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CONSIDERATIONS FOR DISCRETE ELEMENT MODELING 

OF ROCK CUTTING 

Jorge Alejandro Mendoza Rizo, Ph. D. 

University of Pittsburgh, 2013 

This study attempts to build a framework within the Discrete Element Method (DEM) to produce 

a reliable predictive tool in rock cutting applications, such that the cutting forces and 

fragmentation process are reasonably estimated. The study is limited to shallow depth cutting, 

often the mode of cutting involved in drilling operations. 

Rock cutting requires the consideration of tool-rock interaction and the damage or 

fracture of rocks. With respect to modeling, rock cutting becomes a sequence of difficult 

problems: A contact problem first arises as a cutter advances and interacts with a target rock. 

This is followed by the problem of determining the location and nature of the rock failure. In the 

event of rock failure, a modeler must then consider modeling the initiation of the fragmentation 

process. The adopted approach utilizes the intrinsic capability of DEM to adequately consider 

contacts and model fractures. The commercial DEM codes PFC2D and PFC3D from Itasca were 

used. 

This modeling effort focuses on the rock cutting that occurs during rock scratching tests. 

Two primary reasons provide the impetus of this investigation: first, a rock scratching test 

possesses all essential characteristics of a general rock cutting problem; second, available test 

data, particularly data obtained by Richard [1], provide a basis for validation. Modeling the 

scratch test also served another purpose for understanding the mechanics of drilling into rock 

because the cutting action is very similar to that of a single polycrystalline diamond compact 

(PDC) bit. 
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The validation of the present modeling effort utilizes an observation made by Richard 

and Dagrain [2] during shallow cuts that the specific energy obtained in a scratch test is 

approximately equal to the uniaxial strength of the rock. Rocks were represented as bonded 

particles [3]. This study first explores the sensitivity of the essential parameters that affect rock 

behavior and parameter selection necessary to realistically represent a rock. Extensive two-

dimensional analyses were first completed and followed by three-dimensional analyses, all of 

which were conducted under an ambient pressure environment. 

This study also addressed an important question regarding rock porosity. The current 

practice often implicitly considers porosity. Essentially, a porosity that is computationally simple 

and advantageous but ultimately unrealistic is used and other DEM parameters are consequently 

adjusted until the desired modulus and strength are produced. This sample is then considered 

mechanically equivalent. The ability to substitute rock materials of low porosities with higher 

values is extremely beneficial for computational efficiency. Samples with small porosity values 

were generated by solving the Apollonius’ problem to fill voids with particles, and therefore, the 

influence of initial sample microstructure could be studied. 

The Unconfined Compressive Strength (UCS) for most rocks is generally about ten times 

greater than that of the tensile strength [4]. This ratio, considered to be realistic rock behavior, 

has been historically difficult to obtain in similar models. In order to achieve this strength ratio, 

microdefects were also introduced into the sample. This study was able to implicitly model 

porosity by introducing optimal microdefects percentages in order to create equivalent rock 

samples with varying porosity values. Moreover, a connection between two-dimensional and 

three-dimensional samples was also established by finding an appropriate porosity to match the 

two models. 
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This study presented a validated and simplified framework for modeling rock cutting, and 

should be useful for general applications for a wide variety of fields. Preliminary work on cutting 

under high pressure was also initiated and yielded results that would be useful for subsequent 

studies. 
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1.0 OBJECTIVES, SCOPE OF WORK AND DISSERTATION STRUCTURE 

Understanding the mechanics of rock cutting and developing a credible modeling framework has 

important implications across a diverse field of applications ranging from drilling for oil 

production, mining for coals and minerals, tunneling and underground cavern construction, 

among others. From a modeling perspective, rock cutting analysis poses a daunting challenge. 

This study consists of two main objectives: (1) to develop a framework for modeling rock cutting 

as posed by the laboratory rock scratch test using the discrete element method, and (2) to 

investigate the validity of the implicit modeling of rock porosity incorporated into discrete 

element modeling. 

This study focused on the modeling of rock cutting under ambient pressure environments, 

with only limited efforts devoted to an exploratory investigation of the high pressure effects. 

During rock cutting, two modes of rock failure were observed. For a shallow cut, a rock 

experiences a ductile or plastic mode of failure; however, for a deep cut, a rock experiences a 

brittle or fracture mode of failure. This study is limited to the study of ductile failure as this is 

generally the mode of failure imposed by controlled rock cutting. Rocks included in the model 

possessed a wide range of strength values, and their uniaxial compressive strength values varied 

from 15 to 200MPa. 

This work is comprised of five additional chapters, which can be summarized as follows: 

CHAPTER 2: The LITERATURE AND METHODOLOGY REVIEW 

section presents the state-of-the-art development of the topics under study. This 
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allows for the formulation of specific inquires that have yet to be addressed and 

for the identification of important contributions in the field of geomechanics. The 

methodology comprises the procedures followed through the study in order to 

calibrate the DEM model. 

CHAPTER 3: The Rock Scratching Test is modeled using the PFC2D, and to a 

lesser extent, the PFC3D. It is the goal of this chapter to obtain the cutting 

specific energy for rocks with strengths that span from very low to very high 

values and are similar to those obtained in laboratory results. Several factors and 

their effects on this model were investigated, among them, the influence of 

crushing and the particle size sensitivity. Ultimately, the DEM model was 

calibrated using particle size effects and was found to match well with results 

obtained from laboratory testing.  

CHAPTER 4: The established DEM model was used to investigate the effects of 

implicitly modeling porosity. A first attempt to implicitly model porosity 

consisted of considering only varying microproperties in order to account for the 

inherent material differences of rock samples with different porosities. Ultimately, 

while some macroproperties did align between the samples with different 

porosity, it was required that simulated microdefects be included. This final 

adjustment, including developing optimal levels of microdefects for rock samples 

of different porosities, allowed for implicit porosity modeling. Finally, results 

from the RST are used to ensure the adequate implicit modeling of porosity. 

CHAPTER 5: Several contributions and potential projects which exceeded the 

scope of this study are presented in this chapter for possible future work. 
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Specifically considered and suggested are investigating the effects of the initial 

stress state on the behavior of the DEM model, further clarifying the confinement 

pressure boundary, re-evaluating the microproperties utilizing statistical analysis, 

and introducing pressure to the rock cutting process. 

CHAPTER 6: Overall conclusions to this work as well as contributions in both 

industrial and future research applications are presented in this chapter. 
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2.0 LITERATURE AND METHODOLOGY REVIEW 

The review of literature for this dissertation focuses on two main topics: 1) the behavior of rocks 

under pressure and 2) the numerical modeling of rock mechanics under a pressurized 

environment using the Discrete Element Method (DEM). First, a brief review of the DEM 

formulation implemented in the Particle Flow Code (PFC) and the contact model used for 

modeling rock are presented. Then, a basic description of the scratching test characteristics is 

provided for the specific case of a sharp cutter and a shallow cut. 

2.1 DISTINCT ELEMENT METHOD IN PARTICLE FLOW CODE 

2.1.1 Distinct Element Method 

The Distinct Element Method is a specific application of a broad numerical method named the 

Discrete Element Method. The Distinct Element Method is first laid out by Cundall [5] for rock 

mechanics analysis and is subsequently applied to soil mechanics problems by Cundall and 

Strack [6]. In the Discrete Element Method, each discrete element or particle, has three degrees 

of freedom, namely, two translational and one rotational, in a two-dimensional setting. At each 

time step, a rigid body dynamics equation is solved for each particle. The interaction between 
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particles is modeled through the penalty method in which very stiff springs are used to both 

prevent excessive particle overlap and enable the computation of forces between particles. 

The solution method used for solving a particle system is based on the explicit finite-

difference method. The explicit method scheme requires a fine time-step for stability and 

accuracy considerations while avoiding the need to solve simultaneous equations. 

The time-stepping algorithm assumes that both the velocity and acceleration are constant 

inside each time step. The maximum time-step that can be used is dictated by the fundamental 

period of the system. Because of the high stiffness used, the time step is very small often on the 

order of 10-9 seconds. 

At each time step, the equation of motion is solved for each particle. Both external loads 

and interaction with neighboring particles contribute to the force terms. The interaction forces or 

contact forces are updated using the force-displacement law from the relative motion at each 

point of contact. 

2.1.2 Contact Model 

In the 2D DEM, displacement constraints are imposed by both employing rigid walls and 

modeling circular particles, referred to as balls. Accordingly, two types of contact are 

encountered, ball-ball and ball-wall. Therefore, a contact model can dictate the behavior of these 

two interactions by defining the following characteristics:: 1) stiffness, which relates the relative 

displacements to the contact force; 2) slip, which provides a relationship between normal and 

shear forces; 3) damping, which  achieves steady state by dissipating kinetic energy; and 4) 

bonding, which allows particles to be bonded together. There are two types of bond: (1) contact 
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bonds, which can transfer force only; and (2) parallel bonds, which can transfer both forces and 

moments. 

The linear stiffness model is the simplest model in which the stiffness maintains a 

constant value until failure occurs. This method can be used to model both normal contact and 

shear contact between particles as shown in Figure 2.1, which depicts a linear normal contact, the 

left side and a linear shear contact on the right side. This normal contact is removed when a 

particle loses contact or the spring is subjected to net tensile force. A shear spring fails, as 

represented by a slider (refer to  in Figure 2.1), when its strength, often defined by the Mohr-

Coulomb law, is exceeded. 

 

 

Figure 2.1 Linear model implementing stiffness, slip, and damping at contact 

 

To model a rock sample in DEM, in this study, the rock is modeled by the Bond-Particle 

Model (BPM) of Potyondy and Cundall [3], in which particles are cemented together with bonds. 

First, an assembly of circular particles is created following a specified grain size distribution. 

This assembly is then packed under a preset level of compressive stress and bonded together at 

the points of contact between particles. The particular type of bond used is called the parallel 
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bond which can be visualized as a finite-sized piece of cementitious material with its diameter 

proportional to the minimum diameter of the two particles that a bond cements (as depicted in 

Figure 2.2) or as a prism in a special case of 2D analyses. 

 

 

Figure 2.2 Parallel bond visualization as a cylinder of cementitious material [7] 

 

The parallel bond acts in parallel with the linear model, and the sliding characteristic of 

the linear model are applied when the bond does not exist. The cementitious material can be 

imagined, rheologically speaking, as a set of uniformly distributed springs over the finite region 

of the bond. The spring forces and moments can be related to maximum stresses acting within 

the bond periphery, and a bond can be broken when a Mohr-Coulomb failure envelope, depicted 

in Figure 2.3, is exceeded by the bond stresses. A model created with the parallel bonds is called 

herein the bonded-particle model (BPM). 
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Figure 2.3 Parallel bond failure envelope [7] 

 

The last contact modeled developed by Potyondy [8] is called the flat-jointed bonded-

particle model, where the limitation found in the bonded-particle model is addressed, that is, if 

the model is calibrated by matching the uniaxial strength (c) by means of the BPM, the resulting 

tensile strength (t) values will be too large and the c/t ratio is lower than expected. This is 

resolved by the introduction of a grain structure created by polygons, where granular interlocking 

is a main structural component that not only provides rotational restraint but also considers the 

effects that this rotation will create, such as the transfer of moments to the neighboring grains as 

described by the author in Figure 2.4. The grains can be bonded between each other on their 

interfaces as the parallel bond model; however, the rotational effect of the grains will still be 

active if the bonds fail which does not occur on the BPM. Potyondy assures that the flat-jointed 

bonded-particle model supersedes the former bonded-particle model due to the capabilities of 

reproducing more micro and macromechanical responses parallel to rock damage. 
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Figure 2.4  Interface geometry of interlocked grains (left) and moment transference due to the 

rotation restraint of the middle particle (right) [8] 1 

 

2.1.3 Calibration of a Discrete Element Model for Rocks Under Pressure 

Several approaches have been used for calibrating rocks using the DEM. The bonded-

particle model (BPM) was extensively investigated by Potyondy and Cundall [3] for the 

calibration of rock-like materials using the parallel bond contact model. The calibration 

procedure is well described in the Itasca Manual [9]. However, it is emphasized that the BPM 

                                                 

1 “Effective interface geometry of interlocked grain modeled with four unbonded flat-joint contacts (left) 

and segment forces and interface gap after rotating the central particle while keeping the surrounding particles fixed 

(right). Compressive forces develop at the far end of each interface that resist the moment applied to the central 

particle” Potyondy [8] Potyondy DO. A Flat-Jointed Bonded-Particle Material for Hard Rock. In: The 46th US 

Rock Mechanics / Geomechanics Symposium - ARMA, Chicago, IL, 2012. 10. 
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contains limitations for reproducing the desired failure envelope in a pressurized environment 

(Figure 2.5). 

 

 

Figure 2.5 PFC2D results in Lac du Bonnet granite [3] 

 

However, the pressure dependent behavior of rocks with high pressure dependence is not 

captured accurately by stress-strain curves. In Figure 2.6 (a) three stress-strain curves under 0.1, 

10 and 70 MPa confinement pressure are depicted. It is apparent that the stiffness of the rock 

does not change as a function of the confinement, which is not representative of sedimentary 

rocks such as sandstones, e.g., Figure 2.6 (b). 
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(a) 
 

(b) 

Figure 2.6 Stress-strain curves of (a) PFC2D simulation of Lac du Bonnet granite [3] and (b) 

Bentheim sandstone 

 

The failure envelope can be improved by the introduction of unbreakable clusters to 

produce complex grain interlocking as seen in Figure 2.7. The resulting failure envelope shape is 

dependent on the amount of particles per cluster and it can be seen that a higher density of 

particles in the cluster produces a higher angle of internal friction. It is worth mentioning that the 

work of Potyondy and Cundall [3] was conducted while the parallel-bond model was in an early 

stage of its development, and the normal and shear strength were dictated by constants, i.e., it 

was not pressure dependent. 
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Figure 2.7 (a) Geometry of clusters in PFC2D, where the black dots represent unbreakable bonds 

and white dots the boundary breakable bonds; and (b) failure envelope in function of the mean number of particles 

in a cluster [3] 

 

The BPM model was improved by Cho et al. [10] by employing a clump model, where 

clumps are seen as unbreakable clusters that behave cohesively as a rigid body. This 

implementation improved the ratio between the unconfined compressive and tensile strength that 

was observed as relatively high in Brazilian tests by Potyondy and Cundall, and in direct tension 

tests by Diedrichs [11]. Furthermore, a very accurate failure envelope for the Lac Du Bonnet 

granite is obtained by Cho et al. [10] using the clump model as depicted in Figure 2.8. 
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Figure 2.8 Failure envelope prediction with PFC results using the clumped particle model [10] 

 

Although the failure envelope was improved by implementing clumps and clusters, a 

more recent work on granular bonded material [12] using PFC was able to capture pressure 

dependent behavior through the employment of ductile and fragile behaviors for shear and 

normal strength in the contact bond. Wang and Tonon [13, 14] argue that tensile and shear 

failure jointly control the strength of the material. In their work, the tensile failure occurs after 

the tensile strength has been exceeded, and the tensile forces then approach zero. In parallel, the 

shear strength follows a Mohr-Coulomb failure criterion, that when surpassed leads to failure. 

Following failure, the residual friction drives the shear strength. Additionally, Wang and Tonon 

implemented a membrane boundary, depicted in Figure 2.9, for applying confinement pressure. 

This boundary is comprised by the outer particles of the sample. This “boundary condition” adds 
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a more realistic failure pattern that cannot be achieved when the external pressure is being 

exerted by rigid walls. By incorporating these changes, Wang and Tonon were able to improve 

previous results obtained by Potyondy and Cundall, as shown in Figure 2.9. 

 

 

Figure 2.9 Lac du Bonnet granite simulation: (a) Membrane boundary depicting bulging and (b) 

failure envelope [13] 

 

The literature presented, though focused on the calibration of rocks under pressure, lacks 

consideration of simulated confinement pressures exceeding 70 MPa. This limitation offers an 

opportunity to address the problem of simulating rocks and their behavior under high pressure. 

