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Abstract—Multihop wireless networks are frequently subjected
to nonstationary phenomena due to dynamic network topology.
However, the discrete event simulation normally uses the steady-
state statistical analysis to study the performance of this type
of networks, even though transient or nonstationary period will
occur often and likely dominant the network behavior. Moreover,
the majority of the simulators suffer from scalability issue. In
this paper, we develop an efficient performance modeling tech-
nique for analyzing the time varying performance of multihop
wireless networks. The one-hop packet transmission (service)
time is assumed to be deterministic, which could be achieved
by contention-free transmission, or generally approximated in
sparse or lightly loaded multihop wireless network. Our model
is a hybrid of time varying adjacency matrix and fluid flow based
differential equations, which represent dynamic topology changes
and nonstationary network queues, respectively. Numerical ex-
periments show that the hybrid fluid based model can provide
reasonably accurate results much more efficiently than standard
simulator in terms of the computational time. Furthermore, the
network performance is extensively studied via hybrid model
by considering the impact from node mobility, traffic load and
wireless link quality.

I. INTRODUCTION

In recent years, there has been significant growth of interest

in multihop wireless networks, such as wireless mesh networks

(WMN) [1], vehicular ad-hoc networks (VANET) [2], wireless

sensor networks (WSN) [3] and mobile ad-hoc networks

(MANET) [4]. Multihop wireless networks are expected to

become an important component of the communications land-

scape and may work in a fully autonomous scenario or as an

extension to an infrastructure network. In multihop wireless

networks, each node participates in routing by forwarding

data for other nodes due to their limited radio communication

range. The determination of which nodes forward data is made

dynamically based on the network topology. Since the network

nodes may have the ability to move, the network topology is

expected to change often and unpredictably. Meanwhile, mul-

tihop wireless networks also inherit the traditional problems

of communications over wireless channels. These problems

combined together make it challenging to accurately evaluate

and predict the performance of multihop wireless networks.

This research was funded in part by the US Army Research Office under
the Multi-University Research Initiative (MURI) grant W911NF-07-1-0318.

The performance of multihop wireless networks is normally

studied via simulation over a fixed time horizon using a steady-

state type of statistical analysis procedure [5]. However, due to

the dynamic network topology or nonstationary traffic, such an

approach may be inappropriate as the network may spend most

time in a transient/stationary state [6]. To study nonstationary

behavior, the measurements of quantities observed over small

intervals or at specific points in time are important. There-

fore, instead of the time average in steady-state simulation,

ensemble averages based nonstationary simulation are more

appropriate [7]. The idea is to construct ensemble average

curves of quantities of interest across a set of statistically

identical but distinct independent simulation runs, along with

the confidence interval. With many such points collected at

different time instants, the system behavior can be shown as a

function of time. However, to assure the accurate portrayal of

the actual system, a large number of runs are required resulting

in large amounts of CPU time and scalability issues.

The analytical model used in network performance evalua-

tion mainly deals with the steady state conditions of queuing

theory models [8]. However, to model the realistic dynamics

of time-varying behavior, we have developed an approximate

fluid flow modeling approach which can be used to efficiently

model the mean transient/nonstationary behavior in different

large complex networks of queues [9]–[11]. The method has

been termed the Pointwise Stationary Fluid Flow Approxi-

mation (PSFFA) [9]. In addition, other fluid flow methods

have been proposed for constructing computationally efficient

models. Kim and Hou in [12] developed a fluid flow based

simulator for WLAN with the consideration of the charac-

teristics of IEEE 802.11 protocol behavior, and examined

fluid simulation performance in terms of events generated,

execution time required, relative error incurred, and time step

value adopted in the simulation. In [13], a fluid flow model is

presented to analyze the performance of backlog-based CSMA

policies in a wireless network environment with multiple

traffic arrival streams . While all of these approaches are

related to our work, little fluid-flow related work has modeled

and analyzed the performance of multihop wireless networks

by considering their unique characteristics (e.g. wireless links

quality, mobility, dynamic routing, and scalability).
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Our contribution in this paper can be summarized as fol-

lows. First of all, we propose a time varying performance

model of multihop wireless networks with deterministic ser-

vice time. As an important aspect of QoS, predictable response

time is required in many on-demand or real-time networking

services. In multihop wireless networks, one-hop determin-

istic packet transmission (service) times can be achieved by

contention-free transmission with the technique of distributed

scheduling [14] or service differentiation [15]. Deterministic

packet transmission (service) times could also approximately

occur in contention-based transmission networks which are

sparse or lightly loaded. For example, energy conserving

techniques in WSNs put most of the nodes in sleep modes so

that the network becomes sparse. Moreover, each sensor node

only has light traffic to transmit in order to to save energy.

