal, most extreme value as seen in 

Figure 23.   Where Anderson Darling tests showed distributions were not normal, lognormal, or 

most extreme value, a designation of “no distribution” was given and as shown in Figure 44, 

Figure 45, and Table 22 of Appendix B.2, and an average value was used in the MCA.  Some 

materials, such as green gloves and Styrofoam, did not have a defined distribution based on the 

data collected.  These were not assigned a distribution and their average was used instead.  

Because electricity data was collected as an average and not on a per-case basis, the variability in 

electrical and energy consumption in the MCA was based off of the duration of surgery.  During 
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the waste audits, patient and surgery information, including the duration of each surgery in 

minutes, was recorded and the distributions were determined based off of this collected data.  

 

 

 

Figure 23: Estimated Material Distributions by Weight for Quantity of Disposable Gowns and 

Purple Gloves Used during Laparoscopic Hysterectomies 

 

 

Limits were set on the random values chosen for certain material distributions.  For 

example, no zero or negative numbers were allowed in the random sampling of any materials.  

An additional lower limit of 50 minutes was placed on the duration of surgery, a lower limit of 

50 on the number of reuses of stainless steel, and a lower limit of 5 was placed on the number of 

reuses of linens, as shown in Appendix B.3 Monte Carlo Scripts for .   
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Figure 24: Results of Monte Carlo Assessment (500 trials) of Respiratory Impacts of Cotton 

Production Process (ecoinvent) in SimaPro 7.3.3 PhD 

 

 

To account for their uncertainty, individual MCAs of all ecoinvent LCI database 

processes used in this study were conducted in SimaPro 7.3.3 PhD (PRé Consultants 2011) and 

were assumed to be lognormal for all impact categories based on the shape of the distribution, as 

seen in Figure 24.  The mean and standard deviation of each LCI process was then converted 

using Equation 4 and Equation 5 to location and shape parameters for lognormal distributions for 

use in the overall MCA.  Where an impact per unit material had a mean value of less than one (or 

a lognormal location parameter of less than zero), the MCA failed to produce an identical mean 

through random number sampling based on the location and shape parameters.  To avoid this 

statistical issue, all the units for each impact category were converted from kilograms into grams, 

milligrams, or nanograms prior to running the MCA.  After the MCA was completed, the units 

were converted back into their original form.   
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 Equation 4:  Location parameter for lognormal 

distribution based on mean, m, and variance, v. 

   

𝝈 = �𝐥𝐧(
𝒗
𝒎𝟐 + 𝟏) 

 

 Equation 5: Shape parameter for lognormal 

distribution based on mean, m, and variance, v. 

   

Only the ecoinvent LCI database contains uncertainty data, and therefore, this was the 

only database for which impact distributions were obtained.  The remaining database impacts 

were incorporated into the MCA as averages.  Uncertainty data is not yet incorporated into the 

EIO-LCA method.  Therefore, these LCI data were entered into the MCA as averages and not as 

distributions.  Variability in cost data was estimated for laparoscopic and robotic hysterectomies 

and was incorporated into the MCA as a triangular distribution, as seen in Table 22 of Appendix 

B.2 Data Collection and Analysis Tables. 

This MCA randomly sampled numbers from the probability distributions of materials and 

their impacts, resulting in an overall distribution of the impacts of a hysterectomy.  The resulting 

distribution was calculated from 100,000 random samplings (shown as the variable “trials” in 

B.3 Monte Carlo Scripts for ).  The 5th, 50th, and 95th percentiles as well as the means and 

standard deviation for all impact categories were reported for each hysterectomy as a whole and 

for individual components of each hysterectomy- reusable items, production of disposable items, 

disposal of disposable items, chemo/pathogenic waste, and energy.  The impacts due to 

recycling, because they were negative, were not included within the MCA, but were incorporated 

as averages in post-MCA results and error bars.  When using the median value rather than the 

mean of the resulting distribution, the effects of very high-impact trials are eliminated, which 

skews results upwards.  This does, however, minimize the effects of worst-case scenarios. 
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5.3 RESULTS AND DISCUSSION 

Section 5.3 discusses the results of the study, beginning with a general overview of the types of 

cases from which data were collected.  The material composition from the waste audit precedes 

the subsection related to environmental impacts associated with those materials.  Results from 

the MCA and discussion follow this.  Section 5.3 concludes with a subsection of suggested 

environmental improvements for OR surgeries and a subsection of study limitations and future 

research opportunities.  

5.3.1 Overview of Hysterectomy Cases 

A minimum of 15 cases per hysterectomy type was used to assess waste generation.  Cases were 

withdrawn from the study when additional surgical procedures were performed on the patient 

during the hysterectomy, when the type of hysterectomy was converted during the procedure, or 

when the surgery was conducted too late in the evening for collection of the surgical waste.  

Medical complications which did not result in additional procedures or conversion of the type of 

hysterectomy were included in the study as these accurately reflect standard waste generation 

from surgical procedures in hospitals. 

To see which factors might affect waste generation, a variety of patient data was 

collected following their procedure according to IRB protocol.  The data, shown in Table 14, was 

compared with the waste generated by weight.  Larger uterine weights are clearly correlated with 

abdominal hysterectomies, which in turn is associated with larger impacts due to the disposal of 

the uterus.  However, no other clear trends emerged between waste generation and surgical 

duration, patient BMI, or blood loss. The effects of surgical complications and physician or 
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surgical staff were not able to be accurately analyzed due to the small sample size.  In general, 

the more electronic or technological equipment used in a case (ie. robotic hysterectomy), the 

larger the quantity of MSW generated.  A specific breakdown of waste generation can be found 

in Section 5.3.2 Material Composition of Hysterectomy Cases. 

 

 

Table 14: Statistics on Hysterectomy Cases Collected During Study; Average (Minimum, Maximum) 

 Abdominal Vaginal Laparoscopic Robotic 
Total Number of Cases 17 19 19 15 
Withdrawn Cases 2 4 3 0 
Cases Included in Study 15 15 16 15 
Surgery Duration, min 141 (67, 229) 115 (50, 242) 150 (60, 245) 104 (51, 167) 
Estimated Bloodloss, ml 384 (50, 1500) 242 (25, 

1100) 
162 (20, 1000) 50 (20, 150) 

Patient BMI 30 (23, 36) 29 (18, 37) 30 (21, 38) 32 (18, 43) 
Uterine Weight, g 555 (60, 2729) 168 (36, 570) 290 (86, 1064) 173 (40, 448) 
Cases with Complications, 
not withdrawn from study 

1 2 1 0 

Weight of MSW, kg 9.2 (5.9, 13.9) 8.5 (5.9, 
11.3) 

10.6 (6.6, 13.6) 13.7 (9.3, 
16.8) 

Weight of Recycling, kg 0.8 (0, 2.1) 0.4 (0, 1.2) 0.9 (0, 1.8) 0.7 (0.4, 2.0) 
Cases with Unused 
Materials 

10 6 14 9 

Cases with Batteries in 
MSW 

2 0 12 11 

 

 

5.3.2 Material Composition of Hysterectomy Cases 

Waste auditing of Magee’s abdominal, vaginal, laparoscopic, and robotic hysterectomies 

determined the average material composition of MSW and Recycling of a hysterectomy.  
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Robotic hysterectomies produced the largest quantity of waste with an average of 13.7 kg of 

MSW per case, as seen in Figure 25.  Of that quantity, 22% was gowns and other SMS PP 

material, 50% were gloves and other plastics, 18% was paper and 5% was cotton.  Abdominal 

hysterectomies, the most common form of hysterectomy in the US, had an average total MSW 

production of 9.2 kg.  Abdominal procedures produced the largest amount of cotton waste at 1 kg 

per average surgery or 11% of the waste material composition.  Cotton, composed primarily of 

blue towels and gauze, is associated with larger environmental impacts during the production 

phase of the life cycle, relative to the production of other materials.  Disposal of cotton ranged 

between 5 and 11% by weight depending on the hysterectomy type.  This variability between 

hysterectomy types, while relatively small, resulted in a disproportionately large range of 

environmental impacts, which will be discussed in the following sections.   

Across all four surgeries, SMS PP material - or gowns, bluewrap, and drapes - composed 

22-35% of total waste material by weight.   Gloves were about 4-5% by weight of each surgery’s 

waste stream, and other types of plastics – from thin film wrappers to hard plastic trays – made 

up 36-46% by weight of the MSW in an average hysterectomy.  Paper from package labeling and 

cardboard varied from 5 to 18% of the MSW depending on the type of procedure. 
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Figure 25: Average Material Composition Municipal Solid Waste from a Single Hysterectomy by 

Surgery Type 

 

 

Recycling was variable for each case, as seen in Figure 26.  As an average per 

hysterectomy type, recycling rates ranged from 0.4 kg for vaginal hysterectomies (4% of total 

material disposal by weight) to 0.9 kg for laparoscopic hysterectomies (8% of total material 

disposal by weight).  Researchers discovered non-recyclable materials in the recycling waste in 1 

out of 15 cases for vaginal and abdominal procedures, in 3 out of 16 cases for laparoscopic 

procedures, and in 6 out of 15 cases for robotic procedures. 
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Figure 26: Average Recycling Composition from a Single Hysterectomy by Surgery Type 

 

 

5.3.3 Environmental Impacts of Hysterectomies 

Impacts due to the production of disposable materials made up a large portion of the 

environmental impacts in every surgery type.  The production of disposable materials is 

associated with at least 40% of the environmental impacts in every category analyzed of all four 

hysterectomy procedures. Approximately 80% of ecotoxicity impacts, carcinogenic effects, and 

ozone depletion potential (ODP) are attributed to the production of disposable items as seen in 

Figure 27. For laparoscopic and robotic hysterectomies, the impacts associated with surgical 

instruments, which were analyzed using EIO-LCA, dominate in the categories of ODP, 

greenhouse gas emissions (GHG), acidification potential, respiratory impacts, and cumulative 

energy demand (CED).  
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Impacts due to disposal of single-use or disposable materials and tools make up over 40% 

of the eutrophication potential and nearly 10% of human health non-carcinogenic toxicity 

impacts in all hysterectomies.  In an average hysterectomy, the impacts due to the sterilization 

and allocated production and disposal of reusable materials accounts for nearly 10% of each 

impact category.  For greenhouse gas emissions, which contribute to global climate change, that 

number can be as high as 23% due to the burning of fossil fuels used in equipment sterilization 

and manufacture of reusable instruments.   

Impacts due to energy consumption of an average hysterectomy vary between impact 

categories and hysterectomy types.  For example, 40% of greenhouse gas emissions for 

abdominal and vaginal hysterectomies are the result of energy consumption during surgery, but 

energy used in robotic and laparoscopic hysterectomies result in only about 10% of the 

greenhouse gas emissions due to the relatively large impact of surgical instruments.  Generally, 

energy consumption is more significant in the categories of greenhouse gas emissions, 

acidification potential, respiratory impacts, smog formation, and cumulative energy demand.  

These categories are largely influenced by emissions resulting from the burning of fossil fuels. 

Without accounting for case-by-case variability and impact uncertainty, robotic 

hysterectomies have the largest relative environmental impact in every impact category, as seen 

in Figure 28.  However, the range of potential impacts due to robotic hysterectomies often 

overlaps with that of laparoscopic hysterectomies.  On average, vaginal hysterectomies have the 

lowest environmental impact, but the range often overlaps with that of abdominal 

hysterectomies.  The differentiation between hysterectomy types is not as clear for the following 

impact categories: smog, ecotoxicity, human health carcinogenics, human health non-
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carcinogenics, and eutrophication.  In these categories, a “good” robotic case can overlap with 

the environmental impacts of a “bad” vaginal case, as can be seen in the error bars of Figure 28. 
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Figure 27: Total Life Cycle Environmental Impacts of an Average Hysterectomy by Surgery Type (normalized to 100% of each hysterectomy 

in each impact category)  
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Figure 28: Total Life Cycle Environmental Impacts of an Average Hysterectomy by Surgery Type (normalized to highest hysterectomy type in 

impact category); negative values reflect positive environmental impacts due to recycling 
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5.3.3.1 Impacts due to the Production of Disposable Materials 

Analyzing only the impacts due to the production of disposable materials reveals that the cotton 

materials for vaginal and abdominal hysterectomies account for 55-90% of all impact categories 

except CED, for which cotton production makes up about 25% as seen in Figure 29.  Production 

of SMS PP, the material used for gowns, drapes, and bluewrap, makes up nearly 40% of an 

abdominal hysterectomy’s embodied energy and accounts for 1-20% of all other impact 

categories.  Vaginal hysterectomies follow a similar trend, but with 20% less cotton by weight 

and roughly 3 times the quantity of paper.  The impacts associated with the production of paper 

products makes up nearly 10% of every impact category for vaginal hysterectomies. 