Work by Ledgerwood [15] investigated this limitation. The calibration of a Carthage marble 

using PFC is conducted using a similar membrane boundary but created under a more robust 

algorithm that comprises extreme modification of the surface where pressure is applied. This 

boundary condition showed a strain localization failure mechanism (shear band) under low 

pressures and shear-enhanced compaction in the high pressure condition; however, the latter is 
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not well represented as depicted in Figure 2.10. The author’s description of the figure follows: 

the light gray color represents particles in which all bonds have failed; particles with intact bonds 

are shown in dark gray; and the particles with black dots on the edges represent the surface 

where the horizontal pressure is being applied. Based on the results shown in Figure 2.10, the 

simulated rock specimen under high pressure would be pulverized after failure. This disagrees 

with laboratory results that show the behavior of rock under high pressure undergoes a transition 

from brittle to ductile, passing through different phases such as crushing, compaction, and 

cataclastic flow, among others. 

 

 

(a)      (b) 

Figure 2.10 (a) Strain-localization mechanism and (b) shear-enhanced compaction band according to 

Ledgerwood [15] 

 

The stress-strain curves obtained in Ledgerwood’s simulation led to important 

conclusions of the rock behavior under different pressurized environments. It is clear that when 



 31 

the rock experiences low pressure, the failure tends to be brittle as shown in the 7 MPa 

confinement case in Figure 2.11. The stress-strain relationship should evolve as a function of the 

confinement where the post-yielding transitions from softening to hardening. This agreed well 

for samples with confinement pressures less than 70 MPa but when the confinement pressure 

increased, the hardening, clearly shown in the laboratory results, fails to be captured. An 

important motivation for this research lies in investigating the relationship between high pressure 

rock samples and hardening and most efforts are focused on the reproduction of the evolution of 

stress-strain behavior of rock samples under different states of stress. 

 

 

              (a)                  (b) 

Figure 2.11 (a) Simulation and (b) laboratory stress-strain curves of Carthage marble [15] 

2.2 SYNOPSIS OF THE ROCK SCRATCHING TEST 

The Rock Scratching Test (RST) will be the basis for validating the modeling effort of this study. 

In this test, the cutter moves in a linear fashion into a rock sample. The rationale is that there is 

no sense in attempting to model sophisticated drilling bit action, unless this much simpler 
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problem can be reproduced in a satisfactory manner. The following section explains briefly the 

RST scheme, and how it has been modeled to date. 

2.2.1 The Rock Scratching Test as a technique 

In the oil industry or any other industry which requires that a natural resource be extracted, 

drilling is one of the most critical and expensive stages of an extracting project. Even though the 

importance of drilling to resource extraction is widely accepted, the phenomenon of well drilling 

lacks a strong theoretical approach with respect to the interaction between the rock and drag bit. 

The Rock Scratching Test (RST) is a laboratory test performed over either a slab or a cylinder 

obtained from a rock core. The rock specimen is scratched in a single direction throughout the 

sample, using a cutting tool which mimics one of the tips of a drill bit or drag bit, used for well 

drilling [16]. The purposes of the RST are: 1) to register the horizontal force acting on the cutting 

tool, and 2) to observe the failure behavior of the rock. Hence, the Uniaxial Compressive 

Strength (UCS) can be well estimated based on the cutting mechanism observed in the 

experiment, and the forces acting on the cutting face [17, 18]. 

Based on experimental observation, Richard [17] concluded that two cutting modes in the 

rock cutting process take place in the RST. They are: 1) a “ductile” failure mode occurring at 

shallow depths (generally less than 1mm) associated with crushing of particles at the tool tip and 

shearing of the rock in front the cutter and 2) a brittle mode occurring at greater depths 

(generally more than 1 mm), characterized by macroscopic cracks that initiate from the tip of the 

cutter creating uneven paths of failure ahead of the cutter. The two types of failure modes are 

depicted in Figure 2.12. 
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(a) 

 
(b) 

Figure 2.12 The Rock Scratching Test: (a) a ductile failure mode and (b) a brittle failure mode 

 

It was found during the shallow cutting process that the uniaxial strength is related to the 

specific energy of cutting. The specific energy of cutting is defined by Richard as the energy 

required to cut a unit volume of rock. 

 

wd

FS  

Equation 2.1 

 

Equation 2.1 presents the relation between the specific energy,  , and the mean 

horizontal force on a shallow cutting, SF ,here w  and d  respectively stands for the width of the 

cross-sectional scratched section and the depth of cutting. 

The Rock Strength Device (RSD) is used to perform the RST. The size of the rock 

sample (cores) that can be used in the RSD range from 30 mm to 120 mm in diameter, and 20 mm 

to 1000 mm in length according to Schei et al. [19]. In addition, the length of the groove 
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scratched has to be at least 10 times the depth of the cutting. Thus, a sample subjected to shallow 

cutting can offer good results after 10 mm of a cutting process. A more detailed description of the 

apparatus and the configuration of the test was presented by Richard and Dagrain et al. [2, 17]. 

Furthermore, Dagrain et al. presented more updated characteristics used in the RSD, depicted in 

the table below. Overall, the beauty of the RST is that the results obtained, regardless of the 

rock-like material used, show that the scattered data are concentrated in a one-to-one relationship 

of specific cutting energy and unconfined compressive strength. 

 

Table 2.1 Rock Scratching Device characteristics [2] 

 (°) w (mm) v (mm/s) d (mm) L (mm) Fs,Fn(N) 

15 10 4-10 0.1-1 200-1000 0-4000 
 

The data points shown in Figure 2.13 were obtained in three different laboratories located 

in the USA, France and Belgium (Showing the effectiveness of the method) and using different 

types of rocks, rock-like materials and construction materials. In total, 252 materials were tested. 

There is another source of information, where more materials are added to the curve, published 

by the company Epslog Engineering in a brochure for their Wombat apparatus 

(http://www.epslog.com/files/brochure_11-06.pdf). While this brochure is not an academic 

reference, it gives a state-of-the-art view of the RST test. 

  

http://www.epslog.com/files/brochure_11-06.pdf�
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Table 2.2 Rocks subjected to the RST [2] 

Material 
Samples 

tested 
Sandstone 92 
Limestone 86 

Shale 19 
Dolomite 6 

Chalk 4 
Granite or Granodiorite 3 

Coal 2 
Anhydrite 2 

Construction materials 17 
Refractory 3 

 

Figure 2.13 Correlation between the cutting specific energy and the unconfined compressive strength 

[2]. 

 

2.2.2 Rock Cutting Test Under Pressure 

Unfortunately, there is no data available of an RST in slab cutting. Kaitkay and Lei [20] 

performed a groove circular rock cutting test under hydrostatic pressure. The effects of the 

hydrostatic pressure assisted the cutting process with the chip formation and presented a 

nonlinear trend of cutting force against pressure as shown in the figure below.  
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Figure 2.14 Rock Cutting Test under hydrostatic pressure: Left side, force history; and right side, 

force vs. pressure 

 

Although this is not a two-dimensional case, we can use the cutting force history and the 

mean cutting forces as a frame of reference for our simulations. 

2.2.3 Discrete Element Modeling of RST 

In general, the DEM modeling of rock cutting has been performed taking into account the 

following conditions: 1) The rock is modeled as a BPM, 2) the walls containing the specimen are 

boundary conditions at zero velocity, and 3) the cutting tool is a segmented wall, representing a 

boundary condition at a constant velocity. The nature of the rock being a BPM and the cutting 

tool a rigid body, allows for identification of the damage in the bulk material and the recording 

of the forces acting in the cutting process, respectively. 

The different failure modes in rock cutting was modeled by Huang et al. [21, 22]. They 

found that the depth of cutting determines whether the failure regime is ductile or brittle when a 

characteristic particle size is given. The authors also found a fair relationship between specific 

energy of cutting and the unconfined compressive strength of the sample. 
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Figure 2.15 Linear trend of force vs. depth in the RST simulation [21] 

 

DEM has also been used by Rojek [23] in rock cutting simulation with the purpose of 

validating the cutting force results with the existing analytical approaches of Nishimatsu [24] and 

Evans [25]; however, this study does not specifically refer to the scratching test or the shallow 

cut. Moreover, the study shows an interesting failure pattern that characterizes a deep cutting 

depth as shown in Figure 2.16. 

 

 

Figure 2.16 Brittle failure in rock cutting [23] 
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Huang and Detournay [26] investigated that the switch from ductile to brittle failure 

mechanisms can be explained by the introduction of a length scale parameter in the rock 

description which is a function of the material toughness and the uniaxial strength. The 

investigators claim that the mean radius loses its quality of discretization parameter and becomes 

dependent on the toughness and the uniaxial strength. Thus, when the length scale is introduced, 

the failure behavior is controlled by the strength of the mechanical properties of the material. 

 

 

 

Figure 2.17 Ductile and brittle failure due to cutting depth and particle size ratio [26] 

 

A latter study by Rojek, [27] evaluates the 2D and 3D simulation of rock cutting with a 

single roadheader pick and compares these results with records obtained experimentally. Rojek 

concludes that the numerical results are quite agreeable with those obtained in the physical lab. 

Moreover, it is pointed out that the lack of full geometrical representation in the 2D case yields 

to results that can be fulfilled by 3D analyses. This is supported by the means and standard 
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deviations of the forces obtained during the experiment which are compared side by side with the 

ones from the simulation as shown in Figure 2.18. 

 

 

Figure 2.18 Comparison of the mean force histories of the rock cutting process[27] 

 

The simulation of rock cutting using a point attack pick under a PFC3D simulation 

environment was explored by Su and Akcin [28]. This study, along with experimental results, 

found that theoretical models of rock cutting (Evan’s, Lui’s and Goktan’s models), are 

comparable with simulation results. The figure below depicts the relationship between laboratory 

and simulation cutting forces results, and the cutting process in the simulation. 
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Figure 2.19 Comparison of the mean force histories of the rock cutting process [28] 

 

2.2.4 Discrete Element Modeling of RST under Pressure 

Lei et al. [29, 30] has explored the use of DEM in modeling rock scratching tests by performing 

studies on the influence of hydrostatic pressure on orthogonal machining and sensitivity analyses 

of the micro-properties of the numerical model. The authors suggest that the increment of 

particle size towards the bottom of the sample decreases the computational expenses without 

affecting the macro-properties of the material. The particle arrangement used in their simulation 

is shown in the figure below. 

 

Figure 2.20 Specimen setup and boundaries for rock cutting [29] 
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The findings in these studies are that: 1) the hydrostatic effect restrains crack growth and 

creates larger horizontal forces during the cutting process (Refer to Figure 2.21), 2) the failure in 

the absence of confining pressure implies short-chip formation, crack propagation and smaller 

cutting forces (Refer to Figure 2.21), 3) the damping coefficient has a large effect in the cutting 

forces, therefore a more realistic value is necessary for having results closer to reality, and 4) the 

shape of the particles for avoiding the spinning that the circular elements allows also affect the 

results, suggesting further research in the implementation of clusters in the specimen. 

 

 

Figure 2.21 Rock cutting process with and without confinement, left and right, respectively [29, 30] 

 

The relation between failure mode in drilling and bottom hole pressure was investigated 

by Block and Jin [31] using DEM. Here, the energy dissipation was addressed not just as the 

breaking of the bonds, but also the irreversible reorganization of the grain structure. This issue 

was accounted for by calculating the average stress tensor and the strain rate on a grain within a 

given neighborhood. A cap-like failure envelope was considered in the post-processing of the 

results to determine whether the state of stresses on analyzed regions were behaving elastically, 

or failing either in a brittle or ductile mode. Moreover, it was found that the cutting morphology 

is affected by the in situ pressure conditions and the weight of the PDC bit. The case of 
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atmospheric conditions is shown in Figure 2.22(a) while the case of down-hole conditions is 

shown in Figure 2.22(b). 

 

   

            (a)                  (b) 

Figure 2.22 Visualization of cutting morphology using DEM at (a) atmospheric conditions and (b) 

down-hole conditions (30 MPa) 

 

Also, qualitative characteristics were observed in the rock cutting simulation under 

pressure using PFC2D and reported in [15]. The reported characteristics include the efficiency of 

the cutter backrake angle and cutting depth, the flow of crushed material below the cutter, as 

depicted in the Figure 2.23, and some other confidential characteristics. 

 

Figure 2.23 Cutting process using PFC2D under 20 MPa of pressure 
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To summarize, there has yet no comprehensive modeling effort that has duplicated the 

relationship between the specific energy and the uniaxial strength as observed in the laboratory 

rock scratch tests. There is neither a detailed study on the validity of implicit modeling  of 

porosity using the discrete element method. 

2.3 METHODOLOGY 

2.3.1 Sensitivity Analysis 

The general test procedure and the material property selection for the DEM numerical model are 

described in this section. The calibration of the material using the Unconfined Compressive 

Strength test results and the aim of choosing a variety of rock-like materials in the numerical 

model are explained. 

The DEM numerical model requires a set of microparameters characteristic of the 

bonded-particle model. These microparameters refer to the properties of the model entities, 

namely, particles and walls. The focus of this study lies in the direct analysis of the 

microproperties with the particles and their corresponding contact model.  

A large number Unconfined Compressive Strength tests using the DEM were conducted 

to evaluate the sensitivity of the microproperties and to analyze their influence on the 

macroproperties. This analysis is useful in order to ensure that the selected microparameters 

yielded reasonable rock samples and are able to predict sets of microproperties based on target 

macroproperties. The results of this analysis are summarized herein, where each data point 

represents the average of three different samples. The results of this sensitivity study provided 
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guidance for the selection of microparameters to manipulate and their influence on the 

macroproperties. For example, in order to increase the uniaxial strength of the rock, the 

sensitivity study provided insight into which parameters should be changed and by what degree 

in order to obtain the desired results. 

 

 

The sensitivity study produced the following conclusions: 

 When the particle stiffness ratio, kn/ks exceeds one, the Young’s modulus is largely 

unaffected. However, when the ratio of the particle stiffness is larger than the ratio of 

the parallel bond stiffness, represented by b in Figure 2.24, the Young’s modulus of 

the material increases with respect to the Young’s modulus of the particles. 

 The Poisson’s ratio is very sensitive when the kn/ks, is less than 2. Moreover, 

increasing the bond stiffness ratio can increase the Poisson’s ratio. This can be 

observed in Figure 2.25. 

 The uniaxial strength was found to be dependent on both the particle and bond 

stiffness as shown in Figure 2.26. When the bond particle stiffness ratio is 

significantly larger than the particle stiffness ratio, the uniaxial strength displays 

erratic behavior when the kn/ks ratio is less than one. However, when the particle 

stiffness ratio is equal or larger than the bond stiffness ratio, and the normal stiffness 

of the particle is larger than its shear counterpart, the uniaxial strength shows more 

stability. 
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 The bond strength ratio, namely, shear to normal bond strength, represented by the 

variable b in Figure 2.27, proved to influence the Young’s Modulus of the material 

when this ratio is less than or equal to one. 

 Finally, the uniaxial strength of the material has a tendency of being very sensitive to 

subtle changes of the normal bond strength when its value is less than 100MPa, 

regardless of the strength ratio. Figure 2.28 shows that materials with high uniaxial 

strength are inherently more stable than those characterized by low uniaxial strength.  

 

Figure 2.24 Sensitivity of bond and particle stiffness ratio on material stiffness 
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Figure 2.25 Sensitivity of bond and particle stiffness ratio on Poisson’s ratio 

 

Figure 2.26 Sensitivity of bond and particle stiffness ratio on material strength 
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Figure 2.27 Sensitivity of bond strength ratio on particle and material stiffness 

 

Figure 2.28 Sensitivity of bond strength ratio on material strength 
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2.3.2 Generating Samples with Different Porosities 

Modeling rocks as an assemblage of particles bonded together using discrete elements has 

allowed for a new approach to the study of mechanical rock behavior [3]. It has significantly 

impacted the failure analysis, particularly in the area of fragmentation and fracture. The discrete 

element model adopts a host of micro mechanical parameters to define a rock, which includes the 

stiffness, surface friction and cohesion of the particles, and modulus and strength of the bonds. 

