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A GRAPH-THEORETIC APPROACH TO BRAIN NETWORKS ASSOCIATED WITH

SWALLOWING

Bo Luan, M.S.

University of Pittsburgh, 2013

The functional connectivity between brain regions during swallowing is still not well understood.

Understanding these complex interactions is of a great interest from scientific and clinical per-

spectives. In this study, we utilize functional magnetic resonance imaging (fMRI) to investigate

brain functional networks during voluntary saliva swallowing in twenty two adult healthy sub-

jects (all females, 23.1± 1.52 years of age). To construct these functional connections, we com-

pute mean partial correlation matrices over ninety brain regions for each participant. Two regions

are considered functionally connected if they showed statistically significant correlations. These

correlation matrices are then analyzed using graph-theoretical approaches. In particular, we con-

sider several network measures for the whole brain and swallowing-related brain regions. The

results have shown that significant pairwise functional connections are mostly either local and

intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we have shown that the hu-

man brain functional network had robust small-world properties, which support efficient parallel

information transfer at a relatively low cost. Swallowing related brain regions also had higher

values for some of the network measures in comparison when these measures were calculated for

the whole brain. Our results have demonstrated the basic network properties of the human brain

compatible with previous functional network studies, but also showed unique connections in some

regions during swallowing. This leads us to believe that graph-theoretical approaches are a valid

tool for the analysis of the swallowing functional connectivity.
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1.0 INTRODUCTION

1.1 SWALLOWING AND DIFFICULTIES ASSOCIATED WITH SWALLOWING

Human swallowing is also known as deglutition. It is a series of movements that are accomplished

by the collaboration and coordination of multiple human biological systems and structures. Swal-

lowing is a process in human or animals to pass material such as liquid, solid or compound that

has already been broken into small pieces in the mouth and further to the pharynx. The material

is subsequently transported into the esophagus while shutting the epiglottis, and further transfered

into the digestive tract [1]. It is a complex neurological behavior which include the collaboration

of multiple bodily structures near the mouth, as well as near the bilateral part of tongue, larynx,

pharynx and esophagus [2], [3]. During a swallow, the epiglottis, a cartilaginous structure, shuts

the entry towards the trachea to guarantee the material which has already been broken down in

the mouth passes into the pharynx instead of entering the wrong tract, for example, entering the

lungs [4], [5]. During the process, different part of the neuron system from the cerebral cortex are

activated or excited sequentially to process the swallowed material from the mouth to the stomach

[6], [7], [8], [9], [10] and [11]. The study of human swallowing behavior is challenging due to

the complexity of the neurological structures, muscular organizations and nerve systems involved

during the process of swallowing, which raised the difficulty but also the urgency of performing

swallowing related experiments among human.

Dysphagia (swallowing difficulties) are usually the result of several known neurological con-

ditions such as stroke, cerebral palsy, Parkinson’s disease [12] or insults to motor or sensory path-

ways to the brain [13]. It is a serious and proemial condition due to its complication symptoms
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such as degraded psycho-social well-being [14], dehydration, malnutrition [15] [16], acute stroke,

acquired brain damage, and neuro-degenerative illnesses [17]. Patients with swallowing difficulties

are vulnerable to the entry of foreign material into respiratory tract, as they will greatly increases

the occurrence of severe respiratory problem among dysphagia patients. Therefore, understanding

the neural basis of dysphagia is one of the paramount steps needed to develop future rehabilitation

procedures.

Various diagnostic tool of dysphagia have been developed over past few decades, such as

videofluoroscpotc swallowing study (VFSS) [18], [19]. Using VFSS approach, x-ray video record

the activities of pharyngeal region during swallowing tasks of patients [18], [19]. The main purpose

of utilizing VFSS approach is to asses the characteristic and seriousness of dysphagia and to come

up with effective solution, if possible. However, due to the limitation of VFSS approach, such

as cost and time frame required, many healthcare institutions are unable to provide VFSS [20].

Furthermore, VFSS is not a viable solution for long-term treatment of dysphagia due to heavy

expense and tedious set-up procedures for every use. Because of the limitations of VFSS approach,

researchers have proposed several alternative techniques. These techniques include pulse oximetry

[21], cervical auscultation [22], and electro-physiological methods [23]. The above approaches

employ non-invasive techniques. Among such alternatives, recent studies have demonstrated that

the swallowing accelerometer performs as a cervical vibration evaluation device that essentially

utilizes an accelerometer (e.g. [24], [25]). However, these studies also contains limitations. They

are not able to automatically detect abnormal swallows due to the lack of using digital signal

processing and pattern recognition techniques [24], [26]. Dual-axis swallowing accelerometry,

which is the measurement of neck vibrations associated with deglutition, is another rising approach

that can possibly evaluate the dysphagia condition. Compare to other methods, this approach is

minimally invasive. It only requires the superficial attachment of a sensor anterior to the thyroid

notch [27].

Swallowing is a complex activity that consist of multiple dynamic neuro-muscular and sensory

motor movements. These movements originated from interacting cranial nerves of the brain stem

and regulated by neural regulatory mechanisms in the medulla, sensorimotor, as well as limbic
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cortical systems [5]. It has also been showed in the previous studies that dysphagia may be caused

by a wide variety of neurologic diseases, and the largest proportion of patients with dysphagia have

disorders localized to the oropharynx, and the most severe forms of dysphagia tend to affect the

oropharynx [28]. Therefore, understanding the neural basis of dysphagia is essential to understand

the mechanism of the disease.

1.2 HOW IMAGING STUDIES CAN HELP US UNDERSTAND SWALLOWING

Modern brain mapping techniques such as diffusion magnetic resonance imaging (dMRI), func-

tional MRI, electroencephalography (EEG), and magnetoencephalography (MEG) produce high

resolution and informative datasets consists of anatomical or functional connectivity profiles of

human brain, which make the study of swallowing using neuroimaging approach become feasible.

