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People with disabilities who rely on manual wheelchairs as their primary means of mobility face 

daily challenges such as mobility limitations and environmental barriers when engaging in 

regular physical activity. Therefore, our research addressed the need for a valid and reliable 

physical activity monitor to assess and quantify physical activities among manual wheelchair 

users (MWUs) in free-living environments. Providing an accurate estimate of physical activity 

(PA) levels in MWUs can assist researchers and clinicians to quantify day-to-day PA levels, 

leading to recommendations for a healthier lifestyle. In the first stage we developed and 

evaluated new classification and EE estimation models for MWUs with spinal cord injury 

(N=45) using SenseWear, an off-the-shelf activity monitor, designed for the general population 

without disabilities. The results suggested that researchers and clinicians can use SenseWear to 

detect and estimate the EE for four activities tested in our study. The second phase of our 

research project developed an activity monitor especially designed for MWUs. Previous research 

in community participation of MWUs and the studies discussed above found that wheelchair 

mobility characteristics are necessary to study PA patterns in MWUs. This requirement led us to 

develop and evaluate a Physical Activity Monitor System (PAMS) composed of two 

components: a gyroscope based wheel rotation monitor (G-WRM for tracking wheelchair 

mobility and an accelerometer that quantifies upper arm movement. We tested PAMS in 45 

MWUs with SCI in the structured (laboratory) and semi-structured environments (National 
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Veterans Wheelchair Gamers 2012). In addition, we also tested a subsection of this population 

(N=20) a second time, in their home environments. The PAs were classified as resting, arm-

ergometry, other sedentary activities, activities involving some wheelchair movement, 

propulsion, basketball and caretaker pushing. The EE estimation results (error: -9.8%) and the 

classification results (accuracy: 89.3%) indicate that PAMS can reliably track wheelchair-based 

activities in laboratory and home environments. Furthermore, we used participatory action 

design to evaluate the usability of PAMS in six MWUs with SCI. The usability study indicated 

that users were very satisfied with PAMS and the information provided by the smartphone to the 

users about their PA levels. 
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1 

1.0  INTRODUCTION 

1.1 RATIONALE 

Lack of regular physical activity (PA) in the general population is a top public health 

concern [1], and this problem is even more acute among people with disabilities who use 

manual wheelchairs [2, 3]. Despite the proven health benefits associated with regular PA, 

such as reduced risk of cardiovascular diseases and other chronic conditions and improved 

psychological well-being, people with disabilities remain one of the most physically 

inactive groups in society. Healthy People 2020 indicated that individuals with disabilities 

are much less active than their non-disabled counterparts (54% inactive vs. 32% in 2008, 

respectively) and participate in less regular and vigorous physical activity [4, 5]. People 

with disabilities also experience more secondary conditions such as pain, fatigue, weight 

gain, and deconditioning [6], many of which are considered preventable through physical 

activity and exercise interventions [7]. 

People with disabilities who rely on manual wheelchairs as their primary means of 

mobility, over 2.8 million persons in the US in 2010 [8], face special challenges in 

engaging in regular PA, including physiological changes, mobility limitations and 

environmental barriers [3, 9-11]. Validated objective tools are critical to developing and 

evaluating interventions that aim at promoting PA and community participation in this 
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population; however, only a limited number of tools are available to gauge PA in this 

population.  For example, PA participation in free-living conditions is usually measured 

through self-reports or personal logs, which are cumbersome and suffer from social 

desirability bias and recall. Therefore, in this research we created new models for an 

existing activity monitor (SenseWear) developed for the general population to estimate 

energy expenditure in manual wheelchair users (MWUs). We also developed and evaluated 

a new physical activity monitoring system (PAMS) especially for MWUs. PAMS can 

capture wheelchair movement and upper extremity movement to quantify PA in MWUs, 

thereby allowing more accurate assessment of PA levels in MWUs.  

1.2 REGULAR PHYSICAL ACTIVITY IN THE GENERAL POPULATION 

Regular PA among adults, regardless of the presence of a chronic disease or disability, can 

increase health and quality of life and decrease the rates of obesity and overweight, 

coronary heart disease, stroke, high blood pressure, type 2 diabetes, breast and colon 

cancer, falls, and depression [12, 13]. Therefore, the limited participation in regular PA 

among adults is a top public health concern in the United States of America (US). In 2010, 

35.9% of the US population was obese, with a Body Mass Index (BMI) greater than 

30kg/m2, and 33.3% of the US population was overweight, with a BMI between 25kg/m2 

30kg/m2 [1, 14]. To address this health concern, the US Department of Health and Human 

Services and the American College of Sports Medicine and the American Heart Association 

compiled a list of PA guidelines for adults to “be active, healthy and happy” [15, 16]. These 

strategies for adults focus on both aerobic and muscle-strengthening PAs. The aerobic PA 
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recommendations suggest performing moderate intensity PA for at least 150 minutes/week, 

or vigorous intensity PA for at least 75 minutes/week, or an equivalent combination of 

moderate and vigorous intensity PAs. The muscle-strengthening PA recommendations 

include performing moderate or high intensity activities involving all major muscle groups 

two or more days a week [16]. These PA recommendations seem easy to follow, but for the 

majority of the population it is challenging and overwhelming to keep track of their PA 

performance on a daily basis.  

Based on these recommendations and the previous guidelines by the US Surgeon 

General [17], the current PA data by Healthy People 2020 indicates that only 31.6% of the 

adults in the US engaged in no leisure-time PA in the year 2011. Further, Data 2020 interim 

results for the year 2011 indicates that: a) 48.8% of the adults engaged in aerobic PA of at 

least 150 minutes/week of moderate intensity, or 75 minutes/week of vigorous intensity, or 

an equivalent combination, b) 24.2% of the adults engaged in muscle-strengthening 

activities two or more days/week, and c) 20.8% of adults met the objectives for aerobic and 

muscle-strengthening PA. Healthy People 2020 assessed the PA participation data through 

surveys from the National Health Interview Survey, Centers for Disease Control and 

Prevention, and National Center for Health Statistics. However, due to the high variability 

of surveys gathered in the form of self-reports and PA logs, public health professionals and 

researchers cannot easily compare the energy cost or energy expenditure across studies. 

Therefore, to address this issue a group of experts developed a compendium of PA which 

lists energy expenditure for various PAs [18-20].  In addition to the compendium of PA, 

extensive research has investigated the validity and reliability of criterion measures and PA 

monitors [21-24]. These instruments estimate PA levels among the general population and 

reduce the burden of recording or remembering PAs performed. 
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1.2.1 Compendium of PAs for the General Population 

Dr. Haskell and his group designed and published the first version of the compendium of 

PAs in 1993 [20]. The compendium of PAs was designed to standardize the rate of energy 

expenditure in terms of metabolic equivalent of task (MET) for a wide range of PAs [18]. 

The PA information was gathered from a number of epidemiological studies or self-report 

PA questionnaires. MET, according to the compendium, is defined as the "ratio of the work 

metabolic rate to the resting metabolic rate" (1 MET = 1 kcal/kg/hour or 1 MET = uptake 

of 3.5 ml/kg/min of oxygen) [25]. The compendium contains a list of PAs and their 

associated MET values, which were either derived using criterion instruments or estimated 

using exercise physiology. This tool assists researchers and clinicians in coding and 

quantifying PAs reported through self-report questionnaires and logs. The taxonomy of the 

PA list was developed based on the purpose of the activity and includes categories such as 

leisure time activities, transportation, occupation, home activities, inactivity, and volunteer 

activities [18]. The energy cost information from the compendium can also assist the 

development of exercise and weight management plans, and the characterization of PA 

behaviors, including sedentary, light, moderate and vigorous types of PA. This inexpensive 

PA compendium allows researchers and clinicians to recommend PA interventions and 

compare PAs over various epidemiologic studies. Currently, researchers and clinicians 

across the globe use this compendium to estimate the METs or the energy expenditure in 

research studies, and to develop PA recommendations for people [18]. Even though there 

are a number of advantages to using the PA compendium, the limitations of survey-based 

methods, such as recall bias and social desirability bias, to estimate PA levels has led 

researchers to develop and evaluate sensor-based monitors to estimate PA [21-24, 26, 27]. 
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1.2.2 Sensor-based Monitors to Estimate PA Levels in the General Population 

Sensor-based monitors to estimate PA levels can be classified into criterion or gold 

standard methods, including direct calorimetry, indirect calorimetry, and doubly labeled 

water [23, 24, 27, 28]; and PA monitors including motion, physiology, and multi-sensor 

based monitors [21, 26, 29, 30]. The gold standard methods estimate energy expenditure 

and METs based on heat loss, gases exchanged by the individual (O2 inhaled and CO2 

exhaled), and CO2 and water produced [23, 24, 27, 28]. The PA monitors estimate PA in 

terms of total energy expenditure, METs and duration of PA based on sensors that detect 

motion or physiologic changes, or a combination of sensors that detect motion and 

physiologic changes [21, 26, 29, 30]. Numerous studies have evaluated the validity and 

reliability of using sensor-based monitors to estimate PA in the general population [21, 26, 

31-34].  

Total energy expenditure (also referred to as EE) is comprised of resting EE (REE), 

the thermic effect of food (TEF), and EE due to PAs [35]. Resting EE accounts for 65-75% 

of total EE and is the result of normal cellular and organ function during resting [36, 37]. 

TEF accounts for 5-10% of the total EE and is the result of increase in metabolism due to 

digestion and assimilation of nutrients in food. EE due to PAs accounts for 15-30% of the 

total EE and is the result of volitional activities such as exercise and regular PA, combined 

with non-volitional activities such as fidgeting, spontaneous muscle contractions, and 

maintaining one’s posture. Direct calorimetry measures the total heat loss from a 

participant who performs a set of PAs or stays for a fixed duration of time in a thermally-

isolated chamber [27, 28]. The total heat loss due to evaporation, radiation, conduction and 

convection from the participant is used to estimate total EE. Indirect calorimetry estimates 
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the total EE by measuring the volume of oxygen consumed (VO2) and the volume of 

carbon dioxide produced (VCO2) by the participant using standard equations [24, 38]. The 

indirect calorimetry method can be performed using a) a closed-circuit system that 

measures the change in amount of gases from a reservoir and b) an open-circuit system that 

measures the amount of gases inhaled and exhaled [24, 38-40]. Open-circuit systems are 

used to estimate EE during PAs due to the physical restrictions and complexity of the 

closed-circuit system. Open-circuit systems can be further classified into respiratory 

chambers, stationary metabolic carts or portable metabolic carts. The doubly labeled water 

method involves the participant taking an oral dose of water with a known amount of 

Oxygen and Deuterium (stable isotope)[23, 24]. The total EE is calculated based on the 

concentration of the isotopes in the urine or saliva of the participant, measured both before 

and at the end of the experiment (usually 7 days or 14 days). Even though the DLW method 

is considered very accurate, one of the major limitations of this method is that it gives 

cumulative EE for both duration and types of activities, compared to the EE that can be 

measured for specific activities using a metabolic cart.  

There are a plethora of PA monitors available for the general population to measure 

PA. The following section discusses the underlying technology of some of the motion, 

physiology and multi-sensor based PA monitors. Motion-based PA monitors vary from 

simple mechanical switch-based pedometers that only count steps to complex micro-

electromechanical systems that detect biomechanical motion to estimate steps and other 

PAs.  For example, some of the latest commercial and research-based activity monitors that 

use accelerometers or Global Positioning Satellite technologies to estimate EE, METs and 

steps are Omron HJ320 Pedometer, Yamax Digiwalker CW-701 Pedometer, GT3X (The 

ActiGraph), the RT3 (StayHealthy Inc.), wockets, Nike+ Running, Fitbit, iPhone-based 
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smartphone applications, DirectLife, and Garmin Forerunner® 610[41-47]. The second 

group, physiology-based activity monitors, estimates EE or the intensity of PA by 

measuring the heart rate or skin conductance.  Some of the physiology-based activity 

monitors include Polar RCX5, Omron HR-210, mio Alpha, and Affectiva Q Sensor [41, 48-

50].  The third group, multi-sensor based activity monitors, incorporates more than one type 

of sensing (movement and physiology) or multiple sensors of the same type of sensing to 

estimate PA levels. Some of these multi-sensor based activity monitors include wockets 

(multiple tri-axial acceleration sensors), Polar RC3 GPS (heart rate and GPS), SenseWear 

(tri-axial acceleration, galvanic skin response, skin temperature, heat flux and near body 

temperature), Basis (heart rate, tri-axial acceleration, perspiration, and skin temperature), 

and PAMSys (tri-axial acceleration, multi-axial angular velocity, and magnetic sensing) 

[51-56]. Some studies have indicated that the advantages of multi-sensor based activity 

monitors include detection of resistance-based PAs and variations in individual contexts.  