 

 

 

Figure 29: Average Environmental Impacts from the Production of Disposable Materials and Single-

Use Tools from a Single Hysterectomy by Surgery Type (Normalized to 100%) 
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Impacts due to the production of complex surgical instruments dominates certain impact 

categories for laparoscopic and robotic hysterectomies, accounting for over 80% of these 

hysterectomies’ impacts in ozone depletion potential, greenhouse gas emissions, acidification 

potential, respiratory impacts, and cumulative energy demand.  In impact categories not 

dominated by surgical instruments, the production of cotton, SMS PP, and other plastics account 

for over 30% of environmental impacts for laparoscopic and robotic hysterectomies. 

5.3.3.2 Impacts due to Transportation and Disposal of Single-Use or Disposable Materials 

and Tools 

Impacts due to the transportation and landfilling of the disposable materials and tools comprise 

over 40% of the total eutrophication impacts of all hysterectomies, nearly 10% of the total non-

carcinogenic human health impacts, and about 5% of the total ecotoxicity potential. Figure 30, a 

closer analysis of the elements composing the landfilling impacts, shows that the disposal of 

plastics, including SMS PP (gown and drape material), account for over 40% of the impacts in 

every category analyzed. The disposal of cotton, unlike its production, account for only about 

5% of the impacts for every hysterectomy type. 

The disposal of surgical instruments accounts for 7-34% of the smog, acidification 

potential, and cumulative energy demand and 15-55% of the greenhouse gas emissions and 

respiratory impacts for abdominal, laparoscopic, and robotic hysterectomies.  Due to larger 

amounts of paper waste in vaginal and robotic hysterectomies, the impacts due to paper disposal 

compose nearly 15% of the impacts in ODP, smog, acidification, eutrophication, carcinogenics, 
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non-carcinogenics, respiratory effects, and cumulative energy demand for these two surgery 

types. 

Transportation of waste from the hospital to its final disposal site accounts for 10-20% of 

ODP, smog, acidification, respiratory impacts and cumulative energy demand.  Transportation 

represents only about 5% of greenhouse gas emission impacts due to the relative GHG impacts 

of surgical instruments. Emissions from the burning of fossil fuels, such as diesel or gasoline, 

affect these categories.  

 

 

 

Figure 30: Average Environmental Impacts from the Municipal Solid Waste and Chemo/Pathogenic 

Waste Disposal from a Single Hysterectomy by Surgery Type (Normalized to 100%) 
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The chemo and pathogenic waste stream is used to dispose of uteri.  In this study, the 

transportation and incineration impacts of this waste stream were calculated based off of uterine 

weight from patient charts recorded during the waste audits.  It is interesting to note that impacts 

due to chemo or pathogenic waste for abdominal hysterectomies are nearly double that of the 

other procedures.  This is especially visible in the categories of ODP, acidification potential, 

respiratory impacts, human health carcinogenics, smog, and CED.  Uteri from the abdominal 

hysterectomies in this study were, on average, nearly twice the size of uteri from the three other 

hysterectomy procedures, thus reinforcing the validity of the LCA model. 

5.3.3.3 Impacts due to Energy and Electricity Use within the OR 

Another major contributor to the overall greenhouse gas emissions, smog, acidification potential, 

respiratory impacts, and cumulative energy demand of hysterectomies is the energy required to 

run machines, light the OR, and maintain standard air cycles and humidity levels.  These 

categories are generally affected by pollutants produced from electricity generation plants and 

the burning of fossil fuels.  This section discusses energy use in the OR based off of study 

findings.   

A majority of these impacts –over 70% - are caused by the heating, ventilation, and air 

conditioning (HVAC) in the OR, which was allocated to each surgery type based on average 

surgery duration in the cases studied. As seen in Figure 31, electricity required to run the 

machines in the OR makes up 10-30% of every impact category analyzed depending on the 

hysterectomy type.  Lighting in abdominal and vaginal hysterectomies accounts for about 8% 

more of their environmental impacts in all categories, but only 1% in laparoscopic and robotic 

procedures.  This is due to minimal use of OR lighting during laparoscopic and robotic 

hysterectomies. 
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Figure 31: Average Environmental Impacts from Energy (Electricity and Gas) Consumed During a 

Single Hysterectomy by Surgery Type 

 

 

5.3.4 Variation in Environmental Impacts 

The Monte Carlo Assessment showed the range in potential impacts due to variability in each 

hysterectomy case and uncertainty in LCI and LCIA data.  Certain impact categories were found 

to have a smaller range of potential impacts as seen in Figure 32.  The mean value in Figure 32 is 

the value used in the results discussion Section 5.3.3: Environmental Impacts of Hysterectomies.  

In general, the impact categories of carcinogenic and non-carcinogenic human health impacts 
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have greater ranges (or 90% confidence interval) compared to other impact categories.  The 

methodologies and calculations behind these human health impact categories inherently contain 

greater uncertainties than other categories, so this is expected.   

In impact categories where single-use surgical instruments (or the EIO-LCA data) 

dominates the results, the range of potential impacts is smallest for robotic hysterectomies and 

usually largest for laparoscopic.  Those categories are ODP, GHG, acidification potential, 

respiratory impacts, and CED.  The EIO-LCA database does not contain uncertainty data, and 

the ranges depicted here are based on variations in the price of robotic and laparoscopic surgical 

tools per case.  The range estimated through Magee’s quantity and cost data was about $800 for 

robotic hysterectomies and over $1000 for laparoscopic hysterectomies, resulting in relatively 

narrow impact ranges for robotic hysterectomies. 
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Figure 32:  Variations in Total Life Cycle Environmental Impacts of Four Types of Hysterectomies 

(90% CI) with Median at 1.0; Does not include impacts due to recycling. 

 

 

Each component of the hysterectomy life cycle has some individual variation which 

depends upon the impact category.  Figure 33 shows that for greenhouse gas emissions (GHG), 

the 90% confidence interval of reusable materials is smaller than the other life cycle components.  

It should be noted that the laparoscopic and robotic CO2 equivalents for production of disposable 

materials has been cut off at the top of this figure to show greater detail.  Their mean values (the 

top of the colored boxes) were 400 kg CO2 equivalent and 630 kg of CO2 equivalents 

respectively.  For greenhouse gas emissions, the effects of single-use material disposal and the 

chemo/pathogenic waste stream are negligible. 
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Figure 33: Range in Life Cycle Greenhouse Gas Emissions of Components of Four Types of 

Hysterectomies; Does not include recycling and laparoscopic and robotic results for ‘production of disposable 

materials’ category have been cut off to show detail.  Cut-off values are 403 kg CO2 equivalents for Laparoscopic 

Hysterectomy and 634 kg for Robotic Hysterectomy. 

 

 

Looking at a different impact category, such as Eutrophication Potential shown in Figure 

34, energy is shown with a narrower confidence interval, ranging only about 15% from the mean 

value.  Impacts associated with the disposal of single-use materials and tools, as well as the 

production, sterilization, and disposal of reusable materials, have a much larger range of 

eutrophication potential.  Whereas, the eutrophication potential of the chemo/pathogenic waste 

stream and energy use are negligible. 
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Figure 34: Range in Life Cycle Eutrophication Potential of Components of Four Types of 

Hysterectomies; Does not include recycling. 

 

 

In the case of reusable materials, this confidence interval ranges from a quarter to three 

times the mean value.  Variability in the reusable materials component of a hysterectomy life 

cycle is largely due to assumptions on life span.  Life span of stainless steel surgical instrument 

trays was assumed to be normally distributed with a mean of 300 and a standard deviation of 

150.  A lower limit of 50 uses (representing the upper end of the impacts’ confidence intervals) 

was established for the Monte Carlo Assessment.  This is a very conservative estimate relative to 

past studies (Campion, Thiel et al. 2012; Ibbotson, Dettmer et al. 2013), but it follows the work 

of McGain, et al. (McGain, McAlister et al. 2012).  For the purposes of the Monte Carlo, 

reusable linens were assumed to be reused 40 times with a standard deviation of 20 uses and a 
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lower limit of 5 uses.  This was based off of Magee’s internal laundering estimates for linen 

lifespans. 

Variation in the life cycle components for the remaining eight impact categories can be 

seen in Appendix B.3Monte Carlo Scripts for . 

5.3.5 Recommended Improvements to Surgical Procedures 

Assuming a mix of 40.1% abdominal, 19.8% vaginal, 30.5% laparoscopic and 9.5% robotic for 

all 600,000 annual hysterectomies performed in the US (Wright, Ananth et al. 2013), this study 

estimates greenhouse gas emissions of hysterectomies alone at nearly 150,000 metric tons 

per year.  That is enough to fill about 97 US Steel Buildings in downtown Pittsburgh or 

approximately 383 Cathedrals of Learning on University of Pittsburgh campus.  If not familiar 

with Pittsburgh, this is equivalent to nearly 75 Empire State Buildings.  This is actually only 

0.002% of the US’s total GHG emissions in 2011 (US EPA 2013), yet hysterectomies are only 

one type of surgery. There are over 51.4 million inpatient procedures performed annually in the 

US (US CDC 2010).  Some surgeries, such as orthopedic procedures or Coronary Artery Bypass 

Grafting, generate larger quantities of surgical waste than hysterectomies, which likely results in 

greater environmental impacts.  Detailed life cycle assessments of hysterectomies can inform 

general changes within ORs and hospitals which can significantly improve environmental 

impacts at a larger scale.   

The following two subsections highlight potential strategies to reduce impacts of 

hysterectomies and other surgical procedures in the OR.  The first subsection addresses lighting, 

electricity use, and heating, ventilation and air conditioning systems, which have a larger impact 

on the hospital as a whole, rather than an individual surgery.  The second subsection highlights 
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the many ways of reducing impact related to material use.  It is organized into the following 

categories: reducing excess, recycling and proper waste stream management, reprocessing and 

reuse, and purchasing and the production of the supply chain.  A summary of the major energy 

and material concerns and potential improvement strategies are listed in Table 15. 
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Table 15: Components of a Hysterectomy which Contribute the Most to Environmental Impacts and 

Potential Impact Reduction Strategies, A = Abdominal, V = Vaginal, L = Laparoscopic, R = Robotic, all = All 

Hysterectomy Types 

Issue Environmental Impact 
Categories 

% of Total 
Impacts in 
Categories 

Potential Reduction 
Strategies 

Production of 
Disposable 
Cotton 

• Carcinogens,  
• Non-Carcinogens,  
• Ecotoxicity 

25-60% 
(all) 

• Reuse cotton,  
• Recycle cotton,  
• Use organic cotton,  
• Use other fibers All other categories analyzed 15-40% 

(A&V) 
Production of 
Disposable 
Surgical 
Instruments 

• Ozone Depletion 
Potential,  

• Greenhouse Gas 
Emissions,  

• Acidification Potential,  
• Eutrophication,  
• Respiratory Impacts,  
• Cumulative Energy 

Demand 

20-99% 
(L&R) 

 

Energy used to 
run HVAC 
(heating, 
ventilation, and 
air conditioning) 

• Greenhouse Gas 
Emissions,  

• Smog Formation,  
• Acidification Potential,  
• Respiratory Impacts,  
• Cumulative Energy 

Demand 

10-35%  
(A&V) 

• Use more renewable 
energy sources 

• Regular maintenance of  
mechanical equipment, 

• Upgrade mechanical 
equipment and filters,  

• Reduce energy leaks in 
ducts and joints,  

• Reduced ventilation rates 
when OR not-in-use 

5-30%  
(L&R) 

Production of 
Disposable 
Gowns, Drapes, 
and BlueWrap 
(SMS-PP) 

• Non-Carcinogens,  
• Ecotoxicity,  
• Cumulative Energy 

Demand 

10-30% 
(all) 

• Recycle the material,  
• Use reusable materials 

Disposal of PP 
(polypropylene) 

• Eutrophication 10-20% 
(all) 

• Recycle the material,  
• use reusable materials 
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5.3.5.1 Energy Systems 

Lighting and HVAC systems, which are based on the duration of a hysterectomy, make up nearly 

a third of the impacts in the categories of greenhouse gas emissions, smog formation and 

respiratory impacts.  Improvements and upgrades to these energy and electricity systems would 

have larger impact on the hospital as a whole as opposed to an individual surgery, as these 

systems typically run 24 hours a day.  A majority of the emissions associated with these 

categories are caused by the burning of fossil fuels.  Therefore, reduction in emissions and 

environmental impacts can be best realized through changing those energy sources.  While 

hospitals may not be capable of installing renewable energy sources on site, they can sometimes 

choose a “green” electricity supplier depending on the state, or they can work with their utility 

companies to purchase electricity from commercially produced renewable energy sources 

(USDOE 2013).  Other methods to improve the environmental impacts related to HVAC include 

regular maintenance and monitoring of the air handling system, sealing and insulating ducts, and 

upgrading mechanical equipment and filters.  ORs have tight air change and temperature 

conditions during use which result in higher proportional energy use in the OR than other 

hospital areas.  Savings may be realized by relaxing HVAC performance requirements in the OR 

during off-hours for non-critical ORs (Taddonio 2011).  This particular recommendation would 

not reduce the environmental impacts of a hysterectomy due to the LCA boundary conditions, 

but it would reduce impacts for the hospital as a whole.   