The characterization of the topological structure of human brain functional networks is signif-

icant in the study of neuroscience. It would enlarge our perspective of how brain activities are in

relation with the connection patterns between regions and provide new insight into the human neu-

ron system. Various imaging techniques, although differ in terms of their data acquisition method,

experimental setup and parcellation scheme, have allowed for non-invasive investigation of human

brain networks. Via the acquired neuroimaging data (e.g. fMRI, EEG and MEG data), researchers

have studied the functional brain networks (e.g., [29], [30], [31]) in humans and also demonstrated

important properties of these networks, such as global efficiency (e.g., [32], [33]), characteristic

path length (e.g., [34], [35]), as well as characteristics of these networks, such as small-world

attributes (e.g., [33], [36]) and modularity (e.g., [37], [38]).

fMRI measures brain activity by detecting associated hemodynamic changes in blood flow

[39]. fMRI is characterized by high spatial resolution, good availability in hospital facilities and

the absence of radiating exposure [40]. One of the first studies employing graph theoretic approach

with fMRI datasets measured the partial correlations relationship between 90 brain regions by

acquiring resting-state blood oxygen level-dependent (BOLD) signals of 90 brain regions [41].

The whole-brain networks is constructed based on the partial correlation value between each of
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the 90 brain regions. Small-world attributes are also discussed in this study. Other studies using

fMRI imaging techniques have shown that functional and/or anatomically related brain regions

have the tendency to be more densely interconnected compare to studies using other neuroimaging

approaches (e.g., [37], [38]). Also, according to recent studies, the densely clustered connections

between functionally connected regions increases the clustering coefficient value of the network,

whereas the few number of long-range connections between different clusters keep the path length

relatively low [36], [42], [41]. These studies all demonstrated that fMRI approach is likely to

depict the neurological architecture of human brain at a more detailed level.

In the past few years, fMRI has shown tremendous advantage in the study of human brain.

The stringency and consistency of the findings have established fMRI blood oxygenation level de-

pendent signal imaging as a viable and powerful approach for studying brain activities in human.

For example, fMRI acts as an effective tool to study the pathology of Parkinson’s disease (PD).

Structural and functional MRI provide an effective approach to investigate the cortical and subcor-

tical regions that are likely to be related to PD. Structural MRIs allows visually asses symptoms in

early-stage PD patients. The purpose of doing this is to eliminate the focus on irrelavant patholo-

gies, including multiple sclerosis, tumors, vascular lesions, inflammation and atypical parkinsonian

disorders [43]. fMRI also serve as a state biomarker of PD. The MRI technique has also been em-

ployed in the diagnosis of Alzheimer’s disease (AD). AD is the most prevalent neurodegenerative

disease [44] characterized by presence of amyloid aggregations and neurofibrillary tangles with a

loss of cortical neurons and synapses [45], [46]. Cellular damage in specific cortical layers may

disconnect hippocampal formation from the cerebral cortex [47], [48] and raise the possibility that

functional interactions between the hippocampus and other related brain regions may be abnormal

in the early stages of AD. Therefore, using fMRI technique, the AD could be diagnosed at early

stage.

Similarly, fMRI studies have been used to understand the swallowing function. Recent neu-

roimaging studies have provided consistent evidence that swallowing is associated with activation

in multiple regions of the human brain [49], [50], [51], [52], [53], [54], [55], [56], [57]. Prior

analysis of brain functions during swallowing revealed activation clusters exist in the supplemen-
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tary motor area, anterior cingulate and paracingulate gyri, pre- and postcentral gyrus [58]. Sev-

eral other regions have also been found related to swallowing, including the posterior insula [59],

basal ganglia, thalamus, and cerebellum. Despite these findings, interactions between different

swallowing-related brain regions are still not well understood.

1.3 MOTIVATION AND SIGNIFICANCE OF THE WORK

Functional networks study demonstrates the neurophysiological organization of the human brain

that is large-scale, robust, interactive and characterized by various network properties, such as

optimal small-world properties [36], [60]. The brain is considered to be one of the most challeng-

ing networks found in nature [35]. This biological system responds to any external stimulus by

transporting signals between specialized brain regions. Therefore, the study of brain functional

connectivity contributes greatly to the understanding of brain functions and pathology.

Previous studies on graph theory suggested the possibility of performing network analysis

on human brain [36]. Via network analysis, the large variability of the brain structure could be

abstractly reduced to a collection of nodes and links (edges). For functional networks, nodes stand

for brain regions and links stand for connections in between. By graph theoretic approach, the

differences and similarities in the structure of brain functional networks can be easily identified.

Also, the brain network shows consistent topology so that properties, such as small-worldness,

could generally be identified in all human brain networks [61]. Furthermore, given that network

nodes stand for brain regions and links stand for connections in between, comparison between

different kinds of networks become fairly feasible [61].

The goal of this thesis was to demonstrate how the use of graph-theoretic approaches can

characterize the interaction between brain regions during voluntary saliva swallowing in healthy

young adults.
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1.4 CONTRIBUTION OF THIS THESIS

In this thesis, we consider several network measures for the whole brain and swallowing-related

brain regions. The results have shown that significant pairwise functional connections are mostly

either local and intra-hemispheric or symmetrically inter-hemispheric. Furthermore, we have

shown that the human brain functional network have robust small-world properties, which supports

efficient parallel information transfer at a relatively low cost. Swallowing related brain regions also

have higher values for some of the network measures in comparison when these measures are cal-

culated for the whole brain. Our results have demonstrated the basic network properties of the

human brain compatible with previous functional network studies, but have also shown unique

connections in some regions during swallowing. This leads us to believe that graph-theoretical

approaches are a valid tool for the understanding the neural basis of swallowing.

1.5 THESIS STRUCTURE

In Chapter 2 the fundamental of swallowing, swallowing difficulties, graph theory and brain net-

works will be illustrated. Chapter 3 will introduce the experiment setup, data preprocessing ap-

proach and techniques. Mathematical expressions for the complex network analysis will be dis-

cussed in detail as well as construction of functional connectivity networks. The results including

the connectivity matrix we constructed and network parameters calculated will be presented in

Chapter 4. The conclusion and future work will be indicated in Chapter 5.
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2.0 BACKGROUND

2.1 SWALLOWING IN HUMANS

Swallowing is a process for human or animals to pass food or drink that has been broken down in

the mouth into the pharynx, commonly known as throat, and subsequently into the esophagus, so

that it may be further pushed through the digestive tract. During swallowing movements, a carti-

laginous structure called epiglottis closes over the pharynx entrance to the trachea. This ensures

that the swallowed material passes into the pharynx behind it instead of getting the material into

the lungs. This process is a reflex that prevent a person from choking. Furthermore, the swallow-

ing reflex also prevents food from entering the wrong tract, such as pulmonary aspiration [62]. A

anatomical view of mouth and pharynx can be seen in Figure 2.1.