Use of PA monitors to track PA in the general population has increased 

dramatically in the last ten years as use of accelerometer based pedometers or activity 

monitors has become fairly widespread. Johannsen et al. evaluated the validity of the 

SenseWear in estimating total EE for 14 consecutive days among 30 healthy adults and 

found that the absolute prediction error (MAE) rate when compared with the doubly labeled 

water method was 8.1% ± 6.8% [26]. In another study, Berntsen et al. found that the 

SenseWear underestimated total EE with a minute-by-minute MAE of 9% when compared 

with an indirect calorimeter in 20 adults for a period of 120 minutes during various 

activities and intensities [33]. 
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1.3 REGULAR PA IN MANUAL WHEELCHAIR USERS 

In comparison to the general population, lack of regular PA among people with disabilities 

who use manual wheelchairs is even more acute [2, 3]. Healthy people 2020 indicated that 

54% of individuals with disabilities were inactive and participated in less regular and 

vigorous PA than the general population [4, 5]. Out of these individuals with disabilities in 

the US, 2.8 million are wheelchair users who exclusively use their upper extremities for 

locomotion and other activities of daily living as well as for exercise and recreational 

activities [10, 57, 58].  In persons with spinal cord injury, physiological changes along with 

mobility limitations contribute to a large extent to their sedentary lifestyle [10, 58].  

The positive effects of PA on reducing or mitigating secondary conditions such as 

deconditioning and pain, increasing cardiorespiratory fitness and muscular strength, and 

improving quality of life is well documented in persons who use manual wheelchairs [3, 

59-63]. However, such PA interventions generally occur in laboratory or other controlled 

settings [64-68]. PA participation of manual wheelchair users (MWUs) in community 

settings is frequently assessed through self-reports [69] as there are only a limited number 

of objective tools that allow researchers and clinicians to gauge PA levels in community 

settings. In addition, Collins et al. have developed a compendium to quantify energy costs 

in individuals with spinal cord injury (SCI) [70] as the daily EE in persons with SCI is 

lower than the general population due to the atrophy of skeletal muscles [71, 72] and the 

compendium of PA for the general population does not include activities that are typically 

performed by individuals with SCI.  

Washburn et al., indicated that only 13-16% of persons with SCI reported consistent 

PA [73], and the majority of people with SCI reported virtually no regular PA [74-76]. 
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Tasiemski et al. found that only 20% of the 985 people with SCI in the United Kingdom 

(UK) who participated in their study performed regular PA, while 26.7% performed less 

than 120 minutes per week and the rest of 53.3% reported no regular PA [77]. In addition, 

Buchholz et al. showed that the PA level (PAL), expressed as daily EE due to basal 

metabolic rate only, was much lower in persons with paraplegia (1.56±0.34 PAL) 

compared to the recommendation of the World Health Organization (1.75 PAL) [58, 78].  

 

1.3.1 Self-Report Questionnaires in People with Disabilities   

As mentioned above, questionnaires are one of the most widely used and least expensive 

ways of recording PA [79]. Four such instruments which have been specifically constructed 

for people with disabilities, including wheelchair users, are the Human Activity Profile, the 

Physical Activity and Disability Survey, the Physical Activity Scale for Individuals with 

Physical Disabilities (PASIPD), and Physical Activity Recall Assessment of People with 

SCI [80-83]. Three of the surveys tools designed and evaluated in the last decade are 

discussed below.   

Rimmer et al. have assessed the psychometric properties of the Physical Activity 

and Disability Survey (PADS) in 103 individuals with disabilities and/or chronic health 

conditions [80]. PADS was designed to measure low-level PA among persons with physical 

disabilities and chronic health conditions through assessing information in three sub-scales 

including exercise, leisure time PA and household activity. The study found significant 

correlations (p<0.05) between PADS subscales and absolute peak VO2, relative peak VO2, 

maximum workload, and time to exhaustion indicating PADS can measure PA among 
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persons with disabilities. Washburn et al. evaluated the construct validity of the 13-item 

PASIPD through mail surveys in 372 individuals with spinal cord or other locomotor 

injuries [82]. The PASIPD requested the participants to record the number of days and 

hours per day of participation in recreational, household, and occupational activities over 

the previous seven days. Total scores for the PASIPD were calculated by multiplying the 

average hours per day for each item by a metabolic equivalent value (MET) associated with 

the intensity of the activity and summing over all items. This study found that participants 

who reported excellent health had higher total, vigorous sport and recreation, and 

occupation and transportation subcategory scores compared with those who rated their 

health fair or poor (p<0.05) [82]. Ginis et al. developed and assessed the content validity, 

test–retest reliability, and convergent validity of the Physical Activity Recall Assessment 

for People with Spinal Cord Injury (PARA-SCI) [83]. The test–retest reliability results 

showed that intraclass correlations ranged from 0.45 to 0.91 for the various activity and 

intensity categories of PARA-SCI. The validity tests showed correlations ranging from 0.27 

to 0.88 between PARA-SCI scores and indirect calorimetry for activities. However, 

because these questionnaires rely on self-report, the PA information collected may suffer 

from participant bias, inaccuracy of recall of activities, social acceptability bias, and choice 

of consistent low or high scores on the surveys leading to flooring effects [79-84]. 

1.3.2 Compendium of PAs for Persons with SCI 

Collins et al. studied the energy cost in individuals with SCI as the METs and EE values in 

this population are different than those in the general population due to anatomical and 

physiological changes related to injury, and also as most of the PAs are performed in a 
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seated position or from a wheelchair [70]. The research measured EE in persons with SCI 

for 27 types of PAs, including 12 recreational or sport PAs and 15 activities of daily living. 

In addition, the study indicated that the 1 MET for individuals with SCI (MET-SCI) should 

be adjusted to 2.7 ml.kg-1.min-1 of volume of oxygen (VO2) [70] compared to 3.5 ml.kg-

1.min-1 of VO2 in the general population to take the physiological changes into 

consideration [18].  The MET-SCI values for various PAs for individuals with motor 

incomplete SCI ranged from 1.17 to 16.25 for supported standing and hand cycling 

activities, respectively.  The MET-SCI values for various PAs for individuals with motor 

complete SCI ranged from 1.27 to 7.74 for dusting and basketball game activities, 

respectively [70]. The large difference between the maximum values of the MET-SCI 

between motor incomplete and motor complete SCI is due to the different activity types 

that were performed by these groups.  In addition to studying the PA compendium for 

persons with SCI, researchers also evaluated and developed sensor based technologies to 

assess PA in people with SCI who use manual wheelchairs [11, 85-90].  

1.3.3 Sensor-based Monitors to Assess PA in MWUs 

Research has shown that due to post-injury physiological changes, resting EE and EE due 

to thermic effect of food are lower in persons with spinal cord injury compared to persons 

without injury [72, 91, 92]. When looking at the total EE, the EE due to PAs is the most 

variable component when compared to the resting EE and EE due to thermic effect of food.  

Wheelchair users have the power to modify this EE component in order to reach their quota 

of recommended PA. To help wheelchair users realize this quota of PA, researchers 

evaluated PA measurement tools with varying sensitivity and accuracy to assess PA among 
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MWUs [11, 70, 80-82, 87, 89, 93]. The PA measurement tools that have been evaluated in 

MWUs include gold standard measures such as indirect calorimetry and DLW [70, 93], and 

PA monitors including motion, physiology, and multi-sensor based activity monitors [89, 

94-97]. Most of the underlying technologies for these tools, except for the wheel rotation 

dataloggers, have been discussed in the previous section (“Sensor based Monitors to 

Estimate PA Levels in General Population”). 

1.3.3.1 Indirect Calorimetry 

Researchers have used stationary and portable metabolic carts as a gold standard to 

measure EE from different types of wheelchair-related PAs in persons with SCI. Some of 

the PAs that were performed included arm cranking, rowcycling, circuit training, 

wheelchair racing, wheelchair tennis, wheelchair basketball and wheelchair rugby [59, 60, 

62, 65, 66, 70, 98]. Collins et al. used open-circuit indirect calorimeters to measure and 

estimate EE for resting and various PAs [70]. The instruments used to estimate EE for 

resting and PAs were SensorMedics 2900 Metabolic System (Yorba Linda, CA) and 

Cosmed K4b2 portable metabolic cart (Rome, Italy), respectively. Furthermore, Monroe et 

al. used a respiratory chamber to compare the daily EE in individuals with and without SCI 

[92]. The results indicated that the daily EE over 24-hours (7824±305 for persons with SCI 

and 9941 ± 188 kJ for controls) and the EE adjusted for fat-free mass, fat mass and age (-

753 kJ/d) were both lower in individuals with SCI than without SCI. 

1.3.3.2 Doubly Labelled Water 

Tanhoffer et al. used DLW as a gold standard to compare heart rate monitoring, multi-

sensor armband and survey questionnaire methods to estimate EE and PA in people with 
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SCI in community settings [93]. The study showed how heart rate monitoring, multi-sensor 

armband, PARA-SCI, and the PASIPD questionnaire methods all overestimated the total 

daily EE (over and under estimations cancel out) compared to DLW by 13%, 16%, 6% and 

1%, respectively. These results should be used with caution as the participants wore the 

multi-sensor armband and the heart rate monitor for only two days, a more physically 

active day and a less active day, for at least 12 hours per day, compared to the 14-day DLW 

assessment. The heart rate monitors were calibrated to each individual using an exercise 

protocol, a procedure impossible to apply in large populations. In addition, Tanhoffer et al. 

calculated the total daily EE estimation for PARA-SCI and PASIPD as the sum of the basal 

metabolic rate (resting) obtained using an indirect calorimeter and activity EE estimated 

based on the METs of the activities performed. The use of an indirect calorimeter to 

estimate resting EE rather than using the METs for resting is difficult to apply in large 

populations. 

1.3.3.3 Accelerometers on MWUs 

Warms et al. evaluated the validity of the Actiwatch accelerometer (Mini Mitter Company, 

Bend, OR) by measuring community living physical activity in MWUs with spinal cord 

injury and comparing Actiwatch activity counts with self-reported activity levels [11]. The 

Pearson correlation between the activity counts and the self-reported activity intensity 

varied from low to moderate (0.30-0.77, p<0.01) for individual participants, indicating that 

activity counts can be used to measure activity. In another study, Washburn et al. assessed 

the validity of the CSA accelerometer (Computer Science and Applications, Inc., Shalimar, 

FL) worn on the wrists, measuring the energy expenditure during wheelchair propulsion at 

three different speeds [89]. Significant correlations (0.52-0.66, p <0.01) were reported for 
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the activity counts from the CSA accelerometer and energy expenditure over three pushing 

speeds. However, one of the major limitations when using a single accelerometer is the 

device’s inability to identify whether the PA involves manual wheelchair movement, which 

would significantly overestimate PA levels.   

Postma et al. validated a multiple-sensor (six accelerometers) based activity monitor 

to detect wheelchair propulsion from a series of representative daily life activities [90]. The 

sensors were placed on each thigh, each wrist and sacrum (two sensors). The results 

indicated that the agreement, sensitivity and specificity for detecting wheelchair propulsion 

from other activities were 92%, 87% and 92%, respectively.  The limitations of this study 

are the direct placement of multiple sensors on the participant’s body and that the data 

recorder has to be constantly carried on the person (~0.7Kg), all of which might be 

uncomfortable and obtrusive for MWUs on a daily basis. In addition, the study only 

classified wheelchair propulsion with respect to other activities of daily living that were 

performed in the study. 

1.3.3.4 Wheel rotation datalogger 

The Human Engineering Research Laboratories (HERL) developed a Wheel Rotation 

Datalogger (WRD) that can be mounted on a wheelchair’s wheel to detect aspects of 

mobility such as the distance traveled and the speed of wheelchair users in a free-living 

environment. Tolerico et al. used a WRD to collect the gross mobility characteristics of 

MWUs in the National Veterans Wheelchair Games (NVWG) and in community settings 

[97]. MWUs were found to use their wheelchairs for a mean (SD) distance of 6.7 (1.9) km 

per day at a speed of 0.96 (0.17) m/s and 2.5 (1.2) km per day at a speed of 0.79 (0.19) m/s 

in the NVWG and community, respectively. Research by Chaves et al. has shown that 
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wheelchair velocity in MWUs is significantly correlated (r=0.76, p=0.04) with community 

participation [99]. Although the WRD is portable, easy to use and can collect gross activity, 

a major limitation is its inability to capture upper extremity movements. As it cannot 

capture upper arm movements, it cannot differentiate between the MWU self-propelling 

from the MWU being pushed by a caregiver; additionally, the WRD is unable to detect and 

estimate EE for activities such as deskwork or arm-ergometry. 

1.3.3.5 Wheel-mounted Accelerometer 

Coulter et al. investigated a wheel-mounted tri-axial accelerometer and found high validity 

for wheel revolutions, absolute angle and duration of movement (ICC(2,1)>0.999, 0.999, 

0.981, respectively) in wheelchair users [100]. When compared with the criterion measure 

(video) the mean (mean ± sd) difference of wheel revolutions estimated by the activity 

monitor was 0.002±0.016, with an absolute maximum difference of 0.038 revolutions. The 

mean absolute percentage error was 0.59% for all tasks. Sonenblum et al. used a wheel-

mounted tri-axial accelerometer to detect wheelchair movement and measure distance 

travelled, achieving an accuracy greater than 90% for various wheelchair and wheel types, 

propulsion techniques, speeds, and wheelchair-related activities of daily living [85]. 