Secondary, we use the hybrid model to extensively analyze

the network performance impacted by unique features of

multihop wireless networks, such as stochastic node mobility

and probabilistic link connectivity. Our hybrid model is shown

to be an efficient, scalable and flexible tool to evaluate the time

varying network performance.

The rest of this paper is organized as follows. Section II

describes the details of the hybrid model. Section III shows

numerical results to validates the accuracy of hybrid model by

nonstationary simulation and then evaluates the scalability of

the model. Section IV presents extensive experiments by using

hybrid model to examine the impacts of node mobility, traffic

load and link quality to network performance. Our conclusion

and future work are given in Section V.

II. MODELING DYNAMIC BEHAVIOR OF MULTIHOP

WIRELESS NETWORKS

A. Network Topology Modeling

Consider a multihop wireless network consisting of M
nodes, the network topology in terms of connectivity at any

time t is modeled with a M × M adjacency matrix denoted

as A(t) = (aij(t)). Here, aij(t) represents the binary link

connectivity between node i and j (i.e., aij(t) = 1 if link

from node i to j exists, otherwise aij(t) = 0). The link

connectivity aij(t) between two nodes depends on their radio

range. With the assumption that all radios have a perfect

coverage on a two-dimensional space, the problem of link

connectivity is simplified by judging whether the distance dij
between node i and node j is within the circular coverage

range (i.e., if dij ≤ R at time t, aij(t) = 1; otherwise

aij = 0). However, it is widely understood that the actual

radio link connectivity differs from this simple model due

to interference and physical layer propagation error including

signal attenuation, shadowing and fading [16]. Even though

two nodes are in the radio range of each other, they cannot

always hear each other without any data loss, and the bit

error rate is typically a function of the signal to noise plus

interference ratio. In order to represent real link quality as

well as connectivity, we let aij be a real number between 0

and 1 (i.e., aij(t) = p ∈ (0, 1] if link from node i to j exists,

otherwise aij(t) = 0).

To model the node mobility, our approach is to directly

manipulating the elements of the adjacency matrix according

to a planned experiment (as in Section III) or a stochas-

tic/probabilistic model (as in Section IV). Such a probabilistic

model can be developed either from the mobility model

assumptions and analysis [17] or from fitting a statistical

model to data gathered from a test bed or simulation (e.g., two-

state MMPP [18]). The probabilistic link connectivity model

was proposed with original intention to solve the shortcomings

of long warm up period and high computational requirement

needed in any discrete event wireless multihop simulation,

which computes node position based on geography of the

simulated space and determines the link connection between

each node pair via wireless propagation models.

B. Fluid Flow Model Background

In developing a performance model of the network, we start

with modeling a single queue and then generalize to a arbitrary

queue in a network. To describe the time varying behavior

of the queue at each network node, we adopt the concept of

Pointwise Stationary Fluid Flow Approximation (PSFFA). To

understand this fluid flow approach, we first give a description

of the general background.

For the scenario of a FIFO queueing system with nonsta-

tionary arrival process, we define x(t) as the state variable

representing the ensemble average number of packet in the

system at time t. Let ẋ(t) = dx/dt be the change rate of

the state variable with respect to time. Following the flow

conservation principle, we have the change rate of the average

packet number in the system ẋ(t) equals to the difference

between the flow in fin(t) and the flow out fout(t) of the

system at time t as:

ẋ(t) = −fout(t) + fin(t) (1)

For the infinite-size queue without packet dropping, we

simply have fin(t) = λ(t), where λ(t) represents the ensemble
average arrival rate at time t. The flow out can be related to

the average utilization of the server as fout(t) = μCG(x(t)),
where 1/μ refers to the average packet length (bits), and C
defines the server capacity (link bandwidth, bps). Then μC
denotes the average service rate (pkt/s). The average link

utilization G(x(t)) is a monotonically increasing function of

x(t). This function is defined in the range G(x) ∈ [0, 1) and

passes through the origin G(0) = 0. Hence, the fluid flow

equation (1) can be written as:

ẋ(t) = −μCG(x(t)) + λ(t) (2)

Equation 2 is quite general and can model a wide range

of queueing systems [10]. The utilization function G(x(t)) is

determined by the stochastic modeling of the queue such as

traffic arrival process and service time distribution.