5.3.5.2 Material Production, Use, and Disposal 

The single use or disposable materials represent a majority of the impacts in every category 

analyzed in this study. The following outlines potential changes regarding single use materials 

which may significantly reduce environmental impacts of surgeries based on our study’s results.  
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It is organized into subcategories of reducing excess, recycling and proper waste stream 

management, reprocessing and reuse, purchasing and the production of the material supply 

chain. 

Reduce Excess 

More than simply making the current practice more efficient, one of the first steps to 

reducing the environmental impact of surgeries is to reduce the overall number of surgical 

interventions required.  Previous studies estimate that many diagnostic tests and surgical 

procedures are unnecessary, which cost the US healthcare system $210 billion in 2009 and 

increases the resource burden of the healthcare industry (Young and Olsen 2010; Epstein and 

Hood 2011).  Though not related directly to our research, it may be important to address the 

institutional systems in place which financially reward or litigiously protect medical 

professionals who conduct excessive, unnecessary, or “defensive” procedures (Mandell and 

Howell 2007; Yong, Olsen et al. 2010).   

Additional focus on public health, preventive care, and personal behaviors can have a 

profound influence on the need for emergency interventions (Levi, Segal et al. 2013).  Studies 

indicate that increased preventive care could save about $55 billion annually and that healthy 

lifestyle behaviors can decrease the need for surgical interventions, which reduces overall 

spending on healthcare (Fries, Koop et al. 1993; Akazawa, Stearns et al. 2008; Morey, Snyder et 

al. 2009; Maciosek, Coffield et al. 2010; Thorp, Owen et al. 2011).  This will likely result in 

additional improvements to the environmental impacts associated with surgical care and modern 

living, as the suggested healthy lifestyle changes include increased physical activity (such as 

reduced use of vehicles, elevators, and other electrically-powered devices) and increased 

150 



consumption of fresh, whole produce (such as local, organic, and unprocessed foods) 

(Goodpaster, DeLany et al. 2010; von Gruenigen, Frasure et al. 2012; Levi, Segal et al. 2013).  

Surgeries will still be required, even if their overall numbers are reduced.  Reducing 

unnecessary or unused materials can have significant savings related to the economic, 

environmental, and social sustainability of healthcare facilities. During waste audits, researchers 

found unused items- most commonly gloves- in the MSW.  Many of these items are part of a 

“pack” or “kit” and when the pack is opened, even if for a single item, everything in the pack is 

considered unsterile and must be disposed.  OR packs should be carefully formulated to help 

eliminate this type of resource and monetary waste (Kaplan, Sadler et al. 2012).  The waste 

audits also revealed unused, unopened materials and instruments, such as the urinary drainage 

bag and laparoscopic lens defogging system (D-HELP) pictured in Figure 35, laparotomy pads, 

and table drapes.  Preventing wastage of these materials may also relate to pack formulation or 

increased training for OR staff. 
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Figure 35: Examples of Unused, Unopened Items in Municipal Solid Waste of a Hysterectomy, Left: 

Urinary Drainage Bag, Right: Defogging Heated Endoscopic Lens Protector (D-HELP) System 

 

 

Wastage is also an issue for drugs and other pharmaceuticals (Esaki, Macario et al. 2009; 

Chaudhary, Garg et al. 2012).  Though not directly measured in this study, a number of bottles 

and IV bags found in MSW still contained fluids.  Packaging such disposable items in smaller 

quantities or developing a different system of drug delivery could reduce unnecessary wastage, 

but there are concerns with drug safety and security and the availability of supplies in emergency 

situations.  

Recycling and Proper Waste Stream Management 

This study estimated the potential recyclability of various materials found in MSW for all 

hysterectomy procedures.  If recycling in the OR were expanded to include a larger quantity of 

plastics, steel and aluminum pieces, paper, and glass vials, this research estimates recycling rates 

could be increased by 45 to 60%, reducing the total amount of MSW to one third of the current 
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average quantity by weight. Such a reduction would decrease the greenhouse gas emissions from 

the production and disposal of materials used in hysterectomies by up to 25%.   

Increased recycling rates are difficult to accomplish in the OR due to the additional time 

required to sort recyclable materials and the associated costs, but previous studies show that 

recycling initiative can improve a hospital’s carbon footprint and spending (Lee, Ellenbecker et 

al. 2002; Gaiser, Cheek et al. 2004; McGain, Story et al. 2009; Riedel 2011; Grimmond and 

Reiner 2012).  Recycling can be difficult to accomplish, as the recyclability of materials varies 

by municipality and contaminates (non-recyclable items) can threaten a recycler’s willingness to 

accept materials from frequent violators.   This study found materials which could not be 

recycled in the recycling waste stream of 13 out of the 61 audited procedures.  It is anticipated 

that increased training and education would be required to help hospital staff quickly and 

properly identify and sort recyclable materials.  In the long term, hospital purchasing staff and 

material manufacturers might consider utilizing entirely recyclable products or labeling 

recyclable products very clearly.  

On the issue of waste stream management, this study found batteries in 75% of the 

laparoscopic and robotic cases’ MSW.  The batteries, usually size AA, were frequently removed 

from the StrykeFlow 2 suction and irrigation system shown in Figure 36.  However, the D-HELP 

laparoscopic lens defogger (Figure 35) also contained AA batteries which were discovered only 

during the controlled disassembly of complex materials.  This device was frequently found in 

MSW during the hysterectomy waste audits, and the batteries would be difficult, if not 

impossible, to remove from the D-HELP in the OR following a surgery.  Companies have 

removed the mercury from alkaline batteries, making them safe to dispose of in MSW streams, 

but the batteries still contain other heavy metals which are hazardous to human health (Panero, 
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Romoli et al. 1995; Wagner, Toews et al. 2013).  Lithium and lithium ion batteries require 

special disposal, and all batteries can be recycled (Bernardes, Espinosa et al. 2004).  In 3 out of 

the 61 waste audits, researchers also discovered reusable stainless steel instruments in the MSW.  

Though accidentally discarded with OR table drapes, these clamps and cups represent a financial 

and environmental cost to the hospital. 

 

 

 

Figure 36: Part of the StrykeFlow 2 Suction and Irrigator System, Which Contains Eight (8) AA 

Batteries 

 

 

Reprocessing and Reuse 

Recycling in healthcare is not a closed-loop system.  Not only do plastics and most other 

recycled materials degrade in quality with each cycle, recycled products do not find their way 
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back into an OR in the same form in which they first entered (if they find their way back at all). 

For example, sharps in the OR may be sent to a recycling facility, but the plastics are used to 

create new sharps containers or non-medical devices, but never new sharps. Manufacturers of 

medical equipment have responded to concerns over hospital waste generation by developing an 

industry around medical device reprocessing.  Reprocessing is the sterilization and reuse of 

single-use medical devices (SUDs).  Many hospitals have begun contracting with reprocessing 

facilities to handle specific medical devices, which results in cost savings of up to 55% over 

purchasing the SUDs new (Alfa 2000; DiConsiglio 2008; Jacobs, Polisena et al. 2008; Polisena, 

Hailey et al. 2008).  The US Food and Drug Administration permits reprocessing of about 70 

devices and the industry has set up rigorous standards to ensure quality and safety (Barnett and 

Rios 2009; Kwakye, Pronovost et al. 2010; Collier 2011).  

Reprocessing enables the reuse of certain medical devices, but SUDs can usually only be 

reprocessed about 5 times (SterilMed Inc. 2012).  Truly reusable items- both surgical instruments 

and other materials- can drastically reduce cost and environmental impacts of the OR (Tieszen 

and Gruenberg 1992; Kocakulah, Maier-Lytle et al. 2001; Conrardy, Hillanbrand et al. 2010).  

Device manufacturers can design sturdier, reusable devices which could reduce the 

environmental impacts associated with instruments which are currently single use or reprocessed.  

Plastic gowns and drapes can be replaced by reusable linens, materials which were historically 

used in healthcare.  Linens already used in the OR – such as blue towels and laparotomy pads- 

can be sterilized and reused in the OR rather than discarded in MSW or used as rags (Kümmerer, 

Dettenkofer et al. 1996).  The allocated production impacts of these cotton products and other 

reusable instruments are halved with each reuse.  Changing to reusable or even reprocessed tools 

and materials can be difficult. Physical space is required to sort and store materials, and often 
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physicians and other staff must undergo behavioral and perception shifts to accommodate 

reusable materials. 

Purchasing and Production of the Material Supply Chain 

Impacts to the environment are more than just greenhouse gases and smog, and the 

effects of a hospital are more than just garbage out the loading dock and treated patients heading 

home. This study found that the production phase of a material’s life cycle has the most 

significant negative impact on human health.  Though these impacts may be directly tied to a 

separate industry, the healthcare industry’s consumption of that resource drives the negative 

consequences, but it can also drive positive change through hospital’s purchasing power (Kaiser, 

Eagan et al. 2001).   

For example, traditional cotton growing practices release many known carcinogens and 

toxic chemicals into the soil, air, and water. Though a hospital consumes only a handful of 

towels and laparotomy pads in a single surgery in their OR (cotton products represent only 5-

10% of MSW in hysterectomies), the continued production from virgin, traditionally-farmed 

cotton results in a quarter to half of the human health toxicity and ecotoxicity impacts in every 

type of hysterectomy as seen in Figure 37.  This represents a great opportunity for hospitals to 

cut environmental impacts across their ORs by requesting organic cotton or another, more 

environmentally-preferable fiber such as hemp or bamboo, from their Group Purchasing 

Organization (GPO) or material suppliers. 

 

 

156 



 

Figure 37: Toxicological Environmental Impacts due to the Production of Cotton Used in an Average 

Hysterectomy, as a Percent of the Total Life Cycle Impacts of Each Impact Category 

 

 

It is not just cotton or toxicity concerns that should be addressed when talking about life 

cycle costs.  Other aspects of upstream production can be changed through innovative design 

decisions such as eliminating the use of synthetic dyes in fabrics and plastics.  Upstream 

production impacts are the major concern for fuel and energy use in hospital’s HVAC systems, 

but that same fossil-based fuel mix is likely used to manufacture and deliver many of the 

products used within hospitals.  There are many considerations and avenues to improve the life 

cycle impacts of hysterectomies and other surgeries.  Life Cycle Assessment enables us to see 

the impacts of each component of surgery and target areas which have the most impact. 

A Abdominal Hysterectomy
V Vaginal Hysterectomy
L Laparoscopic Hysterectomy
R Robotic Hysterectomy
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5.4 SUMMARY AND CONCLUSIONS 

Primary contributors to the environmental impacts of hysterectomies are the production of 

disposable materials, their disposal, and the use of fossil-based fuels in providing electricity and 

energy for heating, ventilation, and air conditioning in the OR.  Items accounting for the largest 

impacts in material production include cotton-based products such as towels and laparotomy 

pads and spunbound-meltblown-spunbound polypropylene materials such as gowns, drapes, and 

bluewrap.  The disposal of polypropylene, which represents the most material by weight in all 

hysterectomies analyzed, accounts for the largest amount of impacts in the waste disposal 

category.  In general, the more technologically advanced the surgical procedure, the larger its 

environmental impact.  Environmental impacts of the four procedures overlap in the categories 

of smog formation, carcinogens, non-carcinogens, and ecotoxicity. 

The field of healthcare sustainability is ready for more rigorous measurement of baseline 

environmental performance and scientifically-grounded guidance on improvement methods.  

This study identified those aspects of surgical procedures and operating rooms which create the 

largest environmental impacts.  Many options exist for addressing and minimizing these impacts, 

but future studies are needed to inform other aspects of OR and hospital environmental 

performance and to assess the efficacy of impact reduction strategies.  Within the whole 

healthcare industry, there is a profound opportunity to make healthcare services more efficient 

environmentally, economically, and socially.  Quantification tools such as Life Cycle 

Assessment provide needed information about the source of environmental impacts and are a 

great asset in making significant strides towards a sustainable healthcare system.   
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6.0  CONCLUSIONS 

This research focused on analyzing and improving the environmental and human health impacts 

associated with healthcare through assessment of the physical built environment of a hospital as 

well as the processes and procedures conducted within the building.  This research was set to 

achieve the following research objectives: 

1) Determine the effect of cohesive, green building hospital design on building 

performance, hospital employees, and patients through a comparative longitudinal 

assessment of an older, traditional hospital with its new, LEED-certified (Leadership in 

Energy and Environmental Design) replacement. 

2) Develop and test a life cycle assessment (LCA) framework specific to hospitals using 

case study data collected from vaginal births done in labor and delivery rooms (LDR) and 

cesarean section births performed in operating rooms (OR). 