These micro mechanical parameters are often selected to match the macroproperties of a given 

rock. On account of data availability, the model is generally calibrated by adjusting the strength 

and the Young's modulus from the uniaxial compression test.  Occasionally, the tensile strength 

from Brazilian test is also incorporated. Even though the void ratio of a given rock is known to 

significantly affect the mechanical properties of the rock (e.g., Vernik [32]), it has not been 

explicitly considered in discrete element modeling. In fact, only a narrow range of porosities 

have been used: around 16% for two-dimensional analyses, and 35% for three-dimensional 

analyses. This study strives to address whether the current approach of not explicitly 

incorporating the actual porosity in modeling rocks affects the validity of the results using 

discrete element modeling.  

Specifically, it has been hypothesized that if the macro properties of a rock are captured 

in a discrete element model, the porosity does not need to be explicitly incorporated. This will be 

referred to hereafter as an implicit modeling of porosity. Rock cutting has been used as a target 

problem because it presents a complicated process commonly found in rock construction. 

The paper is organized as follows: First, the procedure of generation a rock sample via a 

bonded particle model is reviewed. This is followed by a brief discussion of how a dense 

assembly of particles with a small porosity can be created and the procedure is also presented. 
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Rock cutting is then completed on two samples, one with an actual porosity of 8% and the other 

with 16% but with parameters such that both have the same uniaxial strength and Young’s 

modulus. This study is limited to two-dimensional problems, and the computer code PFC2D from 

Itasca (2008) was used in the analysis. 

2.3.2.1 The procedure of Potyondy and Cundall 

The procedure developed by Potyondy and Cundall (2004) has become a standard for generating 

bonded particle rock samples. It consists of four main steps as illustrated in Figure 2.29. First, a 

rectangular domain is enclosed by four frictionless but stiff walls within which particles 

following a given size distribution are placed. The particles are first given a size that is a fraction 

of its final size to facilitate their placement, and a small porosity of 8% was initially employed to 

yield the number of particles used. Second, after their placement, particle diameters are scaled up 

to create a porosity of 8%. This resulted in significant overlapping of particles. Third, particles 

are given density and stiffness values but not friction, and the particle overlapping induced 

contact forces drive the system into an equilibrium state. Fourth, an isotropic stress is applied on 

the boundary to establish an isotropic stress state within the sample. Floating particles, i.e., 

particles without sufficient contacts with neighboring particles, are eliminated and bonds are then 

introduced between contacting particles. This particle insertion procedure is sometimes referred 

to as a dynamic method due to its consideration of the dynamics of particle motion. There are 

two types of bonds, the contact bond and the parallel bond. The former has no volume; the latter 

is modeled as cylindrical beams that have length, area and modulus. This study adopts the 

parallel bond.  
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2.3.2.2 Creating a rock sample of low porosity 

The preceding procedure generally leads to a sample with porosity of approximately 16%.  

Particles may be simply deleted from a sample to create a higher porosity sample, but decreasing 

the porosity is a more challenging task. One possibility is to adopt the Lubachevsky–Stillinger 

algorithm [33], which is essentially a nonequilibrium molecular dynamics simulation in which 

the particle size increases with time [34]. But within the framework of discrete elements, Bagi 

[35] proposed a constructive method in which the particles are placed from a purely geometrical 

consideration, without simulating the dynamics of particle motion. Schöpfer et al. [36] however, 

used the dynamic procedure first then inserted particles into existing voids such that in a two-

dimensional case an inserted particle would be in perfect contact with three particles. This has 

been successfully implemented in generated a low porosity of 23% for three-dimensional 

samples. 

Herein, two approaches that were investigated are suggested: First a sample is obtained 

using the Potyondy and Cundall’s procedure. Then, small seed particles are randomly inserted 

into voids and allowed to grow toward the target porosity. The insertion procedure is repeated 

until the target porosity is reached. This procedure is illustrated in Figure 2.29 and Figure 2.30.  
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Figure 2.29 Genesis of a rock sample from bonded particles 

 

Figure 2.29 shows a sample originally created at a porosity of 20% using the Potyondy 

and Cundall procedure. From that, the sample has been refined to a porosity of 8%, then further 

to 5%, as shown in Figure 2.30. This approach requires dynamic computation, which tends to be 

more expensive when more particles need to be inserted. This approach proved to be 

unsustainable when samples had more than 10,000 particles in its initial state (before the 

commencement of particle insertion). Thus, an approach similar to the one used by Schöpfer was 

implemented and it is described below. 

 



 52 

 

Figure 2.30 Refine a sample to a small porosity 

 

As in the previous approach, a sample is created by the dynamic procedure developed by 

Potyondy and Cundall, which is referred to hereafter as Generation 0. Then, the voids which can 

contain particles are identified as follows: First, a closed loop of particles and their contacts are 

identified as shown in Figure 2.31, using the contacts coordinates. The space where the void is 

located is shown by the red dashed line. From this encircled shape, the approximate center of the 

void is located by averaging the contacts abscissas and ordinates, which is shown on the figure as 

a red dot with a blue cross. From this point, the three closest particles are (depicted by the 

arrows) identified, and these particles are used for creating another particle that is tangent to 

these. The Appolonius circle problem is solved in order to find this tangent and the solution is 

chosen that lies in the spatial void identified. The center of the particle inserted is marked with a 

red cross. This process is repeated throughout all the voids that exist between particles because 

voids created between particles and walls are neglected. 
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Figure 2.31 Filling a void via Apollonius’ circle 

 

Following the insertion of the first generation of particles in the voids identified from the 

Generation 0 sample, a new sample has been created, Generation 1. Similarly, several 

generations of samples can be produced using the predecessor generation as the basis for creating 

the voids structure, as shown in Figure 2.32. In order to achieve a precise porosity, the generation 

sample with the closest lower porosity to the target porosity is chosen, and the smallest particles 

are deleted randomly until the porosity is achieved. 
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Figure 2.32 Generation progression when particles are being inserted 
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2.3.3 Discrete Element Simulation of the Rock Scratching Test 

The general test procedure and the material property selection for the DEM numerical model are 

described in this section. The calibration of the material using the unconfined compressive 

strength test and the aim of choosing different rock-like materials in the numerical model are 

explained. 

2.3.3.1 Geometrical Characteristics of the System 

Determining the appropriate length of a sample is the first issue to be addressed. Richard [17] 

found that for obtaining stable results the length to be scratched or distance of cutting must be at 

least ten times the depth of cutting, e.g., for a case of 1.0 mm cutting depth, a scratching length of 

10 mm is required. Because this study focuses only on shallow cuts, it would be expected that 

cracks, if created, would be shallow as well. This makes it possible to analyze the cutting process 

considering only a partial size of the sample. 

Based on these facts, both height and length can be estimated to obtain a conservative 

particulate system size that can yield accurate results at a reasonable computational cost. For 

example, if a rock sample with a height of 30 mm and a length of 50 mm was used in a laboratory 

test, the numerical sample dimensions can be greatly reduced, hence, reducing the computational 

expenses. In this study, it was found that a numerical sample with a height ten times larger than 

the cutting depth, and length one and a half times longer than the scratching length is sufficient 

to capture a ductile failure mode without being affected by any boundary condition of the model. 

A sketch of the proposed model assuming a cutting depth of 1 mm and approximately 17 mm of 
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scratching length and with respect to laboratory sample dimensions named above is depicted in 

Figure 2.33. 

 

 

Figure 2.33 Dimension difference between the numerical model and laboratory sample 

 

From the analysis sample shown in Figure 2.33, and considering the predominant failure 

mode in the shallow scratching test, a region of particles with identical fineness to the actual size 

of the grains in a Vosges sandstone is assigned in the top half of the sample. These particles are 

distributed in the range of diametric sizes from 0.1 mm to 0.4 mm. To reduce the computational 

cost, the particle size was increased gradually with depth measured from the bottom of the 

sample. The top region of the particles is called hereafter the Cutting Region as shown in Figure 

2.34. 
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Figure 2.34 Piece of material analyzed numerically 

 

Lastly, the rake angle of the cutting tool in the model is set to be 15°, the same angle used 

in experiments in [17].  This angle is depicted in both Figure 2.33 and Figure 2.34. 

2.3.3.2 Calibration of the Material 

Due to the availability of scratch test data lacking specific information regarding rock samples 

[2, 17] general rocks were created for the sake of this analysis. Namely, instead of modeling 

rocks that are typically found in certain regions, i.e., Berea Sandstone, Carthage Marble, Indiana 

Limestone, among others, rock-like materials were generated. The engineering classification of 

intact rocks by Deere and Miller [37] was used as a guide (Refer to Figure 2.35), in which any 

given rock can be classified by its Uniaxial Compressive Strength (UCS) and the Young’s 

Modulus at 50% of the UCS. 
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Figure 2.35 Deere and Miller's engineering classification of rocks taken from Bell [38] 

 

2.3.3.2.1 Laboratory test: Unconfined Compressive Strength Test 

Potyondy and Cundall [3] found that in a PFC2D model, the elastic response of the materials, 

i.e., Young's Modulus and Poisson Ratio and the unconfined compressive strength, is generally 

unaffected by the particle size. Thus, the particle size used in modeling the unconfined 

compressive laboratory tests was selected considering this computation cost. Potyondy and 

Cundall [3] chose an average diameter of 0.36 mm in a rectangular specimen of 27.314.63 mm

for their finest particle system. In this study, the laboratory test sample used an average diameter 

of 0.52 mm in a rectangular sample of 250100 mm . The height to width ratio of the sample 

remains a constant 2 to 1. 
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       (a)                   (b) 

Figure 2.36 Typical Uniaxial Test in PFC2D, where (a) is the sample at failure and (b) is its 

respective stress-strain curve 

 

Figure 2.36 shows typical results of a Uniaxial Compressive Test obtained in PFC2D. 

Broken bonds that failed in tension and shear are denoted by red and magenta lines respectively 

in Figure 2.36(a) which mimics the failure of surfaces and cracks on a real rock. The parallel 

bonds that remain intact are represented by parallel black lines while the particles are depicted as 

light-orange circles in the background. Lastly, the stress-strain curve obtained is plotted in Figure 

2.36(b). 

2.3.3.2.2 Cases of rocks modeled 

A set of 58 rock-like materials were created, and were classified based on the engineering 

classification of intact rocks by Deere and Miller [37]. The focus remained on creating a wide 

spectrum of rock-like materials that would be considered a representative majority of all 

possibilities of rock types as shown in Figure 2.37. 

0

5

10

15

20

25

30

35

0.000 0.001 0.002 0.003 0.004 0.005 0.006


yy

(M
P

a)

yy



 60 

 

 

Figure 2.37 Results of the UCS test obtained in the PFC2D simulation referred to the Deere and 

Miller classification of rocks [38] 

 

The shaded area represents the union of the rock type boundaries defined in Figure 2.35. 

The red parallel slopes (500:1 and 200:1) are boundaries that identify the limits between high 

(above 500:1 slope), average (between 500:1 and 200:1 slopes) and low (below 200:1 slope) 

modulus ratios. Most of the materials considered occur below the high modulus ratio and cover a 

wide range from very low to very high unconfined compressive strength. Moreover, it should be 

noted that the results of the RST are directly related to the UCS, thus, allowing this set of 

materials to be representative in order to evaluate the ability of simulating RST using the DEM. 
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2.3.3.3 Boundary and initial conditions in the RST simulation 

The boundary conditions (BCs) in a DEM system can be imposed by walls, particles and gravity. 

The BCs in walls are given through motion, i.e., translational and rotational velocity; the 

gravitational field, the acceleration due to gravity; and BCs in the particles by force, moment, or 

motion applied to the centroid of the particles. Moreover, if the velocity of the particles is not 

fixed, it can be altered due to the law of motion during contact with another entity, i.e., wall or 

ball. 

The specimen created is bounded by walls on the sides and at the bottom. These walls 

provided fixed BCs. The cutter is modeled as a segmented wall that moves at a constant speed 

during cutting. The walls are rigid and can be assigned with a coefficient of friction. Figure 2.38 

depicts the simulation before scratching takes place. Two wall BCs are indicated and numbered. 

The number (1) represents walls at zero velocity while the number (2) is assigned to a segmented 

wall, mimicking the cutting tool, where the translational velocity is specified but the rotational 

velocity is zero. 

 

Figure 2.38 Boundary conditions in the rock scratching model 
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Walls have normal and shear stiffness values similar to balls. In this study, the stiffness 

of the walls was assigned a value 10% larger than the stiffness of the balls. The friction 

coefficient between the walls at zero velocity and the particles is set as 0.1. 

2.3.4 Discrete Element Simulation of Biaxial Tests Under High Pressure Confinements 

PFC possesses an environment designed for performing triaxial tests in the 3D version or biaxial 

tests in the 2D version that has been widely used for the calibration of rocks. In this environment, 

the confinement pressure is applied through rigid walls which can be improved as named in the 

literature review through a membrane boundary [13]. 

The PFC2D has a spanning chains algorithm that creates an effect, similar to the 

membrane boundary, identifying the particles on the outer surfaces as previously seen in the 

Ledgerwood study [15] (Refer to Figure 2.10). However, some preliminary results of the rock 

cutting process simulation under high pressure (higher than 100 MPa) showed fictitious 

responses that are discussed in the last section (SIMULATION OF THE MECHANICAL 

BEHAVIOR OF ROCKS UNDER HIGH PRESSURE CONFINEMENT – Foundation for 

future work). Due to these results, a different method for applying boundary pressure is 

proposed in this study, which is discussed in the section Confinement pressure boundary. 

Finally, important aspects of the mechanical behavior of rocks under high confinement pressure 

are addressed with the purpose of discussing the viability to implement them in the DEM 

simulation.  
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2.3.4.1 Confinement pressure boundary 

The confinement pressure boundary is created by the use of an algorithm that loops through the 

particles within a window and identifies the nearest particle to a frame of reference, depicted in 

the left side of Figure 2.39 as the datum. This process is done for an area of interest, as can be 

seen in the figure below, where the particles of the edges in dark gray are the membrane 

boundary of the sample. Forces are applied to these particles in order to generate a pressure field 

able to reproduce external pressure. 

 

 

Figure 2.39 (a) Sketch of the identification of the boundary, and (b) result of the confinement 

pressure boundary algorithm in a DEM sample for biaxial test 

 

This implementation allows for large deformation on the surfaces exposed to pressure 

conditions, without the need for spanning chains of particles. Previous results show that this new 

approach improves the unrealistic failure mode seen in the cutting process. 
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2.3.4.2 Mechanical behavior of rocks under high pressure confinements 

In this section, the brittle-ductile transition in rocks will be detailed and discussed. The brittle-

ductile transition will be the foundation for corroborating the modeling endeavor of this study. 

This transition is achieved by increasing pressure and/or temperature. Pressure is the factor that 

is investigated in this study. When rocks are subjected to high pressure, several factors contribute 

to create a bridge between brittleness and ductility. Here, the factors (or factor) of the ones 

observed in experiments have the potential to be modeled and implemented in our DEM 

simulations will be identified. Then, whether the application of these factors dovetailed 

behavioral similitudes between numerical and experimental results will be evaluated. 

A brief description of the confining pressure role in the stress-strain behavior is discussed 

along with the macroscopic failure and microstructural changes. 

2.3.4.2.1 Confinement in the stress-strain behavior 

The evolution of the stress-strain curves with respect to confinement possesses some general 

aspects listed below, and that can be observed in different cases as depicted in Figure 2.40: 

1. When confinement pressure increases, the strain reached at the macroscopic failure, 

tends to increase until the brittle-ductile transition happens. 

2. Stress-strain levels get higher at higher confinement pressures 

3. When confinement increases, and at large strains (after macroscopic failure), the 

stress-strain curves tend to increment the slope passing through strain softening, 

plasticity and strain-hardening. 



