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The global energy demand is projected to increase by 77% from 2006 to 2030 along with a 

projected 38% increase in freshwater withdrawal for cooling in power industry. Finding 

alternative sources of water for cooling has become essential for future energy generation in 

thermoelectric power plants because of water scarcity in many parts of the US. Treated 

municipal wastewater is considered as one of the most promising alternative water sources 

because of its geographic distribution and abundant quantity. However, its impaired water 

quality makes the cooling tower management more challenging. Therefore, effective approaches 

are required to prevent scaling, corrosion, and biological growth to promote the reuse of treated 

municipal wastewater as cooling water in power plants.  

This study focuses on understanding mineral scale formation and developing effective 

mitigation methods when using tertiary treated municipal wastewater as power plant cooling 

makeup. Two types of tertiary-treated municipal wastewater that were evaluated included 

secondary-treated water with pH adjustment (MWW_pH) and water from secondary-treatment 

followed by nitrification and sand filtration (MWW_NF). Laboratory-scale studies and pilot-

scale cooling systems were used to evaluate mineral scaling formation and inhibition on non-

heated surfaces (e.g., pipelines, tower packing, etc.) under conditions relevant to full-scale 

cooling systems. Results showed that pH adjustment to 7.8 plus the addition of 5 ppm 

polymaleic acid (PMA) could reduce the scaling significantly with MWW_pH. MWW_NF 
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exhibited little scaling potential, which is related in part to the lower pH and alkalinity in this 

water. Amorphous calcium phosphate (ACP) was the primary form of mineral scale on non-

heated surface with the above two-types of tertiary-treated municipal wastewater.  

A bench-scale experimental system was designed to simulate the condenser surface to 

study the impacts of mineral scaling on the heated surfaces and the effectiveness of proposed 

scaling control strategies under these conditions. Heated surface favored the formation of 

hydroxyapatite (HAP), the most thermodynamically stable calcium phosphate, was the main 

reason for the crystalline fouling with MWW_pH at pH 7.8. 10 ppm PMA addition could 

suppress the crystalline fouling of MWW_pH at 7.8 to a low level by inhibiting the 

transformation of amorphous calcium phosphate to hydroxyapatite during the test period. 

Significant crystalline fouling was identified with MWW_NF at pH 7.2 while pH adjustment to 

7.8 resulted in negligible fouling.  

The impact of flow velocity on particle deposition was analyzed in a quantitative model, 

showing positive deposition potential for bulk precipitates at flow velocity of 0.5 and 0.4 m/s 

while little particulate fouling was theoretically predicted at 0.6 m/s in the test situation. Bench-

scale studies were consistent the model prediction, confirming that the model could be used to 

identify optimal hydrodynamic conditions to control depositions of bulk precipitates.  

The mechanism of calcium phosphate scale control by common antiscalants included 

PMA and 1-hydroxyethane 1,1-diphosphonic acid (HEDP) was elucidated to provide scientific 

background for the effective scaling mitigation when treated municipal wastewater is used as 

make-up in thermoelectric power plant cooling systems. Both PMA and HEDP inhibited the 

transformation of ACP to HAP by preventing the aggregation of ACP particles. However, PMA 
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dispersed the ACP particles mainly through electrostatic repulsive force while hydration force 

was hypothesized to be the reason for the function of HEDP in dispersion. 

The key findings of this study indicate that it is possible to control mineral scaling 

through direct chemical addition at proper operating conditions when treated municipal 

wastewater is used as makeup water in the recirculating cooling system. This study not only 

evaluated scaling control methods in cooling systems, but also revealed the fundamentals of 

scaling formation and inhibition. 
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1.0  INTRODUCTION 

Water availability represents a growing concern for meeting human needs in the future. It is 

estimated that more than 60% of the world’s population will lack access to an adequate supply 

by 2025, largely in Asia, Africa, and Latin America (Feeley et al., 2008). The U.S. is also not 

immune from water supply problems. As water use is increasing every year, at least 36 states are 

anticipating local, regional, or statewide water shortages by 2013, even under non-drought 

conditions (EPA, 2008). In response to the water scarcity issue, wastewater reuse is recognized 

as an environmentally sound approach for sustainable water management. 

Among the major freshwater users in the US, thermoelectric power generation has 

recently become the top user (201 Bgal/day or 49% of total water withdrawals). Each kilowatt-

hour (kWh) of the thermoelectric generation requires the use of approximately 25 gallons of 

water, which is primarily for cooling purposes (Feeley et al., 2008). As population growth and 

economic development continue to increase the demand for electric power, it is necessary to 

ensure a reliable and abundant water source for thermoelectric power generation. However, 

freshwater shortages and the competing demand from other water uses will increase pressure on 

power plants to reduce water consumption and adopt wastewater reuse. Several cases in arid 

areas, such as Arizona and Texas, have shown that lack of available cooling water sources can 

result in suspension in operation of existing power plants and delay construction of new power 

plants (Feeley and Ramezan, 2003; Dishneau, 2007). 

 1 



Power plant cooling demands large quantities of relatively low quality water when 

compared to other uses of water (e.g., drinking and food production). Therefore, alternative 

sources to replace freshwater for cooling system operation are likely to be in great demand in the 

near future. Among all the alternatives, treated municipal wastewater (MWW) is a promising 

candidate for power plant cooling due to its widespread availability and consistent quality (Li et 

al., 2011a; EPRI, 2008). Use of treated MWW as make-up water for cooling in power plants has 

been in full-scale operation for several decades (Osborn, 1970; Humphris, 1977; Rebhun and 

Engel, 1988; Wijesinghe et al., 1996). However, these power plants typically use treated MWW 

only as a fraction of the total makeup water needed or only after significant additional treatment 

before addition to the recirculating cooling systems (Wijesinghe et al., 1996; Li et al., 2011a). 

Few studies have focused on the feasibility of using treated MWW as the dominant makeup 

water with or without additional prior treatment.   

The main challenges when using MWW as cooling system makeup are scaling, corrosion, 

and biofouling (biological growth) due to impaired water quality (Wijesinghe et al., 1996; Selby 

et al., 1996; Puckorius, 2003; Vidic, 2009). The term “scaling” is generally used to describe the 

collection and growth of unwanted inorganic salts which increases both pressure drop and 

resistance to heat transfer in the cooling systems (Neufeld et al., 1985). The scaling problem 

would be exacerbated under typical recirculating cooling tower operations (i.e., elevated 

temperature and evaporative loss of water that leads to concentration of minerals). Because of 

the negative environmental impacts, traditional once-through cooling water systems are 

discouraged and recirculating cooling water systems are the only option for new or repermitted 

thermoelectric power plants (Reynolds, 1980). 

 2 



Mineral scaling could be prevented in a number of ways. For mineral deposits that are 

pH-dependent, like calcium carbonate, acid addition can reduce the pH and alkalinity in the 

recirculating systems and thus lower the formation potential of some mineral scales. However, 

increased corrosion rates would occur at lower pH (Troup and Richardson, 1978). Physical water 

treatment (PWT) methods, including magnetic fields, electric fields, alteration of surface charges 

of water, and mechanical disturbance for scaling control have been reported in bench-and pilot-

scale studies (Cho et al., 2004). However, the effect of the PWT on the mineral scaling is still 

questionable in real practice (Troup and Richardson, 1978). Up to now, addition of chemicals 

that serve as antiscalants is still the most effective approach for mitigating mineral scaling (Al 

Nasser et al., 2011). 

Although there is abundant experience with scaling inhibition in freshwater, scaling 

control for treated MWW used as makeup for cooling systems is rather challenging due to its 

complicated water chemistry. Most antiscalants that have been proven effective in freshwater 

may not be as effective in treated MWW (Li et al., 2011b). In order to advance the reuse of the 

treated MWW as cooling water in power plants, it is necessary to develop and implement sound 

scaling control technologies for different types of treated MWW. 

 

1.1 RESEARCH OBJECTIVES 

This study aims to investigate the use of treated municipal wastewater where freshwater is not 

readily available for power plant cooling systems. To evaluate the feasibility of using this 

impaired water source for cooling, specific goals of this study were to advance the fundamental 
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understanding of scaling behavior of treated municipal wastewater under conditions relevant to 

cooling tower operation and to develop effective approaches for mineral scaling inhibition. In 

order to fulfill these major goals, experimental investigations were conducted to achieve the 

following specific objectives: 1) determine the main scaling mechanism and effective mitigation 

methods for heated and non-heated surfaces in bench-scale studies; 2) understand the role of 

hydrodynamic conditions on the scaling processes; 3) study the effectiveness and mechanism of 

common antiscalants on mineral scale formation relevant to MWW reuse as makeup in 

recirculating cooling systems; and 4). validate the findings from bench-scale studies in extended 

pilot-scale cooling tower tests. 

 

 

1.2 SCOPE OF THE DISSERTATION 

This dissertation incorporates three journal manuscripts and is presented in five chapters. The 

core of the dissertation consists of Chapters 2, 3, and 4, which include major findings of this 

study.  

The present chapter (Chapter 1) introduces the background and motivation of the study. 

Two types of tertiary-treated municipal wastewaters, namely secondary-treated MWW 

with pH adjustment (MWW_pH) and secondary-treated MWW subjected to nitrification and 

sand filtration (MWW_NF) were evaluated as the sole source of make-up water for recirculating 

cooling systems. Chapter 2 demonstrated the mineral scaling on non-heated surfaces (e.g., 

pipelines, tower packing, etc.) with MWW and MWW_NF in recirculating cooling systems. 
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Batch-, bench-, and pilot-scale studies were conducted to determine the effective scaling 

mitigation methods and test their compatibility with corrosion and biofouling control methods in 

the integrated chemical regimen. This chapter has been published in Water Research (Liu et al., 

2012). 

Chapter 3 addresses the scaling on condenser tube surfaces (fouling) when MWW_pH or 

MWW_NF is used as the sole make-up water for recirculating cooling systems. A bench-scale 

recirculating system equipped with a cartridge heater was designed to simulate the heat 

exchanger surface for fouling investigation. Effects of mineral scaling on the heat transfer 

efficiency deterioration were studied in the customized test system. Bench-scale tests were also 

conducted to determine chemical control methods and operational strategies to mitigate scale 

buildup on heated surfaces. This chapter has been submitted for publication (Liu et al., 2013a). 

Chapter 4 examines the function of common antiscalants on the calcium phosphate 

precipitation. Calcium phosphate scales were encountered in numerous wastewater reuse and 

water treatment processes but only limited guidance could be found in literature. In batch tests, a 

combined analysis of bulk chemistry, precipitates mineralogy, and surface characteristics was 

conducted to obtain insights into inhibition mechanisms of common antiscalants on calcium 

phosphate scale formation. This chapter will be submitted for publication soon (Liu et al., 

2013b). 

Chapter 5 summarizes the original contributions, major findings, and conclusions of this 

work. Specific future work that can be carried out from this dissertation is also provided in this 

chapter. 
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Appendix A compares the tenacity of mineral scales through the surface crystallization 

and particle deposition by analyzing the forces acting on the individual scale particles, which 

enhances the understanding on the mineral scaling process. 

Appendix B shows the reproducibility of the fouling resistance measurement from the 

bench-scale recirculating system for fouling studies. Two independent tests were conducted and 

compared to verify the reliability of the results in Chapter 3. 

Appendix C studies the effects of TOC removal in a fixed bed granular active carbon 

(GAC) adsorber on scaling behavior of wastewater from secondary treatment followed by 

nitrification and filtration.  

The main contents in each chapter are summarized in Table 1.1: 

Table 1.1 Main contents in each chapter of this study 

Section Main contents 
Chapter 1 Background and motivation 
Chapter 2 Scaling control on non-heated surfaces 
Chapter 3 Scaling control on heated surfaces 
Chapter 4 Function mechanism of common antiscalants on calcium phosphate precipitation 
Chapter 5 Conclusion and summary 

Appendix A Comparison between the crystalline fouling and particulate fouling 
Appendix B Reproducibility of the fouling resistance measurement 
Appendix C Effects of TOC removal on scaling behavior of treated municipal wastewater 
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2.0  SCALING MITIGATION ON NON-HEATED SURFACES WITH TREATED 

MUNICIPAL WASTEWATER AS MAKEUP IN RECIRCULATING COOLING SYSTEMS 

This work has been published as: 

Liu, W., Chien, S.H., Dzombak, D., Vidic, R. (2012) Mineral scaling mitigation in cooling 
systems using tertiary-treated municipal wastewater. Water Research, 46(14), pp.4488-
4498. 
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Treated municipal wastewater (MWW) is recognized as a significant potential source of cooling 

water for power generation. One of the key challenges for the successful use of the effluent from 

wastewater treatment facilities for cooling is the potential for significant mineral scaling when 

the raw water is concentrated as much as 4-6 times in recirculating cooling systems. Previous 

bench- and pilot-scale tests (Li et al., 2011b) have shown that commonly used phosphorus- and 

polymer- based scaling inhibitors are ineffective when secondary-treated municipal wastewater 

(MWW) is used as makeup. In this study, two types of tertiary-treated municipal wastewaters, 

namely secondary-treated MWW with pH adjustment (MWW_pH) and secondary-treated MWW 

subjected to nitrification and sand filtration (MWW_NF) were evaluated as the sole source of 

make-up water for recirculating cooling systems. Both laboratory studies and pilot-scale tests 

revealed that adjusting the pH to 7.8 could reduce the mineral scaling rate by more than 80% 

without causing any significant corrosion problems. In contrast to MWW, where calcium 

carbonate was the dominant scaling mineral, the main component of mineral scale in MWW_pH 

was calcium phosphate. Both static and dynamic bench-scale tests indicated that scaling would 

not be a significant concern when MWW_NF is used as the make-up water in recirculating 

cooling systems operated at 4-6 cycles of concentration (CoC).  Extended pilot-scale studies 

confirmed that MWW_NF is suitable makeup water for power plant cooling systems and that no 

anti-scaling chemicals would be required. 
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2.1 INTRODUCTION 

Secondary treatment is the most common method for municipal wastewater treatment in the U.S. 

Secondary-treated MWW is characterized by low to moderate content of total suspended solids 

(TSS) and organic matter, but moderate to high content of dissolved solids, alkalinity, and 

hardness. Under typical recirculating cooling conditions (i.e., elevated temperature and 

evaporative loss of water), a significant concern when using secondary MWW is the potential for 

severe mineral scaling. Among methods used to prevent scale formation and deposition, 

antiscalants have been proven effective when traditional water source (i.e. fresh water) was 

employed in cooling systems (Shakkthivel and Vasudevan, 2006; Moudgil et al., 2009). 

However, their effectiveness can be seriously compromised when secondary-treated MWW is 

used instead. Among common antiscalants, phosphate- or phosphonate- based agents could react 

with calcium ions to form insoluble precipitates and exacerbate the scaling problem, especially in 

concentrated MWW with high concentration of calcium and phosphate (Selby et al., 1996; 

Zhang et al., 2010). In a previous study by Li et al. (2011b), carboxylic polymers, like 

polymaleic acid (PMA), have been shown to significantly reduce the scaling in bench-scale tests 

with synthetic secondary-treated MWW. However, these antiscalants were not as effective 

during extended pilot-scale tests with real secondary-treated MWW. Therefore, development and 

demonstration of effective scaling control approaches are needed for treated MWW to advance 

the reuse of this water source for power plant cooling. 

Previous studies have shown that the major mineral scales formed in recirculating cooling 

systems using secondary-treated MWW as make-up water are calcium carbonate and to a lesser 

extent calcium phosphate (Li et al., 2011b). Chemical species distribution for these precipitation 
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reactions is highly dependent on the solution pH.  It is reasonable to assume that lowering the 

solution pH should lower the formation of the inorganic precipitates by lowering alkalinity and 

thus lowering the driving force for scale formation. However, concerns like enhanced corrosion 

rates would arise at lower pH (Troup and Richardson, 1978; Hsieh et al., 2010). Although the 

impact of pH reduction on scaling control is well known, proper acid dosing and the combined 

effects of acid addition and other chemical treatment programs, such as antiscalants, corrosion 

inhibitors and biocides, in cooling systems using tertiary-treated MWW have not been 

investigated before.  

It has been reported that the ammonia concentration in the secondary-treated MWW can 

be as high as 10 to 30 mg-N/L (Selby et al., 1996). Biological nitrification processes for 

ammonia removal have been adopted by many wastewater treatment plants faced with more 

stringent discharge requirements (Office of Water Programs at California State University 

Sacramento, 2009). From the prospective of mineral scaling control, tertiary treatment of the 

MWW by nitrification would depress the pH and alkalinity and thus reduce the scaling 

propensity in recirculating cooling systems (Metcalf & Eddy, 2004). There are currently no 

studies that offer guidance on the scaling behavior of tertiary-treated MWW when used as make-

up water in recirculating cooling systems.  

The focus of this study was on mineral deposition on pipes and tower packing at bulk 

water conditions when tertiary-treated MWW is used as the sole make-up water. Types of 

tertiary treatment considered were pH adjustment (MWW_ pH) and nitrification followed by 

sand filtration (MWW_NF). Batch tests and bench-scale recirculating system studies were 

conducted to determine the desired pH range and the synergism between pH adjustment and 
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antiscalant addition on scaling mitigation when using MWW_pH as make-up water in 

recirculating cooling systems. In addition, the precipitation and deposition potential of 

secondary-treated MWW subjected to nitrification and sand filtration (MWW_NF) was also 

studied under well-controlled laboratory conditions. Pilot-scale cooling tower tests were then 

conducted to evaluate the applicability of selected scaling mitigation strategies in the field and to 

test their compatibility with corrosion and biofouling control methods in the integrated chemical 

regimen for tertiary-treated MWW reuse in recirculating cooling systems. 