C. Multiclass Queue with Deterministic Service Times

In general, the deterministic service times are practical and

frequently applied in telecommunication system. The idea

of fixed length packets facilitates network design especially
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when dealing with congestion control and fairness issues. In

this work, we consider the multihop wireless networks with

deterministic service time and Poisson traffic arrivals at each

node. Hence, the statistical behavior of each node is modeled

as M/D/1 queue. From queueing theory, the average packet

number in the system at steady state is given by x(t) =
ρ+ρ2/(2(1−ρ)), where ρ = G(x(t)) = λ(t)/(μC). We apply

the PSFFA technique matching the stead-state equilibrium

points to obtain the utilization function G(x(t)). As a result,

under steady state conditions, (i.e., ẋ(t) = 0), the state model

turns out to be:

ẋ(t) = −μC(x(t) + 1−
√
x(t)2 + 1) + λ(t) (3)

In multihop wireless networks, the traffic in the network

is normally divided into a number of classes and the control

actions (i.e. routing and flow control) are based on the class

type. Thus we extend the fluid flow model into multiclass

traffic case. For the queue with S classes traffic, xl(t), and

λl(t) represent the ensemble average number of packet and

arrival rate of class l traffic, while xT =
∑S

l=1 xi and λT =∑S
l=1 λi denote the total ensemble average number of packet

and the mean aggregate arrival rate into the system. Then, the

fluid flow model in (2) becomes:

ẋT (t) = −μC(xT (t) + 1−
√
xT (t)2 + 1) + λT (t) (4)

The flow conservation principle still applies to each traffic

class; therefore, a fluid flow model in (2) can also be developed

for each class with G(xl(t), xT (t)) as the average utilization

function of class l traffic in the multiclass queue.

ẋl(t) = −μCGl(xl(t), xT (t)) + λl(t)

∀l = 1, 2, . . . , S (5)

Note that at steady state, the average number of total packets

in the M/D/1 queuing system is

xT (t) =
λT

μC
+

λ2
T

2μ2C2(1− λT

μC )
(6)

From multiclass queuing theory [8], we can write the

steady-state number of packets of class l traffic xl(t) as

xl(t) =
λl(2μC − λT )

2μC(μC − λT )
(7)

Following the approach of steady state equilibrium match-

ing with ẋT (t) = 0 and ẋl(t) = 0, we get λT (t) =
μC(xT (t) + 1 −√

x2
T + 1) and λl(t) = μCGl(xl(t), xT (t))

from (4) and (5), respectively. Solving these two equations

along with (7), we obtain the utilization function for class l
traffic Gl(xl(t), xT (t)) as:

Gl(xl(t), xT (t)) =
2xl(t)(

√
x2
T (t) + 1− xT (t))√

x2
T (t) + 1− (xT (t)− 1)

(8)

Substituting (8) back into (5), we get:

ẋl(t) = −μC[
2xl(t)(

√
x2
T (t) + 1− xT (t))√

x2
T (t) + 1− (xT (t)− 1)

] + λl(t)

∀l = 1, 2, . . . , S (9)

As a result, a node can be represented by a set of S nonlinear

equations of the form of Equation (9) describing the queue

length dynamics of each class separately. The multiclass fluid

flow model developed here represents the dynamics of a single

node with Poisson input traffic and deterministic service times.

Next we extend this model to study the behavior of a network.

D. Hybrid Modeling of Multihop Wireless Networks

In an M -node network, an arbitrary node i is shown in

Fig.1. At each node, there are M − 1 possible packet classes

based on different final destinations. We assume that packets

are generated at node i destined for node j according to

a Poisson process (which can be nonstationary) with mean

rate γj
i (t). x

j
i (t) is the average number of packets at node i

buffer destined for node j. A routing variable rjik(t) denotes

a zero/one indicator that equals to one if traffic from node i
destined to node j is routed through node k according to the

specific routing scheme (e.g., DSR, AODV, etc.).