3) Modify and apply the LCA framework to analyze the environmental impacts of common 

surgical procedures using four modes of hysterectomies- laparoscopic, robotic, vaginal, 

and abdominal- as the case study. 

4) Identify advantages and limitations of the life cycle human health impact categories when 

applying LCA to healthcare. 
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To accomplish these objectives, several study projects were completed involving the 

application of certain engineering and analytical methods, such as comparative longitudinal 

assessment, life cycle assessment, and Monte Carlo assessment, to the healthcare industry.  

The results of this research advance our understanding of green building performance and 

enhance existing literature on evidence-based design.   Additionally, this work represents the 

first application of full LCA to surgical operations, beyond carbon footprinting or individual 

material analysis.  This work, therefore, introduces a scientific analytical framework to 

healthcare professionals as a means of monitoring environmental baseline and the efficacy of 

policy and programmatic changes.  The work has been presented at a variety of engineering and 

healthcare-related conferences around the United States and abroad.  Elements of this research 

have been incorporated into nurse training at the Community College of Allegheny County, 

undergraduate and graduate coursework at the University of Pittsburgh and Arizona State 

University, and public community-lectures and programs at Magee-Womens Hospital of UPMC. 

 

6.1 SUMMARY 

These novel applications of engineering and analytical tools allowed new assessments of 

efficiency in hospitals, specifically related to environmental performance.  The results point to 

the usefulness of these assessment methods in guiding and more-efficiently increasing the 

environmental, economic, and social sustainability of healthcare – from building design 

decisions to which materials are purchased for use in a surgery.  As the healthcare industry looks 

toward reducing costs and increasing the overall health of their patients, this data is necessary to 
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inform environmentally-focused design, managerial, and procedural changes.  Current results 

suggest that green building design principles, combined with organizational and cultural 

changes, have favorable effect on energy intensity, employee satisfaction, and patient outcomes.  

Hospitals seeking to increase the environmental sustainability of their operating rooms should 

focus on reducing the upstream impacts from single-use, disposable items and energy 

consumption due to heating, ventilation, and air conditioning in the OR.  Updates and 

improvements in fields related to life cycle assessment and additional analytical sustainability 

assessment tools should be incorporated into healthcare assessment to help inform and improve 

healthcare sustainability. 

6.1.1 Evidence-Based Design: Green Hospital Performance 

A comparative longitudinal assessment analyzed over seven years of data on hospital building 

performance, employee satisfaction, and patient outcomes from Children’s Hospital’s older, 

traditionally-constructed hospital and its new, LEED-certified replacement.  This project sought 

to answer the following questions in conjunction with research Objective 1: 

• How does sustainable hospital design affect hospital performance?  

• How can hospital performance metrics help determine the effects of sustainability 

initiatives within hospitals?  

Following the move into the new, green facility, Children’s significantly improved their 

productivity, quality of care, and staff satisfaction.  The utility use per square foot dropped over 

50% for electricity, heating energy, water, and sewer, while Children’s expenses per patient in 

bed remained stable.  This may be due in part to green building design; however, the length of 
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this study limited the ability to separate the impacts of green building design from the effects of 

managerial and programmatic changes to the hospital.  The relative effect of behavioral and 

organizational changes, cohesive whole-building construction, or green building design decisions 

is unknown, but there may also be a reinforcing symbiosis between the three elements in regards 

to improved employee performance and patient outcomes.  

6.1.2 Life Cycle Assessment: Healthcare Framework and Effects of Medical Procedures 

A life cycle assessment framework was developed, tested, and utilized to analyze the 

environmental effects of hospital procedures and surgeries.  These projects aimed to achieve 

research Objectives 2 and 3 by answering the following questions:  

• How can LCA determine environmental sustainability of the healthcare industry? 

• What aspects of hospital operating procedures contribute the most to a procedure’s 

environmental impacts? 

A process life cycle assessment framework was developed and tested for use in hospital 

operations and medical procedures.  A case study compared environmental impacts from vaginal 

births conducted in labor and delivery rooms (LDR) and cesarean section births performed in 

operating rooms (OR). For all births, the processes contributing the most to environmental 

impacts were energy consumption due to heating, ventilation, and air conditioning; the end of 

life impacts of the disposable custom packs; and the production of the disposable custom packs.  

The production of both the disposable custom pack and reusable surgical pack for the cesarean 

section resulted in higher environmental impacts than the disposable and reusable materials in 

the vaginal birth packs (Campion, Thiel et al. 2012). Understanding the differences in 
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environmental impacts between disposable and reusable materials is an important consideration 

when evaluating the assembly of the custom packs and the necessity of certain materials and 

products contained within them.  

The LCA framework was modified to include of Economic Input-Output LCA data, and 

the new hybrid LCA model analyzed the environmental impacts of common surgical procedures 

using four modes of hysterectomies- laparoscopic, robotic, vaginal, and abdominal- as the case 

study.  Primary contributors to the environmental impacts of hysterectomies are the production 

of disposable materials, their disposal, and the use of fossil-based fuels in providing electricity 

and energy for HVAC in the OR.  Items accounting for the largest impacts in material production 

include single-use, cotton-based products such as towels and laparotomy pads and single-use, 

spunbound-meltblown-spunbound polypropylene materials such as gowns, drapes, and bluewrap.  

The disposal of polypropylene, which represents 22-35% by weight of the municipal solid waste 

in all hysterectomies analyzed, accounts for the largest amount of impacts in the waste disposal 

category. 

The field of healthcare sustainability is ready for more rigorous measurement of baseline 

environmental performance and scientifically-grounded guidance on improvement methods.  The 

studies in Chapters 4.0 and 5.0  identified those aspects of surgical procedures and operating 

rooms which create the largest environmental impacts.  For hospitals aiming to become more 

environmentally efficient or sustainable, these parts of surgery may represent the most cost- or 

time-effective focal points.  Within the entire industry, there is a profound opportunity to make 

healthcare services more efficient environmentally, economically, and socially.  Quantification 

tools such as life cycle assessment provide needed information about the source of 
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environmental impacts and are a great asset in making significant strides towards a sustainable 

healthcare system.   

6.1.3 Life Cycle Impact Assessment Methodology: Human Health Effects 

Research Objective 4 was achieved through an extensive review of life cycle impact assessment 

methodology, which addressed the following research question: 

• What are the advantages and limitations of life cycle impact categories such as human 

health when applying LCA to healthcare issues? 

The accuracy of current LCIA methodology of human health impact categories are still 

debated today, and their resultant units are not easy to translate into practical application, 

especially when reporting to medical professionals (Thiel, Campion et al. 2012).  Correlation 

exists between the various emissions at each stage of a product’s life cycle and the emissions’ 

effects on human health, morbidity, and mortality.  However, actual effects vary based upon 

exposure pathway, duration, and biological factors, thus limiting the accuracy of causal 

statements.  

Toxicology and risk management, the basis for most LCIA methods, link emissions and 

human health effects, but use data from animal testing which results in large ranges of 

uncertainty.  Life cycle assessment collapses results across a product’s life cycle into a single 

location and time, and do not usually account for background or existing chemicals or toxins.  

Some researchers have suggested more meaningful units related the potential reversibility of 

human health toxicity impacts, but this requires more detailed chemical information from the 

field of toxicology.  Improvements to the fields supporting toxicology and risk assessment, such 
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as epidemiology and clinical studies, will lead to improvements in life cycle assessment, though 

the static nature of LCA requires incremental updates to LCI databases and LCIA methodology 

as external data become better.   

6.2 RECOMMENDATIONS FOR FUTURE WORK 

Healthcare has been working to improve their environmental sustainability for some time, but is 

just now beginning to embrace and utilize rigorous scientific assessment and hard data in order 

to identify and alter major sources of environmental impact.  Evidence-based design, life cycle 

assessment, and other sustainability engineering methods and tools will continue to be an 

important part of increasing sustainability of ORs and hospitals.   

6.2.1 Continued Evaluation of Green Hospital Design and Design Decisions 

For future studies related to the impact of green design, researchers recommend the additional 

analysis of data such as employee and patient surveys or focus groups to better understand the 

perceived and psycho-social impacts of the structure’s design, as well as additional modeling 

which might better predict the relative importance of managerial, policy, and green building 

design changes.  Increased literature related to the impacts of holistic healthcare design might 

also aid in determining the relative impacts of procedural or staffing changes or green design 

decisions.  Comparative assessments might be conducted on new traditional hospitals versus 

green hospitals, or, perhaps more feasibly, new green hospital wings compared to older wings 

performing the same function within the same hospital, in order to normalize the effects of 
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cultural changes on the two study groups.  The research team intends to conduct such a study on 

a traditional and new, green wing at Magee-Womens Hospital. 

Related to environmental performance, hospital design may be further studied for its role 

in establishing the environmental impacts of the hospital’s use phase.  For example, design 

features such as operable windows may assist not only in comfort and recovery time of patients 

but also in building resilience to climate change or severe weather events (Schweitzer, Gilpin et 

al. 2004; Shin 2004; Lomas and Ji 2009; Lomas and Giridharan 2012).  Many hospitals 

worldwide – most notably in the United Kingdom – effectively and safely utilize natural 

ventilation, reducing their energy consumption (Lukiantchuki, Matsumoto et al. 2010; Qian, Li et 

al. 2010; Adamu, Price et al. 2012; Baillie 2012; Gong, Zhou et al. 2012; Taylor and Menassa 

2012; Menassa, Taylor et al. 2013).  Reductions to energy consumption and associated 

environmental impacts are often limited to the design and layout of the structure.  As such, 

analyzing the effects of such features before they are built may play a critical role in minimizing 

environmental impacts of the building’s use phase. 

6.2.2 Development of Life Cycle Assessment in the Field of Healthcare 

To improve future LCAs of surgeries, information should be included on the environmental 

effects of pharmaceuticals, anesthesia, and cleaning products.  Currently, life cycle inventory 

data on most of these materials is not available, though work is being done specifically on 

anesthetic gases.   This study may also benefit from the inclusion of detailed information on 

laundering and sterilization processes (rather than estimates), high-tech disposable devices 

(rather than cost data), and surgical equipment (which was excluded from the studies reported 
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here).   These additions require data and the participation of medical device manufacturers and 

laundering facilities. 

The research team established partnerships to analyze and incorporate the global 

warming potential of anesthetic gases from our cases into the overall results of the hysterectomy 

LCA. This will allow us to see the relative impacts of anesthetic gases compared to other 

materials and energy used to conduct various types of hysterectomy.  Researchers at the 

University of Pittsburgh and Magee-Womens Hospital have also begun LCAs of custom birth 

packs from US hospitals and international hospitals in order to compare the range of materials 

and environmental impacts associated with a variety of custom birth packs.  Additionally, in 

partnership with Northeastern University and Arizona State University, the University of 

Pittsburgh sustainability team intends to analyze the impacts of larger medical equipment and 

continue exploring the life cycle decisions of disposable vs. reusable medical materials. 

Life cycle assessment and other sustainability engineering methods and tools will 

continue to be an important part of increasing sustainability of ORs and hospitals.  Orthopedic 

surgery, with the variety of medical prostheses and the required ultra-sterilization of medical 

implants, would prove an interesting operation to analyze (Pavlou, Gardiner et al. 2010; Stall, 

Kagoma et al. 2013).  Comparative assessments of other departments within a hospital, as well as 

other concerns such as employee and patient commuting and food sourcing and consumption, 

would also help determine critical contributors to the environmental sustainability of hospitals.  

Technological advances in the field of medicine represent a large opportunity to analyze, 

compare, and improve environmental outcomes for the future of healthcare.  New medical tools 

and machines, such as the Stryker Neptune, change the dynamic of hospital safety and waste 

streams.  The Neptune Waste Management System is a suction devise used to remove fluids and 
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smoke during surgeries in the operating room. The device, despite recent patient safety concerns, 

allows safe removal of hazardous bodily fluids and smoke by minimizing hospital staff exposure 

and handling (USFDA 2013).  Fluid and gaseous wastes are then flushed directly into the 

hospital’s waste water.  In Pittsburgh and other cities in the US with combined sewer systems, 

this represents a potential health hazard during rain-related sewage overflow events, and it also 

calls to question waste water treatment plant’s ability to safely handle the new influx of 

biological agents and pharmaceuticals (Kümmerer 2001).  As new technologies such as the 

Neptune are developed, life cycle environmental impacts should be calculated and assessed. 

Increasing the research and data in supporting fields of study would greatly aid 

sustainability assessment and help improve environmental efficiencies in healthcare facilities.  

Life cycle impact assessment would improve with more detailed and more complete data on 

chemical impacts to human health.  This requires increased research in the fields of toxicology, 

epidemiology, and clinical studies.   

6.2.3 Beyond Life Cycle Assessment: Utilizing Other Analytical Tools and Other Aspects 

of Healthcare Sustainability Research 

Moving beyond LCA and analyzing healthcare sustainability holistically, other tools of Industrial 

Ecology enable integration of hospital material flows and waste streams into the surrounding 

community network.  Materials flow analysis of healthcare facilities would help identify safe 

waste streams which could serve as inputs to other industrial networks, increasing the 

sustainability of the entire urban fabric by creating cyclical systems of material use.   