 

2.2 MATERIALS AND METHODS 

2.2.1 Municipal wastewater 

Secondary-treated MWW (biological trickling filter followed by secondary clarification) from 

Franklin Township Sanitary Authority, Murrysville, PA, was used in pilot-scale tests and as a 

model for typical secondary-treated municipal effluent (Metcalf & Eddy, 2004). Key 

characteristics of this water and the tertiary-treated MWW_NF water (secondary treatment 

followed by nitrification and sand filtration) from the same wastewater treatment facility are 

shown in Table 2.1. 

 Typical operation of a recirculating cooling system will concentrate the feed water as 

much as 4-6 times due to evaporative losses in the system. A synthetic wastewater (Table 2.2) 

was prepared to represent secondary-treated MWW at 4 cycles of concentration (CoC 4) in terms 
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of its mineral content for detailed investigation in laboratory tests (Li et al., 2011b). Chemical 

composition of synthetic MWW_NF at CoC 4 for laboratory studies is also shown in Table 2.2. 

Both synthetic waters were prepared based on the characteristics of the actual wastewaters 

shown in Table 2.1. 

Table 2.1 Key water quality parameters of Franklin Township Municipal Sanitary Authority (Murrysville, PA) 
secondary treated effluent (Sampled on September 3, 2008) 

Analyte Unit Result Detection limit 
 MWW MWW_NF  

Ca mg/L 42 39.7 5 
Cu mg/L 0.028 0.17 0.025 
Fe mg/L 0.5 0.31 0.1 
K mg/L 16.3 15.8 5 

Mg mg/L 10.7 9.8 5 
Na mg/L 94 78 5 

SiO2 mg/L 8.54 7 1.07 
NH3 mg N/L 21.0 1.42 0.5 
NO3 mg N/L 3.6 18.1 0.1 
Cl mg/L 106 96.3 10 

SO4 mg/L 86 83.1 1 
Total P mg P/L 4.5 12 0.5 

pH  7.1 6.7  
HCO3 Alkalinity mg CaCO3/L 177 25.4 5 
Total Alkalinity mg CaCO3/L 177 25.4 5 

BOD mg/L 32 5.8  
TOC mg/L 27 8.7 1 
TDS mg/L 661 474 10 
TSS mg/L 24.5 20.8 5 

Conductance mS/cm 1.03 0.87 0.01 
Notes: MWW (secondary treated municipal wastewater, biological trickling filter followed by secondary 
clarification); MWW_NF (tertiary treated municipal wastewater, nitrification and sand filtration after secondary 
treatment). 
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Table 2.2 Chemical composition of synthetic MWW and MWW_NF at 4 cycles of concentration (CoC 4) for batch- 

and bench-scale experiments 

Cation Concentration (mM) Anion Concentration (mM) 
MWW MWW_NF MWW MWW_NF 

Ca2+ 7.60 4.00 SO4
2- 2.84 3.50 

Mg2+ 7.16 1.60 HCO3
- 13.44 1.60 

Na+ 26.88 9.80 Cl- 31.13 11.20 
K+ 0.70 0.48 PO4

3- 0.21 0.48 
NH4

+ (as N) 7.01 - NO3
- (as N) 1.20 - 

Notes: MWW (secondary treated municipal wastewater, biological trickling filter followed by secondary 
clarification); MWW_NF (tertiary treated municipal wastewater, nitrification and sand filtration after secondary 
treatment). 

 

 

2.2.2 Laboratory experimental systems 

Precipitation behavior of MWW_ pH at CoC 4 was first studied in a 1.4 L beaker covered with 

plastic wrap to minimize water loss due to evaporation. The contents in the beaker were 

completely mixed with a magnetic stirrer and the bulk temperature was controlled at 40°C 

(typical bulk temperature of power plant recirculating cooling water) using the heating plate. The 

experiments were always initiated by adding all the salts listed in Table 2.2 except for CaCl2. For 

the tests intended to study the impact of pH on precipitation behavior of MWW_ pH at CoC 4, 

the solution pH was then lowered to 6.8 with 0.5 M hydrochloric acid (previous tests have shown 

that there will be no immediate bulk precipitation at pH 6.8) followed by the addition of CaCl2. 

pH of the synthetic solution was then adjusted and maintained at a desired pH with 0.5 M 

hydrochloric acid or 0.5 M sodium hydroxide. The effectiveness of polymaleic acid (PMA, Kroff 

Chemical Company, Pittsburgh, PA) as a model antiscalant on the precipitation was tested by 

adding it to the solution before the addition of any salts. 
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Precipitation behavior in the beaker was monitored by withdrawing 5 mL of the solution 

at predetermined intervals. The water sample was filtered through a 0.45 µm membrane and 

immediately acidified to pH< 2 with concentrated HNO3. Calcium and phosphate concentrations 

were determined by atomic absorption spectroscopy and the molybdate/ascorbic acid method 

(American Public Health Association et al., 2005), respectively. Mg concentration was not 

monitored because previous study (Li et al., 2011b) has shown that Mg precipitation was 

negligible. Precipitated solids were collected, washed with DI water, and air-dried for subsequent 

petrographic and chemical characterization.  

A bench-scale recirculating system (Figure 2.1) was used to investigate the deposition 

behavior of MWW_ pH and MWW_NF under different scaling mitigation strategies. Synthetic 

treated MWW and MWW_NF were used for reproducible solution chemistry. Mineral mass 

deposited on stainless steel (SS) discs (5.61 cm2) was monitored to track the scaling process. 

Temperature was controlled at approximately 40°C (105°F), and flow rate through the system 

was maintained at 11.4 L/min (3 gpm) to achieve flow velocity of 0.66 m/s (2.18 ft/s) and 

Reynolds number of 1.9×104.  

The crystalline characteristics of the solids were analyzed by x-ray diffraction (XRD, PW 

1830, Philips Analytical Inc., Natick, MA) with Cu Kα radiation. Once the diffraction patterns 

were obtained, both manual matching of the peak positions and a computer-aided search for the 

compounds were performed. The morphology of the precipitates was inspected using Scanning 

Electron Microscopy (SEM, Philips XL30, FEI Co., Hillsboro, OR) and the elemental 

compositions of selected sample were determined by Energy Dispersive X-ray Spectroscopy 

(EDS, EDAX Inc., Mahwah, NJ). 

 

 14 



 

Figure 2.1 Schematic diagram of bench scale recirculating system 

 

2.2.3 Pilot-scale cooling tower tests 

Field tests with pilot-scale cooling towers were conducted at the Franklin Township Municipal 

Sanitary Authority (FTMSA, Murrysville, PA) using three pilot-scale cooling towers. The design 

and operation of the pilot-scale cooling towers is reported elsewhere (Chien et al., 2012a). The 

field tests were conducted with treated MWW and MWW_NF to test the optimal scaling 

mitigation strategies that were identified from bench-scale experiments and their compatibility 

with corrosion and biofouling control methods in the integrated chemical regimen when using 

tertiary-treated MWW as make-up water in recirculating cooling systems. All three towers were 

operated at CoC 4-6, using a target flow velocity of 0.66 m/s (2.18 ft/s). The temperature of 

water entering the tower was about 40°C (105°F) and leaving the tower was about 35°C (95°F). 

The cooling towers were tested for two consecutive 60-day periods from May 2010 to 

September 2010. In each test period, three towers were operated side by side and the chemical 

addition for the control of biofouling and corrosion was implemented together with the scaling 

control program. In previous tests, tolyltriazole (TTA) showed effective corrosion inhibition for 
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copper and copper alloys while phosphorous-based corrosion inhibitors were largely removed by 

precipitation (Hsieh et al., 2010). PMA reduced scaling significantly in the absence of chlorine 

(biocides) when synthetic secondary-treated MWW at CoC 4 was recirculated at bench-scale 

systems but was only partially effective in the presence of chlorine (Li et al., 2011b). Pre-formed 

monochloramine (MCA) was found to be less aggressive than free chlorine while still being an 

effective biocide (Chien et al., 2012b). Thus, TTA was selected for corrosion control and MCA 

was selected for biofouling control in these pilot-scale cooling tower tests. The chemical 

inhibitor dosing used in tests with MWW_ pH and MWW_NF are shown in Table 2.3. Pilot-

scale tests with MWW_ pH were used to study the impact of TTA on corrosion inhibition and 

effectiveness of different biocides (free chlorine or MCA) for biofouling control (Table 2.3). 

Cooling tower A in the pilot-scale test with MWW_NF was used as a control with biocide 

addition only, while cooling towers B and C were used to compare the effectiveness of TTA at 

different concentrations for corrosion control (Table 2.3). The results of biofouling and corrosion 

control studies are reported separately (Chien et al, 2012b; Choudhury et al., 2012). pH control 

was maintained using an automated system consisting of pre-calibrated pH probe with pH 

controller, and a solenoid valve.   

Similar to the bench-scale recirculating system tests, stainless steel discs were used to 

provide collecting surfaces for scaling/deposition and were withdrawn at predetermined time 

intervals to monitor the scaling process. One important difference between the scaling studies 

with synthetic treated MWW in the laboratory and real treated MWW in the field is the biomass 

growth on SS discs used in the field tests. Therefore, the SS discs were first placed at 104°C for 

3.5 hours to dry and then at 500°C for 3.5 hours to remove volatile organic component of the 

deposit. The inorganic deposits on selected SS disc specimens were analyzed by SEM/EDS to 
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obtain their elemental composition. In parallel with the solids analysis, important information 

about the chemistry of the makeup and recirculating water was recorded throughout the field 

tests. 

Table 2.3 Chemical composition of synthetic MWW and MWW_NF at 4 cycles of concentration (CoC 4) for batch- 
and bench-scale experiments 

Make-up 
water 

Chemical CTA CTB CTC Function Dosing 
location 

MWW_pH TTA, mg/L as 
dose 

2 5 5 Anti-
corrosion 

Makeup 
water tank 

PMA, mg/L as 
dose 

5 5 5 Anti-scaling Makeup 
water tank 

MCA, mg/L as 
residual 

3~4 3~4 - Biocide Basin 

FC, mg/L as TC 
residual 

- - 3~4 Biocide Basin 

pH control NC 7.0 and 
then 7.8 

7.0 and 
then 7.8 

Anti-scaling Basin 

MWW_NF TTA, mg/L as 
dose 

0 2 4 Anti-
corrosion 

Makeup 
water tank 

PMA, mg/L as 
dose 

0 5 5 Anti-scaling Makeup 
water tank 

MCA, mg/L as 
residual 

2~3 2~3 2~3 Biocide Basin 

Notes: MWW (secondary treated municipal wastewater, biological trickling filter followed by secondary 
clarification); MWW_NF (tertiary treated municipal wastewater, nitrification and filtration after secondary 
treatment); TTA (Tolyltriazole); PMA (Polymaleic acid); MCA (Monochloramine); FC (Free chlorine); TC (Total 
chlorine).; NC = no pH adjustment; CTA (cooling tower A); CTB (cooling tower B); CTC (cooling tower C). 

 

2.3 RESULTS AND DISCUSSION 

2.3.1 Precipitation reactions in solution: batch tests 

Batch tests with synthetic MWW_pH (CoC 4) at pH 8.4, 8.2, 7.8, 7.4, and 7.0 (MWW_pH) were 

conducted at 40°C and the residual Ca and phosphate concentrations are plotted as a function of 

time on Figure 2.2. As can be seen in Figure 2.2, Ca and phosphate concentrations in the 
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synthetic secondary-treated MWW were sensitive to pH in the range of 8.4 to 7.8. Typically, 

lower pH resulted in the increase in solution concentration. Phosphate precipitation was 

essentially complete in less than 10 minutes when pH was above 7.8 and lowering pH to 7.4 

extended the reaction time to about 1 hour. Soluble Ca and phosphate concentrations at pH 7.0 

remained almost unchanged throughout the test, suggesting that maintaining the pH of synthetic 

MWW_ pH at 7.0 would prevent precipitation of calcium carbonate and calcium phosphate for at 

least 3 hours. 

 

 

 

Figure 2.2  Residual Ca and phosphate concentrations in batch tests with synthetic secondary-treated MWW (CoC 4) 
as a function of time at typical cooling water temperature (40°C) when pH was maintained at 8.4, 8.2, 7.8, 7.4, and 
7.0. The data represent mean values based on triplicate measurements with relative standard deviation (%RSD) of 
Ca and phosphate concentration measurements within ±5.2% and ±3.1%, respectively. 
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XRD analysis (Figure 2.3) showed that magnesian calcite was the main crystalline 

components of the precipitates from the synthetic secondary-treated MWW at pH 8.4, 8.2, and 

7.8. Magnesian calcite is generally formed by the coprecipitation of MgCO3 and CaCO3 and 

contains small but variable amounts (less than 5%) of MgCO3 in solid solution (Thorstenson and 

Plummer, 1977). Comparison of the XRD patterns at these pH conditions revealed that the peaks 

of magnesian calcite decreased with pH reduction. Maintaining the pH at 7.4 could totally inhibit 

the formation of magnesian calcite as evidence by the absence of its characteristic peaks in XRD 

spectra. Morphology of amorphous calcium phosphate was observed in SEM images (Chesters, 

2009) and EDS analysis verified that the precipitates were mainly composed of Ca and P with a 

small amount of Mg and C incorporated (Figure 2.4). 

 

 

 

Figure 2.3 XRD pattern of the precipitates from batch tests with synthetic secondary-treated MWW (CoC 4, 40°C) 
when pH was maintained at pH 8.4, 8.2, 7.8, and 7.4 
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Figure 2.4 SEM image and the elemental composition of the precipitates from batch tests with synthetic secondary-
treated MWW (CoC 4, 40°C) when pH was maintained at pH 7.4. EDS scan was performed on the area outlined by 
the square box on the SEM image 
 
 
 
 

Morphology of precipitates formed in the batch tests is shown in the SEM images on 

Figure 2.5. Only “broccoli-like” minerals were identified in the precipitates formed from the 

synthetic secondary-treated MWW (CoC 4) at pH 8.2. Normally, three polymorphs of CaCO3 

could form in the absence of biological activity: calcite with rhombohedral shape (Wu et al., 

2010), aragonite with needle-like shape (Hardikarl and Matijevic, 2001), and spherical vaterite 

(Hou and Feng, 2006). However, the morphology of the precipitates formed in these tests could 

not be recognized as either of these polymorphs. The incorporation of Mg ions into the lattice of 

calcite would poison the side faces of calcite and allow the crystals to grow in the c-axis 

direction, producing elongated morphology rather than equant crystals with rhombohedral shape 

(Folk, 1974; Davis et al., 2000). It is thus concluded that broccoli-like minerals in Figure 2.5(a) 

were clusters of single elongated calcite crystals (Swietlik et al., 2011). When pH was lowered to 

7.8, two predominant morphologies were observed in the SEM images (Figure 2.5 (b)): 

amorphous minerals and “broccoli-like” minerals.  
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Figure 2.5 SEM images of precipitates from batch tests with synthetic secondary-treated MWW (CoC 4, 40°C) 
when pH was maintained at different value: (a) pH 8.2; (b) pH 7.8 

                  

 
 

 

Based on the results of water analysis and solids characterization by XRD and SEM/EDS, 

it can be concluded that magnesian calcite and amorphous calcium phosphate are the main 

precipitates formed by the synthetic MWW_ pH (CoC 4) at typical cooling water temperature 

(40  ) when the pH was maintained at 8.4, 8.2, and 7.8. In addition, magnesian calcite was more 

predominant than calcium phosphate at pH 8.4 and 8.2. When pH was reduced to 7.8, amorphous 

calcium phosphate became more prominent (Figure 2.5(b)). Further pH reduction to 7.4 

completely inhibited the formation of magnesian calcite, leaving calcium phosphate as the only 

mineral scale. Therefore, the formation of calcium phosphate is a critical issue when using 

secondary-treated MWW as the sole source of make-up water, because it precipitates very 

quickly (less than 10 min when pH is above 7.8) and is not as sensitive to pH adjustment as 

magnesian calcite.  

Batch tests were also conducted to evaluate the combined effects of PMA addition and 

pH control on mineral precipitation. PMA doses of 5 ppm, 7 ppm, and 10 ppm were added to 

synthetic MWW_ pH (CoC 4) when the pH was maintained at 8.4 or 7.8. Residual Ca and 
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phosphate concentrations were monitored as a function of time as shown in Figure 2.6. At pH 

8.4, both calcium and phosphate concentrations were slightly elevated by the addition of PMA, 

revealing that PMA had minimal impact on precipitation propensity of minerals and associated 

increase in the solubility of the scaling species. Fairly limited increase in solubility was also 

observed at pH 7.8 (Figure 2.6 (b)). In addition, amorphous calcium phosphate dominated the 

solids characterization spectra collected at pH 7.8 as evidence by the absence of distinct XRD 

peaks (data not shown) and EDS analysis of precipitates on Figure 2.7. Adsorption of the PMA 

molecules at the active sites on the surface of pre-critical nuclei would prevent the growth of the 

crystals beyond the pre-critical size and formation of stable magnesian calcite (Meldrum and 

Hyde, 2001). The residual phosphate concentration measurement showed that the precipitation of 

calcium phosphate was still significant at pH 7.8 (Figure 2.6(b)). It should be noted that 

increasing the PMA dosage at both pH conditions did not result in precipitation inhibition.  
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(a) 

 

(b) 

Figure 2.6 Residual Ca and phosphate concentrations in batch tests with synthetic secondary-treated MWW (CoC 4) 
as a function of time at typical cooling water temperature (40°C) when 0, 5, 7, and 10 ppm PMA was dosed at 
different pH: (a) 8.4; (b) 7.8. 
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Figure 2.7 SEM images of precipitates from batch tests with synthetic secondary-treated MWW (CoC 4, 40°C) 
when pH was maintained at 7.8 with the addition of 5 ppm PMA 

 

 

 

No visual precipitate was observed during the first 2 hours of the batch test with synthetic 

MWW_NF at CoC 4 without any pH adjustment. However, as the solution equilibrated with 

atmosphere and pH increased from 6.8 to 7.6, it turned turbid after about 2 hours. Residual Ca 

and phosphate concentrations also decreased with the development of turbidity (Figure 2.8) and 

reached steady state after 14 hours. Solids characterization revealed that the precipitates were 

mainly in the form of amorphous calcium phosphate. These results suggest that when MWW_NF 

is used as make-up water in recirculating cooling systems operated at CoC 4, no magnesian 

calcite would be expected and calcium phosphate would be the primary mineral scale. 