However, consumers cannot use any of these activity monitors to obtain near-real-time 

feedback about their mobility characteristics as this information is post-processed based on 

data stored in the devices. Moreover, these devices have not been evaluated for wheelchair 

sports such as handcycling, which limits the researchers and consumers ability to track PA 

during wheelchair sports. 
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1.3.3.6 Heart Rate Monitors in Wheelchair Users 

Hayes et al. and Lee et al. developed individualized heart rate models to predict physical 

activity in terms of EE and MET, respectively, in MWUs with SCI [95, 96]. Hayes et al. 

evaluated the accuracy of calibrated heart rate in participants with tetraplegia and 

paraplegia after conducting a maximum exercise test for predicting EE during five activities 

of daily living. Their research showed that the heart rate measured and the heart rate 

derived from individualized regression equations explained 8.3% and 55% of the variance 

in measured EE for various PAs, respectively [95]. Lee et al. on the other hand, predicted 

METs in persons with SCI using heart rate ratio information during PA and resting. The 

Pearson correlation coefficient of heart rate ratio and observed METs was only 0.77 when 

using group regression, but was 0.93 for individual regression [96]. A limitation of using 

heart rate to estimate EE or METs is that one needs to perform a range of PAs in laboratory 

settings with different intensities to develop individualized prediction models. 

1.4 ACHIEVING RECOMMENDED PA LEVELS IN MWUS 

While MWUs face numerous challenges such as mobility limitations and environmental 

barriers when engaging in regular PA, research has shown that moderate intensity hand-

cycling, wheelchair racing, wheelchair basketball, and wheelchair tennis are sufficient to 

maintain fitness and prevent cardiovascular diseases [62, 65-68, 98]. Hicks et al. conducted 

a clinical trial to evaluate the impact of a long-term exercise training program that included 

progressive arm-ergometry and resistance training in persons with SCI over a duration of 

nine months (twice per week) [62]. The results showed that the experimental group 
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achieved significant improvements in submaximal arm ergometry power output and upper 

body muscle strength compared to the control group, which showed no significant changes. 

The study also demonstrated that in contrast to the control group, the experimental group 

with training reported significantly less pain, stress and depression after training. Moreover, 

the experimental group scored higher than the control group with respect to satisfaction 

with their physical function, level of perceived health and overall quality of life. Maki et al. 

and Abel et al. showed that persons with SCI can perform hand biking, row cycling, and 

wheelchair racing at an intensity high enough to improve and maintain cardiorespiratory 

fitness [66, 98]. In another study Abel et al. demonstrated that the leisure time EE for 

persons with SCI participating in wheelchair basketball and wheelchair tennis is sufficient 

to maintain cardiovascular fitness and reach the PA recommendations of the ACSM for the 

general population [65]. Therefore, participating in this type of leisurely activities might 

prevent the development of cardiovascular diseases. 

1.5 SELF-MONITORING IN THE GENERAL POPULATION 

A large number of research studies have used behavioral weight loss interventions to 

produce clinically significant weight loss among obese or overweight adults. Behavioral 

interventions focus on improving “knowledge related to adoption and maintenance of 

eating and activity behaviors to promote weight loss, and strategies to facilitate long-term 

behavioral change such as barrier identification, problem solving, mastery experiences for 

self-efficacy, and others” [101]. Many of these interventions rely on a) self-monitoring of 

diet, PA, and body weight, and b) reducing energy intake, and increasing EE [101-105]. 
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The monitoring of diet, PA and weight was accomplished through telephone interviews and 

self-monitoring booklets.  Reducing energy intake and increasing EE were accomplished 

through education and training about diet and PA. Many of the behavior-based studies also 

focused on training in applying stimulus control, stress management and problem solving to 

manage weight. However, these behavioral interventions are expensive, resource intensive, 

and only impact a small segment of the overall US population [102] with high rates of 

obesity and overweight.  

Recent research showed that in contrast to the traditional behavior-based weight 

loss programs, a combination of behavior and technological interventions leads to 

significantly more weight loss [106-108]. In their review article, Coons et al. discussed 

thirteen studies published in peer-reviewed journals between 2010 and 2011 that had the 

following criteria: Randomized Clinical Trial (RCT) with at least one intervention and a 

comparison condition, a technology-supported intervention with participant interface, and 

at least one weight loss outcome variable [102]. This review indicated that technology 

interventions may be efficacious in producing weight loss. Shuger et al. conducted an RCT 

in 197 sedentary overweight or obese adults to evaluate if electronic feedback about diet 

and PA is more effective for weight loss [107]. Participants were randomized into a self-

directed weight loss program via an evidence-based weight loss manual (standard of care), 

a group-based behavioral weight loss (GWL) program, the SenseWear armband (SWA) 

alone, or the GWL plus the SWA, during a 9-month intervention period. The participants in 

the SWA and GWL+SWA were asked to wear the armband for 16 hours a day, 7 days a 

week. The participants received near-real-time feedback from a wrist watch about EE, 

minutes spent in moderate and vigorous PA, and steps per day. The participants also 

regularly uploaded their weight and SWA data to the Weight Management Solutions web 
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account to get feedback regarding energy balance. At the end of the study, significant 

weight loss within groups was found in the intervention groups (GWL: 1.86 kg; SWA-

alone: 3.55 kg; GWL+SWA: 6.59 kg) but not in the standard of care group (0.89 kg). 

Comparisons between groups indicated that only the GWL+SWA group achieved 

significant weight loss compared to the Standard Care group. The authors concluded that 

continuous self-monitoring using sensor based technology with near-real-time feedback 

may promote weight loss in sedentary overweight or obese adults. Along similar lines, 

Pellegrini et al. evaluated and compared weight loss in 51 participants who were 

randomized to standard behavioral weight loss (SBWL), SBWL+SWA, or SWA only 

groups for a 6 month period [106]. The SWBL consisted of weekly meetings (three groups 

and one individual session each month) that focused on behavioral strategies for changing 

eating and activity behaviors. The SBWL+SWA and the SWA group used SWA similar to 

the study by Shuger et al. described above [107]. The results showed that SBWL+SWA 

(−8.7 ± 4.7%), SWA (−6.3 ± 7.1%), and the SBWL (−4.1 ± 6.3%) groups had significant 

weight loss (P < 0.001) at the end of the study. The authors indicated that the use of SWA 

may provide an effective short-term clinical alternative to standard in-person behavioral 

weight loss interventions [106].  

In addition, Spring et al. conducted an RCT to compare weight loss treatment 

through standard-of-care group treatment (standard group) or standard and connective 

mobile technology system (+mobile group) over a 12-month period [108]. The participants 

in the standard group attended biweekly weight loss groups held by the Veterans Affairs' 

“MOVE!” program. The sessions were led by dieticians, psychologists, or physicians and 

included discussion of nutrition, PA, and behavioral change. The +mobile group received 

standard group care along with a personal digital assistant (PDA) to self-monitor their diet 
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and PA. The participants entered their diet on a regular basis and the PDA provided them 

with target calories to burn. This study showed that adding a PDA and telephone coaching 

can enhance weight loss by 3.1% when combined with standard care [108].  From the 

research discussed here we infer that self-monitoring of diet [103-105], PA [109] and body 

weight [105] is a necessary condition to lose or maintain weight [106-108]. In this 

dissertation we focus on the self-monitoring of PA in MWUs. 

Current research shows that a combination of behavioral intervention and 

technological intervention for weight loss results in significant weight loss. The challenge 

for researchers is finding ways to transfer or translate some of the behavior aspects of 

counseling into technology in order to meet the weight management needs of large 

nationwide populations. For example, the developments in technology over the last decade 

have resulted in activity monitors associated with different types of online tools for tracking 

energy intake and providing near real-time feedback on EE, minutes spent in moderate and 

vigorous PA, and steps per day. These tools motivate users to increase their PA levels while 

controlling their energy intake.  Some of these near real-time feedback options include 

information provided through wrist watches, liquid crystal displays, audio, and 

smartphones. For example, BodyMedia provides near real-time feedback about steps, 

calories burned and activity time through BodyMedia FIT Display [110].  Fitbit uses a 

liquid crystal display to provide feedback about number of steps, stairs climbed, calories 

burned, and distance traveled [45]. Adidas MiCoach Pacer provides verbal coaching to 

runners. DirectLife has a series of indicator lights on the Activity Monitor to show progress 

throughout the day. Furthermore, activity monitors such as BodyMedia, Fitbit, and Nike+ 

use smartphone applications to provide PA information feedback to users. In addition, 

many of these activity monitors also provide online counseling from athletic trainers and 
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dieticians on maintaining a healthy weight and log information such as calories consumed, 

weight and sleep duration to monitor changes and improvements in health status [45, 111]. 

Based on these technological developments we have incorporated into our research aspects 

such as providing PA level feedback to MWUs through smartphone applications.   

1.6 SIGNIFICANCE OF THE PROBLEM 

The current literature and our previous studies reveal the need for a valid and reliable 

physical activity monitor to assess and quantify PAs in MWUs [11, 79, 85, 87-90, 112-

114]. Providing an accurate estimate of PA levels in MWUs can assist researchers and 

clinicians to quantify day-to-day PA levels in free-living environments, leading to 

recommendations for a healthier lifestyle [70, 73, 74, 87, 96]. Additionally, researchers can 

also use this type of PA monitor to study and evaluate repetitive strain injuries related to 

wheelchair use [115, 116], effectiveness of exercise-based intervention programs at 

improving health and function [59, 62], and psychosocial aspects and quality of life [62, 63, 

76, 79]. Developing such a monitor would allow evidence-based practice in wheelchair 

usage and prescription [117, 118]. Therefore, in this research we have: a) developed 

customized algorithms for SenseWear, a commercial activity monitor designed for the 

general population, to detect various wheelchair related activities and to estimate EE in 

MWUs and b) developed and evaluated PAMS, which was especially designed to estimate 

PA levels in MWUs. The development and evaluation of PAMS, a multiple sensor activity 

monitor worn on the upper arm and placed on the wheel of the wheelchair, involved 

detecting wheelchair and upper extremity movements to quantify PA levels in MWUs. 
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1.7 DISSERTATION STRUCTURE 

Chapter 2 presents the development and evaluation of new models for an off-the-shelf 

SenseWear Activity monitor designed for ambulatory population without disabilities that 

can estimate EE in MWUs with SCI [88]. In Chapter 3, we detail our development and 

evaluation of classification models to detect four types of wheelchair-related PAs, including 

resting, wheelchair propulsion, arm-ergometry and deskwork [119]. The four types of 

wheelchair related PAs included resting, wheelchair propulsion, arm-ergometry and 

deskwork. Chapter 4 discusses the development and evaluation of the gyroscope based 

wheel rotation monitor (G-WRM), a component of the PAMS [120]. Chapter 5 describes 

the EE estimation and classification models developed for use with PAMS while the 

MWUs performed various types of wheelchair-related PAs in structured (HERL), semi-

structured (NVWG) and home environments.  Chapter 6 describes the user evaluation and 

feedback obtained through our usability study of PAMS in six of the MWUs with SCI. 

Chapter 7 addresses venues for future work and discussion and conclusions related to this 

dissertation research. 
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2.0  PREDICTING ENERGY EXPENDITURE OF MANUAL WHEELCHAIR 

USERS WITH SPINAL CORD INJURY USING A MULTI-SENSOR BASED 

ACTIVITY MONITOR 

2.1 INTRODUCTION 

Regular physical activity (PA) in persons with spinal cord injury (SCI) is associated with 

positive health benefits, such as increased muscular strength and cardiopulmonary fitness, 

and decreased deconditioning and pain [10]. However, previous research by Washburn and 

Hedrick [73] and Fernhall et al. [74] showed that only 13% to 16% of persons with SCI 

reported regular PA. Reduction of PA levels in this population may be due to physiologic 

changes after SCI, as well as environmental barriers and mobility limitations associated 

with wheelchair use [70, 72]. One of the prerequisites as well as strategies for promoting 

regular PA is to provide people with an accurate estimate of everyday PA and energy 

expenditure (EE) [73, 74, 87]. However, persons with SCI, especially those who use 

manual wheelchairs for mobility, currently do not have an objective means to self-assess 

their PA participation and free-living EE. Such information can potentially assist MWUs 

with SCI to control and regulate their body weight and health [10, 73, 121]. 