 65 

 

        (a)             (b) 

 

(c) 

Figure 2.40 Stress-strain curves of (a) Wombeyan marble [39], (b) Adamswiller sandstone [40], and 

(c) Carrara Marble [39]  

2.3.4.2.2 Brittle faulting to Cataclastic flow 

Physically, two deformation processes might lead to ductility in rocks. The first process 

considers that grain deformation and macroscopic deformation happen in unison. In the second, 

the macroscopic results are influenced by reconfiguration of grains, resulting in localized relative 

movement between grains or a group of grains. According to Paterson and Wong [39], the latter 
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distinguishes between two categories, cataclastic flow and microplastic granular flow. The 

cataclastic flow is considered in our study because it discards the influence of temperature. 

Visual inspection performed by Wong [40], confirms that when rocks failed under the 

brittle regime, shear localization is found in a detailed shear-band through the sample. While in 

the ductile regime, damage is manifested by the combination of independent shear bands. Figure 

2.41 depicts the evolution of the failure in function of the confinement pressure, where at 3.5 

MPa of confinement pressure a single shear failure can be seen, while at 35 MPa and 100 MPa, 

the combination of several shear bands failure comprise the damage. It is worthwhile to point 

out, that despite the high pressure the rock was still monolithic after failure. It was criticized that 

Ledgerwood’s simulation results under high pressure developed a failure mode not 

representative of rocks (Refer to page 30). 

 

 

Figure 2.41 Failure Types in Wombeyan marble at (a) atmospheric pressure, (b) 3.5 MPa, (c) 35 MPa 

and (d) 100 MPa of confinement pressure [39]  
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2.3.5 Discrete Element Simulation of Rock Cutting Under Pressure 

The simulation of the RST test under pressure will be performed following the same procedure 

that has been widely used by the researchers named in the literature review under the section 

Discrete Element Modeling of RST under Pressure. The simulation environment is similar to the 

one described in the Discrete Element Simulation of the Rock Scratching Test, with respect to 

the geometry and boundary conditions, but with the difference that a new boundary condition 

will be applied on the top of the rock specimen using the Confinement pressure boundary 

proposed in this study. A drawing taken from a technical memorandum of Itasca consulting 

group is depicted in the figure below. 

 

 

Figure 2.42 Sketch of the simulation environment for rock cutting under pressure 

(http://itascacg.com/pdf/pfc/ex_rockcut2d.pdf) 

http://itascacg.com/pdf/pfc/ex_rockcut2d.pdf�
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3.0 DEVELOPMENT OF THE ROCK SCRATCHING TEST MODEL 

Summarized herein are the most important results found throughout the research on the 

objectives outlined in the previous section. The cutting specific energy of the rock-like materials 

created is related to their respective unconfined compressive strength, and these results are 

compared with the ones obtained via the RST [2, 17]. The mechanical behavior of the rocks 

under pressure is discussed, and the different factors that have been taken into account in order to 

improve the failure and deformation mechanisms. Finally, the improvement of the rock cutting 

process under pressure thanks to the implementation of the Confinement pressure boundary is 

shown. 

3.1 SIMULATION OF RST USING TWO-DIMENSIONAL DEM 

3.1.1 Validation Data Base Population 

In order to develop the model for the RST, a database of rock like material must first be 

populated and validated with expected mechanical behavior. These macro-properties have been 

acquired with the procedure described in the Sensitivity Analysis. The simulated material 

behavior is then validated against standard mechanical behavior based on an engineering 

classification of rock materials. 
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The chosen engineering classification system for validating this rock behavior was the 

system devised by Deere and Miller [37]. This classification system requires the  Young’s 

modulus and the unconfined compressive strength which is then plotted as shown in Figure 2.35 

of the previous section. It is important to note from this figure that the mechanical behaviors 

calculated from uniaxial compression strength are encompassed by the contours based on rock 

types numbered 1 through 10 in shown in Figure 2.35. This boundary was used in the validation 

of the numerical rock material database to ensure all samples fell within expectation. 

Therefore, the constructed boundary of expected rock behavior is shown along with the 

results obtained from the numerical rock like materials in Figure 2.37. It is clear that all values 

fall within the expected range of typical rock behavior based on known rock types. Additionally, 

it can be seen that an even distribution of numerical rock like material has been created. The 

database includes rock materials ranging from low to high Young’s modulus and unconfined 

compressive strength values. 

 

3.1.2 Establishing Model Inference Space 

Before the RST model development, critical parameters were first identified which could 

potentially affect both the magnitude of response and failure type. These variables will be 

studied independently and special attention will be paid to behavior at extreme values to 

establish a reasonable inference space for these model parameters. This will both ensure the 

production of reasonable and realistic results as well as to identify parameter sensitivity. 

Parameters were identified based on the literature review and laboratory testing.  
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3.1.2.1 Cutting depth influence on horizontal forces on RST 

First, the effect of the cutting depth on the magnitude of the horizontal forces of the RST was 

investigated. It has been suggested that a critical cutting depth exists which serves as a boundary 

for the failure mode experienced by the rock. This critical cutting depth is highly dependent on 

the characteristics of the specific rock used, such as type and strength. Generally, a stronger rock 

exhibits a smaller critical cutting depth and likewise a weaker rock exhibits a larger critical 

cutting depth.  

The results from this analysis are shown in Figure 3.1 below and testing was performed 

on a low-strength rock (refer to Deere and Miller). Literature indicated and testing conferred that 

As the critical cutting depth appeared to be approximately 1.2 mm. It can be seen in Figure 3.1 

that the relationship between cutting force and cutting depth is approximately linear and fits the 

trendline shown well until the critical cutting depth.  

Additionally, the failure mode experienced by the rock changed for cutting depths 

exceeding the critical cutting depth. The observed failure mode for cutting depths less than 1.2 

mm was a ductile failure whereas the observed failure mode for cutting depths greater than 1.2 

mm was a brittle failure.  

While the data remains approximately linear following the critical cutting depth, the data 

points are much more scattered following this critical cutting depth. However, this behavior is 

unrepresentative of expected rock behavior as failure cannot linearly increase indefinitely with 

cutting depth [1]. The cutting force should approach a limiting value which is not observed in 

this plot. Therefore, this model is limited to the analyses of shallow cutting in the RST. 
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Figure 3.1 Analysis of critical cutting depth 

3.1.2.2 Effects of rock elastic modulus  

The average cutting forces for shallow RSTs have been shown to correlate well with the 

unconfined compressive strength of rocks [1, 2, 18, 41]. In order to assess the reliability of our 

DEM model, we adopted a suite of rock samples and investigated if a similar correlation could 

be obtained through simulation. To produce a suite of samples, we took a route of using a basic 

structure like that from our typical Vosges sandstone, but changing the modulus and strength 

parameters so that they spanned over a wide range of E/c values. To get a sense of possible 

variation in the cutting forces, we began by looking into the impact of having c  fixed, while 

changing E values. Figure 3.2 shows shallow cut results on four different samples created with 

approximately the same c but different Young’s Modulus. The resulting average force varied 

from 45kN/m to 65kN/m with E/c varying between 95 – 770. As a base line for comparison, we 

also created a suite of samples using exactly the same parameters and found that the different 

particle arrangement alone induced a smaller variation. With a total of 10 random samples, the 
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mean cutting forces were 37.97kN/m with a standard deviation of 4.44kN/m. Combining these 

two factors together we concluded that at a givenc, simulation results could have a range of 

average force variation of about 20 to 30% from the mean if only the bond strength and stiffness 

were changed. 

 

 

Figure 3.2 Shallow cut results with varying Young’s Modulus values 

3.1.2.3 Selection of damping and cutting speed 

In modeling a RST, damping coefficients of the rock and the advancing speed of a cutter were 

two intertwined factors that played significant roles on both the resulting cutting forces and the 

fragmentation patterns obtained. To match laboratory RST results, it was critical to reconcile 

these two factors in a systematic manner. 

Impact of damping coefficients of rocks in cutting was first studied by Lei et al. [30]. We 

have confirmed that, under a given cutter speed, a low damping coefficient in the rock would 

lead to a failure characterized by substantial chip formation. As the chips were pushed away, the 
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cutter would often lose contact with the rock sample. The intermittent contact between the cutter 

and the rock sample yielded a discontinuous cutting force history and a low average cutting 

force. On the other hand, a cutter tended to have a better contact with the rock sample when the 

damping factor was high, and failure would be seen mostly through grinding. 

In a similar manner, the advancing speed of a cutter would affect the cutting force and the 

fragmentation process. It turned out, that changing the cutting speed would have the same effect 

as changing the material damping. This point is highlighted by a comparison depicted in Figure 

3.3. Figure 3.3 (a) shows a low cutting speed of 0.25 m/s induced chipped failure in a shallow cut 

for a rock with a damping of 0.7, and a similar chip was observed for a low damping of 0.05 

under a higher cutting speed of 2 m/s. The actual cutter speed in the laboratory RST was low at 4 

mm/sec, and it was not feasible to adopt that speed in the simulation. Moreover, we have found 

using a local adaptive damping,  , of 0.7 provided good results in simulating uniaxial 

compression tests; and to be consistent throughout the modeling process, this level of damping 

was kept. Thus we tuned the cutting speed such that both cutting forces and fragmentation 

process were well modeled. In this respect, the study has selected a cutting speed of 2 m/s. This 

set of the cutting parameters were employed in extensive simulation of shallow cuts 

satisfactorily. 
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(a) 

 

(b) 

Figure 3.3 Influence of cutting speed and damping coefficient on a) failure mode and on b) the 

average cutting forces. 

 

Finally, the damping coefficient was also analyzed for deep cutting, and it was found that 

the failure mode was more representative for low damping coefficients, and the cutting forces 
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damping coefficients for the shallow and deep cutting cases was not a consistent with the 

benchmark that we wanted to deliver in this study. 

3.1.3 Significance of Particle Crushing for RST Calibration 

The implementation of particle crushing consisted of two steps. Step one was to 

determine the crushing strength of a particle. Step two was to decide on the post crushing 

configuration. A major deviatoric stress failure criterion was employed. The post crushing 

configuration proposed by [42] was adopted. With that, a crushed particle was replaced by a 

number of smaller particles arranged in a particular manner without bonds. 

The major deviatoric stress on a particle was computed from the average stress tensor. 

Within a particle it was defined in terms of the peripheral forces and their position vector as 

follows, 

 c
j

n

c

c
i

p

ij Fr
V




1

1  (1) 

where, pV  is the volume of a particle, F  is one of the n contact forces acting on the 

particle, r  is a position vector measured from the center of the particle to the contact force point. 

Data to this point has shown good correlation with the rock scratching test results for low 

strength rocks, defined as rocks with an unconfined compression strength less than 75MPa as 

shown in Figure 3.4 below which shows good correlation between the model and laboratory data 

for low strength rocks. 
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Figure 3.4 Initial results considering particle crushing 

 

To further investigate the discrepancy of the rock scratching test data for rocks with an 

unconfined compression strength greater than 60MPa, the significance of particle crushing 

effects was considered. Previous work (Mendoza 2010) has indicated that considering particle 

crushing in the rock scratching test improves the fit of the data as shown in Figure 3.5 below. 

This improvement can be attributed to additional contact provided between the crushed particles 

and the cutter which ultimately creates a smoother and more representative force history plot as 

well as slightly increasing the cutting specific energy. 
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Figure 3.5 Effect of considering particle crushing 

 

These initial improvements seen from including particle crushing effects primarily 

improved the model for low strength rocks. Shown in Figure 3.5 above, the data incorporating 

particle crushing for low strength rocks (occurring below the dotted line shown corresponding to 

an unconfined compression strength under 80MPa) produced a better fit. These improvements 

did not reflect for moderate to high strength rocks and the fit of the data did not improve when 

considering particle crushing effects as can be seen from Figure 3.5. 

To improve the prediction for moderate to high strength rocks, the influence of the cutter 

was then considered. The contact between the rock and the cutter can be described by a friction 

coefficient. Richard (1999) has shown that a friction coefficient of 0.69 corresponds to a worn 
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PDC cutter. Investigating the effect of this relatively extreme value should reveal any possible 

effects from the cutter friction coefficient. Figure 3.6 below shows the results without 

considering the effects of particle crushing comparing friction coefficients of 0.25, representing 

the standard model value, and 0.69, representing a worn PDC cutter. 

 

 

Figure 3.6 Effect of cutter friction without considering particle crushing 

 

This Figure shows that varying the coefficient of friction of the rock cutter did not 

produce a better fit for moderate to high strength rock data. The same friction coefficients were 

then considered with rock crushing and the results are plotted in Figure 3.7 below.  
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Figure 3.7 Effect of cutter friction considering particle crushing 

 

The effect of varying the friction coefficient when particle crushing effects are considered 

also did not produce a better fit and the effect of the friction coefficient appears to be negligible.  

The next factor considered which could affect the results for moderate to high strength 

rocks was the cutting depth. As previously discussed, the failure mode of the rock is dictated by 

the cutting depth where a shallow cutting depth produced ductile failures and a deeper cutting 

depth produced brittle failures. Therefore, varying the cutting depth would reflect a change in 

failure mode which could possibly result in a better fit for moderate to high strength rocks. In 

this case, a shallower cutting depth of half the control cutting depth was considered and the 

results are shown in Figure 3.8 below.  
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Figure 3.8 Effect of decreasing cutting depth 

 

It can be seen from Figure 3.8 that despite decreasing the cutting depth to avoid a brittle 

failure mode, the cutting specific energy did not match the theoretical results.  

The next factor considered which was thought to potentially affect the results from 

moderate and high strength rocks was the modulus ratio, defined as the elastic modulus divided 

by the unconfined compression strength. It was speculated that a pattern could exist between the 

low modulus values, defined as values below 150, and high modulus values, above 150. Particle 

crushing was considered in both cases. The results from this analysis are given in Figure 3.9 

below. 
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Figure 3.9 Effect of varying modulus ratio considering particle crushing 

 

It can be seen from this figure that no trends were present between the low and high 

modulus values. Additionally, the effect on the results also appears to be negligible and there is 

still very clear scatter present for moderate to high strength rocks. However, to better define and 

investigate this scatter, specific modulus values were chosen, rather than simply a broad division 

between low and high modulus ratio values. Eight specific modulus ratio values between 127 

and 469 were investigated and the results are plotted in Figure 3.10 shown below. 
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Figure 3.10 Analysis of specific modulus ratio values 

 

Two conclusions can be drawn from this plot. First, varying the modulus ratio does not 

appear to reflect in any trends present for the cutting specific energy versus unconfined 

compression strength plot. Secondly, varying the modulus ratio did not appear to have any effect 

on the results to better fit the laboratory data to the data produced by the model. Therefore, more 

variables must be considered in order to better fit the data for moderate to high strength rocks. 

To continue investigating this discrepancy in the agreement of the data, the significance 

of particle crushing was revisited, but was approached considering different factors. Rocks are 

assumed to be composed of various particles (grains) and are generally characterized by the most 

abundant particle type present in the rock. For example, sandstones are characterized by being 

comprised primarily of silica. Crushing strength is assumed to be representative of rocks taken as 

a whole; however, considering that particles vary for each rock type then by extension, crushing 
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strength should vary for each rock type as well. This would produce further complications to the 

incorporation of particle crushing in the model. 

Particle crushing strength is also known to be particle size dependent with high 

variability. The Weibull distribution has been used to successfully model this variability ([43]; 

[44] & [45]). However, laboratory tests revealed diverging results for the investigated range of 

particle sizes. Figure 3.11 below summarizes relevant published data. It can be seen from this 

plot that different rock types, in this figure, silica or quartz, experience different characteristic 

crushing strengths. 

 

 
Figure 3.11 The size-dependent crushing strength characteristics of a single particle 
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results obtained for quartz by [43] will be incorporated in this model because as shown in Figure 

3.11, these quartz particles have the lowest characteristic crushing strength values. 

Incorporating particle crushing was found to improve the agreement of the model and 

experimental data. This improvement in agreement can be wholly attributed to the change in 

failure mode. Figure 3.12 below shows results from the model obtained both considering and 

ignoring particle crushing effects. Figure 3.12 (a) highlights data point A, which does not 

incorporate particle crushing. The same data point but incorporating particle crushing is shown in 

Figure 3.12 (b) and is labeled as point B. It can be seen that incorporating particle crushing has 

increased the calculated strain and the point has raised above the trend line. This observed 

change indicates that the force transmission pattern has shifted when particle crushing effects are 

incorporated. This caused the failure mode to shift from a brittle failure when particle crushing 

effects are ignored to a ductile failure when particle crushing effects are incorporated and as seen 

in the figure, the average force, and consequently the specific energy, increased.  