Other areas of healthcare, such as hospital sterilization and cleaning, may require further 

study beyond LCA.  Exposure to toxic cleaning chemicals can lead to negative health impacts for 
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hospital staff and patients, yet proper sterilization is necessary to prevent nosocomial infections 

(Weinhold 2001; Lehman 2003; Bello, Quinn et al. 2009).  Some studies suggest that biological 

alternatives to harsh chemicals and antibacterial agents, such as “probiotics” or “good bacteria,” 

may reduce the ability of infectious pathogens to colonize hospital surfaces and may even be 

necessary as more bacterial strains become resistant to antibiotics (Falagas and Makris 2009; 

Hookman and Barkin 2009; Cristina, Spagnolo et al. 2012).  The efficacy, human health effect, 

and environmental impact of current hospital sterilization and cleaning techniques, and their 

future alternatives, should be further studied. 

Another issue which requires more sound data is the designation and proper treatment of 

infectious wastes.  Hospital waste streams have been regulated since the 1988 Medical Waste 

Tracking Act, a federal policy written in response to medical waste washed up on New Jersey 

shorelines (United States Environmental Protection Agency 1988).  Yet despite federal, state, 

and local regulations regarding medical waste, the actual definition of infectious waste or 

regulated medical waste is liable to wide interpretation.  Over the course of this research, 

medical personnel expressed a wide range of definitions of infectious waste - from “anything 

with a drop of blood on it,” to “if blood can be wrung out of it.”  

In Pennsylvania state code, infectious waste is defined as “items saturated or dripping 

with human blood,” “items that were saturated or dripping with human blood that are now caked 

with dried human blood.,” and “items saturated or dripping with body fluids or caked with dried 

body fluids from persons during surgery.. or other medical procedures” (Commonwealth of 

Pennsylvania 2001).  Interpretation of this definition and the word “saturated” has a profound 

impact on the quantity of regulated medical waste generated (and thus treatment required) as 

well as the potential recyclability of general medical wastes.  In 1988, the General Assembly of 
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the Commonwealth of Pennsylvania determined “that infectious and chemotherapeutic wastes by 

their very nature cannot be recycled” (Casey 1988).  

Another aspect of infectious waste regulation is the seeming dichotomy between 

healthcare institutions and other commercial facilities or households.  While government 

regulators and other organizations produce recommendations for proper domestic disposal of 

needles or “sharps,” there are no recommendations for proper disposal of “items saturated with 

human blood” produced in a domestic or commercial setting; for example, a female restroom.  

This may give rise to the question and further research of what actually constitutes infectious 

waste and whether our current regulatory structure unfairly burdens healthcare facilities due to 

perceptions of health risk of their waste, or whether we are subjecting waste management 

employees and others who may encounter domestic waste to increased infectious risk due to 

improper regulation and handling of household wastes.   
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APPENDIX A 

STATISTICAL ANALYSIS OF HOSPITAL GREEN BUILDING PERFORMANCE 

METRICS 

Appendix A contains supporting data and information related to Chapter 3.0 Effects of Holistic, 

Green Design on Performance of Hospital Facility. 
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Table 16: Children's Hospital Study Pre-Move and Post-Move Structure and Departmental 

Equivalent Spaces (Square Feet) 

Table 16 (continued) 

 
Pre-

Move 
Pre-

Move 
Pre-

Move 
Post-
Move 

Post-
Move 

Post-
Move 

Post-
Move 

Post-
Move  

Name of Department Main DeSoto TOTAL 
(Study) Hospital AOB Centra

l Plant 
Faculty 
Pavilion 

TOTAL 
(Study) 

% 
Diff. 

(pre to 
post) 

EMPLOYEE BENEFITS - 294 294 - 9,900 - - 9,900 3267% 
NON - PATIENT 
TELEPHONE 1,090 1,761 2,851 1,045 - - - 1,045 -63% 

DATA PROCESSING 2,450 - 2,450 10,818 13,525 - 2,200 26,543 983% 

ADMITTING 776 - 776 - - - - - -100% 

CASHIERING  & A/R 543 - 543 - - - - - -100% 

ADMIN. & GENERAL - ALL 3,216 27,042 30,258 130,720 10,070 - 60,289 201,079 565% 
ADMIN & GENERAL  - NON 
RSRCH 260 5,600 5,860 4,566 3,800 - - 8,366 43% 

OPERATION OF PLANT 35,041 27,039 62,080 218,722 4,797 46,390 19,060 288,969 365% 

HOUSEKEEPING 2,508 6,133 8,641 6,297 724 - - 7,021 -19% 

DIETARY - - - 26,073 - - 5,598 31,671 - 

NURSING ADMIN - - - 6,894 - - - 6,894 - 
CENTRAL STERILE & 
SUPPLY - 3,034 3,034 50,998 - - - 50,998 1581% 

PHARMACY 3,364 464 3,828 8,514 - - - 8,514 122% 
MEDICAL RECORDS & 
LIBRARY - 6,537 6,537 5,568 - - - 5,568 -15% 

CHILD LIFE 1,292 - 1,292 3,255 - - - 3,255 152% 

BIO-MED ELECTRONICS - - - 6,071 - - - 6,071 - 

SOCIAL SERVICE 606 - 606 - - - - - -100% 
INTERN & RESIDENT 
OTHER 392 2,106 2,498 - - - 55,743 55,743 2132% 

GENERAL ROUTINE CARE 52,618 25,490 78,108 214,725 - - - 214,725 175% 

INTENSIVE CARE UNIT 12,839 - 12,839 48,691 - - - 48,691 279% 
CORONARY INTENSIVE 
CARE 3,082 - 3,082 12,604 - - - 12,604 309% 

NICU/RCU 5,289  5,289 24,588 - - - 24,588 365% 

OPERATING ROOM 9,474 15,101 24,575 65,167 - - - 65,167 165% 

RECOVERY ROOM - 1,736 1,736 13,109 - - - 13,109 655% 

ANESTHESIOLOGY 210 3,946 4,156 7,243 - - - 7,243 74% 
RADIOLOGY - 
DIAGNOSTIC 8,828 835 9,663 69,801 - - - 69,801 622% 

LABORATORY 184 11,278 11,462 34,933 - - - 34,933 205% 

GASTROENTEROLOGY 774 7,052 7,826 - - - - - - 
BLOOD STORING AND 
PROC. 316 - 316 3,185 - - - 3,185 908% 

AUDIOLOGY - 4,620 4,620 - - - 2,025 2,025 -56% 
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Table 16 (continued) 

RESPIRATORY THERAPY 885 1,746 2,631 4,203 - - - 4,203 60% 

PHYSICAL THERAPY - 5,015 5,015 5,191 - - - 5,191 4% 

OCCUPATIONAL THERAPY - - - 5,191 - - - 5,191 - 

EKG 11,425 561 11,986 36,149 - - - 36,149 202% 

EEG - 2,720 2,720 9,868 - - - 9,868 263% 

UROLOGY - 1,071 1,071 6,726 - - - 6,726 528% 

RENAL DIALYSIS - 730 730 3,103 - - - 3,103 325% 
ALLERGY/INFECTIOUS 
DISEASE - 367 367     - -100% 

DENTAL - 2,519 2,519 6,440 - - 3,122 9,562 280% 

SHORT STAY - 7,218 7,218 13,399 - - - 13,399 86% 

PULMONARY FUNCTION 5,440 122 5,562 4,002 - - - 4,002 -28% 
TRANSPLANT 
PROCUREMENT 1,911 503 2,414 - - - - - -100% 

CHILD DEVELOPMENT - 300 300 - - - - - -100% 

BONE MARROW 4,814 - 4,814 2,298 - - - 2,298 -52% 

NEUROPHYSIOLOGY 957 - 957 - - - - - -100% 
HEMATOLOGY/ 
ONCOLOGY - 9,423 9,423 - - - - - -100% 

CLINIC 6,676 13,848 20,524 22,309 - - - 22,309 9% 

EMERGENCY 2,487 14,339 16,826 58,213 10,799 - - 69,012 310% 

AMBULANCE SERVICES 4,099 - 4,099 14,726 - - - 14,726 259% 
DEVELOPMENT/ 
MARKETING - - - - 351 - - 351 - 

RESEARCH-GCRC 1,217 - 1,217 6,353 - - - 6,353 422% 
OTHER HOSPITAL 
ACTIVITIES - - - 2,137 - - 6,209 8,346 - 

OTHER   - 29,994 21,038 - - 51,032 - 

GRAND TOTAL 185,063 210,550 395,613 1,203,889 75,004 46,390 154,246 1,479,529 274% 
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Table 17: Significance and Percent Change in Children's Hospital Quality Indicators and Metrics 

Between the Old Facility and the New, LEED-certified Facility Based on 2 Sample T-Test or Mann Whitney 

Test; 

ns = not significant, 2SplT = 2 Sample T-Test which compares population means, MW = Mann Whitney 

which compares population medians, USD = United States Dollar, PIB = patient in bed, RN = registered nurse, PCT 

= patient care technician, LOS = length of stay, ADE = adverse drug event, FTE = full time employee, SF = square 

foot, HDD = heating degree day, CDD = cooling degree day 

 

 

Table 17 (continued) 

Category 
of 

Indicator 
Metric Name Frequency 

Pre-
Move 
Count 

Post-
Move 
Count 

Percent 
Change 

Test 
Used P-val 

Ex
pe

ns
e 

Salaries and Wages monthly 22 26 9% MW <.001 
Purchased Personnel 
Expenses – RN monthly 22 26 -70% MW 0.008 
Purchased Personnel 
Expenses - Sitters monthly 22 26 -56% MW <.001 
Total Labor Expenses per 
PIB monthly 22 26 ns 2splT 0.100 
Medical / Surgical Supply 
Expense per PIB monthly 22 26 ns 2splT 0.323 
Total Operating Expenses 
by PIB monthly 22 26 ns 2splT 0.062 
Salaries and Wages 
(2009USD) monthly 22 26 7% MW <.001 
Purchased Personnel - RN 
(2009USD) monthly 22 26 -71% MW 0.007 
Purchased Personnel - 
Sitters (2009USD) monthly 22 26 -57% MW <.001 
Total Labor Expenses per 
PIB (2009USD) monthly 22 26 ns 2splT 0.970 
Medical / Surgical Supply 
Expense per PIB 
(2009USD) monthly 22 26 ns 2splT 0.802 
Total Operating Expenses 
by PIB (2009USD) monthly 22 26 ns 2splT 0.995 
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Table 17 (continued) 

Pr
od

uc
tiv

ity
 

Regular Hours (all staff) monthly 22 26 11% 2splT <.001 
Overtime Hours (all staff) monthly 22 26 ns 2splT 0.280 
Staff Regular Direct Care 
Hours monthly 22 26 10% 2splT <.001 
Purchased Personnel 
Nursing Hours (direct) monthly 22 26 -100% MW 0.003 
Purchased Personnel Sitter 
Hours monthly 22 26 -61% MW 0.003 
Overtime Hours (Direct) monthly 22 26 ns 2splT 0.306 
Total Direct Care Hours per 
PIB monthly 22 26 4% 2splT 0.010 
Total Direct Care 
Productive Hours per PIB monthly 22 26 6% 2splT <.001 
Total Direct Care Hours 
Required monthly 22 26 ns MW 0.268 
RN Productivity monthly 22 26 ns 2splT 0.508 
PCT Productivity monthly 22 26 -7% 2splT 0.001 
Total Direct Care 
Productivity monthly 22 26 ns 2splT 0.081 
Total Paid Hours per PIB monthly 22 26 6% 2splT 0.007 
Percent of Direct Care 
Total Nonproductive Hours monthly 22 26 ns MW 0.145 
RN Percent of Direct Care 
Staff monthly 22 26 ns 2splT 0.310 

Q
ua

lit
y 

of
 C

ar
e 

Average LOS (inpatient 
days) monthly 22 26 4% 2splT 0.004 
Doses Dispensed per Hour monthly 46 35 ns MW 0.067 
Medication Events/1000 
Doses dispensed Reached 
Patient monthly 47 41 ns MW 0.094 
ADE/1000 Doses dispensed 
Near Miss quarterly 7 3 ns MW 0.820 
ADE/1000 Doses dispensed 
Reached Pt, no harm quarterly 7 3 ns MW 0.255 
ADE/1000 Doses dispensed 
Harm quarterly 7 3 ns MW 0.820 
NonADE/1000 Doses 
dispensed Near Miss quarterly 7 3 ns MW 0.172 
NonADE/1000 Doses 
dispensed Reached Pt, no 
harm quarterly 7 3 ns MW 0.362 
NonADE/1000 Doses 
dispensed Harm quarterly 7 3 ns MW 0.494 
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Table 17 (continued) 
# Order/MAR 
Corrections/1000 Doses 
Dispensed quarterly 6 3 -49% MW 0.028 
# Significant Prescribing 
Errors/1000 Doses 
Dispensed quarterly 6 3 ns MW 0.197 
Infection Rate: 
#BSIs/1000line days monthly 52 40 -70% MW <.001 
Case Mix Index (Various 
versions) quarterly 27 11 ns 2splT 0.557 
Number of Cases 
(Mortality) quarterly 21 11 ns MW 0.634 
Actual Mortalities quarterly 21 11 -19% 2splT 0.005 
Expected Mortalities quarterly 21 11 11% 2splT 0.007 
Mortality Rate quarterly 21 11 ns 2splT 0.068 
Mortality Index quarterly 21 11 -28% 2splT <.001 