With the advancements in miniature sensing technology, there are a number of 

accelerometry-based activity monitors designed to estimate free-living EE in the 
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ambulatory population [22, 33]. St-Onge et al. [22] evaluated the validity of a multisensor 

activity monitor in 45 adults without disabilities under freeliving conditions. The mean 

signed EE estimated daily from the multisensor activity monitor was 117kcal/d (4.7%) 

lower than the criterion EE measured with doubly labeled water, with an intraclass 

correlation of .81 (P.01). Berntsen et al. [33] evaluated four accelerometry-based activity 

monitors including a multisensor, a single-sensor, and two dual-sensor activity monitors 

against a metabolic cart in 20 adults without disabilities during various activities and found 

that they underestimated total EE per minute by 9%, 15%, 5%, and 21%, respectively. 

To our knowledge, none of the commercially available accelerometry-based activity 

monitors can accurately estimate EE in MWUs with SCI, as they typically do not consider 

the types of physical movement MWUs usually perform. Our group has evaluated the 

performance of a multisensor activity monitor worn on the upper arm and a triaxial 

accelerometer worn around the waist in 24 MWUs with SCI during resting, wheelchair 

propulsion, arm-ergometry exercise, and deskwork [87]. Davis et al. [122] evaluated the 

performance of a multisensor activity monitor in 10 MWUs with SCI during wheelchair 

propulsion on a treadmill at different velocities and gradients. 

Despite the fact that current activity monitors cannot accurately estimate EE in MWUs 

with SCI, researchers have used activity monitors to quantify PA in MWUs with SCI [89, 

94]. Warms and Belza [94] evaluated the validity of a wrist-worn dual-axial accelerometer 

to measure community living PA in MWUs with SCI by correlating activity counts from 

the accelerometer with self-reported activity levels, and the Pearson correlation coefficients 

varied from .33 to .77. In another study, Washburn and Copay [89] assessed a wrist-worn 

uniaxial accelerometer in estimating the EE during wheelchair propulsion at three different 

speeds. Significant correlations (r.52–.66, P.01) were reported between the activity counts 
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from both wrists and EE over the three pushing speeds. Studies by Warms and Belza [94] 

and Washburn and Copay [89] indicated correlations between activity counts from the 

activity monitors and PA intensity, but did not provide EE estimation. 

The goal of this study was to develop EE prediction models for MWUs with SCI based 

on a commercially available multisensor activity monitor and evaluate the validity of the 

new models against criterion EE by a metabolic cart. 

2.2 METHODS 

This study took place at a university-based research facility. The institutional review board 

at the university approved the study. 

2.2.1 Participants 

A total of 45 MWUs with SCI volunteered and provided informed consent before their 

participation in the study. Subjects were included if they were between 18 and 60 years of 

age, used a manual wheelchair as a primary means of mobility, had an SCI, were at least six 

months post injury, and were able to use an arm ergometer for exercise. Subjects were 

excluded if they were unable to tolerate sitting continuously for four hours, had active 

pelvic or thigh wounds, and failed to obtain their primary care physician’s consent to 

participate in the study. 
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2.2.2 Procedures  

The study protocol was described in detail elsewhere [87]. Subjects first completed a basic 

demographic questionnaire and had their weight (Befour MX490D extra wide wheelchair 

scale, Befour, Inc., Saukville, WI, USA), height, and skinfold (Lange skinfold caliper, Beta 

Technology, Santa Cruz, CA, USA) thickness at four body sites (biceps, triceps, 

subscapular, suprailiac) measured. They were then fitted with a SenseWear (BodyMedia 

Inc., Pittsburgh, PA 15222, USA) on the right upper arm over the triceps, and a K4b2 

portable metabolic cart (COSMED srl, Rome, Italy). The activity session started with a 

resting routine where subjects were instructed to sit still in their wheelchairs. The resting 

routine was followed by three activity routines: wheelchair propulsion, arm-ergometer 

exercise, and deskwork. The wheelchair propulsion routine included two trials of 

propulsion on a computer-controlled dynamometer with average speeds of .89m/s (2mph) 

and 1.34m/s (3mph), and one trial on a flat tiled surface with an average speed of 1.34m/s 

(3mph). The arm-ergometer exercise routine consisted of three trials at 20W resistance and 

60 rotations per minute, 40W and 60 rotations per minute, and 40W and 90 rotations per 

minute, respectively, on an Angio arm ergometer (Lode B.V., Groningen, The 

Netherlands). During the deskwork routine, subjects performed two tasks: reading a book 

of their choice for four minutes and taking a typing test on a computer for four minutes. 

The three activity routines were counterbalanced and the trials within each routine were 

randomized to counter order and carryover effects. Each activity trial lasted for 8 minutes 

with a resting period of 5 to 10 minutes between each trial and a period of 30 minutes 

between each activity routine. 
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2.2.3 Instrumentation and Data Collection 

The SenseWear used in this study consisted of a two-axis accelerometer, a galvanic skin 

response sensor, a skin temperature sensor, and a near-body temperature sensor. InnerView 

Research software (version 7.0, BodyMedia Inc., Pittsburgh, PA, USA) was used to 

retrieve the raw sensor data and estimate EE in kilocalories per minute based on the 

manufacturer’s prediction model. The sensor data included the average, mean absolute 

deviation, and number of peaks in longitudinal and transverse accelerations at 16Hz; and 

the average skin temperature, galvanic skin response, and near-body temperature at each 

minute. The K4b2 was calibrated for each subject as per the manufacturer’s instructions. It 

was synchronized with the SenseWear before use. Cosmed K4b2 software (version 9.0, The 

Mathworks Inc., Natick, MA, USA) was used to retrieve the criterion EE data in 

kilocalories per minute. 

2.2.4 Development of EE Prediction Models 

Two EE prediction models were developed including a general model (i.e., one equation for 

all PA) and an activity-specific model (i.e., multiple equations with one equation for each 

type of PA). For both cases, the prediction models were developed based on the data from 

80% of the total participants (training group, n=36) and evaluated on the remaining 20% of 

the total participants (validation group, n=9). A stratified approach based on injury level 

(paraplegia vs tetraplegia) was performed to select subjects into the training and validation 

groups. Data preparation involved identifying steady-state conditions for each activity trial 

based on K4b2 [24, 70, 87]. Steady-state conditions were determined by averaging breath-
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by-breath EE data over 30-second periods, and EE values having coefficients of variation 

of less than 10% computed over windows of at least one minute were used in the later 

analysis. To predict the criterion EE, we used three types of variables including the sensor 

data from the SenseWear, demographic data, and customized data derived from the sensor 

and demographic data. First, the sensor data from the SenseWear provided us with 

movement and physiologic information of the participant during activities. Second, the 

demographics data such as sex, age, height, weight, and completeness of injury provided us 

with wheelchair user–specific characteristics. Third, a number of custom variables 

including the nonlinear forms of the sensor and demographic data and combinations of the 

sensor and demographic data were calculated based on the existing literature in the field of 

PA monitoring and EE estimation in humans. For example, body mass to the power of .75 

is a nonlinear variable considered to be a better predictor of EE than the body mass based 

on Kleiber’s law [123]. On similar lines, height divided by mean absolute deviation is a 

combination variable that normalizes the arm movement by limb length. The custom 

variables might not have an intuitive definition, but empirically have a better linear 

relationship than the sensor and demographic data with the criterion EE. The model 

development process was data driven, which involves selecting the best variables from a 

pool of sensor, demographic, and custom variables to predict the criterion EE [124]. 

A custom “all-possible-regressions” procedure was written in MATLAB software 

(R2008a, Mathworks Inc., Natick, MA, USA) to develop new general and activity-specific 

EE prediction models. This procedure was exhaustive, but integrated several approaches to 

avoid overfitting. First, correlations between any two predictors in the potential predictor 

set were calculated. For highly correlated pairs (Pearson correlation: r>0.9), one of the 
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predictors was removed or two predictors were combined to minimize multicollinearity. If 

the two variables were obtained from the same sensor (e.g., average acceleration vs. mean 

absolute deviation in longitudinal direction), the variable that had a higher correlation with 

the criterion EE was retained; otherwise the variables were combined by multiplying one 

with the other. The variables retained varied from 20 to 24 predictor variables for the new 

general and activity-specific models. Every combination of three-predictor variables was 

grouped together, thus resulting in 1140 to 2024 3-predictor sets for the new general and 

activity-specific models. Multiple regression models using each predictor set were 

constructed to estimate criterion EE. We chose to include only three predictors per set in 

order to reduce overfitting and ensure computational simplicity. Implicit in the modeling 

process for each predictor set was the use of a cross-validation technique instead of model 

fit statistics (eg, R2) as a guard against overfitting the data [124]. Each time, a different set 

of 6 subjects’ data was removed from the total, and the remaining data was used to 

determine the model’s parameters (6-fold cross-validation with 6 subjects per fold). The 

model was then applied to the held out data and the EE prediction error calculated. All the 

errors were collated to indicate the predictive quality of the predictor set. The predictor set 

that yielded the smallest EE prediction error was selected to build the final EE prediction 

model from the whole training group. 

2.2.5 Data Analysis 

The new general and activity-specific prediction models were evaluated separately using 

the validation group (n=9). The estimated EE for the validation group using the 

manufacturer’s model and the two new models was compared with the criterion EE. The 
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comparisons involved calculating the minute-by- minute mean absolute error (MAE) and 

mean signed error (MSE). We also compared the estimated “per-session” EE by the 

manufacturer’s model and the new models over all the activities for each subject with the 

criterion EE using per-session MSE. The per-session MSE provided us with the average EE 

error per subject over the whole session including all the activity trials. The EE for all 

activities combined was estimated by using activity-specific models for the corresponding 

activity type before calculating the overall MAE or MSE. In addition, Bland and Altman 

plots were used to visually assess the agreement between the criterion and estimated 

minute-by-minute EE[125]. Scatterplots of the criterion EE against the estimated minute-

by-minute EE and per-session EE for the validation group were plotted to evaluate the 

association between these measures. The Pearson moment correlations and intraclass 

correlations for single measure using a two-way mixed model with consistency were also 

calculated between the criterion and estimated minute-by-minute EE for the validation 

group. Statistical significance was set at an α level of .05. 

2.3 RESULTS 

Demographic characteristics of the subjects are described in Table 1. All the subjects 

completed the eight activity trials. Because of device malfunction of the K4b2, three trials 

from three subjects had to be discarded. In addition, five trials from four subjects that did 

not yield steady-state conditions were also discarded. The general model shown in Equation 

1 takes all the four activities into consideration. The activity-specific models are shown in 

Equation 2 through Equation 5. Table 2 lists the predictors selected for the new models. 
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Table 3 shows the minute-by-minute MAE and mean absolute percentage difference 

between the criterion and estimated EE for the validation group. Table 4 shows the minute-

by-minute MSE and mean percentage difference between the criterion and estimated EE. 

Table 5 shows the per-session MSE and percentage difference. 

Table 1: Demographic characteristics of the subjects 

Variables Values 
Overall Group 
Sex 
      Male 
      Female  
Age (y) 
Height (cm) 
Weight (kg) 
Total Skinfold from four sites (mm)  
Manual wheelchair usage (y) 
Injury Level (range) 
Paraplegia (T4 and below) 
Tetraplegia (T3 and above) 
Injury Completeness  
      Complete 
      Incomplete 
Self-reported PA 
      Regular 
      Occasional 
      No regular PA 

45 
 
37 
8 
40.2 ± 11.0 
178.2 ± 8.6 
78.5 ± 21.9 
57.3 ± 23.4 
13.8 ± 9.1 
C4 to L4 
38 
7 
 
21 
24 
 
23 
13 
9 

Training Group 
Sex 
      Male 
      Female 
Age (y) 
Weight (kg) 
Height (cm) 

36 
 
30 
6 
39.8 ± 11.6  
78.6 ± 22.3 (44.2 – 141.1) 
178.7 ± 8.2 (157.5 – 200.7) 

Validation Group 
Sex  
      Male 
      Female 
Age (y) 
Weight (kg) 
Height (cm) 

9 
 
7 
2 
42.3 ± 8.9 
78.1 ± 21.9 (55.4 – 129.5) 
176.1 ± 10.3 (165.0 – 190.5)  

Note. Values are n, mean ± SD, or mean ± SD (range) 
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Equation 1: General Model. 

nt75MASS_E_poi*0.08780239+
 LMAD*0.3326474+LPEAKS*40.004104221.274203- = EE_MET +

 

Equation 2: Activity-specific model for resting. 

nt75MASS_E_poi*0.03884351+
LMAD*1.176567+HTDivLMAD*3130.00001228-70.00975103- = EE_MET

 

Equation 3: Activity-specific model for wheelchair propulsion. 

nt75MASS_E_poi*0.1251561+
 TLMAD*0.01841253+LPEAKS*30.00594975+2.450952- = EE_MET
 

Equation 4: Activity-specific model for arm-ergometry. 

nt75MASS_E_poi*0.08795310+
TLMAD*0.03319644+LPEAKS*40.00588445+0.5633703- = EE_MET

 

Equation 5: Activity-specific model for deskwork. 

nt75MASS_E_poi*0.04039672+
 SQRT_LMAD*0.9740335+TAVE*0.3559690+0.07291671- = EE_MET
 

 

Table 2: Description of variables used in general and activity-specific EE estimation models 

EE_MET EE measured using the K4b2 metabolic cart 
LMAD Mean absolute deviation in longitudinal acceleration 
LPEAKS Average number of peaks per minute in longitudinal acceleration 
MASS_E_point75 Body mass raised to the power of 0.75 
HTDivLMAD Height divided by the mean absolute deviation in longitudinal 

acceleration 
TLMAD Product of mean absolute deviation in transverse and longitudinal 

acceleration 
TAVE Average transverse acceleration 
SQRT_LMAD Square root of mean absolute deviation in longitudinal acceleration  
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Table 3: MAE and mean absolute percentage difference of minute-by-minute EE using the 

manufacturer’s model, the new general model, and the new activity-specific model for the validation 

group. 

