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While natural killer (NK) cells have been classically understood as innate cytotoxic effector 

cells, a new paradigm has emerged involving NK cells as key immunomodulators in the 

development of both innate and adaptive immune responses. In particular, NK cells can critically 

shape the character of anti-cancer immunity through their engagement with dendritic cells (DCs). 

Thus, understanding the interactions of NK cells with DCs, as well as other cell types in the 

human tumor environment, is essential to understanding endogenous anti-tumor immune 

responses and developing effective cancer immunotherapies. 

In this work, we show that human NK cells can perform distinct ‘effector’ and ‘helper’ 

activities, which can be uniquely driven by distinct cytokine activation. While IL-2-activated 

‘effector’ NK cells efficiently kill tumor cells and both immature and mature DCs, IL-18-

activated ‘helper’ NK cells instead uniquely potentiate anti-tumor immune responses through DC 

activation and the enhancement of DC-induced type-1 immunity. These IL-18-activated helper 

NK cells further recruit DCs, facilitating productive NK-DC interaction, and subsequently 

collaborate with DCs in promoting chemokine environments conducive to naïve T cell priming 

in the lymph nodes as well as effector T cell infiltration into peripheral tumor sites.  

However, our studies also indicate that, in addition to their desirable anti-tumor type-1-

polarizing interactions with DCs, such IL-18-activated NK cells may also have undesirable pro-

tumor effects through their IFNγ- and TNFα-dependent hyper-activation of myeloid-derived 
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suppressor cells (MDSCs), a critical cell population present in most cancers that play a major 

role in tumor-associated immune suppression and the potential modulation of Th17 immunity. 

Using MDSCs isolated directly from the malignant ascites of patients with late-stage ovarian 

cancer, we implicate autocrine COX2/PGE2 feedback as essential in NK cell-mediated MDSC 

hyper-activation, highlighting the possibility for therapeutic COX2/PGE2 axis inhibition in 

reversing the pro-tumor NK cell-mediated up-regulation of MDSC activity, while preserving or 

enhancing the anti-tumor NK cell-mediated activation of DCs. 

Overall, these studies help to better understand the interactions between NK cells, DCs, 

and MDSCs in cancer immunity, and identify new targets for the therapeutic manipulation of 

anti- and pro-tumor NK cell activities for the improvement of cancer therapy. 
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1.0  INTRODUCTION 

Despite declines in cancer mortality over the past two decades, cancer remains the leading cause 

of death among both men and women aged 40-79 and the second leading cause of death in the 

United States overall, with more than 1.6 million new cases and more than 580,000 deaths 

projected to occur in the US in 2013 [1]. Conventional combination treatment with surgery, 

radiotherapy, and chemotherapy has shown success in reducing tumor burden, but has been less 

effective in eliminating residual cancer and preventing disease recurrence, limiting the overall 

effectiveness of these approaches as definitive cancer therapy. Therapeutic stimulation of the 

immune system to better recognize and kill cancer cells has been proposed to overcome these 

limitations [2], seeking to harness the sensitivity, specificity, and durability of the protective 

immune response evolutionarily honed, in part, to detect and eliminate aberrations associated 

with cancer. Nevertheless, despite the simplicity of this overall rationale, incomplete 

understanding of the complex nature of the anti-tumor immune response continues to remain a 

significant obstacle to immunotherapeutic development, including limited knowledge of the 

optimal activation and interaction of key immune players necessary for the induction, 

amplification, and execution of robust anti-tumor immunity, as well as the critical feedback 

mechanisms inhibiting these responses. It has also become increasingly appreciated that the 

tumor environment itself represents a unique immunologic atmosphere incorporating both 
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physiologic and pathologic mechanisms for its survival and expansion, the understanding of 

which, particularly in the human setting, is essential to developing effective therapy. 

This thesis aims to understand key relationships in the initiation and development of anti-

tumor immune responses in the context of human cancer. In it, natural killer (NK) cells and their 

interaction with dendritic cells (DCs) are identified as key initiators and propagators of adaptive 

anti-tumor immunity, and the unique cytokine- and chemokine-driven regulation of these 

activities are described. This work further explores these concepts in the human tumor 

environment, including identification of the critical role of myeloid-derived suppressor cells 

(MDSCs) in determining tumor environment-associated immune outcomes, and the contrasting 

stimulatory and suppressive interface of NK cells with DCs and MDSCs. These studies provide 

comprehensive new insights into NK cell-mediated regulation of anti-tumor immune responses 

as well as broader implications for the enhancement of type-1 immunity in cancer therapy. 

1.1 IMMUNITY AND HUMAN CANCER 

While the immune control of cancer has long been postulated [3, 4], it has only relatively 

recently been established as a key mechanism for anti-tumor surveillance. This paradigm has 

been driven by seminal work describing the critical role of IFNγ and lymphocytes in protection 

from tumors in mouse models [5-8]. Importantly, these animal studies have been supported in the 

human setting by the correlation between clinical outcome and the quantity and character of the 

intratumoral immune cell infiltrate [9], as well as by the clear clinical effect of established and 

emerging cancer therapeutic agents targeting the modulation of the immune system [10-20]. 

Nevertheless, while these findings provide evidence of distinct clinical benefit and strong proof-
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of-principle for the involvement of the immune system in cancer control, these findings also 

emphasize the emerging awareness that a complete understanding of the anti-tumor response 

necessarily depends on appreciating detailed characteristics of immune processes within the 

actual human tumor environment itself. 

1.1.1 Immune environment of human tumors 

In situ analysis of human tumors has revealed considerable heterogeneity in the numbers, types, 

functional orientations, and distributions of immune cells between patients and between tumor 

types. Correlation of these intratumoral immune parameters with clinical outcomes has allowed 

an enhanced understanding of key cells and processes that may critically determine tumor 

control versus tumor progression. An analysis by Fridman and colleagues of 124 published 

studies correlating immune cell infiltration of diverse human tumors with clinical results [21] 

revealed that high numbers of infiltrating CD3+ T cells, CD8+ cytotoxic T cells (CTLs), and 

CD45RO+ memory T cells are clearly associated with longer disease-free and overall survival. 

Analysis of CD4+ T cell subsets further revealed a strong association between Th1 cell 

infiltration and good clinical outcome. Analysis of the prognostic significance of other CD4+ T 

cell subsets was less clear, due potentially to imprecise lineage-defining markers (such as the 

expression of CD25 and FOXP3 on both regulatory and activated effector T cells) or variation 

between different tumor types. Nevertheless, a multitude of studies have identified regulatory T 

(Treg) cell infiltration as a poor prognostic marker for melanoma, breast, ovarian, lung, 

pancreatic, hepatocellular, and renal cell cancers, with the significance of Th2 and Th17 cell 

infiltration varying by tumor type. Overall, however, these studies clearly support the induction 
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of robust type-1 immunity and the promotion of Th1 and CTL activities directly within the tumor 

environment as a key goal of cancer immunotherapeutic approaches. 

These in situ analyses of human tumors have also clearly revealed that the tumor immune 

environment is a complex array of immune cells beyond T cells, including important populations 

of NK cells [22, 23] and DCs [24, 25], as well as significant suppressive myeloid populations 

like MDSCs [26, 27] (significance of these cell populations are further discussed below). 

Although interaction between these cell types (strongly suggested by their proximate localization 

within the tumor environment [21]) are likely to play a large role in defining the intratumoral 

immune context, including significant effects on T cell localization and activity, these 

interactions still remain unclear. 

1.1.2 Chemokines 

The chemokine system has emerged as an essential regulator of the spatial and temporal events 

governing both the priming and effector phases of anti-tumor immunity, as well as immune 

processes within the tumor environment itself. This includes the localization of DCs in peripheral 

tumor tissues for antigen acquisition, subsequent migration of antigen-carrying DCs to regional 

lymph nodes (LNs), concurrent trafficking of naïve T cells to the LN and their intranodal 

association with DCs for efficient priming, and the migration of activated effector cells back to 

peripheral tumor sites. 

Resident tissue macrophages and dendritic cells play a key role in initiating immune 

responses through their recognition of damage- and pathogen-associated molecular patterns 

(DAMPs and PAMPs) using Toll-like receptor (TLR) and other pattern-recognition signaling, 

and their subsequent secretion of chemokines including CCL3-5 and CXCL8 [28]. These 
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chemokines are critical for the recruitment of neutrophils as well as additional macrophages and 

immature DCs [29], expanding the potential for antigen acquisition. Interestingly, NK cells 

similarly exhibit a robust capacity to integrate multiple danger-, damage-, and pathogen-

associated signals, including through TLRs as well as the direct recognition of tumor and viral-

infected targets using a large panel of activating and inhibitory receptors (see ‘NK cell 

activation’ below). Whether NK cells may have a role in the chemokine-driven initiation of 

immune responses remains unclear. 

The maturation of antigen-carry DCs is accompanied by a switch in chemokine receptor 

expression from CCR1, CCR2, CCR5, and CXCR1 to the high expression of CCR7 [30]. The 

expression of CCR7 confers DC responsiveness to the chemokines CCL19 and CCL21, 

expressed within primary and secondary lymphoid organs by stromal cells and other mature 

DCs, facilitating DC trafficking into the LN [31]. The CCR7-CCL19/CCL21 axis is also critical 

for the entry of naïve T cells into the LN [32], as well as for the subsequent close intranodal 

localization of DCs and T cells [33]. Dynamic cellular activities conducive to efficient adaptive 

immune priming, such as T cell motility and scanning behavior, are also promoted by the CCR7-

CCL19/CCL21 axis [34-37]. DC priming subsequently induces CCR7 downregulation on T 

cells, facilitating their egress from the LN, as well as differential T cell acquisition of peripheral-

homing chemokine receptors driven by the polarizing environment, directing activated T cells to 

peripheral sites of inflammation. For instance, under Th2-polarizing conditions, T cells 

upregulate CCR3, CCR4, and CCR8, while under Th1-polarizing conditions, T cells upregulate 

CXCR3 and CCR5 [38]. 

As described above, the quantity and quality of immune cell infiltration into the tumor 

environment have been increasingly recognized as vital components of both spontaneous and 
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therapy-induced anti-tumor immune control [9, 39-41]. Chemokines have been identified as key 

modulators of this process, with the potential to exquisitely define the character of the immune 

cell infiltrate in the tumor environment [42]. Importantly, the chemokines CXCL9, CXCL10, 

CCL5, and CX3CL1 have been implicated in the attraction of type-1 memory and effector T cell 

(Teff) subsets, which are central to efficient anti-tumor responses and are associated with 

prolonged disease-free and overall survival [43-46]. In contrast, other chemokines present in the 

tumor environment, including CCL22, have been implicated in the attraction of Treg cells, 

associated with a poor clinical outcome in many cancers [47-49]. Thus, the tumor environment 

represents a complex chemokine network with dramatic consequences for the outcomes of 

intratumoral immunity, providing key targets for therapeutic ‘conditioning’ of the tumor 

environment for anti-tumor effector cell entry. Activated DCs have been shown to produce a 

number of chemokines [28, 30] and can play an important role in defining the chemokine 

environment in human cancer [50], but the regulation of this production, particularly the role of 

specific cellular interactions, are not yet fully known. 

1.2 NATURAL KILLER CELLS 

NK cells were first characterized histologically and functionally as large granular lymphocytes 

with the unique ability to kill target cells in the absence of prior sensitization [51, 52]. Early 

refinements to this characterization came in studies investigating the rejection of bone marrow 

allografts in mice [53, 54], leading to the formulation of the seminal ‘missing self’ hypothesis 

[55] proposing that NK cells would kill any target lacking self-major histocompatibility complex 

(MHC) class I molecules. This provided an initial framework to understand the regulation of NK 
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cell effector activity. Since those early observations, it has become clear that NK activation is a 

much more complex, and still incompletely understood, phenomenon, involving the integration 

of signals from a multitude of activating and inhibitory receptors engaging MHC class I 

molecules, MHC class I-like molecules, and other molecules unrelated to MHC, as well as from 

an extensive array of cytokines distinct from, but related to, target recognition (see ‘NK cell 

activation’ below). It has also become appreciated that NK cells can play important roles in 

immune responses separate from their cytotoxic capacity, acting as important 

immunomodulatory cells engaged in reciprocal interactions with many cell types, including 

dendritic cells, macrophages, T cells, and endothelial cells (see ‘NK cell functions’ below). Here, 

we introduce the evolving modern concepts of NK cell activation and NK cell function, with 

particular emphasis on their role in anti-tumor immunity. 

Human NK cells are typically defined phenotypically within the lymphocyte population 

by the absence of CD3 (thereby excluding T cells) and the expression of CD56, found on NK 

cells and a minority of T cells [56], and also more recently by the expression of NKp46, a 

highly-conserved natural cytotoxicity receptor [57-59]. It is important to note however that NK 

cells actually represent a heterogeneous population of cells with distinct phenotypic and 

functional subsets. Approximately 90% of NK cells in human peripheral blood have low 

expression of CD56 and are typically associated with enhanced perforin expression and cytotoxic 

activity [60]. In contrast, approximately 10% of circulating NK cells (but markedly enriched in 

secondary lymphoid tissue in the steady state [61, 62]) express high surface levels of CD56, and 

have been associated with high production of cytokines and chemokines and lower cytotoxic 

capacity [63]. However, despite this classical distinction of NK cell subset activities, recent 

findings have indicated that the CD56dim subset can also be a major producer of cytokines and 
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chemokines, particularly at early time-points after activation [64, 65]. The specific regulation of 

these distinct cytotoxic versus cytokine/chemokine-secreting capacities of CD56dim NK cells 

remains to be determined. Furthermore, although a number of studies have suggested that the 

transition from CD56bright to CD56dim NK cell populations marks progression in a continuum of 

NK cell differentiation [66, 67], these populations likely play distinct roles in immune responses, 

and the distinct activities and activation responses of these different subsets warrants continued 

investigation. 

1.2.1 NK cell activation 

Despite their initial characterization as spontaneous effector cells, resting human peripheral 

blood NK cells in fact exhibit poor effector function [68]. Likewise, in mice, resting splenic NK 

cells are poorly cytotoxic due to reduced levels of granzyme B and perforin, which are only 

induced after cytokine stimulation or viral infection [69]. Thus, it has become increasingly 

apparent that activation is required under most circumstances for the full acquisition of NK cell 

effector functions [70]. An extensive body of work now indicates that this activation is achieved 

only through the proper integration of multiple signals, including an extensive array of both cell 

surface and soluble factors. 

Unlike T and B cells possessing a single antigen receptor dominating their activation, NK 

cell detection and discrimination of target cells from healthy ‘self’ cells, as well as the 

recognition and interaction with other immune cells, is significantly determined by the dynamic 

equilibrium of signals provided by a vast combinatorial array of activating and inhibitory 

receptors. Indeed, ligation of any single receptor alone, with the exception of CD16, is not able 

to induce cytolytic activity or cytokine secretion, which instead relies on combinations of 
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receptor cross-linking [68]. Activating NK cell receptors typically recognize ligands presented 

by cells in distress. These receptors importantly include NKG2D, recognizing the cellular stress-

induced non-classical MHC class I molecules MICA/B and the MHC class I-related ULBP 

molecules rarely expressed on healthy cells, but induced by viral infection, DNA damage, and 

transformation [71, 72]. The NKG2D receptor has been heavily implicated in NK cell control of 

tumors, including in spontaneous mouse models of lymphoma and prostate carcinoma [73]. The 

natural cytotoxicity receptors (NCRs), including NKp46, NKp30, and NKp44, are also a group 

of key NK cell activating receptors, recognizing such ligands as BAT3 and B7-H6 on tumor cells 

[74, 75] and viral hemagglutinins [76, 77]. DNAM-1 and 2B4 likewise represent important NK 

cell activating receptors, recognizing the CD112/CD155 and CD48 ligands, respectively [78-80], 

and have shown important roles in tumor cell elimination [81-83]. CD16, mediating antibody-

dependent cellular cytotoxicity of opsonized targets, can also play a significant role in NK cell 

activation [68, 84], and may be a dominant component of the anti-tumor activity mediated by 

therapeutic antibody treatment [85]. Importantly, the anti-tumor activity conferred by these 

receptors is most often the result of receptor cooperation, such as the involvement of NKG2D, 

NKp46, and DNAM-1 in killing of multiple myeloma [86] and the NCR- and DNAM-1-

mediated killing of melanoma [87], providing both synergistic effects among receptors [65, 68] 

as well as the capacity to recognize diverse tumors with often variable expression of individual 

receptor ligands [86, 87]. NK cells are also capable of recognizing infectious non-self ligands 

through the expression of several TLRs [88], although the activation of NK cells by TLR ligands 

may be more efficient via accessory cell involvement in vivo [89, 90]. These findings indicate 

that signals from multiple NK cell activating receptors cooperate in the detection of cellular 

stress from damage, infection, or transformation. 
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To prevent inappropriate activation of NK cell functions, the signals from NK cell 

activation receptors are balanced by signals from a wide array of inhibitory receptors, many of 

which recognize MHC class I molecules constitutively expressed on most healthy cells in the 

steady-state, but which may be reduced or lost under stress. These receptors in humans include 

the killer cell immunoglobulin-like receptors (KIRs) and the lectin-like CD94-NKG2A 

heterodimers containing immunoreceptor tyrosine-based inhibition motifs (ITIMs), which 

mediate inhibitory signals that in some cases can override activation stimuli [91, 92]. NK cells 

may also detect other constitutive self-signals apart from MHC class I through a variety of other 

inhibitory receptors, including NKR-P1A and LAIR-1 [93, 94]. These studies indicate close 

regulation of NK cell activation to ensure tolerance of healthy self. Indeed, the engagement of 

MHC class I-specific inhibitory receptors has been shown to play a critical education process to 

ensure self versus altered-self discrimination, in which inhibitory receptor recognition of self 

MHC class I molecules are needed to ‘license’ or ‘arm’ NK cells for strong immune reactivity 

[60, 95, 96]. These findings highlight the complex interplay that exists in NK cell ligation of 

stimulatory and inhibitory receptors, which carefully regulates full effector activation. 

In addition to the ligation of NK cell surface receptors, the activation of NK cell 

responses also depends significantly on the cytokine microenvironment. IL-2 is a classical 

promoter of NK cell proliferation, cytotoxicity, and to some extent, cytokine secretion [97], 

provided potentially in vivo by CD4+ T cells during co-localization in the lymph nodes [61]. 

Several other cytokines, including type I interferons, IL-18, IL-12, and IL-15 have also been 

described as potent activators of NK cell effector function [98], potentially provided during 

interactions with other cell types including dendritic cells and macrophages [99]. Cytokine 

activation has also been shown to closely cooperate with cell surface receptor ligation in NK cell 
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activation, such as in the coupled signaling between IL-15 and NKG2D [100]. How these 

different cytokine factors may differentially regulate specific and distinct NK cell functions, 

however, continues to remain unclear. 

Type I interferons and IL-18 are particularly intriguing from the standpoint of the early 

activation of NK cells. Type I interferons are well known to be elaborated early in the course of 

viral infection [101], and have also recently been shown to play a key role in initiating 

spontaneous anti-tumor immune responses in vivo [102, 103]. IL-18 is constitutively expressed 

by multiple mucosal and barrier cell types, especially by keratinocytes in the skin and epithelial 

cells in the gut and lung [104-106]. Secretion of active IL-18 is also known to critically depend 

on inflammasome-regulated capase-1 activation downstream of infection or recognition of a 

wide variety of danger signals associated with cell damage and cell death, such as extracellular 

ATP and free uric acid [107]. Thus, both type I interferon and IL-18 represent early indicators of 

the need for an immune response, and how these factors may drive NK cell roles specifically in 

the initiation of immune responses is an intriguing question that remains to be explored. 

1.2.2 NK cell functions 

While identified early on by potent lytic ability against tumor and viral-infected targets, NK cell 

functions are now appreciated to encompass a multifaceted array of cytotoxic and non-cytotoxic 

activities driven, as described above, by diverse activation stimuli. Although these lytic and non-

lytic functions, reviewed below, can occur in concert, evidence also indicates that these activities 

are in fact distinct and may occur independently under many circumstances [108-110], the 

selective regulation of which remains to be fully elucidated. 
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1.2.2.1 NK cell ‘effector’ activity 

As their name suggests, NK cells can potently kill target cells through a diversity of mechanisms, 

representing a key function of NK cells in cancer immunity. Primarily, NK cells employ a 

complex and highly-regulated lytic response involving the polarization and localized secretion of 

lytic granules containing perforin and granzymes at the NK/target interface [111], progressing 

through a sequential step-wise process of synapse formation between effector and target, rapid 

cytoskeletal rearrangement with reorientation of the microtubule-organizing center and cytotoxic 

granules toward the synapse, and granule docking and fusion at specialized secretory domains 

[112-114]. NK cell expression of death receptor ligands FasL and TRAIL has also been 

implicated as an important mechanism for killing tumor targets expressing the cognate receptors 

[115-118], and NK cells have also been shown to kill via the release of exosomes containing 

perforin and death receptor ligands [119] or through long-distance lytic synapse formation 

utilizing membrane nanotubes [120]. It is important to note that NK cell lytic interactions are not 

limited to tumor or infected targets, and have been shown to be capable of killing syngeneic 

activated T cells [121], other NK cells [122], and multiple myeloid cell types, importantly 

including DCs (see ‘NK-DC cross-talk’), with great potential for influencing downstream 

immune responses. 

1.2.2.2 NK cell ‘helper’ activity 

In addition to their cytotoxicity, it has become increasingly appreciated that NK cells perform 

equally-important non-cytotoxic immunomodulatory functions that can often be quite distinct 

from their killing capacity, with significant consequences for anti-tumor responses. These 

functions are significantly mediated by IFNγ, a cytokine with pleiotropic effects on anti-tumor 

immunity, with NK cells serving as a critical early source of this cytokine in the developing 
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immune response [123, 124]. These effects include direct induction of tumor cell apoptosis, 

direct suppression of tumor cell proliferation and metastasis, inhibition of tumor angiogenesis, 

and upregulation of MHC class I and antigen processing machinery [125], and NK cell-derived 

IFNγ has also been recently shown to induce M1-polarized macrophages contributing 

significantly to innate tumor immunoediting [125]. Although IFNγ secretion is the cytokine most 

often associated with NK cells, NK cells have also been demonstrated to secrete a number of 

other factors, including TNFα, GM-CSF, IL-13, IL-10, and multiple chemokines [63, 65, 126, 

127], although the specific regulation of the production of these factors remains unclear. Perhaps 

one of the most important immunomodulatory functions of NK cells is the shaping of adaptive 

immunity, mediated in close collaboration with DCs, involving the maturation and activation of 

DCs and the polarization of T cell responses (discussed in detail below in ‘NK-DC cross-talk’), 

with IFNγ, TNFα, and cell-surface molecules, such as NKp30, playing key roles [128]. However, 

despite the centrality of this process to bridging innate danger recognition with adaptive effector 

responses, critical details of these interactions remain to be elucidated. 

1.2.3 NK cells and cancer 

Although the exceeding rarity of human NK cell-selective deficiencies has limited the precise 

characterization of the human in vivo requirement for NK cells in anti-tumor 

immunosurveillance, a seminal epidemiologic study by Imai and colleagues following a cohort 

of 3625 participants over a period of 11 years demonstrated an association between high NK cell 

activity in peripheral blood and reduced cancer risk [129], suggesting an important link between 

NK cell activity and tumor control. Furthermore, NK cell infiltration into human tumors has been 

correlated with improved prognosis for multiple human cancers, including lung, colorectal, 
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gastric, liver, and renal [23, 130-133], although interpretation of these studies is complicated by 

their reliance on the CD57 surface marker also expressed by activated CTLs. More recent studies 

using the NKp46 marker, more specific for NK cells, have shown mixed results, with increased 

intratumoral NK cells associated with an improved prognosis in early stage breast cancer [134] 

but not in non-small-cell lung cancer (NSCLC) [22]. These equivocal results may possibly be 

explained by recent findings indicating potential functional defects present in intratumoral NK 

cells. These include downregulation of multiple NK cell activating receptors (such as CD16, 

NKp46, NKp30, NKp80, DNAM1, 2B4, and ILT2) [22, 135-137] as well as upregulation of NK 

cell inhibitory receptors like NKG2A [138, 139], preventing NK cell activation and the cytolysis 

and secretion of IFNγ needed for effective anti-tumor activity. Ligands for NK cell activating 

receptors, such as NKG2D, may also be shed from the surface of tumors, leading to decreased 

NK cell recognition of tumors as well as reducing NK cell receptor expression [140, 141]. 

Furthermore, indoleamine 2,3-dioxygenase (IDO), prostaglandin E2 (PGE2), TGF-β1, and other 

factors expressed within the tumor environment have also been shown to contribute to 

intratumoral NK cell impairment [142, 143]. These results indicate that NK cell are likely to play 

a protective role in anti-tumor immunity, but may be compromised in advanced cancer. This 

highlights the critical need to address paradigms of therapeutic NK cell activation both in the 

specific context of tumor-associated NK cells from cancer patients as well as in the context of 

suppressive mechanisms likely to exist in the human tumor environment. In particular, although 

the interaction of NK cells with critical suppressive populations, such as MDSCs, have been 

suggested by a limited number of mouse studies [144] and the close localization of NK cells and 

MDSCs within human tumors [21], current knowledge, particularly in the human context, of this 

interaction is lacking and represents a critical area of needed research. 
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1.3 DENDRITIC CELLS 

DCs are ubiquitous tissue-resident cells specialized to capture and process antigens, both 

associated with self as well as with pathogen infection or tumor transformation [145]. In the 

steady state, DCs in peripheral tissues are immature, capable of efficiently capturing antigens but 

expressing low levels of co-stimulatory molecules and a limited capacity to secrete cytokines 

[145]. Immature DCs presenting self-antigens can induce immune tolerance via deletion or 

anergy of self-reactive T cells, or through the expansion of regulatory T cells [146, 147]. 

However, upon activation and maturation through a variety of mechanisms [148], including the 

sensing of pathogen-related products, factors associated with tissue-damage, or instructive 

signals provided by other immune cells detecting transformation or infection, they act as carriers 

of antigenic and contextual inflammatory information from the periphery to draining lymph 

nodes (LNs). Here, they act to prime naïve T cells to antigen-specific and context-dependent 

effector function, providing the antigen-specific ‘signal 1’ and co-stimulatory ‘signal 2’ through 

the increased expression of MHC class II and co-stimulatory molecules [149]; the polarizing 

‘signal 3’ through the secretion of specific cytokines regulating the balance between type-1, 

type-2, and type-17 effector mechanisms [150, 151]; and cell-homing ‘signal 4’ instructing 

effector cell migration to relevant infected or transformed tissues [152]. The additional ability of 

activated DCs to stimulate different arms of cellular immunity beyond the T cell compartment, 

particularly natural killer (NK) cells [153], may further induce diverse responses against 

potentially distinct, non-overlapping features of cancer alteration. Thus, their ability to directly 

recognize signals elaborated by infection and tissue distress, as well as integrate signals provided 

by other innate cells, and translate those signals into the development and enhancement of 

adaptive and innate responses place DCs as central agents of immunity. Indeed, DCs have been 
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shown to be essential for the generation of anti-tumor immunity in vivo [102, 103], and thus 

represent key targets for therapeutic antigen delivery and immune induction against cancer. 

1.3.1 DCs and cancer 

Although the diversity and non-exclusivity of immunohistochemical markers used in the 

correlation of tumor- and LN-infiltrating DCs with clinical outcome must be interpreted with 

some caution, tumor-infiltrating DCs (TIDCs labeled with S-100, DC-LAMP, CD83, and/or 

CD1a, among other markers), particularly mature TIDCs, have been associated with improved 

prognosis for many cancers [154], suggesting the ability of DCs to mature in the tumor 

environment and effectively activate adaptive immunity toward tumor-associated antigens. For 

instance, in melanoma, higher density of mature DC-LAMP+ DCs in both primary tumors and 

draining lymph nodes was associated with prolonged survival, and was also correlated with 

reduced tumor thickness and enhanced infiltration of activated T cells into the tumor 

environment [155, 156]. Similarly, in patients with breast carcinoma, higher numbers of mature 

CD83+ TIDCs, but not immature CD1a+ TIDCs, had independent prognostic relevance, 

correlated with longer relapse-free and overall survival as well as reduced lymph node metastasis 

[157]. These clinical findings have been supported by early proof-of-principle mouse studies 

demonstrating that adoptive transfer of mature tumor-loaded DCs could induce protective T cell 

and NK cell responses [153, 158]. And indeed, more recent studies have also shown the essential 

role of endogenous DCs in promoting spontaneous T cell responses against developing tumors 

[102, 103], as well as the ability of TIDCs to act as competent and therapeutically-targetable 

antigen presenting cells for the induction of protective anti-cancer immunity [159]. 
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However, as described above, DCs are critical regulators of both immune activation and 

immune tolerance, and as tumors most often develop in the absence of danger signals typically 

associated with acute, pathogen-induced inflammation, DCs presenting antigen from the tumor 

environment frequently promote tolerance toward these epitopes [160]. This is compounded by 

active suppressive mechanisms evoked by the tumor environment to subvert DC-mediated 

immunity through interference with DC differentiation and functional maturation, evidenced by 

observations of endogenous DC dysfunction in patients with many cancers [154]. For instance, 

VEGF elaborated in the tumor environment has been shown to inhibit DC differentiation [161, 

162], with clinical antibody-mediated blockade of VEGF in lung, breast, and colorectal 

carcinoma patients shown to reduce the accumulation of immature progenitor cells and increase 

DC numbers and function in peripheral blood [163]. IL-6 and M-CSF have also been shown to 

switch the differentiation of monocytes from DCs to macrophages, interfering with efficient DC-

mediated anti-tumor T cell priming [164]. The tumor environment has further been shown to 

inhibit DC maturation, critical in determining the balance between immune stimulation and 

immune tolerance induced toward DC-carried tumor antigens. For instance, IL-10, commonly 

found in the tumor environment [165], has been shown to impair expression of maturation 

markers and co-stimulatory molecules such as CD83 and CD86, and to promote antigen-specific 

T cell anergy [166]. Indeed, IL-10 blockade was found to enhance the expression of CD83, 

CD80, CD86, and MHC molecules, production of TNF and IL-12, and T cell activation and 

priming toward type-1 responses [167]. 