Ci
Routing

Controller

i traffic generated at node iflow from node 1

flow from node 2

flow to node 1

flow from node M

flow to node 2

flow to node M

xi

Fig. 1. An arbitrary node i queueing model

To interconnect queues, it was suggested in [19], [20] that

output from queueing system with deterministic service time

should be treated as an delayed input to the next stage. Thus,

the input to the next stage is basically nothing but a superpo-

sition of the delayed input streams from the nearby nodes plus

any external arriving traffic γi(t). Consider a two stage tandem

queue model in Fig. 2(a)-(b), let xi(t), λi(t) and Gi(t) be the

average number in the system, total average arrival rate and

average utilization at node i respectively. Then λ1(t) = γ1(t)
is the arrival rate to the first queue, and μCG1(t) is the

departure rate from the first queue. The departure rate then

becomes the input of the second queue with a deterministic

propagation delay of D, or λ2(t) = μCG1(t−D)+γ2(t). We

can then write a set of differential equations to represent the

rate of change in average number of packets at node 1 and 2,

x1(t) and x2(t) for Fig. 2(a)-(b) as:

ẋ1(t) = −μCG1(t) + γ1(t)

ẋ2(t) = −μCG2(t) + γ2(t) + μCG1(t−D) (10)

Node
1

Node
2

2

1

(a) Original System

Node
2

2

1

Delay = D

(b) Equivalent Model

Fig. 2. A two-node deterministic service system with its equivalent model.
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Finally, the M nodes network hybrid model is given by

ẋj
i (t) = −μCi

2xj
i (t)(

√
x2
T (t) + 1− xT (t))√

x2
T (t) + 1− (xT (t)− 1)

M∑

k=1
k �=i

aik(t)r
j
ik(t)

+

M∑

l=1
l �=i,j

[
μCl

2xj
l (t−D)(

√
x2
T (t−D) + 1− xT (t−D))√

x2
T (t−D) + 1− (xT (t−D)− 1)

(ali(t)r
j
li(t))

]
+ γj

i (t) ∀i, j = 1, 2, . . . ,M (11)

The first term to the right of equal sign in (11) represents

class j traffic flow out of node i, while the second term

shows the class j traffic flow routed into node i from other

neighboring nodes. The last term denotes the class j traffic

generated by node i. This differential equations based model

can be solved via numerical integration techniques (e.g.,

Runge Kutta).

E. Additional Performance Measures
In this section, we show that one can use the proposed

fluid flow modeling approach to estimate other performance

metrics, besides the average queue length in buffer. For the

sake of brevity, we discuss the estimation of the end-to-end

delay here only. In general, the queuing delay is considered as

the main factor of node’s delay, which depends on the queue

size. According to Little’s theorem, the average number in the

system is equivalent to the product of the average arrival rate

and the average time in the system. If x denotes the average

number in the system, λ is the average arrival rate and W is

the average waiting time, then x = λW . With the assumption

of constant arrival rate over a small step, the change in average

waiting time can be related to the rate of change in average

number in the system Ẇ = ẋ/λ. We now consider a path P
of j− 1 hops from source node 1 to destination node j (class

j traffic), given by (1, 2), (2, 3)...(j − 1, j), where (i, i + 1)
represents a link on the path, for ∀i = 1, 2...j−1. The average

node queuing delay at node i for class j traffic on link (i, i+1)
is denoted by W j

i (t). Since we are more interested in the time

dependent behavior, the rate of change of W j
i (t) is given by:

Ẇ j
i (t) =

j−1∑

i=1

ẋj
i (t)

λj
i (t)

∀i = 1, 2, . . . , j − 1 (12)

where

λj
i (t) =

M∑

l=1
l �=i,j

[2xj
l (t−D)(

√
x2
T (t−D) + 1− xT (t−D))√

x2
T (t−D) + 1− (xT (t−D)− 1)

μCl(ali(t)r
j
li(t))

]
+ γj

i (t) (13)

In general, the link propagation delay Ti,i+1 is considered

fixed and almost equal for each hop on the path. If necessary,

it could be added to the node queuing delay. As a result, the

end-to-end delay of path P with j−1 hops can be written as:

DP (t) =

j−1∑

i=1

W j
i (t) + (j − 1)Ti,i+1 (14)

F. Hybrid Modeling Algorithm

At the end of this section, we summarize our hybrid

modeling procedure as the following algorithm to estimate

the time dependent performance metrics of multihop wireless

networks over the desired time interval [t0, tf ].
1. Initialization: set the current time t = t0 and the time step

Δt. Let the initial variable xj
i (t) = xj

i (t0), which is the

node i occupancy by the packets destined for node j. Also,

specify network parameters including the link capacity C,

the packet length 1/μ and the packet service duration D.