Swallowing is known scientifically as deglutition. It is a complex physiological process which

involves voluntary and reflexive motor activity, sensorimotor integration, salivation, and visceral

regulation [57]. Swallowing requires the coordination of several human body systems and struc-

tures. To be specific, swallowing can be subdivided into several distinct stages: oral, pharyngeal,

and esophageal [63]. Each stage involves a different control center in the central or peripheral

nervous system. The first oral phase is often considered as voluntary. This phase is highly variable

in duration because of variation in taste of materials swallowed, environment, hunger, motivation,

as well as consciousness for the human subject [57]. The oral phase consists of movement of

tongue. During the phase saliva releases and chemically breakdown the food as well as moisturize

it, initiate the movement of bolus to and moves the broken down and moistened food to the back

of the mouth [2]. This phase is purely voluntary, which indicates it is done completely by skeletal
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muscles, those that facilitate conscious movement [63]. Therefore, the oral phase is managed by

the limbic system in the central nervous system, the medial temporal lobes, and other involving

brain structures in the cerebral cortex [57]. The oral phase is ended by the activation of next phase

of the swallowing, which is the pharyngeal phase. Compare to the oral phase, the rest two phases

Figure 2.1: Anatomy of a swallowing process. This figure is adopted from [64].

are involuntary. They controlled by the autonomic nervous system, the part of the peripheral ner-

vous system which performs the functions like heart activities, breathing, and digestion [57]. The

second phase pharyngeal phase is considered a reflex response. During this phase, the broken

down material has been pushed to the pharynx. In order of this movement to happen, other tracts

to pharynx must be temporarily closed as the pharynx becomes triggered by small skeletal muscles

in order to prepare the entry of the swallowed material [2].
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The third phase of swallowing started when the involuntary smooth muscle contractions within

the pharynx have pushed the bolus into the esophagus. Esophageal phase is primarily under dual

control of the somatic and autonomic nervous systems [65], [66], [63], [4]. The food transfered

to stomach during the esophageal phase without any interruption. The movement is initially moti-

vated by esophagus via skeletal muscle and then by smooth muscle, which moves the swallowed

material during peristalsis process [2].

2.2 GRAPH THEORY AND BRAIN NETWORKS

A large number of biological system can be abstractly represented by complex networks [67].

Graph theory is generally considered to be the most viable platform for the mathematical analysis

of complex networks. Originated in the field of mathematics, graph theory is the study of graphs.

Graph, in the field of study of functional connectivity, is a collection of nodes and links shown

in Figure 2.2. Graph theory has shown its tremendous advantage when dealing with real-world

system. A graph represents the complex structure of human brain in a simplified manner using

nodes and links. For example, the nodes in human brain network ideally represent brain regions

with coherent pattern of extrinsic functional connections, while links represent connections in

between brain regions [61], [68].

The characteristic of nodes and links in human brain networks is determined by combinations

of brain imaging technique, anatomical parcellation schemes, pre-processing approach and mea-

surement scale of connectivity. Many combinations occur in various experimental settings [69].

The choice of the nodes, therefore, must be carefully determined as it may influence the network

properties greatly [67]. Base on this fact, the network can only be compared if they used the same

preprocessing approach. fMRI techniques, in this regard, shows its advantage compare to EEG and

MEG techniques, since the limitations of EEG and MEG makes the sensors may detect spatially

overlapping signals and are generally not aligned with boundaries of coherent regions [68], [70].

Links can be differentiated by their directionality and weight [61]. It can be either directed,

meaning that there is distinction between the two nodes, or it can be undirected, meaning that there

9



Figure 2.2: A drawing of a labeled graph on 6 vertices and 7 edges. This figure is adopted from
[71].

is no distinction between two nodes. Sample links are depicted in Figure 2.2. Furthermore, links

can be binarized or weighted. Binary links denote the absence or presence of connection between

two vertices, while weighted links also indicate the connectivity strength between nodes [68]. In

structural connectivity networks, connection weights may indicate amount of fibers, likelihood

of connection, or the amount of dye traverse between two nodes while in functional connectivity

study weights indicate the correlation of time series between brain regions [61], [67]. Weights in

anatomical networks may represent the density of anatomical connections, while weights in func-

tional and effective networks may represent magnitudes of correlational or causal connections [68].

For functional connectivity, weighted links can represent the connectivity strength between differ-

ent nodes. For effective connectivity, weighted links suggest a causal relationships between two

nodes. Based on these nature of the links, we further divide the network to binary directed network

(BD), binary undirected network (BU), weighted directed network (WD) and weighted undirected

(WU) network. Figure 2.3 depicts sample networks. Weighted networks and binary networks can

be converted to each other using a sparsity threshold so that connections are established only if the

weight is above a certain threshold level. A lot of connectivity studies tends to construct binary

network as compare to weighted network, binary network are easier to characterize.
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In weighted network, weak links may represent non-significant connections or even spurious

connections. This is particularly evident in functional or effective networks. A lot of weak links

have the tendency to attenuate the pattern of strong and significant connections and as a result are

discarded. This process is done by applying an absolute, or a proportional weight threshold to

the network. Threshold values are often arbitrarily determined through a broad range of selection.

Furthermore, all self-connections or negative connections (such as functional anti-correlations)

must currently be removed from the networks prior to analysis [68].

Functional connectivity networks reflect how brain regions are connected by functional asso-

ciations. Graph theory analysis - a new multidisciplinary approach to the study of neuroimaging

research - provides simplification to the interactions between brain regions [68]. The human brain

shows a large variability in size and surface shape. Complex network analysis, by reducing the

complexity of these properties, can help to identify the similarities and differences in the organiza-

tion of neural networks [61]. Also, the comparison within and between subjects becomes feasible.

The basic elements of network analysis, such as nodes and links, correspond to the connectivity

profiles of the system and therefore reflect the way the elements are placed in the network [68].

Many brain network studies investigate brain’s topological properties by simplifying weighted and

directed variants of measures to binary graphs so that every appearance of the connection has equal

value of one [61], [30], [72], [29].
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Figure 2.3: Construction of brain networks from large scale anatomical and functional connectivity
datasets. This figure is adopted from [68].
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3.0 THEORIES AND METHODS

3.1 DATA ACQUISITION

Twenty-two healthy young-adult subjects, all females (23.1±1.52 years), participated in this study

after providing written, informed consent. The study protocol was approved by the University of

South Carolina Institutional Review Board.