It is clear, however, that not only maturation but also the specific maturational context is 

critical in determining the outcome of DC-driven immune responses. For instance, DC 

maturation in the presence of prostaglandin E2 (PGE2), an inflammatory mediator over-produced 
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in chronic inflammation and cancer in concert with the key regulator of its synthesis, 

cyclooxygenase-2 (COX2) [168], has been shown to strongly inhibit DC production of IL-12, 

driving DC-mediated T cell differentiation away from Th1 and toward alternative Th2 and Th17 

pathways [169-171]. PGE2-driven DC maturation has also been shown to inhibit NK cell activity 

via the reduction of IL-12 and IL-18 [172], as well as to limit the attraction of effector T cells 

and NK cells and promote the recruitment of regulatory T cells through the diminished 

production of CXCR3 and CCR5 ligands and the enhanced production of CCL22, respectively 

[172, 173]. In contrast, DC maturation in the presence of other stimuli (including IFNγ) can 

induce DC polarization toward high production of IL-12 and the priming of Th1 and CTL 

responses [174, 175], with the additional involvement of IFNα and TLR ligands like poly-I:C 

helping to regulate the recruitment of effector T cells [173, 176]. Furthermore, while multiple 

stimuli including IL-1β/IL-6/TNFα/PGE2, LPS, poly-I:C, CD40L, and anti-FcγRIIB antibody 

were shown to similarly induce DC maturation, based on upregulation of CD83, CD80, CD86, 

and HLA-DR expression, DCs matured in the presence of IL-1β/IL-6/TNFα/PGE2 demonstrated 

a significantly enhanced capacity to induce CD25+FOXP3+ Treg cells and potent immune 

suppression [177]. Collectively, these data indicate that the context in which DCs mature play a 

decisive role in determining their immunogenicity in the tumor setting. Thus, it is evident that 

while DCs can be key promoters of potent anti-tumor immune responses, fully understanding 

their conditions of activation, as well as prospective avenues for manipulation, will be critical to 

maximizing their potential for cancer immunotherapy. 
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1.3.2 NK-DC cross-talk  

As described above, NK cells and DCs both play critical early roles in the defense against 

infection and cancer, recognizing danger signals via complementary and partially-overlapping 

systems and acting at the forefront of the immune response. Pioneering work by Fernandez and 

colleagues provided the first evidence of NK-DC interactions in vivo as a component of effective 

anti-tumor immune control [153]. Since that time, a considerable body of work has revealed the 

close localization of NK cells and DCs within peripheral sites of inflammation and tumor [178-

181] as well as within secondary lymphoid organs [182-184], and a complex bi-directional cross-

talk between NK cells and DCs has emerged as an important contributor to the development of 

both innate and adaptive responses to diverse immune challenges [185-188]. 

Indeed, although DCs are known for their central role in T cell priming and the activation 

and regulation of adaptive immune responses, DC activation of NK cells has also been shown to 

be an important component of human in vitro [189-191] and mouse in vivo anti-tumor responses 

[153, 192]. While NK cells were first characterized by an ability to kill without prior activation, 

priming by DCs is now appreciated to be an important mechanism for inducing full NK cell 

activation, mediated through both soluble cytokine-dependent and cell contact-dependent 

processes. IL-12 has been repeatedly observed to induce NK cell proliferation, cytotoxicity, and 

IFNγ secretion [182, 193], and IL-15, originally characterized for its importance in NK cell 

development, has also been implicated in NK cell effector activation, particularly through DC 

surface ‘trans’-presentation by IL-15Rα [194-196]. Many other factors have also been suggested 

to have a role in DC activation of NK cells, including IL-18 and type I IFNs [185, 197], 

membrane-bound TNF [195], Notch ligands [198], and CX3CL1 [199]. The ability of NK cells 

under certain patterns of activation to induce DC production of the above-described factors 
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suggests the possibility for potent feed-forward interactions between NK cells and DCs in the 

expansion of immune responses, and thus represents an attractive potential target for cancer 

therapeutic approaches. A complete understanding of the regulation and mechanisms of this 

relationship, however, remains lacking. 

Reciprocally, activated NK cells can play a critical ‘helper’ role in shaping innate and 

adaptive immune responses through their modulation of DC function [200]. As mentioned above, 

type-1 immune responses, dominated by the activation of Th1, CTL, and NK cell responses, are 

critical for effective surveillance against tumor development and are driven significantly by DC-

provided signals [150], with production of IL-12p70 serving as an essential factor [201]. Our 

group and others have demonstrated that NK cells, following recognition of MHC class Ilow 

targets expressing ligands for NK activating receptors and/or exposure to various soluble 

mediators, including type I interferons, IL-2, and IL-18, can mediate DC activation via TNFα, 

IFNγ, and cell-to-cell contact-dependent signals, including NKp30 [128, 189, 190, 202, 203]. 

Such NK cells demonstrate the ability to mature DCs toward high expression of co-stimulatory 

molecules and promote high IL-12-producing, type-1-polarized DCs with an enhanced capacity 

to induce anti-tumor Th1 and CTL responses, even in the absence of CD4+ T cell help [204]. NK 

cells have also been shown to be capable of driving type-1 responses by triggering the 

differentiation of monocytes into DCs [205, 206]. Collectively, these data indicate that NK cells 

not only serve as effector cells benefitting from DC activation, but play key roles in activating, 

broadening, and directing DC-mediated immune responses. 

In addition to the promotion and polarization of DC maturation, activated NK cells, 

particularly those expressing the CD94/NKG2A inhibitory receptor but lacking inhibitory killer 

Ig-like receptors (KIRs) specific for self-HLA-class I alleles [207], also demonstrate the ability 
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to kill immature (i)DCs in vitro and in vivo [189, 208, 209]. A number of different mechanisms 

have been proposed to mediate NK cell killing of iDCs, including recognition of iDCs via the 

NKp30, NKp46, and DNAM-1 activating receptors on NK cells [191, 210, 211], and iDC 

cytolysis via perforin, granzyme, FasL, and TRAIL-dependent mechanisms [208, 212]. Besides 

iDCs, NK cells have also been implicated in the lysis of other types of myeloid APCs, including 

resting microglial cells [213] and activated, but not resting, macrophages [214]. Although the 

direct significance of this NK cell-mediated killing of APCs is still unclear due to the limitations 

in the experimental models used, this process may act as a potential suppressive mechanism 

providing negative feedback control over immune activation. Distinct immune synapses have 

been reported in differentially-mediating lytic and non-lytic NK cell functions during their 

reciprocal interaction with macrophages [214], and a unique DC-NK ‘regulatory’ synapse has 

been described governing the IL-15Rα-mediated survival of NK cells that is qualitatively 

different from the classical NK synapses formed in association with MHC class Ilow targets 

[215]. Overall, these data indicate that NK cell-mediated activation as well as NK cell-mediated 

killing both represent major outcomes of NK cell interaction with DCs, although the 

determinants and regulation of these differential outcomes remain unclear. 

1.4 MYELOID-DERIVED SUPPRESSOR CELLS 

MDSCs are a heterogeneous population of myeloid progenitor cells and activated immature 

myeloid cells (iMCs) that were first identified in cancer [216, 217], but are now known to also 

play key regulatory roles in many other pathologic settings, including infection [218-220], 

autoimmunity [221, 222], and traumatic stress [223]. While iMCs in healthy individuals quickly 
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differentiate into mature granulocytes, macrophages, or DCs, these pathologic conditions 

partially block this iMC differentiation and instead contribute to the expansion of MDSCs [224]. 

The involvement of MDSCs in cancer, as well as their complex phenotypic characterization and 

functional activities, are reviewed below. 

1.4.1 MDSCs and cancer 

MDSCs are enriched in the setting of most human cancers and animal tumor models and play a 

critical role in the establishment and maintenance of an immunosuppressive tumor 

microenvironment [225, 226]. In healthy individuals, iMCs are non-suppressive, constituting 

about 0.5% of PBMCs in humans [227], and in mice, they represent about 20-30% of cells in the 

bone marrow, 2-4% of cells in the spleen, and are absent from the lymph nodes [224, 228, 229]. 

However, tumor-associated activation results in an up to ten-fold increase in MDSCs in the 

blood of cancer patients [227, 230], and these cells may comprise up to 50% of splenocytes [224] 

and lymph node cells in tumor-bearing mice [228]. MDSCs have been isolated from the blood of 

patients with almost all forms of cancer, including cancers of the colon, lung, breast, liver, 

prostate, skin, brain, kidney, and many others [231], with the high frequency of these cells often 

correlating with increased tumor burden, radiographic progression, and poor prognosis [232, 

233]. Importantly, MDSCs have also been shown to be profoundly enriched within the human 

tumor microenvironment [26, 27, 234], both infiltrating and surrounding tumor beds in the core 

as well as at the invasive margin [21]. These cells thus represent a critical determinant of 

intratumoral immune responses through their close association with immune cells and their 

potent suppressive ability, described in detail below (see ‘MDSC functions’). 
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1.4.2 MDSC phenotype and plasticity 

MDSCs show significant differences in phenotype depending on the pathologic condition and 

tissue specified [228]. The term MDSC comprises cells of myeloid origin at earlier stages of 

their differentiation (i.e. myeloid progenitor cells and iMCs) that typically do not express or 

express only limited levels of mature myeloid cell markers [235], and demonstrate either 

granulocytic or monocytic morphology. MDSCs are identified in mice by co-expression of 

CD11b and Gr1 markers, as well as by the expression of CD115 (c-fms; receptor for M-CSF) 

[236, 237], CD16 and CD32 (receptors for Fc), IL-4R[237], and low levels of CD80 [238]. 

Murine monocytic MDSCs, at least in some tumor models, express higher levels of CD54, 

F4/80, IL-4R, CD115, and Ly6C [236, 237, 239], and express elevated levels of both arginase 1 

(Arg1) and inducible nitric oxide synthase (iNOS), whereas granulocytic MDSCs express high 

levels of Ly6G and contain significant levels of Arg1 [228, 239, 240]. Initial studies 

demonstrated at least two distinct cellular fractions within the heterogenous population of 

MDSCs according to Gr1 brightness: a Gr1high population mainly composed of immature and 

mature granulocytes, and a Gr1int population comprising monocytes and other immature myeloid 

cells. More recently, however, MDSCs have been divided into three populations according to 

Gr1 brightness: polymorphonuclear MDSCs (PMN-MDSCs; CD11b+Gr1hiLy6G+Ly6Clow/int), 

mononuclear MDSCs (MO-MDSCs, CD11b+Gr1intLy6G-Ly6Chi, F4/80+CD115+7/4hiCCR2hi), 

and Gr1low MDSCs [239, 241, 242]. Under this scheme, MO-MDSCs and a subpopulation of 

Gr1low MDSCs (Ly6G-Ly6C+F4/80+SSClow) have come to jointly represent monocytic MDSCs, 

characterized by elevated production of nitric oxide (NO) [235, 242]. In most murine tumor 
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models, granulocytic MDSCs are the predominant subset (70-80%) of tumor-associated MDSCs 

[240, 243]. 

Lack of a Gr1 analogue in humans has necessitated alternative phenotypic identification 

of human MDSCs [26], which express common myeloid marker CD33, CD34, CD11b, and IL-

4Rα (CD124), but lack expression of the lineage (Lin) markers of DCs and the associated 

antigen-presentation and co-stimulatory molecules [226, 244]. Human MDSCs are typically 

defined as CD33+Lin-HLA-DR-/low or CD33+CD14-HLA-DR-, although recent studies have also 

demonstrated the presence of additional populations of MDSCs with different phenotypes. These 

include CD14+CD11b+HLA-DRlow monocytic MDSCs [245-250] and CD15+ neutrophil-related 

immature (i)MDSCs [226], as well as activated granulocytic MDSCs [251, 252] that express 

high levels of CD66b, CD11b, and VEGFR1 and low levels of CD62L and CD16 [251], Arg1, 

and/or iNOS [228, 253]. 

The heterogeneity of MDSCs can be attributed in significant part to the profound 

plasticity of myeloid cells. This is exemplified by studies examining the adoptive transfer of 

CD11b+Gr1+ cells into congenic mice, which gave rise to immunosuppressive tumor-infiltrating 

CD11b+Gr1-F4/80+ cells [254]. In another study, transfer of CD11b+Gr1+F4/80- cells, isolated 

from the spleens of EL-4 tumor-bearing congenic mice, into the tumor site of EL-4 tumor-

bearing CD57BL/6 recipients, similarly resulted in loss of Gr1 expression (in 70% of the donor 

cells) and acquisition of F4/80 expression (in 50% of the donor cells), as well as differentiation 

into CD11c+ DCs (in 20% of the donor cells) [255]. In vitro culture experiments further 

substantiated the plasticity of the MDSC phenotype by demonstrating their ability to develop 

into CD11b+Gr1-F4/80+ cells, which retained suppressive capabilities in the absence of cytokines 

[256, 257]. After transfer of CD11b+Gr1+CD31+ MDSCs into normal mice or in vitro exposure 
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to interleukin 4 (IL-4) and granulocyte/macrophage colony-stimulating factor (GM-CSF), 

MDSCs were also shown to be capable of differentiating into CD11c+CD86hiMHC class II+ 

dendritic cells (DCs) [229]. Exposure to IFN and TNF could likewise drive MDSC 

differentiation into functional CD86hiMHC class II+ antigen-presenting cells (APCs) [258]. 

These findings demonstrate that depending on the cytokine milieu that prevails during APC 

maturation, CD11b+Gr-1+CD31+ progenitors can give rise to cells capable of activating CD8+ T 

cells. Along with observations that the differentiation of functional DCs is impaired in tumor-

bearing hosts [259], these studies indicate that tumors provide tight microenvironmental control 

balancing and maintaining the phenotype of local iMCs, DCs, and MDSCs. 

1.4.3 MDSC functions 

Due to the complex and still-evolving classification of human MDSCs based on phenotypic 

markers, MDSCs remain most definitively identified by their functional immune-suppressive 

activity. MDSCs are primarily characterized by their potent ability to suppress both antigen-

specific and antigen-non-specific T cell responses [228, 260], with a prominent role for NOS, 

indoleamine-2,3-dioxygenase 1 (IDO1), and Arg1 activity, as well as the cyclooxygenase 2 

(COX2)-driven production of prostaglandin E2 (PGE2). MDSCs have also been shown to utilize 

cell-surface molecules [238, 261-263], TGF- [245], IL-10 [144, 244], and reactive oxygen 

species (ROS) [226, 252] to drive immune suppression. T cell suppression by the factors 

described above has been shown to be mediated through a broad range of mechanisms. 

Production of reactive nitrogen and oxygen species induce defects in the ζ-chain expression and 

antigen-recognition capacity of the T cell receptor (TCR) complex [252, 264], as well as defects 

in the signaling of the IL-2 receptor [265]. Depletion of key amino acids (L-arginine and L-
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cysteine) further interferes with both the expression of the TCR complex and the TCR-driven 

proliferation of antigen-activated T cells [266, 267]. MDSCs have also been shown to disturb 

proper CD62L-driven migration of naïve T cells to the lymph nodes necessary for priming [268], 

as well as to interfere with the chemokine-driven localization of effector T cells to intratumoral 

sites required for efficient tumor rejection [269]. 

In addition to their function as direct suppressors of effector T cell-mediated immune 

responses [270, 271], MDSCs further promote tumor progression through the induction, 

activation, and expansion of regulatory T cells, through both soluble factors and contact-

dependent mechanisms [236, 263, 272]. However, their exact role within the network of specific 

CD4+ T cell subsets, encompassing various populations with distinct cellular and immunological 

functions (e.g. naïve, effector, regulatory, etc.), remains unclear. 

In contrast to MDSC suppression of T cells, current understanding of MDSCs in NK cell 

suppression is relatively limited, especially in the human tumor context, with conflicting studies 

in mice suggesting both activation [273] and inhibition [274] of NK cell function through MDSC 

cell contact involving NKG2D [144, 273], membrane-bound TGF-β1 [144], and NKp30 [248]. 

The reciprocal effect of activated NK cells on MDSCs is even less well understood, with no 

studies describing this interaction to date. 

1.5 STATEMENT OF THE PROBLEM 

It has become clear that the regulation of NK cell, DC, and MDSC activation is complex and 

under the control of diverse factors and processes, with the character and context of these 

activation events fundamentally determining the development of significantly different immune 
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outcomes. It has also become evident that the decisions about the initiation of immune responses 

to cancer, as well as their character and magnitude, are not determined by individual cells, but 

are governed by the complex interplay between multiple stimulatory and suppressive cell 

populations, including NK cells, T cells, DCs, and MDSCs. However, our understanding of the 

specific interactions that control the initiation, promotion, and suppression of anti-tumor 

immunity, as well as their underlying regulation, remain incomplete, limiting our ability to 

design cohesive cancer therapeutic strategies modulating both the induction and suppression of 

anti-tumor immune responses. 

In this work, we investigate the complex cellular interactions driving anti-tumor 

immunity, focusing on the roles of NK cells. In Chapter 2, we describe distinct functional 

activities of NK cells in their interaction with DCs, including in the context of late-stage cancer 

patients, and their unique regulation by distinct cytokines. In Chapters 3 and 4, we describe the 

NK cell-driven initiation and promotion of DC-induced T cell immunity through critical 

chemokine regulation of immature DC migration, DC-driven recruitment of naïve T cells to 

lymph nodes for subsequent T cell priming, and effector T cell infiltration into tumor sites. In 

Chapter 5, we identify an enriched population of MDSCs within the tumor environment of 

human ovarian cancer capable of potent CD8+ T cell suppression as well as the nitric oxide-

driven skewing of CD4+ T cells toward Th17 immunity. In Chapter 6, we describe an MDSC-

mediated mechanism by which activated NK cells and other type-1 lymphocytes promote 

negative feedback immune suppression, a mechanism enhanced in the human tumor environment 

for the limitation of anti-cancer responses. Finally, in Chapter 7, we discuss the implications of 

these findings for a broader understanding of anti-tumor immunity and for future approaches to 

cancer therapy. 
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2.1 ABSTRACT 

NK cells have been shown to mediate important immunoregulatory ‘helper’ functions in addition 

to their cytolytic activity. In particular, NK cells are capable of preventing maturation-related DC 

‘exhaustion’, inducing the development of type-1-polarized mature DCs with an enhanced ability 

to produce IL-12p70, a factor essential for type-1 immunity and effective anti-cancer responses. 

Here we show that the NK cell-mediated type-1 polarization of DCs can be applied in the context 

of patients with advanced cancer to enhance the efficacy of DCs in inducing tumor-specific 

CTLs. In contrast to NK cells activated with IL-2, which mediated efficient DC killing, NK cells 

isolated from late-stage (stage III and IV) melanoma patients responded with high IFNγ 

production and the induction of type-1-polarized DCs upon exposure to defined combinations of 

stimulatory agents, including IFNα plus IL-18. The resulting DCs showed strongly-enhanced IL-

12p70 production upon subsequent T cell interaction, compared to immature (i)DCs (average of 

19-fold enhancement) and non-polarized IL-1β/TNF-α/IL-6/PGE2-matured ‘standard’ (s)DCs 

(average of 215-fold enhancement). Additional inclusion of poly-I:C during NK-DC co-cultures 

optimized the expression of CD80, CD86, CD40, and HLA-DR on the resulting NKDC1s, 

increased their CCR7-mediated migratory responsiveness to the lymph node-associated 

chemokine CCL21, and further enhanced their IL-12-producing capacity. When compared in 

vitro to iDCs and non-polarized sDCs, NKDC1s were superior in inducing functional melanoma-

specific CTLs capable of recognizing multiple melanoma-associated antigens and killing 

melanoma cells. These results indicate that the helper function of NK cells can be utilized in 

clinical settings to improve the effectiveness of DC-based cancer vaccines. 
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2.2 INTRODUCTION 

Dendritic cells (DCs) play a central role in the initiation and regulation of immune responses. 

They act as carriers of pathogen- and damage-related information, migrating from peripheral 

sites of pathogen entry and tissue injury to the T cell areas of draining lymph nodes where they 

prime naïve T cells, providing them with the antigen-specific ‘signal 1’ and co-stimulatory 

‘signal 2’ [149]. Furthermore, DCs also regulate the balance between the preferential activation 

of type-1, type-2, and type-17 effector mechanisms of immunity by providing naïve T cells with 

an additional ‘signal 3’ [150, 151, 275, 276]. The character of this DC-mediated signal 3 is 

influenced by the cues provided to them directly by pathogens, by factors produced by injured 

tissues [275, 277, 278], or by other immune cells capable of sensing transformation or 

intracellular infections, including natural killer (NK) cells [279, 280]. 

The argument for the therapeutic use of DCs as cancer vaccines has been recently 

strengthened by the FDA approval of sipuleucel-T for the treatment of patients with castration-

resistant prostate cancer [16]. However, in addition to their ability to deliver antigen, effective 

DC-based cancer vaccines also need to deliver the co-stimulatory ‘signal 2’ and IL-12-involving 

‘signal 3’ needed for optimal T cell proliferation and differentiation, respectively [281-283]. 

Current standard protocols used for the production of ‘second-generation’ DC vaccines 

emphasizing these principles yield mature DCs, but with an ‘exhausted’ ability to produce IL-

12p70 [174, 175, 284-286], a crucial factor for the development of type-1 immunity and 

effective anti-cancer responses [201]. As a result, while standard non-polarized DCs combine a 

fully mature status (a predictive marker of enhanced immunogenicity [287, 288] with high 

expression of CCR7, a predictive marker of their lymph node homing capability [289]), they 
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display only a limited ability to produce IL-12p70 [290-292], ultimately restricting their capacity 

to induce effective anti-tumor CTL activation. 

Several groups, including ours, have previously demonstrated that NK cells can regulate 

immune responses by activating DCs [189-191] and promoting their differentiation into mature, 

high IL-12-producing type-1 polarized DCs (DC1s) with an enhanced capacity to induce Th1 

and CTL responses [203, 293], the responses most desirable against cancer. These observations, 

together with a documented role of NK cells during the induction of anti-cancer Th1 and CTL-

mediated responses in vivo [123, 202, 294-296], suggested the possibility of using NK cells as a 

tool to generate more effective cancer vaccines. Previously, we reported that NK cells from 

healthy donors can be activated in a ‘two-signal’ paradigm to induce DC1 polarization in a 

mechanism involving IFNγ [203, 297]. The resulting NK-polarized DC1s showed a strongly-

elevated capacity to produce IL-12p70 and induce Th1 and CTL responses in polyclonal 

superantigen-driven models of T cell activation [203, 297]. 

Here, we report for the first time that this DC1-promoting ‘helper’ function can be 

effectively induced in NK cells isolated directly from patients with advanced melanoma under 

clinically-desirable serum-free conditions, providing a useful tool to induce high numbers of 

melanoma-specific CTLs capable of recognizing distinct melanoma-associated epitopes and 

killing melanoma cells. 

2.3 MATERIALS AND METHODS 

Media and reagents. T cells and tumor cell lines were cultured in Iscove’s Modified Dulbecco’s 

Medium (IMDM) containing 10% fetal bovine serum and 1% L-glutamine and 
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Penicillin/Streptomycin (all from Gibco, Invitrogen, Grand Island, NY). IMDM containing 5% 

human serum (Gemini Bio-Products, West Sacramento, CA) was used as the base medium for 

the outgrowth of T cell cultures. Two different serum-free medium types were used as the base 

medium for short-term stimulation of human NK cells as well as to generate DCs: AIM-V 

medium (Gibco, Invitrogen, Grand Island, NY) and CellGenix DC medium (CellGenix 

Technologie Transfer GmbH, Freiburg, Germany). The following factors were used throughout 

the study: granulocyte macrophage colony-stimulating factor (GM-CSF) and IL-4 (Schering-

Plough, Kenilworth, NJ); IFNα (Intron A-IFN-α-2b; Schering-Plough); TNFα and IFNγ (both 

from Miltenyi Biotech, Bergisch Gladbach, Germany); IL-6 (Thermo Scientific, Waltham, MA); 

PGE2 (Sigma-Aldrich, St. Louis, MO); IL-18 (MBL International, Woburn, MA); IL-2 (Chiron, 

Emeryville, CA); IL-7 (PeproTech, Rocky Hill, NJ); and poly-I:C (Sigma-Aldrich, St. Louis, 

MO). The R24 anti-GD3 monoclonal antibody (mouse IgG3) used in this study was prepared at 

CellTech (London, UK) and provided by the National Cancer Institute (NCI) BRMP, and was 

stored at -80°C until use. 

NK cell and CD8+ T cell isolation. Peripheral blood from patients with advanced 

melanoma (stage III and stage IV) and healthy donors was harvested by venipuncture under IRB-

approved protocols. NK cells and CD8+ T cells (>95% pure) were isolated by negative magnetic 

selection using the StemSep system (StemCell Technologies Inc., Vancouver, British Columbia, 

Canada).  

Generation of DCs. Peripheral blood mononuclear cells (PBMCs) were isolated from the 

peripheral blood of either healthy donors or melanoma patients (all stage III and IV donors) by 

density gradient separation using Lymphocyte Separation Medium (Cellgro Mediatech, Herndon, 

VA). Monocyte fractions were further isolated by CD14 positive selection (Miltenyi Biotech, 
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Bergisch Gladbach, Germany). Immature DCs were generated from monocytes cultured for 6 

days in 24-well plates (Falcon, Becton Dickinson Labware, Franklin Lakes, NJ) at 4x105 cells 

per well in GM-CSF and IL-4 (both 1,000 IU/ml). To generate ‘standard’ mature DCs, day 6 

immature DCs were cultured for an additional 48 h with IL-1β (10 ng/ml), TNFα (25 ng/ml), IL-

6 (1,000 IU/ml), and PGE2 (10-6 mol/L) as previously described [298]. 

Induction of IFNγ production by NK cells. NK cells were isolated and plated in 96 

well plates at 1x105 cells/well. NK cells were stimulated with IFNα (1,000 IU/ml) together with 

either IL-18 (1 μg/ml), K562 cells (2x104 cells/well), or melanoma (FEM-X) cells (1x104 

cells/well) in a final adjusted volume of 200 μl. When stated, anti-GD3 antibody (R24) was used 

to opsonize FEM-X cells. To accomplish this, 1x106 FEM-X cells were placed in 1 ml of tumor 

culture media and exposed to the R24 antibody at 1 μg/ml for 30 min at room temperature. Cells 

were then washed three times to remove excess antibody before use. 

DC and NK cell co-cultures. Previously isolated and cryopreserved autologous NK cells 

were thawed and added to DC cultures either directly or separated by Transwell culture inserts 

(Costar-3413; 0.4m pore size) at 1.5x105 cells/well to day 6 DC cultures in the presence of 

IFNα (1,000 IU/ml) and IL-18 (1 g/ml). When stated, poly-I:C (20 g/ml) was also added 20 h 

after co-culture initiation, which was previously determined to be optimal for enhancing its 

effects. 

Flow cytometry. Two and three-colored cell surface immunostaining analyses were 

performed using a Beckman Coulter Epics XL Flow Cytometer. FITC-labeled anti-human CD86, 

CD40, and CD3 monoclonal antibodies and the corresponding FITC-isotype (mouse IgG1) 

control antibodies were purchased from BD Biosciences (San Jose, CA). PE-labeled anti-human 

CD83 and the corresponding PE-isotype (mouse IgG2b) control monoclonal antibodies were 
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purchased from BD Biosciences (San Jose, CA). PE-Cy5-labeled anti-human HLA-DR and the 

corresponding PE-Cy5-isotype (mouse IgG1) control monoclonal antibodies were purchased 

from Beckman Coulter (Brea, CA). PE-labeled anti-human CCR7 monoclonal antibody was 

purchased from R&D Systems (Minneapolis, MN) and the corresponding PE-isotype (mouse 

IgG2a) control antibody was purchased from BD Biosciences (San Jose, CA). PE-labeled 

MART-1 tetramer (ELAGIGILTV) and the control influenza virus tetramer (GILGFVFTL) were 

purchased from Beckman Coulter (Brea, CA). Before staining, the cells were treated for 20 min 

at 4ºC in PBS buffer containing 0.1% NaN3, 2% human serum, 0.5% BSA, and 1 μg/ml of 

mouse IgG (Sigma-Aldrich, St. Louis, MO) to block non-specific Fc receptor binding sites. Cells 

were stained for 40 min at 4ºC followed by washing with PBS buffer containing 0.1% NaN3 and 

0.5% BSA, then fixed and stored in 2% paraformaldehyde until analysis. 

DC production of IL-12p70. Dendritic cells were harvested, washed, and plated in 96-

well plates at 2x104 cells/well. To mimic the interaction with CD40L-expressing Th cells, 

CD40L-transfected J558 cells (a gift from Dr. P. Lane, University of Birmingham, United 

Kingdom), which in previous studies proved equivalent to activated CD4+ T cells and soluble 

CD40L [285, 299], were added at 5x104 cells/well. Supernatants were collected after 24 h and 

analyzed by IL-12p70 ELISA (Endogen, Woburn, MA). 

Chemotaxis. Dendritic cell migration was induced by CCL21 (6C-Kine-Biosource, 

Camarillo, CA) and measured using a 96-well 8um pore ChemoTx system (Neuro Probe, 

Gaithersburgh, MD). 25x103 DC in AIM-V medium were placed on the top of the membrane and 

permitted to migrate for 90 min at 37C. Enumeration of migrated DC was determined by 

counting four random areas in the bottom chamber. Results are expressed as mean DC numbers 

 SD of four random areas in duplicate wells. 
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CTL induction. HLA-A2+ melanoma patient-derived CD8+ T cells (5x105 cells) were 

plated in 48-well plates and sensitized by autologous DCs (5x104 cells) that were pulsed with the 

HLA-A2-restricted peptides MART-1 (26–35), gp100 (209–217), and tyrosinase (368-376). 

Added to the mix were -irradiated (3,000 rad)CD40L-transfected J558 cells (5x104), which 

acted as a surrogate for CD40L-expressing CD4+ Th cells. At day 4, T cell cultures were 

supplemented with IL-2 (50 IU/ml) and IL-7 (10 ng/ml). The CD8+ T cells were expanded 

following an additional in vitro stimulation (day 12) with irradiated peptide-pulsed autologous 

PBMCs (1:1 T cell:PBMC ratio). At day 24, the differentially-induced CD8+ T cell lines were 

stimulated with target cells to determine the generated frequency of melanoma-specific CD8+ T 

cells by IFNγ enzyme-linked immunospot (ELISPOT), using either T2 cells (pulsed with the 

relevant individual antigenic melanoma peptides or the irrelevant HPV-E7 peptide (43-62), or 

left unpulsed as an additional nonspecific control) or the HLA-A2+ and HLA-A2- melanoma cell 

line targets FEM-X and MEL-397, respectively. The pan-MHC class I blocking antibody 

(W6/32) was used to determine MHC class I restriction. CTL activity was further assessed by 

standard 4 h 51Cr-release cytotoxicity assays using the antigen relevant HLA-A2+ and irrelevant 

HLA-A2- melanoma cell lines FEM-X and MEL-397, respectively. 