 

 

 

 

 24 



 

Figure 2.8 Residual Ca and phosphate concentrations in batch tests with synthetic MWW_NF (CoC 4) as a function 
of time at typical cooling water temperature (40°C). The data represent mean values based on triplicate 
measurements with relative standard deviation (%R RSD) of Ca and phosphate concentration measurements within 
±4.3% and ±2.6%, respectively. 

 

 

2.3.2 Bench-scale recirculating system tests 

A series of experiments in a bench-scale recirculating system was conducted to test the 

effectiveness of scaling control strategies on mineral deposition from flowing synthetic MWW. 

The scaling control strategies were designed based on the results from the batch tests. Scaling 

behavior of the synthetic MWW_ pH under different scaling control strategies is shown in Figure 

2.9(a). 

Mass gain on the disc specimen exposed to recirculating synthetic MWW_ pH at pH 8.4 

developed quickly and reached 1.6 mg in 24 hours. Although total mineral deposits accumulated 

after 48 hours were nearly the same with or without the addition of PMA, the addition of PMA 

significantly delayed the scaling process. The PMA can function as colloid dispersant through 
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electrostatic and/or steric interactions to keep mineral particles dispersed in aqueous suspension 

and render them less prone to deposition (Eriksson et al., 2007; Li et al., 2011b). Lowering the 

pH to 7.8 reduced the deposition of mineral scales by about 50%. Under these conditions, the 

dosage of 5 ppm PMA not only reduced the scaling rate but also decreased the final mass gain on 

the stainless steel disc from 0.89 mg to 0.43 mg. pH adjustment to 7.0 was the most effective 

method for scaling control as evidenced by minimal scale accumulation in 72 hours. 

 

 

 

 
 

(a) 
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(b) 

Figure 2.9 Scaling behavior of synthetic MWW under different scaling control strategies in bench-scale 
recirculating system tests: (a) MWW_pH ; (b) MWW_NF. The bulk water temperature and flow velocity was 
maintained at 40°C and 0.6 m/s respectively. Error bars indicate the data range of measurements from duplicate 
tests. The bulk water temperature and flow velocity were maintained at 40°C and 0.6 m/s respectively. Error bars 
indicate the data range of measurements from duplicate tests. 

 

Figure 2.10 depicts morphologies of mineral deposits on stainless disc specimens 

collected from bench-scale recirculating system tests. At pH 8.4 (Figure 2.10(a)), the 

morphology of magnesian calcite dominated on the disc specimen (Swietlik et al., 2011). 

However, the minerals did not grow in clusters as in batch tests but formed separately and thus 

appeared as needle-like structures. Addition of 5 ppm PMA to the system operated at pH 8.4 

(Figure 2.10(b)) made it difficult to identify well-developed magnesian calcite thereby, revealing 

the role of PMA as crystal distorter in the deposition inhibition.  Adjusting the pH to 7.8 (Figure 

2.10(c)) decreased the percentage of magnesian calcite and amorphous deposits appeared on 

SEM images. Only amorphous solids (Figure 2.10(d)) were identified on the collector surface 

when pH was controlled around 7.8 and 5 ppm PMA was added to recirculating water. 
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Figure 2.10 SEM images of the mineral deposits collected on the stainless disc specimens from bench-scale 
recirculating system tests under different scaling mitigation strategies: (a) pH control at 8.4; (b) pH control at 8.4 
plus 5 ppm PMA; (c) pH control at 7.8; (d) pH control at 7.8 plus 5 ppm PMA 
 

 

Bench-scale recirculating system tests with MWW_NF (Figure 2.9(b)) revealed 

negligible deposits on the disc specimens during 72 hours, indicating that MWW_NF exhibited 

little potential for mineral deposition. Such behavior is related in part to the lower pH and 

alkalinity in the MWW_NF. It is thus difficult to assess the effectiveness of PMA in scaling 

control for MWW_NF because very small amounts of deposits were formed even without PMA. 
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2.3.3 Pilot-scale studies with tertiary-treated MWW 

2.3.3.1 MWW_pH 

In the pilot-scale cooling tower tests with MWW_ pH as the make-up water source, recirculating 

water in all three towers was dosed with about 5 ppm PMA as scaling inhibitor.  In addition, pH 

in Towers B and C was initially adjusted to pH 7.0 by adding 0.1 M H2SO4 because batch and 

bench-scale recirculating system tests revealed that pH control at 7.0 could totally inhibit the 

precipitation and deposition of mineral scales from the synthetic MWW at CoC 4. However, 

serious corrosion of the copper coil employed in the heating section occurred as evidenced by the 

presence of green copper oxide retained on the 0.45 µm filter paper after filtering the 

recirculating water in Tower B on day 9 (Figure 2.11).  Copper concentrations in the 

recirculating water in Towers B and C on days 2, 4, and 9 were all above 2 mg/L and reached as 

high as 48 mg/L in Tower B on day 9.  It is well known that ammonia is a critical component in 

secondary-treated MWW that can attack copper and form soluble complexes (Strmčnik et al., 

2009). Significant reduction in ammonia concentration in all pilot-scale cooling tower was 

always observed due to air stripping during wastewater recirculation (Rebhum and Engel, 1988; 

Hsieh et al., 2010). However, the efficiency of ammonia stripping was reduced at lower pH and 

high concentration of ammonium ions thus contributed to significant corrosion rates and 

considerable Cu concentration in the recirculating water. Consequently, target pH in Towers B 

and C was elevated to 7.8 and 0.05 M H2SO4 was used to control the pH in the recirculating 

water starting on day 12. Monitoring of Cu concentration during the following test period (0.8-

2.0 mg/L in Tower B and 0.8-1.4 mg/L in Tower C) revealed that the corrosion of the copper coil 

was reduced with the new pH control procedure. 
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Figure 2.11 “Green deposits” retained on 0.45 µm filter paper after filtering the recirculating water in Tower B on 
day 9 in pilot scale tests with MWW_pH at pH 7.0 

 

 

Images of the test coupons collected from the three pilot-scale cooling towers with 

MWW_pH as makeup on day 58 are shown in Figure 2.12. Figure 2.13 depicts the time course 

of inorganic scale deposition in the three cooling systems during the tests with MWW_pH.  The 

total mass of the inorganic deposits on day 58 in Tower A was as high as 11.57 mg, while the 

mass gains in Towers B and C were only 0.61 and 1.80 mg, respectively.  It is clear that just 

adding 5 ppm PMA failed to mitigate scaling in Tower A. Significant reduction in the inorganic 

deposition was observed with pH adjustment in Towers B and C. Furthermore, use of 

monochloramine as biocide in Tower B resulted in even lower scale accumulation as compared 

to Tower C where free chlorine was used for biofouling control. This finding is in agreement 

with the previous related study which revealed enhanced PMA oxidation with free chlorine when 

compared to monochloramine (Li et al., 2011b).    
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            (a)                                                 (b)                                                 (c) 

 
Figure 2.12 Coupons collected from pilot-scale cooling towers tests with MWW_pH on  day: (a) Tower A (5 ppm 
PMA for scaling control); (b) Tower B (5 ppm PMA and pH adjustment for scaling control); (c) Tower C (5 ppm 
PMA and pH adjustment for scaling control) 

 

 

 

 

Figure 2.13 Inorganic deposit mass measurements in the pilot-scale cooling tower tests with MWW_pH 
 

 

 

 

 31 



Water samples from the recirculating loop of each cooling tower operated at steady state 

were analyzed for key constituents. Previous study with MWW revealed that calcium carbonate 

was the dominant mineral scale on the sampling discs with a small amount of magnesium and 

calcium phosphate (Li et al., 2011b). Langelier Saturation Index (LSI), which is widely used to 

estimate the scaling potential of calcium carbonate in cooling towers, was calculated based on 

the quality of the recirculating water (EPRI, 2003; Sheikholeslami, 2004) for all three towers 

operated with MWW_pH. LSI calculations revealed that the recirculating water in Tower A had 

significant calcium carbonate precipitation potential while there was no scaling propensity in 

Tower B on most of the sampling days (Table 2.4). The scaling tendency in Tower C was a bit 

more erratic and the LSI value was close to zero with positive values on several sampling days.  

Table 2.4 Langelier Saturation Index (LSI) of the recirculating water in Towers A, B and C in pilot-scale tests with 
MWW_ pH 

Day 
Langelier Saturation Index (LSI)a 

Tower A 
(PMA=5 ppm) 

Tower B 
(pH=7.8, PMA= 5 ppm) 

Tower C 
(pH=7.8, PMA= 5 ppm) 

2 0.80 -0.64 -2.55 
9 1.17 -1.48 0.25 

16 1.46 -0.04 -0.36 
23 0.82 -0.64 0.29 
30 1.61 -0.12 0.59 
37 0.41 -0.36 0.05 
44 0.95 -0.58 -0.70 
58 1.05 0.22 0.41 

a If LSI is negative, there is no potential to form scale and the water will dissolve CaCO3; if LSI is positive, scale 
can form and CaCO3 precipitation may occur; if LSI is close to zero, the water is neutral with respect to scale 
formation;   
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Comparison of orthophosphate concentrations in the make-up water and recirculating 

water for all three towers operated with MWW_pH is shown in Figure 2.14. In Tower A, more 

than 80% of orthophosphate precipitated from the solution. On the other hand, orthophosphate 

concentration in Towers B and C was always 2.0-3.5 times that of the make-up water. Water 

quality analysis suggests that calcium phosphate is the primary mineral scale when pH of the 

recirculating water is adjusted at 7.8 and 5 ppm PMA is added. SEM/EDS results shown in 

Figure 2.15 confirm this conclusion. 

 

 

 

Figure 2.14 Orthophosphate concentration in the make-up water and recirculating water in the pilot-scale cooling 
tower tests with MWW_pH 
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Figure 2.15 SEM images and the elemental composition of the solid deposits collected on stainless steel discs 
immersed in pilot-scale cooling towers operated at CoC 4-6: Day-50 sample from Tower B using MWW_ pH. EDS 
scan was performed on the area outlined by the square box on the SEM image. 

 

 

Another parameter indicating the development of scales in the recirculating cooling tower 

system is the flow rate of the recirculating water since the accumulation of mineral scales would 

increase the head loss and even plug the conveying pipes and copper heating coils. The flow 

rates in all the three towers were measured daily as shown in Figure 2.16. As can be seen in this 

figure, the water flow rate in Tower A with no pH adjustment dropped to 2.2 GPM on day 20. 

An acid wash (5 gallon 10% HCl solution for 20 min) was used to clean the copper coil of the 

Tower A and recover the flow rate to 2.9 GPM on day 22. However, the flow rate decreased 

again to 2.3 GPM on day 33. The copper coil in Tower A was washed again by 5 gallons of 10% 

HCl for 20 min on day 41 and the flow rate was recovered to 2.7 GPM. On the last day of tower 

operation, the flow rate in Tower A was still reduced to 2.4 GPM. The above phenomenon 

indicated that the recirculating water in Tower A had significant scaling potential and 5 ppm 
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PMA was not effective in the scaling control. The flow rate in Tower C was generally above 2.4 

GPM during the course of the test and was around 2.60 GPM during the last 8 days of tower 

operation. The flow rate in Tower B, was above 2.70 GPM during the entire test. It must be 

noted that no acid wash was required in Towers B and C during the whole run. According to the 

flow rate recorded daily in all the towers, Tower A with no pH control had the most significant 

scaling problem while the least serious fouling has occurred in Tower C. These conclusions are 

identical to those from the mass gain data and the calculations of scaling indices. 

 

 

Figure 2.16 Water flow rates measured in the pilot-scale cooling tower tests with MWW_ pH as recirculating water. 
Target flow rate is 3 GPM for the system 
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2.3.3.2 MWW_NF 

Images of the test coupons collected from the three pilot-scale cooling towers with MWW_NF as 

makeup on day 10 are shown in Figure 2.17. Figure 2.18 depicts accumulated mineral scale 

solids deposited on stainless steel disc specimens in the three cooling towers during the tests with 

MWW_ NF. The inorganic mass gain on the specimens in all the three towers was small (0.05-

0.67 mg) even after 50 days of immersion in the system. Tower A sample showed the least 

amount of deposits when compared with the other two despite the fact that Towers B and C 

received 5 ppm PMA to mitigate the scaling. Because of the small amount of inorganic deposits 

(less than 0.7 mg) accumulated on the specimens, it is difficult to assess the effectiveness of the 

PMA as antiscalant.  LSI values for all three towers (Table 2.5) were negative, suggesting that 

recirculating water was below saturation with respect to calcium carbonate.  

 

                      

(a)                                              (b)                                               (c) 

Figure 2.17 Coupons collected on day 10 in the pilot-scale cooling tower tests with MWW_NF as make-up water: 
(a) Tower A (no PMA); (b) Tower B (5 ppm PMA); (c) Tower C (5 ppm PMA). 
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Figure 2.18 Inorganic deposit mass measurements in the pilot-scale cooling tower tests with MWW_NF 
 

 

 

Table 2.5 Langelier Saturation Index of the recirculating water in Towers A, B and C in pilot-scale tests with 
MWW_NF on days 36, 40, 44, 49, and 54 

Days 

Langelier Saturation Index (LSI)a 

Tower A 
(PMA= 0) 

Tower B 
(PMA= 5 ppm) 

Tower C 
(PMA= 5 ppm) 

36 -1.75 -1.58 -1.56 
40 -1.99 -1.80 -1.80 
44 -2.78 -2.59 -2.85 
49 -3.06 -2.61 -2.72 
54 -2.72 -2.66 -2.71 

a If LSI is negative, there is no potential to form scale and the water will dissolve CaCO3; if LSI is positive, scale 
can form and CaCO3 precipitation may occur; if LSI is close to zero, the water is neutral with respect to scale 
formation;   
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The pilot-scale cooling tower tests with MWW_NF were all operated at CoC 4-6 but the 

orthophosphate concentration in the recirculating water was generally 2~5 times that of the 

make-up water (Figure 2.19). These results indicate that precipitation of calcium phosphate 

occurred during the test period and may be the major form of the limited mineral scales collected 

on sampling coupons. It must be noted that the precipitation of calcium phosphate was still not as 

severe as in the tests with secondary-treated MWW where 90% of the phosphate precipitated (Li 

et al., 2011b). SEM/EDS analyses were performed on the deposits collected from Tower B after 

50 days of operation with MWW_NF at CoC 4-6 (Figure 2.20). The EDS spectra showed that 

calcium phosphate was the predominant mineral scale, which is consistent with bench-scale 

results and water quality analysis. The carbon peak on Figure 2.20 could be due to substitution of 

carbonate for the phosphate in the deposits (Ferguson and McCarty, 1971; Suchanek et al., 2004). 

Similar results were obtained from the EDS analysis on the inorganic deposits collected from 

Towers A and C on day 50. 

 

Figure 2.19 Orthophosphate concentration in the make-up water and recirculating water in the pilot-scale cooling 
tower tests with MWW_NF 
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Figure 2.20 SEM images and the elemental composition of the solid deposits collected on stainless steel discs 
immersed in pilot-scale cooling towers operated at CoC 4-6: Day-50 sample from Tower B using MWW_ NF. EDS 
scan was performed on the area outlined by the square box on the SEM image. 

 

 

As described in the preceding text, flow rate is another parameter indicating the scaling 

problem. Different from the results with MWW_pH, the flow rates recorded in Figure 2.21 were 

always above 2.70 GPM during the entire 60 days of operation, indicating that no significant 

scaling or biofouling has occurred in the three towers. In the last 30 days, the flow rate in Tower 

C was around 2.9-3.0 GPM while the flow rates in Tower A and B were generally in the range of 

2.8-2.95 GPM. This trend was generally consistent with the mass gain data in which Tower C 

has shown the least mineral deposition while the mass gain in Tower A and B were a slightly 

higher. 
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Figure 2.21 Water flow rates measured in the pilot-scale cooling tower tests with MWW_ NF as recirculating water. 
Target flow rate is 3 GPM for the system 

 

 

2.4 SUMMARY AND CONCLUSION 

This study investigated mineral scaling on non-heated surfaces and its control when using 

tertiary-treated municipal wastewater as an alternative cooling system make-up water to replace 

freshwater.  Two types of tertiary-treated municipal wastewater that were evaluated in this study 

included secondary-treated water with pH adjustment (MWW_pH) and water from secondary-

treatment followed by nitrification and sand filtration (MWW_NF).  Based on the results from 

batch tests, magnesian calcite and amorphous calcium phosphate are the mineral scales formed 

when pH of the synthetic secondary-treated MWW is controlled at 8.4 and 7.8. Bench-scale 

recirculating tests showed that the addition of 5 ppm PMA delayed the scale deposition process 
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but had minimal impact on the final total mineral deposits at pH 8.4, while the combination of 

pH control at 7.8 and the addition of 5 ppm PMA not only reduced the scaling rate but also 

decreased the final mass gain on the sampling specimens. MWW_NF water was shown to have 

little potential for mineral deposition on non-heated surfaces, which was due to its lower pH and 

alkalinity when compared to secondary-treated MWW.  

 Results from the pilot-scale cooling tower tests were consistent with conclusion from 

bench-scale studies, i.e., pH adjustment to 7.8 was needed besides the addition of 5 ppm PMA to 

reduce the scaling rate significantly. With this scaling mitigation method, the formation of 

calcium carbonate was inhibited and calcium phosphate was the primary form of mineral scale. 

Negligible mineral deposits of calcium phosphate were observed in pilot-scale studies with 

MWW_NF. 