Points C and D shown in Figure 3.12 (b) below describe samples with identical 

parameters but point C has exhibited a ductile failure while point D has exhibited a brittle failure. 

The difference in failure mode experienced can be attributed to the built-in randomness in 

sample generation. 
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(a) 

 

(b) 

Figure 3.12 Analysis of calibration methods without considering particle crushing (a) and with 

considering particle crushing (b) 
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Therefore, improvements were obtained in agreement between laboratory data and the 

RST model results for cutting history forces, failure mode, and failure patterns when particle 

crushing was incorporated. However, the behavior of high strength rocks, or rocks with an 

unconfined compression strength higher than 60MPa, is still not represented by this model. The 

laboratory data still clearly diverges from the model predictions. It can be speculated that particle 

crushing strength should vary with the unconfined compression strength of the rock samples. 

Therefore, a higher particle crushing strength for high strength rocks would be more 

representative and should be adopted for better agreement. However, due to the limited data 

available considering particle crushing strength, this is not currently a viable solution and a 

simpler, more efficient representation is presented. 

To additionally support the conclusions drawn about the effect of incorporating particle 

crushing, specific simulation results were analyzed by considering failure. Several snapshots 

were taken at different points of the cutting process for low and moderate strength rocks showing 

the velocity vectors of the entities (particles and walls). Figure 3.13 below shows the results 

when particle crushing is considered. Velocity vectors in front of the cutter suggest a smooth 

flow of particles, defined as when the cutting is completed with a shearing motion that does not 

create any kind of chipping. The results obtained without considering particle crushing were 

identical. The lack of dependence on the presence of particle crushing can be attributed to the 

fact that in low strength samples, greater strength is required to crush the particles rather than 

causing the particles to debond. 
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Figure 3.13 Interaction of cutter with low strength rock – crushing and no crushing 

 

For moderate strength rocks, however, there is a difference in results depending on 

whether particle crushing is considered. The flow of particles in front of the cutter for crushing is 

similar to that observed for the low strength rock. However, when particle crushing is not 

included, chipping develops in the front of the cutter (where chips are designated in the figure 

with a red dashed line) and interrupts the flow of the particles. This interruption lowers the 

cutting forces due to decreasing contact area in front of the cutter and records a less smooth force 

time history as a result. This provides further evidence that considering particle crushing 

decreases chipping. 
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(a) 

 

(b) 

Figure 3.14 Interaction of cutter with moderate strength rock – (a) crushing and (b) no crushing 
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This chipping effect that occurs for moderate strength rocks is magnified for a deeper 

cutting depth. Figure 3.15 below depicts the interaction between chips in front of the cutter and 

the flow of the particles. This can be seen easily from the particles because this is a deep cutting 

case; however, for a shallow cutting case, where brittleness is introduced in the cutting process 

(recall from Figure 3.14 above), the velocity vectors are required to clarify and verify whether 

the rock is undergoing a brittle or ductile failure. 

 

 

Figure 3.15 Deep cut, no crushing 
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3.1.4 Evidence for Model Calibration Based on Particle Size 

Despite the disagreement with data from higher strength rocks, the improvements of the model 

as a result of particle crushing effects provided an indication that considering other particle-level 

variables could provide a better fit between the model and laboratory test results for higher 

strength rocks. Rather than consider particle crushing, the effect of the particle size will now be 

investigated, specifically its effect on the unconfined compressive strength. 

The unconfined compressive strength can be described as a function of the characteristic 

(average) particle size as shown in Figure 3.16 below. Therefore, rocks with smaller particles 

tend to have a higher compressive strength while rocks with a lower compressive strength tend to 

be comprised of larger particles. The effect of the particle size on compressive strength is more 

pronounced for rocks with a strength higher than 60MPa. Interestingly, this correlates 

approximately to the point at which the current RST model no longer agrees well with laboratory 

data because of the poor correlation between the cutting specific energy and the unconfined 

compressive strength. 
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Figure 3.16 UCS defined from particle grain size, Wong et al 1996 

 

3.1.5 DEM Simulation Sensitivity to Particle Size 
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by [46] (1996) must first be checked. Conducting a suite of unconfined compression strength 
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replication. However, previous work by [3] has shown that the resolution of the DEM model 

subjected to unconfined compression strength testing does not significantly affect the final 

macroproperties. 
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absolute particle size was not considered significant, relative particle size could be further 

investigated. In order to consider the importance of relative particle size, the particle size 

distribution range was identified as a possibly impactful variable. This approximate range of 

particle size distributions was described by the ratio of maximum particle radius to minimum 

particle radius, referred to as Rrat. 

To analyze this effect of varying this particle size distribution ratio, three unconfined 

compression strength tests were performed for each material considered. To accomplish this, 

three samples were created using the same microproperties and Rrat; however, the particle 

arrangement differed for the three samples to incorporate randomization for each material. 

Additionally, different Rrat models still contained the same number of particles. The results from 

varying Rrat were normalized and shown in Figure 3.17 below. The effect of varying the Rrat on 

different mechanical properties of the rock are shown for three different properties: Young’s 

modulus ratio, Poissons ratio, and unconfined compression strength. 
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Figure 3.17 Sensitivity of particle size to (top to bottom): Young’s modulus, Poisson’s ratio, and UCS 
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It can be seen from these plots that there is not a significant relationship between the 

particle size and the macroproperties (such as Young’s modulus, Poisson’s ratio, and unconfined 

compressive strength). These results align with those obtained by Potyondy and Cundall and 

further show that not only the resolution, but the range between maximum and minimum radii, 

have no influence on the unconfined compressive strength results.  

Therefore, there was a lack of a discernible relationship between the particle size, the 

resolution of the model, and the macroproperties. The independence of these three factors to each 

other can be attributed to the sufficient contact between the platens and discrete particles. In 

general, if the contact area between the particles and the wall is able to consistently transfer 

forces between the two components, then a size effect is not expected to occur because the forces 

are being averaged at the walls. If these conditions are satisfied, then there are sufficient particles 

to ensure the flow of forces from one extreme of the model to the other in a steady manner.  

3.1.6 RST sensitivity to particle size 

The sensitivity of the RST test to particle size was then investigated despite the fact that the 

unconfined compression strength test did not show dependency to this variable in preliminary 

testing. However, the nature of the test itself is significantly different depending on the number 

of particles in contact with the wall which represents the cutter during the actual rock scratching. 

Because of this assumption of the model, the sensitivity of the test to particle size will be 

considered. 

The analysis began by considering low strength rocks. The default Rrat used in the model 

to this point, and considered standard in this analysis, was 3.5. Sensitivity was evaluated by 
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analyzing the model with a lower bound Rrat of 1.66 and an upper bound of Rrat of 4.5 but while 

maintaining a consistent Rmin. For all cases it was found that the dominant failure mode was still 

ductile, specifically shallow, failure. A relationship was observed, however, between the Rrat and 

the RST results and is shown in Figure 3.18 below. This plot indicates that a larger Rrat produces 

results which align better with the expected results. Therefore, for low strength rocks, larger 

particles better capture the behavior of the cutting specific energy. 

 

Figure 3.18 Effect of varying Rrat on very low strength DEM rocks under RST 

 

To further investigate this observation, the RST was performed again on the same low 

strength rock samples using the same particle size distribution range (given by Rrat = 4.65) but 

the minimum radii was varied. Figure 3.19 below presents two cases with a difference in Rmin 

between the two cases of approximately 40%. Again, the dominant failure mode was found to be 
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a ductile failure. It appears that a lower particle radius improves the model as shown in Figure 

3.19 where the RST tests run with a lower particle size better fit the line of unity between the 

specific cutting energy and the unconfined compressive strength. Therefore, the results of the 

RST appear to be directly dependent on the actual particle size rather than the particle size 

distribution. 

 

 

Figure 3.19 Effect of varying Rmin with Rrat=4.65 on very low strength DEM rocks under RST 

 

Once the relationship between the RST results and the particle size had been established, 

the model could be calibrated with respect to particle size in order to obtain a best fit for the line 

of unity for low strength rocks. Returning to the default Rrat value of 3.5, iterative trials revealed 
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that an increment of 50% of the original particle size yielded the results most aligned with the 

line of unity. These results are shown in Figure 3.20 below. 

 

 

Figure 3.20 Effect of varying Rmin with Rrat=3.5 on very low strength DEM rocks under RST 
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Once the RST model was calibrated using particle size effects for low strength rocks, this 
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particle size effects for low strength rocks was used for high strength rocks. First, the Rrat was 

0

10

20

30

40

0 10 20 30 40


(M

P
a)

c (MPa)

Rrat=3.5; Rmin=0.075mm Rrat=3.5; Rmin=0.05mm



 98 

varied but while maintaining a constant Rmin. In order to retain a ductile failure mode, a 

shallower cutting depth was adopted because the critical cutting depth is smaller for high 

strength rocks [1], [2]. The results from varying the Rrat for high strength rocks are given in 

Figure 3.21 below.  

 

 

Figure 3.21 Effect of varying Rrat on medium and high strength DEM rocks under RST 

 

As seen from Figure 3.21, the significance of particle size for the results of the RST for 

high strength rocks is even more pronounced than that of low strength rocks. Therefore, it seems 

that an optimal particle size based on the strength for different rock types. The intact rock 

classification method used by Deere and Miller [37] categorizes rocks based on unconfined 

compression strength and Young’s modulus and will be used for rock classification. Recall the 
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conclusion from the section RST sensitivity to particle size that for very low strength rocks 

(defined as an unconfined compression strength less than 30MPa) with an Rrat = 3.5, the 

minimum particle size to yield best fit results was found to be Rmin = 0.075 mm. High strength 

rocks, defined as rocks with an unconfined compression strength greater than 110MPa, the 

minimum particle size to best fit the expected results was found to be Rmin = 0.025 mm. Figure 

3.22 shows the improvements of these two strength extremes comparing the adjusted minimum 

particle sizes (shown with solid points) with the original minimum particle size of Rmin = 0.05 

mm (shown with hollow points). 

 

Figure 3.22 Model improvements at extreme values from adjusting particle size 
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Additionally, medium strength rocks, or those rocks with an unconfined compression strength 

between 60MPa and 110MPa best fit the expected results with a minimum particle radius Rmin of 

0.03 mm. However, all samples maintained the same ratio of maximum particle radius to 

minimum particle radius of 3.5. Therefore, it was found most practical to use this information to 

assign optimal minimum particle sizes to ranges of rocks that shared similar characteristics rather 

than refine the relationship as much as the observed trend (refer to Figure from Wong et al 

1996). Here, the rock ranges are based on the uniaxial strength and the strength classification for 

intact rocks by Deere and Miller [37] is used. Table 3.1 shown below summarizes the particle 

distribution and size for each rock type based on this strength classification. 

 

Table 3.1 Particle distribution and size by rock type based on strength classification 

Class Description 
Uniaxial Compressive 

strength: UCS (MPa) 

Minimum particle radius: 

Rmin (mm) 

A Very high strength > 224 N/A 

B High strength 112 – 224 (> 110)* 0.025 

C Medium strength 56 – 112 (60 – 110)* 0.030 

D Low strength 28 – 56 (30 – 60)* 0.050 

E Very low strength < 28 (< 30)* 0.075 

* The values between parenthesis are the ranges that we are approximating 

 

In conclusion, the initial RST results obtained from the full set of samples using PFC2D 

software yielded values that differed in less than 5% for rocks with an unconfined compressive 

strength less than 60MPa. For rocks with a strength exceeding this value, the RST results do not 

align with expected values, as seen in Figure 3.23 below. Several variables were investigated 

such as stiffness of the sample, the influence of particle crushing, the particle distribution range 
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(defined as the difference between the smallest and largest particle), the particle size variance, 

and the damping ratio, among others. 

 

 

Figure 3.23 Preliminary RST simulation results in a set of 58 samples 

 

Each of the variables influences the results differently. For instance, decreasing the 

damping ratio changes the failure mode of the cutting from ductile to brittle; decreasing the 

velocity of the cutter similarly influences cutting behavior; but these do not significantly impact 

the cutting forces. It was the particle size, however, which most strongly affected the RST 

model. Recall that the elastic response of the PFC2D rock-like materials was unaffected by the 

particle size as concluded by Potyondy and Cundall [3], thus the unconfined compressive 

strength was independent of particle size; however, it was found that the RST maintains 

dependence on the geometrical characteristics of the particles as depicted in Figure 3.24 below. 
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Figure 3.24 Influence of the particle size in both the cutting specific energy and the unconfined 

compressive strength 

 

When considering the effect of particle size, the RST results improved to align well with 

experimental results obtained by Dagrain [2]. Both results, the experimental and the numerical, 

are displayed in Figure 3.25. 
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(a) 

 

(b) 

Figure 3.25 RST (a) experimental [2] and (b) numerical results 
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3.1.8 On the Variability of DEM Modeling of RST 

The cutting force history has proven to be an extremely daunting task to reproduce via numerical 

modeling. In the modeling of the RST using DEM, different types of force history patterns have 

been reported as shown in Figure 3.25 below, but none closely resemble the ‘white noise’ history 

that is recorded in reality. 

 

 

Figure 3.26 Cutting forces history for Vosges Sandstone after Richard (1999) [1] 

 

Despite efforts to replicate the cutting force history and the improvement that earlier 

studies presented (refer to Figure 3.27 below) [47] (2010), there is still significant variability 

within the cutting forces, hence, imposing a bigger margin of error when forces are averaged in 
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order to obtain the cutting specific energy is needed. Further investigation of this problem will 

now be presented and discussed. 

 

 

Figure 3.27 Comparison of cutting force histories 

 

Meticulous observation of the simulated cutting process provided insight as to why the 

variability was so much larger than expected. It was observed that the chain of forces in front of 
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the cutter vanish while the rock is being cut due to the loss of contact with the cutter face. With 

this information, it can be hypothesized that despite the fact that the 2D model has an implicit 

unit depth, it may not be enough to capture the rock’s variability in the direction of the depth. 

While scratching can be, and often is, represented with a 2D model, there is information lost with 

the missing dimension. However, it would be possible to implement this information implicitly 

using a 2D model if the following consideration is made. The sketch shown in Figure 3.28 below 

shows a rock sample divided into three slabs. If each division represented a 2D model and the 

cutting forces obtained from each case were averaged, then a representative force history from 

the entire rock would be obtained. 

 

 

Figure 3.28 Division of 3D rock sample into 2D slices 

 

To test this hypothesis, ten RST tests were performed to the same rock (material), that is, 

rocks with the same microproperties but with a different particle arrangement. The results from 

these cutting force histories are depicted in Figure 3.29 below. From these plots, it is clear that 

the particle arrangement controls the shape of the force history. Furthermore, the averages from 
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the forces tend to fall close to a common value but the scatter of these average forces 

demonstrate the magnitude of the variability of the cutting force histories in the 2D model. 

 

 

Figure 3.29 10 cases of RST force histories 
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The forces from these results were then summed at every point and average values were 

obtained. Figure 3.30 below shows the result of the procedure described above. These results 

verify that the cutting force history variability decreases dramatically and therefore, the 

confidence values associated with the averaged forces is much higher. Additionally, the results 

also validate the hypothesis regarding missing information in the depth direction of the 2D model 

and offer a method of obtaining results as consistent as those obtained with a 3D model (Refer to 

the section 3D Rock Cutting Simulations). 

 

 

Figure 3.30 10 averaged cases of RST force histories 
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groove cutting and slab cutting analyses were first performed to a rock with very low strength, 

UCS = 20MPa.  

Figure 3.31 shows the 3D cutting sample before being cut and during the cutting process 

using a narrow cutter as used in groove cutting. Broken bonds are indicated by particles colored 

red or magenta in the figure below. 