St
af

f S
at

is
fa

ct
io

n 

Tenure - Total Employees monthly 16 14 5% MW 0.004 
Tenure - less 1 Year monthly 16 14 -8% MW 0.003 
Tenure - 1 - 1.9 Years monthly 16 14 ns MW 0.693 
Tenure - 2 - 4.9 Years monthly 16 14 19% 2splT <.001 
Tenure - 5 - 9.9 Years monthly 16 14 ns MW 0.198 
Tenure - 10 - 14.9 Years monthly 16 14 13% MW 0.001 
Tenure - 15+ Years monthly 16 14 ns MW 0.085 
Time to Fill monthly 18 13 -28% 2splT 0.001 
Turnover - Number of 
Employees monthly 17 7 -25% MW 0.031 
Turnover - Years of Service monthly 17 7 ns MW 0.657 
Vacancy - Number of 
Openings monthly 19 12 -36% 2splT <.001 
Vacancy - Ave Position 
Age (days) monthly 19 12 -30% 2splT <.001 
Admissions monthly 22 26 ns 2splT 0.541 
Total Patients in a Bed monthly 22 26 5% 2splT 0.027 
Average Daily Census monthly 22 26 5% 2splT 0.030 
Vacant RN FTEs monthly 22 26 -61% MW <.001 
Vacancy Rate RN monthly 22 26 -62% MW <.001 
Turnover Rate RN monthly 22 26 ns MW 0.679 
HR Turnover Rate RN monthly 22 26 -43% MW 0.001 
RN Reassigned Hours monthly 22 26 -100% MW <.001 

Q
ua

lit
y 

of
 C

ar
e 
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Table 17 (continued) 

U
til

iti
es

 
Gas/Steam (kBtu) - raw monthly 9 31 86% MW <.001 
Gas/Steam (kBtu) - per SF monthly 9 31 -50% MW <.001 
Gas/Steam - normalized to 
HDD monthly 9 31 ns MW 0.184 
Gas/Steam - normalized to 
CDD monthly 7 22 ns MW 0.373 
Gas/Steam - normalized to 
beds (old) monthly 7 26 25% MW 0.041 
Electric (kWh) - raw monthly 12 31 71% 2splT <.001 
Electric (kWh) - per SF monthly 12 31 -54% 2splT <.001 
Electric - normalized to 
HDD monthly 12 31 ns MW 0.228 
Electric - normalized to 
CDD monthly 10 22 ns MW 0.887 
Electric - normalized to 
beds (old) monthly 12 26 52% MW <.001 
Water (kgal) - per SF monthly 12 36 -64% MW <.001 
Water (kgal) - raw monthly 12 36 35% MW 0.003 
Sewage ($) - per SF monthly 12 36 -77% MW <.001 
Sewage ($) - raw monthly 12 36 ns MW 0.131 

 

 

Comparative Longitudinal Assessment Hospital Metric Definitions in alphabetical order 

• # Order/MAR Corrections/1000 
Doses Dispensed 

Number of corrections to the Medical Administration Record 
per 1000 doses dispensed, averaged over one year 

• # Significant Prescribing 
Errors/1000 Doses Dispensed 

Number of errors in prescriptions per 1000 doses dispensed, 
averaged over one year. Hospitals strive for 0% 

• Actual Mortalities Number of patient deaths in a three month (quarter) period 

• Adverse Drug Event 
(ADE)/1000 Doses dispensed 
Harm 

Ratio of unintended physical injuries due to a preventable 
drug-related error in medical care that required additional 
monitoring, treatment or hospitalization relative to 1000 doses 
dispensed, averaged over one year 

• Adverse Drug Event 
(ADE)/1000 Doses dispensed 
Near Miss 

Ratio of preventable drug-related errors in medical care which 
did not reach the patient relative to 1000 doses dispensed, 
averaged over one year 
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• Adverse Drug Event 
(ADE)/1000 Doses dispensed 
Reached Pt, no harm 

Ratio of preventable drug-related errors in medical care which 
reached the patient and required monitoring or intervention to 
confirm that it resulted in no harm to the patient relative to 
1000 doses dispensed, averaged over one year 

• Admissions Number of patients admitted to Children’s during one month 

• Average Daily Census Monthly average of the number of patients admitted to and 
staying at Children’s in a 24 hour period 

• Average Length of Stay 
(inpatient days) 

Sum of days a person stays at the hospital (date of discharge 
minus the admission date) divided by the number of 
admissions in that month 

• Case Mix Index (Various 
versions) 

A measure of the types of cases handled in a given hospital 
for Medicare reporting requirements, calculated by 
multiplying the number of cases in a specific Diagnosis 
Related Group by that DRG’s relative weight and dividing by 
the total number of DRGs during one quarter (three months) 

• Doses Dispensed per Hour Average hourly quantity of medicine dispensed from the 
pharmacy on a monthly basis 

• Electric - normalized to beds 
(old) 

Quantity of electricity utilized at Children’s in a one month 
period (normalized per number of patient beds) 

• Electric - normalized to CDD Quantity of electricity utilized at Children’s in a one month 
period (normalized per cooling degree day) 

• Electric - normalized to HDD Quantity of electricity utilized at Children’s in a one month 
period (normalized per heating degree day) 

• Electric (kWh) - per SF Quantity of electricity utilized at Children’s in a one month 
period (normalized per square foot of hospital floor area) 

• Electric (kWh) - raw Quantity of electricity utilized at Children’s in a one month 
period  

• Expected Mortalities Number of expected patient deaths based on patient’s 
condition upon admission to hospital in a three month 
(quarter) period 

• Gas/Steam - normalized to beds 
(old) 

Quantity of energy utilized for heating at Children’s in a one 
month period (normalized per number of patient beds) 

• Gas/Steam - normalized to 
CDD 

Quantity of energy utilized for heating at Children’s in a one 
month period (normalized per cooling degree day) 

• Gas/Steam - normalized to 
HDD 

Quantity of energy utilized for heating at Children’s in a one 
month period (normalized per heating degree day) 
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• Gas/Steam (kBtu) - per SF Quantity of energy utilized for heating at Children’s in a one 
month period (normalized per square foot of hospital floor 
area) 

• Gas/Steam (kBtu) - raw Quantity of energy utilized for heating at Children’s in a one 
month period 

• Human Resources Turnover 
Rate RN 

Number of registered nurses leaving their positions at 
Children’s relative to total number of RN positions in a one 
month period 

• Infection Rate: #BSIs/1000line 
days 

Number of cases of blood stream infections as a fraction of 
total number of patients with intravenous lines each day 
averaged over a one month period 

• Medical / Surgical Supply 
Expense per PIB (2009USD) 

Average cost of medical and surgical supplies in a month-
long period based on the number of patients served during 
that month (normalized to the 2009 US dollar) 

• Medication Events/1000 Doses 
dispensed Reached Patient 

Number of dispensing errors as a percentage of total 
prescriptions dispensed at the hospital pharmacy in a one 
month period 

• Mortality Index Actual mortality divided by the expected mortality in a three 
month period. Hospitals strive for a value less than one. 

• Mortality Rate Number of patient deaths relative to total patients admitted in 
a three month (quarter) period 

• Non-Adverse Drug Event 
(ADE)/1000 Doses dispensed 
Harm 

Ratio of unintended physical injuries due to a non-preventable 
drug-related error in medical care that required additional 
monitoring, treatment or hospitalization relative to 1000 doses 
dispensed, averaged over one year 

• Non-Adverse Drug Event 
(ADE)/1000 Doses dispensed 
Near Miss 

Ratio of non-preventable drug-related errors in medical care 
which did not reach the patient relative to 1000 doses 
dispensed, averaged over one year 

• Non-Adverse Drug Event 
(ADE)/1000 Doses dispensed 
Reached Pt, no harm 

Ratio of non-preventable drug-related errors in medical care 
which reached the patient and required monitoring or 
intervention to confirm that it resulted in no harm to the 
patient relative to 1000 doses dispensed, averaged over one 
year 

• Number of Cases (Mortality) Number of patient mortalities in a three month (quarter) 
period 

• Overtime Hours (Direct) Number of hours worked beyond regular hours in a month 
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• Overtime Hours (all staff) Number of hours worked beyond regular hours in a month 

• Patient Care Technician (PCT) 
Productivity 

Number of PCT hours required to provide care (based on 
patient acuity and workload data) divided by the number of 
hours provided in a month long period.  Hospitals strive for a 
value near 100%. 

• Patient in Bed (PIB) See ‘Total Patients in a Bed’ 

• Percent of Direct Care Total 
Nonproductive Hours 

Percent of staff nonproductive hours (paid hours such as sick 
leave, holidays, and vacations) to direct care hours  

• Purchased Personnel Expenses - 
RN (2009USD) 

Total wages and salaries of Children’s temporary registered 
nursing personnel in a month-long period (normalized to the 
2009 US dollar) 

• Purchased Personnel Expenses - 
Sitters (2009USD) 

Total wages and salaries of Children’s temporary baby sitters 
in a month-long period (normalized to the 2009 US dollar) 

• Purchased Personnel Nursing 
Hours (direct) 

Total hours of temporary registered nursing personnel in a 
month-long period (absolute) 

• Purchased Personnel Sitter 
Hours 

Total hours of temporary baby sitters in a month-long period  

• Regular Hours (all staff) Total hours of all Children’s regular staff in a month 

• RN Percent of Direct Care Staff Number of hours worked in direct patient care by registered 
nurses as percent of total direct patient care hours worked by 
hospital staff in a month 

• RN Productivity Number of RN hours required to provide care (based on 
patient acuity and workload data) divided by the number of 
hours provided in a month long period.  Hospitals strive for a 
value near 100% 

• RN Reassigned Hours Number of hours in a month long period an RN works in a 
unit other than the one to which he/she is normally assigned  

• Salaries and Wages (2009USD) Total wages and salaries of all Children’s employees in a 
month-long period (normalized to the 2009 US dollar) 

• Staff Regular Direct Care Hours Number of total direct care hours (hours spent in direct care 
of the patient, exclusive of vacation, sick time, and holiday 
pay) worked by all Children’s staff per month 

• Sewage ($) - per SF Cost of sewage treatment at Children’s in a one month period 
(normalized per square foot of hospital floor area) 

• Sewage ($) - raw Cost of sewage treatment at Children’s in a one month period 
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• Tenure - 1 - 1.9 Years Total number of employees at Children’s with 1-1.9 years of 
service 

• Tenure - 10 - 14.9 Years Total number of employees at Children’s with 10-14.9 years 
of service 

• Tenure - 15+ Years Total number of employees at Children’s with  more than 15 
years of service  

• Tenure - 2 - 4.9 Years Total number of employees at Children’s with 2 to 4.9 years 
of service (absolute) 

• Tenure - 5 - 9.9 Years Total number of employees at Children’s with 5 to 9.9 years 
of service (absolute) 

• Tenure - less 1 Year Total number of employees at Children’s with less than one 
year of service (absolute) 

• Tenure - Total Employees Total number of employees at Children’s (absolute) 

• Time to Fill Average number of days in which a position filled during a 
month-long period had previously been open 

• Total Direct Care Hours per PIB Number of direct care hours (hours spent in direct care of the 
patient, exclusive of vacation, sick time, and holiday pay) 
worked by Children’s employees per month divided by the 
number of patients in a bed during that month 

• Total Direct Care Hours 
Required 

Number of direct care hours (hours spent in direct care of the 
patient, exclusive of vacation, sick time, and holiday pay) 
required per month based on patient acuity and workload data 

• Total Direct Care Productive 
Hours per PIB 

Number of direct care hours worked by Children’s employees 
per month divided by the number of patients in a bed during 
that month. Direct care hours are hours spent in direct care of 
the patient, exclusive of vacation, sick time, and holiday pay. 
Productive direct care hours also usually include per diem and 
traveler agency nurses with direct care responsibilities, and 
excludes nurses on orientation, nurse managers, and other 
nurses who do not have direct care assignments such as 
charge nurses 