Statistical analysis. Data was analyzed using unpaired and paired t tests (two-tailed) and 

one-way and two-way ANOVA, where appropriate. Significance was judged at an α of 0.05. 
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2.4 RESULTS 

2.4.1 Differential regulation of human NK cell cytotoxicity and cytokine production by 

IL-2 and IL-18 

While NK cells have been describe to perform diverse lytic and non-lytic functions dependent on 

prior activation [300], we investigated whether specific NK cell functions may be independently 

regulated by distinct activating factors. Although NK cell treatment with both IL-2 and IL-18 

significantly up-regulated surface expression of CD69 (Fig. 2.1A), a classical marker of NK cell 

activation, only treatment with IL-2 enhanced NK cell cytotoxicity, including against both Daudi 

tumor cell targets as well as, importantly, against autologous immature (i)DCs (Fig. 2.1B). In 

contrast to the potent ability of IL-2-activated NK cells to kill autologous DCs, IL-18-activated 

NK cells instead demonstrated a preferential ability to respond to another early inflammatory 

signal, IFNα, with an immune-stimulatory cytokine profile characterized by high expression of 

IFNγ, TNFα, and GM-CSF, factors known to be essential for DC activation and polarization 

toward type-1 immune responses critical for effective anti-tumor immunity (Fig. 2.1C). 
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Figure 2.1. IL-2 and IL-18 differentially regulate NK cell cytotoxicity and cytokine secretion.  

(A) Representative expression of CD69 on NK cells treated for 24 h with IL-2 or IL-18. (B) Cytotoxic activity of 

NK cells activated by IL-2 or IL-18 against Daudi tumor cells or autologous immature (i)DCs, as determined by 

standard 4 h 51Cr-release assay. Data recorded as the mean (± SD) of triplicate cultures. Similar data were obtained 

in two additional experiments. (C) NK cell expression of IFNγ, TNFα, and GM-CSF measured in 24 h culture 

supernatants by specific ELISA or 4 h mRNA by RT-PCR. Data recorded as the mean (± SD) of triplicate cultures, 

and mRNA expression indicated as ratios between the expression of individual chemokine genes and HPRT1. Data 

represent one of three independent experiments, all yielding similar results. ***p<0.001 compared to all groups. 

 

Furthermore, NK cells pre-treated with IL-18 responded synergistically with high IFNγ 

secretion in response to a diverse range of secondary stimuli in addition to type I interferon, such 

as exposure to K562 tumor cells or IL-12, IL-2, or IL-15 secondary signals associated with a 

developing immune response (Fig. 2.2). These results indicate the unique ability of IL-18 to 
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prime human NK cells toward stable ‘helper’ immune-stimulatory activity following subsequent 

NK cell recognition of tumor cells or diverse inflammatory signals. 
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Figure 2.2. IL-18 priming synergizes with multiple secondary stimuli in inducing NK cell secretion of IFNγ. 

NK cells were pre-treated for 24 h in the absence or presence of IL-18, washed, and re-plated in the absence or 

presence of IFNα, K562 tumor cells, IL-12, IL-2, or IL-15. IFNγ in culture supernatants was analyzed after 24 h 

incubation with the secondary stimulus. Data recorded as the mean (± SD) of triplicate cultures. Data represent one 

of three independent experiments, which all yielded similar results. ***p<0.001 compared to other group. 

2.4.2 Intact ‘helper’ activity of NK cells from melanoma patients: Two-signal activation 

requirement 

In order to test whether NK cells from patients with advanced cancer are similarly functional and 

whether they respond to the above stimuli in standardized, clinically-desirable serum-free 

conditions, we first analyzed the cytokine-producing capacity of NK cells derived from late-
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stage (stage III and IV) melanoma patients. NK cells were exposed to various activating 

combinations under serum-free conditions, including IFN with IL-18, IFN with the NK cell-

sensitive K562 leukemic cell line, or IFN with the nominally NK cell-insensitive FEM-X 

melanoma cell line. In accordance with their undisturbed ability to perform helper functions, 

melanoma patient-derived NK cells produced high levels of IFNγ when stimulated with the 

combination of IFNα and IL-18, although not when stimulated with either of these factors alone 

(Fig. 2.3A, top). Similarly, the combination of IFNα with NK cell-sensitive K562 cells or with 

opsonized NK cell-insensitive FEM-X melanoma tumor cells, but not with any of these 

individual stimuli, effectively induced freshly-isolated NK cells from melanoma patients to 

secrete IFNγ (Fig. 2.3A, middle and bottom).  
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Figure 2.3. Two-signal activation requirement for IFNγ production by NK cells isolated from late-stage melanoma 

patients. 



 40 

Negatively-isolated NK cells were incubated for 24 h in the presence of the indicated combinations of activating 

factors. Supernatants were subsequently assayed by ELISA for the presence of IFNγ. (A) NK cell production of 

IFNγ in response to stimulation with IFNα and/or IL-18 (top); IFNα and/or exposure to NK cell-sensitive K562 

leukemia tumor cells (middle); or IFNα and/or exposure to antibody (R24)-opsonized, nominally NK cell-resistant 

FEM-X melanoma cells (bottom). Data shown represents one of six independent experiments, which all yielded 

similar results. Data recorded as the mean ( SD) of triplicate cultures. (B) Comparison of IFNγ production by NK 

cells derived from six melanoma patients or six healthy donors in response to stimulation with IFNα and IL-18. Data 

recorded as the mean of triplicate cultures for each patient or healthy donor. (C) Comparison of IFNγ production by 

unstimulated or IFNα/IL-18-stimulated NK cells isolated from individual melanoma patients. Data is presented as 

the mean of triplicate cultures for each patient (total of 6 patients). ***p<0.001, *p<0.05, ns: p>0.05 compared to 

indicated groups or compared to all groups when not specifically indicated. 

 

While immune cells from tumor-bearing individuals are known to display multiple 

functional defects [301], the ability of NK cells to respond to two-signal stimulation was similar 

when comparing healthy donors and melanoma patients, although a significant variation in the 

absolute levels of IFNγ production was observed in both groups of donors (Fig. 2.3B). Despite 

this variability, all patients demonstrated strong increases in IFNγ secretion following activation 

(Fig. 2.3C), suggesting intact NK helper function even in patients with late-stage cancer. 

2.4.3 NK cells from melanoma patients prime DCs for an enhanced ability to produce IL-

12p70 

Having established that melanoma patients’ NK cells are competent in their ability to respond to 

two-signal stimulation with high IFNγ production, we tested if these two-signal-activated NK 

cells could also promote the development of autologous type-1-polarized DCs (DC1s) with an 

elevated, rather than ‘exhausted’ [284, 285], ability to produce IL-12p70. To accomplish this, 
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cryopreserved autologous NK cells from late-stage melanoma patients were thawed and added to 

day 6 immature DCs for 48 h in the presence of IL-18 and IFNα. 

As shown in Figure 2.4, while DCs matured with the “standard” cytokine cocktail of IL-

1β/TNF-α/IL-6/PGE2 (sDCs), a vaccine protocol used extensively in recent clinical trials [298, 

302], showed a diminished capacity to produce IL-12p70 (compared to immature (i)DCs from 

the same donors), the DCs induced by two-signal-activated NK cells produced greatly enhanced 

levels of IL-12p70 (Fig. 2.4A). Control DCs exposed to the mix of NK cell-activating factors 

(IL-18 and IFNα) in the absence of NK cells failed to produce elevated levels of IL-12p70, 

demonstrating that NK cells are themselves critical, rather than solely IL-18 and IFNα, for this 

enhancement of IL-12 production by DCs. 

We performed transwell experiments to address whether cell-to-cell contact played a role 

in this NK cell-induced enhancement of IL-12p70 expression. In accordance with the previously-

demonstrated key role of the soluble factor IFNγ in NK cell-mediated DC polarization [203], 

two-signal-activated NK cells could enhance the IL-12p70-producing capacity of bystander DCs 

independent of cell-to-cell contact, although the IL-12-enhancing effects were maximal in the 

presence of cell contact (Fig. 2.4B).  

Consistent with the notion that the ability of NK cells to perform ‘helper’ functions is 

preserved even in patients with advanced cancer, similar results could be consistently obtained 

with blood from different patients with stage III-IV melanoma (Fig. 2.4C). On average, the NK 

cell-induced DC1s demonstrated over 200-fold greater capacity to produce IL-12p70 compared 

to sDCs generated from the same individual patient, and over 19-fold greater capacity compared 

to immature DCs from the same patient. This degree of enhancement was comparable to our 

observations from healthy donors [203, 297]. Such enhanced ability to produce IL-12 was 
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preserved for at least 24 h after harvesting of the DCs (Fig. 2.4D), suggesting that the function of 

these NK cell-induced DC1s will remain intact following their therapeutic application and 

migration to draining lymph nodes in clinical settings. 
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Figure 2.4. Two-signal-activated NK cells from late-stage melanoma patients stably induce DCs with an enhanced 

capacity to produce IL-12p70. 

Previously isolated and cyropreserved NK cells were added to autologous day 6 DCs (2-3x105 cells/well) in the 

presence of IFNα and IL-18. After 48 h, the DCs were harvested, plated, and exposed to J558-CD40L to induce IL-

12p70 production. IL-12p70 concentrations in 24 h supernatants were determined by ELISA. (A) IL-12p70 

production by untreated immature DCs (iDCs), DCs treated with the standard cytokine maturation cocktail of 

TNFα/IL-1β/IL-6/PGE2 (sDCs), or DCs treated with IL-18/IFNα with or without autologous NK cells. Data 

recorded as the mean ( SD) of triplicate cultures. Data shown was obtained from one representative experiment of 

five performed, all yielding similar results. (B) IL-12p70 production by DCs treated with the standard cytokine 

cocktail (sDCs) or autologous NK cells with IL-18/IFNα in direct or transwell-separated co-cultures. Data recorded 
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as the mean ( SD) of triplicate cultures. Data from one representative experiment of two performed, both of which 

yielded similar results. (C) IL-12p70 production by untreated immature DCs (iDCs), DCs treated with the standard 

cytokine maturation cocktail (sDCs), or DCs treated with autologous NK cells and IL-18/IFNα. Data recorded as the 

mean of triplicate cultures for each patient (total of 5 patients). (D) IL-12p70 production by differentially-matured 

DCs stimulated with CD40L directly after harvesting (top) or after an additional 24 h of culture in the absence of 

maturation factors (bottom). Data presented as the mean ( SD) of triplicate cultures for each patient. Data from one 

representative experiment of three performed, all of which yielded similar results. ***p<0.001, **p<0.01 compared 

to indicated groups or compared to all groups when not specifically indicated. 

2.4.4 NKDC1s express high levels of maturation-associated co-stimulatory, antigen 

presentation, and lymph node migratory molecules: Stability of the NKDC1 phenotype 

The effective induction of primary T cell responses during vaccination requires the action of 

fully mature DCs that express high levels of co-stimulatory and antigen presentation molecules, 

and that are capable of migrating to lymph nodes in response to CCR7 ligands [289]. While the 

production of IL-12p70 is indeed critical to their ability to induce tumor-specific Th1 cells and 

CTLs [290-292], the IL-12-producing capacity of DCs often inversely correlates with the 

maturation status of the DC [285, 299]. Therefore, we examined the maturation status of the DCs 

in our NK-DC co-culture system by surface flow cytometric analysis. As shown in Figure 2.5, 

the DCs co-cultured with autologous NK cells in the presence of IL-18 and IFNα demonstrated a 

partially-activated phenotype, manifested by enhanced expression of the co-stimulatory 

molecules CD80, CD86, and CD40, compared to immature DCs. However, additional co-

stimulation with a TLR3/RIG-I/MDA5-ligand, polyinosinic:polycytidylic acid (poly-I:C), was 

needed to optimize expression of these molecules to levels comparable to the sDC maturation 

cocktail. 
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Similar to their IL-12-producing capacity, the mature surface phenotype of NKDC1s was 

maintained after 24 h of additional culture in the absence of maturation factors (Fig. 2.5, 

bottom). In all cases, the presence of NK cells in the maturation cultures was critical in inducing 

optimal DC maturation, compared to the IL-18/IFNα-exposed- or IL-18/IFNα/poly-I:C-exposed 

DCs (without NK cells) from the same patients (data not shown). 

Besides enhanced expression of co-stimulatory factors and the ability to produce high 

levels of IL-12p70, the capacity of DCs to induce immune responses and serve as effective 

cancer vaccines is also influenced by their ability to migrate in response to lymph node-produced 

chemokines, dependent on DC expression of CCR7 [283, 303]. Similar to maturation-associated 

co-stimulatory molecules, CCR7 surface expression was enhanced by DC exposure to two-

signal-activated NK cells, especially with the additional presence of poly-I:C (Fig. 2.5, bottom). 

In agreement with prior reports [289], this enhanced expression of CCR7 was found to be 

functional in terms of migratory responsiveness to CCL21, a lymph node-associated chemokine 

ligand for CCR7, and was greatly augmented by direct NK-DC cell contact in transwell 

experiments (Appendix Fig. 1). Moreover, CCR7 expression on NKDC1s was further modestly 

increased after 24 h of additional culture in fresh media (Fig. 2.5, bottom), consistent with our 

recent report describing the CCR7 regulation in type-1-polarized DCs induced by soluble NK 

cell-related factors [304]. 

Similar to the enhanced expression of surface molecules involved in T cell stimulation 

and lymph node-homing, the presence of poly-I:C in the IL-18/IFNα-activated NK-DC co-

cultures further augmented the IL-12p70-producing capacity of DCs (Fig. 2.5, right), making 

such conditions preferable for our prospective applications. While poly-I:C stimulation alone can 

result in the augmentation of IL-12-production by maturing DCs [305], the high capacity for IL-
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12-production observed in NKDC1s could not be stably imprinted by the combination of IL-18, 

IFNα, and poly-I:C in the absence of NK cells (Appendix Fig. 2), demonstrating the key role for 

NK cells. 
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Figure 2.5. Inclusion of poly-I:C in NK-DC co-cultures results in NKDC1s with optimal surface expression of T cell-

activating molecules and CCR7 and optimal ability to produce IL-12p70. 

Surface expression (open histograms) of CD80, CD86, CD40, HLA-DR, and CCR7 on untreated immature DCs 

(iDCs), DCs treated with the standard cytokine maturation cocktail (sDCs), or DCs treated with autologous NK cells 

and IL-18/IFNα with or without poly-I:C. Surface expression was analyzed directly after DC harvesting or after an 

additional 24 h of culture in the absence of maturation factors. Gray histograms represent isotype controls. Inset 

numbers represent fold MFI increase over isotype controls. Right: The corresponding IL-12p70 production after 

J558-CD40L-stimulation. Data from one representative experiment of three performed, all of which yielded similar 

results. ***p<0.001 for NKDC1s (NK/IL-18/IFNα/poly-I:C DCs) compared to iDCs, sDCs, and NK/IL-18/IFNα 

DCs, or for NK/IL-18/IFNα DCs compared to iDCs and sDCs. 
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2.4.5 NKDC1s induce high numbers of tumor-specific CTLs capable of recognizing 

multiple melanoma antigens and killing melanoma cells 

To determine the relative ability of NKDC1s to induce tumor-specific CTL responses, NKDC1s 

generated from HLA-A2+ melanoma patients (stage III and IV) were loaded with HLA-A2-

restricted melanoma-associated antigenic peptides and used to sensitize autologous blood-

isolated CD8+ T cells in vitro. Parallel control cultures included iDCs or sDCs, in order to 

compare NKDC1s to, respectively, immature/partially-mature DCs used in the FDA-approved 

prostate vaccine [306], or to fully-mature DCs extensively tested in past clinical trials [298, 302]. 

DCs exposed to IL-18/IFNα/poly-I:C in the absence of NK cells were also used as additional 

controls. Following two rounds of in vitro sensitization, the expanded CD8+ T cells were 

harvested and used as responders against HLA-A2+ T2 cells pulsed with individual peptides, or 

against HLA-A2+ melanoma cells (FEM-X) or control HLA-A2- melanoma cells (MEL-397). 

As shown in Figures 2.6A and 2.6B, NKDC1s proved to be superior in generating high 

numbers of functional melanoma-specific CTLs, as determined by IFNγ ELISPOT against 

distinct MART-1, gp100, and tyrosinase epitopes, and by tetramer staining of MART-1-specific 

T cell receptors. This enhanced CTL-inducing activity of NKDC1s was strictly dependent on the 

presence of NK cells, and was not observed in the DCs activated by IL-18/IFNα/poly-I:C alone 

(Appendix Fig. 3). Importantly, NKDC1-sensitized CD8+ T cell cultures contained a larger 

percentage of CTLs not only capable of specifically recognizing peptide-loaded T2 cells, but also 

capable of specifically detecting and killing HLA-A2+ melanoma cells (Fig. 2.6, C and D). This 

demonstrates that NKDC1-sensitized CD8+ T cells are able to detect physiologic amounts of 

tumor-associated antigens and are capable of killing actual tumor cells, which often show 

enhanced resistance to immune elimination [307-309]. 
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Figure 2.6. NKDC1s are efficient inducers of melanoma-specific CTLs. 

Immature (i)DCs, sDCs, and NKDC1s from HLA-A2+ stage III and stage IV melanoma patients were pulsed with 

MHC Class I-restricted melanoma-associated peptides and used to sensitize autologous CD8+ T cells. CTLs were 

assayed on day 24 of culture. (A) Frequencies of IFNγ-producing CD8+ T cells responsive to T2 cells loaded with 

individual peptides, as determined by ELISPOT assay. Data recorded as the mean ( SD) of triplicate cultures. Data 

shown is from one representative experiment of three performed. (B) Flow cytometric analysis showing percentage 

of tetramer-positive MART-1-specific CD8+ T cells generated through in vitro stimulation with melanoma peptide-

pulsed, differentially-activated DCs. Inset numbers represent percentages of CD8+ MART-1+ cells. Results from one 

representative experiment of three performed. (C) Frequencies of IFNγ-producing CD8+ T cells responsive to the 

relevant (HLA-A2+) and irrelevant (HLA-A2-) target melanoma cell lines FEM-X and MEL-397, respectively, as 

determined by ELISPOT assay. Blockade with the W6/32 pan-MHC Class I-neutralizing antibody was used to 

demonstrate the MHC Class I-dependence of the T cell recognition. Data recorded as the mean ( SD) of triplicate 
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cultures. Data shown is from one representative experiment of three performed. (D) Antigen-specific cytotoxic 

activity of CTLs induced by NKDC1s, iDCs, or sDCs against FEM-X (HLA-A2+) and MEL-397 (HLA-A2-) 

melanoma cell lines, as determined by standard 4 h 51Cr-release assay. Data recorded as the mean ( SD) of 

triplicate cultures. Similar data were obtained in two additional experiments. ***p<0.001, **p<0.01, ns: p>0.05 

compared to indicated groups or compared to all groups when not specifically indicated. 

2.5 DISCUSSION 

Numerous preclinical studies and clinical trials have individually employed either NK cells or 

DCs as tools in the immunotherapy of cancer. While the results of animal studies, as well as 

observations of clinical responses in individual cancer patients, have shown the potential benefits 

of such NK- and DC-based cancer therapies, their overall clinical efficacy has been 

disappointing [310-312]. The current results and recent demonstrations that NK cells can play a 

critical immunoregulatory “helper” role to support the induction of Th1 and CTL-mediated 

responses in mouse models [123, 202, 294-296] and human in vitro studies [203, 297] suggest 

the potential for improving the effectiveness of DC-based anti-tumor vaccination strategies by 

exploiting the interactions between NK cells and antigen-carrying DCs. 

We previously showed that type-I IFNs and tumor-associated activation ligands 

expressed on NK cell-sensitive K562 cells can synergistically induce the NK cell-mediated 

polarization of DC1s in healthy donors, in a mechanism dependent on IFNγ production. The 

current study, showing consistent generation in serum-free conditions of functional NKDC1s from 

the blood of different patients with advanced (stage III and IV) melanoma, demonstrates the 

potential for translating these findings into clinically-relevant settings using NK cells and DCs 

isolated directly from cancer patients. The ability of IL-18 to act in synergy with IFN as a 
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substitute for tumor lines provides a user-friendly, highly-reproducible, and potentially safer 

method of harnessing the DC1-polarizing activity of NK cells. The added positive effect of poly-

I:C on the IL-12-producing function of NKDC1s and their expression of maturation-associated 

co-stimulatory and lymph node-homing molecules is consistent with its ability to enhance the 

cross-talk between NK cells and DCs recently observed in human in vitro [90, 313] and mouse in 

vivo [314-316] settings. 

In addition to promoting effective NK-DC interactions (and the resulting type-1 

polarization of DCs) ex vivo during the generation of cell-based vaccines, the two-signal 

activation paradigm required for NK cell helper activity provides a rationale for in vivo 

approaches involving co-delivery of such cytokines as IL-18 and IFN, or the combination of 

IFN and tumor-specific opsonizing antibodies. Such therapies are likely to be particularly 

effective when further combined with adoptive transfer of ex vivo expanded/activated NK cells. 

In the case of antibody-utilizing therapies, in addition to the IgG1- or IgG3-antibody-triggered 

activation of CD16 on NK cells and resulting cytokine production [317, 318] and DC1-

polarization [203], antibody-directed NK cell-mediated lysis of nominally NK cell-resistant 

tumors may also provide potential antigen for cross-presentation by bystander DCs, further 

enhancing active immunization. 

A number of questions still remain concerning the potential differential impact of distinct 

combinations of NK cell-activating factors on NK cells and their ability to modulate DC 

function. It has been shown that NK cells, in analogy to Th cell differentiation, can also 

differentiate into polarized subsets displaying different cytokine patterns, producing a wide 

variety of factors including IFNγ, TNFα, IL-4, IL-5, IL-13, and IL-10 with both immune-

stimulatory and immune-suppressive functions [319]. It is therefore conceivable that depending 
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on the mode of their activation, instead of promoting DC-mediated type-1 immunity, NK cells 

activated by a particular stimulus may instead drive a type-2 response [320, 321], or even 

suppress DC function altogether [322], thus highlighting the need for the careful selection of NK 

cell-activating signals to be used in clinical settings. 

The current data demonstrate the feasibility and rationale for the clinical application of 

immunotherapies of melanoma and other cancers utilizing the positive feedback between NK 

cells and DCs. The high activity of antigen-loaded NKDC1s in inducing tumor-specific CTLs 

makes them interesting candidates for clinical evaluation as cancer vaccines as an alternative to 

standard DCs or type-1-polarized DCs induced in less physiologic conditions, using the 

combination of NK cell-related soluble factors [175]. While NK cell-derived IFNγ appears to be 

the obligatory polarizing component in the development of NKDC1s [174, 203], additional factors 

may also likely be involved, as indicated in our transwell experiments demonstrating enhanced 

DC function when direct contact between the two cell types was permitted. This latter effect may 

indicate the involvement of additional membrane-bound molecules, as observed in related 

systems [128, 189-191], but may also reflect the close proximity of the two cell types and higher 

concentrations of soluble factors. The potential contribution of additional NK cell-related factors 

to the helper activity of NK cells and the phenomena of DC activation is a subject of our current 

analyses. 
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3.1 ABSTRACT 

The chemokine-driven interactions of immune cells are essential for effective anti-tumor 

immunity. Human natural killer (NK) cells can be primed by IL-18 for unique ‘helper’ activity, 

promoting dendritic cell (DC) activation and DC-mediated induction of type-1 immune 

responses against cancer. Here we show that such IL-18-primed ‘helper’ NK cells produce high 

levels of the immature DC (iDC)-attracting chemokines CCL3 and CCL4 upon exposure to 

tumor cells or the additional inflammatory signals IFNα, IL-15, IL-12, or IL-2. These ‘helper’ 

NK cells potently attract iDCs in a CCR5-dependent mechanism and induce high DC production 

of CXCR3 and CCR5 ligands (CXCL9, CXCL10, and CCL5), facilitating the subsequent 

recruitment of type-1 effector CD8+ T (Teff) cells. Using cells isolated from the malignant ascites 

of patients with advanced ovarian cancer, we demonstrate that ‘helper’ NK cell-inducing factors 

can be used to enhance the local production of Teff cell-recruiting chemokines. This study 

demonstrates for the first time the unique chemokine expression profile of ‘helper’ NK cells, and 

highlights the potential for utilizing two-signal-activated NK cells to promote homing of type-1 

immune effectors to the human cancer environment. 

3.2 INTRODUCTION 

Natural killer (NK) cells are innate sentinel cells recognizing early signs of tissue stress, 

infection, or transformation [200, 300]. NK cells integrate signals from activating and inhibitory 

receptors engaged by pathogen products and/or products released from affected cells, such as 

type I interferons (IFNα/β) [89, 323], and play a critical ‘helper’ role in initiating and directing 
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dendritic cell (DC)-regulated immune responses [189-191, 202]. Constituting an early source of 

IFNγ and TNFα, NK cells are capable of promoting DC maturation and DC-mediated induction 

of type-1-polarized helper CD4+ T cell (Th1) and cytotoxic CD8+ T cell (CTL) responses [128, 

153, 203, 297]. 

Resting NK cells require activation for the acquisition of different effector functions, and 

specific NK cell functions can be preferentially driven by distinct cytokines, including IL-18 

[200]. IL-18 is an IL-1 family cytokine widely expressed by multiple barrier cell types, including 

epithelial cells in the gut and lung and keratinocytes in the skin, and by early-responding innate 

cells, such as monocytes and macrophages [324]. Expression of the IL-18 pro-cytokine is further 

enhanced by toll-like receptor signaling, with production of the mature cytokine controlled by 

activated caspase-1 [325]. Caspase-1 activity in turn depends on inflammasome activation, 

which is likewise downstream of pattern receptor recognition [325]. Thus, IL-18 represents an 

early product of the developing response to tissue damage, infection, or transformation. We have 

previously shown that unlike IL-2, which promotes ‘killer/effector’ NK cell differentiation 

characterized by enhanced cytotoxicity against tumor and DC targets, IL-18 uniquely primes 

human NK cells for preferential non-cytotoxic ‘helper’ activity upon subsequent stimulation with 

multiple distinct secondary factors, including tumor cells and type I interferons. We 

demonstrated that these IL-18-primed ‘helper’ NK cells are capable of inducing DC activation 

and potentiating DC-mediated induction of tumor-specific Th1 and CTL adaptive immune 

responses through an IFNγ- and TNFα-dependent mechanism [203, 297], including in patients 

with late-stage cancer [326]. Here, we investigate whether IL-18 may also uniquely regulate 

human NK cell chemokine production to enhance interaction with DCs, and subsequently 



 54 

influence productive chemokine-driven interactions with effector T cells, particularly in the 

context of the human tumor environment.  

While prior studies have described the ability of activated DCs to attract NK cells, in 

mechanisms involving CXCR3 and CXCR1 and their chemokine ligands [123, 327, 328], our 

current data indicate that human NK cells can initiate chemokine-driven NK-DC interaction in 

response to signals associated with infection or neoplastic cell transformation. We show that IL-

18-primed NK cells can act as the inducers of local immune cell accumulation, promoting the 

CCR5-dependent attraction of immature DCs and driving subsequent DC production of the 

effector CD8+ T (Teff) cell-recruiting chemokines CXCL9, CXCL10, and CCL5, both in cells 

isolated from the blood of healthy donors as well as in tumor-associated cells isolated from the 

malignant ascites of advanced (stage III-IV) ovarian cancer (OvCa) patients. 

3.3 MATERIALS AND METHODS 

Media, cell lines, and reagents. Serum-free CellGenix DC medium (CellGenix Technologie 

Transfer GmbH) was used for short-term culture of human NK cells and for DC generation. T 

cells, ovarian cancer ascites-derived cells, and K562 cells were cultured in Iscove’s Modified 

Dulbecco’s Medium (IMDM) containing 10% fetal bovine serum and 1% L-glutamine and 

penicillin/streptomycin (all from Gibco, Invitrogen). K562 cells were obtained from American 

Type Culture Collection, expanded and cryopreserved after receipt, and used for experiments 

from recently thawed stocks. The following factors were used throughout the study: IL-18 (MBL 

International); IL-2 (Chiron); IFNα (Intron A, IFN-α-2b; Schering-Plough); IL-12 (PeproTech); 
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IL-15 (Sigma-Aldrich); IL-1β (Miltenyi Biotech); and granulocyte macrophage colony-

stimulating factor (GM-CSF) and IL-4 (Schering-Plough). 

NK cell and CD8+ T cell isolation. Peripheral blood from healthy donors was harvested 

by venipuncture under IRB-approved protocols. NK cells (CD56+CD3-) and naïve CD8+ T cells 

(CD8+CD45RA+CCR7highCD45RO-CD56-CD57-) were isolated by negative magnetic selection 

(>95% pure in both cases) using the EasySep system (StemCell Technologies), according to the 

manufacturer’s protocol. When indicated, CD3-CD56brightCD16- and CD3-CD56dimCD16+ NK 

cell subsets were flow-sorted using a MoFlo high-speed cell sorter (DakoCytomation), after 

labeling with appropriate antibodies.  

Blood DC isolation. Human blood DCs, including all three major subsets [CD1c+ 

(BDCA-1+), CD141+ (BDCA-3+), and CD304+ (BDCA-4+)], were isolated from healthy donor 

peripheral blood by magnetic selection using the Blood Dendritic Cell Isolation Kit II (Miltenyi 

Biotec), according to the manufacturer’s protocol. Cells were >95% HLA-DR+ and >99% CD14-

CD19-CD3-CD56-. 

Generation of DCs. Peripheral blood mononuclear cells (PBMCs) were isolated from the 

peripheral blood of healthy donors by density gradient separation using Lymphocyte Separation 

Medium (Cellgro Mediatech). Monocyte fractions were further isolated by CD14 positive 

magnetic selection (Miltenyi Biotech). Immature DCs were generated from monocytes cultured 

for 6 days in 24-well plates at 4x105 cells/well in GM-CSF and IL-4 (both 1000 IU/ml). 