 Overall, this study revealed that the use of tertiary-treated municipal wastewater 

(nitrification and sand filtration) in a recirculating cooling system will not lead to significant 

inorganic scale formation on non-heated surfaces. This study also demonstrated that it is possible 

to manage scaling on non-heated surfaces associated with the use of municipal wastewater either 

through pH control or tertiary treatment commonly used in municipal wastewater treatment 

practice. 
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3.0  SCALING MITIGATION ON HEATED SURFACES WITH TREATED MUNICIPAL 

WASTEWATER AS MAKEUP IN RECIRCULATING COOLING SYSTEMS 

 

This chapter, written by Wenshi Liu and co-authored by Shih-Hsiang Chien, David A. Dzombak, 

and Radisav D. Vidic, has been submitted for publication. 
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The solubility of potential scaling minerals will be different in different parts of the cooling 

systems. Limited mineral scaling on non-heated surfaces does not guarantee insignificant scale 

deposition on the hottest portion of recirculating cooling systems, i.e. the condenser tubes. In 

order to advance the use of treated MWW as cooling water in recirculating cooling systems, it is 

necessary to assess mineral deposition on condenser surfaces and develop suitable control 

methods under relevant process conditions. 

In this study, scaling of two types of tertiary-treated municipal wastewater on condenser 

surfaces (crystalline fouling and particulate fouling) was evaluated on a customized bench-scale 

recirculating system. The tertiary-treated municipal wastewater that were evaluated in this study 

included secondary-treated water with pH adjustment (MWW_pH) and water from secondary-

treatment followed by nitrification and sand filtration (MWW_NF). The tests revealed that 

MWW_pH has significant crystalline fouling potential on the condenser surfaces when the pH 

was adjusted at 7.8 and that hydroxyapatite was the main component of the mineral scales 

formed on condenser surfaces. Addition of antiscalants, e.g. polymaleic acid (PMA), was shown 

to be effective in fouling mitigation by inhibiting transformation of amorphous calcium 

phosphate to hydroxyapatite. In the case of MWW_NF, significant crystalline fouling was 

observed at pH 7.2 while bulk precipitation reduced the driving force for crystalline fouling 

when pH was adjusted to 7.8. Overall, this study demonstrated that it is possible to manage 

crystalline fouling and particulate fouling on hot condenser tube surfaces associated with the use 

of treated municipal wastewater through pH control, antiscalant addition and adequate flow 

regime. 
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3.1 INTRODUCTION 

Previous studies by Li et al. (2011b) and Liu et al. (2012) focused on scaling control on non-

heated surfaces (e.g., pipelines, tower packing, etc.) when treated MWW is reused in 

recirculating cooling systems. This work demonstrated that it is possible to manage scaling 

problems on non-heated surfaces in cooling systems using MWW_pH and addition of 

antiscalants. Furthermore, negligible mineral scaling potential on non-heated surfaces was 

identified for MWW_NF, mainly due to its lower pH and alkalinity.   

However, the solubility of amorphous calcium phosphate, which is the main component 

mineral scale formed when tertiary-treated MWW is used in cooling systems (Liu et al., 2012), 

decreases with an increase in temperature (Spanos et al., 2007). It is then possible that scale 

deposition will occur in the hottest portion of recirculating cooling systems, i.e., the condenser 

tubes. In order to advance the use of MWW as cooling water in recirculating cooling systems, it 

is important to assess mineral deposition on condenser surfaces and develop suitable control 

methods under relevant process conditions. 

The accumulation of mineral scales arises from two mechanisms: surface crystallization 

(crystalline fouling) and particle deposition (particulate fouling). In crystalline fouling, dissolved 

ions diffuse towards the hot surface where they exceed supersaturation and react to form a robust 

scale layer (Rosmaninho et al., 2007). Attachment of suspended solids that have precipitated in 

the bulk solution to the flow surface by cohesive forces constitutes particulate fouling (Bott, 

1995). Build-up of mineral scale layer by either mechanism is determined by the interplay 

between physical-chemical factors acting to form and bind mineral deposits and hydrodynamic 

conditions that provide transport and shearing of those deposits.  
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Common scaling models including the Langelier Saturation Index (Langelier, W.F., 

1946), Ryznar Stability Index (Ryznar, 1944), and Puckorius Saturation Index (Puckorius and 

Brook, 1991), only consider the role of thermodynamic saturation with respect to calcium 

carbonate scale formation. MWW contains additional scale forming species, especially 

phosphate (Humphris, 1977; Rebhun and Engel, 1988; Li et al, 2011b; Liu et al., 2012). Further, 

the ionic diffusion models developed to describe scale formation, such as that by Hasson et al. 

(1968), reveal the contribution of flow in transport of dissolved ions for scale formation but place 

little emphasis on particle deposition in the flowing fluid. For the reuse of treated MWW in 

recirculating cooling systems, it is possible that particle deposition will contribute to the fouling 

process especially on horizontal condensers (Narayan et al., 2007) since bulk precipitation occurs 

due to the high mineral saturation in concentrated cooling water (Liu et al., 2012). In this case, 

the influence of flow velocity on particulate fouling over horizontal condensers needs to be 

studied to identify appropriate operational conditions to minimize scaling when treated MWW is 

used in recirculating cooling systems. 

The focus of this study was on crystalline fouling and particulate fouling on a heated 

condenser tube surface when tertiary-treated MWW (MWW_pH or MWW_NF) was used as the 

recirculating cooling water. Batch tests were conducted to study bulk precipitation behavior of 

tertiary-treated MWW as a function of temperature for selected scaling control strategies. Bench-

scale studies in a recirculating cooling system were then conducted to determine chemical 

control methods and operational strategies to mitigate scale buildup on hot surfaces.  
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3.2 MATERIALS AND METHODS 

3.2.1 Secondary- and tertiary-treated MWW 

Secondary-treated MWW (biological trickling filter followed by secondary clarification) from 

Franklin Township Sanitary Authority, Murrysville, PA, was used as a model for typical 

secondary-treated municipal effluent. Key characteristics of MWW and MWW_NF (secondary 

treatment municipal wastewater subjected to nitrification and sand filtration) from this 

wastewater treatment facility are described in Table 2.1. 

Chemical composition of synthetic MWW and MWW_NF at 4 cycles of concentration 

(CoC 4) for laboratory studies is shown in Table 3.1. Typical operation of a recirculating cooling 

system concentrates the feed water as much as 4-6 times due to evaporative losses in the system. 

Both synthetic waters were prepared based on the characteristics of the actual wastewaters in 

Table 2.1.   

 

Table 3.1 Chemical composition of synthetic MWW and MWW_NF at 4 cycles of concentration (CoC 4) used in 
the scaling study on heated surface 

Cation Concentration (mM) Anion Concentration (mM) 
MWW MWW_NF MWW MWW_NF 

Ca2+ 4.00 4.00 SO4
2- 3.60 3.60 

Mg2+ 1.76 1.76 HCO3
- 13.9 1.88 

Na+ 16.8 5.56 Cl- 6.00 8.00 
K+ 1.60 7.60 PO4

3- 0.6 0.6 
   NO3

- 1.04 7.00 
Notes: MWW (secondary treated municipal wastewater using biological trickling filter followed by secondary 
clarification); MWW_NF (tertiary treated municipal wastewater using nitrification and filtration after secondary 
treatment). 
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3.2.2 Batch tests 

Precipitation behavior of MWW_pH and MWW_NF at CoC 4 was first studied in a 1.4 L beaker 

covered with plastic wrap to minimize water loss due to evaporation. The content of the beaker 

was completely mixed with a magnetic stirrer and the bulk temperature was controlled at 40°C 

(typical bulk water temperature in a recirculating cooling system) or 49°C (typical heat 

exchanger surface temperature) using a heating plate (Aull, 2011). The experiments were always 

initiated by adding all the salts listed in Table 3.1 except for CaCl2. For the tests intended to 

study the precipitation behavior of MWW_pH at CoC 4, the solution pH was first lowered to 6.8 

with 0.5 M hydrochloric acid as previous tests have shown that there will be no immediate bulk 

precipitation at pH 6.8. After the addition of CaCl2, pH of the synthetic solution was adjusted 

and maintained at a desired pH with 0.5 M hydrochloric acid or 0.5 M sodium hydroxide. The 

effectiveness of polymaleic acid (PMA, Kroff Chemical Company, Pittsburgh, PA) as a model 

antiscalant was tested by adding it to the solution before adding any salts. 

Precipitation behavior in the beaker was monitored by withdrawing 5 mL of the solution 

at predetermined intervals. The water sample was filtered through a 0.45 µm nylon membrane 

and immediately acidified to pH< 2 with concentrated HNO3. Phosphate concentration was 

determined by the molybdenum blue method (American Public Health Association et al., 2005). 

Precipitated solids were collected, washed with DI water, and air-dried for subsequent 

petrographic and chemical characterization. The crystalline characteristics of the solids were 

analyzed by X-ray diffraction (XRD, PW1830, Philips Analytical Inc., Natick, MA) with Cu Kα 

radiation. Once the diffraction patterns were obtained, both manual matching of the peak 

positions and a computer-aided search to identify the crystalline phase were performed. The 

morphology of the precipitates was inspected using Scanning Electron Microscopy (SEM, 
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Philips XL30, FEI Co., Hillsboro, OR) and the elemental composition of the selected samples 

was determined by Energy Dispersive X-ray Spectroscopy (EDS, EDAX Inc., Mahwah, NJ).   

3.2.3 Bench-scale recirculating system for fouling studies  

A customized bench-scale water recirculating system was equipped with a cartridge heater 

(Tempco Electric Heater Corporation, model HDL 00059) to simulate the heat exchanger surface 

for crystalline fouling investigation (Figure 3.1). The cartridge heater was positioned in the 

vertical pipe so that the test solution would flow upward through the annulus. Heat flux to the 

recirculating water in the annulus section was controlled by a transformer to regulate the voltage 

applied to the heater. A J-type thermocouple was located close to the surface of the sheath layer 

in the center of the cartridge length to obtain information about the surface temperature. A scan 

with an infrared camera (SC 660, FLIC Systems, Inc., Wilsonville, OR) showed that surface 

temperature was uniform along the heater. Test solution was pumped from a temperature-

controlled supply tank through the annular test sections. The flow rate of the recirculating 

solutions was regulated by a gate valve and measured by an in-line flow meter. The supply tank 

was maintained at predetermined temperature with cooling loop immersed into the solution and 

was mixed regularly to prevent settling of the bulk precipitates. Surface temperature of the heater 

( ) and water temperature at the inlet ( ) and the outlet ( ) of the annulus section were 

recorded continuously by a data logger system. The bulk water temperature ( ), was calculated 

as arithmetic average of  and  at a given heat flux: 
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                                                                                                                  (3-1) 

The heat transfer coefficient h (W/m2·K) was calculated as: 

                                                                                                                        (3-2)            

where Ts and Tb are in K, and q is the heat flux in W/m2 determined as: 
 
                                                                                                                 (3-3)                                                             

where,  is the voltage applied to the heater, V, 

              is the electrical current through the heater, A, 

             is the electrical resistance of the heater, Ω, 

             is the heated surface area, m2 

The impacts of mineral scaling on heat transfer efficiency is described by a fouling 

resistance ( ), which is calculated from the heat transfer coefficient measured at the beginning 

of each test ( ) and after a period of operating ( ) according to the following equation (Webb 

and Li, 2000; Lee et al., 2006): 

                                                                                                                   (3-4) 

A fouling curve showing the development of the fouling resistance with time reflects 

surface deposition on the heat transfer surface.  

A sampling rack section incorporating stainless steel (SS) specimen discs (5.61 cm2) was 

included in the experimental systems to track the bulk precipitate deposition process (Li et al., 

2011b). 
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Figure 3.1 Schematic diagram of the bench-scale recirculating system for fouling studies 

 

 

In each test, 170 L of distilled water was recirculated in the system and heated by the 

cartridge heater to typical cooling tower water temperature. When the temperature in the annular 

section reached steady-state, chemicals listed in Table 3.1 were added to the distilled water to 

simulate the composition of synthetic MWW and MWW_NF at CoC 4. The procedure for 

preparing the test solution was the same as in the batch tests.  

Key water quality parameters, including pH and phosphate concentration, were 

monitored during each run to provide additional insight into the mechanism of the fouling 

process. At the end of each test, bulk precipitates and deposits on the cartridge heater were 

collected, washed with DI water, and air-dried for XRD and SEM/EDS analysis. The particle 
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size distribution of the precipitates formed in the bulk solution was analyzed using a particle size 

analyzer based on laser diffraction (S3500, Microtrac Inc., Montgomeryville, PA).  

Operating parameters utilized in this study are summarized in Table 3.2. Comparison 

with typical values in full-scale recirculating cooling systems in power plants (Flynn, D., 2009; 

GE Power & Water, 2012; Aull, 2011) indicates that these laboratory-scale tests were conducted 

under relevant process conditions. 

 
Table 3.2 Experimental parameters and typical conditions in recirculating cooling systems at thermoelectric power 

plants 

 Experimental Parameters Typical field conditions 
Heat flux 45840 W/m2 15670 to 47020 W/m2 

Flow velocity 1.4 m/s 0.6-2.4 m/s 
Surface temperature 52±3°C 49~60°C 

Bulk water temperature 42±3°C 40~48°C 
 

After the fouling resistance monitoring indicated equilibrium conditions with respect to 

crystalline fouling in the test with MWW_NF at pH 7.8, stainless steel (SS) discs (5.61 cm2) 

were inserted into the “sampling rack” (Figure 3.1). The discs were withdrawn at predetermined 

time intervals to track the particulate fouling on these horizontal sampling surfaces that were 

maintained at the same temperature as bulk water. To study the influence of hydrodynamic 

conditions on particle deposition, the flow velocity was adjusted to 0.6, 0.5, and 0.4 m/s to 

compare the mass gain on the SS discs under different shear force conditions. 
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3.3 RESULTS AND DISCUSSION 

3.3.1 Bulk precipitation studies 

Batch tests with synthetic MWW_pH (CoC 4) at pH 7.8 were conducted at 40°C and 49°C and 

the residual phosphate concentration is plotted as a function of time on Figure 3.2. As can be 

seen in this figure, phosphate concentration in solution at both temperatures rapidly decreased 

within the first 10 min due to precipitation, and then remained virtually unchanged until 180 min. 

Figure 3.2 also shows phosphate concentration profiles of MWW_NF (CoC 4) at pH 7.2 and 7.8 

and at temperatures of 40°C and 49°C. These pH values were selected based on the results of 

pilot-scale cooling tower tests with MWW_NF as make-up water operated at CoC 4~6 which 

showed that pH of the recirculating water varied from 7.2 to 8.4 during two months of operation 

(Dzombak et al., 2012). Phosphate precipitation behavior observed in the tests with MWW_NF 

was quite different than in the tests with MWW_pH. While phosphate concentration in the tests 

with MWW_pH at 7.8 at both 40 and 49°C remained virtually unchanged after the initial 

decrease, all tests with MWW_NF except at pH 7.2 and 40°C indicated a clear occurrence of a 

second precipitation stage. When pH was elevated from 7.2 to 7.8 at 40°C, the occurrence of the 

second precipitation stage was observed and phosphate was almost completely removed from the 

solution. Increasing the temperature to 49°C resulted in almost complete phosphate removal at 

both pH 7.2 and 7.8 but the secondary precipitation stage was shortened from 110 to 10 min. 
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Figure 3.2 Residual phosphate concentrations in batch tests with synthetic MWW (CoC 4)   at pH 7.8 and 
MWW_NF (CoC 4) at pH 7.2 and 7.8 as a function of time with temperature at typical cooling water temperature 
(40°C) and condenser surface temperature (49°C) 
 

 

A typical broad peak of amorphous calcium phosphate (ACP) between 2Ө=25° and 35° 

was observed in the XRD spectrum (Figure 3.3a) of the precipitate collected from synthetic 

MWW_pH at pH 7.8 and 49°C (Alvarez et al., 2004; Cao and Harris., 2008). Morphology of the 

amorphous phase precipitated from MWW_pH 7.8 observed in SEM images is shown on Figure 

3.4. EDS analysis indicated that the precipitates were mainly composed of Ca and P with a small 

amount of Mg and C incorporated (Figure 3.4). Heating the precipitate at 500°C for 1 hr formed 

the crystalline structure characteristic of hydroxyapatite as evidenced by XRD spectrum shown 

Figure 3.3b.  
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Figure 3.3 XRD pattern of the precipitates from batch tests with synthetic MWW_pH (CoC 4, 49°C) when pH was 
maintained at pH 7.8: (a) raw sample; (b) raw sample after heating at 500°C for 1 hrs; (c)sample collected for 
system with 10 ppm PMA after heating at 500°C for 1hrs 
 

 

 

Figure 3.4 SEM image and elemental composition of the precipitate formed in batch test with synthetic MWW 
(CoC 4, 49°C) when pH was maintained at pH 7.8. EDS scan was performed on the area outlined by the square box 
on the SEM image. 
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Similar XRD pattern was also observed for the precipitate formed in synthetic MWW_pH 

at pH 7.8 and 40°C. Based on the results of water analysis and solids characterization by XRD 

and SEM/EDS, it can be concluded that amorphous calcium phosphate is the main precipitate 

formed in the synthetic MWW_ pH (CoC 4) at typical cooling water temperature (40°C) and 

condenser surface temperature (49°C) when pH was maintained at 7.8.  

Amorphous calcium phosphate (ACP), Ca3(PO4)2·nH2O, and hydroxyapatite (HAP), 

Ca5(PO4)3(OH), are two common types of calcium phosphate minerals (Barat et al., 2011). 

Although HAP is the most stable calcium phosphate mineral, formation of more soluble ACP is 

favored kinetically because of energy saving in precipitation reactions (Eanes et al., 1965; Castro 

et al., 2012). Heating the metastable ACP would enhance the conversion process to HAP and 

result in improved resolution of the XRD peaks as shown in Figure 3.3 (Cao and Harries, 2008; 

Liu et al., 2001). 