• Total Direct Care Productivity Number of direct care hours required (based on patient acuity 
and workload data) divided by the number of hours provided 
in a month long period.  Direct care hours are hours spent in 
direct care of the patient, exclusive of vacation, sick time, and 
holiday pay.  Hospitals strive for a value near 100% 

181 



• Total Labor Expenses per PIB 
(2009USD) 

Average cost of Children’s staff in a month-long period based 
on the number of patients served during that month 
(normalized to the 2009 US dollar) 

• Total Operating Expenses by 
PIB (2009USD) 

Average cost of Children’s hospital in a month-long period 
based on the number of patients served during that month 
(normalized to the 2009 US dollar) 

• Total Paid Hours per PIB Hours paid to Children’s employees in a month per PIB 
including vacation, sick, and holiday time 

• Total Patients in a Bed A hospital inpatient, a one day observational patient, a one 
day observational patient who is admitted, or an outpatient in 
a bed during a month-long period 

• Turnover - Number of 
Employees 

Number of employees leaving their positions at Children’s in 
a one month period (absolute) 

• Turnover - Years of Service Total years of service of all employees leaving their positions 
at Children’s in a one month period 

• Turnover Rate RN Number of registered nurses leaving their positions at 
Children’s in a one month period relative to the total number 
of positions 

• Vacancy - Ave Position Age 
(days) 

Average age of positions opened during a month-long period 

• Vacancy - Number of Openings The total number of open positions during a one month period 

• Vacant RN FTEs The total number of open Registered Nurse Full Time 
Employee positions in a one month period 

• Vacancy Rate RN Number of unfilled registered nurse positions at Children’s 
relative to the total number of RN positions in a one month 
period 

• Water (kgal) - per SF Quantity of water utilized at Children’s in a one month period 
(normalized per square foot of hospital floor area) 

• Water (kgal) - raw Quantity of water utilized at Children’s in a one month period 
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APPENDIX B 

DATA COLLECTION AND ANALYSIS METHODS FOR LIFE CYCLE ASSESSMENT 

OF HYSTERECTOMIES 

Appendix B contains figures, tables, data, and other supporting information for Chapter 4.0 

Evaluating Environmental Impacts of Medical Procedures: Life Cycle Assessment of Birthing an 

Infant and Chapter 5.0 Environmental Impacts of Advancing Surgical Technologies: Life Cycle 

Assessment of Hysterectomies.  Waste audit procedural information can be found in Section B.1 

and information related to the life cycle assessment can be found in Section B.2.  For supporting 

information and data related to Monte Carlo uncertainty assessment, refer to Appendix Section 

B.3. 
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B.1 WASTE AUDIT PROCEDURES 

 

Figure 38: Waste Auditing Procedural Directions Given to Each Auditor 

184 



 

Figure 39: Waste Audit Procedure Graphical Directions for Sorting MSW 
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Figure 40: Material Identification Guide for Weighed Materials in MSW, p1 
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Figure 41: Material Identification Guide for Weighed Materials in MSW, p2 
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Figure 42: Material Identification Guide for Counted Materials in MSW, p1 
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Figure 43: Material Identification Guide for Counted Materials in MSW, p2 
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B.2 DATA COLLECTION AND ANALYSIS TABLES 
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Table 18: Machines and Surgical Equipment in Operating Rooms for Hysterectomies at Magee-

Womens Hospital; Green cells = variable electrical draw equipment; Blue cells = equipment found in robotic operating room 

No. in 
OR 

Machine Name Manufacturer Purpose W total 

1 Surgical clippers Allegiance Electric razor 0 

1 Photosmart D5460 Printer HD Printer 0 

1 Endoscopy 40L High Flow Insuflator Stryker Insuflator (CO2 into abdomen) 65 

1 L9000 LED Light  Stryker Viewing surgery 

1 1288 HD High Def Camera Stryker Viewing surgery 

1 Exera CLV-160 Scope Olympus Viewing surgery 

3 HDTV Surgical Display (WiSe) Stryker TV for surgical displays 270 

2 Computer tower HP For doctors to pull up charts 168 

2 Computer monitor HP For nurses to pull up charts 62 

1 HD Radio Sony music 15.8 

1 Ranger Blood and Fluid Warming 
System 

Arizant Health warms IV fluids 1.6 

1 MP90 Monitor (anesthesia) Philips anesthesia machine 160 

1 MP90  Philips anesthesia machine 

1 G5 Gas Monitor Philips anesthesia machine 

1 Aestiva 5 Datex / Ohmeda anesthesia machine 

1 Computer monitor & tower HP anesthesia machine 102 

1 Amsco 3085 SP Steris Surgical Table 9 

1 Solutions Warmer OR Solutions tray for warming tools in fluid 164 

1 SCD Express Kendall vascular refill detection/leg 
compression 

2.9 

1 WarmAir Cincinati Subzero warm air machine (for drapes) 866.14 

1 Neptune 2 Ultra Stryker Removes patient fluids 710 

1 G400 Workstation (orange)   PK Maryland 45 

1 part of above workstation (white) Ethicon Endo-Surgery enseal 41 

1 Force Triad Valleylab ligasure machine 63.4 

1 Force FXc Valleylab Bovie grounding pad 14.5 

1 unidrive GYN - endoscope STORZ     
1 Morcellator Ethicon / Gynecare morcellator   
2 Robot Surgeon Console Intuitive DaVinci Robot 1932 

1 Robot Patient Cart Intuitive DaVinci Robot 966 

1 Robot Vision Cart Intuitive DaVinci Robot 1380 

1 Robot ISI Core Intuitive DaVinci Robot 650 

1 Robot Illuminator Intuitive DaVinci Robot 0 

1 Robot DoCo Intuitive DaVinci Robot 100 
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Table 19: Life Cycle Inventory Databases and Processes Chosen for Hysterectomy Materials found in 

MSW 

Table 19 (continued) 
     

Material 
Type 

LCI 
Database 

Production Process 
Name 

LCI 
Database 

Disposal Process Name 

Cotton ecoinvent 
unit process 

Textile, woven cotton, at 
plant/GLO U 

ecoinvent 
unit 
process 

Disposal, inert material, 
0% water, to sanitary 
landfill/CH U 

PVC ecoinvent 
unit process 

Polyvinylchloride, at 
regional storage/RER U 

ecoinvent 
unit 
process 

Disposal, 
polyvinylchloride, 0.2% 
water, to sanitary 
landfill/CH U 

HDPE ecoinvent 
unit process 

Polyethylene, HDPE, 
granulate, at plant/RER 
U 

ecoinvent 
unit 
process 

Disposal, polyethylene, 
0.4% water, to sanitary 
landfill/CH U 

LDPE ecoinvent 
unit process 

Polyethylene, LDPE, 
granulate, at plant/RER 
U  

ecoinvent 
unit 
process 

Disposal, polyethylene, 
0.4% water, to sanitary 
landfill/CH U 

PU Foam ecoinvent 
unit process 

Polyurethane, flexible 
foam, at plant/RER S 

ecoinvent 
unit 
process 

Disposal, polyurethane, 
0.2% water, to sanitary 
landfill/CH U 

PP modified 
ecoinvent 
unit process 

SMS PP Disposable 
Gown - with energy and 
materials from C. Ponder 
dissertation 

ecoinvent 
unit 
process 

Disposal, polypropylene, 
15.9% water, to sanitary 
landfill/CH U 

Styrofoam ecoinvent 
unit process 

Polystyrene, general 
purpose, GPPS, at 
plant/RER U 

ecoinvent 
unit 
process 

Disposal, polystyrene, 
0.2% water, to sanitary 
landfill/CH U 

Stainless 
Steel 

ecoinvent 
unit process 

Stainless steel hot rolled 
coil, annealed & pickled, 
elec. arc furnace route, 
prod. mix, grade 304 
RER U 

ecoinvent 
unit 
process 

Disposal, steel, 0% 
water, to inert material 
landfill/CH U 

Aluminum USLCI Aluminum, secondary, 
shape casted/RNA 

ecoinvent 
unit 
process 

Disposal, aluminium, 0% 
water, to sanitary 
landfill/CH U 

Isoprene ecoinvent 
unit process 

Synthetic rubber, at 
plant/RER U 

ecoinvent 
unit 
process 

Disposal, plastics, 
mixture, 15.3% water, to 
sanitary landfill/CH U 
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Table 19 (continued) 
Nitrile USLCI Polybutadiene, at 

plant/RNA 
ecoinvent 
unit 
process 

Disposal, plastics, 
mixture, 15.3% water, to 
sanitary landfill/CH U 

Neoprene ecoinvent 
unit process 

Synthetic rubber, at 
plant/RER U 

ecoinvent 
unit 
process 

Disposal, plastics, 
mixture, 15.3% water, to 
sanitary landfill/CH U 

Rubber ecoinvent 
unit process 

Synthetic rubber, at 
plant/RER U 

ecoinvent 
unit 
process 

Disposal, plastics, 
mixture, 15.3% water, to 
sanitary landfill/CH U 

Paper ecoinvent 
unit process 

Kraft paper, bleached, at 
plant/RER U 

ecoinvent 
unit 
process 

Disposal, paper, 11.2% 
water, to sanitary 
landfill/CH U 

Paperboard ecoinvent 
unit process 

Solid bleached board, 
SBB, at plant/RER U 

ecoinvent 
unit 
process 

Process-specific burdens, 
sanitary landfill/CH U 

Glass ecoinvent 
unit process 

Packaging glass, white, 
at plant/RER U 

ecoinvent 
unit 
process 

Disposal, glass, 0% 
water, to inert material 
landfill/CH U 

Wood USLCI Plywood, at plywood 
plant, US SE/kg/US 

ecoinvent 
unit 
process 

Process-specific burdens, 
sanitary landfill/CH U 

Complex 
Instruments 
(Sharps) 

EIO-LCA Sector # 339112: 
Surgical and Medical 
Instrument 
Manufacturing  

EIO-LCA Sector #562000: Waste 
management and 
remediation services 
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Table 20: Additional LCI Databases and Processes 

Material Type LCI Database Process Name 
Chemo/Path Waste 
(Uterus) 

ecoinvent unit 
process 

Disposal, biowaste, 60% H2O, to 
municipal incineration, allocation 
price/CH U 

Waste Transport ecoinvent unit 
process 

1 tkm Transport, lorry 16-32t, 
EURO3/RER S (of project Ecoinvent 
system processes) 

Recycling ecoinvent unit 
process 

Recycling PP/RER U 

Recycling ecoinvent unit 
process 

Recycling PET/RER U 

Recycling ecoinvent unit 
process 

Recycling PS/RER U 

Reusable Linens ecoinvent unit 
process 

Textile, woven cotton, at plant/GLO U 

Stainless Steel 
Surgical 
Instruments 

ecoinvent unit 
process 

Stainless steel hot rolled coil, annealed 
& pickled, elec. arc furnace route, prod. 
mix, grade 304 RER U 

Laundry Detergent ecoinvent unit 
process 

Sodium perborate, tetrahydrate, powder, 
at plant/RER S 

Electricity  modified 
USLCI 

Electricity PA mix 

Natural Gas USLCI Natural gas, combusted in industrial 
equipment/RNA 
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Table 21: Variable Electrical Draw OR Machines 

Surgery Type Wattage (W) Vaginal Abdominal Laparoscopic Robotic 
Patient ID Idle Use - 

Average 
Ave. 
Time 
in Use 

% of 
Total 

Surgery 

Ave. 
Time 
in Use 

% of 
Total 

Surgery 

Ave. 
Time in 

Use 

% of 
Total 

Surgery 

Ave. 
Time 
in Use 

% of 
Total 

Surgery 
Warmer Temp (°C)     43   43   43   43   
Warmer Time 
(hr:min) 

- 866 1.83 100% 2.57 100% 2.69 100% 2.70 100% 

PK Time (min:sec) 45 86 0.00 0% 0.00 0% 4.43 3% 10.19 6% 
Monopolar Bovie 
(min:sec) 

14.5 95 1.63 1% 6.49 4% 3.09 2% 4.55 3% 

Ligasure 37cm 
(min:sec) 

63.4 123 2.57 2% 0.37 0% 0.00 0% 0.00 0% 

Endoshear (min:sec) 41 116 0.00 0% 0.00 0% 0.82 1% 3.60 2% 
Surgical Table 9 - 0.50 0% 0.50 0% 0.50 0% 0.50 0% 
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Table 22: Distributions of MSW Materials Weighed during Waste Auditing; LN =Lognormal MEV = Most Extreme Value; No Dist = No 

distribution (assumed an average); Para. = Parameter 

  Abdominal Hysterectomy Vaginal Hysterectomy Laparoscopic Hysterectomy Robotic Hysterectomy 
Material Dist. Type Para. 

1 
Para. 2 Dist. Type Para. 1 Para. 2 Dist. 

Type 
Para. 1 Para. 2 Dist. 

Type 
Para. 1 Para. 