NK cell stimulation and DC co-culture. NK cells were isolated and plated in 48-well 

plates at 1x106 cells/ml. NK cells were stimulated with IL-18 (200 ng/ml) or IL-2 (250 IU/ml) 

together with IFNα (1000 IU/ml), IL-12 (5 ng/ml), IL-2 (250 IU/ml), IL-15 (100 ng/ml), or K562 

cells (1x105 cells/well). Alternatively, NK cells were pre-treated with IL-18 or IL-2 for 24 h, 
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washed thoroughly, and re-plated in the presence of IFNα, IL-12, IL-2, IL-15, or K562 cells as a 

secondary stimulus. Expression of chemokines was analyzed at 4 h by quantitative real-time 

PCR or at 24 h by specific ELISA. When indicated, NK cells were pre-treated for 30 min at 37°C 

with blocking antibodies to NKG2D (clone 1D11; 10 µg/ml; Biolegend), NKp30 (clone P3015; 

10 µg/ml; Biolegend), or DNAM-1 (clone DX11; 10 µg/ml; Abcam) before co-culture with 

K562 cells. For NK cell activation of DCs, previously isolated and cryopreserved autologous NK 

cells were thawed and added to DC cultures at 1.5x105 cells/well to day 6 DC cultures in the 

presence of IL-18 (200 ng/ml) and IFNα (1000 IU/ml). When indicated, soluble decoy receptors 

to TNFα (sTNFR1; 1 µg/ml; R&D Systems) and IFNγ (sIFNγR1; 10 µg/ml; R&D Systems) were 

added to cultures at co-culture initiation. Supernatants were collected at 48 h for chemokine 

analysis. To assess the stability of DC chemokine production, NK-DC co-cultures were 

harvested and washed, and NK cells were removed by CD56 positive magnetic selection 

(StemCell Technologies). DCs were then re-plated in 96-well plates at 2x104 cells/well. To 

mimic interaction with CD40L-expressing CD4+ T cells, DCs were co-cultured with CD40L-

transfected J558 cells (a gift from Dr. P. Lane, University of Birmingham, United Kingdom) at 

5x104 cells/well, which in previous studies proved equivalent to activated CD4+ T cells and 

soluble CD40L [175]. Supernatants were collected after 24 h and analyzed by specific ELISAs 

for CXCL9, CXCL10, CCL5, and CCL22 (PeproTech). 

Generation of effector CD8+ T cells by in vitro sensitization. Naive CD8+ T cells were 

activated with staphylococcal enterotoxin B-pulsed DCs matured from day 6 immature DCs by 

36 h treatment with TNFα (50 ng/ml), IL-1β (25 ng/ml), IFNγ (1000 IU/ml), poly-I:C (20 

µg/ml), and IFNα (3000 IU/ml), as previously described [175]. DCs matured in this manner have 

been extensively demonstrated to be efficient inducers of CD45RO+granzymeBhigh effector-type 
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CD8+ T cells (Teff cells) expressing high levels of the peripheral homing chemokine receptors 

CXCR3 and CCR5 [175, 329]. On days 5–6, expanded CD8+ T cells were analyzed to confirm 

CTL phenotype and expression of chemokine receptors, and were subsequently used for 

chemotaxis assays. 

Chemotaxis. Chemotaxis assays were performed using 24-(Trans)well plates with 5 μm 

pore size polycarbonate membranes (Corning), as previously described [173]. For DC 

chemotaxis, the lower chamber was filled with supernatants from 36 h cultures of NK cells 

treated with IL-18 (200 ng/ml) or IL-2 (250 IU/ml) together with IFNα (1000 IU/ml) in 

CellGenix medium, and the upper chamber was loaded with blood-isolated DCs or day 6 

monocyte-derived immature DCs (2x105). When indicated, DCs were treated for 30 min with an 

anti-CCR5 blocking antibody (Clone 2D7, 20 μg/ml; BD Biosciences) before chemotaxis to 

block CCR5-dependent chemotaxis. Alternatively, DCs were treated for 30 min with 

recombinant CCL3, CXCL8, XCL1, CCL20, or CXCL12 (all at 200 ng/ml; all from PeproTech) 

before chemotaxis, previously shown to be effective for desensitizing specific chemokine 

receptor responsiveness [123, 173]. For effector CD8+ T cell chemotaxis, the lower chamber was 

filled with supernatants from 42 h co-cultures of NK cells and DCs, and the upper chamber was 

loaded with effector CD8+ T cells (2x105) generated as described above. Cell numbers in the 

bottom chambers were assessed after 3 h by flow cytometry, and specific chemotaxis for each 

condition was calculated as the number of migrated cells subtracted by the number of migrated 

cells toward media-only controls. 

Isolation of OvCa ascites cells. Human OvCa ascites were obtained intraoperatively 

from previously-untreated patients with advanced (stage III or IV) epithelial ovarian cancer 

undergoing primary surgical debulking for clinical staging. Written informed consent was 
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obtained prior to any specimen collection, and the nature and possible consequences of the 

studies were explained. All specimens were provided under a protocol approved by the 

University of Pittsburgh Institutional Review Board (IRB0406147). Primary OvCa ascites cells 

were harvested by centrifugation. NK cell-enriched and NK cell-depleted fractions were 

generated from bulk OvCa ascites cells by CD56 positive magnetic selection (StemCell 

Technologies). 

Flow cytometry. Cell surface and intracellular immunostaining analyses were performed 

using an Accuri C6 Flow Cytometer. NK cells and T cells were stained with the dye-conjugated 

anti-human mouse monoclonal antibodies CD56-PE-Cy5 (Beckman Coulter), CD3-PE 

(eBioscience), Granzyme B-PE (Invitrogen), and CD16-FITC, CD8-PE-Cy5, CD45RA-FITC, 

CD45RO-PE, and CD57-FITC (BD Biosciences). Chemokine receptors on DCs and T cells were 

stained with the dye-conjugated anti-human mouse monoclonal antibodies CCR1-PE and CCR7-

FITC (R&D Systems) and CCR5-FITC, CCR6-PE, CXCR1-FITC, CXCR3-PE, and CXCR4-PE 

(BD Biosciences), and the dye-conjugated anti-human goat polyclonal antibody XCR1-PE (R&D 

Systems). The corresponding mouse antibody isotype controls IgG1-FITC, IgG2a-FITC, IgG2b-

FITC, IgG1-PE, IgG2a-PE, IgG2b-PE, and IgG1-PE-Cy5 (BD Biosciences) and normal goat 

antibody control IgG-PE (R&D Systems) were used, as appropriate. Before staining, the cells 

were treated for 20 min at 4ºC in PBS buffer containing 2% human serum, 0.5% BSA, 0.1% 

NaN3, and 1 μg/ml of mouse IgG (Sigma-Aldrich) to block non-specific binding. Cell 

permeabilization for intracellular staining was performed using 0.1% Triton X-100 (Sigma) in 

PBS for 15 min. Cells were stained for 40 min at 4ºC followed by washing with PBS buffer 

containing 0.5% BSA and 0.1% NaN3, then fixed and stored in 4% paraformaldehyde until 

analysis. 
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Quantitative real-time PCR. Analysis of mRNA expression was performed using the 

StepOne Plus System (Applied Biosystems), as previously described [173], using inventoried 

primer/probe sets. Preliminary kinetic analysis (data not shown) determined optimal expression 

of NK cell-expressed IFNγ, TNFα, CCL3, CCL4, CXCL8, and XCL1 at 4 h following cytokine 

stimulation of both purified NK cells and bulk OvCa ascites cells, and optimal expression of 

CXCL9 and CXCL10 in bulk OvCa ascites cells at 24 h following IL-18/IFNα stimulation. The 

expression of each gene was normalized to HPRT1 and expressed as fold increase (2-∆CT), where 

∆CT = CT (target gene) – CT (HPRT1). 

ELISA. Supernatants from 48 h co-cultures of NK cells and DCs were analyzed for 

CXCL9, CXCL10, CCL5, and CCL22 by indirect sandwich ELISA using specific matched 

primary and biotinylated-secondary antibody pairs (PeproTech), as previously described [173]. 

When indicated, DCs were harvested, washed, and re-plated in the presence of CD40L-

transfected J558 cells (for rationale, see above), and 24 h culture supernatants were analyzed for 

levels of CXCL9, CXCL10, CCL5, and CCL22. 

Statistical analysis. Data was analyzed using unpaired and paired t tests (two-tailed) and 

one-way and two-way ANOVA, where appropriate. Significance was judged at an α of 0.05. 

3.4 RESULTS 

3.4.1 Unique role of IL-18 in priming human NK cell attraction of DCs 

While activated DCs have been previously reported to attract and activate NK cells [123, 327, 

328], we observed that the ‘helper’ pathway of NK cell activation, induced by IL-18 and 
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secondary signals like tumor cells or IFNα [293, 297], strongly promoted NK cell attraction of 

autologous DCs, either directly isolated from peripheral blood or generated in vitro from 

monocyte precursors (Fig. 3.1A). In contrast, IL-2-induced ‘killer’ effector NK cells, 

characterized by enhanced cytotoxicity and ability to kill DCs [297], were not similarly effective 

in attracting DCs. Prompted by the essential role of the chemokine system in governing cellular 

interactions during immune responses [330, 331], we investigated the role of ‘helper’ NK cell-

produced chemokines in their superior ability to attract DCs. Immature monocyte-derived DCs 

(iDCs) expressed similarly high levels of CCR5 and CXCR1 as blood-isolated DCs, as well as 

distinct but lower levels of CXCR4, with XCR1 expression limited to monocyte-derived iDCs 

(Fig. 3.1B and Appendix Fig. 4). Analysis of the expression of the known ligands for these DC 

chemokine receptors in NK cells revealed that the NK cells treated with either IL-2 or IL-18 

alone expressed only limited levels of CCL3, CCL4, and CXCL8 (Fig. 3.1C), ligands for the 

chemokine receptors CCR1/5 and CXCR1, respectively, which are known to mediate migration 

of iDCs in peripheral tissues [29]. Similarly, NK cells treated with IL-2 or IL-18 alone showed 

minimal to modest enhancement, respectively, in the expression of XCL1, the ligand for the 

receptor XCR1 and a chemokine implicated in the attraction of DCs highly efficient in antigen 

cross-presentation [332, 333]. In contrast, combined stimulation of NK cells with IL-18 and 

IFNα, a factor recently shown to be important for initiating spontaneous anti-tumor immune 

responses in vivo [102, 103] and a secondary signal known to co-activate cytokine secretion in 

human ‘helper’ NK cells [203, 297], induced a strong synergistic enhancement in the expression 

of CCL3, CCL4, CXCL8, and XCL1 (Fig. 3.1C). Such two-signal induction of DC-attracting 

chemokines parallels the mode of induction of the DC-activating cytokines IFNγ and TNFα in 

human NK cells [203, 297]. Expression of the additional chemokines CCL20 and CXCL12, 
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ligands for the receptors CCR6 and CXCR4, were not observed in NK cells under any mode of 

stimulation (data not shown).  

Additional NK cell subset analysis revealed that the CD56dim population was particularly 

responsive to IL-18-driven chemokine induction (Fig. 3.1D), while the CD56bright NK cell subset 

responded to IL-18 to a significantly lesser degree. This is consistent with prior work implicating 

the CD56dim subset as the predominant target of IL-18 in driving NK cell acquisition of lymph 

node-homing CCR7 and the early secretion of DC-polarizing IFNγ [297], as well as recent 

findings implicating the CD56dim subset as a major producer of cytokines and chemokines, 

particularly at early activation time-points [64, 65]. 

The ability to induce NK cell expression of DC-attracting chemokines was a specific 

feature of IL-18, since it could not be reproduced by IL-2 or IFNα (both known NK cell 

activating factors [300]) alone or in combination (Fig. 3.1C), nor by IL-1β, a member of the 

same family of cytokines as IL-18 (data not shown). The unique character of IL-18-induced 

‘helper’ NK cells was further supported by the observation that only NK cells primed with IL-18 

responded with enhanced expression of DC-attracting chemokines when exposed to such 

secondary stimuli as IFNα, IL-15, IL-12, and IL-2 (Fig. 3.2A). In contrast, providing these 

stimuli in reverse order (primary IL-2 followed by secondary stimulation with IL-18) was 

ineffective in inducing NK cell expression of DC-attracting chemokines, demonstrating that 

enhanced DC-recruiting function is a specific feature of IL-18-induced helper NK cells, rather 

than a general outcome of NK cell activation. IL-18 further primed NK cells for the expression 

of DC-attracting chemokines in response to multiple secondary pro-inflammatory cytokines (Fig. 

3.2A) or in response to K562 tumor cells (Fig. 3.2B and Appendix Fig. 5), with the latter effect 

involving NKG2D-mediated recognition of tumor targets. These results indicate the role of IL-18 
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in priming NK cells for the attraction of DCs following subsequent NK cell exposure to such 

diverse signals as inflammatory cytokines and tumor cell recognition. 
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Figure 3.1. Unique role of IL-18 in priming human NK cell attraction of DCs. 

(A) Chemotaxis of peripheral blood-isolated DCs (left) or day 6 monocyte-derived immature DCs (iDCs; right) 

toward culture supernatants from autologous NK cells stimulated for 36 h with IL-2 and IFNα or IL-18 and IFNα. 

Data shown represent the mean (± SD) number of specific migrated DCs from independent donors across 

independent experiments (3 donors for blood DCs; 5 donors for monocyte-derived DCs). (B) Surface expression 
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(open histograms) of CCR1, CCR5, CCR6, CXCR1, CXCR4, and XCR1 on monocyte-derived iDCs. Gray filled 

histograms represent isotype controls. (C) NK cells were incubated for 4 h in the presence of IL-2, IL-18, and/or 

IFNα, and subsequently analyzed for expression of the chemokines CCL3, CCL4, CXCL8, and XCL1. Data are 

expressed as ratios between the expression of individual chemokine genes and HPRT1, and represent the mean (± 

SD) of 5 independent donors. (D) Sorted CD56bright and CD56dim NK cells were incubated for 4 h in the absence or 

presence of IL-18/IFNα, and subsequently analyzed for expression of CCL3, CCL4, CXCL8, and XCL1. Data are 

expressed as ratios between the expression of individual chemokine genes and HPRT1, and shown as the mean 

expression (± SD) of triplicate cultures. Data represent one of two independent experiments, which both yielded 

similar results. ***p<0.001, **p<0.01, *p<0.05, ns: p>0.05 compared to indicated groups. 
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Figure 3.2. IL-18 synergizes with multiple secondary stimuli in inducing NK cell expression of DC-attracting 

chemokines. 
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(A) NK cells were pre-treated for 24 h in the absence or presence of IL-2 or IL-18, washed, and re-plated in the 

absence or presence of IFNα, IL-15, IL-12, IL-2, or IL-18. The expression of CCL3 (top) and CCL4 (bottom) were 

analyzed after 4 h incubation with the secondary stimulus. Data are expressed as ratios between the expression of 

individual chemokine genes and HPRT1, and recorded as the mean expression (± SD) assayed in triplicate cultures. 

Data represent one of three independent experiments, which all yielded similar results. (B) NK cells were pre-treated 

for 24 h in the absence or presence of IL-18, washed, and re-plated in the absence or presence of K562 cells (5:1 

NK:K562 ratio). When indicated, NK cells were pre-treated for 30 min with blocking antibodies to NKG2D, 

NKp30, or DNAM-1 before co-culture with K562 cells. The expression of CCL3 (left) and CCL4 (right) were 

analyzed after 4 h activation with the secondary stimulus. Data are expressed as ratios between the expression of 

individual chemokine genes and HPRT1, and recorded as the mean expression (± SD) assayed in triplicate cultures. 

Data represent one of three independent experiments, which all yielded similar results. ***p<0.001 compared to 

indicated groups or compared to all groups when not specifically indicated. 

3.4.2 Key role of CCR5 in the recruitment of autologous immature DCs by IL-18-primed 

NK cells 

Desensitization of specific chemokine receptors on iDCs with a large panel of DC and NK cell-

relevant chemokines (Fig. 3.3A; see Materials and Methods for discussion of the technique) 

revealed a highly selective role for CCR5, but not CCR6, XCR1, CXCR1, or CXCR4, in the 

recruitment of autologous iDCs by IL-18-primed NK cells. Specific antibody blockade of the 

CCR5 receptor (Fig. 3.3B) confirmed the key role of this receptor in helper NK cell-mediated 

iDC attraction. 
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Figure 3.3. IL-18-primed NK cells attract autologous immature DCs through a CCR5-dependent mechanism. 

(A-B) iDCs were pre-treated for 30 min with the chemokines CCL3, CCL20, XCL1, CXCL8, or CXCL12 (A) to 

block the DC chemokine receptors CCR1/5, CCR6, XCR1, CXCR1, or CXCR4, respectively, or treated with a 

blocking anti-CCR5 monoclonal antibody (B) before migration toward 36 h supernatants collected from IL-

18/IFNα-stimulated autologous NK cells. Data is shown as mean (± SD) number of specific migrated iDCs in 

triplicate cultures. Data shown was obtained from one representative experiment of three performed, all yielding 

similar results. ***p<0.001 compared to all groups. 

3.4.3 IL-18-primed NK cells collaborate with DCs in the recruitment of effector CD8+ T 

cells 

Co-culture of IL-18-primed NK cells with autologous iDCs resulted in highly elevated levels of 

CXCL9, CXCL10, and CCL5 (Fig. 3.4A, top), the chemokines that have been implicated in the 

attraction of type-1 Teff cell subsets central to efficient anti-tumor responses [44-46]. This effect 

was not accompanied by an increase in the secretion of CCL22, a regulatory T cell-attracting 

chemokine [47]. The induction of these Teff cell-recruiting chemokines in NK-DC co-cultures 

was dependent on TNFα and IFNγ, since the enhanced chemokine secretion was abrogated upon 

addition of soluble TNF and IFNγ decoy receptors to the co-cultures (Fig. 3.4A, top). Elevated 
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production of Teff cell-recruiting chemokines by NK cell-activated DCs was maintained even 

after subsequent harvesting, washing, removal of NK cells, and re-stimulation of the DCs with 

CD40L (Fig. 3.4A, bottom), demonstrating the long-term impact of IL-18-primed NK cells on 

DC chemokine production. 
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Figure 3.4. IL-18-primed NK cells induce DC production of Teff cell-recruiting chemokines, promoting Teff cell 

attraction. 

NK cells were added to autologous day 6 DCs (1:2 NK:DC ratio) in the presence of IL-18 and IFNα. After 48 h, co-

culture supernatants were harvested for analysis and chemotaxis experiments, and DCs were harvested, washed, 

depleted of NK cells, and re-stimulated with CD40L for 24 h. (A) CXCL9, CXCL10, CCL5, and CCL22 levels in 
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supernatants of untreated immature DCs (iDCs) or DCs exposed to IL-18/IFNα with or without autologous NK 

cells, in the additional presence or absence of soluble TNF (sTNFR1) or IFNγ (sIFNγR1) decoy receptors, after 48 h 

co-culture (top) or following harvesting, washing, NK cell depletion, and 24 h CD40L stimulation (bottom). (B) 

Migration of effector CD8+ T cells (see Materials and Methods for generation) toward supernatants collected from 

48 h cultures of IL-18/IFNα alone, NK cells treated with IL-18/IFNα, or DCs exposed to IL-18/IFNα with or 

without autologous NK cells. Data recorded as mean (± SD) in triplicate cultures from one representative 

experiment of three performed, all yielding similar results. ***p<0.001, *p<0.05, ns: p>0.05 compared to indicated 

groups or compared to all groups when not specifically indicated. < indicates levels were below the limit of 

detection of the assay. 

 

Supernatants from NK cell-activated DCs were highly efficient at recruiting Teff cells 

(Fig. 3.4B). Importantly, although supernatants from two-signal-activated NK cells alone or IL-

18/IFNα-activated DCs alone were capable of mild Teff cell attraction over baseline, the 

supernatants generated from NK-DC interaction had a greatly- and synergistically-enhanced 

capacity for Teff cell recruitment, demonstrating the key role of DCs in NK cell-initiated Teff cell 

attraction. 

3.4.4 NK cell-mediated enhancement of Teff cell-recruiting chemokines can be induced in 

the human ovarian cancer environment 

In order to assess the potential for utilizing NK ‘helper’ cell paradigms in the therapy of cancer 

patients, we evaluated the ability of IL-18 and NK cells to regulate chemokine production in the 

malignant ascites of patients with stage III-IV epithelial ovarian cancer. Similar to what has been 

previously reported [334], significant populations of CD3-CD56+ NK cells were found within the 

ascites cells (NK cells as percentage of tumor-associated lymphocytes: median=15.42%; 
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range=2.1-30.5%; n=4). Although tumor-associated NK cells can demonstrate reduced 

functionality [22, 135], we observed that NK cells freshly isolated from malignant ovarian 

ascites could be effectively activated by IL-18/IFNα to express the NK helper-associated DC-

attracting and DC-activating factors CCL3, CCL4, IFNγ, and TNFα (Fig. 3.5A).  
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Figure 3.5. NK cells drive Teff cell-recruiting chemokines in the human ovarian cancer environment. 
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(A) CD56+ NK cells were enriched from human ovarian cancer (OvCa) ascites cells (left), cultured for 4 h in the 

absence or presence of IL-18/IFNα, and analyzed for expression of the chemokines CCL3 and CCL4 and the 

cytokines IFNγ and TNFα (right). (B) Bulk OvCa ascites cells or ascites cells depleted of CD56+ NK cells (left) 

were cultured for 4 or 24 h in the absence or presence of IL-18/IFNα, and analyzed for expression of the chemokines 

CCL3, CCL4, CXCL9, and CXCL10 and the cytokines IFNγ and TNFα (right). Flow cytometric analyses of NK 

cell enrichment and depletion are representative of one of four patients. Gene expression data are expressed as ratios 

between the expression of individual chemokine or cytokine genes and HPRT1, and represent the mean (± SD) 

across four independent experiments using ascites cells from four different patients. ***p<0.001, **p<0.01, ns: 

p>0.05. 

 

Furthermore, IL-18/IFNα treatment of bulk ascites cells induced the production of high 

levels of the DC activators IFNγ and TNFα and the Teff cell-recruiting chemokines CXCL9 and 

CXCL10 (Fig. 3.5B), demonstrating the ability of IL-18/IFNα–activated NK cells to function 

even in the suppressive environment of OvCa. Depletion of NK cells from the bulk ascites cell 

population suppressed the production of these chemokines and cytokines mediated by IL-

18/IFNα treatment, indicating that the activation of tumor-associated NK cells by the NK 

‘helper’-driving stimuli plays the key role in the induction of DC-attracting, DC-activating, and 

Teff cell-recruiting factors within the human cancer environment. 

3.5 DISCUSSION 

While IL-18-induced NK cells can promote antitumor immunity by elevating the production of 

Th1- and CTL-driving IL-12 by local DCs, our current data indicate their additional role in 

promoting DC attraction and the conditioning of tumor sites for the chemokine-driven infiltration 
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of desirable effector-type T cells. We demonstrate that chemokine production is not a general 

consequence of NK cell activation, but is strictly regulated and selectively associated with a 

‘helper’ NK cell phenotype driven by IL-18. Although IL-18 and IL-2 are both known to be 

potent NK cell activating factors, these data indicate that only IL-18 is efficient in enhancing NK 

cell expression of the DC-attracting chemokines CCL3, CCL4, CXCL8, and XCL1, resulting in 

the attraction of immature DCs. Such IL-18-driven enhancement in the expression of DC-

attracting chemokines corresponds closely to the previously-reported regulation of IFNγ and 

TNFα, factors essential for NK cell-mediated activation of DCs, in IL-18-primed human NK 

cells [297]. This suggests that NK cell recruitment of DCs and NK cell-mediated activation of 

DCs are closely related phenomena governed by similar mechanisms, supporting the role of NK 

cells as important modulators of DC-mediated immune responses. 

Interestingly, the unique ‘priming’ effects of IL-18 in promoting ‘helper’ NK cell-driven 

chemokine interactions with DCs requires secondary stimulation with other pro-inflammatory 

factors (see Fig. 3.2A) or recognition of target cells (see Fig. 3.2B and Appendix Fig. 5). These 

secondary signals, described in this study and others [297, 335], can include direct interaction 

with tumor cells or type I interferons likely to be elaborated early in viral infection. This two-

signal requirement for IL-18-primed NK cell function is likely to represent a critical checkpoint 

in NK cell activation, preventing inappropriate development of potent downstream immune 

responses, including those initiated through NK cell interaction with DCs. Although IL-18 has 

been reported to favor protective anti-tumor immunity [336, 337], IL-18 has also been recently 

implicated in tumor-associated immunosuppression through its promotion of a Kit+ subset of 

regulatory NK cells overexpressing PD-L1 [338, 339]. Therefore, it is possible that in some 

situations, IL-18-primed NK cells may mediate different functions depending on the availability 
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and/or character of associated secondary signals. Indeed, the activity of IL-18 has been shown to 

be highly context-dependent, and demonstrates the capacity to co-induce either the type-1 

cytokine IFNγ or the type-2 cytokine IL-13 when combined with different secondary signals 

[340]. The differential impact of distinct secondary signals specifically on IL-18-primed NK cell 

activity is the subject of our current ongoing investigations.  

The quantity and quality of immune cell infiltration into the tumor environment, 

including the critical balance between effector and regulatory T cells, have been increasingly 

recognized as vital components of both spontaneous and therapy-induced anti-tumor immune 

control [9, 341]. Importantly, the chemokines CXCL9, CXCL10, and CCL5 have been 

implicated in the attraction of type-1 Teff cell subsets central to effective anti-tumor responses 

[44-46], providing key targets for therapeutic ‘conditioning’ of the tumor chemokine 

environment for efficient anti-tumor effector cell entry. Although this study demonstrates that 

IL-18-primed NK cells can directly express CCR5 ligands, their role in generating a chemokine 

environment conducive to type-1 Teff cell recruitment is most likely to occur through their 

activity on DCs, given the apparent strong synergy between IL-18-driven NK cells and DCs in 

promoting Teff cell attraction that was significantly more efficient than NK cells or DCs alone 

(see Fig. 3.4B). 

Notably, this study demonstrates that IL-18-primed human NK cells, including from 

directly within the human cancer environment, can enhance type-1 immune responses by 

selectively inducing high DC expression of Teff cell-recruiting chemokines, including CXCL9, 

CXCL10, and CCL5, without inducing the Treg cell-attracting chemokine CCL22. However, 

intratumoral NK cells have also been shown to be capable of secreting CCL22 and mediating the 

recruitment of CD4+CD25+FoxP3+ regulatory T cells, a process which can be driven by NK cell 
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activation with IL-2 [342]. This highlights the importance of carefully defining the relevant NK 

cell stimulatory factors for the therapeutic augmentation of intratumoral immune control. 

In addition to their expression by Teff cells, resting NK cells have also been shown to 

express the chemokine receptors CCR5 and CXCR3, and can respond to their respective ligands 

produced by the interaction between IL-18-primed NK cells and DCs [343]. Since DCs can be an 

important source of IL-18 during developing immune responses [325], and mature DCs can play 

a significant role in activating resting NK cells [98], this presents the possibility of a reciprocal, 

chemokine-driven feed-forward interaction between NK cells and DCs, in which NK cell-

activated DCs can subsequently attract and activate additional resting NK cells, further 

promoting an amplifying cycle of immune activation. Indeed, reciprocal positive feedback has 

been demonstrated between NK cells and myeloid cells, including DCs [98], and spatial innate 

cell clustering has been shown to be important to developing protective immune responses in 

vivo [184]. Our current data suggests that the suppressive nature of the human tumor 

environment may not, at least, represent an absolute, irreversible barrier to NK cell activation 

toward DC-stimulating helper function, and may be amendable to therapeutic modulation, for 

instance through the local application of IL-18 and IFNα. Thus, the ‘helper’ interaction between 

IL-18-primed NK cells and DCs may represent a powerful feed-forward loop amplifying 

endogenous immune responses, and may present an attractive target for cancer therapy in which 

modest initiation of the helper response may result in a much larger induction of effector activity. 

In summary, these data identify the unique chemokine expression of ‘helper’ versus 

‘killer’ pathways of NK cell differentiation, and demonstrates that human NK cells can serve 

important helper functions in facilitating the chemokine-driven attraction and activation of DCs 

and the accumulation of effector cells in the tumor environment. This study further demonstrates 
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that NK cells in cancer patients, including NK cells infiltrating the tumor environment itself, are 

competent to undergo helper differentiation, and thus may serve as therapeutic targets for the 

modulation of the human tumor chemokine environment to facilitate type-1 immune responses 

against cancer. 
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4.1 ABSTRACT 

Effective accumulation and interaction of mature dendritic cells (DCs) and naïve T cells within 

lymph nodes driven by the CCR7-CCL19/CCL21 axis are critical for the induction of adaptive T 

cell immunity. Human natural killer (NK) cells activated by IL-18 exhibit unique ‘helper’ 

activity in promoting productive DC-T cell interactions, inducing dendritic cell (DC) maturation 

and the type-1-polarization of DC-primed T cell responses. Here we demonstrate that such IL-

18-induced ‘helper’ NK cells, upon secondary stimulation with the additional inflammatory 

signals IFNα, IL-15, IL-12, or IL-2, uniquely induce high DC production of CCL19 in a TNFα 

and IFNγ-dependent mechanism. Helper NK cell-activated DCs promote efficient CCR7-

mediated recruitment of naïve CD8+ T cells, inducing their expansion and acquisition of 

granzyme B. Using lymph nodes isolated from colorectal cancer patients, we further demonstrate 

enhanced expression of CCL19 in human tumor-associated lymphoid tissue induced by treatment 

with helper NK cell-stimulating factors. Our data demonstrate the ability of two-signal-activated 

‘helper’ NK cells to promote lymph node production of the DC- and naïve/memory T cell-

attracting chemokine CCL19, providing rationale for NK cell-targeting using IL-18-containing 

combinatorial adjuvants to promote the induction of adaptive anti-tumor immunity. 

4.2 INTRODUCTION 

Effective induction of T cell responses requires the productive lymph node association of 

activated DCs with naïve and memory T cells. Interaction of the chemokine receptor CCR7 and 

its ligands CCL19 and CCL21 play essential roles in this process, governing the entry of both 
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CCR7-expressing naïve T cells and activated DCs into the lymph node (LN) [31, 32], their co-

localization within the T cell zones of the LN paracortex [33], and their effective dynamic 

interaction [34-37]. The CCR7-CCL19/CCL21 axis has likewise been implicated in the optimal 

recruitment of central memory T cells to the LN [344, 345], positioning them for efficient DC 

activation of recall responses. 

NK cells have been demonstrated to play key ‘helper’ roles in directing DC-mediated 

priming of adaptive T cell immunity [123, 202, 204]. In particular, NK cells activated by IL-18, 

a cytokine elaborated early in response to tissue damage, infection, or transformation [324], have 

been demonstrated to uniquely localize to sites of DC-T cell interaction and provide an important 

early source of IFNγ and TNFα, promoting DC maturation and polarizing DC-mediated T cell 

priming toward type-1 helper CD4+ T cell (Th1) and cytotoxic CD8+ T cell (CTL) responses 

[124, 297, 346]. While ‘helper’ NK cells have been shown to direct DCs to draining LNs and 

facilitate the priming of naïve T cells [326], it remains unknown whether NK cells also promote 

T cell recruitment to the lymph nodes and their effective interaction with DCs. 