Activities 
  

MAE (kcal/min) Mean absolute percentage 
difference (%) 

Manufact
-urer’s 
Model 

General 
Model 

Activity-
Specific 
Model 

Manufact
-urer’s 
Model 

General 
Model 

Activity-
Specific 
Model 

Resting 0.3 0.4 0.2 28.0 28.4 18.2 
Propulsion  2.9 0.7 0.6 90.6 22.3 16.5 
Arm-
ergometry  2.0 1.3 0.9 45.4 25.7 17.6 

Deskwork  0.5 0.3 0.2 41.3 25.3 13.4 
All activities 2.0 0.9 0.6 59.2 24.7 16.8 

Note: The 95% confidence interval MAE values for the manufacturer’s, and new general 

and activity-specific models were 52.6% to 65.8%, 22.1% to 27.2%, and 15.2% to 18.5%, 

respectively, for all activities combined. 
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Table 4: MSE and mean percentage difference of minute-by-minute EE using the manufacturer’s 

model, the new general model, and the new activity-specific model for the validation group. 

Activities 
 

Mean signed error (kcal/min) Mean percentage difference (%) 

Manufact 
-urer’s 
Model 

General 
Model 

Activity-
Specific 
Model 

Manufact 
-urer’s  
Model 

General 
Model 

Activity-
Specific 
Model 

Resting -0.2 ± 0.3 -0.1 ± 0.5 0.0 ± 0.3 -19.1 ± 27.5 - 8.3 ± 34.9 -4.3 ± 21.4 
Propulsion -3.0 ± 2.0 -0.4 ± 0.8 0.2 ± 0.7 -89.8 ± 64.5 -16.8 ± 28.0 2.8 ± 22.3 

Arm-
ergometry -1.7 ± 2.0 1.3 ± 1.0 0.6 ± 1.0 -40.3 ± 42.1 25.1 ± 16.5 9.9 ± 19.0 

Deskwork -0.4 ± 0.5 -0.2 ± 0.4 0.0 ± 0.2 -34.6 ± 34.4 -18.1 ± 26.8 -0.4 ± 16.1 
All 

activities 
-1.9 ± 2.0 0.4 ± 1.1 0.4 ± 0.8 -55.3 ± 56.1 2.3 ± 31.7 4.9 ± 20.7 

 

        

Note: Values are mean ± SD. The 95% confidence interval MSE values for the 

manufacturer’s, and new general and activity-specific models were -48.1% to -62.5%, 

6.3% to -1.7%, and 7.5% to 2.2%, respectively, for all activities combined. 

 

Table 5: MSE and mean percentage difference of per-session EE using the manufacturer’s model, the 

new general model, and the new activity-specific models for the validation group. 

Activities  
MSE (kcal) Mean percentage difference (%) 

 

Manufact 
-urer’s 
Model 

General 
Model 

Activity-
Specific 
Model 

Manufact 
-urer’s 
Model 

General 
Model 

Activity-
Specific 
Model 

All 
Activities -67.9 ± 48.2 13.3 ± 15.9 12.6 ± 14.6 -51.5 ± 31.6 10.4 ± 11.8 9.6 ± 10.9 

Note: Values are mean ± SD. The average steady-state calories for performing all the 

activities over about 36 minutes were 128.60 kcal using the portable metabolic cart. 
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Figure 1 and Figure 2 show the Bland-Altman plots and Figure 3 and Figure 4 show the 

scatterplots for the manufacturer’s model and the new general and activity-specific models. 

In Figure 3 and Figure 4 the straight green line indicates the model’s best fit and the dotted 

red line indicates the perfect agreement. All the data presented in Figure 1 through Figure 4 

are from the validation group. The Pearson correlations between the criterion and estimated 

EE for the validation group using the manufacturer’s model and the new general and 

activity-specific models for all activities combined were significant (P<.001) with values of 

.75, .74, and .88, respectively. The intraclass correlations were significant (P<.001) 

between the criterion and estimated EE for the validation group using the manufacturer’s 

model, and the new general and activity-specific models for all activities combined were 

significant (P<.001) with values of .64 (95% confidence interval, .57–.70), .72 (95% 

confidence interval, .66 –.77), and .86 (95% confidence interval, .82–.88), respectively. 

 

 

Figure 1: Bland Altman plot for the criterion and estimated EE using the manufacturer’s model for the 

validation group with a mean ± SD value of -1.87 ± 2.04 kcal/min. 
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Figure 2: Bland Altman plots for the criterion and estimated EE using the new general and activity 

specific models for the validation group with a mean ± SD value of 0.37 ± 1.14 kcal/min and 0.35 ± 0.82 

kcal/min, respectively. 

 

 

Figure 3: Scatter plots of the criterion and estimated minute-by-minute and per-session EE using the 

new general model for the validation group. The plots show the EE values for all activities combined. 
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Figure 4: Scatter plots of the criterion and estimated minute-by-minute and per-session EE using the 

new activity specific model for the validation group. The plots show the EE values for all activities 

combined. 

2.4 DISCUSSION 

Research has shown that off-the-shelf activity monitors cannot accurately predict EE in 

MWUs with SCI [87, 122]. Our previous study [87] using SenseWear has found large EE 

estimation errors ranging from 24.4% to 125.8% among 24 MWUs with SCI. Davis [122] 

showed that the mean signed EE by SenseWear (14.3 ± 6.0kJ/min) was much higher than 

the EE from a metabolic cart (11.4 ± 4.0kJ/min) during wheelchair propulsion on a 

treadmill. This study with a larger cohort also showed a consistent trend of large EE 

estimation errors and has led to the development of new EE prediction models. 

The new activity-specific and general models developed in this study integrated all-

possible-regression and cross-validation techniques to leverage the benefits of exhaustive 

model search, avoid overfitting, and increase the robustness of the model’s performance on 
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unseen data. Our validation results showed high intraclass correlation coefficients between 

the predicted EE by the new models and the criterion EE, indicating that there is a good 

agreement between the estimated EE by the new models and the criterion EE [96]. We also 

compared the two new prediction models and the manufacturer’s model with the criterion 

EE and found that the two new models significantly improved the EE prediction accuracy 

over the manufacturer’s model. We used four measures for the comparison including 

minute-by-minute MAE and MSE that assess the model’s ability to predict EE of 

performing a single activity for each minute, and per-session MSE that assesses the model’s 

ability to predict EE of performing multiple activities over a period of time. The MAE 

provides information regarding the magnitude of the prediction error, and the MSE 

indicates whether the predictions are biased—that is, whether they tend to be 

disproportionately positive or negative. The minute-by-minute prediction error for the 

manufacturer’s model was much higher than that for the generalized and activity-specific 

models (see Table 3and Table 4). We also found that the manufacturer’s model tended to 

overestimate EE, while the generalized and activity-specific models underestimated EE 

with smaller biases (see Table 4 and Table 5). 

When further examining the two new models, we found the activity-specific model 

outperformed the general model, with a smaller absolute minute-by-minute EE prediction 

error for each individual activity and for all the activities combined (see Table 3). The 

activity-specific model also performed better than the general model, with a smaller bias for 

each individual activity (see Table 4). The general model selected the predictors that are 

sensitive to all activities as a whole, which compromises EE estimation for individual 

activities. However, we noticed that the general model had a smaller overall bias than the 

activity-specific model. This could be because the overestimations and underestimations 
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from different activities tend to cancel each other out. For example, the general model 

tended to overestimate EE for wheelchair propulsion but underestimate EE for arm-

ergometry. For the same reason, the general model performed similarly as the activity-

specific model for the per-session evaluation where the EE was estimated for multiple 

activities combined. These results suggested that the activity-specific model is more 

suitable for predicting minute-by-minute EE of individual activities, while the general 

model could be used when predicting the total EE over a group of activities together. 

As for the predictors of the general and activity-specific models, of all the 

demographic variables, the body mass to the power of .75 (MASS_E_point75) was selected 

as a predictor by all the models. This is consistent with Kleiber’s law, which states that any 

mammal’s metabolic rate is proportional to the mammal’s mass raised to the power of .75 

[123]. The upper limb movements captured by the accelerometer in the SenseWear also 

played important roles in the EE estimation. The mean absolute deviation variables 

(LMAD, SQRT_LMAD, TLMAD) captured the variability of the upper limb movements in 

different directions. The number of peaks (LPEAKS) captured the change of direction in 

the arm movements. The height divided by mean absolute deviation (HTDivLMAD) was 

chosen for the resting activity possibly because subjects were not sitting completely still 

and small arm movements as well as fidgeting were picked up by the accelerometer. Taller 

individuals tend to have longer arms, and their arm movements are more easily detected by 

the accelerometer during resting. The predictors chosen in the models are specific for 

wheelchair-related activities, including the average number of peaks in longitudinal 

acceleration (LPEAKS) and the product of mean absolute deviation in transverse and 

longitudinal acceleration (TLMAD) for wheelchair propulsion and arm-ergometry 

activities. Because the predictors included in the models were not SCI specific (eg, injury 
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level), the models can be used to estimate EE for all MWUs with SCI during the activities 

discussed in this study. 

2.4.1 Study Limitations 

Although the EE prediction accuracy was significantly improved with the new predictions 

models, it was relatively low when compared with the performance of the SenseWear 

among the ambulatory populations. Johannsen et al. [26] evaluated the validity of the 

SenseWear in estimating total EE for 14 consecutive days among 30 healthy adults aged 24 

to 60 years and found that the absolute prediction error rate when compared with the 

criterion measure using doubly labeled water was 8.1% ± 6.8%. Berntsen et al. [33] found 

that the SenseWear underestimated total EE with a minute-by-minute MAE of 9% 

compared with an indirect calorimeter in 20 adults for a period of 120 minutes during 

various types of activities and intensities. One possible reason for the relatively low 

prediction accuracy of the new models could be the small sample size for both the training 

and validation groups. The small sample size in the training group further limited our 

ability to achieve a balanced distribution of subjects with different ranges of weight. 

Subjects in certain ranges may be underrepresented compared with those in other ranges, 

possibly leading to relatively large prediction errors for validation subjects who fell under 

the underrepresented ranges. Other limitations include collecting resting EE while the 

subjects were seated still in their wheelchairs, limited number of PAs, PA trials tested in a 

structured laboratory setting, and other demographic factors related to the inclusion criteria. 

It is not yet clear whether the new models can be used to predict EE for free-living 

activities, and how the models will perform under various conditions (velocities, 
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resistances, and environments). We hope our research will stimulate interest and efforts of 

other researchers to validate and refine the EE prediction models for MWUs with SCI. We 

recommend that researchers evaluate our models in their subject groups before use. 

Recommendations for future studies include testing more subjects with carefully planned 

recruitment strategies and experimental protocols containing free-living activities, testing 

the SenseWear among MWUs with other types of disabilities, and possibly developing PA 

monitors particularly suitable for MWUs. 

2.5 CONCLUSIONS 

In this study, we developed and evaluated new EE prediction models for MWUs with SCI 

based on a popular commercially available activity monitor. To our knowledge, this is the 

first study to develop new EE prediction models for this population based on the 

SenseWear activity monitor. The new models developed here can be used in clinical 

applications of using SenseWear activity monitors to estimate EE for MWUs with SCI 

during the wheelchair-related activities discussed in this study. We expect that the 

availability of these new models will encourage more research in this area, potentially 

leading to an accurate PA assessment tool for estimating free-living EE and time spent in 

light, moderate, and vigorous PA for MWUs with SCI. The availability of PA monitors that 

accurately estimate EE in MWUs with SCI could potentially facilitate better personal and 

clinical decisions on PA, energy balance, and healthier lifestyles in MWUs with SCI. 
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3.0  PHYSICAL ACTIVITY CLASSIFICATION UTILIZING SENSEWEAR 

ACTIVITY MONITOR IN MANUAL WHEELCHAIR USERS WITH SPINAL 

CORD INJURY 

3.1 INTRODUCTION 

Activity classification using wearable activity monitors among the ambulatory population 

has been well documented [55, 126-129]. The benefits of detecting physical activities (PAs) 

using wearable devices include the ability to track regular PA, provide accurate energy 

expenditure (EE) estimation and assist in behavioral modifications that may lead to a 

healthier active lifestyle in community settings [26, 33, 130-132]. However, there are only 

a limited number of studies that have detected and classified Pas performed by individuals 

who rely on wheelchairs for mobility using wearable devices [90, 113, 133]. Identification 

of wheelchair-related PAs using wearable devices provide not only all the benefits 

mentioned above but also pertinent information on the functional use of upper limbs, an 

important factor of upper limb pain and injury prevalent in wheelchair users [134]. The 

clinical practice guideline ‘Preservation of Upper Limb Function Following Spinal Cord 

Injury,’ published by the Paralyzed Veterans of America, has indicated that minimizing the 

frequency of upper extremity use in wheelchair users during repetitive tasks such as 
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wheelchair propulsion can decrease the risk factor for repetitive strain injury and/or wrist 

pain [134]. 