2. Determine the traffic routes rjik(t) according to the routing

protocol and the adjacency matrix A(t) at time t. Also,

update the mean rate γj
i (t) of each node’s offered traffic.

3. Numerically solve the differential equations (11) and get the

new xj
i (t+Δt) at the end of the time interval [t, t+Δt],

which then becomes the initial condition for the next time

interval [t+Δt, t+ 2Δt].
4. To estimate the end-to-end delay DP (t+Δt), sum up the

link propagation delays Ti,i+1 with the node queuing delays

W j
i (t+Δt) along the path P . Here, W j

i (t+Δt) is obtained

by numerically solving the differential equation (12) over

the time interval [t, t+Δt] and then it turns out to be the

initial condition for the next time interval [t+Δt, t+2Δt].
5. Increment time t = t + Δt. If t < tf , go back to step 2;

otherwise terminate.

III. HYBRID MODEL VALIDATION BY DISCRETE EVENT

SIMULATION

A. Numerical Experiments

In this section, our model is validated by comparing with an

equivalent discrete event simulation model built with OPNET

[21]. In the OPNET simulation model, each queue of the node

is configured as a FIFO queues with infinite buffer size and

each class traffic is buffered at its corresponding subqueue. The

discrete event simulation results are the ensemble average of

5000 replications with 99% confidence intervals by using the

nonstationary simulation methodology.

As illustrated in Fig. 3 (a)-(f), we study a simple simula-

tion scenario of three nodes with pre-determined connectivity

changes between nodes at each time interval. Minimum hop

routing is applied in this setup. When the direct link is no

longer available, traffic must be rerouted through relay nodes

and uses some available portion of the shared link capacity. In

both the analytical model and the simulation, we set the link

capacity for all nodes as Ci = 104 bps with fixed packet length

1/μ = 1250 bytes, so that the service rate μCi is normalized

as 1 pkt/s, which is the inverse of the deterministic service

time D. Each node generates Poisson traffic with the mean

rate (pkt/s) of γ2
1 = 0.16, γ3

1 = 0.2, γ1
2 = 0.16, γ3

2 = 0.2, γ1
3 =

0.16, γ2
3 = 0.2. The link connectivity aij is set to be binary

and the link propagation delay is assumed to be 0.01 seconds.

Fig. 4 shows the effect of topology change on the average

packet number and end-to-end delay for the traffic at node 1
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Fig. 3. Three node network connectivity scenario.
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Fig. 4. Dynamic behavior of the traffic destined for node 2 at node 1 buffer.

buffer and destined for node 2, as computed via our hybrid

model and nonstationary simulation. For the time interval t <
100 sec, the network is fully connected. All nodes go through

an initial transient period and then reach the steady state. For

time 100 ≤ t < 200 sec, link between node 1 and 3 breaks, so

that their traffic has to be re-routed through the relay node 2.

But the packets x2
1 buffered in source node 1 are not affected.

Then, the broken link 1-3 is restored during the time interval

200 ≤ t < 300 sec, and all nodes recover themselves to the

steady state. During the time interval 300 ≤ t < 400 sec, the

link between node 2 and 3 breaks, leading to the traffic from

node 2 and 3 re-routed through node 1. Thereby, more packets

x2
1 are buffered in node 1. Due to higher server utilization,

the queueing delay in node 1 is increased so that the end-to-

end delay D1−2 from node 1 destined for node 2 get raised.

Starting from the time 500 ≤ t sec, the link between node 1

and 2 is broken and the traffic in x2
1 has to go through the

relay node 3 to reach the destination. Thus, D1−2 experiences

the delay of two hops including the propagation delay of link

1-3 and 3-2 as well as the queuing delay at node 1 and 3. The

behavior of other nodes and traffic streams are similar and not

shown here for the purpose of brevity. From Fig. 4, we can

see that the hybrid model is fairly accurate and matches well

with the discrete event simulation results.