Here we show that human two-signal-activated ‘helper’ NK cells, induced uniquely by 

exposure to IL-18 and secondary pro-inflammatory signals, instruct DCs to secrete high levels of 

the CCR7 ligand CCL19, driving efficient DC recruitment of naïve T cells and subsequent T cell 

expansion and acquisition of effector molecules. Importantly for the prospective clinical 

application of NK cell-targeting ‘binary adjuvants’ involving IL-18, we further demonstrate that 

treatment of lymph nodes from colorectal cancer patients with such NK cell-activating stimuli is 

capable of inducing high expression of CCL19 within human lymphoid tissues. 
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4.3 MATERIALS AND METHODS 

Media and reagents. Serum-free CellGenix DC medium (CellGenix Technologie Transfer 

GmbH) was used for short-term culture of human NK cells and for DC generation. Iscove’s 

Modified Dulbecco’s Medium (IMDM) containing 10% fetal bovine serum and 1% L-glutamine 

and penicillin/streptomycin (all from Gibco, Invitrogen) was used as the base medium for the 

outgrowth of T cell cultures, the culture of human lymph node explants, and for the maintenance 

of the J558-CD40L tumor cell line. The following factors were used throughout the study: IL-18 

(MBL International); IL-2 (Chiron); IFNα (Intron A, IFN-α-2b; Schering-Plough); IL-12 

(PeproTech); IL-15 (Sigma-Aldrich); and granulocyte macrophage colony-stimulating factor 

(GM-CSF) and IL-4 (Schering-Plough). 

NK cell and CD8+ T cell isolation. Peripheral blood from healthy donors was harvested 

by venipuncture under IRB-approved protocols, and peripheral blood mononuclear cells 

(PBMCs) were isolated by density gradient separation using Lymphocyte Separation Medium 

(Cellgro Mediatech). NK cells (CD56+CD3-) and naïve CD8+ T cells 

(CD8+CD45RA+CCR7highCD45RO-CD56-CD57-) were further isolated from PBMCs by 

negative magnetic selection (>95% pure in both cases) using the EasySep system (StemCell 

Technologies), according to the manufacturer’s protocol. 

Generation of DCs. Monocyte fractions were further isolated from PBMCs by CD14 

positive magnetic selection (Miltenyi Biotech). Immature DCs were generated from monocytes 

cultured for 6 days in 24-well plates at 4x105 cells/well in GM-CSF and IL-4 (both 1000 IU/ml). 

NK cell activation of DCs. Previously isolated and cryopreserved autologous NK cells 

were thawed and added to DC cultures at 1.5x105 cells/well to day 6 DC cultures (1:2 NK:DC 

ratio) in the presence of IL-18 (200 ng/ml) or IL-2 (250 IU/ml) together with IFNα (1000 IU/ml), 
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IL-12 (5 ng/ml), IL-2 (250 IU/ml), IL-15 (100 ng/ml), or IL-18 (200 ng/ml). Alternatively, NK 

cells were pre-treated with IL-18 or IL-2 for 24 h, washed thoroughly, and re-plated with DCs in 

the presence of IFNα, IL-12, IL-2, IL-15, or IL-18 as a secondary stimulus. When indicated, 

soluble decoy receptors to TNFα (sTNFR1; 1 µg/ml; R&D Systems) and IFNγ (sIFNγR1; 10 

µg/ml; R&D Systems) were added to cultures at co-culture initiation. Supernatants were 

collected at 48 h for CCL19 analysis by specific ELISA (PeproTech). To assess the stability of 

DC chemokine production, NK-DC co-cultures were harvested and washed, NK cells were 

removed by CD56 positive magnetic selection (StemCell Technologies), and DCs were then re-

plated in 96-well plates at 2x104 cells/well. To mimic interaction with CD40L-expressing CD4+ 

T cells, DCs were co-cultured with CD40L-transfected J558 cells (a gift from Dr. P. Lane, 

University of Birmingham, United Kingdom) at 5x104 cells/well, which in previous studies 

proved equivalent to activated CD4+ T cells and soluble CD40L [175]. Supernatants were 

collected after 24 h and analyzed by specific ELISA for CCL19 (PeproTech). 

ELISA. Supernatants from 48 h co-cultures of NK cells and DCs were analyzed for 

CCL19 by indirect sandwich ELISA using specific matched primary and biotinylated-secondary 

antibody pairs (PeproTech), as previously described [304]. When indicated, DCs were harvested, 

washed, and re-plated in the presence of CD40L-transfected J558 cells (for rationale, see above), 

and 24 h culture supernatants were analyzed for levels of CCL19. Supernatants from human 

lymph node explants (see below) treated for 24 h with IL-18/IFNα were similarly analyzed for 

CCL19. 

Chemotaxis. Chemotaxis assays were performed using 24-(Trans)well plates with 5 μm 

pore-size polycarbonate membranes (Corning), as previously described [173]. The lower 

chamber was filled with supernatants from 48 h co-cultures of NK cells and DCs, and the upper 
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chamber was loaded with naive CD8+ T cells (2x105) isolated as described above. When 

indicated, T cells were treated for 30 min with an anti-CCR7 blocking antibody (Clone 3D12, 20 

μg/ml; BD Biosciences) before chemotaxis to block CCR7-dependent migration. Migrated cells 

in the bottom chambers were harvested after 3 h and re-suspended in 100 μl of 4% 

paraformaldehyde, and cell numbers per 60 μl volume were assessed by flow cytometry. Specific 

chemotaxis for each condition was calculated as the number of migrated cells subtracted by the 

number of migrated cells toward media-only controls. 

In vitro priming of migrated naïve CD8+ T cells. Naïve CD8+ T cells labeled with 

CFSE (Invitrogen; labeled according to the manufacturer’s protocol) were allowed to migrate 

toward DC supernatants, as described above. Migrated T cells were pooled from triplicate 

chemotaxis wells and then re-plated with their respective DCs (2x104 DC per well in 96-well 

plates), which had been pulsed with staphylococcal enterotoxin B (SEB; 1 ng/ml) for 30 min. IL-

2 (20 IU/ml) was added to cultures on day 5, and T cells were analyzed by flow cytometry on 

day 7 for cell numbers, proliferation by CFSE dilution, and acquisition of intracellular granzyme 

B. 

Flow cytometry. Cell surface and intracellular immunostaining analyses were performed 

using an Accuri C6 Flow Cytometer. NK cells and T cells were stained with the dye-conjugated 

anti-human mouse monoclonal antibodies CD56-PE-Cy5 (Beckman Coulter), CD3-PE 

(eBioscience), CCR7-FITC (R&D Systems), granzyme B-PE (Invitrogen), and CD16-FITC, 

CD8-PE-Cy5, CD45RA-FITC, CD45RO-PE, and CD57-FITC (BD Biosciences). The 

corresponding mouse antibody isotype controls IgG1-FITC, IgG2b-FITC, IgG1-PE, IgG2a-PE, 

and IgG1-PE-Cy5 (BD Biosciences) were used, as appropriate. Before staining, the cells were 

treated for 20 min at 4ºC in PBS buffer containing 2% human serum, 0.5% BSA, 0.1% NaN3, 
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and 1 μg/ml of mouse IgG (Sigma-Aldrich) to block non-specific binding. Cell permeabilization 

for intracellular staining was performed using 0.1% Triton X-100 (Sigma) in PBS for 15 min. 

Cells were stained for 40 min at 4ºC followed by washing with PBS buffer containing 0.5% BSA 

and 0.1% NaN3, then fixed and stored in 4% paraformaldehyde until analysis. 

Ex vivo culture of human lymph node explants. Lymph nodes were obtained from 

colorectal cancer patients undergoing standard-of-care surgical treatment. Written informed 

consent was obtained prior to any specimen collection, and the nature and possible consequences 

of the studies were explained. All specimens were provided under a protocol approved by the 

University of Pittsburgh Institutional Review Board (UPCI 02-077). Lymph node tissue was 

sectioned using a 4 mm biopsy puncher and placed in IMDM containing 10% fetal bovine serum 

and 1% L-glutamine and penicillin/streptomycin. When indicated, the tissues were treated with 

IL-18 (200 ng/ml) and IFNα (1000 IU/ml). After 24 h incubation, supernatant was collected for 

ELISA analysis and tissue was analyzed for mRNA expression (see below). 

Quantitative real-time PCR. Lymph node tissue was placed in Lysing Matrix E Tubes 

(MP Biologicals) containing RLT lysis buffer (Qiagen) and agitated using a FP120 homogenizer 

(MP Biologicals). Supernatant was collected and total RNA was extracted using the RNeasy kit 

(Qiagen) according to the manufacturer’s protocol. Analysis of mRNA expression was 

performed using the StepOne Plus System (Applied Biosystems), as previously described [173], 

using inventoried primer/probe sets. Expression of TNFα, IFNγ, and CCL19 was assessed at 24 h 

following IL-18/IFNα stimulation. The expression of each gene was normalized to HPRT1 and 

expressed as fold increase (2-∆CT), where ∆CT = CT (target gene) – CT (HPRT1). 

Statistical analysis. Data was analyzed using unpaired and paired t tests (two-tailed) and 

one-way and two-way ANOVA, where appropriate. Significance was judged at an α of 0.05. 
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4.4 RESULTS 

4.4.1 Two-signal-activated ‘helper’ NK cells induce high CCL19 production by 

autologous DCs 

We have previously reported the independent regulation of ‘effector’ versus ‘helper’ pathways of 

human NK cell differentiation, in which IL-2 preferentially promotes an ‘effector’ phenotype 

characterized by enhanced cytotoxicity, including against DCs, while IL-18 instead induces a 

distinct ‘helper’ differentiation pathway selectively supporting DC-mediated T cell priming via 

enhanced DC maturation, co-stimulatory molecule expression, and IL-12 production for the 

development of Th1 and CTL responses [297]. Given the critical role of chemokines, particularly 

CCL19 and CCL21, in directing interactions between DCs and naïve T cells in lymphoid tissue 

[347], we hypothesized that differential IL-2- versus IL-18-driven human NK cell differentiation 

may also differentially regulate NK cell ability to modulate DC expression of chemokines 

involved in the recruitment of naïve T cells, facilitating their unique outcomes on DC-mediated 

T cell priming. 

In direct NK-DC co-culture, we observed that NK cell activation with IL-2 or IL-18 

alone had no effect on levels of CCL19 in co-culture supernatants (Fig. 4.1A, left). In contrast, 

combined stimulation with IL-18 and IFNα, another early factor produced in response to viral 

infection and developing tumors [101, 348] and a known co-activator of human NK cell cytokine 

secretion [203], induced the synergistic enhancement of CCL19 production. This two-signal 

induction of CCL19 was maintained even after harvesting, washing, removal of NK cells, and re-

stimulation of the DCs with CD40L (Fig. 4.1A, right), indicating the stable priming of DCs for 

high CCL19 production even after the initial NK-DC interaction, including upon subsequent 
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interaction with CD40L-expressing CD4+ T cells. No CCL19 production was detected in cultures 

of IL-18/IFNα-activated NK cells alone and only limited levels in cultures of IFNα- or IL-

18/IFNα-activated DCs alone (Fig. 4.1A and Fig. 4.2), confirming DCs as the source of CCL19 

as well as the strict requirement for NK-DC interaction in its induction. Although other 

chemokines, including CCL21 and CXCL12, have been reported to interact with naïve T cells 

[349], no expression of these chemokines by DCs could be detected under any conditions (data 

not shown), in agreement with previous reports [350-352]. 
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Figure 4.1. IL-18-primed NK cells induce DC production of CCL19. 

(A) CCL19 levels in 48 h culture supernatants (left) of untreated DCs or DCs exposed to autologous NK cells (1:2 

NK:DC ratio) in the presence of IL-2, IL-18, and/or IFNα; or in 24 h culture supernatants (right) of NK cell-

activated DCs alone after harvesting, washing, depletion of NK cells, and re-stimulation with CD40L. Data recorded 

as the mean (± SD) of 6 independent donors. (B) NK cells were pre-treated for 24 h in the absence or presence of 

IL-2 or IL-18, washed, and re-plated with autologous DCs in the absence or presence of IFNα, IL-15, IL-12, IL-2, or 
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IL-18. Levels of CCL19 were analyzed after 48 h incubation with the secondary stimulus. Data are recorded as the 

mean (± SD) of triplicate cultures. Data represent one of three independent experiments, which all yielded similar 

results. ***p<0.001, **p<0.01 compared to indicated groups or compared to all groups when not specifically 

indicated. 

 

Importantly, this CCL19 induction was shown to critically depend on NK cell activation 

with IL-18, as a similar enhancement was not observed with the known NK cell activating 

factors IL-2 or IFNα [300] either alone or in combination (Fig. 4.1A). Furthermore, only NK 

cells activated with IL-18 (but not IL-2) induced DC production of CCL19 upon exposure to a 

diverse range of secondary stimuli such as IFNα, IL-15, IL-12, or IL-2 (Fig. 4.1B). Interestingly, 

while the effective induction of CCL19 during NK-DC interaction could be induced by priming 

NK cells with IL-18, followed by secondary exposure to additional stimuli including IL-2, IL-2-

primed NK cells could not induce DC production of CCL19 even upon secondary stimulation 

with IL-18 (Fig. 4.1B). 

4.4.2 Key role of NK cell-derived TNFα and IFNγ in inducing autologous DC production 

of CCL19 

Since the ability of two-signal activated NK cells to induce DC maturation has been shown to 

involve NK cell-produced TNFα and IFNγ [203, 297], we tested whether these factors may also 

mediate the NK cell induction of DC-produced CCL19. Indeed, NK-DC co-cultures in the 

presence of soluble decoy receptors to TNFα and IFNγ resulted in significant decreases in 

CCL19 levels, indicating the key role of these factors in the CCL19 induction (Fig. 4.2). 
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Figure 4.2. NK cell-induced DC production of CCL19 depends on TNFα and IFNγ. 

CCL19 levels in 48 h culture supernatants (left) of untreated DCs or DCs exposed to IL-18/IFNα with or without 

autologous NK cells, in the additional presence or absence of soluble TNF (sTNFR1) or IFNγ (sIFNγR1) decoy 

receptors; or in 24 h culture supernatants (right) of NK cell-activated DCs alone after harvesting, washing, depletion 

of NK cells, and re-stimulation with CD40L. Data are recorded as the mean (± SD) of triplicate cultures. Data 

represent one of three independent experiments, which all yielded similar results. ***p<0.001 compared to all 

groups. < indicates levels were below the limit of detection of the assay. 

4.4.3 NK cell-activated DCs efficiently recruit naïve T cells and promote their expansion 

and functional differentiation 

Consistent with the significant enhancement of CCL19 secretion mediated by the interaction of 

IL-18-primed NK cells with DCs, supernatants from NK-DC co-cultures were highly effective at 

recruiting naïve CD8+ T cells in transwell chemotaxis assays (Fig. 4.3A). Antibody blockade of 

CCL19’s cognate receptor, CCR7, demonstrated that this enhanced migration of naïve CD8+ T 

cells toward NK-DC supernatants was dependent on naïve T cell-expressed CCR7 (Fig. 4.3B).  
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Substantially-enhanced CD8+ T cell numbers were observed in cultures of NK cell-

activated DCs at day 7 following migration (Fig. 4.3C, left). Importantly, these T cells 

demonstrated robust proliferation as well as high expression of the CTL marker, granzyme B 

(Fig. 4.3C, middle and right), indicating that NK cell-activated DCs were capable of efficiently 

recruiting naïve CD8+ T cells as well as inducing subsequent CD8+ T cell expansion and 

activation toward effector capability. 
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Figure 4.3. NK cell-activated DCs recruit naïve T cells and promote their expansion and functional differentiation. 

(A) Migration of naive CD8+ T cells toward supernatants collected from 48 h cultures of IL-18/IFNα alone, NK cells 

treated with IL-18/IFNα, or DCs exposed to IL-18/IFNα with or without autologous NK cells. Data recorded as the 

mean (± SD) number of specific migrated T cells from 4 independent donors. (B) Migration of naive CD8+ T cells, 

pretreated with or without anti-CCR7 blocking antibody, toward supernatants collected from 48 h cultures of DCs 

and autologous NK cells with IL-18/IFNα. Data recorded as the mean (± SD) number of specific migrated T cells 

from 4 independent donors. (C) Total number (left) or number of proliferated, granzyme B (GzmB) positive 

(middle) CD8+ T cells in culture wells with DCs on day 7 after migration. Data recorded as the mean (± SD) number 
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of T cells in triplicate cultures. Representative CFSE and GzmB staining (right) in CD8+ T cells after migration and 

7 d co-culture with NK cell-activated DCs. ***p<0.001, *p<0.05 compared to all groups. 

4.4.4 CCL19 production is induced in human tumor-associated lymph nodes by NK cell-

targeting two-signal activation stimuli 

To examine the relevance of the two-signal activation of NK cell helper activity in human 

lymphoid tissue for potential use in the treatment of cancer patients, we investigated the 

combined application of IL-18/IFNα to ex vivo LN explants from colorectal cancer patients. 

Treatment of these LNs with IL-18/IFNα augmented their expression of TNFα and IFNγ, and 

resulted in a marked enhancement of CCL19 expression within these LN tissues (Fig. 4.4), 

demonstrating the feasibility of applying NK cell-targeting, IL-18-based combinatorial adjuvants 

to promote T cell priming in human tumor-associated lymph nodes or peripheral lymph nodes 

targeted by cancer vaccines. 
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Figure 4.4. NK cell-activating stimuli drive CCL19 production in human tumor-associated lymph nodes. 

Expression of TNFα, IFNγ, and CCL19 in lymph nodes obtained from colorectal cancer patients, cultured for 24 h 

in the absence or presence of IL-18/IFNα. Data are expressed as ratios between the expression of individual genes 

and HPRT1, and shown as the mean expression (± SD) of triplicate cultures of lymph node tissues. Data represent 

one of two independent experiments, which both yielded similar results. **p<0.01, *p<0.05 compared to other 

group. 
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4.5 DISCUSSION 

These data describe a novel link between innate and adaptive immunity, demonstrating the 

helper role of NK cells in facilitating DC-mediated T cell priming by promoting DC CCL19 

production. DC secretion of CCL19 is critical for the recruitment of naïve T cells to the T cell 

zones of secondary lymphoid tissue in both mice and humans in vivo [353, 354], as well as in 

promoting direct interactions between naïve T cells and DCs needed for the induction of adaptive 

immunity [352]. While DC production of CCL19 has been previously shown to be induced by 

direct DC infection [355] or by DC recognition of pathogen motifs [356], our current data 

demonstrate an alternative pathway of DC CCL19 production induced by NK cells, which 

specialize in detecting alternative forms of danger signals, such as oncogenic transformation 

[357]. Our findings are consistent with recent evidence in vivo indicating an important role for 

NK cells in driving the recruitment of both DCs and naïve T cells to the lymph node, necessary 

for the optimal development of protective T cell immune responses [358]. 

NK cells have been previously described to induce DC co-stimulatory molecule 

expression, IL-12 production, and lymph-node homing capacity, activities which are regulated in 

a two-signal mechanism importantly driven by IL-18 [190, 326]. The current data indicate that a 

similar two-signal mechanism also governs the NK cell ability to instruct DC production of 

CCL19, suggesting that NK cell-induced DC migration to LNs, attraction of naïve T cells, and 

priming responses are coordinately-regulated phenomena. Our data also indicate stable NK cell-

induced DC production of CCL19 even after removal from the initial NK-DC interaction, 

suggesting that NK cell-mediated instruction of DC CCL19 secretion and the subsequent DC 

recruitment of naïve T cells for priming need not occur in the same compartment. Nevertheless, 

numerous reports have also indicated the ability of NK cells to traffic to LNs after activation in 



 88 

mice in vivo [123, 359, 360], which may be driven in humans through NK cell acquisition of 

CCR7 via IL-18 in autologous settings [297] or via trogocytosis in the context of allogeneic 

therapy [361, 362], promoting coordinated NK cell, DC, and T cell interaction in secondary 

lymphoid tissue. 

Given the expression of CCR7 and cognate CCL19 responsiveness across NK cells, DCs, 

and T cells, these data suggest the potential for CCL19 initially elicited by NK-DC interaction to 

participate in a potent feed-forward accumulation of all three cell types in the development of 

robust priming responses. Indeed, DCs activated in the presence of IFNγ, a key NK cell-provided 

factor and an important inducer of DC CCL19 production shown in this study, have been 

demonstrated to reciprocally enhance the CCL19 responsiveness and activation of NK cells 

[363], likely recruiting additional NK cells and providing for an amplifying cycle of DC 

activation. Thus, the NK-DC collaborative mechanism described here suggests the ability to 

develop significant immunity in response to the detection of relatively small pathogenic or 

oncogenic stimuli. 

The amplification potential of this NK-DC interaction may present an attractive 

therapeutic target to augment immune activation for the treatment of cancer and chronic 

infections. Our data demonstrate that effective combinations of helper NK cell-activating factors 

can induce CCL19 expression in tumor-associated LNs from colorectal cancer patients, 

suggesting the possibility for the therapeutic enhancement of chemokine-driven T cell priming in 

the human cancer setting, either by targeting tumor tissues, tumor-draining LNs, or LNs draining 

sites of cancer vaccination. Indeed, several studies have shown the beneficial impact of CCL19 

in therapeutic tumor models [364-367], which have been supported by correlations between 

CCL19 and prolonged survival in cancer patients [25]. 
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Increasing evidence also suggests that CCL19-driven anti-tumor immune responses 

directly within the tumor environment may be important for protective immunity, including 

within tertiary lymphoid structures (TLS) containing close interactions between mature DCs and 

naïve T cells [21]. Such TLS and intratumoral tissues bearing lymphoid organ features, such as 

high endothelial venules, have been shown to correlate with both CCL19 expression and 

favorable clinical outcome in patients with non-small-cell lung cancer and breast cancer [368-

370]. Likewise, in renal cell carcinoma, CCL19 has been shown to co-localize in tumor regions 

bearing clusters of mature DCs and proliferating CCR7+ T cells [371], with high tumor 

infiltration of CCR7+ T cells found to predict prolonged survival in advanced colorectal cancer 

[372]. These findings further support the strong therapeutic rationale for intratumoral activation 

of CCL19 production induced by NK-DC interaction. 

In summary, these data indicate a novel helper NK cell-driven mechanism for promoting 

DC-mediated T cell priming through the key regulation of CCL19 interactions, and support the 

therapeutic application of NK cell-targeting, IL-18-based combinatorial adjuvants in cancer 

patients to enhance anti-tumor immunity. 
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5.1 ABSTRACT 

Myeloid-derived suppressor cells (MDSCs) are central players in defining the immune 

environment in cancer. We observed that while human cancer-associated 

CD11b+CD33+CD34+HLA-DRlow MDSCs suppress CD8+ T cell responses, MDSCs interacting 

with CD4+ T cells secrete IL-1β, IL-6, IL-23, and nitric oxide (NO), promoting the induction of 

RORγt+ Th17 cells expressing endogenous nitric oxide synthase-2 (NOS2). While high 

concentrations of exogenous NO indiscriminately suppress the proliferation and differentiation 

of Th1, Th2, and Th17 cells, physiologic NO concentrations produced by cancer-associated 

MDSCs and by Th17 cells themselves are essential for the development and stability of human 

RORγt+IL-23R+IL-17+ Th17 cells, consistent with a positive in vivo correlation between IL-17 

and NOS2 observed in the malignant ascites from ovarian cancer patients. The development of 

Th17 cells from naive-, memory-, or tumor-infiltrating CD4+ T cells, driven either by IL-1β/IL-

6/IL-23/NO-producing MDSCs or by recombinant cytokines (IL-1β/IL-6/IL-23), critically 

depends on endogenous NOS2 induced in CD4+ T cells, and on the canonical cGMP/cGK 

pathway of NO signaling. Inhibition of NOS2 or cGMP/cGK signaling abolishes both the de 

novo induction of Th17 cells as well as IL-17 production by established Th17 cells isolated from 

ovarian cancer patients, providing new targets to manipulate Th17-associated immunity in cancer 

and inflammatory diseases. 
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5.2 INTRODUCTION 

Human cancer-associated myeloid-derived suppressor cells (MDSCs), characterized by a 

CD11b+CD33+HLA-DRlow/neg phenotype consisting of CD14+ monocytic [234, 245, 249, 373, 

374] and/or CD15+ granulocytic [251, 375, 376] subsets (reviewed in [235, 377]), accumulate in 

most cancer patients in response to pro-inflammatory mediators. Using a variety of suppressive 

mechanisms [228, 234, 377-379], cancer-associated MDSCs have been linked to the induction of 

T cell dysfunction through the production and/or metabolism of TGF-β [380, 381], ROS [252, 

382, 383], NOS2/NO [265], L-arginine [266, 375, 384, 385], peroxynitrites [384, 386], IL-10 

[267], and PGE2 [234], and may represent the major population responsible for the induction of 

antigen-specific CD8+ T cell tolerance in cancer. However, their exact role within the network of 

specific CD4+ T cell subsets, encompassing various populations with distinct cellular and 

immunological functions, remains unclear. 

Nitric oxide (NO; a product of nitrite reduction or the NO synthases NOS1, NOS2 and 

NOS3; [387]), is a pleiotropic regulator of neurotransmission, inflammation, and autoimmunity 

[387-390] implicated both in cancer progression and its immune-mediated elimination [387, 391-

393]. In different mouse models, NO has been paradoxically shown to both promote 

inflammation [394-398] as well as suppress autoimmune tissue damage through non-selective 

suppression of immune cell activation [389, 399], especially at high concentrations [400-402]. 

While previous studies demonstrated a positive impact of NO on the induction of Th1 cells [403] 

and FoxP3+ regulatory T cells (Treg) [404] in murine models, the regulation and function of the 

NO synthase (NOS)/NO system have shown profound differences between mice and humans 

[405-407], complicating the translation of these findings from mouse models to human disease.  
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In cancer, NOS2-derived NO plays both cytotoxic and immunoregulatory functions 

[389]. It can exert distinct effects on different subsets of tumor-infiltrating T cells (TILs), 

capable of blocking the development of cytotoxic T lymphocytes (CTLs) [408], suppressing Th1 

and Th2 cytokine production, and modulating the development of FoxP3+ Tregs [409, 410]. 

NOS2-driven NO production has been shown to be a prominent feature of cancer-associated 

myeloid-derived suppressor cells (MDSCs) [253, 265, 382], but the significance of this 

production to the differentiation of specific T cell subsets, particularly in the human cancer 

setting, is unknown. 

Production of NO in chronic inflammation is supported by IFN-γ and IL-17 [265, 411], 

the cytokines produced by human Th17 cells [151, 412-415]. Human Th17 cells secrete varying 

levels of IFN-γ [151, 413-417] and have been implicated both in tumor surveillance and tumor 

progression [416-418]. Induction of Th17 cells typically involves IL-1β, IL-6, and IL-23 [151, 

412-415, 419-421], with the additional involvement of TGF-β in most mouse models [412, 420-

423], but not in the human system [414, 415]. IL-1β, IL-6, and IL-23 production by monocytes 

and dendritic cells (DCs), and the resulting development of human Th17 cells, can be induced by 

bacterial products, such as LPS or peptidoglycan [151, 413, 414]. However, the mechanisms 

driving Th17 responses in non-infectious settings, such as autoimmunity or cancer, remain 

unclear. 

Here, we report that the development of human Th17 cells from naïve, effector, and 

memory CD4+ T cell precursors induced by the previously-identified Th17-driving cytokines 

(IL-1β, IL-6, and IL-23) or by IL-1β/IL-6/IL-23-producing MDSCs, is promoted by exogenous 

NO (or NO produced by human MDSCs) and critically depends on the induction of endogenous 

NOS2 in differentiating CD4+ T cells. The ability of inhibitors of NOS and the canonical 
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cGMP/cGK signaling pathway of NO to prevent the de novo induction of Th17 cells and 

suppress the function of pre-existing Th17 cells from cancer patients provides new targets for the 

modulation of Th17-associated immune events in cancer, inflammatory, and infectious diseases. 

5.3 MATERIALS AND METHODS 

Media and reagents. Cells were cultured in IMDM medium (Invitrogen) with 10% FCS 

(Gemini). DETA-NONOate was purchased from Cayman Chemical and used at the 

concentration of 25 µM, unless otherwise specified. General NOS inhibitors L-NMMA (Sigma) 

and ADMA (Sigma) and the NOS2-specific inhibitor 1400W (Sigma) were used at the 

concentrations of, respectively, 100 µM, 200 µM, and 200 nM, unless indicated otherwise. 

Arginase inhibitor nor-NOHA (Cayman Chemical) was used at 200 µM, IDO inhibitor 1-

Methyl-D-tryptophan (Sigma) was used at 1 mM, neutralizing α-IL-10 mAb (R&D; clone 

25209) was used at 1.0 µg/ml, COX2 inhibitor celecoxib (Biovision) was used at 20 µM, c-GMP 

analogue Br-cGMP (Sigma) was used at 100 µM, and cGMP inhibitor ODQ was used at 10 µM. 

Th1, Th17, and Treg-driving cytokines were used at the following concentrations (unless stated 

otherwise): IL-1β (20 ng/ml; Miltenyi Biotec), IL-6 (50 ng/ml; ThermoFisher Scientific), IL-23 

(10 ng/ml; R&D), TGF-β1 (5 ng/ml; R&D), and 9-cis retinoic acid (10 nM; Sigma). CFSE 

(Invitrogen) labeling kit to monitor cell proliferation was used according to the manufacturer's 

protocol. CD3/CD28 stimulation was accomplished with anti-CD3/CD28 human or mouse T 

cell-activator Dynabeads (at 2 µl/ml; Invitrogen). Soluble (s)CD40L was used at 1 µg/ml in 

combination with 1 µg/ml of Enhancer for Ligands (Enzo Life Sciences). Nitrite formed by the 
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spontaneous oxidation of NO under physiological conditions in cell culture supernatants was 

detected with the Griess reagent kit (Invitrogen) according to the manufacturer's protocol. 

Isolation of peripheral blood naïve and memory human CD4+ and CD8+ T cells and 

mouse splenic CD4+ T cells. Human PBMCs were isolated from buffy coats provided by the 

Central Blood Bank of Pittsburgh, PA. T cells were isolated from PBMCs by negative selection 

using CD4+ and CD8+ T cell enrichment cocktails (Stem Cell Tech) in combination with either 

anti-CD45RO or CD45RA depletion antibodies, resulting in a >95% pure CD3+ population of 

uniform CD4+/8+CD45RA+/-CD45RO+/- cells. Allogeneic combinations of T cells and MDSCs 

were used to allow testing of the impact of tumor-derived MDSCs (or control blood-isolated 

CD11b+ cells) on the differentiation of healthy donor naïve or memory blood-isolated T cells. 