The XRD pattern for the precipitates obtained from MWW_NF (CoC 4) maintained at 

pH 7.2 and 49°C at selected time intervals are shown in Figure 3.5. The results of phosphate 

monitoring in Figure 3.2 and solids characterization in Figure 3.5 clearly support the hypothesis 

that the initial phosphate reduction corresponds to rapid precipitation of ACP followed by 

transformation of ACP to HAP, which resulted in further phosphate consumption and growth of 

the HAP peaks in the XRD spectra. The induction time and rate of ACP transformation into HAP 

is influenced by numerous parameters, such as degree of supersaturation, ionic strength, pH, 

temperature, and chemical additives (Kim et al., 2004). Shorter induction time and faster 

crystallization rate was observed in MWW_NF when pH increased from 7.2 to 7.8 at 49°C 

(Figure 3.2) or when temperature increased from 40°C to 49°C at pH 7.8 (Figure 3.2). These 

results are in agreement with previous studies (Kibalczyc et al., 1988; Liu et al., 2001).  
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Figure 3.5 XRD pattern of the precipitates collected at 60, 150, and 180 min from batch tests with synthetic 
MWW_NF (CoC 4, 49°C) when pH was maintained at pH 7.2 
 

 

In the case of MWW_pH, no distinct conversion of ACP to HAP was observed in this 

study. Such behavior could be ascribed to relatively high carbonate alkalinity of this water 

(Table 3.1) as previous studies indicated that bicarbonate concentration considerably delayed the 

induction period (Ferguson et al., 1973). 

Batch tests were also conducted to evaluate the effects of polymaleic acid (PMA) on 

mineral precipitation in MWW_pH at 40°C and 49°C and pH 7.8. PMA doses of 5 ppm and 10 

ppm were added to synthetic MWW_pH (CoC 4) before pH was adjusted to 7.8. Residual 

phosphate concentration was monitored with time as shown in Figure 3.6. It appears that PMA 

had no effect on amorphous calcium phosphate formation since the residual phosphate 

concentration was almost identical with and without PMA addition. However, even after the 

precipitate formed in MWW_pH (CoC 4) maintained at pH 7.8 and 49°C with the PMA dosage 

of 10 ppm was heated at 500°C for 1 hr, only a broad peak of ACP was observed in the XRD 
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spectrum as shown in Figure 3.3c. Based on these results, it can be concluded that PMA inhibits 

transformation of ACP to HAP as the main antiscaling mechanism. 

 

 

 

Figure 3.6 Residual phosphate concentrations in batch tests with MWW_pH (CoC 4) as a function of time at typical 
cooling water temperature (40°C) and condenser surface temperature (49°C) when 0, 5, and 10 ppm PMA were 
added at pH 7.8 
 

 

3.3.2 Crystalline fouling in bench-scale recirculating system 

The fouling curves with MWW_pH in the presence of 0, 5, and 10 ppm PMA when bulk pH was 

controlled at 7.8 are shown in Figure 3.7. Contrary to the bulk precipitation behavior depicted in 

Figure 3.6, crystalline fouling propensity of MWW_pH was significantly mitigated by the 

addition of PMA and the degree of fouling reduction was influenced by the PMA dose. Based on 
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the XRD patterns depicted in Figure 3.8, it can be concluded that HAP is more likely to form on 

the heated surface (Figure 3.8a) while only ACP was identified in the precipitate formed in the 

bulk solution (Figure 3.8b). Since HAP is less soluble than ACP, the driving force for HAP 

formation was still present even after the bulk precipitation was accomplished, which is the main 

reason for mineral scale formation on the vertical heated surface. PMA addition to the system 

inhibited the conversion of ACP to HAP on the heated surface as documented by the absence of 

HAP spectra in the XRD analysis of the deposits formed during the fouling test with MWW_pH 

(CoC 4) and PMA dosage of 10 ppm shown in Figure 3.8c. The decrease in fouling of the heater 

was the result of the increase in solubility of phosphate precipitate that predominated in the 

system (i.e., ACP).  

 

     

Figure 3.7 Development of fouling resistance in MWW_pH (CoC 4, 49°C) at pH 7.8 in the presence of 0, 5, and 10 
ppm PMA 
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Figure 3.8 XRD pattern of the precipitates in the fouling tests with MWW_pH (CoC 4, 49°C) at pH 7.8: (a) mineral 
deposits on the heater with 0 ppm PMA addition; (b) bulk precipitates with 0 ppm PMA addition; (c) mineral 
deposits on the heater with 10 ppm PMA addition 

 

The fouling resistance observed with MWW_NF when bulk pH was controlled at 7.2 and 

7.8 is shown in Figure 3.9. In contrast with generally accepted view that lower pH would result 

in lower scaling rate, these results indicated that heat transfer efficiency in the case of  

MWW_NF (CoC 4) decreased dramatically at pH 7.2 while negligible fouling of the heater was 

observed at pH 7.8. Dissolved phosphate analysis in these tests revealed that much higher   

phosphate concentration was maintained in the solution at pH 7.2 than at pH 7.8 (Figure 3.10). 

XRD analysis of the precipitate formed in bulk solution and those formed on the heater are 

depicted in Figure 3.11, suggesting that the precipitate formed in the bulk solution was mainly 

composed of amorphous calcium phosphate. Similar to the behavior observed in the fouling tests 

with MWW_pH, higher concentration of dissolved phosphate in the bulk solution with 

MWW_NF at pH 7.2 served to supply necessary ions for surface crystallization of HAP on the 

heater (Figure 3.11), which resulted in more significant fouling as observed in Figure 3.9. 

However, when pH was elevated to 7.8, HAP quickly precipitated in the bulk solution as 
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suggested by analysis of solids collected after just 1 hr of reaction time depicted in Figure 3.11. 

This observation is consistent with the results from batch tests shown in Figure 3.2 and low 

phosphate concentration in solution resulting from HAP formation at pH 7.8 caused negligible 

fouling on the vertical heated surface. 

 

 

 

Figure 3.9 Fouling resistance for MWW_NF (CoC 4, 49°C) when bulk pH was controlled at 7.8 and 7.2 
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Figure 3.10 Phosphate concentration in the fouling tests with MWW_NF (CoC 4, 49°C) when pH was controlled at 
7.8 and 7.2 

 

 

 

Figure 3.11 XRD pattern of bulk precipitates and mineral deposits on the heated surface in the fouling tests with 
MWW_NF (CoC 4, 49°C): (a) precipitates formed in the bulk solution after 1 hr at pH 7.8; (b) mineral deposits on 
the heater during the test at pH 7.2; (c) bulk precipitates formed in the bulk solution after 12 hr at pH 7.2 
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3.3.3 Particulate fouling in bench-scale recirculating system 

Mineral scale layers formed on the pipe surfaces may be sheared away by hydrodynamic forces 

depending on the short-range forces (e.g. van der Waals force, electrostatic force, hydrogen 

bonding, etc.) and inhomogeneities in the geometry of flow and surface materials (Drew, 1988; 

Royer et al., 2010). With particulate fouling, an entrained particle must first negotiate the carrier 

fluid before the short-range forces can exert any influence (Drew, 1988; Altmann and Ripperger, 

1997). In the vicinity of the pipe wall, when the size of a particle is smaller than the thickness of 

the boundary layer, the following vertical forces act on that particle (Figure A.1): gravity force, 

; buoyancy force, ; and lift force, . 

If the bulk precipitate is assumed to be spherical, the gravity force,  (N), is: 

                                                                                                                (3-5) 

where,  is the density of the particle (kg/m3),  is the acceleration of gravity (9.81 

m/s2), and  is the diameter of the particle (m). 

The buoyancy force,  (N), is: 

                                                                                                               (3-6) 

where,  is the density of water. 

The lift force  (N) is caused by the shear flow in the immediate vicinity of the pipe wall 

surface and can be calculated as follows (Altmann and Ripperger, 1997; Vyas et al., 2001): 
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                                                                                                   (3-7) 

where,  is the shear stress at the tube wall (N/m2), and  is the dynamic fluid viscosity 

(N·s/m2). For tubes, the shear stress is expressed in terms of the Darcy friction factor  and the 

mean fluid velocity  (Littlejohn et al., 2000): 

                                                                                                                 (3-8)                                    

Combining Equations (3-5)-(3-7), the total vertical force,  (N), is: 

                             (3-9) 

Equation (3-9) indicates that the occurrence of particulate fouling is mainly determined 

by the particle size distribution and hydrodynamic conditions. Positive  indicates the 

deposition potential of bulk precipitates while little particulate fouling is theoretically feasible in 

the case of negative .  

Particle size distribution of bulk precipitates formed in MWW_NF (CoC 4, 40°C) at pH 

7.8 (Figure 3.12) indicates that these precipitates ranged in size between 5~50 µm. The analysis 

of precipitates from other tertiary-treated MWW also showed that their size was below 50 µm 

(data not shown) and smaller than the thickness of the laminar boundary layer (Appendix A). 

The total vertical force acting on particles in the 1-10 µm and 10-50 µm size ranges in fluid flow 

with velocities ranging from 1.4 to 0.4 m/s shown in Figure 3.13 was calculated using Equation 

(3-9). This figure shows a positive deposition potential for bulk precipitates at flow velocities 
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below 0.5 m/s while little particulate fouling is theoretically predicted when the velocity is above 

0.6 m/s.  

 

 

Figure 3.12 Particle size distribution of bulk precipitates formed in MWW_NF (CoC 4, 40°C) at pH 7.8 
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(a) 

 

 

(b) 

Figure 3.13 Total vertical force on bulk precipitates at 0.6, 0.5, and 0.4 m/s flow velocities: (a) particle size between 
1~10 µm; (b) particle size between 10~50 µm 
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These theoretical calculations were evaluated experimentally in the system equipped with 

horizontal sampling coupons, and the impact of flow velocity on particulate fouling is 

summarized in Figure 3.14. As depicted in this figure, the mass gain on the disc specimens 

installed in the recirculating system for fouling studies was negligible at flow velocity of 0.6 m/s. 

However, when the flow velocity was reduced to 0.5 m/s, significant deposition of precipitated 

solids was observed and the mass gain on disc specimens continued throughout the tests which 

lasted for 12 hours. The rate of deposit accumulation on the disc increased further when the flow 

velocity was reduced to 0.4 m/s (Figure 3.14). The experimental results are consistent with the 

model prediction and suggest that it is necessary to maintain a minimum flow velocity of about 

0.6 m/s (2 ft/s) in addition to controlling water quality parameters (pH, antiscalant addition) to 

minimize potential for heat exchanger fouling when using tertiary-treated municipal wastewater 

in recirculating cooling systems. 

 

 

Figure 3.14 Particulate fouling with suspended solids created during the fouling test with synthetic MWW_NF 
(CoC 4) at 42±3°C as a function of flow velocity. Error bars indicate the data range of measurements from duplicate 
tests. 
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3.4 SUMMARY AND CONCLUSIONS 

This study investigated mineral scaling behavior on heated surfaces and its control when using 

tertiary-treated municipal wastewater as alternative cooling system make-up water to replace 

freshwater.  Two types of tertiary-treated municipal wastewater that were evaluated in this study 

included secondary-treated municipal wastewater with pH adjustment (MWW_pH) and 

secondary-treated municipal wastewater subjected to nitrification and sand filtration 

(MWW_NF).  Batch tests revealed that amorphous calcium phosphate (ACP) was the dominant 

precipitate formed in MWW_pH at typical cooling water temperature (40°C) and condenser 

surface temperature (49°C) when bulk pH was controlled at 7.8. Addition of PMA scale inhibitor 

had negligible impact on ACP precipitation. Bench-scale recirculating tests showed that 

MWW_pH exhibited significant potential for crystalline fouling on the heated surface because of 

the formation of hydroxyapatite (HAP), which is less soluble than ACP. PMA addition was 

shown to inhibit the fouling of the heated surface for MWW_pH because it inhibits the 

transformation of ACP to HAP. 

ACP was the dominant bulk precipitate formed in MWW_NF at typical cooling water 

temperature (40°C) at pH 7.2. Elevating the temperature to condenser surface temperature (49°C) 

or increasing the pH to 7.8 accelerated the transformation of ACP to HAP. Bench-scale 

recirculating tests with MWW_NF revealed significant crystalline fouling of the heated surface 
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by MWW_NF at pH 7.2 while no fouling was observed at pH 7.8. Crystalline fouling at pH 7.2 

was due to the fact that only ACP precipitated in the bulk solution leaving a significant potential 

for the formation of less soluble HAP on the heated surface. When pH was elevated to 7.8, the 

formation of HAP in the bulk solution consumed more scale-forming phosphate ions and 

reduced the driving force for crystalline fouling on the heated surface. 

Particulate fouling is governed by the precipitate size distribution and hydrodynamic 

conditions. Both theoretical analysis and experimental studies showed that particle fouling can 

be inhibited by increasing the flow velocity above 0.6 m/s (2 ft/s). 

Overall, this study demonstrated that it is possible to manage crystalline fouling and 

particulate fouling on hot condenser tube surfaces associated with the use of treated municipal 

wastewater through pH control, antiscalant addition and adequate flow regime.  
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4.0  INSIGHTS INTO CALCIUM PHOSPHATE SCALE MITIGATION BY TYPICAL 

ANTISCALANTS 

 

This chapter, written by Wenshi Liu and coauthored by Can He, Radisav D. Vidic, and David A. 

Dzombak, will be submitted for publication. 
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Calcium phosphate scaling is encountered in many situations in water treatment and wastewater 

reuse applications. Amorphous calcium phosphate (ACP), Ca3(PO4)2·nH2O, and hydroxyapatite 

(HAP), Ca5(PO4)3(OH), are two common types of calcium phosphate minerals formed by 

calcium and phosphate (Barat et al., 2011). Literature on the effects of antiscalants on calcium 

phosphate precipitation is limited. In this study, two types of antiscalants, polymaleic acid 

(PMA) and 1-hydroxyethane 1,1-diphosphonic acid (HEDP), were evaluated with regard to their 

ability to inhibit calcium phosphate precipitation. The tests revealed that both PMA and HEDP 

exhibited negligible impact on ACP formation but could delay or inhibit the transformation of 

ACP to HAP. The inhibition mechanism of PMA and HEDP was mainly ascribed to their ability 

to prevent aggregation of ACP precipitates during the induction period. A further analysis 

showed that PMA induced negative surface charges on ACP particles and caused strong 

electrostatic repulsive forces to disperse ACP precipitates. However, HEDP had minimal effect 

on electrostatic repulsion and its function might be due to the hydration force associated with 

phosphonate groups in the structure. 

4.1 INTRODUCTION 

Secondary-treated municipal wastewater (MWW) has elevated levels of phosphate from mostly 

anthropogenic sources, especially domestic and industrial sewage. This relatively high 

concentration of phosphorus (10-48 mg/L) when compared to freshwater is critical as it leads to 

calcium phosphate scaling in the system and promotes microbiological growth. Previous studies 
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with MWW as the sole source of make-up water for recirculating cooling systems have shown 

that calcium phosphate was the main mineral scale formed when calcium carbonate was 

effectively inhibited by pH adjustment (Wijesinghe et al., 1996; Liu et al., 2012). In other 

wastewater reuse applications, calcium phosphate scaling also limited the widespread application 

of reverse osmosis (RO) purification of MWW for irrigation purposes (Greenberg et al., 2005; 

Bartels et al., 2005). Even with traditional water sources for cooling system use, a long-term 

fouling study over a operation period for 2500 h identified calcium phosphate scales on the 

condense tubes (Webb and Li, 2000; Li and Webb, 2000). As the most insoluble calcium scales, 

calcium phosphate is a serious problem in many aspects of water treatment and wastewater reuse 

applications. However, its precipitation from aqueous solution received only minor attention in 

recent studies focused on mineral scaling mitigation (Andritsos et al., 2002). 

Addition of chemicals that serve as antiscalants is still the most effective means for 

mineral scaling mitigation. It is hypothesized that in supersaturated solutions of sparingly soluble 

salts, a significant delay in crystal nucleation and subsequent growth would occur in the presence 

of antiscalants added at a dosage of 1-10 ppm (Shih et al., 2004). Although antiscalants have 

been used for more than 150 years, the fundamentals of inhibition mechanisms are still 

inadequately understood (Hasson et al., 1997; Al Nasser et al., 2011). This is especially the case 

for calcium phosphate scale, since the available information on the effects of the antiscalant 

treatment with regard to this scale is sometimes conflicting (Greenberg et al., 2005). Five 

commercial antiscalants were proven to be ineffective in mitigating the membrane permeability 

decay caused by calcium phosphate scales (Greenberg et al., 2005). However, other studies 

suggested that common antiscalants like polyacrylic acid (PAA), 1-hydroxyethane 1,1-

diphosphonic acid (HEDP), and 2-phosphonobutane-1,2,4-tricarboxylic acid (PBTC) could 
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inhibit calcium phosphate precipitation significantly and the inhibition efficiency improved with 

the increase in dosage up to a certain level known as “threshold dosage” (Amjad, 1989; Fu et al., 

2011). Thus, additional efforts are needed to verify the function of antiscalants for calcium 

phosphate and provide guidance on the expected performance of a specific additive in a situation 

with high calcium phosphate scaling potential. 

The focus of this study was to examine the effects of typical antiscalants on calcium 

phosphate precipitation, which has been encountered in numerous water treatment processes 

(Wijesinghe et al., 1996; Webb and Li, 2000; Li and Webb, 2000; Bartels et al., 2005; Greenberg 

et al., 2005; Liu et al., 2012). A combined analysis of bulk water chemistry, precipitates 

mineralogy, and surface characteristics was conducted to obtain insights into potential mitigation 

mechanisms of typical antiscalants on calcium phosphate precipitation. This study would 

contribute to improve the fundamental understanding on the inhibition mechanism of the 

anticalants and provide scientific guidance for the synthesis, evaluation, and application of the 

antiscalants in water treatment. 
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4.2 MATERIALS AND METHODS 

4.2.1 Test solution 

Tertiary-treated MWW (secondary treated municipal wastewater subjected to nitrification and 

sand filtration, MWW_NF) from Franklin Township Sanitary Authority, Murrysville, PA, was 

used as a model test solution in this study. Key characteristics of MWW_NF from this 

wastewater treatment facility are described in Table 2.1. Typical operation of a recirculating 

cooling system concentrates the feed water as much as 4-6 times due to evaporative losses in the 

system. Test solution in this study as shown in Table 4.1 was prepared to contain the same 

calcium concentration, phosphate concentration, and ionic strength as the synthetic MWW_NF at 

4 cycles of concentration (CoC 4).  