 

(a) 

 
(b) 

Figure 3.31 DEM modeling of groove cutting (a) initial configuration (b) a snapshot during cutting 
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The cutting force histories for the cases of the narrow cutter and the slab cutter are 

depicted in the Figure 3.32 below. The narrow groove cutter resulted in scattered data as shown 

in Figure 3-34 (a) while it can be seen that the slab cutting test results were relatively smooth, as 

seen in Figure 3-34 (b) below. However, both sets of data result in the same average value. 

 

(a) w/d=1 

 
(b) w/d=7 

Figure 3.32 Cutting force time histories for (a) a narrow groove cut, and (b) a slab cut 

0 1 2 3 4 5 6 7
0

20

40

60

80

100

C
u

tt
in

g 
fo

rc
e/

 C
u

tt
er

 w
id

th
 (

kN
/m

)

Cutter displacement (mm)

w/B=7
w/d=1

0 1 2 3 4 5 6 7
0

20

40

60

80

100

Cutter displacement (mm)

C
u

tt
in

g 
fo

rc
e/

 C
u

tt
er

 w
id

th
 (

k
N

/m
) Slab cut



 111 

These results agreed well with the analysis and hypothesis made in the section On the 

Variability of DEM Modeling of RST, which combined the two-dimensional results in order to 

decrease the variability of the overall results.  Like the 2D results, the trends found in the 3D 

results can be attributed to the amount of particles in contact with the cutter. A wider cutter 

reduced the variability of the cutting results as expected and consistently, a narrower cutter 

increased the variability of the results. In 3D analysis, however, the particle flow in front of the 

cutter is much clearer than that seen in the 2D analysis and no chipping developed. Altogether, 

PFC2D has the ability of modeling the white noise pattern of the horizontal forces as observed in 

the three-dimensional simulations and in the laboratory results. This is corroborated with Figure 

3.33 below where rock scratching tests were performed in 2D and 3D samples with close 

uniaxial compressive strengths. 

 

 

 

Figure 3.33 Force history of DEM 2D and 3D Rock Scratching Tests 
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4.0 IMPLICIT MODELING OF POROSITY IN A DEM ROCK MODEL 

In general, rock porosity is not typically reproduced in a Discrete Element Model. Thus, rock-

like numerical materials, from dense hard rocks to porous soft rocks, are being created without 

considering the influence of this parameter on the mechanical responses. This study explores 

whether or not the current approach of not incorporating the actual rock porosity in a discrete 

element model affects the validity of the results. 

Specifically, it has been hypothesized that if the macroproperties of a rock (e.g., 

Unconfined Compressive Strength (UCS), Young’s Modulus, Tensile Strength), are captured in a 

discrete element model, the porosity does not need to be explicitly incorporated. To test this 

hypothesis, the UCS, direct tension, rock scratching and indentation tests were modeled with the 

discrete element model and the results with respect to different porosity levels were compared. 

4.1 JUSTIFICATION OF IMPLICIT MODELING OF POROSITY 

4.1.1 Influence of Porosity on Unconfined Mechanical Properties 

It is intuitive that rocks with a denser particulate structure are more likely to have higher strength 

than those with a less dense particle arrangement. It can be seen from Figure 4.1 that the uniaxial 

strength and stiffness are affected by the porosity of a rock sample. Therefore, rocks with lower 
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porosities are not only stronger but also stiffer than those with higher porosity values. There are 

exceptions to this general trend, but this overarching relationship, rather than potential 

exceptions, will be the focus of this study. 

 

 

(a) 

 

(b) 

Figure 4.1 Compilation of (a) Unconfined Compressive Strength (UCS) and (b) Young’s Modulus 

results of rocks with different porosities. Bell (2000) [38]; Hale & Shakoor (2003) [48] 
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One of the most comprehensive and extensive studies regarding the influence of porosity 

on mechanical properties in a DEM model by Schöpfer et al. [36] confirms this relationship 

between stiffness or strength and porosity. This study, conducted for three-dimensional rock 

materials, also observed the trend that increasing porosity led to decreasing strength and 

stiffness. In the present study, however, the two-dimensional case was investigated and similar 

trends observed. 

In the present study, a sample with very low strength was first created which yielded an 

initial porosity close to 16%, considered a standard value for a PFC2D sample generation 

procedure. Using this sample, porosity was decreased using the method described in the section 

Creating a rock sample of low porosity. Samples with porosities of n = 12%, 10% and 8% were 

created, and first subjected to UCS testing. Three samples, each with different particle 

arrangements, but with identical material and porosity values were used in each test and the 

results were averaged and are presented in Figure 4.3. The microproperties used for this case 

study are given in Table 4.1. 

 

Table 4.1 PFC2D microproperties  

GRAINS (PARTICLES) CEMENT (PARALLEL BONDS) 
 
࣋ ൌ ૛૟૜૙	 ࢍ࢑ ⁄૜࢓ 		
ࢉࡱ ൌ ૚	ࢇࡼࡳ	
࢞ࢇ࢓ࡾ ⁄࢔࢏࢓ࡾ ൌ ૜. ૞ 
࢔࢏࢓ࡾ ൌ ૙. ૛ ൈ ૚૙െ૜	࢓	
࢔࢑ ⁄࢙࢑ ൌ ૚	 ∴ ࢔࢑	 ൌ ૛ࢉࡱ࢚	, ࢚ ൌ ૚	
ࣆ ൌ ૙. ૞ 
 
Where, 
࣋ ∶ Density	
࢔ ∶ Porosity 
,	࢞ࢇ࢓ࡾ ࢔࢏࢓ࡾ ∶ Maximum	and	minimum	radius, respectively
ࢉࡱ ∶ Young

′sModulus	
࢔࢑ ∶ Normal	Stiffness	
࢙࢑ ∶ Shear	Stiffness	
ࣆ ∶ Friction 
 

 
തࣅ ൌ ૚
ഥࡾ ൌ തࣅ ൈ࢔࢏࢓൫ࡾሺ࡭ሻ, 	ሻ൯࡮ሺࡾ
ࢉഥࡱ ൌ ૚	ࢇࡼࡳ 
࢔ഥ࢑ ⁄࢙ഥ࢑ ൌ ૚ ∴ ࢔ഥ࢑	 ൌ ࢉഥࡱ ൫ࡾሺ࡭ሻ ൅ ሻ൯ൗ࡮ሺࡾ 		
ࢉഥ࣌ ൌ ૙. ૞࣎തࢉ ൌ ሺ࢔ࢇࢋ࢓ േ .ࢊ࢚࢙ .࢜ࢋࢊ ሻ		
∴ ࢔ࢇࢋ࢓	 ൌ ૚૙	ࢇࡼࡹ	; .ࢊ࢚࢙	 .࢜ࢋࢊ ൌ ૛૜% 
 
Where, 
തࣅ ∶ Bond	Radius	Multiplier	
ഥࡾ ∶ Bond	Radius	
,ሻ࡭ሺࡾ :ሻ࡮ሺࡾ Radius	of	particle	in	contact	A	and	B, respectively
ࢉഥࡱ ∶ 	Young′s	Modulus	
࢔ഥ࢑ ∶ Normal	Stiffnes	
࢙ഥ࢑ ∶ Shear	Stiffnes		
ࢉഥ࣌ ∶ Normal	Strength	
ࢉത࣎ ∶ Shear Strength 
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Figure 4.2 DEM samples with varying porosities 
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(a) 

 

(b) 

Figure 4.3 DEM macroproperties of a rock with different porosities: (a) UCS and (b) Young’s 
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In order to check the validity of the trend observed from the results, the strength and 

stiffness values were normalized and plotted against normalized laboratory results compiled and 

presented as described above and are shown in Figure 4.4 below 

 

 

(a) 

 

(b) 

Figure 4.4 Comparison of trends of laboratory and simulation normalized results (a) UCS and (b) 

Young’s Modulus 
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These results indicate that DEM can easily capture the influence of porosity on the 

mechanical properties of a rock sample; however, the computational efficiency can substantially 

decrease as porosity increases, especially for values typical of shales and dolomites. This is a 

strong contributing reason to further pursue the analysis of implicitly modeling porosity. 

 

 

(a) 

 

(b) 

Figure 4.5 Effect of decreasing porosity on number of particles present in a sample 
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The effect of increasing porosity on decreasing computational efficiency can be seen 

from Figure 4.5. A rock sample was created with an initial porosity of 16% and approximately 

2500 particles. When the original porosity of the sample was decreased by half (to n = 8%) the 

number of particles required doubled. A system with more particles requires more calculations 

and therefore, more total time is required for the simulation. 

4.1.2 Effects on Particle Contact Distribution 

Inserting new particles into an existing sample represents a modification of the internal contact 

structure. Therefore, in order to check if the skeleton formed by the particle arrangement 

experienced modification due to the particle insertion procedure, several samples with different 

porosities were created and number of contacts and contact particle distribution were analyzed. 

Based on the particle insertion procedure, three generations of samples were created. 

Each generation was characterized by inserting a particle into each existent void formed between 

particles by means of solving the Apollonius’ circle problem. It should be noted that the voids 

created by particles and walls are not taken into consideration. The first particle insertion 

procedure created the sample that will be referred to herein as Generation 1. Likewise, for the 

second and third particle insertion, the samples will be referred to as Generation 2 and 

Generation 3, respectively. The initial sample is referred as Generation 0. A more detailed 

description of this procedure can be found in the section, Creating a rock sample of low 

porosity. 
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(a) 

 

 

(b) 

Figure 4.6 Histograms of the number of contacts in (a) the initial sample and (b) its first generation 
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Figure 4.6 shows histograms of the number of contacts of the particle for the original 

sample and its first generation. As the initial sample has particles with 8 contacts, it is expected 

that for the first generation these same particles will contain twice the original contacts. 

Consequently, the same will happen for future generations, as depicted by the plot on the left of 

Figure 4.7. As stated above, it was expected that the Generation 3 sample would have particles 

with 64 contacts, as shown on the right side of Figure 4.7  

 

(a) 

 

(b) 

Figure 4.7 (a) Maximum number of contacts for each sample Generation and (b) the void of left by a 

particle surrounded and contacted by 64 particles in its boundary. 
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evaluate whether or not the particle contact structure and/or the diffusion pattern of the contact 

forces would undergo significant changes as a result of these varying porosities. 

 

Table 4.2 Different state of stresses to evaluate forces and contact distribution  
 

Case State of Stresses 

Isotropic ߪ௬௬ ൌ ௫௫ߪ  ISO 

Anisotropic 1 ߪ௬௬ ൐ ;௫௫ߪ ௫௫ߪ ൌ ௬௬ߪ0.5  ANI1 

Anisotropic 2 ߪ௬௬ ൏ ;௫௫ߪ ௫௫ߪ ൌ ௬௬ߪ2  ANI2 

 

 

The results of this evaluation are presented from Figure 4.8 to Figure 4.10. Rose 

diagrams are used to depict the internal forces and direction of the particle contact distribution. It 

can be seen from the plots that the direction of the contact is a topological characteristic that 

remains unmodified by particle insertion. It can also be seen that this characteristic is not 

affected by varying the state of stresses. 

Despite the fact that the cases analyzed in this study were always initialized using an 

isotropic state of stresses, an unexpected observation was made worthy of further investigation. 

The samples that had undergone anisotropic treatment yielded macromechanical results 

significantly different to the isotropic case. This finding is discussed further in the section 

EFFECT OF THE INITIAL STATE OF STRESSES ON THE DEM MACROMECHANICS. 
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(a) 

 
(b) 

 
Figure 4.8 (a) Internal forces of the isotropic state and (b) its particle contact distribution 
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(a) 
 

 
(b) 

 
Figure 4.9 (a) Internal forces of the anisotropic state (Case I) and (b) its particle contact distribution 
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(a) 

 
(b) 

 
Figure 4.10 (a) Internal forces of the anisotropic state (Case II) and (b) its particle contact distribution Anisotropic 2 forces 
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4.2 IMPLICIT MODEL BASED ON VARYING MICROPROPERTIES 

Once it had been established that the structure of the particle contacts remained unchanged for 

decreasing porosity values, the implicit modeling of porosity could continue. Two porosity 

samples are considered: the default n = 16% value and the denser n = 8% sample. 

 

 

(a) 

 

(b) 

Figure 4.11 Particle arrangement of DEM rocks with (a) porosity n=8% and (b) porosity n=16% 

 

The current hypothesis to be tested is that explicit modeling of porosity is unnecessary if 

relevant macroproperties are incorporated. The macroproperties to be obtained are yielded from 

the UCS test, i.e., uniaxial strength and Young’s modulus, which are the most critical 
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characteristics to be matched between rock samples with different porosities. Also, these 

properties can be related directly to rock cutting results, thus, scratching tests are performed to 

the samples after calibrated in order to validate the macromechanical results. 

For the DEM models, a basic parameter set was first constructed based on the published 

Vosges sandstone data. The model was first built for Vosges sandstone because of the extensive 

data available, but was then extended to consider porosity effects. The base two-dimensional 

input for the various particle and bond parameters were originally selected to match the 

properties of Vosges sandstone Besuelle et al. [49]. The properties for the sample with a porosity 

of n=8% are as follows: (1) rock particle density, =2630 kg/m3; (2) Young's modulus of particle 

and parallel bond were set to the same value of 1GPa; (3) minimum particle radius, Rmin=0.05 

mm, and the maximum to minimum particle radius ratio was set at 3.5; (4) particle surface 

friction coefficient, =0.5; and (5) the mean normal and shear bond strength were set at 10MPa 

and 20MPa, respectively. Furthermore, both the normal and shear bond strength were assumed to 

follow a Gaussian distribution with a coefficient of variation of 23%. The ratio of normal to 

shear stiffness of both particles and bonds were set equal to one.  

The microproperties of the sample with porosity n=16% were modified as follows: 

Young's modulus of particle and bond were both increased to 1.7GPa; the mean normal and 

shear bond strength were increased to 22MPa and 44MPa, respectively. These modifications 

produced similar macroproperties based on the average of the results of three samples (each 

sample with different particle arrangement). 
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Figure 4.12 UCS failure configuration for DEM rocks with the same macroproperties but with 

porosity n=8% on left and porosity n=16% on right 

 

In summary, the follow results were achieved: The n=8% sample had a uniaxial strength 

of 37.35MPa and a Young's modulus of 2.95GPa; while the n=16 % sample had a uniaxial 

strength of 38.62MPa and a Young's modulus of 3.00GPa. Figure 4.12 shows the failure patterns 

and some corresponding details for the n=8% sample on the left and n = 16% on the right. The 

stress-strain curves of the samples shown above are given in Figure 4.13. These curves are nearly 

identical with respect to the slope of the elastic region and the yield strength. 

These results support the hypothesis; however, these models have to be investigated 

further by means of a different mechanical process. The RST has been chosen to display the 

ability of the DEM model to produce equivalent results from samples with different porosities.  
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(a) 

 

(b) 

Figure 4.13 Stress-Strain curves for DEM rocks with the same macroproperties but with (a) porosity 

n=16% and (b) porosity n=8% 

 

RST has been shown to be useful not only for rock cutting research, but also as a quick 

method of obtaining the uniaxial compression of rocks. From the perspective of analysis, the 

numerical modeling of the test is a challenging task: a model needs to capture the fracture and 

fragmentation evolution during a scratching test in which a cutter continues to push against the 

rock. The discrete element method has a distinct advantage in that the failure process can be 
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automatically captured without any a priori setting. It has been shown previously that DEM is 

capable of reproducing two failure modes [50]: a plastic flow type of failure for a shallow cut 

and a brittle fracture type of failure for a deep cut. The current study focuses only on shallow 

cuts in which the specific energy of cutting has been found to be a constant for slab cutting and 

its value is proportional to the uniaxial strength. 

Shallow cuts were simulated by setting the cutting depth to 0.4mm. Snap shots of the 

cutting in progress in both samples, n=8% and n=16%, are shown in Figure 4.14 along with the 

corresponding resulting cutting forces. The most critical aspects of the cutting process to be 

considered for modeling are capturing the specific energy and correct failure modes. The average 

forces for the two cases were about the same as reflected in the computed specific energy. For 

the case with n=8%, the specific energy was found to be 40.24MPa, and for the case with n=16% 

38.71MPa. A visual inspection shows slight differences in the failure pattern: the denser sample 

shows more fractures propagating towards the middle of the sample, but the differences are 

deemed insignificant. 