B. Computational Scalability

In order to show the hybrid model is a more scalable tool

than nonstationary simulation, we give a brief analysis on the

computation time complexity of the hybrid model followed

by numerical results comparison. For an M -node network,

each node has M−1 possible destination-based traffic classes,

and hence the hybrid model generates M(M − 1) differential

equations. In [22], by using p−th order explicit Runge-Kutta

algorithm with maximum error e−α, the upper bound of the

number of arithmetic operations required to solve n differential

equations is given as C(n, p, α) . With a pre-defined value of

p and α, the upper bound function C(n) increases linearly

with n according to its expression in [22]. Therefore, for an

M -node network, the upper bound of the computation time

complexity of the hybrid model is O(M(M − 1)).
Then we conduct numerical experiments on the sample net-

works to quantitavely evaluate the computational complexity

of our hybrid modeling approach and compare it with non-

stationary simulation. In each sample network with full mesh

links, all links switch between on/off randomly. The computa-

tion time of the hybrid model solved by Matlab is compared

with nonstationary simulation [10] with 5000 independent runs

from OPNET in Table I; both are implemented on a PC with a

Intel T7400 2.16 GHz duo-core processor and 2GB memory.

All the numerical queue length results from the hybrid model

are within 99% confidence interval of the simulation results.

As seen from the table, the simulation time seems to grow

exponentially, which is actually a complex function of number

of nodes, amount of traffic, topology changes and accuracy

desired. For the hybrid model implemented in MATLAB, the

computation time is roughly proportional to the number of the

fluid flow differential equations M(M − 1), as expected from

our analysis above.

TABLE I
COMPUTATION TIME COMPARISON

# Nodes # Diff. Equations Simulation (sec) Hybrid Model (sec)

3 6 142.3 0.24
4 12 1235.6 0.52
5 20 12872.8 0.83

13 156 402931.6 7.02

IV. PERFORMANCE EVALUATION VIA HYBRID MODEL

A. Nodes Mobility Impact

We consider the impact of nodes mobility on the perfor-

mance of multihop wireless networks by using the random

waypoint mobility (RWM) model for node movement. S-

tochastic properties of the RWM model were studied in [18]

and show that the connectivity of two nodes is memoryless,

which means the future connectivity of two nodes depends

only on the current state of the connectivity. Hence, the link

connectivity can be modeled as a two-state Markov process

with on-off (connected-disconnected) transition, and both link

on and off durations follow exponential distributions [18].

This model can represent the average link stability statistics

of RWM model without a long warm-up simulation period.

A five node network is set up with mean link on lifetime

Ton = 50 sec and mean link off lifetime Toff = 20 sec.

All links are assumed to have the same Ton and Toff . In

the experiments, the network parameters are kept the same

as three node network before. The mean rate (pkt/s) of the

traffic generated by each node is γ3
1 = 0.22, γ5

1 = 0.28, γ5
2 =

0.12, γ5
3 = 0.21, γ5

4 = 0.16. We illustrate typical dynamic

network performance by ploting the traffic destined for node

5 at node 1, as seen in Fig. 5. We show four snapshots of
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Fig. 5. Dynamic Behavior of the traffic destined for node 5 at node 1 buffer
with node mobility model Ton = 50s, Toff = 20s.

the network topology at different times in Fig. 5(a) and mark

all the routes of class 5 (destined for node 5) traffic from

node 1 by dot lines in the topologies. Then, we associate the

performance results with each topology by aligning them at

the same time instant in Fig. 5(b)(c). The results conform with

the facts that when the direct link breaks as topologies (i) and

(iv) of Fig. 5(a), the traffic has to go through multiple hops

to the destination resulting in longer end-to-end delay, while

the average packet number of this traffic in source node buffer

remains the same value as direct link exists. Once destination

node 5 is isolated from the network as in topology (iii), the

instantaneous end-to-end delay D1−5 becomes infinitely large,

and the packets have to be queued up in the buffer of source

node 1. When node 1 helps forward packets of other nodes to

destination node 5 at topology (ii), more packets in the buffer

causes longer queueing delay in node 1.