Previous research by Postma et al. showed that a wearable activity monitor 

consisting of six accelerometers and two electrocardiogram electrodes connected to a 

portable data recorder (0.7 kg) could detect wheelchair propulsion in ten manual wheelchair 

users (MWUs) with spinal cord injury (SCI) [90]. The results demonstrated that wheelchair 

propulsion episodes were detected with an overall agreement, sensitivity and specificity of 

92%, 87% and 92%, respectively. In another study, French et al. showed that wheelchair 

propulsion patterns, surface types and self-propulsion versus external pushing of a 

wheelchair could be detected using two dual-axis accelerometer based eWatches secured to 

the wrist and the wheelchair’s frame [133]. The results in three persons without disabilities 

showed that the classification accuracy rates varied from 80 to 90% for arcing versus non-

arcing propulsion patterns, carpet versus tile surfaces and self-propulsion versus external 

pushing using classification algorithms such as k-nearest neighbor and support vector 

machines. Along similar lines, Ding et al. studied activity classification in 27 MWUs 

performing a series of representative activities of daily living in a semi-structured setting 

with an eWatch and a wheel rotation datalogger placed on the wrist and the wheelchair’s 

wheel, respectively [113]. The results indicated that k-nearest neighbor, support vector 

machine, Naïve Bayes (NB) and decision tree (C4.5) classification algorithms could 

classify the activities into self-propulsion, external pushing and sedentary activity with an 

accuracy of 89.4–91.9%. The studies discussed here focused specifically on detecting 

propulsion activity versus other activities with the help of activity monitoring systems 

composed of multiple components. 
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The primary objective of this study was to develop and evaluate machine learning-

based classification algorithms to detect PAs including resting, wheelchair propulsion, arm 

ergometer exercises and deskwork performed by MWUs with SCI based on data collected 

from an off-the-shelf multisensor-based SenseWear (SW) activity monitor. Our previous 

research has shown that an activity-specific EE prediction model consisting of four EE 

estimation equations for the four types of PAs mentioned above had smaller EE estimation 

errors than a general model consisting of only one EE estimation equation applied for all 

the activities [88]. Therefore, in order to use the activity-specific EE prediction model in 

the field, we first need to detect the four types of PAs. Our secondary aim was to evaluate 

how the activity classification accuracy affects the performance of the activity-specific EE 

prediction model for MWUs with SCI described in our previous work [88]. 

3.2 MATERIALS AND METHODS 

3.2.1 Experimental protocol 

The study was approved by the institutional review board at the University of Pittsburgh 

and the VA Pittsburgh Healthcare System. The target population of this study was MWUs 

with SCI. Participants were recruited through the institutional review board approved 

registries, flyers and advertisements in print media. Convenience sampling was used to 

recruit participants who expressed an interest in the study. Little or no research has been 

published on validating activity monitors for EE estimation among MWUs with SCI. Power 

analysis using a correlational design with α = 0.05 (two-tail) and medium effect size (r=0.4) 



45 

indicated that a total of 40 participants will provide a statistical power of 74% [135]. On the 

basis of this estimation, in this study we recruited 45 MWUs with SCI to take part in the 

study and provide a written informed consent before their participation in the study. The 

data collection for the study took place between February 2009 and May 2011. Participants 

were included if they were between 18 and 60 years of age, used a manual wheelchair as a 

primary means of mobility, had an SCI, were at least 6 months post-injury and were able to 

use an arm-ergometer for exercise. Participants were excluded if they were unable to 

tolerate sitting for 4 h, had active pelvic or thigh wounds or failed to obtain their primary 

care physician’s consent to participate in the study. The study required the participants to 

pay one visit to the Human Engineering Research Laboratories, University of Pittsburgh to 

complete the data collection. All 45 participants who provided written informed consent 

participated in the study. 

The research study protocol has been described in detail elsewhere [87, 88]. As part 

of the pre-activity session, the participants answered a demographics questionnaire and had 

their heights and weights measured. During the activity session, the participants took part in 

resting and three other activities including wheelchair propulsion, arm-ergometer exercises 

and deskwork. The three activities were counterbalanced and the trials within each activity 

were randomized to counter order effects. During the activity session, all participants wore 

a SW activity monitor on their right upper arm over the triceps and a Cosmed K4b2 

portable metabolic cart (COSMED srl, Rome, Italy). The participants performed each 

activity trial for a maximum period of 8min, with a resting period of 5–10min between 

activity trials and a period of 30–40min between activities. During the wheelchair 

propulsion activity, the participants propelled their wheelchairs for two trials of 2 and 3mph 

on a stationary dynamometer, and a trial of 3mph on a flat-tiled surface. The arm-ergometer 
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exercises included two trials at 60 r.p.m. with 20 and 40W of resistance and a trial at 90 

r.p.m. with 40Wof resistance. During the deskwork session, the subjects typed on a 

computer for 4min and read a book for another 4 min. 

3.2.2 Instrumentation and data collection 

The SW activity monitor was used to collect the average, the mean absolute difference 

(variability of upper limb motion) and the number of peaks (turning points of upper limb) 

in transverse and longitudinal accelerations sampled at 32Hz and recorded at 16Hz; and the 

average galvanic skin response (skin conductance due to moisture or sweat), skin 

temperature and near body temperatures sampled at 32Hz and recorded at 1min. The multi-

sensor data from the SW was retrieved using the InnerView Research software 7.0 

(Bodymedia Inc., Pittsburgh, PA, USA). In addition, a portable K4b2 metabolic cart was 

synchronized with the SW and used to collect the criterion EE. The EE in terms of kcal/min 

was retrieved using the Cosmed K4b2 software (version 9.0). The investigators annotated 

the start and end of each activity trial during data collection, which was further used as the 

reference for developing and testing of the classification algorithms. 

3.2.3 Data analysis 

The first step of developing an activity classification algorithm was to separate the data into 

a training data set and a validation data set. A stratified approach with the injury level 

(paraplegia versus tetraplegia) as the stratified variable was used to select 80% of the 

participants into the training data set and 20% into the validation data set. The total amount 
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of activity time was 1645min (about 27.4 h) including 1319min (about 22.0 h) in the 

training data set (n=36) and 326min (about 5.4 h) in the validation data set (n=9). 

The next step was to extract a set of features, which are statistical measures, used to 

distinguish between the four types of activities. The feature data included characteristic 

information such as the mean, the mean absolute difference and the number of peaks per 

minute that were directly obtained from various sensors in the SW activity monitor. In 

addition, linear and nonlinear features using the multi-sensor data from SW were calculated 

on the basis of statistical characteristics, such as time domain features, biomechanical and 

physiological features specific to PAs [88]. We chose a 1-min window size (duration or 

period) for feature estimation to be consistent with the EE estimation. The features obtained 

from the SW and the estimated features resulted in a feature space of thousands of variables 

for the PA classification. We also manually labeled each 1-min activity segment as 

belonging to one of the four categories, that is, wheelchair propulsion, arm-ergometry, 

resting and deskwork based on the annotations, which served as a reference for training and 

testing the activity classification algorithms. The data collected from the SW was processed 

through data analysis programs written in MATLAB (The Mathworks, Inc., Natick, MA, 

USA). 

We then developed three activity classification algorithms based on the training data 

set using machine learning algorithms including linear discriminant analysis (LDA), 

quadratic discriminant analysis (QDA) and NB. For each classification algorithm, we 

performed the leave-one-subject-out (LOSO) and 6-fold by-subject cross-validation to 

select the most appropriate features and evaluate the classification algorithm’s 

performance. The LOSO cross-validation method leaves one subject out and then develops 

the model on the remaining subjects. The model developed on these remaining subjects is 
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evaluated by the left-out subject. This procedure was repeated 36 times, as there were 36 

subjects in training group. The 6-fold by-subject cross-validation method is similar to 

LOSO, except that the subjects are split into six random groups (or folds), and each time a 

group is left out and the models are developed on the remaining five groups. The 6-fold 

cross-validation was repeated six times as the total participants in the training data set were 

36. In addition to cross-validation the performance of the three activity classification 

algorithms was also evaluated using the validation data set. Several performance measures 

were calculated including per-minute precision (true positive/(true positive + false 

positive)), recall (true positive/(true positive + false negative)), specificity (true 

negative/(true negative + false positive)) and overall accuracy ((true positive + true 

negative)/(number of the cases)) [136]. Precision indicates the proportion with which the 

detected activity is correct. Recall, also known as sensitivity, is the proportion of actual 

activities that are correctly identified. Specificity is the proportion of activities not 

performed that are correctly identified, or in other words it is the classification algorithm’s 

ability to distinguish actual true-negative cases. Overall accuracy is the overall performance 

of the algorithm. We also evaluated how the performance of the activity classification 

algorithms affected the EE estimation using the activity-specific EE prediction model that 

was previously developed [88]. In our previous work, the EE estimation based on the 

activity-specific prediction model assumed 100% activity classification accuracy. However, 

in this study we evaluated the performance of the activity-specific EE prediction model 

based on the actual classification results. Similar to our previous work, the estimated EE 

was compared with the criterion EE from the metabolic cart by calculating the minute-by-

minute mean absolute error and the mean-signed error [88]. 
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3.3 RESULTS 

The participants included 37 males and 8 females with a mean (SD) age of 40.2 (11.0) 

years, weight of 78.5 (21.9) kg, height of 178.2 (8.6) cm and manual wheelchair usage of 

13.8 (9.1) years. Thirty-eight participants had paraplegia (SCI of T4 and below) and seven 

participants had tetraplegia (SCI of T3 and above). Detailed demographics has been 

discussed in our previous work [88]. Table 6 shows the performance of the LDA, QDA and 

NB classification algorithms applied to the training data set (n=36) using the LOSO and 6-

fold by-subject cross-validation methods. The results showed that the classification 

accuracy was less dependent on the algorithms, but more dependent on the type and 

number of features. For the sake of brevity, we have chosen to present detailed results of 

the QDA and NB classification algorithms. Table 7 shows the classification performance in 

terms of the precision, recall, sensitivity and overall accuracy of the QDA and NB 

classification algorithms using four features in the validation data set. The overall 

classification performance was 96.3% and 94.8% for QDA and NB classification 

algorithms, respectively.  Table 8 shows the confusion matrix, which is a visual 

representation of the actual or true activity and the activity detected by the classification 

algorithm. The results from Table 8 indicate that the misclassification often occurred 

between wheelchair propulsion and arm-ergometry exercises, which involve repetitive 

upper extremity usage. Furthermore, Table 9 shows the EE estimation errors including the 

mean absolute error and mean-signed error for the validation data set (n=9) when the 

activity-specific EE prediction model was used in conjunction with the QDA or NB 

classification algorithms with four features. 
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Table 6: Classification performance in terms of the overall accuracy for the LDA, QDA, and NB 

classifiers to detect four wheelchair related activities with varied number of features using LOSO and 

6-fold by-subject cross validation methods on training dataset. 

Cross 
validation 

Machine Learning 
Algorithms 

Number of Features 
1 2 3 4 5 10 

LOSO 
LDA 70.28 82.13 88.64 91.56 92.88 94.67 
QDA 74.08 83.77 90.69 93.44 94.39 96.2 

NB  74.08 82.76 91.56 93.67 93.95 93.95 

6-Fold 
by-

subject 

LDA 69.95 78.75 84.85 88.84 91.78 94.39 
QDA 73.44 82.51 91.12 93.38 94.4 94.66 

NB 73.44 82.78 91.99 93.54 94.26 95.47 
Note: The overall accuracy is in percentage (%). 

 

Table 7: Classification performance in terms of the precision, recall, specificity, and overall accuracy 

(%) of the QDA and NB classifiers using four features to detect the four wheelchair related activities in 

the validation dataset. 

 
Class 

% QDA % NB 

Precision 
 

Recall Specificity  Overall  Precision 
 

Recall Specificity Overall 

Resting  100.0 97.1 100.0 99.7 100.0 97.1 100.0 99.7 
Propulsion  92.8 98.3 95.7 96.6 94.1 94.1 96.6 95.7 
Arm-ergometry 99.3 93.7 99.5 96.9 95.0 93.7 96.2 95.1 
Deskwork  94.1 100.0 99.3 99.4 91.4 100.0 99.0 99.1 

Note: The overall classification performance was 96.3% and 94.8% for QDA and NB 

classifiers, respectively. 