Mouse naïve and memory CD4+ T cells were isolated from the spleens of C57BL/6 (B6) mice 

using naïve and memory CD4+ T cell isolation kits (Miltenyi Biotec). Six- to 8-week-old wild-

type B6 mice were purchased from Taconic (Germantown, NY). Specific pathogen-free mice 

were used in all experiments and housed in pathogen-free conditions at Children’s Hospital of 

Pittsburgh, Pennsylvania. All of the animal studies were conducted with the approval of the 

University of Pittsburgh Institutional Animal Care and Use Committee. 

Isolation of MDSCs and OvCa-infiltrating CD4+ T cells (TILs). Human OvCa ascites 

cells were obtained intraoperatively from previously-untreated patients with primarily advanced 

stage III or IV epithelial OvCa, after obtaining written informed consent. The nature and possible 

consequences of the studies were explained. All specimens were provided under protocols 

approved by the University of Pittsburgh or Roswell Park Cancer Institute Institutional Review 

Boards. Human OvCa ascites obtained from the University of Pittsburgh (IRB0406147) were 

used in the isolation of cancer-associated CD11b+ cells (MDSCs) and subsequent isolation of 
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CD4+ TILs. The median age of patients was 56 years old (range 39-69 years old). Twelve 

patients were Causcasian and one patient was African-American. The majority of patients were 

FIGO Stage IIIC, one patient was Stage IIIA, and one patient was Stage IIA. Tumor histology 

was serous in 9 cases (69.2%), clear cell in 2 cases (15.4%), mucinous in 1 case (7.7%), and 

mixed histology in 1 case (7.7%). Human OvCa ascites obtained from the Roswell Park Cancer 

Institute (CIC02-15) were used in the isolation of bulk OvCa primary cells and their CD3/CD28-

driven expansion for 7 days in culture. The median age of patients was 64 (range 50-85). Nine 

patients were Causcasian and one was Hispanic. The majority of patients were FIGO Stage IIIC, 

three patients were Stage IV. Tumor histology was serous in 7 cases (70%), papillary serous in 2 

cases (20.0%), and mixed histology in 1 case (10%). 

OvCa primary cells were harvested by centrifugation. CD11b+ cells (i.e. MDSCs) were 

obtained after centrifugation of OvCa ascites, followed by red blood cell lysis and positive 

magnetic selection of CD11b+ cells (CD11b EasySep Isolation kit; Stem Cell Tech). The isolated 

cells were >95% CD11b+ and uniformly expressed the CD11b+CD33+CD34+ MDSC phenotype 

[234]. CD4+ T cells (TILs) were obtained after positive magnetic selection of CD11b+ cells 

followed by negative selection using the CD4+ T cell enrichment cocktail (Stem Cell Tech). 

Control CD11b+ cells were isolated from healthy donor buffy coats, using the same method. 

Th17 cell generation. T cells were stimulated with anti-CD3/CD28 Dynabeads (2.0 

µl/ml; Invitrogen) in the presence or absence of allogeneic OvCa-isolated MDSCs or control 

CD11b+ cells, pretreated or not with inhibitors, and/or in the presence of the Th17-inducing 

cytokine cocktail: IL-1β (20 ng/ml), IL-23 (10 ng/ml), IL-6 (50 ng/ml), and/or TGF-β1 (10 

ng/ml). All experiments used 1x105 T cells per well at a concentration of 5x105 cells/ml. All 

experiments in this study used the 1:4 ratio of MDSC (or control CD11b+ cells) to T cells, 
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determined to be optimal based on our preliminary experiments (which tested the MDSC:T cell 

ratios of 1:1, 1:2, 1:4, and 1:8). As an alternative to stimulation with anti-CD3/CD28 beads, T 

cells were stimulated with mature DCs (mDCs) [monocytes were isolated by positive magnetic 

selection using the EasySep CD14+ isolation kit (Stem Cell Tech) and cultured for 6 days in 24-

well plates (BD) in the presence of rhuGM-CSF and IL-4 (both 1000 U/ml; gifts from Schering 

Plough) and afterwards matured for 48 h with TNF-α], with a DC:T cell ratio of 1:10. On day 4-

6, expanded T cells were analyzed for the expression of Th17-associated factors (mRNA 

expression) and cytokine secretion (ELISA). On day 7-8, expanded T cells were assayed for 

intracellular NOS2 and NO, and were further re-stimulated for intracellular cytokine staining (all 

as further described below). The purity of anti-CD3/CD28–activated T cell cultures increased 

from an initial >95% to over 99% by the time of analysis, as determined by flow cytometry. Note 

that, consistent with the key role of IL-1β and IL-6, and the negative role of TGF-β1, in the 

induction of human Th17 cells [414, 415], and a similar synergy between IL-1β and other Stat3 

activators [424], the combination of IL-1β with IL-6 and/or IL-23 was sufficient for the optimal 

induction of IL-17A production, with TGF-β1 having a negative effect (Fig. 5.4G). 

ELISA. ELISA analysis was performed for IL-17A (R&D) and IFN-γ secretion by day 5 

expanded T cells in culture [or by day 7-8 expanded T cells washed and re-plated at 1x106
 

cells/ml and re-stimulated with anti-CD3/CD28 beads for 24-48 h]. ELISA analysis of IL-23 

production by OvCa ascites-isolated MDSCs or control blood-isolated CD11b+ cells was 

performed after 24 h stimulation with CD40L-expressing J558 cells [or sCD40L (Enzo Life 

Sciences)] or CD4+ T cells. 24 h-conditioned medium from OvCa ascites-isolated MDSCs or 

control blood-isolated CD11b+ cells were analyzed for IL-6, IL-10, IL-23, IL-1b, and TGF-β1 by 

sandwich ELISA (R&D). 
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Flow cytometry. Two- and three-color cell surface and intracellular immunostaining 

analyses were performed using an Accuri C6 flow cytometer. OvCa ascites-isolated cells were 

stained with the antibodies CD11b-FITC, CD33-APC, CD34-PE/Cy7, HLA-DR-FITC, CD14-

PE, CD80-FITC, CD83-PE, CD15-PE, and CD8-FITC (BD and eBioscience) (see [234] for full 

phenotype). IL-23R was detected with IL-23R-FITC mAb (R&D). Rat IgG2α-PE, IgG1-FITC, 

IgG1-APC, and IgG1-PE/Cy7 isotype controls, and the rat IgG2α-FITC isotype control, were from 

BD PharMingen. 

Intracellular staining. Cells were harvested, fixed, and permeabilized using the Foxp3 

Fix/Perm Buffer Set solution (eBioscience). For intracellular cytokine production only, T cells 

were stimulated with PMA (50 ng/ml; Sigma-Aldrich) and ionomycin (1 µg/ml; Sigma-Aldrich), 

and after 4 h, brefeldin A (10 µg/ml) was added for an additional 4-10 h prior to staining. The 

following antibodies were used: IFN-γ-FITC and IL-17A-PE (eBio64DEC17; eBioscience), 

Foxp3-Alexa Fluor 488 (BioLegend), CD3 [unlabeled monoclonal mouse anti-human CD3 

(eBioscience) followed by secondary goat anti-mouse IgG F(ab’)2-Alexa Fluor 647 (Cell 

Signaling Technology)], and NOS2 [unlabeled polyclonal rabbit anti-human NOS2 (Millipore) 

followed by secondary goat anti-rabbit IgG F(ab’)2-Alexa Fluor 488 (Cell Signaling 

Technology)]. Stainings (including for both primary and secondary antibodies, where 

appropriate) were performed at room temperature for 30 min, then washed and resuspended in 

FACS buffer prior to analysis. For intracellular NO detection, DAF-FM diacetate (Molecular 

Probes) was used, which passively diffuses across cell membranes and is deacetylated by 

intracellular esterases to membrane-impermeant DAF-FM, which then reacts with NO to form a 

fluorescent benzotriazole with excitation/emission maxima of 495/515 nm [425]. DAF-FM 

diacetate was loaded at 10 μM for 2 h at 37°C. 
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Confocal microscopy. T cells were harvested and directly centrifuged onto 12 mm 

diameter circular glass coverslips (Propper) coated for 1 h at 37°C with 0.005% human 

fibronectin (Sigma) in PBS in 24 well plates. The coverslips were then incubated in 4% 

paraformaldehyde for 15 min, washed with PBS, and incubated for 1 h at room temperature in 

staining buffer containing 0.3% Triton X-100 (Sigma), 5% goat serum (Life Technologies), and 

1% BSA (Fisher Scientific) in PBS. The slides were then incubated for 3 h at room temperature 

with staining buffer containing unlabeled primary antibodies for NOS2 (Millipore) and CD3 

(eBioscience), washed with PBS, and incubated for 30 min at room temperature with staining 

buffer containing the secondary antibodies anti-rabbit Alexa Fluor 488 and anti-mouse Alexa 

Fluor 647 (Cell Signaling Technology). Coverslips were washed with PBS and mounted on 

SuperFrost Plus Slides (Thermo Scientific) using ProLong Gold antifade reagent (Invitrogen). 

Confocal analyses were conducted using a LEICA TCS SL DMRE Microsystem. 

Taqman analysis of mRNA expression. mRNA expression was analyzed in day 7-8 

anti-CD3/CD28-expanded OvCa primary cell cultures, and in day 4-6 expanded CD4+ TILs and 

naive and memory CD4+ T cells. Taqman analysis was performed on the StepOne Plus System 

(Applied Biosystems) using Taqman-recommended inventoried or made-to-order assays (Gene 

IDs: il17a:Hs00174383, il17f:Hs01028648, il2rα:Hs00907779, il23r:Hs00332759, 

nos2:Hs01075527, rorc:Hs01076112, tbet:Hs00203436, gata3:NM_002051, 

foxp3:Hs00203958). The expression of each gene was normalized to HPRT1 and expressed as 

relative expression, i.e. fold increase (2-CT), where CT=CT(Target gene)-CT(HPRT1). 

Statistical analysis. The figures demonstrating key phenomena and critical mechanisms 

involve aggregate data from multiple patients and healthy donors (expressed as means ± SD; the 

donor numbers are provided in the legends for individual figure panels). Data from 



 100 

representative experiments (typically used in the studies comparing different reagents or 

different concentrations) were obtained from replicate cultures (means ± SD; numbers of 

replicates provided in figure legends) with each experiment confirmed in additional independent 

experiments with cells from different donors, as indicated in the figure legends. All data were 

evaluated using GraphPad Prism Version 5 software and analyzed using Student’s t test (two-

tailed) and 1-way and 2-way analysis of variance, where appropriate, with P<0.05 considered as 

significant (P<0.05 marked *; P<0.01 marked **; P<0.001 marked ***). A linear correlation 

between two continuous variables was tested with the r2 coefficient of determination. 

5.4 RESULTS 

5.4.1 MDSCs suppress CD8+ T cells while MDSC-associated NOS2/NO promote the Th17 

phenotype in ovarian cancer patient TILs and naïve and memory CD4+ T cells 

While tumor-associated MDSCs have been described to be potent suppressors of T cell 

responses [228], the high frequencies of Th17 cells observed in ovarian cancer (OvCa; [416, 

417]) and our observations that the OvCa environment is a potent inducer of Th17 responses 

[417] prompted us to test the effect of cancer-associated MDSCs on CD8+ and CD4+ T cells, and 

in particular, the role of MDSCs in the development of human Th17 immunity. Interestingly, 

while OvCa patient-isolated MDSCs, expressing the typical CD11b+CD33+HLA-DR-/lowCD80- 

phenotype [26, 228] (data not shown, see [234] for complete MDSC phenotype), strongly 

suppressed the CD3/CD28-induced proliferation of naive CD8+ T cells, they did not suppress the 

proliferation of naive CD4+ T cells (Fig. 5.1). 
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Figure 5.1. Ovarian cancer-associated MDSCs suppress CD8+ but not CD4+ T cell proliferation. 

Percentage of proliferating naïve CD8+ and CD4+ T cells following 4 d activation with anti-CD3/CD28 beads in the 

absence or presence of OvCa ascites-isolated CD11b+ cells (i.e. MDSCs) or control blood-isolated CD11b+ cells, 

measured by CFSE dilution in representative cultures (left) and across triplicate cultures (right). ***p<0.001. 

 

Instead, these MDSCs selectively enhanced the expression of Rorc (encoding RORγt) 

and IL-17A (Fig. 5.2A) and the production of IL-17A protein (Fig. 5.2, B and C) by CD4+ T 

cells, activated by anti-CD3/CD28 antibodies or allogeneic DCs (Fig. 5.2C), with no impact on 

the Th1 marker, T-bet, and an inhibitory impact on the Treg marker, FoxP3 (Fig. 5.2A). 

Unexpectedly, while inhibition of other MDSC products, including IL-10, IDO, and arginase, did 

not impact the induction of Th17 cells (Fig. 5.2, D and E), the inhibition of NOS, the key 

synthesizing enzyme for the nominally-suppressive MDSC product NO [236, 239], dose-

dependently inhibited the ability of MDSCs to enhance IL-17A production (Fig. 5.2, D-F) and 

Rorc expression (Fig. 5.2G) in activated CD4+ T cells. In addition, the Th17-promoting effect of 

MDSCs was also reduced by COX2 inhibition (Fig. 5.2, D-F), the factor needed for the optimal 

MDSC expression of NOS2 [234]. 
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Figure 5.2. Key role of NOS2 and canonical cGMP-mediated NO signaling in the MDSC-promoted Th17 

differentiation of TILs from ovarian cancer patients and human naïve and memory CD4+ Th cells. 

(A) Induction of IL-17A, Rorc (encoding RORγt), FoxP3 (indicating de novo differentiation of FoxP3+ Tregs from 

naive precursors), and T-bet gene expression in anti-CD3/CD28-expanded naive CD4+ T cells by tumor–isolated 
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MDSCs (mean ± SD from 6 patients), as compared to control CD11b+ cells (mean ± SD from 3 healthy donors). (B) 

IL-17A production levels and percentages of IL-17A+ cells (mean ± SD from n donors), and representative 

intracellular staining (IL-17A vs. IFN-γ, right) in naive CD4+ T cells (n=6 healthy donors) or OvCa-infiltrating 

CD4+ TILs (n=3 patients) stimulated with anti-CD3/CD28 antibodies in the presence of cancer-isolated MDSCs or 

control CD11b+ cells. (C) IL-17A production by naïve vs. memory CD4+ T cells (mean ± SD from n=4 healthy 

donors) stimulated with either anti-CD3/CD28 antibodies or TNF-α-matured allogeneic DCs in the presence of 

MDSCs or control CD11b+ cells. (D-E) Percentage of IL-17A+ or IFN-γ+ CD4+ T cells (D) and IL-17A secretion (E) 

in anti-CD3/CD28/MDSC-expanded naïve CD4+ T cells (D) and CD4+ TILs (E), by specific inhibitors of NOS (L-

NMMA), COX2 (celecoxib), IDO, ARG, or IL-10. The data (mean ± SD) from one representative experiment 

(performed in replicates: D, triplicate cultures; E, quadruplicate cultures). The results were confirmed in 3 

independent experiments using different patients/healthy donors. (F) Representative staining of IL-17A+ or IFN-γ+ 

CD4+ T cells in co-cultures of anti-CD3/CD28-expanded CD4+ TILs and MDSCs by specific inhibitors of COX2 

(celecoxib) and NOS (L-NMMA). The results were confirmed in 3 independent experiments using different patients. 

(G) Relative gene expression of IL-17A and Rorc, induced in anti-CD3/CD28-expanded naive CD4+ T cells cultured 

in the presence of MDSCs, by a specific inhibitor of NOS (L-NMMA). The graphs present the mean ± SD from one 

representative experiment (triplicate cultures) of two (using different patients/healthy donors). (H) Relative gene 

expression of NOS2 and IL-17A in 7 d ex vivo anti-CD3/CD28-expanded cultures of OvCa ascites cells from 10 

OvCa patients (n=10, r2=0.7692, p<0.001). (I) IL-17A production in anti-CD3/CD28-expanded cultures of naïve or 

memory CD4+ T cells in the presence of MDSCs, with or without specific inhibitors of NOS2 (1400W) or cGMP 

(ODQ). Data (mean ± SD) from one representative experiment (triplicate cultures). The results were confirmed in 3 

independent experiments using different patients/healthy donors. ns: P>0.05; * P<0.05; ** P<0.01; *** P<0.001. 

 

In accordance with the key role of MDSC-associated NOS2 in the induction of Th17 responses 

in cancer patients in vivo, we observed that the levels of NOS2 expression in the ascites cells 

from OvCa patients positively correlated with the ability of these cells to produce IL-17A after 

short-term ex vivo stimulation (Fig. 5.2H). Moreover, we observed that the Th17-promoting 

effects of MDSCs could be prevented both by the selective inhibition of NOS2 activity as well as 



 104 

the inhibition of cGMP function (Fig. 5.2I), further demonstrating that human Th17 responses 

critically depend on NOS2 and the canonical cGMP/cGK-mediated signaling pathway associated 

with the physiologic NO concentrations produced by human cancer-isolated MDSCs (Fig. 5.3A). 

While MDSCs produced all the previously-identified Th17-driving cytokines (Fig. 5.3B) 

either spontaneously (IL-1β, IL-6, and TGF-β1) or after their stimulation (IL-23) with CD40L 

(the CD4+ T cell-expressed APC-activating factor [426]; similar data was obtained with CD40L-

expressing J558 cells or CD4+ T cells, data not shown), the advantage of MDSCs in driving the 

Th17 phenotype (data not shown) was particularly pronounced in the case of naïve, as compared 

to memory, Th cells (Fig. 5.2C). Human naïve Th cells, compared to their memory counterparts, 

were previously shown to be less sensitive to the induction of the Th17 phenotype by 

recombinant cytokines [151], indicating that such an additional signal, which can be promoted 

by MDSCs, is essential for the de novo induction of Th17 cells. 

Whereas, consistent with previous reports [400, 402], high doses of exogenous NO 

(higher than 100 µM; known to have cytostatic function [389]) non-selectively blocked CD4+ T 

cell differentiation (Fig. 5.3C) and their proliferation (Fig. 5.3D) in all conditions tested (Th17-, 

Th1-, or Treg-driving conditions), the application of lower, standard cell-signaling doses [390, 

427] of NO donor (10-25 µM; comparable to the MDSC-produced NO levels; see Fig. 5.3A) did 

not affect CD4+ T cell proliferation. Instead, these lower doses of NO selectively enhanced IL-

17A production without affecting IFN-γ production (Fig. 5.3C), further confirming the ability of 

physiologic NO concentrations to selectively support human Th17 development. 

Exogenous NO strongly enhanced the induction of Th17 cells driven by recombinant 

cytokines (Fig. 5.3, C and E-F), indicating its direct impact on T cells rather than its modulation 

of MDSC functions. NO induced IL-17A expression (Fig. 5.3E) and secretion (Fig. 5.3F) by 
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both naive and memory CD4+ T cells and enhanced their expression of Rorc (but not GATA3, 

FoxP3, or T-bet; Fig. 5.3E and data not shown). The distinct Th17-promoting effect of 

exogenous NO was evident even in the absence of Th17-driving cytokines (IL-1β, IL-6, and IL-

23; Fig. 5.3, C and E-F), indicating that NO is a direct inducer of Th17 differentiation, rather 

than a mere enhancer of the effects of Th17-inducing cytokines. 

 

Figure 5.3. Exogenous NO supports the cytokine-driven induction of Th17 function in memory Th cells and 

promotes the de novo induction of Th17 cells from naïve precursors. 

(A) NO2
- levels (mean ± SD from 4 patients) in co-cultures of CD4+ TILs with tumor-isolated MDSCs (as compared 

to blood CD11b+ cells) and in the presence of NOS inhibitors ADMA and L-NMMA. (B) Expression of IL-1β, IL-6, 

TGF-β1 (spontaneous expression, left), and IL-23 (stimulation with CD40L, right) in MDSCs. Data (mean ± SD) 
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from 3 experiments involving MDSCs from 3 different patients. (C) Induction of IL-17A or IFN-γ production by 

anti-CD3/CD28-stimulated bulk CD4+ T cells from healthy donors, cultured in the absence or presence of Th1 

(200U/ml rhIL-12, 200ng/ml αIL-4-Ab), Th17 (20ng/ml rhIL-1β, 50ng/ml rhIL-6, 10ng/ml rhIL-23), and Treg 

(5ng/ml TGF-β1, 10 nM 9-cis retinoic acid)-driving cytokines, and physiologic concentrations of exogenous NO 

donor (DETA-NONOate). IL-17A was undetectable in Th1- and Treg-driving conditions. Percentage of FoxP3+ cells 

in control cultures were (-): 10.4%, Th1: 12.7%, Th17: 5.2%, and Treg: 41.2%. The graphs present the mean ± SD 

from one representative experiment (triplicate cultures) of two (healthy donors). (D) Suppression of CD4+ T cells 

differentiating in Th1-, Treg-, and Th17-driving conditions by high concentrations (>100 µM) of DETA-NONOate. 

Proliferation of CFSE-labeled anti-CD3/CD28-stimulated bulk CD4+ T cells cultured in the absence or presence of 

Th1, Th17, and Treg-driving cytokines and supplemented with increasing concentrations of DETA-NONOate. The 

graph presents the mean ± SD from one representative experiment (triplicate cultures) of two (different healthy 

donors).  (E and F) Relative gene expression of IL-17A (log scale) and Rorc (log scale), and secretion of IL-17A by 

naive (E) or naive and memory (F) CD4+ T cells, expanded with anti-CD3/CD28 antibodies in the absence or 

presence of Th17-driving cytokines and NO donor (DETA-NONOate). The graphs present the mean ± SD from one 

representative experiment (E: triplicate cultures; F: quadruplicate cultures). The results were confirmed in 3 

independent experiments using cells of different healthy donors. * P<0.05; ** P<0.01; *** P<0.001. 

5.4.2 Cytokine- or MDSC-driven Th17 differentiation depends on the induction of 

endogenous NOS2 in naïve CD4+ T cells and elevation of endogenous NOS2 in memory 

CD4+ T cells 

Unexpectedly, we observed that Th17-driving cytokines, as well as exogenous NO, all induce the 

expression of endogenous NOS2 in the expanding population of naïve CD4+ T cells (>99% pure 

at the day of analysis) and further enhance its expression in memory Th cells (Fig. 5.4, A-C). A 

similar induction of endogenous NOS2 was also observed in blood-isolated naïve and memory 
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CD4+ T cells, as well as tumor-isolated TILs, differentiated in the presence of cancer-isolated 

MDSCs (data not shown). 

To eliminate the possibility that such enhanced NOS2 levels in expanding T cell cultures 

resulted from contamination with rare non-T cells expressing very high levels of NOS2, we 

evaluated the presence of intracellular NOS2 protein in individual CD4+ T cells. As shown in 

Fig. 5.4D, the addition of Th17-driving cytokines induced distinct elevation of NOS2 in 

individual differentiating T cells, with further enhancement of intracellular NOS2 observed in T 

cells differentiated in the additional presence of NO donor. Consistent with the enzymatic 

activity of the endogenous CD4+ T cell-expressed NOS2, we observed intracellular accumulation 

of NO in the individual Th17-differentiated cells (Fig. 5.4E), which was completely blocked 

using two different small molecule inhibitors of NOS2 activity (pan-NOS-inhibitor and NOS2-

selective inhibitor; Fig. 5.4E). In line with the requirement for endogenous NOS2/NO-signaling 

in the effective induction of human Th17 cells, blockade of the endogenous NOS2 in CD4+ T 

cells differentiating in the presence of Th17-driving cytokines suppressed their ability to secrete 

IL-17A (Fig. 5.4F). 

The induction of NOS2 in CD4+ T cells was closely correlated with the activity of the 

individual Th17-driving factors (and their combinations) in inducing Th17 differentiation (Fig. 

5.4G). IL-1β, recently shown to be the critical component of the Th17-promoting cytokine 

cocktail [424, 428], was sufficient to induce significant expression of NOS2 in CD4+ T cells, but 

its combination with the additional Th17-driving cytokines (IL-6 and IL-23) was needed for the 

optimal induction of NOS2 (Fig. 5.4G). This effect was further amplified by exogenous NO (Fig. 

5.4, B, D and E). In contrast to IL-1β, IL-6, and IL-23, which together promoted the elevation of 

endogenous NOS2 in human CD4+ T cells (and associated IL-17A production), human TGF-β1 
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proved to be a suppressor of both IL-17A and NOS2 (Fig. 5.4G). Unlike the potent induction of 

endogenous NOS2 in CD4+ T cells driven toward Th17 development, neither NOS1 

(undetectable) nor NOS3 expression were induced during this process (data not shown). 

 

Figure 5.4. Endogenous T cell-expressed NOS2 and T cell-produced NO are required for de novo Th17 

differentiation from naïve precursors and induction of the Th17 phenotype in memory cells. 



 109 

(A) Comparative induction of NOS2 (left) and IL-17A (right) gene expression in naïve and memory CD4+ T cells 

(mean ± SD from 3 healthy donors) stimulated with anti-CD3/CD28 antibodies in the absence or presence of Th17-

driving cytokines. (B) Dose-dependent induction of NOS2 gene expression in naive CD4+ T cells stimulated with 

anti-CD3/CD28 antibodies in the presence of increasing concentrations of NO donor (DETA-NONOate) and Th17-

driving cytokines. The graph presents the mean ± SD from one representative experiment (performed with triplicate 

cultures). The results were confirmed in 3 independent experiments using different healthy donors. (C) Dose-

dependent induction of NOS2 gene expression in bulk CD4+ T cells, stimulated with anti-CD3/CD28 antibodies and 

Th17-driving cytokines (high: 20 ng/ml IL-1β, 50 ng/ml IL-6, 10 ng/ml IL-23; low: 25x dilution). The graph 

presents the mean ± SD from one representative experiment (triplicate cultures). The results were confirmed in 3 

independent experiments using different healthy donors. (D) Induction of intracellular NOS2 protein (left and 

middle: representative data, right: mean ± SD from n=3 healthy donors) in CD3+-gated bulk CD4+ T cells stimulated 

with anti-CD3/CD28 antibodies in the presence of Th17-driving cytokines and NO donor (DETA-NONOate). Scale 

bar represents 10 µM. Data in the right panel is represented as the fold change of the mean fluorescence intensity 

(MFI) over the isotype control. (E) Induction of intracellular NO (DAF-FM staining; representative experiment, left; 

mean ± SD from n=3 healthy donors, right) in CD3+-gated bulk CD4+ T cells stimulated with anti-CD3/CD28 

antibodies in the presence of Th17-driving cytokines and NO donor (DETA-NONOate), or the presence of general 

NOS inhibitor (L-NMMA) or NOS2-specific inhibitor (1400W). Data in the right panel is expressed as the fold 

increase of DAF-FM MFI over CD4+ T cells cultured in the absence of Th17-driving cytokines and NO donor. 

When not otherwise indicated, statistically significant differences compared to the absence of NO inhibitors are 

shown. (F) IL-17A secretion by naïve CD4+ T cells stimulated with Th17-driving cytokines in the presence of 

general NOS inhibitor (L-NMMA) or NOS2-specific inhibitor (1400W). The graph presents the mean ± SD from 

one representative experiment (quadruplicate cultures). The results were confirmed in 3 independent experiments 

using different healthy donors. (G) Induction of NOS2 (left, mean ± SD from 4 healthy donors) gene expression 

correlated with the IL-17A production (right, mean ± SD from 3 healthy donors) in bulk CD4+ T cells by the 

individual Th17-inducing factors IL-1β, IL-6, IL-23, and/or TGF-β1. * P<0.05; ** P<0.01; *** P<0.001. 

 

Interestingly, the induced levels of endogenous NOS2 were much higher in human 

memory than in naïve CD4+ T cells (Fig. 5.4A), consistent with the observed differences in the 
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effectiveness of IL-17 induction in these two populations (see ref. [151] and current Fig. 5.2, C 

and I, Fig. 5.3F, and Fig. 5.4A). However, very high differences in baseline NOS2 levels 

between human memory and naïve CD4+ T cells (mean ± SD: naïve: 0.00003±0.00002 vs. 

memory: 0.0006±0.0002, p=0.0053) could not be seen in their murine counterparts, where both 

memory and naïve CD4+ T cells expressed similarly high baseline levels of NOS2 (naïve: 

0.0034±0.001 vs. memory: 0.0032±0.001, not significant), and were not significantly modulated 

in the presence of Th17-promoting cytokines (mouse naïve: 0.0048±0.001 vs. memory: 

0.005±0.001, not significant). These observations are consistent with the previously-reported 

differences in the regulation of mouse and human immune system by NO [405-407], different 

susceptibility of human and mouse naïve CD4+ T cells to Th17-inducing factors [151, 413, 414], 

and the recently-reported lack of positive impact of exogenous NO on mouse CD4+ T cells at any 

concentrations of NO donor (ref. [400] and current mouse data not shown). 

5.4.3 Persistent expression of endogenous NOS2 and persistent cGMP-signaling are 

required for the functional stability of Th17 cells: Reversal of established Th17 cells from 

cancer patients by NOS- and cGMP-inhibitors 

Interestingly, NOS2 blockade in CD4+ T cell cultures activated in the presence of Th17-driving 

cytokines revealed that endogenous NO is not only required for the induction of IL-17A and IL-

17F expression, but also for the optimal expression of IL-23 receptor (Fig. 5.5, A and B), known 

to be essential for the maintenance of Th17 function [429]. Indeed, NO induced IL-23R 

expression on naïve CD4+ T cells, which express significantly less IL-23R than memory CD4+ T 

cells (Fig. 5.5B, left). In contrast to IL-23R, no impact of NO on IL-2R expression was observed 

(Fig. 5.5B, right). Furthermore, NOS inhibition reduced IL-23R expression by memory CD4+ T 
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cells (Fig. 5.5B), suggesting the requirement for NO in the optimal delivery of IL-23-mediated 

signals, which may contribute to the persistence of the Th17 phenotype. 

 

Figure 5.5. Endogenous NOS2 and persistent cGMP signaling are required for the NO-assisted de novo induction of 

Th17 cells and for the stability of human in vivo-developed Th17 cells from cancer patients. 
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(A) Relative gene expression of IL-17A, IL-17F, and IL-23R in bulk CD4+ T cells, expanded with anti-CD3/CD28 

antibodies in the absence or presence of Th17-driving cytokines and general NOS inhibitor (L-NMMA). The graphs 

present the mean ± SD from a representative experiment (triplicate cultures) of two (using different patients/healthy 

donors), which both yielded similar results. (B) Regulation of surface IL-23R expression (left) on naive and memory 

CD4+ T cells (mean ± SD from 4 healthy donors) activated with anti-CD3/CD28 antibodies in the presence of NOS 

inhibitor (L-NMMA) or NO donor (DETA-NONOate); Relative gene expression of IL-23R and IL-2R (right) in 

naive CD4+ T cells in the presence of increasing concentrations of NO donor and Th17-driving cytokines. 