The results of the UCS test and the RST are consistent for the samples with different 

porosities; however, the influence of microproperty modification on other mechanical responses, 

such as tensile strength, has yet to be investigated. Both samples were tested and it was found 

that the sample with the lower porosity of 8% produced a tensile strength of t=4.87MPa while 

the higher porosity value sample produced a tensile strength of t=7.26MPa. This observed 

disparity suggested further investigation was required to completely simulate results from the 

different porosity rock samples. A study by Schöpfer et al. [36] provided insight for the 

possibility of balancing the influence of the microproperties based on what the investigators 
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termed ‘pre-existing cracks’. This concept is investigated further in the follow section, 

INCLUSION OF SIMULATED MICRODEFECTS. 
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Figure 4.14 RST result for samples with different porosities but matching macroproperties 
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4.3 INCLUSION OF SIMULATED MICRODEFECTS 

When a DEM model of a rock is created in PFC2D, all existing contacts between particles are 

bonded together, and specifically in this case, using the parallel bond model. Therefore, the 

initial structure of the rock is entirely intact. In this section, the influence of unbonded contacts 

will be explored. In order to investigate contacts, microdefects will be randomly created through 

the sample proportionately to the initial number of contacts. For example, if a sample originally 

contains 1000 parallel bonds and it is intended to introduce 10% microdefects into this structure, 

the final number of parallel bonds present will be 900. The microdefects is simulated by breaking 

the parallel bonds by setting the bond strength equal to zero and the randomness of this operation 

is controlled by the use of a random number generator. 

As discussed in the previous section, the impact of changing the microproperties to match 

the macroproperties of samples with two porosities was reflected through the tensile strength. 

The necessity of using microdefects to adjust for differences between the macroproperties 

calculated at different porosities will now be discussed.  

First, the fact that the bond normal strength is higher on the n=16% sample (22MPa, 

compared to 10MPa of n=8%) provides an explanation for the larger tensile strength, however, 

the uniaxial strength, which is also related to the normal strength also increases. This phenomena 

can be explained by considering particle interlocking. The lower porosity sample with n=8% 

contains more particle interlocking than the n=16% sample, which results in a more compact 

structure for transferring compressive forces (Refer to the detailed areas of Figure 4.12). Thus, 

the hypothesis is that if a balance can be achieved from the particle interlocking of the denser 
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sample and the microdefects required to cancel the effects created by the excess of the bond 

normal strength between samples, then the resulting model calibration would be more robust. 

The following method is used to investigate the effect of microdefects in the samples and 

its influence in porosity. Four samples were created with varying porosities (n=8%, n= 10%, 

n=12% and n=16%), but with identical microproperties. Then, Unconfined Compressive 

Strength and Direct Tension tests were performed to three different samples per porosity value 

and varying the amount of microdefects present. It was decided to create samples with 10%, 

20%, 30%, 40% and 50% microdefects to validate results with the those obtained by Schöpfer et 

al. in their three-dimensional study. Moreover, pilot tests were carried out in order to verify 

whether it was necessary to increase the size of the sample due to the creation of these defects. 

The sample size was increased by the same amount that the amount of microdefects required, 

and it was found that the original sample had enough particles (around 8,500 particles, and 

around 17,500 parallel bonds) to capture the macromechanical behavior of the model. 

Figure 4.15 and Figure 4.16 show the results obtained from both tests, UCS and Direct 

Tension (T). The results were normalized for each property and plotted accordingly to compare 

both raw and normalized data. The normalized parameters are identified by a superscript 

asterisk. From these plots the observations can be made and conclusions drawn. The UCS tends 

to follow the same parallel trend when microdefects are present, regardless of the porosity. This 

trend is also true for the Young’s modulus. These two observations can be corroborated by the 

normalized plot of the E to c ratio. 
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Figure 4.15 Influence of porosity and existing microdefects on mechanical properties (UCS, Young’s 

Modulus and Poisson’s ratio) 
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Figure 4.16 Influence of porosity and existing microdefects on mechanical properties (Tensile 

Strength, UCS/T ratio and Young’s modulus to UCS ratio) 
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of microdefects on the cases of higher porosities, namely n=12% and n=16%, is very significant. 

Finally, the implications of the c/t ratio plot must be considered. It is well known, and widely 

accepted, that this ratio for rocks is close to 10. It can be seen that for the n=8% case, the c/t 

ratio is close to 10. However, the n=16% case requires close to 25% microdefects in order to 

achieve the same ratio. Obtaining realistic values of this ration has been the focus of several 

previous investigations leading to the development of new contact models such as the Grain 

Boundary Model [12] and its derivation, the Flat Joint Bonded Particle Model [8]. The lack of 

reproduction of the c/t ratio using the Parallel Bond Model has traditionally been considered a 

substantial drawback. However, this study brings the capabilities of this model to a different and 

more robust level. 

4.3.1 Validation with 3D Results 

As previously stated, the results obtained for the highest and lowest porosities from the previous 

analysis (Microdefects influence on porosity) were compared to the 3D results obtained by 

Schöpfer et al., which also focused on the highest and lowest porosity cases. As the rock 

simulated in the three-dimensional study has very high strength and stiffness, normalization of its 

macroproperties was necessary in order to compare them the two-dimensional results. 

The macromechanical results of the 2D and 3D cases were plotted together and are 

shown in Figure 4.17. The most noticeable difference occurs for the tensile strength results, 

where a contradictory trend is observed. While the 2D results of the two different porosities flare 

out when the microdefects increase, the 3D results show the opposite behavior. The unconfined 

compressive strength, conversely, tends to keep a parallel trend regardless of whether or not the 

results are 2D or 3D, which shows an implicit indifference to porosity and microdefects. 
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Figure 4.17 Influence of porosity and existing microdefects on mechanical properties (Tensile 

strength, UCS to Tensile Strength Ratio and Modulus Ratio) for two and three-dimensional analyses 
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too high compared to the porosity results obtained in the 2D counterpart. Because of this 

inability to exactly match results, recreating the shape, rather than the values produced, of this 

trend became the focus of this study. Figure 4.18 below shows that the 2D and 3D results agree 

very well on every macroproperty except the Poisson’s ratio. The Poisson’s ratio tended to be 

extremely dependent on the porosity when is analyzed in the 2D environment. 

From the comparison of the porosity between both 2D and 3D models, the following 

trends can be established. A sample with 16% porosity on the PFC2D is comparable with a 

sample having 37% porosity on the PFC3D. These values are the porosities that are obtained, in 

general, when a sample is created using The procedure of Potyondy and Cundall. When the 

porosity is decreased by half, that is n=8% and n=23% for the 2D and 3D models, respectively, 

the similarities of the results are preserved. 

The comparison of the results of this 2D study and Schöpfer et al.’s  3D studies 

performed on this section validate that the values obtained in this 2D analysis are comparable to 

the trends observed in the 3D analysis. The prior statement suggests that the PFC2D, which can 

be seen as more simplistic and less expensive modeling method, has abilities that should not be 

overlooked. Furthermore, this proves that the PFC2D is more than capable of capturing 

complicated micro and macromechanical behavior similar to the PFC3D, showing the remaining 

potential that this model possesses. 
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Figure 4.18 Parallel of macroproperties for the two-dimensional and three-dimensional porosities  
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macroproperties, i.e., the samples analyzed in the section IMPLICIT MODEL BASED ON 

VARYING MICROPROPERTIES. 

The same testing procedure was given to the n=16% and n=8% samples regarding 

microdefects. The UCS and Direct tension tests were performed following the same protocol that 

has been followed during this study, that is, three samples each with different particle 

configuration per material. The results obtained are plotted in Figure 4.19. 

From Figure 4.19, it can be seen that intact samples produce largely similar values of 

UCS, Young’s Modulus and Poisson’s ratio; however, the tensile strength values vary 

significantly. Also, the trends correspond to those previously observed. Furthermore, the c/t 

ratio again requires attention. It can be observed that the exact same tendency is reproduced in 

these results regarding the n=16% sample, and its c/t ratio. When the sample possesses 

microdefects between 20% and 30% the UCS to tensile strength ratio is close to 10. This 

provides additional verification to the previously observed relationship between the tensile 

strength ratio and microdefects. The results of the n=8% sample were already discussed, and it 

was recognized that when the sample contains 10% microdefects, the c/t ratio is also near 10. 

Based on these results, it is postulated that the granular interlocking generated as a 

secondary effect of decreasing the porosity can be counterbalanced by finding optimal values of 

microdefects for the different porosities. Because this study primarily focuses on samples of  

n=16% and n=8%, the following effort will be concentrated on matching the macroproperties of 

the samples with these porosities not only by varying the microproperties, but also by 

implementing microdefects. 
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Figure 4.19 Influence of porosity and existing microdefects on mechanical properties: Case study of 

samples with different porosities but matching macroproperties when intact 
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4.4 MODEL CALIBRATION INCORPORATING OPTIMAL MICRODEFECTS 

For the two sample porosities of this case study, namely, n=16% and n=8%, the new calibration 

procedure including not only varying microproperties but also the implementation of the 

microdefects is described in this section. One goal of this study is to create samples with a c/t 

ratio close to 10, considered typical of expected rock behavior. To support this idea, a recent 

investigation completed in South Africa completed uniaxial and tensile strength testing for 46 

different types of rock (14 igneous, 15 metamorphic and 17 sedimentary). Figure 4.20 shows the 

plotted results with rock types differentiated. It can also be seen from this data that a c/t ratio 

10.619 was found to best fit the data utilizing a linear regression model. 

 

 

Figure 4.20 Mechanical response of a suite of rocks [4] 
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In order to achieve the desired ratio for the rock samples, the optimal microdefects 

percentages for each level of porosity, namely 10% microdefects for n=8% and 25% 

microdefects for n=16% were used based on the results obtained in the previous section.  

The microproperties for the n=8% case remained unmodified from the previous studies, 

however, the n=16% case varied from previous results. The microproperties that yielded similar 

results based on the UCS, Direct Tension, and RST are given in Table 4.3 below. The previous 

calibration, IMPLICIT MODEL BASED ON VARYING MICROPROPERTIES, only 

varied the microproperties. When the current calibration attempt is compared to the previous 

effort, the largest discrepancy occurs between the bond strengths, as expected, and differs by 

approximately 50% of its original strength. 

 

Table 4.3 PFC2D microproperties of the calibrated model for the samples with n=8% and n=16% 
porosities with 10% and 25% of microdefects, respectively 

 

 

The Uniaxial Compression Strength test yielded results very similar to those observed for 

the first calibration effort. The macrocracks which developed at the end of the test are depicted in 
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Figure 4.21. In this figure, it can be seen that the cracking density on the n=8% case is larger 

than on the n=16% case; however, this is a misleading observation created by the relatively 

larger quantity of bonds on the rock sample containing lower porosity. This effect is also 

apparent in the chain of forces. The coalescence of these cracks show similar failure patterns 

from a macroscopic point of view, as shown in the details of the figure. 

 

 

Figure 4.21 DEM Unconfined Compressive Strength failure patterns of a porosity n=8% sample on 

the left and a porosity n=16% sample on the right 

 

The Young’s modulus values and peak strengths match very well in both cases. For 

example, Figure 4.22 shows the stress-strain curves that correspond to the failed samples above 

(Figure 4.21). Averaging three samples revealed an Unconfined Compressive Strength of 

c=29.19MPa, and Young’s Modulus of E=2.57GPa for the samples with porosity n=8% while 

the sample with twice this porosity, yielded values of Unconfined Compressive Strength 
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c=27.31MPa, and the Young’s Modulus of E=2.56GPa. These values are considered to have 

matched very well considering the inherent high variability of uniaxial strength. 

 

 

(a) 

 

(b) 

Figure 4.22 Stress-Strain Curves of UCS test on samples with (a) porosity n=16% and (b) porosity 

n=8% 
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Results from the Direct Tension tests performed also matched well with expected failure 

patterns as illustrated by specific examples in both Figure 4.23 and Figure 4.23 below. However, 

the stress-strain curves showed that while the peak values matched well, the trend of the curves 

differed. The peak of the lower porosity sample occurred close to vertical strain =0.0028 while 

the peak of the higher porosity sample occurred closer to a vertical strain of =0.0045. 

 

  

  

Figure 4.23 Failure and stress-strain curve of the Direct Tension Test on a sample with porosity 

n=16% (top) and n=8% (bottom) where the gray particles denote grips used during sample testing 
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The tensile elastic moduli differ significantly. The region of elasticity of the sample is 

known to occur at extremely small strain values when the sample is considered to be intact. 

However, due to the necessary implementation of microdefects in the samples, the higher 

porosity rock sample may show earlier failure because its particulate matrix contains more 

microdefects. Therefore, the loss of stiffness is more apparent for the higher porosity sample. 

To explain this tendency, first, only the elastic region is more thoroughly investigated by 

considering the stress-strain curve from the direct tension tests. It can be seen from Figure 4.24 

below that both samples produce similar results for this region of consideration. It can also be 

seen that there is a difference between the strain values at failure which can be attributed to the 

crack length. Because the coalescence of microdefects is longer for the sample with larger 

porosity, extra deformation is required to yield. 

 

 

Figure 4.24 Tensile modulus of both n=8% and n=16% for a very small strain region 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

0.000 0.002 0.004 0.006

 y
y

(M
P

a)



n=8%

n=16%

0.0
0.1
0.2
0.3
0.4
0.5

0.000 0.001



 149 

 

This observation suggests that the samples still preserve mechanical similarities; 

however, the failure phenomena experience mild modification as the materials reach their 

strength limits. Failure considered on the micromechanical scale also showed disparities during 

the RST test as described in the section, IMPLICIT MODEL BASED ON VARYING 

MICROPROPERTIES. However, these differences were considered inconsequential because 

the critical macromechanical features were adequately captured. Three samples were averaged 

for the direct tension tests for each of the two porosity levels considered: n=8% and n=16% 

which produced t=3.17MPa and t=2.99MPa, respectively. Using these values, the ratio of 

UCS to Tensile Strength was found to be 9.21 for the n=8% sample and 9.13 for the n=16% 

sample.  

Finally, the RST was performed to both porosity levels and the horizontal cutting forces 

during the cutting process were recorded and plotted. The lower porosity sample required a 

shallow cutting depth in order to preserve the appropriate ductile failure mode. Likewise, the 

higher porosity sample required a deeper cutting depth in order to ensure an adequate number of 

particles remained in contact in front of the cutter. The mechanical response based on the 

specific energy produced expected values and the failure pattern observed showed coalescence of 

microdefects propagating toward the sample center for both porosity cases. This tendency is 

displayed by Figure 4.25. To conclude, a summary of the macroproperties after calibrating the 

model by varying the microproperties and optimizing the microdefects is given in Table 4.4 

below. 
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Table 4.4 Macroproperties matched on samples with different porosities 

 

8% 16%

Microcraking 10% 25%

Unconfined Compressive Strentgh, c (MPa) 29.19 27.31

Young's Moudlus, E  (GPa) 2.57 2.56
Poisson't ratio,  0.13 0.13

E /c 88.04 93.74

Tensile Strength, t (MPa) 3.17 2.99

c/t 9.21 9.13

Specific Energy,   (MPa) 30.65 26.17

Mechanical Results (Macroproperties)
Porosity
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Figure 4.25 RST result for samples with different porosities but matching macroproperties 
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5.0 SIMULATION OF THE MECHANICAL BEHAVIOR OF ROCKS UNDER HIGH 

PRESSURE CONFINEMENT – FOUNDATION FOR FUTURE WORK 

Reproducing the rock behavior under high pressure conditions using the DEM is a challenging 

undertaking from the initial failure reproduction to the final mechanical response. This subject is 

essential to the foundation for geomechanical analyses of highly pressurized environments.  