Table 4.1 Chemical compositions of the test solution used in the study for the antiscalants on calcium phosphate 
precipitation 

Ions Ca2+ PO4
3- Na+ Cl- 

Concentration (mM) 4.00 0.6 23.8 31.8 
 

All chemicals in this study were analytical reagent grade, obtained from Fisher Scientific, 

Inc. Calcium and phosphate stock solutions were prepared by dissolving calcium chloride 

dehydrate and potassium phosphate monobasic in DI water (resistivity > 18 MΩ cm), filtered 

through 0.22 µm filter paper. 
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4.2.2 Antiscalants 

Presently, three types of scale inhibitors have been widely used in water treatment industry: 

polyphosphates (e.g., sodium hexametaphosphate, SHMP), phosphonates (e.g., 1-hydroxyethane 

1,1-diphosphonic acid, HEDP), and polyelectrolytes (e.g., polymaleic acid, PMA). 

Polyphosphates, such as SHMP, can easily decompose to orthophosphate in aqueous phase, 

which would further react with calcium ions to form insoluble calcium phosphate scale. 

Phosphonates, as typified by the stable C-P bond, overcome the tendency of polyphosphates to 

hydrolyze the O-P chain and increase the hydrolytic stability. Among the numerous 

commercially available antiscalants, polyelectrolytes and phosphonates are the two types of 

inhibitors extensively used in water treatment industry and essential building blocks in most 

antiscalant formulations. In this study, PMA and HEDP were selected as models for 

polyelectrolytes and phosphonates, respectively. PMA (50% active content) and HEDP (60% 

active content) were provided by Kroff Chemical Company (Pittsburgh, PA). The scaling 

inhibitor concentrations were all calculated on the dry basis. 

4.2.3 Batch tests 

Calcium phosphate precipitation experiments were conducted in a 1.4 L beaker covered with 

plastic wrap to minimize water loss due to evaporation. The contents of the beaker were 

completely mixed with a magnetic stirrer and the temperature was controlled at a target level 

using a heating plate. The experiments were always initiated by adding all the salts listed in 

Table 4.1 except for CaCl2.  After the addition of CaCl2, pH of the test solution was adjusted and 
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maintained at a desired level with 0.5 M hydrochloric acid or 0.5 M sodium hydroxide. The 

effectiveness of antiscalants was tested by adding it to the solution before adding any salts. 

Precipitation behavior in the beaker was monitored by withdrawing an aliquot of the 

solution at predetermined intervals. The water sample was filtered through a 0.45 µm nylon 

membrane and immediately acidified to pH< 2 with concentrated HNO3. The orthophosphate 

concentration was determined by the molybdenum blue method (American Public Health 

Association et al., 2005) and calcium concentration was measured by Atomic Absorption 

Spectroscopy (AAS, 1100B, PerkinElmer Inc., Waltham, MA).  

Precipitated solids were collected, washed with DI water, and air-dried for subsequent 

petrographic and chemical characterization. The crystalline characteristics of the solids were 

analyzed by x-ray diffraction (XRD, PW1830, Philips Analytical Inc., Natick, MA) with Cu Kα 

radiation. Once the diffraction patterns were obtained, both manual matching of the peak 

positions and a computer-aided search to identify the crystalline phase were performed. The sizes 

of the precipitates were determined using dynamic light scattering (DLS). DLS measurements 

were made using an ALV/CGS-3 compact goniometer system equipped with a 22 mV HeNe 

Laser (λ=632.8 nm) at a scattering angle of 90º. A Zeta PALS QELS instrument (Brookhaven 

Instruments Corporation) was used to measure the Zeta potential of precipitated particles. 
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4.3 RESULTS AND DISCUSSION 

4.3.1 Calcium phosphate precipitation 

Batch tests at pH 7.2 were conducted at 25°C, 30°C, 40°C, 45°C, and 50°C and the residual 

phosphate and Ca concentration is plotted as a function of time on Figure 4.1. As can be seen in 

this figure, both Ca and phosphate concentration in solution at 25°C rapidly decreased within the 

first 5 min due to precipitation, and then remained virtually unchanged until 60 min. Increasing 

the temperature to 30°C resulted in a second precipitation stage after the “leveling-off” period 

(induction time). This phenomenon has been reported in our previous study (Liu et al., 2013a). 

The induction time was shortened with a further increase in temperature. At 50°C, no clear 

transition was recognized between the two stages of precipitation and intensive NaOH addition 

was needed to keep the pH at 7.2 due to the fast precipitation. 
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(a) 

 

(b) 

Figure 4.1 Residual concentrations in batch tests with test solution at pH 7.2 as a function of time with temperature 
at 25°C, 30°C , 40°C , 45°C , and 50°C: (a) Phosphate; (b) Ca. The data represent mean values based on triplicate 
measurements with relative stand standard deviation (%RSD) of Ca and phosphate concentration measurements 
within ±5.3% and ±2.1%, respectively 
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The XRD patterns for the precipitate obtained from test solution maintained at pH 7.2 

and 40°C at selected time intervals are shown in Figure 4.2. The results of phosphate and 

calcium monitoring in Figure 4.1 and solids characterization in Figure 4.2 clearly suggested the 

initial phosphate and calcium reduction corresponds to rapid precipitation of amorphous calcium 

phosphate (ACP) observed after 3 min of reaction. Conversion of ACP to the most 

thermodynamically stable calcium phosphate mineral, hydroxyapatite (HAP), was initiated at 6 

min and HAP continued to dominate solid phase throughout the experiment. By reducing the 

temperature to 25°C, only a broad peak of ACP between 2Ө=25° and 35° was observed in the 

XRD spectrum (Figure 4.3a) of the precipitate collected from batch tests at pH 7.2 and 25°C 

(Alvarez et al., 2004). Heating the precipitate at 500°C for 3 hr improved the crystallization 

characteristics, resulting in distinct peaks of HAP in XRD analysis as shown in Figure 4.3b.     

 

 

Figure 4.2 XRD pattern of the precipitates collected at 3, 8, and 30 min from batch tests at 40°C when pH was 
maintained at pH 7.2 
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Figure 4.3 XRD pattern of the precipitates from batch test at 25°C when pH was maintained at pH 7.2: (a) raw 
sample; (b) raw sample after heating at 500°C for 3 hr 

 

As a metastable amorphous precursor, ACP (Ca3(PO4)2·nH2O) has been shown to be 

structurally and chemically distinct from HAP (Ca5(PO4)3(OH)). Unlike HAP which has been 

studied extensively, the thermodynamic parameters of ACP precipitation are comparatively 

limited. Some values of solubility products of ACP at 20°C were reported in several phosphorus 

recovery studies (Seckler et al., 1996; Barat et al., 2011). Although, calcium phosphate 

precipitation is more prevalent at higher temperature like those of heat exchanger surfaces, little 

information is available on the ACP solubility product at other temperatures. 

The solubility product, , for ACP is expressed as:  

                                                                     (4-1) 

where bracketed quantities represent ion concentrations and,  represents ion activities. 

 79 



Phosphate ions would form pairs with Ca2+ and the ion pairs taken into consideration are 

CaHPO4 (formation constant Kpair 1=1015.035 at 25ºC, Hpair 1=-3 kJ/mol), CaPO4
- (formation 

constant Kpair 2=106.46 at 25ºC, Hpair 2=12.97 kJ/mol), CaH2PO4
+ (formation constant Kpair 

3=1020.923 at 25ºC, Hpair 3=-6 kJ/mol, and CaOH+ (formation constant Kpair 4=10-12.697, Hpair 

4=64.11 kJ/mol), while Ca(OH)2 (aq) could be neglected (Wang et al., 2009). The 

thermodynamic parameters in the discussion that follows were taken from the database in 

MINTEQA2 (Allison et al., 1991) 

The term  designates total inorganic phosphate that can be expressed as: 

                                             

(4-2) 

The term  designates total calcium that can be expressed as: 

                                (4-3) 

Equilibrium constants for the phosphoric acid dissociation are given as: 

                                                                                                  (4-4) 

                                                                                                      (4-5) 

                                                                                                         (4-6) 
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where  is the ith dissociation constant of phosphoric acid and  is the hydrogen ion 

activity ). The ionic activity coefficients,  of the ionic species  with  charge valence 

were calculated from Debye–Hückel equation: 

                                                                                                         (4-7) 

      where  is the ionic strength of the test solution. 

Equilibrium constants for the ion-pairs formation are given as, 

                                                                                 (4-8)                           

                                                  (4-9) 

                                                                                      (4-10)                  

                                                                                               (4-11) 

where   is the hydroxyl ion activity and were obtained from the ionic product of 

water, : 

                                                                                                        (4-12) 
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By combing Equations (4-1)-(4-12), ACP solubility product can be calculated using 

experimentally determined Ca and total inorganic phosphate concentrations. Values of solubility 

products of ACP and the associated standard errors at 25°C, 30°C, 40°C, and 45°C obtained 

from the data shown in Figure 4.1 are listed in Table 4.2. The plotting of  against 

 (units in K-1) shown in Figure 4.4 shows good agreement with van't Hoff equation assuming 

that the standard enthalpy of reaction ( ) is constant in the temperature range of 25ºC-50ºC. 

According to the fitted relationship, the solubility product of ACP at 20ºC is calculated to be 10-

26.28, which is in agreement with previous studies (Seckler et al., 1996; Barat et al., 2011). 

 

Table 4.2 Solubility of amorphous calcium phosphate at 25°C, 30°C, 40°C, and 45°C 

Temperature (ºC) 25 30 40 45 
Solubility product (×1027) 4.16±0.0396 3.61±0.0293 2.22±0.0168 1.878±0.005 
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Figure 4.4 Temperature dependence of amorphous calcium phosphate solubility product (the point at 50°C was 
obtained from the tests with antiscalants in Section 4.3.2) 

 

4.3.2 Function of antiscalants on the calcium phosphate precipitation 

Batch tests were conducted to evaluate the effects of PMA and HEDP on calcium phosphate 

precipitation at 40°C and 50°C and pH 7.2 and pH 7.8. A series of PMA and HEDP dosages 

were added to the test solution before adding any salts. Residual phosphate concentration was 

monitored with time as shown in Figure 4.5. XRD pattern of the selected precipitates are shown 

in Figure 4.6. Except for the precipitates included in Figure 4.6, no distinct HAP peaks but a 

broad peak of ACP between 2Ө=25° and 35° was observed in the XRD spectrum of all other 

precipitates (data not shown).  
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(a) 
 
 

 

(b) 
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(c) 

Figure 4.5 Residual phosphate concentrations in batch tests with antiscalants as a function of time at different 
conditions: (a) pH 7.2 and 40ºC; (b) pH 7.8 and 40 ºC; (c) pH 7.8 and 50ºC 

 

 

 

Figure 4.6 XRD pattern of the precipitates from batch tests with antiscalants: (a) 2 ppm PMA at pH 7.2 and 40 ºC; 
(b) 5 ppm PMA at pH 7.8 and 40 ºC; (c) 5 ppm PMA at pH 7.8 and 50 ºC; (d) 2 ppm HEDP at pH 7.8 and 50 ºC 
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As shown in Figure 4.5(a), the addition of 2 ppm PMA delayed induction period from 

about 5 min to 60 min at pH 7.2 and 40°C. By increasing the PMA dosage to 5 ppm, no 

transformation of ACP to HAP was observed all through the tests for 120 min. Under identical 

conditions, HEDP dose of 2 ppm could inhibit the transformation for 120 min and further 

increase in dosage to 5 ppm did not show any improvement in the inhibitory effects. When pH 

was elevated from 7.2 to 7.8 at 40°C, the addition of 5 ppm PMA failed to stop the 

transformation of ACP to HAP, but the induction period was delayed and the conversion kinetics 

was slower when compared to the control sample as shown in Figure 4.5(b). However, after the 

addition of 10 ppm PMA or 2 ppm HEDP, the occurrence of the second precipitation stage was 

not observed within 120 min. At pH 7.8 and 50°C, the dosage of HEDP had to be increased to 5 

ppm to inhibit the transformation for 120 min. In all the tests, PMA and HEDP had negligible 

effects on ACP precipitation but could slow or even inhibit the transformation of ACP to HAP. 

Besides, higher dosages of antiscalants were needed to achieve the similar inhibition efficiency 

at higher degree of supersaturation, e.g. when pH increased from 7.2 to 7.8 at 40°C or when 

temperature increased from 40°C to 50°C at pH 7.8. 

4.3.3 Mechanism of antiscalant effect on the calcium phosphate precipitation 

The formation of ACP and the transformation of ACP to the most thermodynamically stable 

calcium phosphate phase, hydroxyapatite (HAP), remain under extensive debate in spite of 

intensive research efforts. In previous studies, the dissolution-reprecipitation (Nylen et al., 1972) 

and solution-mediated solid-solid transformation (Boskey and Posner, 1973) mechanisms have 

been proposed, since the ACP remains stable in the absence of water. However, an in situ 
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observation showed that the growth of HAP crystals from the inter-particle phase within the ACP 

aggregates is an initial stage of the phase transformation (Kim et al., 2005). It was further 

revealed that HAP first formed at the ACP-solution interface and extended outward radially in 

which the ACP microsphere provided a template and supply of chemicals for the growth and 

rearrangement of HAP particles (Tao et al., 2008). In another study, crystalline HAP developed 

at multiple sites of primary particles, leading to the collapse of initial ACP phase and triggering 

the conversion process (Wang et al., 2009). Although the exact pathways for the phase 

transformation is still not clear, all the recent findings agreed that the agglomeration of ACP 

particles during the induction period was the necessary first step for the formation of HAP. 

 The effects of antiscalants on the particle sizes of the precipitates collected from tests at 

pH 7.2 and 40°C are shown in Figure 4.7. From this figure, the mean size of the ACP 

precipitates increased sharply from about 1150 nm at 1 min to 3450 nm at 6 min with no 

antiscalants, showing the aggregation of ACP particles in the induction period. However, in the 

presence of 2 ppm PMA, it takes about 55 min for the mean size of ACP precipitates to grow to 

about 3350 nm, corresponding to the ending of induction period as shown in Figure 4.5(a). The 

addition of 5 ppm PMA or 2 ppm HEDP could maintain the mean size of ACP precipitates 

around 760~1000 nm for 120 min. These results showed that PMA and HEDP delay or inhibit 

the transformation of ACP to HAP by slowing or even preventing the aggregation of ACP 

precipitates. Besides, there was nearly no difference between the particle sizes initially, 

indicating the antiscalants have negligible effects on the ACP formation. 
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Figure 4.7 Dynamic changes of mean size of precipitates at pH 7.2 and 40°C with no antiscalant, 2 ppm PMA, 5 
ppm PMA, and 2 ppm HEDP 

 

 

Carboxylic acid polymers like polyacrylic acid (PAA) and PMA and phosphonates like 

HEDP have been used as dispersants in colloids solutions for a long time (Lu and Kessler, 2006; 

Tulloch, 2011). As precipitation inhibitors, PMA and HEDP functioned by blocking active 

crystal growth sites through their complexation with lattice cations, such as calcium (Amjad, 

1985; Hasson et al., 2011; Rosenberg et al., 2012). The effects of PMA on the aggregation 

potential of ACP precipitates could be understood by the Zeta potential measurement in the 

induction time. The Zeta potentials of the ACP precipitates at pH 7.2 and 40ºC were estimated to 

be 6.32±2.28 mV in the absence of antiscalants; as shown in Figure 4.8, the ACP precipitates 

were changed to be negatively charged with Zeta potentials at -12.1±1.43 mV at the dosage of 2 

ppm PMA and further increase in dosage to 5 ppm PMA resulted in more negative surface 

charge on the ACP particles (-21.3±1.40 mV). The shift in the Zeta potentials inferred stronger 
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electrostatic repulsive force between the ACP particles which keeps the particles dispersed 

(Wang et al., 2002) and thus inhibits the transformation of ACP to HAP as a result of PMA 

addition. 

 Results in Figure 4.8 also revealed that 2 ppm HEDP has negligible impacts on the Zeta 

potential of the ACP particles, demonstrating the minimal effect of electrostatic repulsion on the 

stability of the ACP particles. Similar results were shown in other studies (Luo, 2000; Zhang et 

al., 2005). Steric repulsion could also not be used to explain the dispersion effects of HEDP 

depicted shown in Figure 4.7 because it is a small molecule rather than a polymer. For the 

slightly charged or neutral particles, hydration force is another repulsive, short-ranged interaction 

between approaching surfaces in aqueous medium. This repulsive force can arise from the 

entropy loss associated with disrupting the ordering hydrogen bond network of the fluid phase as 

the surfaces approach (Attard and Batchelor, 1988; Leikin et al., 1993; Marrink et al., 1993). 