All functional magnetic resonance scans of the brain were acquired on a Siemens Magnetom

Tesla Trio Tim scanner with a 32-channel RF-receive head coil at the McCausland Center for

Brain Imaging, University of South Carolina, Columbia, SC, USA. These blood oxygen level de-

pendent (BOLD) images were acquired using an echo planar imaging sequence in 36 axial slices

(TR = 2200 ms, TE = 35 ms, flip angle = 90◦, FOV = 192 mm; 3 mm thickness) during swal-

lowing. During our experiment, participants were instructed to swallow their accumulated saliva

every 44 seconds (every 20 volumes acquired). They were directed to move as little as possible.

They were also instructed not to produce exaggerated oral movements to increase or manipulate

the accumulation of saliva. The saliva should be accumulated passively prior to swallowing. A

comfortable custom-built restraint was applied during fMRI scans to minimize head movement.

A high-resolution T1-weighted MRI sequence was also performed during the data collection (3D

MP-RAGE, 176 axial slices with 1 mm slice thickness, a 256 × 256 matrix, and 256 mm × 256

mm FOV).
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3.2 DATA PREPROCESSING STEPS

3.2.1 fMRI Data Preprocessing

All data in the study were preprocessed using statistical parametric mapping (SPM) software [73].

For each subject 350 volumes of the scans were acquired, and the beginning 10 scans were dis-

carded for magnetic equilibrium. The remaining each of the 340 volumes underwent the following

four preprocessing steps accordingly: realignment, coregistration, normalization and smoothing.

Excess motion defined as greater than 4.0 mm of translation/rotation was eliminated in any of the

task-free scans.

Specifically, the fMRI scans for each subject were first adjusted for time delay between differ-

ent scans. Second, for each subject the images were realigned to the first slices among all slices

using a least squares fitting algorithm and a 6 parameter rigid body transformation [74] to correct

for head motion. The following formula for head movement calculates the group difference in

translation and rotation [33]:

Headmotion/Rotation =
1

M−1

M

∑
i=2

√
|xi− xi−1|2 + |yi− yi−1|2 + |zi− zi−1|2 (3.1)

where M = 340 represents the length of the time series. The xi, yi and zi are the translations or

rotations magnitude in the x, y and z directions at i− th time point, respectively.

After removing the movement artifact in fMRI images, the fMRI images further underwent

the coregistration step during which the mean fMRI scans were overlayed to a high resolution

anatomical image to maximize the mutual information. Therefore, all other functional images

were resliced to align with the reference image.

Then, to make inter-individual comparisons, normalization was then performed to warp the

images to fit a standard MNI (Montreal Neurological Institute) template. Finally, smoothing was

applied with Gaussian kernel with a 4-mm full-width at half maximum to suppress noise and effects

due to residual differences [73].
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3.2.2 Anatomic Parcellation

The choice of nodes and links greatly influences the results of network connectivity analysis [68].

We chose the parcellation (segmentation) scheme that has been used previously in many studies

(e.g., [30], [33], [41], [75]). Therefore, the preprocessed fMRI datasets were parcellated into 116

anatomical ROIs via the automated anatomical labeling (AAL) template [76]. The AAL parcella-

tion scheme segments the cerebrum into 90 cortical and subcortical anatomical ROIs (45 ROIs in

each hemisphere) [76]. It divides the cerebellum into 26 ROIs (8 in the vermis and 18 in cerebel-

lar hemisphere, 9 in each side of cerebellar hemisphere). This study considered the 90 cerebrum

regions summarized in Table 3.1. This parcellation scheme provides non-overlapping segmenta-

tion of the entire brain volume such that each brain area depicted in AAL only points to one brain

region in Table 3.1. These individual anatomical ROIs were parcellated from whole brain by the

MarsBaR toolbox [77]. Therefore, for each subject, we generated 90 time series for all the 90

anatomical ROIs in Table 3.1. The mean time series is the average of voxels for every time point

in the time series over all 22 subjects in the study. This procedure generated the mean time-series

with 340 time points. These 90 mean time series were then correlated with each other to establish

a 90 × 90 brain functional connectivity matrix.

3.3 COMPLEX NETWORK ANALYSIS

A graph theory definition of a network is that it is a collection of sets of nodes and links, where

a node is considered as the most essential element of the network [68]. A graph theory based

approach can quantitatively and analytically depict a wide variety of measures for brain networks.

However, various measurement can describe a network in an effective way. Therefore, only some

of the measurements that were used in previous connectivity studies are discussed here.

For binary undirected networks, we use ai j to represent the connection status in the network

between node i and j. ai j = 0 when no connection exists between two nodes and ai j = 1 when the

connection is present between two nodes. For weighted undirected networks, wi j is the connection
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Table 3.1: Cortical and sub-cortical regions (45 in each cerebral hemisphere; 90 in total) as anatom-
ically defined in the AAL template and their corresponding abbreviations used in this study.

Region Abbreviation Region Abbreviation

Precentral gyrus PreCG Supramarginal gyrus SMG

Postcentral gyrus PosCG Precuneus PCUN

Rolandic operculum ROL Superior occipital gyrus SOG

Superior frontal gyrus, dorsolateral SFGdor Middle occipital gyrus MOG

Middle frontal gyrus MFG Inferior occipital gyrus IOG

Inferior frontal gyrus, opercular part IFGoper Cuneus CUN

Inferior frontal gyrus, triangular part IFGtri Calcarine fissure and surrounding cortex CAL

Superior frontal gyrus, medial SFGmed Lingual gyrus LING

Supplementary motor area SMA Fusiform gyrus FFG

Paracentral lobule PCL Temporal pole: superior temporal gyrus TPOstg

Superior frontal gyrus, orbital part SFGorb Temporal pole: middle temporal gyrus TPO

Superior frontal gyrus, medial orbital SFGmedorb Anterior cingulate and paracingulate gyri ACP

Middle frontal gyrus, orbital part MFGorb Median cingulate and paracingulate gyri MCP

Inferior frontal gyrus, orbital part IFGorb Posterior cingulate gyrus PCG

Gyrus rectus GRE Hippocampus HIP

Olfactory cortex OLF Parahippocampal gyrus PHG

Superior temporal gyrus STG Insula INS

Heschl gyrus HES Amygdala AMY

Middle temporal gyrus MTG Caudate nucleus CAU

Inferior temporal gyrus ITG Lenticular nucleus, putamen PUT

Superior parietal gyrus SPG Lenticular nucleus, pallidum PAL

Inferior parietal, but supramarginal and angular

gyri

IPL Thalamus THA

Angular gyrus ANG
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between nodes i and j, and it has range 0 < wi j < 1. Because of the limitation of current fMRI

neuroimaging technique, the weighted directed network cannot be constructed in this study.