 

Table 8: Confusion matrix for the QDA and NB classifiers using four features to classify the four 

wheelchair related activities in the validation dataset. 

 QDA NB 

Class Resting Propulsion  Arm 
Ergometry 

Deskwork Resting Propulsion  Arm 
Ergometry 

Deskwork 

Resting  33 0 0 1 33 0 0 1 
Propulsion  0 116 1 1 0 111 7 1 
Arm-ergometry  0 9 133 0 0 7 133 2 
Deskwork 0 0 0 32 0 0 0 32 
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Table 9: EE estimation error in terms of the mean absolute error and mean signed error for the 

validation dataset when the activity-specific EE prediction model was used in conjunction with the 

QDA or NB classifiers with four features. 

 QDA NB 
Mean Absolute 

Error per Minute 
Mean Signed Error per 

Minute (SD) 
Mean Absolute Error 

per Minute 
Mean Signed Error per 

Minute (SD) 
Class kcal % kcal % kcal % kcal % 
Resting  0.2 18.2 0.0 (0.3) -4.3 (21.4) 0.2 18.2 0.0 (0.3) -4.3 (21.4) 
Propulsion  0.6 16.5 0.2 (0.7) 1.9 (22.4) 0.7 18.7 0.0 (1.0) -0.1 (25.3) 

  Arm-ergometry 0.9 18.8 0.7 (1.0) 11.6 (20.1) 0.9 18.8 0.7 (1.0) 11.8 (20.1) 
Deskwork  0.2 13.4 0.0 (0.2) -0.4 (16.1) 0.2 13.4 0.0 (0.2) -0.4 (16.1) 
All Activities  0.7 17.4 0.4 (0.9) 5.3 (21.5) 0.7 18.2 0.3 (1.0) 4.6 (22.8) 

3.4 DISCUSSION 

Accessible activity monitors in wheelchair users will allow users themselves, researchers 

and clinicians to track regular PA, EE estimation, PA levels in community settings and 

functional use of upper limbs, which is related to pain and injury prevalence in wheelchair 

users. Results from this study indicate that the SW activity monitor along with custom 

machine learning classification algorithms, such as LDA, QDA and NB can be used to 

classify wheelchair-related PAs in MWUs. Compared with the study conducted by Postma 

et al. who used six activity monitors to detect wheelchair propulsion episodes from a series 

of activities, we used a single SW activity monitor to achieve a higher classification 

accuracy (96% for QDA classification algorithm versus 92%) with a larger number of 

subjects (n=45 versus n=10) [90]. Similarly, the classification algorithms discussed here 

outperformed those in the previous studies by Ding et al. and French et al., who classified 
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wheelchair-related PAs by using two devices in smaller number (n=27) of wheelchair users 

and three non-wheelchair users, respectively [113, 133]. 

We used several strategies to reduce overfitting during the classification algorithm 

development. As shown in Table 6, the classification accuracy improved with an increased 

number of features, indicating that a reasonable number of features are necessary to classify 

multiple PAs. Given the number of participants in the study, we chose to use a small feature 

set including four features for further analysis of the classification algorithms, as we wanted 

to strike a balance between accuracy and overfitting of the classification algorithms to 

unseen participants. Furthermore, the results showed that the LOSO cross-validation 

technique that tends to have higher variance and lower bias in a small sample had similar 

performance to the 6-fold by-subject cross-validation technique. This led us to use the 

LOSO cross-validation for classification algorithm development, which helps improve the 

generalizability of the classification algorithms to unseen participants. The four features 

chosen for the QDA classification algorithm were: the resultant acceleration, and three 

other variables derived from the mean absolute difference and number of peaks of the 

transverse acceleration. Similarly, the four features for the NB classification algorithm 

were: the resultant acceleration and three other variables derived from the mean absolute 

difference of the transverse acceleration, and mean absolute difference and number of 

peaks of the longitudinal acceleration. The features chosen by both the QDA and NB 

classification algorithms included directional, total motion and frequency of upper arm 

movement information from the SW’s accelerometer, indicating that the classification 

algorithms were sensitive to movement-based variables when classifying the wheelchair-

related PAs. Even though the QDA classification algorithm yielded slightly higher accuracy 
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than NB, the NB classification algorithm is computationally simpler and has greater 

potential for real-time activity classification. 

In our previous work we developed an activity-specific EE prediction model, which 

involves detecting the type of PA before applying a specific EE estimation equation for the 

detected PA [88]. However, our previous work evaluated the model performance assuming 

the types of PAs that can be detected and classified with 100% accuracy. With over 95% 

classification accuracies yielded by the QDA and NB classification algorithms, we found 

that the performance of the activity-specific EE prediction model was minimally affected 

by the actual classification results. The previous study showed that the mean absolute error 

and mean-signed error for all activities were 16.8% and 4.9±20.7%, respectively [88]. In 

this study, the mean absolute error and mean-signed error for all activities were 17.4% and 

5.3±21.5% for the QDA classification algorithm, respectively, and 18.2% and 4.6±22.8% 

for the NB classification algorithms, respectively. The results in Table 8 also showed that 

the wheelchair propulsion and arm ergometry activities were occasionally misclassified by 

QDA and NB classification algorithms; yet the misclassification may not significantly 

affect the EE prediction as the two activities have similar EE. Further, the activity-specific 

EE estimation equations and the classification algorithms share some common variables 

including the mean absolute difference of transverse acceleration, and the mean absolute 

difference and average number of peaks of longitudinal acceleration [88].  

One limitation of this study is the small number of PAs tested in the protocol. In 

addition, the activities were performed in a controlled laboratory setting and prescribed in a 

precise manner such as propelling a wheelchair and exercising with an arm ergometer at a 

certain speed and/or intensity. Future studies should evaluate a larger number of PAs in the 

home and community of MWUs. To our knowledge, there is no device that can be directly 
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used by wheelchair users to classify PAs and estimate EE. We chose to investigate the 

potential of SW activity monitor in this population owing to its ready availability in the 

market and multi-sensor capabilities. 

3.5 CONCLUSION 

Availability of physical activity monitors for MWUs can empower them to monitor 

everyday PA participation and EE, and make informed decisions toward healthier 

behaviors. The high classification accuracy of the QDA and NB classification algorithms 

and the low EE estimation errors when using the actual classification results suggest that 

the SW activity monitor can be used to classify and estimate the EE for the four activities 

tested in this study among MWUs with SCI. 
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4.0  DEVELOPMENT AND EVALUATION OF A GYROSCOPE- BASED 

WHEEL ROTATION MONITOR FOR MANUAL WHEELCHAIR USERS 

4.1 INTRODUCTION 

Wheeled mobility is associated with majority of wheelchair related Physical Activities 

(PAs) and activities of daily living in manual wheelchair users (MWUs). Research has 

shown that wheel rotation monitors can be used to assess mobility characteristics, activity 

levels, and wheelchair use of MWUs in laboratory, community and nursing home settings 

[85, 97, 100, 137, 138]. However, there are only a limited number of monitoring tools 

available for manual wheelchair users (MWUs) [85, 96, 97, 100, 139]. This is especially 

striking as the general population can choose from a wide array of activity monitors to track 

their activities in the community in terms of steps, intensity of PA, duration of PA, and 

energy expenditure [23, 26, 29, 30, 128]. The availability of activity monitors for MWUs 

can help researchers and clinicians in the fields of rehabilitation science, kinesiology, and 

health and physical activity to study mobility characteristics and evaluate mobility related 

interventions in this population. In addition, such tools could facilitate self-monitoring 

among MWUs by providing accurate feedback regarding the speeds and distances travelled 

during wheelchair-related PAs. Research has shown that moderate intensity activities are 

sufficient to maintain fitness and prevent cardiovascular diseases for MWUs [65, 66]. 
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The existing measurement tools for MWUs have varying sensitivity and accuracy in 

estimating speeds and distances traveled by wheelchair users. These tools either use a 

pendulum and reed switch-based method [97] or accelerometer-based method [85, 100, 

139] to sense wheel rotations. Tolerico et al [97] evaluated the validity of a pendulum and 

reed switch-based device on a double drum that simulates wheelchair use. The percentage 

errors for the device when estimating the speeds varying from 0.8 to 1.8 m/s were found to 

be 1 and 5%, respectively. Coulter et al. [100] investigated a wheel mounted tri-axial 

accelerometer and found the device was highly accurate in estimating wheel revolutions, 

absolute angle and duration of movement (ICC (2,1) > 0.999, 0.999, 0.981, respectively) 

when 14 wheelchair users were asked to propel their wheelchairs forward and backward 

along a course. Sonenblum et al. [85] evaluated a wheel-mounted tri-axial accelerometer in 

detecting wheelchair movements and estimating distances traveled. They found that the 

device had accuracy greater than 90% for various wheelchair and wheel types, propulsion 

techniques, speeds, and wheelchair-related activities of daily living including propulsion, 

food preparation, handwashing, loading a dishwasher, entering a bathroom stall, and using 

an elevator. In another study, Gendle et al. mounted a tri-axial accelerometer below the 

wheelchair seat to assess PA of wheelchair users [139]. The research found that the activity 

counts derived from the accelerometer were significantly different between light and 

moderate effort (P < 0.01) trials with high between-trial reliability (r ≥ 0.85). The 

difference between the studies by Sonenblum et al. and Gendle et al. was the placement of 

the accelerometer on the wheel [85] versus under the wheelchair seat [139] resulting in 

wheel rotation measurement and the wheelchair acceleration measurement, respectively. 

None of these activity monitors has indicated that they can estimate speeds and distances 

over a spectrum of wheelchair-related PAs from regular wheelchair propulsion to 
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wheelchair sports such as handcycling. Also, these monitors were not designed to provide 

real-time feedback to wheelchair users. 

In this study, we developed and evaluated a wireless gyroscope-based wheel 

rotation monitor (G-WRM) that can estimate speeds and distances traveled by wheelchair 

users during regular wheelchair propulsion as well as wheelchair sports such as 

handcycling and provides real-time feedback to users through a smartphone application. 

We evaluated the validity of the G-WRM in measuring angular velocities and estimating 

speeds and distances through a series of laboratory based tests. We also conducted a series 

of tests on the battery life and wireless data transmission of the G-WRM. 

4.2 METHODS 

4.2.1 Development 

The G-WRM uses a gyroscope to detect angular velocities of the wheelchair’s wheel, 

which are then converted into wheel revolutions, and distances and speeds traveled by 

wheelchair users. The choice of using a gyroscope sensor instead of an accelerometer was 

based on a pilot study where we tested a wheel-mounted tri-axial accelerometer (range: 

±39.24 m/s2 or ± 4 g) and the G-WRM for a range of speeds during a handcycling trial.  

Figure 5 shows the results of the pilot study for the handcycling trial, which indicated that 

the wheel rotation pattern using a three axis accelerometer was clear (sinusoidal pattern) for 

low speeds, but not for high speeds. The results showed that with the increase of traveling 

speeds, the accelerometer signals of the two axes in the plane of wheel rotation separated 
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from one another with one of them becoming saturated with consistent low values. In 

addition, the acceleration sensed by the accelerometer combined the wheel rotation 

movements and the linear forward or backward movements, which could be 

computationally expensive to differentiate if real-time feedback is to be provided. The same 

problem also exists with the pendulum and reed switch design [97], which can provide 

relatively accurate estimation of distances and speeds traveled by wheelchair users in the 

community settings. However, laboratory tests have shown that this method could 

underestimate speeds when a wheelchair travels at speeds greater than 2.5 m/s (5.6 miles 

per hour) [140]. Our observation of the problem with the existing devices at higher speeds 

has led us to design and develop a gyroscope based G-WRM that can capture a range of 

speeds from wheelchair propulsion to handcycling. 

 

 

Figure 5: Acceleration and speed plots from a three axis accelerometer and a G-WRM, respectively, for 

handcycling at low and high speeds. 
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4.2.2 Instruments 

The G-WRM (Figure 6) is a self-enclosed rechargeable device that can be attached to the 

spokes of the wheel of a wheelchair or a handcycle. The G-WRM was built upon our 

previous pendulum and reed switch device to reduce the development time. The G-WRM 

contains six reed switches mounted 60° apart on a printed circuit board and a two-axis 

gyroscope with low (±1500°/second) and high angular velocity ranges (±6000°/second) 

allowing us to capture speeds up to 64 km per hour (40 miles per hour) for a 0.61 m (24-

inch) wheel. The gyroscope can be sampled with frequencies varying from 64 samples per 

second (64 Hz) to 1 sample per minute to suit various speeds from wheelchair sports such 

as handcycling and wheelchair racing to everyday wheelchair propulsion. The reed 

switches are triggered by a pendulum and magnet assembly, which is mounted in the G-

WRM casing. However, the reed switches were not used to estimate speeds and distances in 

this study. We only used the G-WRM’s gyroscope to measure angular velocities, which 

were then converted to speeds and distances traveled. Furthermore, the G-WRM has a 

Bluetooth communication module through which the mobility data can be sent to a 

smartphone and a micro secure digital (SD) memory card that can store the mobility data 

locally. The G-WRM is also paired with an Android-based mobile application (Figure 7), 

designed to allow wheelchair users to receive real-time feedback on their movements 

including distance, speed, and duration of mobility [141].  
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Figure 6: G-WRM secured to the spokes of a manual wheelchair and a handcycle. 