Next we increased the average link off lifetime Toff = 40s
and decreased the link on lifetime Ton = 30s for each pair of

nodes to observe a higher level of nonstationarity, since each

node will have less overall connectivity and is more likely

to redirect traffic. All the other network parameters remain

the same as before. Typical results are given in Fig. 6, for

traffic at node 1 destined for node 5. When the effect of

long average link off lifetime starts to set in, it becomes more

difficult for each node to find any intermediate node to relay

the traffic. When the source node cannot find any alternative

path to reroute the traffic, the instantaneous end-to-end delay

becomes infinitely large and appears to be disconnected, and
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Fig. 6. Dynamic Behavior of the traffic destined for node 5 at node 1 buffer
with node mobility model Ton = 30s, Toff = 40s.

meanwhile the packets are accumulated linearly.

The concept of two-state Markov model can represent

various mobility scenarios by using different combinations of

Ton and Toff . For example, the random waypoint mobility of

the wireless nodes with smaller radio range can be implicitly

represented by relatively larger Toff . Alternately, in a random

waypoint group mobility, if two nodes are from the same

group, the average Ton of the link between these two nodes

should be longer, since they tend to be moving with a

comparable speed in a similar direction.

B. Traffic Load and Link Quality Impact

In wireless networks, communication may exhibit diverse

link quality in terms of the error rate and data rate as discussed

earlier. Measurement data in [16] shows that as long as the link

exists, the inter-node distance has little predictive value for

error rate. Instead, the error rate is probably due to obstacles,

multi-path fading and interference. In other words, up to a

certain inter-node distance, the error rate is dominated by

obstacles, geometry and interference. Thus, instead of aij = 1,

decimal numbers aij are randomly assigned to all links in the

network within certain range to indicate the error effect in cer-

tain environment. Here we set up a 30 node network with full

mesh traffic, and focus on a sample traffic destined for node 30

at node 1 buffer. All the network parameters remain the same

as before, except for lightly loaded traffic and probabilistic

link connectivity. All three scenarios in Fig. 7 use the same

mobility model (Ton, Toff ) = (50s, 20s) and the minimum-

hop routing rjik. We first evaluate the impact of traffic load in

a “higher” link quality environment aij ∈ [0.95 1]. When the

offered traffic of each node increases twice from γj
i = 4×10−3

pkt/s to 8× 10−3 pkt/s, the average queue length x30
1 almost

doubles, but the end-to-end delay D1−30 rises slightly. This
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phenomena are conform to the M/D/1 steady state Equation

(7) and Little’s theorem with light traffic λ. Then we fix the

traffic load at γj
i = 8 × 10−3 pkt/s and evaluate the network

performance in “lower quality” wireless environment with link

connectivity aij ranged in [0.7 1]. Since a lower link quality

inevitably reduces wireless link capacity, more packets have to

be buffered at each node and the queuing delay is prolonged

accordingly. In addition, these two numerical ranges reflect

the fact that “lower quality” wireless channel typically has

larger variance than “higher quality” one; thereby the network

performance behaves with larger fluctuations.

As we know, the steady-state simulation typically eliminates

the information gathered during the transient period to avoid

initialization bias and mostly depends on the steady-state

values. The results from Fig. 5-7 illustrate the application of

the hybrid model to the study of nonstationary conditions and

its capability to capture the network transient behavior.

V. CONCLUSION

In this paper, we develop a hybrid model for nonstationary

queuing analysis of multihop wireless network with deter-

ministic service times. The proposed model consists of two

components: the network topology modeling and the time

dependent queuing behavior modeling. Numerical results for a

sample network via the proposed model are validated by sim-

ulations. The proposed hybrid approach is shown to be much

more computationally efficient than the equivalent discrete

event simulation. Furthermore, we apply this hybrid model to

examine the impact of node mobility, offered traffic load, and

wireless link quality on network performance. Without sacri-

ficing a large amount of computational resources, we believe

the hybrid model to be an alternative to provide flexibility in

modeling complex networks with nonstationary effects. Future

work is to model the effect of MAC layer contention in dense

or heavily loaded multihop wireless networks and integrate it

into the hybrid model.

REFERENCES

[1] I. Akyildiz and X. Wang, “A survey on wireless mesh networks,”
Communications Magazine, IEEE, vol. 43, no. 9, pp. S23 – S30, 2005.

[2] H. Moustafa and Y. Zhang, Vehicular networks, Techniques, Standards,
and Applications. CRC Press, 2009.