Node degree The node degree describes the number of direct connections a node has with the

rest of the nodes in the network. The node degree is considered to be the most fundamental network

measure. It is also a foundation for most of the network measures in this study. The summation

of all the node degrees in a set in the network derives a degree distribution [67]. In a random

network, connections are distributed randomly and uniformly with a symmetrical Gaussian shape

and centered degree distribution [78]. A brain functional network, however, has a non-Gaussian

distribution with a tendency to spread towards higher degrees [67]. Thus, we later introduce the

rank-sum test to discuss the difference between two different groups.

The degree Di of a node i is the number of nodes directly connected to the ith node. For a binary

network, the node degree is defined as ki = ∑ j∈N ai j and for a weighted network it is defined as

ki = ∑ j∈N wi j, where N is the set of all nodes in a collection, and n is the number of nodes in the

collection. Given that whole-brain was parcellated into 90 ROIs, therefore, n is equal to 90, and

N is the set of different possibilities (e.g., N ∈ {1,2,3...90}. The degree of the entire network,

therefore, is calculated by averaging all the nodes in the network:

D =
1
n ∑

i∈N
Di. (3.2)

Clustering Coefficient The clustering coefficient Ci of a node i calculates the ratio between

the number of existing connections and the maximum number of connections in a set of nodes

[34]. The existing connections here are defined as the links between the direct neighbors of the

node i. Connections in random networks are uniformly and randomly distributed so that clustering

coefficient are relatively low for a random network, whereas complex networks contain densely

connected clusters leading to a higher clustering coefficient [78]. For a binary network, the clus-

tering coefficient CB
i of the node i is calculated as [72]:

CB
i =

Ei

Di(Di−1)/2
(3.3)
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in which Ei is the number of links in ith set of nodes Ni (Ni ⊂ N), and Di is the degree of node i

mentioned above. The clustering coefficient CW
i of a node i in a weighted network is calculated as

[72]:

CW
i =

1
Si(Di−1)∑

j,h

wi j +wih

2
ai jaiha jh (3.4)

where the normalizing factor Si(Di−1) assures that 0≤CW
i ≤ 1; Si = ∑

N
j=1 ai jwi j; Di is the degree

of a node i. ai j is the connection status between node i and node j. The value of ai j is 1 if there is

an link connecting node i and node j, and it is equal to 0 if no connection is presented. This applies

to aih and a jh as well. Therefore, the clustering coefficient of a n-nodes network is calculated as

[68]:

C =
1
n ∑

i∈N
Ci (3.5)

where Ci =CB
i for binary networks and Ci =CW

i for weighted networks.

Path Length The shortest path length Li is given by the shortest distance to go from the node

i to another node. The shortest path between two nodes could consist of multiple connections in

between when there is no direct connection between them. In comparison to regular networks,

complex and random networks generally have short path lengths [67]. The definition of complex,

random and regular networks can be found in [36]. The mean path length for a node i is defined as

[68]:

Li =
1

n−1 ∑
i, j∈N,i 6= j

di j (3.6)

where di j is the shortest distance between node i and node j. In a binary network, the value of

every existing link is 1. di j is thus the number of links connecting node i and node j. However, for

a weighted network, the shortest path length is not necessarily the optimal value, as the weighted

network also contain information about connection strength (thickness of link) between nodes [68].

To differentiate the strength of these connections in weighted network, the strength of every link

between node i and node j is associated with weight indices wi j. This weight indices value was

normalized to a range from 0 to 1 [72].
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To calculate the weight indices in weighted network, we followed the approach given by Boc-

caletti et al. [79]. Let the length between nodes i and j inversely proportional to the weight indices

wi j:

li j =
1

wi j
(3.7)

For the weighted network, di j = li j. Then the mean shortest absolute path length of the network is

the average of shortest absolute path length of all nodes [68]:

L =
1
n ∑

i∈N
Li (3.8)

Global Efficiency The global efficiency of a network, Eglob, measures the average inverse

shortest path length [80]. It is inversely related to the characteristic path length, and is an alterna-

tive way to indicate the parallel information transfer efficiency in the network [36], [81]. It is an

alternative way to describe the connectivity of the network [81], [82]. In comparison to the charac-

teristic path length, the global efficiency makes quantifying disconnected networks possible[68].

Mathematically, for both binary and weighted functional networks, the global efficiency for a node

i is calculated as [72]:

Eglob,i =
1

n−1 ∑
i, j∈N,i 6= j

d−1
i j . (3.9)

In comparison to the path length (eqn. 3.6), the global efficiency of a node i calculates the inverse

of the harmonic mean of the minimum absolute path length between node i and others [81]. The

global efficiency of the network is the average of global efficiency for all nodes and is calculated

as:

Eglob =
1
n ∑

i∈N
Eglob,i (3.10)

Local Efficiency For binary networks, the local efficiency of the i− th node is calculated as:

EB
loc,i =

1
Di(Di−1) ∑

j,h∈N,i 6= j
ai jaih[d jh(Ni)]

−1 (3.11)

where d jh(Ni) is the shortest path length between j and h that contains only neighbors of i. For

weighted networks, the local efficiency of the node i is defined as:

EW
loc,i =

1
Di(Di−1) ∑

j,h∈N,i6= j
(wi jwih[dw

jh(Ni)]
−1)1/3 (3.12)
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3.3.1 Analysis of Whole-Brain Network Small-World Attribute

Small-world measurements (e.g., [36]) involve a mean cluster coefficient C and a mean character-

istic path length L. To be specific, the parameter C is the average of the clustering coefficient over

all nodes in the functional network. It quantifies the level of cliquishness (local interconnectiv-

ity) of a typical neighborhood [36]. The parameter L of a network is reflected by harmonic mean

distance between pairs proposed by [83], which is defined as the reciprocal of the average of the

reciprocals:

L−1 =
1

1
2n(n+1) ∑

i≥ j
d−1

i j (3.13)

A high clustering coefficient and a short characteristic path length suggests the network is described

by optimal small-world attributes [36], [82], [84]. In other words, a network has less than optimal

organization if the absolute path length is relatively short and the absolute clustering coefficient is

relatively low [33]. Mathematically, a network would be classified as a small-world network if it

satisfies the following two conditions [60]:

γ =
C

Crand
� 1 (3.14)

and

λ =
L

Lrand
≈ 1 (3.15)

in which Crand indicates the mean clustering coefficient of a random network and Lrand indicates

the mean characteristic path length of a random network. The random network preserves the

same amount of nodes, links and degree distribution as the functional network. The Crand and

Lrand values are calculated by generating many random networks for each individual’s functional

network. Note that the small-worldness parameter might vary with the change of the sparsity

threshold value. When a more rigorous sparsity threshold is chosen, fewer connections will likely

to exist, leading to a sparser network [85]. Mathematically, the small-worldness is calculated as:

S =
C/Crand

L/Lrand
(3.16)
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3.3.2 Analysis of Whole-Brain Network Hierarchy

In addition to small-world attribute, the hierarchy is used to characterize topological properties

of human brain [86], as it offers an alternative view on the topological properties of complex

networks [87]. The hierarchy of the networks was interpreted by the coefficient β, which describes

the relationship between clustering coefficient C and node degree k of the network [87] using a

power law approach: C∼ k−β. Networks with a high hierarchy value are characterized by a higher

degree k and low clustering coefficient C, and vice versa. The networks with hierarchical structures

contain interconnected clusters, which are the combination of smaller and more densely connected

clusters [87].

3.4 CONSTRUCTION OF FUNCTIONAL CONNECTIVITY NETWORKS

Functional connectivity networks share various significant common ground with anatomical and

structural connectivity networks [88], but they also have obvious differences. For example, in

structural connectivity networks, connection weights indicate amount of fibers between regions,

the degree of myelination, the probability of connection between two nodes, or the amount of dye

traverse between two nodes while in functional connectivity study weights indicate the correlation

in the time course of signals of different nodes [61].

Partial correlation could measure the inter-regional functional connectivity by attenuating the

contribution of other sources of covariance [89]. A partial correlation matrix is a symmetrical

matrix derived from fMRI time series of each participant. In the correlation matrix, each off-

diagonal entry is the correlation between a pair of variables (brain regions) while attenuating their

correlation with other variables [33]. In this case, given 90 regions defined in the study in Table

3.1, a symmetric partial correlation matrix of 90× 90 was obtained for each subject. Correlation

between any two regions of interest reduced the indirect dependencies of the other 88 regions.

When the time-series of two brain regions are highly correlated, it implies that the two regions

are active at the same time. Using this approach, the mean correlation matrix for all subjects was

computed. A sample processing procedure is shown in Figure 3.1.
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③ ④ 

⑤ 
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⑧ 

Figure 3.1: A flowchart for yielding brain connectivity data and network starts with functional (1)
and anatomic (2) magnetic resonance imaging scans. In order to establish functional connectivity,
a time series of brain activity in different voxels or regions can be derived. These images were later
warped to the template (3) to register the location of brain regions. Once scans were registered,
the brain regions were parcellated (4) according to the anatomical parcellation scheme described
in [76] and 90 regional time series were extracted (5). In order to establish functional connectivity,
time series of each brain region were derived and correlations between the time series of different
voxels or brain regions were calculated and represented as a correlation matrix. The correlation
matrix can be either directly interpreted as a binary network (6) or the weighted network (7).
The weighted and binary network can be graphically represented by 3-dimensional connectivity
network (8).

The individual partial correlation matrices were thresholded to ensure that each node in the

network is not too densely clustered, nor too sparsely connected. In other words, thresholding was

used in the study to eliminate the links that are likely to attenuate the effect of important connec-

tions [68]. The selection of threshold values significantly affected the topological properties of the
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Figure 3.2: The effects of maintaining different node degrees on the connectivity matrix: (a) K =
36; (b) K = 48; and (c) K = 60.

thresholded networks, as different number of links in functional networks may represent a differ-

ent magnitude of correlational interactions. Therefore, to ensure that the partial correlation matrix

for each subject had the same number of links, we followed the method proposed by Supekar et

al. [82]. Individual partial correlation matrices were thresholded such that each network after

thresholding had on average K links per node. This approach ensured that both groups have the

same number of links per node so that the topological properties of the networks were consistent.

Moreover, we selected a conservative K to prevent the generated network from disconnect or con-

taining non-significant connections. As shown in Figure 3.2, selecting 60 edges per node produced

excessive connections while selecting 36 edges per node lost important connectivity information.

Therefore, as suggested in [82], [42], we selected a K value equal to 48. All network constructed

according to this approach had 2160 edges (=48×90/2).

To understand the small-world properties of the obtained networks, the value of C and L

from the functional network were compared with those of 1000 random networks generated by

a Markov-chain algorithm [87]. In the random matrix generated by Markov-chain algorithm, if

node i1 was linked to j1 and node i2 was linked to j2, then the link between node i1 and j1 was

removed while a link between node i2 and j2 was added [32]. Then the matrix was randomly per-

muted such that the random matrix and original matrix had equivalent node degree. We repeated

this procedure over 1,000 random matrix generated by Markov-chain algorithm to obtain mean
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Crand and mean Lrand values for every degree and threshold value. In order to study the influence

of thresholding, we calculated several network properties as a function of the sparsity thresholds.

In order to calculate Crand and Lrand , we followed the methodology outlined in [33].

In our study, we examined hierarchy values derived from both whole-brain functional net-

works and also swallowing related regions. These two connectivity matrices were constructed by

thresholding the correlation matrix such that each node in the resulting network generally has 48

connections. The threshold values range from 0 to 1, with an increment of 0.05. In order to cal-

culate hierarchy, the clustering coefficient C and node degree k had to be computed for every node

in the network. In order to model the relationship between C and k, we fitted a fifth order linear

regression curve to the express the relationship between log(C) and log(k).

3.5 COMPARISON BETWEEN THE WHOLE BRAIN AND
SWALLOWING-RELATED REGIONS

In our analysis, we compared the network measures calculated for the whole brain and for the

previously identified regions activated during swallowing (e.g., [50], [55], [56], [58]), which are

listed in Table 3.2. We examined whether these network measures were affected by the selected

regions.

3.6 NETWORK TOOLBOXES

In this study, we used an open source Brain Connectivity Toolbox (BCT) [68] for calculation of

various network properties. The toolbox provides functions for a number of network measures. In

addition, the toolbox enabled the network manipulation such as thresholding.
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Table 3.2: Regions of brain activation associated with voluntary saliva swallowing. LH: Left
Hemisphere. RH: Right Hemisphere.