Statistically significant differences compared to the absence of DETA-NONOate and Th17-driving cytokines are 

indicated. The graphs present the mean ± SD from a representative experiment (performed with triplicate cultures). 

The results were confirmed in 3 independent experiments using different healthy donors. (C) IL-17A production by 

naive CD4+ T cells stimulated with anti-CD3/CD28 antibodies in the absence or presence of cGMP inhibitor (ODQ, 

left) or supplemented with cGMP analogue (Br-cGMP, right) in the absence or presence of Th17-driving cytokines. 

The graphs present the mean ± SD from a representative experiment (triplicate cultures). The results were confirmed 

in 3 independent experiments using different healthy donors. (D) IL-17A (left) or IFN-γ (middle) production by 

OvCa-isolated CD4+ TILs (mean ± SD from 5 patients) expanded with anti-CD3/CD28 antibodies and re-stimulated 

in the absence or presence of NOS inhibitor (L-NMMA) or cGMP inhibitor (ODQ) for 48 h (statistically significant 

differences compared to the absence of inhibitors are indicated). IL-17A production by in vitro-generated Th17 cells 

(right; generated in 8 d cultures of CD4+ T cells stimulated with anti-CD3/CD28 antibodies in the presence of Th17-

driving cytokines), pretreated or not for 48 h with NOS inhibitor (L-NMMA) or cGMP inhibitor (ODQ). The data 

are shown as mean ± SD from 4 healthy donors. Statistically significant differences compared to condition in the 

absence of inhibitors are indicated. ns: P>0.05; * P<0.05; ** P<0.01; *** P<0.001. 

 

NO has been shown to signal predominantly via the cGMP/cGK signaling cascade [430], 

while high concentrations of NO involve the additional NO-dependent modification of a wider 

spectrum of endogenous proteins as well as nonspecific cytotoxic effects [401, 431]. In order to 

define the pathway of NO signaling relevant to Th17 induction, and to identify new targets for 

therapeutic modulation of Th17 responses and Th17-dependent pathologies, we evaluated the 
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role of cGMP/cGK signaling in these phenomena. Our data show that the cGMP-specific 

inhibitor ODQ blocks IL-17A production in naive CD4+ T cells activated in the presence of 

Th17-driving cytokines, while the addition of a membrane-permeable cGMP analogue alone can 

induce IL-17A production and further increase the production of IL-17A induced by Th17-

driving cytokines (Fig. 5.5C). 

Both NO and the cGMP signaling cascade proved to be required for the stability of 

established Th17 cells that developed in cancer patients (OvCa TILs) in vivo or were generated 

from healthy donors in vitro, since inhibition of either NOS or cGMP selectively suppressed IL-

17A but not IFN-γ production by these cells (Fig. 5.5D). These data indicate that targeting of 

NO-activated cGMP/cGK signaling can be evaluated for therapeutic intervention in Th17-

mediated disorders. 

5.5 DISCUSSION 

Prompted by the correlation between the local expression of IL-17A and NOS2 observed in the 

tumor environment of patients with ovarian cancer, we tested the role of the 

NOS2/NO/cGMP/cGK pathway in the development of Th17 cells from human naïve, memory, 

and tumor-infiltrating CD4+ T cells. We observed that endogenous NOS2 activity and 

intracellular NO production induced in CD4+ T cells by previously-identified Th17 inducers (IL-

1β, IL-6, and IL-23) or by cancer-infiltrating MDSCs is critically required for the de novo 

induction of Th17 cells in vitro and for the stability of in vivo-arising Th17 cells from cancer 

patients. While, in accordance with previous reports [389, 390, 400, 402], high concentrations of 

exogenous NO non-selectively inhibited immune activation, including the proliferation and 
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differentiation of Th17 cell precursors, the levels of NO produced by myeloid cells and, 

endogenously, by CD4+ T  cells supported the induction of Th17 responses and were essential 

for the functional stability of Th17 cells. These results help to explain the heterogeneous and 

often paradoxical effects of NO and Th17 cells in the regulation of inflammation, autoimmunity, 

and cancer [389].  

Interestingly, while MDSCs suppress naive CD8+ T cell proliferation and acquisition of 

cytolytic functions (Fig. 5.1 and [26, 228, 234, 382]), they do not impair naive CD4+ T cell 

proliferation, but instead promote the de novo induction of Th17 cells, an effect that may explain 

the paradoxic generation and presence of inflammatory Th17 cells in the immunosuppressive 

cancer-associated environment [392, 393, 416, 418]. Our data also indicate that in analogy to the 

positive feedback loop between Th1 cells and IFNγ-producing NK and CD8+ T cells [280], Th17 

cells not only promote NO-dependent effector mechanisms of immunity [411], but also benefit 

from interaction with NO-producing cells (neutrophils, macrophages, MDSCs), leading to the 

establishment of a positive feedback between such NO- and IL-17-producing 'effector' and 

'helper' cells. 

The impact of Th17 cells on cancer progression has been shown to be highly context-

dependent, varying across different cancers and in different mouse models [432-436]. Their 

preferential ability to be attracted to tumor sites and subsequently promote local recruitment of 

other inflammatory cells or convert to Th1 cells can lead to the enhancement of local antitumor 

immunity in particularly advanced tumors [416, 437-440], which may explain the positive 

correlation between intratumoral Th17 numbers and local production of IL-17 with survival in 

OvCa patients [416, 434]. However, in several models, Th17 cells have also been shown to drive 

early tumorigenesis by promoting chronic inflammation, DNA damage, and tumor-associated 
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angiogenesis, as well as by exhibiting potent suppressive activity [441-446]. Further studies are 

needed to understand the regulation and functional relevance of these different Th17 activities in 

the tumor environment. 

Our observations demonstrating that the stability of Th17 function requires endogenous 

NOS2 and that the induction of endogenous NOS2 in CD4+ T cells benefits from the synergy 

between the previously-identified Th17-driving cytokines (IL-1β, IL-6, and IL-23; Fig. 5.4G) 

help to explain the paradox that while the synergy between IL-1β and IL-6 (or other Stat3 

inducers) is sufficient for the effective induction of Th17 cells [424, 447], IL-23 signaling is an 

important component of the development of the Th17 phenotype and Th17 functions in most 

models [151, 412-415, 419-421]. Similar to previous reports [414, 415], we observed that TGF- 

β1 suppresses the development of human Th17 cells (Fig. 5.4G), an effect that is mirrored by the 

ability of TGF-β1 to suppress endogenous NOS2 in CD4+ T cells. These data suggest that the 

differences in the relative importance of TGF-β1 in the development of mouse Th17 cells in 

different models [412, 420-423] may need to be evaluated in the context of its impact on the 

production of endogenous (T cell-derived) and exogenous (produced by MDSCs and other 

myeloid or stromal cells) NO, which may potentially differ in different settings. Likewise, 

fundamental differences between mice and humans regarding NOS activity, NO production, and 

NO regulation ([405-407] and current data) may explain different requirements for TGF-β1 in the 

development of Th17 cells in mice versus humans. Interestingly, mouse Th17 cells induced by 

TGF-β1 and IL-6 have been shown to suppress T cell effector functions, while mouse Th17 cells 

differentiated with IL-1β, IL-6, and IL-23 are not immunosuppressive [448], highlighting the 

difficulties in cross-interpreting the results of mouse and human studies involving the interplay 

of Th17 cells and cancer. 
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The current data and the previously-reported importance of COX2/PGE2 in the induction 

and stability of NOS2 production by MDSCs [234], as well as the ability of NO to enhance 

COX2 activation [449], indicate a close interplay between these two inflammatory systems, 

which may provide new insights into the mechanism of the COX2/PGE2-driven development of 

Th17 responses to different pathogens [450-452] and help to identify potential new therapeutic 

targets. Similarly, it remains to be seen if such TLR ligands as LPS or peptidoglycan, shown to 

be particularly effective in promoting the DC-mediated induction of human Th17 cells [151, 

414], are particularly effective in inducing DC production of NO or alternative activators of the 

cGMP/cGK-mediated signaling pathway. Whether potential differences in this regard may 

contribute to the different efficiency of induction of Th17 cells from naïve versus memory and 

effector precursors ([151] and the current data) deserves further exploration.  

Our data suggest that the previously-observed differences in the ability of human memory 

and naïve CD4+ T cells to develop into Th17 cells (see ref. [151] and current Fig. 5.2C and Fig. 

5.3F) may, at least partially, result from much higher baseline levels of endogenous NOS2 in 

human memory CD4+ T cells, compared to naïve CD4+ T cells (Fig. 5.4A). Our preliminary data 

indicate that a similar difference does not exist in the mouse system, where both naïve and 

memory cells express very high baseline levels of NOS2, and do not further elevate its levels 

during Th17 differentiation (data not shown). These differences in the baseline levels of NOS2 

between human and mouse cells and the requirement for inflammatory factors in the expression 

of NOS2 by human cells are consistent with the significant delay in the demonstration of the 

presence of NOS2 in human cells [453-455] and its cloning [455]. 

The current identification of NO, NOS/NOS2, and the cGMP/cGK-signaling pathway as 

critical requirements for the induction and stability of human Th17 cells, both arising in vivo in 
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cancer-bearing patients and induced in vitro from naïve and memory precursor cells from healthy 

donors, suggests a number of potential therapeutic strategies. These strategies include inhibition 

of NO production or signaling in Th17-dependent malignant tumors or in Th17-mediated 

inflammatory/autoimmune processes, or the activation of these pathways to boost desirable Th17 

immunity in Th17-susceptible tumors or chronic infections, such as M. tuberculosis. Since Th17 

cells have a high propensity to migrate to and accumulate in tumor lesions, the current 

demonstration that NOS2 blockade can revert Th17 cells into cells preferentially producing IFN-

γ suggests that the sequential application of NO donors or NO-increasing factors in vivo (or ex 

vivo to prepare tumor-homing T cells for adoptive immunotherapy) followed by systemic NOS2 

inhibition (to promote their transition from Th17 to Th1 cells) may result in particularly high 

therapeutic effectiveness, promoting T cell accumulation at tumor sites and their subsequent 

conversion to type-1 effector cells. The feasibility of such approaches is enhanced by the 

availability of large numbers of NO donors and inhibitors that have been evaluated for the 

treatment of autoimmune and inflammatory diseases, as well as for vasodilation in hypertensive 

coronary disease, erectile dysfunction, and pulmonary hypertension. 
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6.1 ABSTRACT 

Type-1 immune responses are essential for effective anti-tumor immunity. Despite recent 

advances in the induction and stabilization of these responses by cancer immunotherapies, the 

clinical success of these approaches remain limited. Here, we report that the activation of type-1 

immunity within the human tumor environment initiates IFNγ- and TNFα-dependent counter-

regulation, driven by amplification of prostaglandin E2 (PGE2) and the key regulator of PGE2 

synthesis, cyclooxygenase 2 (COX2). We demonstrate that activated NK cells and CTLs induce 

IFNγ/TNFα-mediated over-expression of indoleamine 2,3-dioxygenase (IDO), inducible nitric 

oxide synthase (iNOS/NOS2), IL-10, and COX2 by tumor-associated myeloid-derived 

suppressor cells (MDSCs). Importantly, this self-limiting suppressive feedback driven by type-1 

immunity could be eliminated not only by neutralization of IFNγ and TNFα, factors critically 

required for the anti-tumor activity of immune effector cells, but also by COX2 blockade, which 

counteracted the IFNγ/TNFα-driven enhancement of all other suppressive factors. Our data 

demonstrate an intrinsic mechanism driving the self-limiting nature of type-1 immunity within 

the human tumor environment, and provide rationale for targeting the COX2/PGE2 axis as part 

of cancer immunotherapies. 

6.2 INTRODUCTION 

Type-1 immunity, characterized by the development of cytotoxic CD8+ T cell (CTL), natural 

killer (NK) cell, and type-1 helper CD4+ T cell (Th1) responses producing the key cytokines 

IFNγ and TNFα, have been shown to be essential for effective anti-tumor immunity [21]. Driven 
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by the strong positive prognostic relevance of intratumoral type-1 lymphocytes to clinical 

outcome, current cancer immunotherapies focus on enhancing the accumulation, activation, and 

function of these lymphocytes within the tumor environment [456]. Nevertheless, despite 

progress in enhancing intratumoral type-1 immune processes, the clinical success of these 

approaches often remain limited to a small proportion of patients [457, 458]. 

The highly immune-suppressive nature of the tumor environment has emerged as a 

critical regulator of intratumoral immune responses, and is increasingly recognized as a major 

barrier to the effectiveness of cancer immunotherapies [459]. This includes the recruitment and 

induction of significant suppressive myeloid populations within the tumor environment, 

including a profound enrichment of myeloid-derived suppressor cells (MDSCs) [231]. 

Characterized in human cancer by a LIN-CD11b+CD33+HLA-DRlow/- phenotype, MDSCs have 

been demonstrated to potently inhibit both innate and adaptive immune responses through such 

key mechanisms as inducible nitric oxide synthase (iNOS/NOS2), indoleamine 2,3-dioxygenase 

(IDO), and IL-10 [244, 265, 408, 460]. 

Here, we demonstrate that the induction of potent suppressive counter-regulation is a 

direct consequence of type-1 immune activation within the human tumor environment. We 

identify the hyper-activation of MDSCs by type-1 lymphocytes as a key mediator of this 

feedback immune suppression, driven critically by amplification of prostaglandin E2 (PGE2) and 

its key synthesizing enzyme cyclooxygenase 2 (COX2). Blockade of the COX2/PGE2 axis was 

capable of reversing the suppressive enhancement induced by type-1 lymphocytes through the 

central antagonism of multiple suppressive processes. These data indicate a key pathway for the 

induction of negative feedback immune suppression induced by type-1 responses within the 
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human tumor environment, and provide rationale for the core targeting of COX2/PGE2 in 

uncoupling immunity and suppression for cancer therapy. 

6.3 MATERIALS AND METHODS 

Media and reagents. Bulk ovarian cancer ascites cells, MDSCs, NK cells, and T cells were 

cultured in Iscove’s Modified Dulbecco’s Medium (IMDM) containing 10% fetal bovine serum 

and 1% L-glutamine and penicillin/streptomycin (all from Gibco, Invitrogen). The following 

factors were used in this study: IL-18 (200 ng/ml; MBL International); IFNα (1000 IU/ml; Intron 

A, IFN-α-2b; Schering-Plough); IL-12 (5 ng/ml; PeproTech); IL-2 (250 IU/ml; Chiron); 

granulocyte macrophage colony-stimulating factor (1000 IU/ml; GM-CSF); IFNγ (1000 IU/ml; 

Miltenyi Biotech); and TNFα (50 ng/ml; Miltenyi Biotech). The following inhibitors were used 

in this study: celecoxib (20 µM; BioVision), 1-methyl-DL-tryptophan (1 mM; Sigma-Aldrich), 

L-NMMA (200 µM; Cayman Chemical), anti-IL-10 mAb (clone 25209; 1 µg/ml; R&D 

Systems), and nor-NOHA (200 µM; Cayman Chemical). The concentrations used did not affect 

viability in cell cultures, as confirmed by live cell counts. 

Isolation of ovarian cancer (OvCa) ascites cells. Human OvCa ascites were obtained 

intraoperatively from previously-untreated patients with advanced (stage III or IV) epithelial 

ovarian cancer undergoing primary surgical debulking for clinical staging. Written informed 

consent was obtained prior to any specimen collection, and the nature and possible consequences 

of the studies were explained. All specimens were provided under a protocol approved by the 

University of Pittsburgh Institutional Review Board (IRB0406147). Primary OvCa ascites cells 

were harvested by centrifugation. When indicated, bulk OvCa ascites cells were stimulated with 
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combinations of IL-18, IFNα, IL-12, IL-2, anti-CD3 mAb (clone OKT3; 1 µg/ml; eBioscience), 

and CD3/CD28 Human T cell-Activator Dynabeads (5 µl/ml; Invitrogen). NK cells were 

depleted from bulk OvCa ascites cells by CD56 positive magnetic selection (StemCell 

Technologies). MDSCs were depleted or isolated using CD11b positive magnetic selection 

(Miltenyi Biotech), which was previously shown to be highly effective in isolating >95% pure 

CD11b+ cells uniformly expressing the LIN-CD11b+CD33+HLA-DRlow/- MDSC phenotype from 

human OvCa ascites cells [27, 234]. Control CD11b+ cells were isolated from health donor 

peripheral blood using the same method. 

Isolation of NK cells and CD8+ T cells. Peripheral blood from healthy donors was 

harvested by venipuncture under IRB-approved protocols. NK cells (CD56+CD3-) and naïve 

CD8+ T cells (CD8+CD45RA+CCR7highCD45RO-CD56-CD57-) were isolated by negative 

magnetic selection (>95% pure in both cases) using the EasySep system (StemCell 

Technologies), according to the manufacturer’s protocol. 

MDSC activation. For NK cell activation of MDSCs, NK cells (0.5x105 cells/well) were 

co-cultured with MDSCs (1x105 cells/well) in 96-well plates in the presence of IL-18 (200 

ng/ml) and IFNα (1000 IU/ml). When indicated, soluble decoy receptors to IFNγ (sIFNγR1; 10 

µg/ml; R&D Systems) and TNFα (sTNFR1; 1 µg/ml; R&D Systems) were added to cultures at 

co-culture initiation. For CD8+ T cell activation of MDSCs, T cells (0.5x105 cells/well) were co-

cultured with MDSC (1x105 cells/well) in 96-well plates in the presence of anti-CD3 mAb (1 

µg/ml) and IL-12 (5 ng/ml). Alternatively, MDSCs were cultured with IFNγ (1000 IU/ml) and 

TNFα (50 ng/ml) to induce activation. Cultures were assessed at 24 h for mRNA expression and 

at 36 h for intracellular staining and ELISA analysis of supernatants. 
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CD8+ T cell suppression. Naïve CD8+ T cells (1x105 cells/well) labeled with CFSE 

(Invitrogen; labeled according to the manufacturer’s protocol) were stimulated with CD3/CD28 

Human T cell-Activator Dynabeads (5 µl/ml; Invitrogen) in the presence or absence of MDSCs 

(0.25x105 cells/well) and/or IL-18/IFNα-activated NK cells (0.25x105 cells/well) in 96-well 

plates, in the additional presence of small-molecule inhibitors or blocking antibodies against 

suppressive factors where indicated. On day 4, expanded CD8+ T cells were analyzed for 

proliferation via CFSE dilution and intracellular granzyme B expression. 

Flow cytometry. Cell surface and intracellular immunostaining analyses were performed 

using an Accuri C6 Flow Cytometer. NK cells and T cells were stained with the dye-conjugated 

anti-human mouse monoclonal antibodies CD56-PE-Cy5 (Beckman Coulter), CD3-PE 

(eBioscience), CCR7-FITC (R&D Systems), granzyme B-PE (Invitrogen), and CD16-FITC, 

CD8-PE-Cy5, CD45RA-FITC, CD45RO-PE, and CD57-FITC (BD Biosciences). MDSCs were 

stained for CD11b-FITC, CD14-PE, CD33-APC, CD34-PE-Cy5, and HLA-DR-PE (BD 

Biosciences and eBioscience), as well as IDO-A488 (R&D Systems), NOS2-PE (Santa Cruz 

Biotechnology), and COX1-FITC/COX2-PE (BD Biosciences). The corresponding mouse 

antibody isotype controls IgG1-FITC, IgG2b-FITC, IgG1-PE, IgG2a-PE, IgG1-PE-Cy5, IgG1-

APC, and IgG1-A488 (BD Biosciences) were used, as appropriate. Before staining, the cells 

were treated for 20 min at 4ºC in PBS buffer containing 2% human serum, 0.5% BSA, 0.1% 

NaN3, and 1 μg/ml of mouse IgG (Sigma-Aldrich) to block non-specific binding. Cell 

permeabilization for intracellular staining was performed using the Foxp3 Fix/Perm Buffer Set 

(eBioscience), according to the manufacturer’s protocol. Cells were stained for 40 min at 4ºC 

followed by washing with PBS buffer containing 0.5% BSA and 0.1% NaN3, then fixed and 

stored in 4% paraformaldehyde until analysis. 
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ELISA. Supernatants from 36 h co-cultures of NK cells and MDSCs were analyzed for 

IL-10 by indirect sandwich ELISA using specific matched primary and biotinylated-secondary 

antibody pairs (R&D Systems), as previously described [234]. 

Quantitative real-time PCR. Analysis of mRNA expression was performed using the 

StepOne Plus System (Applied Biosystems), as previously described [173], using inventoried 

primer/probe sets. Expression of IFNγ, TNFα, IDO1, NOS2, IL-10, and/or COX2 was assessed 

24 h following bulk OvCa ascites cell activation or following MDSC activation with type-1-

activated lymphocytes or IFNγ/TNFα. The expression of each gene was normalized to HPRT1 

and expressed as fold increase (2-∆CT), where ∆CT = CT (target gene) – CT (HPRT1). 

Statistical analysis. Data was analyzed using unpaired and paired t tests (two-tailed) and 

one-way and two-way ANOVA, where appropriate. Significance was judged at an α of 0.05. 

Where indicated, data from multiple different patients and control donors are recorded as means 

(± SD) from n different donors, described in the figure legends. Data from representative 

experiments are presented as means (± SD) from triplicate cultures, and confirmed in multiple 

independent experiments, described in the figure legends. 

6.4 RESULTS 

6.4.1 Activation of type-1 immune cells in the human tumor environment promotes local 

immune suppression through the hyper-activation of MDSCs 

While intratumoral type-1 immunity has been linked to favorable prognosis for the vast majority 

of cancers [181, 461], therapeutic strategies targeting the enhancement of these responses have 
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demonstrated only limited activity for most patients [457, 458], suggesting that type-1 responses 

within the tumor environment may promote counter-regulatory mechanisms restricting the 

overall development of anti-tumor activity. Using bulk cells isolated from the malignant ascites 

of patients with late-stage epithelial ovarian cancer, we stimulated these cells with factors known 

to induce type-1-polarized lymphocyte activation [150, 297, 326], including IL-18/IFNα and 

anti-CD3/IL-12 to activate NK cells and CD8+ T cells, respectively, as a model for type-1 

immune activation within the human tumor environment. While, as expected, these stimuli 

induced high expression of the signature type-1 cytokines IFNγ and TNFα implicated heavily in 

the promotion of anti-tumor responses [462, 463], the same type-1-driving factors also induced 

significant expression of the known suppressive factors IDO1, NOS2, IL-10, and COX2 (Fig. 

6.1A). This was found to be a general consequence of type-1 activation within the bulk tumor 

environment, as a similar enhancement in the expression of these suppressive factors was 

observed upon ascites cell treatment with several other known type-1-driving NK cell and T cell 

stimuli (Appendix Fig. 6). 

Using IL-18/IFNα-driven NK cell activation as a model, we found that this enhancement 

in suppressive factors induced by type-1-driving stimuli was indeed due to lymphocyte activation 

within the tumor environment, as prior NK cell depletion abrogated this effect (Fig. 6.1B), while 

no influence on suppressive factor expression was observed after NK cell depletion in the 

absence of activation stimuli (data not shown). We have previously identified the profound 

enrichment of a monocytic subset of MDSCs, known to be a potent producer of these 

suppressive factors, within the human ovarian cancer tumor environment [27, 234]. 

Hypothesizing that these cells may be involved in this phenomenon, we depleted MDSCs from 

the bulk ascites cell population (see Material and Methods) prior to treatment with NK cell-
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activating stimuli, and observed a strong reduction in the expression of suppressive factors 

induced by NK cell activation (Fig. 6.1C). Collectively, these results suggest that type-1-

activated lymphocytes may promote immune-suppressive molecules within the tumor 

environment through the augmentation of MDSC activity. 
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Figure 6.1. Type-1 activation of immune cells within the bulk tumor environment enhances local MDSC-mediated 

expression of suppressive factors. 
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(A) Bulk OvCa ascites cells were cultured for 24 h in the absence or presence of the NK cell-activating (NKact) 

stimuli IL-18/IFNα or the CD8+ T cell-activating (CD8act) stimuli anti-CD3/IL-12, and analyzed for expression of 

IFNγ, TNFα, IDO1, NOS2, IL-10, and COX2. Data are expressed as ratios between the expression of individual 

genes and HPRT1, and shown as the mean expression (± SD) of triplicate cultures. Data represent one of three 

independent experiments, all yielding similar results. (B) Bulk OvCa ascites cells or ascites cells depleted of CD56+ 

NK cells (NKdeplete) were cultured for 24 h in the absence or presence of the NK cell-activating (NKact) stimuli IL-

18/IFNα, and analyzed for expression of IDO1, NOS2, IL-10, and COX2. Data are expressed as ratios between the 

expression of individual genes and HPRT1, and represent the mean (± SD) of 4 independent patients. (C) Bulk 

OvCa ascites cells or ascites cells depleted of CD11b+ MDSCs (MDSCdeplete) were cultured for 24 h in the absence 

or presence of the NK cell-activating (NKact) stimuli IL-18/IFNα, and analyzed for expression of IDO1, NOS2, IL-

10, and COX2. Data are expressed as ratios between the expression of individual genes and HPRT1, and represent 

the mean (± SD) of 3 independent patients. ***p<0.001, **p<0.01, *p<0.05, ns: p>0.05 compared to indicated 

groups or compared to all groups when not specifically indicated. 

 

Indeed, direct co-culture of activated NK cells and isolated MDSCs significantly 

enhanced the ability of MDSCs to suppress the proliferation and granzyme B acquisition of naïve 

CD8+ T cells driven by anti-CD3/CD28 antibodies (Fig. 6.2A) or autologous DCs (data not 

shown), an effect that was not observed with NK cell-activated control CD11b+ myeloid cells 

isolated from the peripheral blood of healthy donors (Appendix Fig. 7). This heightened MDSC 

suppressive activity was accompanied by enhanced MDSC expression of IDO1, NOS2, IL-10, 

and COX2 at both the mRNA (Fig. 6.2B) and protein (Fig. 6.2C) levels, and a similar 

augmentation of MDSC suppressive factors was likewise observed following MDSC co-culture 

with type-1-activated CD8+ T cells (Appendix Fig. 8). No suppression was observed by activated 

NK cells alone (Fig. 6.2A), which did not express IDO1 and COX2 and only low levels of NOS2 

and IL-10 (data not shown). These data indicate that enhanced suppressive activity is mediated 

by MDSCs activated by direct interaction with type-1 lymphocytes. 
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Figure 6.2. Activated type-1 immune effector cells enhance MDSC suppressive activity. 

(A) Percentage of proliferating, granzyme B (GzmB) positive naïve CD8+ T cells following 4 d activation with anti-

CD3/CD28 antibodies in the absence or presence of OvCa ascites-isolated CD11b+ MDSCs and/or IL-18/IFNα-

activated NK cells (NKMDSC), measured by CFSE dilution and intracellular GzmB staining presented in 

representative cultures (left) or as the mean (± SD) of 5 independent patients (right). (B-C) Expression of IDO1, 

NOS2, IL-10, and COX2 assessed by mRNA (B) and protein (C) levels in MDSCs cultured (24 h for mRNA; 36 h 

for protein) with or without IL-18/IFNα-activated NK cells (NKMDSC). Data of mRNA levels are expressed as ratios 

between the expression of individual genes and HPRT1, and represent the mean (± SD) of 4 independent patients. 

Data of protein levels are represented as the fold change of the mean fluorescence intensity (MFI) over the isotype 
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control, or levels detected by specific ELISA in 36 h supernatants, shown as the mean levels (± SD) of triplicate 

cultures. Data represent one of three independent experiments, all yielding similar results. ***p<0.001, **p<0.01, 

*p<0.05 compared to indicated groups or compared to all groups when not specifically indicated. 

6.4.2 Key role of IFNγ and TNFα in the enhanced MDSC suppression induced by type-1 

immune effector cells 

Blockade of IFNγ and TNFα with soluble decoy receptors in MDSC co-cultures with NK cells 

significantly reduced the MDSC expression of multiple suppressive factors (Fig. 6.3), revealing 

the key role of these cytokines in mediating the enhanced MDSC suppressive activity. Indeed, 

treatment of MDSCs with exogenous IFNγ and TNFα mirrored the high expression of these 

suppressive factors seen after co-culture with type-1-activated lymphocytes (Appendix Fig. 9). 
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Figure 6.3. IFNγ and TNFα are critical mediators of MDSC hyper-activation induced by type-1 immune cells. 
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Expression of IDO1, NOS2, IL-10, and COX2 in MDSCs cultured for 24 h with or without IL-18/IFNα-activated 

NK cells (NKMDSC), in the additional presence or absence of soluble IFNγ (sIFNγR1) or TNF (sTNFR1) decoy 

receptors. Data are expressed as ratios between the expression of individual genes and HPRT1, shown as the mean 

expression (± SD) of triplicate cultures in one of three similar experiments. ***p<0.001 compared to all groups. 

6.4.3 Enhanced MDSC activity triggered by type-1 immune activation in the tumor 

environment requires the intact COX2/PGE2 axis and is reversed by COX2 blockade 

To investigate the key enhanced suppressive pathways used by MDSCs in the observed CTL 

suppression, we tested the effect of IDO, NOS, IL-10, arginase, and COX2 inhibition on the 

ability of ‘hyper-activated’ MDSCs to suppress CD8+ T cell responses. Individual inhibition of 

IDO, NOS, IL-10, and arginase partially reversed the activation-induced MDSC suppression of 

CD8+ T cell proliferation and granzyme B acquisition (Fig. 6.4A). Unexpectedly, however, sole 

inhibition of COX2 was significantly better than inhibition of any of the other pathways tested, 

even when blockade of all of these other pathways were combined (Fig. 6.4A). Analysis of NK 

cell-activated MDSCs revealed that COX2 blockade coordinately antagonized the expression of 

multiple other suppressive factors, as well as its own expression (Fig. 6.4B, left and middle). 