Closing the gap that currently exists in accurately modeling rock behavior under high pressure 

conditions using DEM opens a wide range of possibilities in the numerical simulation of 

geophysical phenomena. This section presents some factors that have been addressed to solve 

this problem, and the influences shown in this simulation. 

5.1 EFFECT OF THE INITIAL STATE OF STRESSES ON THE DEM 

MACROMECHANICS 

During the analysis of the effects of the model on particle contact distribution produced by the 

in-situ sample stresses, an interesting phenomenon was observed. Despite the fact that this 

observation fell outside of the scope of this study, it merits consideration in future investigations 

utilizing pressurized environments. It was observed that the macroproperties of a material were 

dependent on the initial state of stresses of the sample regardless of whether or not the sample 

was tested with different environmental conditions. 
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Table 4.2 shows the created scenarios with different states of stresses where the Isotropic 

state is characterized by the equality of horizontal and vertical stresses, and the Anisotropic 

stresses present a disparity between the horizontal and vertical stresses. Naturally, two cases of 

the Anisotropic case can occur: Anisotropic CASE I, where the vertical stresses are double the 

horizontal stresses; and Anisotropic CASE II, where the vertical stresses are half the horizontal 

stresses. These states of stresses are achieved during sample creation. 

Four different materials each with four different porosities underwent UCS tests and three 

samples per material were tested. The results obtained for the Isotropic, Anisotropic CASE I and 

Anisotropic CASE II are summarized in Table 5.1, Table 5.2 and Table 5.3, respectively. 

 

Table 5.1 Macroproperties on samples with different porosities – Isotropic Case 

 

  

Material
[1]
 c

(MPa)

[2]
E (GPa)

Ratio:       
E  /  c

[3]
Normal 

Bond 
Strength 

(MPa)

[4]
Particle 
Young's 
Modulus 

(GPa)

[1]/[3]
Normalized 

Strength

[2]/[4]
Normalized 

Stiffness

SS_1_VIII 37 2.95 78.85 10.00 1.00 3.74 2.95
SS_2_VIII 42 4.35 102.74 12.00 1.50 3.53 2.90

SS_3_VIII 50 5.81 116.43 14.00 2.00 3.56 2.90

SS_4_VIII 57 7.19 125.89 16.00 2.50 3.57 2.88

SS_1_VIII 29 2.51 86.42 10.00 1.00 2.90 2.51
SS_2_VIII 34 3.69 110.04 12.00 1.50 2.79 2.46

SS_3_VIII 39 4.91 125.80 14.00 2.00 2.79 2.45

SS_4_VIII 47 6.03 128.91 16.00 2.50 2.92 2.41

SS_1_VIII 22 2.23 99.91 10.00 1.00 2.23 2.23
SS_2_VIII 27 3.24 121.56 12.00 1.50 2.22 2.16

SS_3_VIII 31 4.32 139.19 14.00 2.00 2.22 2.16

SS_4_VIII 35 5.23 150.07 16.00 2.50 2.18 2.09

SS_1_VIII 14 1.89 133.55 10.00 1.00 1.42 1.89
SS_2_VIII 17 2.70 156.53 12.00 1.50 1.44 1.80

SS_3_VIII 20 3.58 178.34 14.00 2.00 1.43 1.79

SS_4_VIII 23 4.38 192.72 16.00 2.50 1.42 1.75
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Table 5.2 Macroproperties on samples with different porosities – Anisotropic Case I 

 

Table 5.3 Macroproperties on samples with different porosities – Anisotropic Case II 

 

Material
 c

(MPa)
E (GPa)

Ratio:       
E  /  c

[3]
Normal 

Bond 
Strength 

(MPa)

[4]
Particle 
Young's 
Modulus 

(GPa)

[1]/[3]
Normalized 

Strength

[2]/[4]
Normalized 

Stiffness

SS_1_VIII 20 1.44 71.03 10.00 1.00 2.03 1.44
SS_2_VIII 22 2.03 93.65 12.00 1.50 1.80 1.35

SS_3_VIII 27 2.68 99.92 14.00 2.00 1.91 1.34

SS_4_VIII 26 3.29 125.33 16.00 2.50 1.64 1.32

SS_1_VIII 16 1.32 81.92 10.00 1.00 1.61 1.32
SS_2_VIII 18 1.85 104.36 12.00 1.50 1.48 1.24

SS_3_VIII 21 2.40 112.43 14.00 2.00 1.52 1.20

SS_4_VIII 24 2.87 117.36 16.00 2.50 1.53 1.15

SS_1_VIII 14 1.24 90.64 10.00 1.00 1.36 1.24
SS_2_VIII 16 1.70 108.52 12.00 1.50 1.30 1.13

SS_3_VIII 18 2.22 122.98 14.00 2.00 1.29 1.11

SS_4_VIII 19 2.64 139.52 16.00 2.50 1.18 1.05

SS_1_VIII 9 1.27 143.27 10.00 1.00 0.89 1.27
SS_2_VIII 10 1.71 176.95 12.00 1.50 0.81 1.14

SS_3_VIII 11 2.07 180.74 14.00 2.00 0.82 1.03

SS_4_VIII 13 2.38 182.25 16.00 2.50 0.82 0.95
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Material
 c

(MPa)
E (GPa)

Ratio:       
E  /  c

[3]
Normal 

Bond 
Strength 

(MPa)

[4]
Particle 
Young's 
Modulus 

(GPa)

[1]/[3]
Normalized 

Strength

[2]/[4]
Normalized 

Stiffness

SS_1_VIII 20 1.18 57.58 10.00 1.00 2.04 1.18

SS_2_VIII 20 1.68 82.47 12.00 1.50 1.69 1.12

SS_3_VIII 25 2.28 90.51 14.00 2.00 1.80 1.14

SS_4_VIII 30 2.81 93.35 16.00 2.50 1.88 1.12

SS_1_VIII 17 1.03 60.11 10.00 1.00 1.72 1.03

SS_2_VIII 17 1.48 85.55 12.00 1.50 1.44 0.99

SS_3_VIII 21 1.99 96.49 14.00 2.00 1.48 1.00

SS_4_VIII 26 2.43 95.36 16.00 2.50 1.59 0.97

SS_1_VIII 14 0.94 68.77 10.00 1.00 1.37 0.94

SS_2_VIII 14 1.34 95.05 12.00 1.50 1.17 0.89

SS_3_VIII 18 1.79 100.55 14.00 2.00 1.27 0.90

SS_4_VIII 20 2.16 109.07 16.00 2.50 1.24 0.86

SS_1_VIII 8 0.80 104.73 10.00 1.00 0.76 0.80
SS_2_VIII 9 1.07 123.17 12.00 1.50 0.73 0.72

SS_3_VIII 12 1.42 118.24 14.00 2.00 0.86 0.71

SS_4_VIII 13 1.73 135.57 16.00 2.50 0.80 0.69
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The macroproperties obtained for each material, namely, c and E, were normalized with 

their respective microproperties, that is, c was normalized to the normal bond strength and E 

was normalized to the particle’s Young’s modulus. These values are given in the tables above as 

as Normalized Strength and Normalized Stiffness. The average of these normalized values 

was taken for each porosity case (n=8%, n=10%, n=12% and n=16%) and these averages were 

plotted and are shown in Figure 5.1. It can be seen from this figure that the material uniaxial 

strength and stiffness decrease independently of the porosity value for anisotropic stress states. 

Further investigation revealed that the uniaxial strength was independent among all cases of 

anisotropy; however, the Young’s modulus was more sensitive to the second case of anisotropy 

than the first.  

 

 

(a) 

 

(b) 

Figure 5.1 Influence of state of stresses on selected macroproperties 
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majority of the parallel bonds will be near zero. On the other hand (refer to right side of Figure 

5.2), when the sample undergoes an anisotropic state of stresses, the parallel bonds develop 

locked-in stresses that cannot be considered negligible. 

This difference in magnitude between the locked-in stresses of the Isotropic bonds and 

the Anisotropic bonds indicates that the Isotropic bonds will require a larger deviatoric stress in 

order to achieve failure. Therefore, samples possessing parallel bonds under Isotropic stress 

states will appear to have larger uniaxial strength values. Conversely, the Anisotropic cases 

require smaller deviatoric stresses compared to the Isotropic cases; therefore, these samples will 

have a much lower uniaxial strength. It should be noted that while the locked-in stresses were 

allowed to settle, there was no discernible influence on the macromechanical properties. 

 

 

Figure 5.2 RST result for samples with different porosities but matching macroproperties 
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5.2 CONFINEMENT PRESSURE BOUNDARY IMPACT 

The boundary conditions on the side of the sample have shown to have a significant impact on 

the failure mode, as seen in Figure 5.3 below; however, the mechanical response still fails to 

achieve the desired results compared to the laboratory results that form the basis of the 

calibration process (Refer to Figure 5.3). The failure envelopes obtained in the numerical 

simulation show a linear tendency while the laboratory depicts a nonlinear form. 

It is known that the use of this kind of boundary conditions make the biaxial results result 

in more realistic damage. For instance, the sample under 10MPa of confinement in Figure 5.4 

shows a clear failure shear plane, and with the increment of confining pressure, the coalescence 

of shear failures start to emerge. Comparing the top and bottom results, i.e., confinement 

membrane boundary and rigid wall boundary, respectively, it is perceived that the wall boundary 

inhibits the development of failure characteristics named in section Mechanical behavior of 

rocks under high pressure confinements. 
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Figure 5.3 Comparison of laboratory and numerical failure envelopes 

5.3 STATISTICAL APPROACH FOR THE MICROPROPERTIES 

The microproperties assigned to the DEM produce the macro-mechanical characteristics of the 

sample. Microproperties are assigned to the different entities of the DEM simulation, i.e., balls, 

walls, and to the contact models. In the PFC environment for preparing a sample, the 

macroproperties are assigned to the different entities and statistical randomness is assigned only 

to the contact model. The benefits of assigning a more realistic set of microproperties to both the 

contact model and the different microproperties of the particles were investigated. The Gaussian 

and Weibull distributions were chosen for fulfilling this statistical task. 
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Figure 5.4 Failure under different confinements of biaxial tests using chain pressure boundary on the top and rigid walls on the bottom  
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(a) 

 

(b) 

Figure 5.5 (a) Gaussian and Weibull distribution assigned to tensile strength of the parallel bond and 

(b) mechanical response obtained. 
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Samples were created with microproperties following randomness from Gaussian and 

Weibull distributions. The distributions given to the normal tensile strength of the parallel bond 

are shown in Figure 5.5 (a). Also the failure envelopes obtained with pressures up to 240MPa are 

compared and do not suggest an advantage from choosing either statistical representation. 

 

 

Figure 5.6 Weibull distributions with different shape parameters “m” 

 

Due to its shape parameter, the Weibull distribution has the inherent capability of 

creating different distribution shapes and can span from exponential to Gaussian. Analyses using 

the Weibull distribution with different shape parameters, m, were carried out and the curves of 

the different distributions used are shown in Figure 5.6. The results from this numerical analysis 

indicated the possibility of reproducing the failure envelope of specific rocks. Figure 5.7 shows 

the failure envelope obtained using the shape parameter m=1 and presents the same form as 
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laboratory results of Vosges sandstone. Moreover, a spectrum of failure envelopes arise from the 

use of the different Weibull distributions giving a quality of flexibility that does not exist in 

current models. 

 

 

Figure 5.7 Failure envelopes obtained using Weibull distributions with different shape parameters 
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5.4 ROCK CUTTING PROCESS UNDER PRESSURE 

During the development of the DEM system under high pressure confinement, it became clear 

that using the confinement membrane boundary instead of the chain functions available in the 

PFC environment was advantageous. In Figure 5.8, three snapshots of the rock cutting process 

under high pressure are shown. 

The snapshots (a) and (b) show some instability of the chain functions. In snapshot (a), 

the chain created a crack towards the bottom of the sample and missed particles that were both 

crushed and flying freely despite the fact they should be pressed toward the sample. In snapshot 

(b), odd patterns on the top of the sample are left behind the cutter, changing the topology of the 

cut surface. Encouragingly, these problems were not seen in snapshot (c), where the proposed 

confinement boundary pressure developed was used. The simulation results shown in snapshots 

(a) and (b) were performed with 140MPa of top pressure while the simulation in snapshot (c) had 

a top pressure of 240MPa. Additionally, the simulation performed using this developed 

confinement pressure boundary, the flow of particles below the cutter was observed. This 

phenomena was also investigated by Kaitkay and Lei [20] in experimental tests. These results, 

although referred to as simply failure by Kaitkay and Lei, prove the ability of the DEM to model 

rock cutting under high pressures with the implementation of the confinement boundary pressure 

while aligning with experimental results. 
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(a) 

 

(b) 

 

(c) 

Figure 5.8 Rock Cutting Under Pressure: (a) and (b) using chain functions under 140MPa of top 

pressure; and (c) using the Confinement Boundary Pressure under 240MPa of top pressure 
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6.0 CONCLUSIONS AND CONTRIBUTIONS 

Finally, this study does not attempt to create a unique approach to the problems encountered but 

rather represents efforts to solve an initial set of problems. Some sections have been simplified 

and assumptions have been made in order to proceed with this modeling.  

This study demonstrated that discrete element modeling was capable of providing 

reasonable estimates of cutting forces in the modeling of shallow rock scratch tests for rocks 

over a wide range of strength and stiffness values. It was also found that the force history of a 

three-dimensional model, which closely resembles that from an actual test, can be viewed as a 

collection of the cutting forces of the two-dimensional results averaged. Moreover, if the length 

of cut was much longer than that of the depth of cut, a two-dimensional result can be viewed as 

ergodic and thus justified its use. 

In the rock cutting model, a DEM rock model only needed to be calibrated for its strength 

and stiffness and thus implicitly incorporated the porosity effect. This brought up an important 

question about the validity of the current practice of implicit modeling of rock porosity. This 

study found that the implicit modeling worked because the initial fabrics of sample of various 

porosities, as revealed by the contact force Rose Diagrams, were not greatly affected by the 

porosity and thus the samples were not mechanically significantly different. It was also found in 

this study that in a general two-dimensional DEM model, a model with approximately 16% 

porosity and a material that contains about 25% of its bonded contacts cracked would yield an 
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unconfined compressive strength to tensile strength ratio compatible to real rocks. Moreover, this 

study showed that there was a good link between two-dimensional and three-dimensional DEM 

rock models. For instance the 16% and 8% porosities of two-dimensional rock samples 

corresponded to 37% and 23% three-dimensional samples, respectively. This has an important 

bearing in general DEM rock modeling. 

It is clear that the implications of this implicit porosity modeling on increasing 

computational efficiency are tremendous. A low porosity rock sample, traditionally considered 

computationally heavy due to its relatively high number of particles, can now be easily 

manipulated with microdefects in order to quickly and efficiently model its macroproperties. 

To follow up on the present work, future research in the two following areas would be 

worth pursuing as they would have significant immediate impacts: First, investigate introducing 

the pressure-dependency of rocks through DEM. Second, investigate scaling the DEM model 

from the current study that involved mm size particles to include the larger scale found in 

practical engineering problems. 

This study has completed some preliminary studies on pressure effects. The adoption of 

Hertz contact springs did not make much difference. The introduction of Weibull distribution for 

stiffness and for strength did accurately represent rock behavior, but the brittle to ductile 

transition for rocks under kPa pressure to MPa pressure failed to exist.  The questions of 

interests for future study include: Would the introduction of new particle level micro parameters, 

or a modification of the existing parameters, to physically sound pressure-dependent parameters, 

be sufficient to appropriately model the observed rock behavior? Or would some new type of 

contact that would effectively fuse particles together under high pressure be needed? 
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Regarding the problem of scale, could one simply select the near field DEM particle size 

to a certain proportion of the problem dimension? In this respect, would it possible to make the 

fracture energy independent of the DEM particle size and thus ascertain the results are objective, 

in other words, could the results be made to be independent of DEM particle size? 

Finally, this study does not attempt to create a unique approach to the problems 

encountered but rather represents efforts to solve an initial set of problems. Some sections have 

been simplified and assumptions have been made in order to proceed with this modeling.  
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