Structure Hemisphere Structure Hemisphere

Anterior cingulate and paracingulate gyri LH/RH Paracentral lobule LH/RH

Median cingulate and paracingulate gyri LH/RH Inferior parietal, but supramarginal and angular
gyri

LH/RH

Posterior cingulate gyrus LH/RH Superior parietal gyrus LH/RH

Cuneus LH/RH Postcentral gyrus LH

Middle frontal gyrus LH/RH Precentral gyrus RH

Superior frontal gyrus, dorsolateral LH/RH Precuneus LH/RH

Fusiform gyrus LH Lenticular nucleus, putamen LH

Hippocampus LH/RH Supplementary motor area LH/RH

Insula LH/RH Supramarginal gyrus LH/RH

Lingual gyrus LH/RH Superior tempotal gyrus LH/RH

Middle occipital gyrus LH/RH Thalamus LH/RH

Superior occipital gyrus LH/RH

3.7 STATISTICAL TESTS

To distinguish the difference between swallowing related regions to whole brain metrics we used

the non-parametric Mann-Whitney Wilcoxon rank-sum test [90].
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4.0 RESULTS

Binary and weighted functional networks were created for all subjects using the outlined approach.

These functional networks were sensitive to threshold values as shown in Figure 3.2, which depicts

the effects of thresholding the partial correlation matrices such that each node in the resultant

network had on average K connections. A summary of our results can be found below.

4.1 NETWORK FEATURES

As shown in Figure 4.1, significant differences in some of the network properties were found

between the whole-brain matrices and swallowing related regions. No significant difference in

node degree were observed between the two groups in the binary and weighted networks (p >

0.29).
However, global efficiency was higher when considering swallowing ROIs and sparsity thresh-

old values lower than 0.35, but it did not reach statistical significance for all values (p < 0.07). The

path length L of the binary and weighted network were significantly shorter in whole brain metric

compared to swallowing related regions (p < 0.05) when the threshold value is within the range of

0.60 to 0.85. The local efficiency values were significantly higher when considering swallowing

ROIs and threshold values within the range of 0 to 0.03 (p < 0.05). Interestingly, we found that

clustering coefficient value has slightly increased when we apply threshold between 0.5 to 0.63.

The rank-sum test showed that significant differences (p < 0.05) has been found within this in-

terval between two comparison groups (i.e. Whole-Brain and Swallowing ROIs). Note that the

differences in the clustering coefficient between the two comparison groups are even greater in

this interval in comparison to low threshold values. This has never been found in other network
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Figure 4.1: Comparison of networks measures for the swallowing ROIs and the whole brain: (a)
global efficiency Eglobal (b) characteristic path length Lp (c) node degree K (d) clustering coeffi-
cient C (e) mean local efficiency Eglobal (f) hierarchy β.

measurement parameters. As shown in Figure 4.1 (f), the hierarchy values for swallowing ROIs

and the whole brain were almost identical between two groups (p > 0.45).
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Our study demonstrated the brain functional networks are characterized by small-world at-

tributes. First of all, the mean network clustering coefficient C calculated was 0.45 and the mean

minimum path length L was 0.32. Second, the parameters C and L for a random graph with same

number of node, links and degree distribution were also calculated and the values were Crand =

0.0116 and Lrand = 0.0119. From the above calculation, we observed that the ratio of local cluster-

ing of connections in the brain functional network over the random network was approximately 40,
C

Crand
= 38.71, whereas the ratio of path length between any two brain regions in functional brain

network random network was approximately 25, L
Lrand

= 26.93.

4.2 INTER-REGIONAL FUNCTIONAL CONNECTIVITY

Figure 4.2 showed the mean map which was obtained by averaging across the weighted connec-

tivity matrices of all 22 subjects (Table 3.1 showed the abbreviation corresponding to each ROI).

The map is a 90× 90 symmetric matrix. These 90 regions were classified into six major locations

as suggested by Salvador et al. [41]. Each entry in the map represented the percentage of the con-

nectivity strength between the corresponding pair of regions. The value of each entry ranged from

0 (deep blue color in the map) to 1 (dark red color in the map), whereas 0 means no connection at

all and 1 means that two corresponding regions are firmly connected. Network connections were

also visualized by the Pajek software and the resulting connection map is shown in Figure 4.3.

As we can see in Figure 4.2, a lot of the connections were long-distance inter-hemispheric

connections between bilaterally homologous brain regions. The uniqueness and importance of

bilaterally symmetric inter-hemispheric connections can be highlighted in the study of functional

network. One reason being that previous multivariate-analyses based brain anatomical network

studies are uni-hemispheric, it limits the connections only within a single hemisphere, which are

inter-regional connections with in left or right hemisphere [41].
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Figure 4.2: Mean map of the weighted connectivity matrixes averaged across the 22 subjects. LH:
Left Hemisphere. RH: Right Hemisphere. (Refer to Table 3.2)
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Figure 4.3: Mean map of the weighted connectivity matrixes averaged across the 22 subjects. LH:
Left Hemisphere. RH: Right Hemisphere. (Refer to Table 3.2)

30



5.0 DISCUSSION

We believe that our study is the first one to use novel graph theoretical approaches to report brain

functional connectivity during voluntary saliva swallowing. By utilizing the graph theoretical ap-

proaches, we are able to study the alteration of functional connectivity both at global as well as at

the divisional scale.

Our results highlighted that the spatial topological connectivity in swallowing related regions

are significantly distinguished compared to whole-brain properties, as can be reflected on various

network measurement parameters. Furthermore, our results reported the advantage of applying

functional connectivity analysis rather than anatomical connectivity analysis, which is the impor-

tance of bilaterally symmetric inter-hemispheric connections. This finding from functional con-

nectivity during swallowing tasks has not been so clearly demonstrated by previous studies using

anatomical connectivity approaches.

5.0.1 Network Measures

Network measures for weighted network in this study consist of characteristic path length (L), local

efficiency (Eloc), global efficiency (Eglob), clustering coefficient (C), node degree (k), hierarchy (β),

as well as the small-world attributes of the network (λ and γ). The average value of these network

properties across all the 22 subjects were demonstrated in Figure 4.1. Also, small-world properties,

although varying in some degree, were generally found in the weighted networks of every subject in

the study. The small-world attributes and hierarchical organization for whole brain and swallowing

ROIs are similar. However, global efficiency, characteristic path length, clustering coefficient and

local efficiency shows higher value within the swallowing ROIs in comparison to the whole brain.
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The characteristic path length was short in both whole-brain matrices and swallowing related

regions, which indicates the distance between distinct brain regions are short during swallowing.