2 

Gowns Normal 1.096 0.563 Normal 1.38 0.445 Normal 1.46 0.324 Normal 1.2871 0.354 
Blue Drape No Dist. 0.42 0 Normal 0.39 0.196 Normal 0.51 0.43 No Dist. 0.32 0 
Blue Towels, 
Clean Gauze 

No Dist. 1.009 0 No Dist. 0.807 0 No Dist. 0.54 0 No Dist. 0.709 0 

CSR Blue Wrap No Dist. 0.346 0 No Dist. 0.189 0 Normal 1.34 0.562 Normal 0.98 0.442 
Purple Gloves Normal 0.117 0.068 Normal 0.082 0.055 LN -2.259 0.3731 Normal 0.12 0.044 
Tan Gloves Normal 0.162 0.038 Normal 0.153 0.063 Normal 0.21 0.071 No Dist. 0.2695 0 
Blue Gloves Normal 0.083 0.062 LN -2.406 0.6773 LN -2.508 0.5962 Normal 0.055 0.032 
Green Gloves No Dist. 0.004 0 No Dist. 0.01 0 No Dist. 0.005 0 No Dist. 0.009 0 
Rubber No Dist. 0.042 0 No Dist. 0.035 0 No Dist. 0.029 0 Normal 0.08 0.027 
Hard Plastic (#5) LN -1.73 0.6504 No Dist. 0.2734 0 LN -1.988 0.6052 No Dist. 0.615 0 
Soft Plastic  No Dist. 0.508 0 No Dist. 0.5107 0 No Dist. 0.693 0 No Dist. 1.432 0 
Styrofoam No Dist. 0.023 0 No Dist. 0.032 0 No Dist. 0.018 0 No Dist. 0.047 0 
PU Foam No Dist. 0.004 0 No Dist. 0.005 0 No Dist. 0.11 0 Normal 0.43 0.235 
Cardboard/ 
Paperboard 

LN -3.23 1.2096 No Dist. 0.0571 0 MEV 0.149 0.118 Normal 0.1156 0.053 

Glass Normal 0.14 0.139 Normal 0.23 0.18 Normal 0.16 0.138 Normal 0.2451 0.198 
Paper Normal 0.35 0.131 No Dist. 1.237 0 Normal 0.362 0.111 No Dist. 2.337 0 
Syringes Normal 0.088 0.034 LN -2.268 0.9233 Normal 0.16 0.079 Normal 0.12 0.048 
Aluminum/ Metal LN -2.77 0.5402 No Dist. 0.06 0.045 LN -3.324 0.6075 Normal 0.05 0.018 
IV Bags MEV 0.038 0.057 MEV 0.068 0.069 Normal 0.07 0.065 No Dist. 0.0453 0 
Wood No Dist. 0.002 0 No Dist. 0.002 0 No Dist. 0.002 0 Normal 0 0.002 
Metal (Non-
Aluminum) 

No Dist. 0 0 No Dist. 0.004 0 No Dist. 0.001 0 No Dist. 0.001 0 
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Figure 44: Individual Distribution Identification Test Results for Gowns in Robotic Hysterectomies; Distributions were selected where the 

Anderson Darling (AD) value was greater than 0.05 and preference was given to Normal, Lognormal, and Most Extreme Value (in that order) 
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Figure 45: Graphical Results of Individual Distribution Identification Test Results for Gowns in Robotic Hysterectomies; Distributions were 

selected where the Anderson Darling (AD) value was greater than 0.05 and preference was given to Normal, Lognormal, and Most Extreme Value (in that order) 
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Table 23: Partial Selection of Cost Data of Surgical Instruments for Laparoscopic Hysterectomy 

Cases Based off of Peel Packs Removed from MSW and Magee Purchasing Information in 2012 US dollars 

 

 

Figure 46: Cost Distribution of Surgical Instruments for Each Laparoscopic Hysterectomy Case 

Based off of Peel Packs Removed from MSW and Magee Purchasing Information in 2002 US Dollars 

 

Peel Packs Average Case 1 Case 2 Case 3 Case 4 Case 5
5.5 mm Pediport 53$          -$       -$       74$        74$        74$        
Endoshears 39$          -$       56$        -$       56$        56$        
Enseal trio (5 mm) 306$        445$      445$      445$      445$      -$       
Auto suture Bluntport plus 5-12mm 28$          -$       -$       50$        50$        50$        
Carter-thomason closesure system 55$          -$       -$       110$      110$      -$       
New wave surgical adv L/S care kit 18$          -$       40$        40$        -$       40$        
Versa-port plus v2 5-12mm 18$          -$       -$       -$       41$        -$       
5.5 mm pediport 21$          -$       111$      -$       -$       -$       
Gyrus Pk Lyons dissecting forceps 41$          -$       -$       -$       -$       -$       
Ligature blunt tip L/S sealer/divider 5mm - 37cm 54$          -$       -$       -$       -$       435$      
10 mm endo clip -$         -$       -$       -$       -$       -$       
15mm Storz morcellator handle 42$          -$       -$       -$       -$       -$       
5 mm covidien SIL5 hook -$         -$       -$       -$       -$       -$       
Auto suture 5.5mm trocar with gas port 1$            -$       -$       -$       -$       -$       
Auto suture step 14 G insufflation needle 1$            -$       -$       -$       -$       -$       
Autosure skin stapler single use -$         -$       -$       -$       -$       -$       
Endocatch gold - 10mm 4$            -$       -$       -$       -$       -$       
Gyrus plamsa spatula 22$          -$       -$       -$       -$       -$       
L-Hook Con Med -$         -$       -$       -$       -$       -$       
Lapra T4: L/S suture clip applier (ethicon) -$         -$       -$       -$       -$       -$       
Ligature V - vessel sealing - 5 mm 25$          -$       -$       -$       -$       -$       
Ligature 49$          -$       -$       -$       -$       -$       
Versa step 12 plus 3$            -$       -$       -$       -$       -$       

total 780$       445$      652$      719$      776$      655$      
High 1,561$    
Low 437$       
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Table 24: Average Cost Data of Surgical Instruments for Robotic Hysterectomy Cases Based off of 

Peel Packs Removed from MSW and Magee Purchasing Information in 2012 US dollars 

 

 

Figure 47: Cost Distribution of Surgical Instruments for Each Robotic Hysterectomy Case Based off 

of Peel Packs Removed from MSW and Magee Purchasing Information in 2002 US dollars 

 

 

Peel Packs Average Case 1 Case 2 Case 3 Case 4 Case 5
8 mm bladeless obturator (da Vinci) 17$             25$             -$      25$        25$        -$      
8 mm cannula seal (intuitive) 10$             15$             15$        15$        15$        15$        
Auto suture Bluntport plus 5-12mm 33$             50$             -$      50$        -$      50$        
Auto suture step 14 G insufflation needle 8$               15$             15$        -$      15$        15$        
Versa step 12 plus 17$             -$           -$      -$      41$        41$        
Carter-thomason closesure system 28$             -$           -$      -$      110$      -$      
XCEL bladeless trocar 12mm 10$             -$           -$      -$      41$        -$      
8 mm LONG bladeless obturator (da Vinci) 2$               -$           -$      -$      -$      -$      
Auto suture 120mm surgineedle 3$               -$           -$      -$      41$        -$      
Auto Suture Pediport 3$               -$           -$      -$      -$      -$      
Auto Suture Versa Step 3$               -$           -$      -$      -$      -$      
Auto Suture Versa Step (LONG) 3$               -$           -$      -$      -$      -$      
daVinci cautery spatula tip, 5mm 17$             -$           -$      -$      -$      -$      
daVinci lrg 8mm needle driver (stainless stee -$            -$           -$      -$      -$      -$      
Disposable nevessory kit 4-arm (intuitive sur 22$             260$           -$      -$      -$      -$      
Gynecare morcellex tissue morcellator 56$             -$           -$      -$      670$      -$      
Versa-port plus v2 5-12mm 3$               41$             -$      -$      -$      -$      
Versastep plus 12 mm 3$               -$           41$        -$      -$      -$      
ROBOTIC TOOLS - PK dissecting forceps 48$             48$             48$        48$        48$        48$        
ROBOTIC TOOLS - monopolar scissors 320$           320$           320$      320$      320$      320$      
ROBOTIC TOOLS - caudiere graspers 200$           200$           200$      200$      200$      200$      
ROBOTIC TOOLS - needle drivers 440$           440$           440$      440$      440$      440$      

total 1,247$       1,414$        1,079$   1,098$   1,966$   1,129$   
High 1,966$       
Low 1,079$       
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Figure 48: Monte Carlo Assessment Calculations and Flowchart 
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Figure 48 (continued) 
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B.3 MONTE CARLO SCRIPTS FOR MATLAB 

%Function takes matrix X and returns a column vector of values based on the 
%distribution flags and parameters in each row. Mode flag is 0=median, 
%1=random 
  
function P = calcdist(X,mode) 
  
P = zeros(size(X,1),1); 
  
if mode==1 %Random 
    for i=1:size(X,1) 
        if X(i,1) >= 0 %static 
            P(i) = X(i,2); 
        elseif X(i,1) == -1 %lognormal 
            P(i) = random('logn',X(i,2),X(i,3)); 
        elseif X(i,1) == -2 %binomial 
            int = rand; 
            if int<=X(i,2) 
                P(i) = 1; 
            elseif int<=X(i,3)+X(i,2) 
                P(i) = 2; 
            else 
                P(i) = 3; 
            end 
        elseif X(i,1) == -3 %uniform 
            P(i) = random('unif',X(i,2),X(i,3)); 
        elseif X(i,1) == -4 %triangular, mid, low, high 
            P(i) = trirnd(X(i,2),X(i,3),X(i,4),1); 
        elseif X(i,1) == -5 %normal 
            P(i) = random('norm',X(i,2),X(i,3)); 
        elseif X(i,1) == -6 %Weibull 
            P(i) = random('wbl',X(i,2),X(i,3)); 
        elseif X(i,1) == -7 %Extreme value 
            P(i) = random('ev',X(i,2),X(i,3)); 
        elseif X(i,1) == -8 %logistic 
            P(i) = random('logistic',X(i,2),X(i,3)); 
        end 
    end 
elseif mode==0 %median 
    for i=1:size(X,1) 
        if X(i,1) >= 0 %static 
            if numel(X) >1 
                P(i) = X(i,2); 
            else 
                P(i) = X(i,1); 
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            end 
        elseif X(i,1) == -1 %lognormal 
            P(i) = icdf('logn',.5,X(i,2),X(i,3)); 
        elseif X(i,1) == -2 %binomial 
            [~,P(i)] = max(X(i,:)); 
            P(i) = P(i)-1; 
        elseif X(i,1) == -3 %uniform 
            P(i) = (X(i,3)+X(i,2))/2; 
        elseif X(i,1) == -4 %triangular, mid, low, high 
            P(i) = X(i,2); 
        elseif X(i,1) == -5 %normal 
            P(i) = X(i,2); 
        elseif X(i,1) == -6 %Weibull 
            P(i) = icdf('wbl',.5,X(i,2),X(i,3)); 
        elseif X(i,1) == -7 %Extreme value 
            P(i) = icdf('ev',.5,X(i,2),X(i,3)); 
        end 
    end 
end 
 
 

Figure 49: MATLAB Script to Defining Random Number Generating Function for Monte Carlo 

Assessment of Hysterectomy Data 
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Figure 50: MATLAB Script to Run Monte Carlo Assessment of Hysterectomy Data 
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Figure 50 (continued) 
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Figure 50 (continued) 
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APPENDIX C 

ENVIRONMENTAL IMPACTS OF HYSTERECTOMIES AND VARIATION IN 

RESULTS BY IMPACT CATEGORY 

This Appendix presents graphical results of Monte Carlo Assessments of 4 types of 

hysterectomies. Each graph represents the contribution of components of the hysterectomy to a 

specific environmental impact. 

 

 

 

Figure 51: Range in Life Cycle Ozone Depletion Potential of Components of Four Types of 

Hysterectomies; Does not include recycling. 
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Figure 52: Range in Life Cycle Smog Formation Potential of Components of Four Types of 

Hysterectomies; Does not include recycling. 

 

 

 

Figure 53: Range in Life Cycle Acidification Potential of Components of Four Types of 

Hysterectomies; Does not include recycling. 
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Figure 54: Range in Life Cycle Human Health Carcinogenic Impacts of Components of Four Types 

of Hysterectomies; Does not include recycling. 

 

 

 

Figure 55: Range in Life Cycle Human Health Non-Carcinogenic Impacts of Components of Four 

Types of Hysterectomies; Does not include recycling. 
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Figure 56: Range in Life Cycle Respiratory Impacts of Components of Four Types of 

Hysterectomies; Does not include recycling. 

 

 

211 



 

Figure 57: Range in Life Cycle Ecotoxicity Impacts of Components of Four Types of Hysterectomies; 

Does not include recycling. 

 

 

 

Figure 58: Range in Life Cycle Cumulative Energy Demand of Components of Four Types of 

Hysterectomies; Does not include recycling. 
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