Recent study clearly showed that substantial hydrogen bonding exists in the structure of Ca-

HEDP complex (Stavgianoudaki et al., 2012). Although the issue of hydration force remains the 

subject of intense study, hydration force of the phosphonate groups were reported in several 

works (Li et al., 2012; Zheng et al., 2013). 
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Figure 4.8 Zeta potential of the amorphous calcium phosphate precipitates formed in the test solution at pH 7.2 and 
40 ºC in the presence of 0, 2, and 5 ppm PMA and 2 ppm HEDP in the induction time before the transformation of 
amorphous calcium phosphate (ACP) to hydroxyapatite (HAP) 

 

4.4 SUMMARY AND CONCLUSIONS 

This study investigated the function of antiscalants on the calcium phosphate precipitation. Two 

types of antiscalants were evaluated in this study, including polyelectrolytes (e.g., polymaleic 

acid, PMA) and phosphonates (e.g., 1-hydroxyethane 1,1-diphosphonic acid, HEDP). Both PMA 

and HEDP exhibited negligible effects on the amorphous calcium phosphate (ACP) precipitation 

but could inhibit the transformation of ACP to hydroxyapatite (HAP). The inhibition effects 

could be observed from the prolonged induction period and slower transformation kinetics after 

the addition of either antiscalant.   
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Particle size analysis suggests that both PMA and HEDP inhibited the ACP 

transformation by preventing the aggregation of ACP particles. Zeta potential analysis showed 

that PMA dosage induced negative surface charges on the particles and thus stronger 

electrostatic repulsive force to disperse the ACP precipitates. However, HEDP has minimal 

effect on electrostatic repulsion between ACP particles. The pathway of the HEDP on the 

stability of ACP precipitates might be due to the hydration force caused by the phosphonate 

groups. 

 Overall, this study revealed the function and mechanisms of typical antiscalants in the 

calcium phosphate precipitation. 
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5.0  SUMMARY, CONCLUSIONS AND FUTURE WORK 

5.1 SUMMARY AND CONCLUSIONS 

This study aimed to advance the understanding of scaling behavior of tertiary-treated municipal 

wastewater under conditions relevant to cooling system operation and to develop effective 

approaches for mineral scaling mitigation. Two types of tertiary-treated municipal wastewater 

were evaluated, including secondary-treated water with pH adjustment (MWW_pH), and water 

from secondary treatment followed by nitrification and sand filtration (MWW_NF). The specific 

objectives of this study were to: 1) determine the main scaling mechanism and effective 

mitigation methods for heated and non-heated surfaces in bench-scale studies; 2) understand the 

role of hydrodynamic conditions on the scaling processes; 3) study the effectiveness and 

mechanism of common antiscalants on mineral scale formation relevant to MWW reuse as 

makeup in recirculating cooling systems; and 4) validate the findings from bench-scale studies in 

extended pilot-scale cooling tower tests. The main findings were summarized in the following 

sections with respect to the four objectives described above. 
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5.1.1 Mineral scaling mitigation on non-heated surfaces with tertiary-treated municipal 

wastewater as cooling system makeup 

Both bench-scale studies and pilot-scale cooling tower tests suggest that pH adjustment to 7.8 

plus the addition of 5 ppm PMA could reduce the scaling rate significantly. With this scaling 

mitigation method, calcium carbonate formation was inhibited and calcium phosphate was the 

primary form of mineral scale. MWW_NF exhibited little potential for mineral scale deposition 

in bench- and pilot-scale studies, which is related in part to the lower pH and alkalinity in the 

MWW_NF. 

A further pH reduction to 7.0 resulted in significant copper corrosion in the extended 

pilot-scale cooling tower tests with MWW_pH as the make-up water source. High ammonia 

content caused by low ammonia stripping at low pH may have also contributed to copper 

corrosion. 

5.1.2 Crystalline fouling mitigation on the heated surfaces with tertiary-treated municipal 

wastewater as cooling system makeup 

MWW_pH exhibited significant potential for crystalline fouling on heated surface when bulk pH 

was controlled at 7.8. High temperature on the heated surface favored the formation of 

hydroxyapatite, the most thermodynamically stable calcium phosphate mineral while only 

amorphous calcium phosphate precipitated in the bulk solution. Since hydroxyapatite is less 

soluble than amorphous calcium phosphate, the driving force for hydroxyapatite formation is still 

present even after the bulk precipitation was accomplished, which is the main reason for the 

crystalline fouling on the heated surface. PMA addition could inhibit the crystalline fouling of 
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MWW_pH effectively by delaying or blocking the transformation of amorphous calcium 

phosphate to hydroxyapatite. 

 In contrast with generally accepted view that lower pH results in lower scaling rate, 

significant crystalline fouling was identified with MWW_NF at pH 7.2 while pH adjustment to 

7.8 lead to negligible fouling. High concentration of dissolved phosphate remained in the bulk 

solution at pH 7.2 and served to supply necessary ions for surface crystallization of 

hydroxyapatite on the heated surface. When pH was elevated to 7.8, low dissolved phosphate 

remaining after hydroxyapatite formation in the bulk solution caused negligible crystallization on 

the heated surface. 

5.1.3 Impact of hydrodynamic conditions on the particulate fouling 

A qualitative model was presented to identify optimal hydrodynamic conditions for particulate 

fouling control. This model analyzed the forces acting on bulk precipitates and suggested that the 

occurrence of particulate fouling is mainly determined by the precipitate size and hydrodynamic 

conditions. Modeling showed a positive deposition potential for bulk precipitates at flow velocity 

of 0.5 and 0.4 m/s while little particulate fouling was theoretically predicted at 0.6 m/s. The 

experimental results from bench-scale studies were consistent with the model prediction. 

5.1.4 Mechanism of common antiscalants on the calcium phosphate precipitation 

Two types of common antiscalants were evaluated in this study, including polymaleic acid (PMA) 

and 1-hydroxyethane 1,1-diphosphonic acid (HEDP). Both PMA and HEDP exhibited negligible 

impacts on the amorphous calcium phosphate precipitation, but inhibited the transformation of 
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amorphous calcium phosphate to hydroxyapatite. Higher dosage of antiscalants was needed to 

achieve similar inhibition effects at higher degree of supersaturation at higher temperature or 

higher pH.  

 Agglomeration of amorphous calcium phosphate particles was the necessary first step for 

the transformation of amorphous calcium phosphate to hydroxyapatite. Both PMA and HEDP 

inhibited the precipitation by preventing the aggregation of amorphous calcium phosphate 

particles. PMA induced negative surface charges on the particles and thus stronger electrostatic 

repulsive force to disperse the amorphous calcium phosphate precipitates. The dispersion 

mechanism of HEDP might be due to the hydration force caused by the phosphonate groups in 

the molecular structure. 

5.1.5 Overall findings 

In summary, this study revealed that it is possible to control mineral scaling through direct 

chemical addition when tertiary treated municipal wastewater is used as makeup water in the 

recirculating cooling system. 
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5.2 KEY CONTRIBUTIONS 

This study contributes to better understanding of the formation and inhibition of mineral scales, 

with emphasis on engineering development for mineral deposition control needed for successful 

wastewater reuse in industrial cooling. 

The specific contributions of this dissertation are summarized below: 

• Provided scientific evidence and understanding, through bench- and pilot-scale studies, of 

the mineral scale formation and inhibition in treated municipal wastewater as alternative 

makeup water for power plant cooling. 

• Developed a bench-scale recirculating system for convenient and sensitive study of the 

effects of mineral scaling on heat transfer efficiency loss. 

• Proposed and validated a qualitative model to predict the deposition of bulk precipitates 

under different hydrodynamic conditions. 

• Investigated the function and mechanism of PMA and HEDP on calcium phosphate 

precipitation. 

• Obtained the solubility products of amorphous calcium phosphate in the range of 

25°C~50°C. 
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5.3 FUTURE DIRECTIONS 

This study points to a promising future for wastewater reuse in power plant cooling systems with 

respect to mineral scaling control. To extrapolate the scope of this work in the areas of 

evaluation and mitigation of mineral scaling, several directions for future work are suggested 

below: 

5.3.1 Development of a predictive model for heat exchanger fouling when treated 

municipal wastewater is used as cooling makeup 

The costs of heat exchanger fouling due to cleaning, additional hardware, and loss of production 

was estimated to be in the range of 0.4-2.2 Million (USD 2009) (Walker et al., 2012). Because 

fouling resistance varies with cooling water quality, operating conditions, and time, it is 

necessary to understand the fouling trends of heat exchangers to determine reasonable cleaning 

schedule. Besides, during the design stage, a common practice is to prescribe a fouling factor on 

the heat transfer surfaces where fouling is anticipated to provide an allowance for fouling.  

 Several models have been reported on the fouling prediction in heat exchangers. The 

ionic diffusion model developed by Hasson et al. (1968) divided the mineral scaling into several 

processes: nucleation, diffusion, crystallization, and molecular ordering of the crystal lattice. By 

equating the rates of the individual processes, an over-all equation of CaCO3 deposition rate can 

be obtained from the model. In this model, the sale growth rate is related with the bulk 

concentration of bicarbonate ion, calcium ion, and dissolved CO2. However, this model has not 

considered the removal process caused by the flowing fluid and thus can only be applied in the 
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situation when the flow velocity is low (Branch and M ller-Steinhagen, 1991). Tests also 

showed that the ionic diffusion model, which is for pH>10, would underpredict the deposition 

rate for scaling solution with pH below 9 (Andritsos et al., 1996; Khan et al., 2001). Besides, the 

model only related the scale growth rate with water quality but no information on the heat 

transfer efficiency loss caused by mineral deposition can be obtained. There were also other 

analytic (Wakinson and Martinez, 1975; Chan and Ghassesmi, 1991) and semi-analytic (Khan et 

al., 2001) models based on their particular studies to estimate the fouling behavior in heat 

exchangers. Overall, these models did not always give good agreements with experimental 

results (Kim et al., 2002). 

 The sources contributing to fouling factor for heat exchanger design are still the values 

suggested by Tubular Exchanger Manufacturers Association (TEMA) (Bansal et al., 2001). 

These values are specified for only a handful of applications (water and hydrocarbon streams) 

and have changed little since their first publication. Heat exchangers designers, therefore, 

frequently have to use estimated fouling resistances similar to the TEMA values or rely on 

experience with similar installations in the past.   

 It has to be noted that fouling prediction is still a major unresolved problem. 

Understanding, and being able to predict, the characteristics of scale and fouling development 

precisely is necessary for reliable design and uninterrupted operation of the heat exchangers. 

This is especially the case for the cooling systems with treated MWW as makeup water because 

of its low water quality. 

Along this direction, it will be particularly meaningful to explore the following: 

- Collect the thermodynamic and kinetic parameters under conditions relevant to MWW 

reuse in cooling systems. Several studies (Chong and Sheikholeslami, 2001; 
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Sheiholeslami and Ng, 2001; Sheiholeslami, 2003) revealed that the effects of co-

existing chemical species on the precipitation behavior of a particular mineral have not 

been studied extensively and the attempts to apply the specific data obtained from simple 

aqueous systems to more complex ones containing multiple chemical constituents is 

likely to have limited success.  

- Obtain more fundamental understanding on the scaling formation. Appendix A provides 

some insights into the mineral deposition mechanism. As for the future research, 

computational fluid dynamics (CFD) modeling of flow water and heat transfer in 

complex heat exchanger geometries, combined with corrections for the effect of 

operating parameters (temperature, flow velocity, surface characteristics, etc.), may be 

fruitful to understand mineral deposition processes and predict the fouling development. 

5.3.2 Elucidation of mineral-antiscalants interactions for improved scaling and corrosion 

inhibition 

The assessment of the effectiveness for various antiscalants is largely based on empirical tests 

and lacks theoretically sound systematic investigation due to the poor understanding of various 

antiscaling mechanisms. This study revealed the mechanisms for two common types of 

antiscalants in calcium phosphate precipitation. To further study these functions, future work 

may focus on the following: 

- Formulate a theoretical framework based on molecular dynamics to explain the 

precipitation inhibition effects of PMA or other polymeric antiscalants. 
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- Investigate the interactions between cations (e.g. Ca2+, Ba2+, etc.) and phosphonate 

groups in aqueous phase and on particle surfaces to improve the understanding of the 

role of such interactions in precipitation inhibition and particle dispersion. 

- Study the synergistic effects of some antiscalants in corrosion inhibition. Recent studies 

showed that some antiscalants can also work as corrosion inhibitors in cooling water 

management (Abdel-Gaber et al., 2011; Abd-EI-Khalek et al., 2013). A systematic 

investigation on this point will not only reduce operational cost but also help to unveil 

the mystery associated with the antiscalants. 

Although the antiscalants have been used for a long time, the fundamentals of inhibition 

mechanisms are still inadequately understood. Scale inhibition is still closer to being an art than a 

science and there is still enough of the “art” remaining to make it a fascinating subject (Darton, 

1997). Along this direction, scientific guidance could be provided for the synthesis, evaluation, 

and application of the antiscalants in water treatment. 

5.3.3 Engineering of substrate surface materials for mineral scaling mitigation 

Mineral scale deposition is ultimately a surface phenomenon. Theoretical calculations in 

Appendix A showed that the tenacity of the scale would vary with the surface properties. Novel 

surfaces for scaling mitigation have been reported in several studies (Yang et al., 2000; 

Rosmaninho et al., 2007). However, these studies still provides no conclusive recommendations 

for industrial operations. Nevertheless, an improved understanding and development of non-

scaling surfaces, as initiated by nature with the leaves of flowers or the scales of fish, may 

achieve more effective and robust scaling inhibition technologies. Knowledge development in 

this direction will especially benefit the continuing effort in the novel design of anti-deposition 
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molecules that can be grafted on membrane surfaces, resulting in membrane systems that 

effectively separate mineral salts from water without causing significant membrane fouling. 
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APPENDIX A 

TWO PATHWAYS FOR MINERAL SCALE FORMATION: SURFACE 

CRYSTALLIZATION AND PARTICLE DEPOSITION 

A.1 INTRODUCTION AND APPROACH 

Mineral scaling can be considered to result from two main processes. The first one is directly 

related to the dissolved supersaturated components diffuse towards the flow surface and reacts to 

form a scale layer (surface crystallization). The second one is mainly caused by the adhesion of 

particles, previously formed in the solution, to the bare surface or to already formed deposit layer 

(particle deposition). The predominance of each of these processes is dependent on the solution 

and surface characteristics. In order to predict the scaling process and propose reasonable 

inhibition strategies, it is necessary to study the mechanism of each process in details. 
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A.2 RESULTS AND DISCUSSION 

A.2.1 Forces analysis on the individual particle deposited on the pipe surface 

For the particles already deposited on the pipe surface, the possible forces (Figure A.1) acting on 

the particles include: 

 Gravity force,   
 Buoyant force,  
 Lift force,  
 Liftshitz-van der Walls force,  
 Electrostatic double layer repulsive force,  
 Lewis acid-base bonding component of the adhesive force,  
 Fluid drag force,  
 Friction force on the substrate surface,  

 
 

 

Figure A.1 Possible forces acting on the particles on the pipe surface 
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For the drag force, , is: 

                                                                             (A-1) 

 Where,   is the density of the particle, g is the gravitational constant, and  is the 

diameter of the particle  

For the buoyant force, , is: 

                                                                                                               (A-2) 

Where,   is the density of the water. 

            For the drag force (Altmann and Ripperger, 1997), : 

                                                                                                  (A-3) 

Where,  is the shear stress. 

The shear stress is given as, 

                                                                                                                    (A-4)                            

Where,  is the Darcy friction factor and  is the mean flow velocity. 

For the lift force, , is: 

                                                                                                  (A-5) 

Where,  is the dynamic viscosity of the water. 
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The Liftshitz-van der Waals interaction potential energy between the particles and 

surface is (Berg, 2010):    

                                                     (A-6) 

Where,  is the interactive potential,  is the effective Hamaker constant,  is the 

radius of the spherical particle, and  is the distance of closed approach between particle and 

surface.  

 In the cases of , 

                                                                                                 (A-7)                                

 In details, the effective Hamaker constant, , is: 

                                                                   (A-8) 

The effective Hamaker constant  describes the attractive interactive potential 

between the particles (1) and the substrate (2) when immersed in an aqueous medium (3) 

(Royer et al., 2010). 

 For the electrostatic double layer repulsive force, the traditional way is to use Derjaguin 

integration method with DLVO theory. The electrostatic double layer interaction energy 

between a sphere (S) and a flat plate (P) could be described as follows (Hoek and Agarwal, 

2006): 

            (A-9) 
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Where,  is the dielectric constant, the value is 69.94 at 50°C;  is the permittivity of 

free space, 8.854×10-12 C V-1 m-1;  is the electron charge, 1.6021765 × 10−19 C;  is the 

surface potential of the charged flat plate;  is the surface potential of the charged particle;  is 

the Debye parameter;  is the closest approach and is typically taken to be approximately 0.4 

nm (Rimai et al, 2000).     

 Then, 

                                      (A-10)               

Debye parameter, , could be given as (Berg, 2010): 

                                                                                                       (A-11) 

Where,  is the electron charge, 1.6021765 × 10−19 C;  is the Avogadro's constant = 

6.0221415 × 1023;  is the ionic strength. 

Another possible function between the particles and the surface is the Lewis acid-base 

interaction. Different form apolar Lifshitz-van der Waals interation, Lewis acid-base (AB) 

interactions (include the special case of hydrogen donor-hydrogen acceptor interaction) 

consider the electron acceptor-electron donor interactions (Van Oss et al., 1988). The Lewis 

acid-base bonding component of the work of adhesion,  is given by: 

         (A-12) 
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Where,  and  are the electron donor and electron acceptor parameters of the polar 

components of the surface tension of materials (1) and (2) immersed in liquid (3). 

The Lewis acid-base interaction energy between a sphere (S) and a flat plane (P) is 

given as (Hoek and Agarwal, 2006): 

                                                                                 (A-13)               

Where,  is the decay length of acid-base interaction in water (0.6 nm);  is the 

minimum separation distance due to Born repulsion (0.158 nm). 

Then, the acid-base interaction force, , is: 

                                                                      (A-14) 

In summary, the total force toward the pipe surface is 

          

(A-15) 

The force away from the pipe surface is: 

     

  (A-16) 

The total force in the vertical direction is: 

                                                               (A-17) 

 107 



For the individual scale particle, the particle would return to the bulk solution in the case 

of negative . However, positive does not undoubtedly result in particle 

attachment. Sliding or rolling detachment of the particle may be caused by the shearing stress of 

the flowing water. According to numerous studies, rolling detachment is the favored mechanism 

for the removal of spherical particles from the substrate surface (Soltani and Ahmadi, 1994; 

Chang and Hammer, 1996; Taheri and Bragg, 2005; Ahmadi et al., 2005; Ahmadi et al., 2007).  