[3] I. F. Akyildiz, W. Su, Y. Sankarasubramaniam, and E. Cayirci, “Wireless
sensor networks: a survey,” Computer Networks, vol. 38, pp. 393–422,
2002.

[4] I. Chlamtac, M. Conti, and J. Liu, “Mobile ad hoc networking: Im-
peratives and challenges,” Ad Hoc Networks, vol. 1, no. 1, pp. 13–64,
2003.

[5] B. N. J. Banks, J. Carson and D. Nicol, Discrete Event System Simula-
tion, 4th ed. Prentice-Hall, 2005.

[6] D. Tipper, Y. Qian, and X. Hou, “Modeling the time varying behavior of
mobile ad-hoc networks,” in Proc. of 7th ACM International Symposium
on Modeling, Analysis and Simulation of Wireless and Mobile Systems,
Oct. 2004, pp. 12–19.

[7] W. Lovegrove, J. Hammond, and D. Tipper, “Simulation methods for
studying nonstationary behavior of computer networks,” IEEE Journal
on Selected Areas in Communications, vol. 8, no. 9, pp. 1696–1708,
1990.

[8] P. V. Meighem, Performance Analysis of Communications Networks and
Systems. Cambridge University Press, 2006.

[9] D. Tipper and M. K. Sundareshan, “Numerical methods for modeling
computer networks under nonstationary conditions,” IEEE Journal on
Selected Areas in Communications, vol. 8, no. 9, pp. 1682–1695, 1990.

[10] W. Wang, D. Tipper, and S. Banerjee, “A simple approximation for
modeling nonstationary queues,” in Proc. of IEEE INFOCOM, Mar.
1996, pp. 255–262.

[11] K. Xu, S. Tipmongkonsilp, D. Tipper, P. Krishnamurthy, and Y. Qian, “A
time dependent performance model for multihop wireless networks with
CBR traffic,” in Proc. of IEEE International Performance Computing
and Communications Conference (IPCCC), Dec. 2010, pp. 271 –280.

[12] H. Kim and J. Hou, “How good is fluid model-based simulation for
simulating IEEE 802.11 operated WLANs,” in Proc. of Communication
Networks and Distributed Systems Modeling and Simulation Conference
(CNDS), Jan. 2003.

[13] P. M. Atilla Eryilmaz and A. Ozdaglar, “A fluid-flow model for backlog-
based CSMA policies,” in Proc. of Annual International ICST Confer-
ence on Wireless Internet (WICON), Jan. 2008, pp. 77:1–77:9.

[14] V. Kanodia, C. Li, A. Sabharwal, B. Sadeghi, and E. Knightly, “Dis-
tributed multi-hop scheduling and medium access with delay and
throughput constraints,” in Proc. of ACM MobiCom, July 2001, pp. 200–
209.

[15] A. Veres, A. Campbell, M. Barry, and L.-H. Sun, “Supporting service
differentiation in wireless packet networks using distributed control,”
IEEE Journal on Selected Areas in Communications, vol. 19, no. 10,
pp. 2081–2093, 2001.

[16] D. Aguayo, J. Bicket, S. Biswas, G. Judd, and R. Morris, “Link-
level measurements from an 802.11b mesh network,” in Proc. of ACM
SIGCOMM, Sep. 2004, pp. 121–132.

[17] T. Camp, J. Boleng, and V. Davies, “A survey of mobility models for ad
hoc network research,” Wireless Communication & Mobile Computing
(WCMC), vol. 2, no. 5, pp. 483–502, 2002.

[18] S. K. Hwang and D. S. Kim, “Markov model of link connectivity in
mobile ad hoc networks,” Telecommunication System, vol. 34, no. 1–2,
pp. 51–58, 2007.

[19] M. J. Neely, “Exact queueing analysis of discrete time tandems with
arbitrary arrival processes,” in Proc. of IEEE ICC, 2004, pp. 2212–2225.

[20] M. Neely, “Equivalent models for queueing analysis of deterministic
service time tree networks,” IEEE Transaction on Information Theory,
vol. 51, no. 10, pp. 3576–3584, 2005.

[21] OPNET Simulaiton Tool, http://www.opnet.com/.
[22] A. Werschulz, “Computational complexity of one-step methods for

systems of differential equations,” Mathematics of Computation, vol. 34,
no. 149, pp. 155–174, 1980.