While PGE2 has been described to have direct suppressive effects [464], these results suggest 

that COX2 inhibition’s superior reversal of MDSC suppression is also likely to act through the 

regulation of other suppressive factors. Across multiple patients, COX2 blockade was capable of 

completely reversing the enhanced suppressive ability of hyper-activated MDSCs, which was 

restored upon exogenous PGE2 supplementation (Fig. 6.4C). Notably, COX2 inhibition also 

increased the expression of IFNγ and TNFα in NK cell-MDSC co-culture (Fig. 6.4B, right), 

indicating the differential COX2-mediated modulation of stimulatory and suppressive factors. 
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Figure 6.4. Effector cell-driven hyper-activation of MDSCs requires the intact COX2/PGE2 axis. 
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(A) Percentage of proliferating, granzyme B (GzmB) positive naïve CD8+ T cells following 4 d activation with anti-

CD3/CD28 antibodies in the absence or presence of resting or IFNγ/TNFα-activated MDSCs (actMDSC), in the 

additional presence of 1-MT (IDO inhibitor), L-NMMA (NOS inhibitor), neutralizing anti-IL-10 mAb, nor-NOHA 

(arginase inhibitor), and/or celecoxib (COX2 inhibitor). (B) Expression of IDO1, NOS2, IL-10, COX2, IFNγ, and 

TNFα in MDSCs cultured for 24 h with or without IL-18/IFNα-activated NK cells (NKMDSC), in the additional 

presence or absence of celecoxib (COX2 inhibitor). Data are expressed as ratios between the expression of 

individual genes and HPRT1, and represent the mean (± SD) of 4 independent patients. (C) Percentage of 

proliferating GzmB+ naïve CD8+ T cells following 4 d activation with anti-CD3/CD28 antibodies in the presence of 

resting or IFNγ/TNFα-activated MDSCs (actMDSC), in the additional presence of celecoxib (COX2 inhibitor) and/or 

exogenous PGE2. ***p<0.001, **p<0.01, *p<0.05 compared to indicated groups or compared to all groups when not 

specifically indicated. When comparison to a group of conditions is shown, the least significant level is indicated. 

6.5 DISCUSSION 

The current data demonstrate that type-1 immune cells and the key cytokines mediating their 

anti-tumor activities, IFNγ and TNFα [462, 463], directly promote counter-regulatory 

suppressive events within the human tumor environment through the COX2/PGE2-driven 

amplification of MDSC activity and its coordinated enhancement of multiple suppressive 

pathways. Our data help to reconcile reports demonstrating both anti-tumor and pro-tumor 

activities of type-1 cytokines [463, 465, 466], and identify the COX2/PGE2 pathway as a key 

target for the therapeutic separation of opposing stimulatory and suppressive outcomes induced 

by type-1 immunity within the human tumor environment. 

While many suppressive pathways, including the IDO, NOS, and IL-10 mechanisms 

described here, have been implicated in tumor-associated immune dysfunction [467], these data 

indicate that upregulation of these suppressive pathways can be a direct consequence of type-1 
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immune responses within the human tumor environment. The upregulation of many of these 

suppressive factors have long been associated with inflammatory mediators such as IFNγ in 

physiologic settings, including for homeostatic T cell contraction following infection [468], 

control of autoimmune responses [469-471], and immunologic tolerance during pregnancy [472], 

findings which suggest that counter-regulatory suppression induced by type-1 immunity may be 

a mechanism of normal endogenous immune control preventing overactive responses. However, 

in the setting of cancer, this mechanism may be co-opted in the tumor environment to support 

tumor progression. Indeed, recent clinical evidence in melanoma demonstrated that an enhanced 

intratumoral type-1 immune signature correlated with clinical response to ipilimumab, but was 

also associated with expression of IDO1 [473], potentially limiting the magnitude of these 

responses. We identify here that the type-1 immune-mediated hyper-activation of MDSCs, which 

are profoundly enriched within the human tumor environment [26], is likely to play a key role in 

this process. 

While activation of MDSCs by pro-inflammatory factors has been previous described 

[218, 237, 239], we identify here the novel central regulation of the enhancement of multiple 

MDSC suppressive pathways by type-1 immune-mediated potentiation of the COX2/PGE2 axis 

(Fig. 6.4B). As COX2/PGE2 has also been shown to be involved in the de novo induction of 

MDSCs [234, 474, 475] as well as their recruitment to the tumor environment [27, 476], and has 

been further implicated in numerous other tumor cell-intrinsic and microenvironmental cancer-

promoting activities (reviewed in [464, 477]), the type-1 immune-mediated enhancement of the 

COX2/PGE2 axis described here may result in an even-larger expansion of tumor environment-

associated suppression and the reinforcement of a suppressive feedback loop, severely limiting 

spontaneous or therapy-induced type-1 responses. 
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Our data demonstrate that IFNγ and TNFα produced by type-1 lymphocytes are the 

primary enhancers of the observed immune suppression (Fig. 6.3). Nevertheless, these molecules 

have also been extensively demonstrated to be critical to the effectiveness of anti-tumor 

immunity [462, 463], limiting the possibility of the therapeutic blockade of these factors as a part 

of cancer therapy. Identification of COX2/PGE2 as a central regulator of multiple suppressive 

pathways downstream of IFNγ and TNFα secretion provides a key therapeutic target to maintain 

the anti-tumor features of these type-1 cytokines while preventing suppressive consequences. 

Indeed, COX2 blockade strongly reversed hyper-activated MDSC suppression of CD8+ T cells in 

co-culture (Fig. 6.4C), and was more effective even than the combined treatment with IDO, 

NOS, arginase, and IL-10 inhibitors (Fig. 6.4A), while preserving and even enhancing 

lymphocyte secretion of IFNγ and TNFα (Fig. 6.4B). 

Despite recent FDA approvals of several new forms of immunotherapy, including 

sipuleucel-T (Provenge) for prostate cancer [478-484], and ipilimumab [485] and pegylated 

IFNα for melanoma [486, 487], only a limited proportion of patients benefit from these immune 

therapies, and many of the responding patients eventually progress. Recent demonstrations that 

cancer can progress even in the presence of 10-40% tumor-specific T cells in the blood of 

vaccinated patients [488, 489] highlight the need to promote entry and local effector functions of 

these T cells within tumor tissues, which may be further enhanced by the antagonism of 

suppressive feedback mechanisms. Since approaches such as CTLA4 blockade or PD1/PDL1 

blockade are believed to promote the duration of anti-cancer immunity [490], it remains to be 

tested whether their effectiveness and the duration of their activity can be enhanced by 

simultaneous blockade of PGE2 synthesis or responsiveness to PGE2 using available inhibitors of 

PGE2 synthesis and signaling (reviewed in [464]).  
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In summary, the current findings provide novel insights into the self-limiting nature of 

type-1 immunity in human cancer, and provide rationale for targeting the COX2/PGE2 axis as a 

key part of therapeutic approaches seeking to enhance the magnitude and duration of type-1 

immune responses within the human tumor environment. 
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7.0  SUMMARY AND INTERPRETATIONS 

It has become clear that NK cells not only participate as cytotoxic effector cells in the anti-tumor 

immune response, but also provide complex non-cytotoxic immunomodulatory functions 

essential to the development of protective immunity. The work described here presents a 

unifying model describing these key NK cell helper functions in the development of DC-

mediated adaptive immunity, and in particular, implicate NK cells as central initiators and 

promoters of these responses at multiple significant levels. Our data also demonstrate the 

presence of negative feedback mechanisms on immune activation that may be involved in the 

physiologic resolution of these NK cell-driven responses, but which exist and are amplified 

within the human tumor microenvironment as a significant barrier to effective, sustained immune 

control. These findings provide key insights into the development of anti-tumor immunity and 

have considerable translational implications for the enhancement of cancer therapy. 

7.1 EMERGING MODEL 

The data presented herein suggest that NK cells mediate unique helper functions that are 

regulated distinctly from their killing capacity, and which can be enhanced by the synergy 

between IL-18 and NK cell recognition of other early indicators of cellular distress, such as 

stress-associated ‘induced-self’ NKG2D ligands (Fig. 3.2 and Appendix Fig. 5) or IFNα (Fig. 
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2.1) elaborated early in viral infection or tumor development [101-103]. Helper NK cells 

activated in the periphery by signals associated with tissue damage, infection, or transformation 

can function as key initiators of the immune response, recruiting immature DCs through the 

elaboration of crucial chemokines, including CCR5 ligands (Fig. 3.1 and 3.3), in order to 

facilitate optimal antigen acquisition. Subsequent NK cell interaction with DCs drives the 

process of DC maturation, including upregulation of co-stimulatory molecules as well as CCR7-

mediated homing capacity to secondary lymphoid tissue (Fig. 2.5 and Appendix Fig. 1). NK cell 

interaction also imprints on DCs the capacity to secrete key factors, importantly including IL-12 

(Fig. 2.4), essential for the polarization of T cell responses toward type-1 immunity [150], as 

well as the chemokine CCL19 (Fig. 4.1), a factor critical in DC-mediated priming of naïve T 

cells and induction of recall responses by memory T cells [491]. Thus, helper NK cell interaction 

with DCs promotes all three signals essential for driving DC-mediated anti-tumor type-1 T cell 

immunity: antigen-specific ‘signal 1’, co-stimulatory ‘signal 2’, and immune-polarizing ‘signal 

3.’ Furthermore, NK cell collaboration with DCs also promotes a chemokine environment in 

peripheral tumor sites conducive to the infiltration of primed type-1 effector cells, characterized 

by high expression of CXCR3 and CCR5 ligands (Fig. 3.5). This occurs without a concurrent 

enhancement in CCL22-mediated Treg cell entry (Fig. 3.4), and thus provides comprehensive 

support for both the afferent and efferent phases of anti-tumor immunity. 

DCs have been classically defined as sentinels of the immune system that are specifically 

designed for danger recognition and the initiation of needed immune responses [492]. However, 

in a larger context, the cooperation between NK cells and DCs described herein likely exists to 

provide more complete surveillance of evolving threats. Importantly, within the tumor, classic 

acute inflammatory danger signals may be limited or absent [493], providing an even-more 
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critical role for the NK cell detection of ‘missing-self’ and/or ‘induced-self’ (such as diminished 

MHC class I molecules or stress-induced ligands recognized by NK cell receptors like NKG2D) 

in the initiation of immune responses [357]. Thus, the sequential NK cell to DC to T cell 

stimulation model presented here may be a key paradigm for how immune responses are initiated 

particularly in the cancer context. Indeed, this pathway has been implicated in tumor control in 

vivo in several instances, in which tumor rejection was shown to be reliant on NK cell 

recognition of tumor, subsequent DC activation, and the eventual development of protective 

adaptive T cell immunity [202, 204, 294]. Our current data further support the concept that NK 

cell helper ability may need only to recognize certain subsets of susceptible tumor cells in order 

to generate broader anti-tumor immune responses. For instance, NK cell interaction with 

susceptible K562 tumor cells (Fig. 2.3) was effective in engendering more comprehensive 

adaptive responses via DC activation (Fig. 2.6). Consistent with this concept, mouse in vivo 

studies have indicated that initial NK cell recognition of susceptible targets, such as those with 

MHC class I deficiency, could lead to the subsequent development of Th1 and CTL responses 

against the parental MHC class I-sufficient tumor [294]. This helper NK cell ability to translate 

recognition of only a subset of tumor cells into a much larger and more comprehensive adaptive 

immune response presents an attractive pathway to target in the context of cancer therapy. 

Our data also indicates that a negative-feedback mechanism exists following type-1 

immune activation, shown here to be a general consequence of activated NK cells as well as T 

cells secreting IFNγ and TNFα, of which MDSCs can play a key role (Chapter 6). It is likely that 

such a mechanism may be a physiologic balance to prevent immune damage from prolonged 

over-active responses, as suggested by the role of type-1 immunity in enhancing suppressive 

pathways during T cell contraction following infection [468] and in the protection from 
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autoimmunity [469-471]. Indeed, the involvement of the COX2/PGE2 axis as a central regulator 

of this mechanism (Fig. 6.4) is telling, as it has been implicated in chronic disease states to 

support tissue preservation and repair, helping to contain damage stemming from prolonged 

immunity [464]. Our data strongly suggests however that this mechanism is co-opted by human 

tumors to limit anti-tumor immune responses. This occurs via a profound enrichment of COX2-

expressing MDSCs capable of mediating potent CD8+ T cell suppression (Fig. 5.1 and 6.2), as 

well as the polarization of CD4+ T cell responses toward Th17- rather than Th1-type functional 

immunity (Fig. 5.2), which is likely to be less effective in controlling cancer [21]. 

Thus, this work provides an emerging model to understand the roles that NK cell 

engagement with DCs and MDSCs play in initiating and modulating type-1 anti-tumor immune 

responses. This work also reveals the impact of NK cell interactions on critical chemokine 

networks governing naïve T cell priming and effector T cell infiltration into peripheral tissues, as 

well as important pathways restricting these responses. The mechanistic insights provided by 

these studies further identify new opportunities for the therapeutic modulation of these responses 

for cancer therapy, the implications of which are discussed below. 

7.2 IMPLICATIONS FOR IMMUNOTHERAPY 

The initial characterization of NK cells as specialized killers has evolved into a broader 

appreciation of the many cytotoxic and non-cytotoxic roles these innate cells play in the 

development of protective immunity [200, 300, 494]. Although NK cell effector activities, such 

as cytolysis and IFNγ secretion, are still intuitively assayed and discussed as a single non-

specific phenomenon, an increasing body of evidence supports the concept that these cytotoxic 
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and non-cytotoxic NK cell functional activities are in fact distinctly governed. For instance, it 

has been shown that the localization and trafficking of IFNγ and TNFα occur in compartments 

that do not overlap with perforin, are processed by different secretory pathways utilizing distinct 

endosomal proteins, and result in distinctive patterns of non-polarized versus polarized secretion 

[495]. Further evidence suggests that distinct NK cell surface receptors, such as KIR2DL4 versus 

those recognizing target cell-expressed CD40/CD80, may also differentially mediate cytokine 

secretion versus cytotoxicity [496, 497], and other studies have shown that even the same NK 

cell activating receptor, such as 2B4, is capable of driving lytic and non-lytic activities through 

separate downstream signaling pathways [498]. 

In line with these observations, the results shown here (Fig. 2.1, 3.1, and 4.1) clearly 

indicate that these cytotoxic and non-cytotoxic activities are distinct and differentially-regulated, 

and have the potential to be selectively promoted by therapy. This is most clearly demonstrated 

by the dichotomous functional consequences on NK-DC interaction induced simply by the 

application of IL-18 versus IL-2 for NK cell priming, in which IL-18 promotes potent NK cell 

activation of DCs (Fig. 2.4 and 2.5) and polarization toward desirable anti-tumor type-1 

immunity (Fig. 2.6), while IL-2 promotes efficient NK cell killing of DCs (Fig. 2.1), thereby 

potentially hindering the evolution of downstream adaptive responses. The feasible therapeutic 

separation of these distinct NK cell activities using specific cytokines along with precise 

temporal and/or locoregional application may allow the practical augmentation of specific NK 

cell functions at selective sites for more effective, targeted treatment.  

Our results also highlight the need to comprehensively assess the potential outcomes of 

any proposed therapeutic strategy in the human tumor context. For instance, our current data 

indicate that even IL-18-driven enhancement of a particular NK cell function, such as the 
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nominally-‘helper’ secretion of IFNγ and TNFα during immune-stimulatory interaction with 

DCs (Chapters 2-4), can have opposing suppressive outcomes when interacting with tumor-

associated MDSCs (Chapter 6). Understanding the mechanisms underlying these anti- and pro-

tumor outcomes will enhance our ability to uncouple the desirable from undesirable effects of 

our therapeutic strategies. For instance, the disruption of the COX2/PGE2 axis provides one such 

opportunity, dissociating the stimulatory effects of IFNγ and TNFα produced by IL-18/IFNα-

driven NK cells from their suppressive enhancement of MDSCs (Fig. 6.4), thus providing a 

rationale for the concurrent therapeutic use of IL-18-driven, helper NK cell-targeting 

combinatorial adjuvants with COX2 blockade. Recent observations describing distinct receptors 

governing NK cell killing of DCs versus tumor cells (NKG2D-independent versus NKG2D-

dependent) [499] offers another example, suggesting the possibility for therapeutic blockade of 

undesirable DC lysis while maintaining desirable tumor cell killing. Thus, expanding our 

knowledge of such mechanisms will provide valuable new targets for therapeutically maximizing 

the net positive effect on anti-cancer immunity. 

From our data (Fig. 2.1, 3.1, and 4.1), it is clear that the specific pattern of NK cell 

activation is critical for the outcome of NK cell responses, which may be potentially modified by 

the therapeutic application of key agents such as IL-18. However, our basic mechanistic results 

indicate that the effects of IL-18 are only revealed upon stimulation with secondary factors (Fig. 

2.2, 2.3, 3.2, and 4.1). For instance, the type-1-driving functions of IL-18 shown in the present 

work depended on co-stimulation with other pro-inflammatory factors. These factors included 

type I interferons, IL-12, IL-2, or IL-15 (Fig. 2.2, 3.2, and 4.1), or susceptible target cells 

expressing low levels of MHC class I and high levels of activating NK cell receptor ligands (Fig. 

2.2, 3.2, and Appendix Fig. 5), factors which may or may not be adequately present 
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endogenously in patients with advanced cancer. Because of this clear dependence on the 

availability, and likely the character, of these co-activating stimuli, the effects of applied 

therapies will need to be understood in the larger in situ tumor context. Indeed, although IL-18 

has been extensively described to play an important role in effective anti-tumor immunity via its 

key effects on IFNγ production, in vivo promotion of lymphocyte proliferation and cytotoxicity, 

and enhanced NK cell recognition of tumor targets [336, 337, 500], IL-18 has also been shown in 

some models to promote tumor metastasis and growth via enhanced endothelial adhesion, 

induction of tumor growth factors, and promotion of a regulatory NK cell subset overexpressing 

PD-L1 [338, 339, 501]. 

IL-18 synergy with different factors within the tumor microenvironment could potentially 

account for these conflicting findings, either in the absence of positive co-stimulatory factors or 

the presence of negative co-stimulatory factors, and may suggest the need to additionally modify 

co-activating factors for optimal anti-tumor effectiveness. These data suggest that concurrent 

application of IL-18 with IFNα may drive immune-stimulatory processes directly within the 

human tumor microenvironment (Fig. 3.5) or within tumor-associated lymph nodes (Fig. 4.4), 

which may be potentiated by additional COX2 blockade (Fig. 6.4). IFNα currently enjoys the 

advantage of extensive clinical experience for cancer therapy [502], and thus represents an 

attractive candidate for immediate translation of these findings into clinical cancer care. 

Nevertheless, expanded investigation of additional combinatorial candidates in place of, or even 

in addition to, IFNα will likely yield new opportunities for optimizing this approach. Already, 

our data indicate that poly-I:C has powerful synergistic effects with IL-18 and IFNα in 

promoting NK-DC cross-talk, contributing to significantly-enhanced DC maturation, IL-12 

production, and tumor-specific CTL induction in the context of late-stage melanoma patients 
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(Fig. 2.5, 2.6, and Appendix Fig. 2). These findings are supported by others in both human in 

vitro [90, 313] and mouse in vivo [314-316] settings, and poly-I:C is currently under active 

investigation as a component of robust adjuvant approaches [493]. 

Another attractive implication of this work is the suggested ability to therapeutically 

promote potent feed-forward interactions between NK cells and DCs by well-selected 

stimulatory combinations. For instance, our data support an IL-18-driven feed-forward 

accumulation of both DCs and NK cells promoted by reciprocal stimulatory chemokine 

interactions involving CXCR3 and CCR5 ligands (Chapter 3). Others have also shown a positive 

feedback between DC-secreted IL-18 and NK cell-secreted HMGB1 in mutual activating 

interactions [503]. Indeed, these results help us place in proper therapeutic context reports 

indicating that NK cells many not infiltrate in high numbers into human tumors [504]. With 

regard to the therapy proposed here, and the model of NK cells as key immune initiators, 

activation of only a small number of NK cells may be amplified through productive NK-DC 

interaction to a much larger immune-stimulatory response, helping to overcome these 

limitations. 

The current work has focused on the influence of NK cells on CD8+ T cell responses, 

either the promotion of CTL activity via DCs (Fig. 2.6 and 4.3) or suppression of CTL responses 

via MDSCs (Fig. 6.2 and 6.4), due to the clear significance of such effector T cells to clinical 

outcomes in the cancer setting [461]. However, our work has also demonstrated the existence of 

a robust population of CD4+ Th17 cells in vivo in the human ovarian cancer environment (Fig. 

5.2), spontaneously promoted by MDSCs, while others have also demonstrated a notable 

enrichment of CD4+ Treg cells in the tumor environment [21]. Although the prognostic 

significance of these populations remain to be definitively confirmed, their direct influence on 
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intratumoral immune processes, as well as their indirect impact on the relative balance between 

Th1 and other types of immunity, are likely to considerably influence therapeutic outcomes [433, 

505]. Thus, an important unanswered question is the effect differentially-activated NK cells or 

NK cell-activating stimuli directly applied to the bulk tumor environment may have on these 

important CD4+ T cell populations. Our data has demonstrated that induction and stability of 

Th17 cells within the human tumor environment critically depends on NO, provided 

exogenously by tumor-infiltrating MDSCs (Fig. 5.2) and produced endogenously within T cells 

themselves (Fig. 5.4). Our work has also shown that activated NK cells can drive robust MDSC 

expression of NOS2, the inducible isoform of the NO synthases (Fig. 6.1-6.3). Likewise, we 

have demonstrated that activated NK cells participate in the key induction of the COX/PGE2 axis 

(Fig. 6.1-6.4), an inflammatory pathway closely interacting with the NO system [449] and 

implicated in the development of Th17 responses [450, 451]. Interestingly, however, the 

COX/PGE2 axis has also been associated with promoting Treg cells in the tumor environment 

[506, 507], and our data also indicate that activated NK cells can induce high tumor-associated 

expression of IDO (Fig. 6.1-6.3), which may also promote Treg cells [508] and/or control the 

Th17 versus Treg balance [509-511]. Thus, the effect, and underlying mechanisms, of 

differentially-activated NK cells or therapeutic NK cell-activating agents on the regulation of 

these intratumoral CD4+ T cell populations remains an important open question with obvious 

implications for the selection of optimal therapeutic approaches. 

It has also become clear that the inability of the immune response to control cancer is not 

likely to represent a single defect in the immune process [512]. Thus, new therapeutic 

approaches will require targeting of multiple aspects of the immune response for truly effective 

outcomes, including facilitating innate responses at the initiation of immunity, the priming of 
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adaptive responses, and the infiltration of adaptive effector cells into the tumor 

microenvironment, as well as counteracting suppressive mechanisms. The therapeutic IL-

18/IFNα-driven enhancement of NK cell helper function proposed here has the particular 

advantage of targeting multiple ‘nodes’ of the immune response simultaneously, including the 

accumulation of DCs at sites of tumor for antigen acquisition (Chapter 3); the activation, type-1 

polarization, and LN-homing of DCs (Chapter 2); the enhancement of chemokine interactions 

necessary for T cell priming (Chapter 4); and the conditioning of the tumor environment for 

adaptive effector cell homing (Chapter 3). Nevertheless, this therapy will also likely benefit from 

combinatorial approaches, most especially for alleviation of the feedback immunosuppression 

associated with this immune activation (Chapter 6). Thus, the proposed approach may nicely 

synergize with therapies already in the clinic for cancer treatment, such as anti-CTLA4 and anti-

PD1/L1 antibodies [490], or further therapies suggested by our work, including COX2/PGE2 

inhibitors and inhibitors of direct suppressive mediators (such as IDO, NOS2, and IL-10) (Fig. 

6.4), which may further positively enhance the activity of NK cells, DCs, and T cells in this 

approach. 

Finally, one of the greatest promises of immunotherapy is the ability to engender durable 

cancer regressions, such as the approximately 70% of complete responders to IL-2 therapy for 

melanoma and renal cancer with ongoing complete responses of more than 20-25 years [458]. 

The NK cell-targeted therapy suggested by our current findings may have similar prospects for 

durable responses. This includes the persistence of multiple NK cell-driven effects on CTL 

induction and cytokine and chemokine modulation extending beyond the initial NK-DC 

interaction (Fig. 2.4-2.6, 3.4, and 4.1-4.3), critically targeting the enhanced priming of DC-

mediated adaptive T cell responses. Apart from classical adaptive memory, however, recent data 
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in the NK cell field has also suggested the intriguing possibility of an NK cell ‘memory’ 

phenotype. Existing both in mice [513, 514] and humans [515] in vivo, this NK cell ‘memory’ is 

characterized by long-term persistence of prior-activated NK cells and potent recall-type 

responses, retaining memory of the initial activation and responding robustly to re-challenge 

with secondary expansion and effector activity. Interestingly, induction of this phenotype in 

human NK cells in vitro [516] as well as for therapeutic cell-transfer in mice in vivo [517], 

including in the setting of established tumors [518], has suggested the critical involvement of IL-

18 in association with IL-12 and IL-15, factors similarly implicated in the NK cell ‘helper’ 

effects described in our current work (Fig. 2.2, 3.2, and 4.1). Indeed, our data demonstrate that 

human NK cells can remember, at least within short-term cultures, their initial activation by IL-

18, and can respond robustly to secondary stimuli even when the IL-18 stimulus has been 

removed (Fig. 2.2, 3.2, and 4.1), an effect we and others [196, 335] have described as NK cell 

‘priming’. It will be interesting to explore whether these ‘priming’ and ‘memory’ effects, 

apparently governed by many of the same signals, are simply kinetic descriptors or truly distinct 

but interrelated phenomena involving additional unique as-yet unidentified regulators. Such 

findings may provide novel approaches to further augment the durability of anti-tumor responses 

induced by NK cell activation, and ultimately enhance prospects for true cancer cure. 
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APPENDIX 

SUPPLEMENTAL FIGURES 
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Appendix Figure 1. NKDC1s have enhanced lymph node migratory capacity. 

Surface expression of CCR7 (left; shaded histograms) and in vitro migration toward CCL21 (right) of untreated 

immature DCs (iDCs) or DCs treated with autologous NK cells and IL-18/IFNα/poly-I:C (NKDC1s) in direct or 

transwell-separated co-cultures. 
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Appendix Figure 2. NK cells are required for the optimal induction of IL-12p70 production by DCs co-stimulated 

with poly-I:C. 

IL-12p70 production by J558-CD40L-stimulated immature DCs (iDCs), DCs treated with the standard cytokine 

cocktail (sDCs), or DCs treated with IL-18/IFNα or IL-18/IFNα/poly-I:C with or without autologous NK cells. Data 

recorded as the mean (± SD) of triplicate cultures. Data shown was obtained from one representative experiment of 

three performed, all yielding similar results. 
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Appendix Figure 3. NK cells are required for the optimal induction of DC1s with a high capacity to induce 

melanoma-antigen-specific CTLs. 

IL-18/IFNα/poly-I:C-stimulated DCs in the absence or presence (NKDC1s) of autologous NK cells from HLA-A2+ 

stage III and stage IV melanoma patients were pulsed with HLA-A2-restricted melanoma-associated peptides and 

used to sensitize autologous CD8+ T cells. CTLs were assayed on day 24 of culture. (A) Frequencies of IFNγ-

producing CD8+ T cells responsive to T2 cells loaded with individual peptides, as determined by ELISPOT assay. 

Data recorded as the mean (± SD) of triplicate cultures. Data shown is from one representative experiment of three 

performed. (B) Flow cytometric analysis showing percentage of tetramer-positive MART-1-specific CD8+ T cells 

generated through in vitro stimulation with melanoma peptide-pulsed, differentially-activated DCs. Inset numbers 

represent percent CD8+MART-1+ cells. Results from one representative experiment of three performed. ***p<0.001, 

ns: p>0.05 compared to indicated groups. 
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Appendix Figure 4. Chemokine receptor expression on peripheral blood-isolated DCs. 

Representative surface expression (open histograms) of CCR1, CCR5, CCR6, CXCR1, CXCR4, and XCR1 on DCs 

isolated from healthy donor peripheral blood. Gray filled histograms represent isotype controls. 
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Appendix Figure 5. IL-18 synergizes with K562 tumor cell recognition in inducing NK cell expression of DC-

attracting chemokines. 

NK cells were pre-treated for 24 h in the absence or presence of IL-18, washed, and re-plated in the absence or 

presence of K562 cells (5:1 NK:K562 ratio). When indicated, NK cells were pre-treated for 30 min with blocking 

antibodies to NKG2D, NKp30, or DNAM-1 before co-culture with K562 cells. The expression of CXCL8 (left) and 

XCL1 (right) were analyzed after 4 h incubation with the secondary stimulus, and demonstrate a similar pattern to 

CCL3 and CCL4 (see Fig. 3.2B). Data are expressed as ratios between the expression of individual chemokine genes 

and HPRT1, and recorded as the mean expression (± SD) assayed in triplicate cultures. Data represent one of three 

independent experiments, which all yielded similar results. ***p<0.001 compared to indicated groups. 
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Appendix Figure 6. Lymphocyte activation by multiple stimuli within the bulk tumor environment enhances local 

expression of both stimulatory and suppressive factors. 

(A) Bulk OvCa ascites cells were cultured for 24 h in the absence or presence of the indicated NK cell-activating or 

CD8+ T cell-activating stimuli, and analyzed for expression of IFNγ, TNFα, IDO1, NOS2, IL-10, and COX2. Data 

are expressed as ratios between the expression of individual genes and HPRT1, and shown as the mean expression 

(± SD) of triplicate cultures. Data represent one of three independent experiments, all yielding similar results. 

***p<0.001, **p<0.01, *p<0.05 compared to all groups. 
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Appendix Figure 7. Type-1-activated NK cells do not enhance suppressive activity of control CD11b+ cells. 

Percentage of proliferating, granzyme B (GzmB) positive naïve CD8+ T cells following 4 d activation with anti-

CD3/CD28 antibodies in the absence or presence of control CD11b+ cells from health donor peripheral blood and/or 

IL-18/IFNα-activated NK cells (NKCD11b+), measured by CFSE dilution and intracellular GzmB staining presented 

in representative cultures (left) or as the mean (± SD) of 5 independent donors (right). 
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Appendix Figure 8. Type-1-activated CD8+ T cells enhance MDSC expression of suppressive factors. 

Expression of IDO1, NOS2, IL-10, and COX2 in MDSCs cultured for 24 h with or without anti-CD3/IL-12-

activated CD8+ T cells (CD8MDSC). Data are expressed as ratios between the expression of individual genes and 

HPRT1, and shown as the mean expression (± SD) of triplicate cultures. Data represent one of two independent 

experiments, both yielding similar results. ***p<0.001 compared to other group. 
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Appendix Figure 9. IFNγ and TNFα drive enhanced MDSC expression of suppressive factors. 

Expression of IDO1, NOS2, and COX2 protein in MDSCs cultured for 36 h with or without IFNγ/TNFα. Data are 

represented as the fold change of the mean fluorescence intensity (MFI) over the isotype control, and represent the 

mean (± SD) across n independent patients (n=5 patients for IDO1, n=4 for NOS2, n=6 for COX2). ***p<0.001, 

**p<0.01, *p<0.05 compared to indicated groups. 
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