 From Figure A.2, Royer et al. (Royer et al., 2010) proposed that the shear flow velocity 

at the center of the deposited particle needed for rolling removal should satisfy the following: 

                                                                           (A-18) 

Here  is the dynamic viscosity of the water. 

 

 

Figure A.2 Particle adhesion/removal model (Ahmadi et al., 2005) 
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Figure A.2 showed that the shear flow velocity depends on the pipe surface roughness 

( ). The pipe surface roughness would be difficult to characterize and not uniform over the 

whole collecting surfaces. 

For  and , when deformation is negligible,  

                                                                                                   (A-19) 

Under the relationship described by Equation (A-19), the maximum value of the right 

part of Equation (A-18) is: 

                                                   (A-20) 

Here we define the critical shear flow velocity to detach the individual scale particle on 

the pipe surface  as: 

                                                                                                          (A-21) 

Therefore, in the case of positive : 

If the flow velocity at the center of the particle , the scale particle will be removed 

by the flowing water. 

If the flow velocity at the center of the particle , whether the scale particle will 

stay or be removed depends on the roughness of the pipe surface. 
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As discussed in the preceding text, negative   indicates no retention of the scale 

particle on the pipe surface. 

A.2.2 Critical shear flow velocity to detach the individual scale particle deposited on the 

pipe surface 

For the turbulent pipe flow (which is always the case for cooling water at thermoelectric power 

plants), a simplified theory was proposed by splitting the tube section into three distinct regions 

(Von Kármán, 1939): 

• The turbulent core  
• The laminar sub-layer 
• The buffer layer between the above two layers 

It is in the laminar sub-layer that the velocity gradient and lift force is significant. The 

thickness of the laminar sub-layer could be estimated by the following equation (Rama, 2007): 

                                                                                                                   (A-22) 

Where,   is the kinematic viscosity of the water. 

The scenario for the calculation was designed according to the test condition in the 

fouling study as shown in Chapter 3: flow rate is set at 0.0003155 m3/s (5 GPM), the diameter of 

the pipe is 0.0254 m (1 inch), and the bulk water temperature is maintained around 40°C., the 

thickness of the laminar sub-layer, , is (Rama, 2007): 

                                  (A-23)                    
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The above calculation shows that individual amorphous calcium phosphate in the bulk 

water (1~60 µm as shown in Figure 3.12) are smaller than the thickness of the laminar sub-layer.  

The parameters needed to calculate  based on Equations (A-1)-(A-17) were 

obtained from literature as shown in Table A.1. It must be noted that the data on density, 

dynamic viscosity, and kinematic viscosity of water were at 50°C, which is the typical surface 

temperature of condenser tubes. For the single particle on the substrate surface, the electrostatic 

double layer repulsive force is not significant and can be neglected in the model (Altmann and 

Ripperger, 1997; Royer et al., 2010)  

The critical shear flow velocity to detach the individual scale particle with seizes between 

1~50 µm was then calculated from Equation (A-1)-(A-17) and shown in Figure A.3.  

Prandtl (Prandtl, 1925) stated that the molecular viscosity becomes much greater than 

turbulent velocity in the vicinity of the pipe wall as eddies tend to die out. Therefore, it is 

incorrect to use the mean flow velocity as the flow velocity at the center of the particle in the 

vicinity of the pipe wall. The velocity profile within the laminar sub-layer should approach the 

theoretical one for laminar flow and could be estimated as follows (Rama, 2007): 

                                                                                                                       (A-24) 

Where,  is the distance from the pipe wall. For the individual mineral scale particle on 

the pipe surface, . 

The flow velocity at the center of the particle with sizes between 1~50 µm was obtained 

from Equation (A-24) and shown in Figure A.4. As can be seen in Figures A.3 and A.4, the flow 

velocity at the center of the particle increases with the particle size but is still much lower than 
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the critical flow velocity to detach the individual scale particle from the pipe wall. This is the 

reason why the mineral scales formed through surface crystallization are usually hard and 

tenacious.  As discussed in Section 3.3.3, an entrained particle in the bulk phase must first 

negotiate the carrier fluid before the short-range forces (Van der Waals force, Lewis acid-base 

bond, etc.) can exert any influence and little bulk precipitate was observed when the flow 

velocity exceeds 0.6 m/s for the particles with sizes between 1~50 µm. 

 
Table A.1 Useful parameters to calculate the forces acting on the individual scale particle deposited on the stainless 

steel pipe surface 

Symbol Parameters Unit Value Source 
 Density of HAP  3.156×103 Muralithran and Ramesh, 2000 

A11 
Hamaker constant of calcium 

phosphate 
 5.4×10-20 Morgan et al., 2011 

A22 
Hamaker constant of stainless 

steel 
 21.67×10-20 Hansen and Giddings, 1989 

A33 Hamaker constant of water  4.35×10-20 Bargeman and van Voorst, 
1972 

 Electron donor of the polar 
component of the surface 

tension of HAP 

 0.9 

Wu and Nancollas, 1998 
 Electron acceptor of the polar 

component of the surface 
tension of HAP 

 16 

 Electron donor of the polar 
component of the surface 
tension of stainless steel 

 1.4 

Rosmaninho et al., 2003 
 Electron acceptor of the polar 

component of the surface 
tension of stainless steel 

 39.1 

 Electron donor of the polar 
component of the surface 

tension of water 

 25.5 

Van Oss, 1988 
 Electron acceptor of the polar 

component of the surface 
tension of water 

 25.5 

 Density of water at 50°C  0.98804×103 

Davis and Cornwell, 2008 
 Dynamic viscosity of water at 

50°C 
 

0.547×10-3 

 Kinematic viscosity of water 
at 50°C 

 0.554×10-6 
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Figure A.3 critical shear flow velocity to detach the individual scale particle with seizes between 1~50 µm 
 

 

 

 

Figure A.4 Flow velocity at the center of the particle deposited on the pipe surface with sizes between 1~50 µm 

 113 



A.3 SUMMARY AND CONCLUSIONS 

• Surface crystallization leads to hard and tenacious mineral scales. Once they are formed, 

normal hydrodynamic conditions would hardly remove the initial layer on the pipe surfaces. 

• Hydrodynamic conditions could be adjusted to prevent the deposition of bulk precipitates. 

Mineral scales formed through particle deposition are different from those formed resulting from 

surface crystallization because they must first negotiate the carrier fluid before the short-range 

forces can exert any influence. 

• Surface materials may influence the interaction between the scale particles and substrate 

surfaces and thus the tenacity of the particle on the pipe walls. 

• The relative extent of the surface crystallization and particle deposition in mineral scale 

formation is dependent on the saturation states of the solute, hydrodynamic conditions, the type 

of scales, and the surface characteristics (e.g. roughness, surface tension components, etc.). 

Determining the relative extent is essential to proper modeling and to devise preventive 

techniques to combat scaling. 
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APPENDIX B 

REPRODUCIBILITY OF THE FOULING RESISTANCE MEASUREMENT IN THE 

BENCH-SCALE RECIRCULATING SYSTEM FOR FOULING STUDIES 

B.1 MATERIALS AND METHODS 

The design and operation of the bench-scale recirculating system for fouling studies is described 

in Section 2.3. Synthetic secondary-treated municipal wastewater (MWW) at CoC 4 with no pH 

control was used in the recirculating system to test the reproducibility of the fouling resistance 

measurement. The chemical composition of synthetic MWW at CoC 4 is shown in Table 3.1.  

In each test, 170 L of distilled water was recirculated in the system and heated by the 

cartridge heater to typical cooling tower water temperature. When the temperature profile has 

stabilized in the annular section, chemical listed in Table 3.1 were added to the distilled water to 

start the tests. A fouling curve from the temperature profile monitoring in the annular section was 

then obtained to reflect the mineral deposition on the heat transfer surfaces. Two independent 

tests were compared to test the reproducibility of the fouling resistance measurement from the 

bench-scale recirculating system. 
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B.2 RESULTS AND DISCUSSION 

The curves from two independent tests are shown in Figure B.1. The comparison between the 

two curves shows that the relative standard deviation (%RSD) of the fouling test system is within 

10% for 129 measurements among 145 measurements within 12 hours. 

 

Figure B.1 Development of fouling resistance in MWW (CoC 4) without pH control in two independent test runs 
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APPENDIX C 

SCALING MITIGATION FOR MWW_NFG AS MAKEUP FOR COOLING 

C.1 INTRODUCTION 

Organic matter in cooling system make-up water promotes biofouling and increases biocide 

requirements to control biofouling.  In addition, organic matter can adsorb on metal surfaces and 

contribute directly to fouling. One of the unit processes that can be utilized for the removal of 

residual dissolved organic matter is activated carbon adsorption. The main objective in this part 

was to identify the effects of TOC removal in a fixed bed granular activate carbon (GAC) 

adsorber on scaling behavior of water from secondary-treatment followed by nitrification and 

filtration (MWW_NF). 
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C.2 MATERIALS AND METHODS 

It was expected that only organic matter in the treated municipal wastewater is influenced 

significantly by the GAC treatment. Thus, no batch and bench-scale recirculating system tests 

which focused on synthetic treated municipal wastewater composed of  mineral contents only 

were conducted.  

Three pilot-scale cooling towers (Tower A, B, and C) were operated side-by-side at the 

Franklin Township Municipal Sanitary Authority (FTMSA, Murrysville, PA) in summer 2011. 

MWW_NF after GAC treatment is designated as MWW_NFG and was fed into Tower C while 

the other two towers were used as control towers for scaling study. Traditional stainless steel (SS) 

coupon discs were immersed in the recirculating water and sampled at a predetermined schedule. 

The air-dried SS coupons were dried at 104oC for 3.5 hours and subsequently combusted at 

500oC for 3.5 hours in a muffle furnace. The deposits after the combustion were considered as 

the inorganic mineral scales. The inorganic deposits on selected SS disc specimens were also 

analyzed by SEM/EDS to obtain their elemental composition. In parallel with the solids analysis, 

important information about the chemistry of the makeup and recirculating water was recorded 

throughout the field tests. 

During the field tests, the alkalinity of the MWW_NF was unusually high in the first 15 

days resulting in significant mass gain in all three towers (this will be discussed in the following 

text). In order to obtain representative information, a new test was initiated on day 16 and lasted 

for 12 days when the alkalinity of makeup water was in the normal range. For the sake of 

simplicity in discussion, the whole test period was divided into two phases: Phase 1 (day 1 to day 

15) and Phase 2 (day 16 to day 28). 
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C.3 RESULTS AND DISCUSSION 

Figure C.2 depicts the time course of inorganic mineral scale deposition on the stainless steel 

coupon discs in the three cooling towers during the two phases of pilot-scale cooling tests. 

As can be seen in Figure C.1, mineral deposition on the stainless steel coupon discs 

immersed in Towers A, B, and C for the first 15 days (phase 1) was significant, especially in 

Towers A and C. This result was completely inconsistent with the pilot-scale cooling tower tests 

with MWW_NF in summer 2010 as shown in Section 4.2. In order to explain these unusual 

results, SEM/EDS analysis was first conducted to study the elemental compositions of the 

inorganic deposits collected from Towers A, B, and C, as shown in Figure C.2, C.3, and C.4 

respectively. These analyses showed that the inorganic deposits were mainly composed of 

calcium carbonate and calcium phosphate. In order to provide reasonable explanations for the 

significant elevation of mass gain in the first phase, it was necessary to assess the reactions 

leading to the formation of calcium phosphate and calcium carbonate individually.  
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Figure C.1 Inorganic deposits measured in the pilot-scale cooling tower tests with MWW_NFG 
 

 

 
 
 

 
Figure C.2 SEM image and elemental composition of the solid deposits collected on stainless steel discs immersed 
in pilot-scale cooling towers operated at CoC 4-6: Day-15 sample from Tower A using MWW_ NF. EDS scan was 
performed on the area outlined by the square box on the SEM image. 
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Figure C.3 SEM image and elemental composition of the solid deposits collected on stainless steel discs immersed 
in pilot-scale cooling towers operated at CoC 4-6: Day-15 sample from Tower B using MWW_ NFG. EDS scan was 
performed on the area outlined by the square box on the SEM image. 

                                                                                  
                                                                               
                                                                         

 

 

Figure C.4 SEM image and elemental composition of the solid deposits collected on stainless steel discs immersed 
in pilot-scale cooling towers operated at CoC 4-6: Day-15 sample from Tower C using MWW_ NFG. EDS scan was 
performed on the area outlined by the square box on the SEM image. 
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Figure C.5 and C.6 depict phosphate concentration profiles in the make-up water and 

recirculating water in pilot-scale cooling towers during summer 2010 and phase1 in this section, 

respectively. These Figures suggest that there was not much difference between the phosphate 

concentrations in the make-up water during the two tests. However, significant differences in 

phosphate concentrations were observed in the recirculating water between the two tests despite 

the fact that all the pilot-scale cooling towers were operated at similar cycles of concentration 

(CoC 4-6). Phosphate concentrations in the recirculating water in Towers A and C in phase 1 

(day 1 to day 15) were much lower (5-10 ppm as PO4
3-) compared with the data obtained in 

summer 2010 (>20 ppm as PO4
3), indicating that more phosphate scales formed in these systems. 

Among the three towers, highest phosphate concentration in the recirculating water was in Tower 

B, corresponded to the least mineral scale collected in this tower. 

 
Figure C.5 Phosphate concentrations in pilot-scale cooling tower tests using MWW_NF as make-up water, summer 

2010 
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Figure C.6 Phosphate concentrations in pilot-scale cooling tower tests using MWW_NF and MWW_NFG as make-

up water, summer 2011 
 

 

Langelier Saturation Index (LSI) could be used to estimate the potential for calcium 

carbonate scale formation. LSI in the recirculating water in Towers A, B, and C is shown in 

Table C.1. For comparison, LSI in the recirculating water in all towers operated during summer 

2010 is shown in Table 2.5. 

 

Table C.1 Langelier Saturation Index for the recirculating water in Towers A, B, and C during the pilot-scale 
cooling tower test, summer 2011 

  Langelier Saturation Index 
Day 1 Day 8 Day 15 Day 22 Day 29 

Tower A 1.55 0.66 1.56 0.07 -0.46 
Tower B 1.25 -1.52 1.68 -0.58 -0.48 
Tower C 1.00 0.62 1.07 0.61 0.09 

Note: If LSI is negative, there is no potential to form CaCO3 scale and the water will dissolve CaCO3; if LSI is positive, 
scale can form and CaCO3 precipitation may occur; if LSI is close to zero, the water is neutral with respect to scale 
formation. 
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Nearly all LSI values for the recirculating water in phase 1 of the pilot-scale test in this 

section were positive, indicating that there was a significant potential for the precipitation of 

calcium carbonate. On the contrary, Table 2.5 clearly shows that there was no driving force for 

the formation of calcium carbonate scale during the experiments conducted in summer 2010. 

Positive scaling propensity of calcium carbonate in all three towers operated in summer 2011 

arises from high total alkalinity in the recirculating water. A comparison between the total 

alkalinity of the recirculating water during phase 1 of the test in 2011 (Figure C.7) and in 

summer 2010 (Figure C.8), clearly illustrates significant differences in total alkalinity between 

these tests. For example, total alkalinity in the recirculating water in Towers A and C during the 

first 15 days in summer 2011 was in the range from 92.8- 215.5 mg/L as CaCO3 and 77.4-199.3 

mg/L as CaCO3, respectively. On the other hand, total alkalinity in the recirculating water during 

summer 2010 was generally in the range of 50-70 mg/L as CaCO3. The high alkalinity in the 

recirculating water was from the unusually high total alkalinity in the make-up water during the 

first phase of this section (50.83-77.35 mg/L as CaCO3) while the values were generally in the 

range of 14.4-35.2 mg/L as CaCO3 with the MWW_NF as make-up water in summer 2010. 
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Figure C.7 Total alkalinity profile in pilot-scale cooling tower tests using MWW_NF and MWW_NFG as make-up 
water, summer 2011 

 
 
 

 
Figure C.8 Total alkalinity profile in pilot-scale cooling tower tests using MWW_NF as make-up water, summer 

2010 
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With regards to the effects of organic removal by activated carbon on the scaling 

behavior, Tower C with MWW_NFG as make-up water showed the greatest inorganic scale 

deposition during the first 15 days. Activated carbon adsorption led to an increase in pH of the 

make-up water (Figure C.9), which enhanced the scaling potential in recirculating cooling tower 

system. The elevation of pH was understandable since more than half of the organic material in 

treated municipal wastewater falls in the strong acid or weak acid classification (Bunch et al., 

1961). On the other hand, the least inorganic deposition in Tower B was associated with the 

lowest pH, which could be ascribed to the addition of chlorine dioxide dosed in this tower to 

control the biofouling. 

 

 

     

Figure C.9 pH in pilot-scale cooling tower tests using MWW_NF and MWW_NFG as make-up water during the 
pilot-scale cooling tower test, summer 2011 
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Another phase of tests was conducted on day 16 when the total alkalinity of make-up 

water returned to the usual range (5.53-27.63 mg/L as CaCO3). In phase 2, negligible mass gain 

was observed in all the three towers as shown in Figure C.1 which was consistent with the pilot-

scale cooling tower tests described in Section 2.3. Meanwhile, phosphate concentrations in the 

recirculating water increased in phase 2 as shown in Figure C.6, indicating lower calcium 

phosphate formation potential. Besides, much lower LSI meaning less CaCO3 scaling potential 

was also observed in phase 2 as shown in Table C.1. The above changes were surely related to 

the reduction in total alkalinity in the make-up water and thus the pH in the recirculating water 

(Figure C.9).   

C.4 SUMMARY AND CONCLUSIONS 

From the representative information obtained from the second phase, it could be concluded that 

MWW_NFG showed equally low scaling potential as MWW_NF. The removal of organic 

matters does not cause significant changes on the scaling characteristics of MWW_NF.   
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