Although both whole-brain matrices and swallowing related regions are showing low values, sig-

nificant differences between these two groups were observed. We have observed that during swal-

lowing the path lengths are significantly different in threshold interval from 0.60 to 0.85, which

may suggest the threshold range to use when solely comparing characteristic path length for two

different groups. The whole brain had a lower path length than swallowing related regions. This

finding suggested that the entire brain functional network during swallowing consists of various

short paths between nodes, which provides faster information transfer routes.

A clustering coefficient is defined as the proportion of the number of established connections

in direct neighbors of the node to all their possible connections [61]. It can also denote the local

efficiency of a network or the network’s fault-tolerance [84]. Our study found that the whole brain

values were lower in comparison to the values obtained for the swallowing related regions. To be

more specific, we showed that the most significant differences were observed between threshold

values 0.5 and 0.63 suggesting that more information was interpreted during swallowing.

Our study also reports small global efficiency values (Eglob ∼ 0.5) compared to the random

network (Eglob,rand ∼ 1) although compared to other network measurements the difference is not

phenomenal between two groups. The smaller Eglob values in functional brain networks compared

to random networks showed that the functional brain networks are characterized by small-world

properties indicated by [36]. In addition, higher global efficiency values in swallowing-related re-

gions suggest optimal information transfer efficiency of swallowing-related regions in comparison

to the whole brain.

5.0.2 Small-Worldness

Our study revealed that the brain functional network associated with swallowing is a large complex

network with efficient small-world properties. The small-world parameters calculated for this

study are consistent with small-world attributes for brain functional network. This further implies

that distinct small-world properties was generally found in the weighted networks of every subject
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in the study. As we have calculated, the clustering coefficient in the brain network was generally

40 times larger than in the random network. That is to say, the brain network is about forty times

as clustered as to a random network. Also, between any two brain regions in the network, the path

length was approximately twenty times longer compared to the random network. A higher absolute

clustering coefficient and shorter absolute path length in the functional brain network suggests an

optimal small-world profile [42], which benefits the local segregation and global integration within

the brain functional network [33].

5.0.3 Inter-Regional Functional Connectivity

The average functional brain network, shown in Figure 4.2, primarily consisted of strong connec-

tions between closely neighboring brain regions. This demonstrated that anatomically related re-

gions are also likely to be functionally connected. However, functionally connected regions do not

necessarily have anatomical connections. Other than intra-hemispheric connections, our data high-

lighted the bilaterally homologous long-range connections (e.g. PHG.L to PHG.R., SFGmed.L to

SFGmed.R,SMA.L to SMA.R and etc). These inter-hemispheric connections are strong in connec-

tivity strength (wi j > 0.55) and have not been previously reported according to their anatomical

distances [72], which clearly shows the advantage of performing functional network analysis to

human brain networks. The importance of bilaterally symmetric inter-hemispheric connections

can be highlighted in the study of functional networks. One reason being that previous anatomical

connectivity studies on which multivariate analyses have been based are uni-hemispheric, it sum-

marize inter-regional connections only within a single (right or left) hemisphere [41]. In addition

to inter-hemispheric homologus connections, our results demonstrated few non-symmetrical bilat-

erally inter-hemispheric connections that also have not been reported before, such as SMA.R to

PosCG.L, STG.R to HES.L, etc, as shown in Figure 4.2. These connections are strongly correlated

(wi j > 0.70) during swallowing tasks.

Compare to previous functional network studies on various tasks, the functional networks dur-

ing swallowing shows some unique connections. Wang et at. [29] performed functional connectiv-

ity analysis during memory encoding and recognition tasks. Their study showed strong functional
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connectivity between anatomical adjacent regions. However, the bilaterally homologous long-

range connections show relatively low connectivity strength (wi j < 0.25), neither did the unique

connections (PosCG.L to SMA.R, HIP.L to THA.R) exist in this study. We also referred to other

functional connectivity studies [82], [42], neither of the studies has shown bilaterally homologous

long-range connections, which further convinced us the unique connectivity pattern during swal-

lowing.

Also, the higher degree and stronger strength of functional connectivity in swallowing ROIs

(as can be seen in Figure 4.2) not only demonstrated a more densely connected network during

swallowing, but also indicate an increased activation of functionally related brain regions during

swallowing.

Correlation between swallowing related regions in the functional connectivity matrices sug-

gests that this approach could be helpful in understanding the inner connections among regions

during swallowing. This approach can also be used as a visualization tool of functional connectiv-

ity.
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6.0 CONCLUSION AND FUTURE WORK

6.1 CONCLUSION

In this study, we successfully reconstructed the weighted functional networks during swallowing

based on fMRI recordings from 22 subjects. We utilized graph theoretical approaches to produce a

set of measures that quantified properties for swallowing related ROIs and whole brain metrics of

a brain functional network. The main findings in the study were: (1) Swallowing regions and the

whole brain metrics showed a similar node degree distribution and optimal small-world properties.

(2) Swallowing related areas had distinct inter-regional connectivity patterns. (3) The network

properties of large-scale brain connectivity differs significantly between swallowing related ar-

eas and the whole brain. Collectively, these and other findings reported in this study provided

new insights into how graph theoretical approaches can be utilized to describe the brain func-

tional network during swallowing and thus provided new clues for understanding the mechanism

of swallowing.
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6.2 FUTURE WORK

The rising field of complex brain networks provides insight into topolocial properties of human

brain network architecture and also raises a number of interesting questions for future. An impor-

tant focus for future research efforts is how the parameters of the complex network measurements

relate to the swallowing functions. From our current study, we can only make an intuitively con-

clusion that high clustering coefficient indicates locally specialized information processing while

short path length suggest information processing at a relatively low cost. However, there is no solid

theory to support such an empirical guess. This will probably be a important concentration of our

future work.

Second, a large number of previous studies has shown that brain activation during swallowing

is affected by different type of fluids [49], [50], [51], [52], [53], [54], [55], [56], [57], but that not

all types of fluid affect the network property equally. Therefore, it would be worthwhile to utilize

other varieties of fluids (e.g. water, nector-thick juice and honey-thick juice), in order to examine

whether they display similar network properties.

Furthermore, our current study also contains certain limitations. The sample size employed

in this study was relatively small, which may have partially contributed to the non-significant

correlation between network parameter and performance mentioned above. In future studies, a

larger sample would be vital to provide the statistical power necessary to validate these findings.
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