 
 

 
 

Figure 7: The Android application for the G-WRM. 
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4.2.3 Calibration protocol 

The calibration protocol involved collecting raw gyroscope data from the G-WRM when 

the device was attached on a ST20 Computer Numerically Controlled (CNC) lathe (HAAS 

Automation, Inc., Oxnard, CA, USA) that was set at known angular velocities (Figure 8). 

The gyroscope data were collected from six repeated trials of 2 minutes at speeds of 40, 60 

and 80 rotations per minute (rpm), respectively, in both clockwise (forward) and 

counterclockwise (reverse) directions. The gyroscope data were then used to develop offset 

values and basic calibration equations for both clockwise and counterclockwise directions 

to maximize sensitivity of the gyroscope to detect various angular velocities. The angular 

velocity information from the gyroscope was later used to estimate linear speeds and 

distances traveled by a wheelchair user. 
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Figure 8: Plot of raw sensor values from the G-WRM’s gyroscope (solid line) and during various 

angular velocity tests (dotted line) on the CNC lathe. 

 

4.2.4 Experimental protocol 

We evaluated the validity of three randomly chosen G-WRM prototypes in measuring 

angular velocities, and estimating speeds and distances traveled by a wheelchair using a 

number of laboratory based tests. We assessed the G-WRM’s wireless function by 

measuring data loss. We also evaluated the battery capacity of the G-WRM in wireless 

mode and storage mode (via the SD card), respectively. 
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4.2.4.1 Validity of measuring wheelchair movements 

CNC lathe test 

To evaluate the validity of the G-WRM in measuring angular velocities, we secured each 

G-WRM to the chuck of a lathe and ran the lathe for 10 minutes of duration each at angular 

velocities of 40, 60, and 80 rpm in both clockwise (forward) and counterclockwise 

(reverse) directions, respectively. Each test condition was repeated three times. 

 

Double-drum test 

To evaluate the validity of the G-WRM in estimating linear speeds, we secured each G-

WRM to the spokes of a manual wheelchair set up on a double drum (ISO 7176-08) [142] 

with drive wheels on one drum and castors on the other drum. The two drums run at 

slightly different velocities, with the back running at 1 m/second (2.24 miles per hour) and 

the front at 0.95 m/second (2.12 miles per hour), in order to simulate road hazards 

commonly encountered by wheelchair users. The test was conducted with and without slats 

(Figure 9) to simulate propulsion during curb drops and flat surface, respectively. The tests 

were repeated twice for a duration of 6 hours in both forward and backward directions. 
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Figure 9: Plot of speed estimated by the G-WRM on double drum with and without slats. 

 

Wheelchair propulsion test 

To evaluate the validity of the G-WRM in estimating distances traveled during regular 

wheelchair propulsion, we conducted a total of 54 trials (see Table 10) for nine tasks with 

each task repeating six times on concrete flooring surface. During all these trials, an 

investigator experienced in wheelchair use propelled either a manual wheelchair with a 

camber of 2.5° or a rugby chair with a camber of 15.5°. For the first 48 trials, we used the 

measured distance via a tape measure between the start and end points as the criterion 

measure. The G-WRMs were secured to the spokes of the manual wheelchair’ s or rugby 

chair’s wheel. For the last six trials, we used the measured distance via a SmartWheel 

(Three River Holdings, Inc. Mesa, AZ, USA) and a three-dimensional passive motion 
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capture system (model MX, Vicon Peak; Lake Forest, CA, USA) as the criterion measure. 

The G-WRMs were secured to the spokes of the SmartWheel. The SmartWheel is a clinical 

tool that can measure wheelchair propulsion kinetics including distances traveled. We 

followed standardized calibration procedures for VICON and SmartWheel as per the 

manufacturer’ s specifications. 

 

Table 10: Wheelchair propulsion tasks performed. 

Sl. No. Propulsion Task 

1.  Propelling straight forwards (10m) on a flat tile surface with a camber of 2.5° 

2.  Propelling straight forwards (15m) on a flat tile surface with a camber of 2.5° 

3.  Propelling straight forwards (20m) on a flat tile surface with a camber of 2.5° 

4.  Propelling straight backwards (10m) on a flat tile surface with a camber of 2.5° 

5.  Propelling up and down a ramp (slope of 2.7°, length 12.19m) on a flat tile surface with a camber of 

2.5° 

6.  Propelling straight forwards (10m) on a flat tile surface with a camber of 15.5° 

7.  Propelling straight forwards (15m) on a flat tile surface with a camber of 15.5° 

8.  Propelling straight forwards (20m) on a flat tile surface with a camber of 15.5° 

9.  Propelling straight forwards (18m) on a flat tile surface with a camber of 2.5° 

 

 

Handcycling test 

To evaluate the validity of the G-WRM in estimating distances traveled during 

handcycling, we attached the G-WRM to the spokes of an Invacare Top End Force R X 

handcycle (Invacare Corporation, Elyria, OH, USA). An investigator who is an experienced 

wheelchair user with disability performed handcycling for nine laps on a cycling track with 

asphalt concrete surface. The G-WRM 1 was secured to the inner wheel and the G-WRMs 

2 and 3 were secured to the outer wheel with respect to the center of the track. For this test, 

we used the total track length of 7.24 km (0.805 km for 9 laps) as the criterion measure. 
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4.2.4.2 Battery life test 

We evaluated the G-WRM’s battery life by performing tests in wireless mode where the 

data were sent continuously to a smartphone and in standalone SD card mode where the 

data were stored locally without wireless transmission. During the wireless mode testing, 

we conducted six trials for each G-WRM where we collected data continuously through a 

smartphone at 64 and 1 Hz for three times, respectively, until the battery was drained. 

During the standalone SD card mode testing, we conducted three trials for each G-WRM 

where we sampled the data continuously at 64 Hz and stored the data in the SD card at 1 Hz 

for three times until the battery was drained.  

4.2.4.3 Wireless data transmission test 

We evaluated the G-WRM’s Bluetooth performance by examining the data loss rate. We 

conducted nine trials for each G-WRM where we transmitted the data sampled at 64 Hz 

from the G-WRM to a smartphone for 1, 3, and 24 hours, respectively, with each condition 

repeating for three times. 

4.2.5 Data collection and analysis 

The data collected from the G-WRM included gyroscope signals and the number of reed 

switches that were triggered at a sampling rate of 64 Hz (15.62 millisecond). An Android 

smartphone was used to wirelessly collect data from the G-WRM for all trials except the 

battery life test at the standalone SD card mode. The angular velocities detected by the G-

WRM’s gyroscope were used to calculate the speeds and distances traveled. The chuck 

rotating speeds of the CNC lathe were used as the criterion measure during the CNC lathe 
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test. The roller speeds of the double drum were used as the criterion measure during the 

double-drum test. The measured distances using a tape measure and using the SmartWheel 

and VICON system were used as the criterion measure during the wheelchair propulsion 

test. The track length was used as the criterion measure during the handcycle test. The data 

analysis software was written in MATLAB®  (version 7.12 R2012b, The Mathworks Inc., 

Natick, MA, USA) and used to process and analyze data from the G-WRM and criterion 

measures. 

The comparisons between the estimated measures from the G-WRM (i.e. angular 

velocities and speeds and distances traveled) and criterion measures were performed by 

calculating the absolute difference, mean difference, percentage errors and standard error of 

measurement for each trial. Intraclass correlation coefficients (ICC (3,1)) for single 

measure using two-way mixed model with consistency were used to assess the agreement 

between the estimated and criterion measures. ICC values of 0.9 or greater are deemed 

excellent if the lower bounds are greater than or equal to 0.75 [143].  The Bland-Altman 

plots were also used to assess the agreement between the criterion measures and the G-

WRMs [125]. The points on the Bland-Altman plots represent the mean (x-axis) and the 

difference (y-axis) of the criterion measures and the G-WRMs. All statistical analysis was 

performed using SPSS software (version 15.0, SPSS Inc., Chicago, IL, USA), with the 

statistical significance at an alpha level of 0.05. 
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4.3 RESULTS 

Table 11 shows the results from the CNC lathe test and the double-drum test. Table 12 

shows the results from the wheelchair propulsion test. The average absolute percentage 

errors for distances traveled combining the three G-WRMs for the forward (10, 15, and 20 

m) and backward propulsion trials (10 m) was 0.58% with a camber of 2.5°, and 0.88% 

with a camber of 15.5°. This indicates that a camber of 15.5° did not significantly affect the 

G-WRMs distance estimation. The ICC (3,1) values for the three G-WRMs for the forward 

propulsion trails (10, 15, and 20 m) with cambers of 2.5° and 15.5° varied from 0.999 to 

1.000 (lower bound: 0.997–1.000 and upper bound: 1.000–1.000). The Bland-Altman plots 

were also used to assess the agreements between the G-WRMs and the criterion measures 

during the wheelchair propulsion test (Figure 10and Figure 11). The distances estimated by 

G-WRM 1, G-WRM 2, and G-WRM 3 for the handcycling test were 7.17, 7.24, and 7.31 

km, which correspond to error percentages of 1.06, 0.04, and -0.88%, respectively, 

compared to the track distance of 7.24 km (805 m per lap). The securement of G-WRM 1 to 

the inner wheel with respect to the center of the handcycling track may have contributed to 

slightly higher underestimation of the distance traveled in the trial. The results indicate that 

the G-WRMs can accurately measure angular velocities and distances for regular 

wheelchair propulsion and handcycling with an accuracy greater than 95%. 
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Table 11: The estimation errors of G-WRMs for bench tests with CNC lathe for angular velocity and double drum for linear speed. 

Tests Absolute Error in percentage (%) Mean Percentage Error (SD) Standard Error of Measurement 
G-WRM 1 G-WRM 2 G-WRM 3 G-WRM 1 G-WRM 2 G-WRM 3 G-WRM 1 G-WRM 2 G-WRM 3 

CNC Lathe  
Forward and 
Backward at 
40 rpm 

0.12 0.03 0.64 0.12 (0.05)  
 

0.00 (0.04) 0.00 (0.70) 0.02 0.02 0.29 

Forward and 
Backward at 
60 rpm 

0.15 0.40 0.40 0.15 (0.08) 0.01 (0.44) 0.01 (0.43) 0.03 0.18 0.18 

Forward and 
Backward at 
80 rpm 

0.17 0.53 0.34 0.17 (0.07) 0.06 (0.58) 0.03 (0.38) 0.03 0.24 0.15 

Double Drum  
Forward and 
Backward 
without Slats 

0.66 0.73 1.22 0.27 (0.91)  -0.36 (0.78)  -0.91 (0.90) 0.41 0.35 0.37 

Forward and 
Backward 
with Slats 

2.11 1.88 2.19 
 

-2.11 (0.56) -1.88 (0.58)  -2.19 (1.03) 0.19 0.22 0.52 
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Table 12: The estimation errors of G-WRMs for various wheelchair propulsion tasks. 

Propulsion Test Absolute Error in percentage Mean Percentage Error (SD) Standard Error of Measurement 
G-WRM 1 G-WRM 2 G-WRM 3 G-WRM 1 G-WRM 2 G-WRM 3 G-WRM 1 G-WRM 2 G-WRM 3 

Forward (10m) 0.49 0.59 0.61 -0.49 (0.15) 0.16 (0.82) -0.52 (0.81) 0.05 0.27 0.27 
Forward (15m) 0.63 0.88 0.60 -0.46 (0.65)  -0.05 (1.19)  0.33 (0.76) 0.20 0.38 0.24 
Forward (20m) 0.18 0.58 0.65 -0.15 (0.17)  -0.34 (0.53)  0.34 (0.69) 0.05 0.17 0.22 
Backward 
(10m) 

0.44 0.94 0.60 0.44 (0.21) -0.94 (0.16) -0.60 (0.19) 0.07 0.06 0.07 

Forward on a 
ramp 

0.42 0.82 0.53 -0.39 (0.34) -0.82 (0.39) -0.06 (0.68) 0.08 0.09 0.16 

Forward with 
camber (10m) 

0.39 1.38 0.85 0.39 (0.20) 1.38 (0.52) 0.85 (0.18) 0.08 0.21 0.07 

Forward with 
camber (15m) 

0.74 0.77 1.16 0.74 (0.24) -0.77 (0.23) 1.16 (0.19) 0.09 0.08 0.07 

Forward with 
camber (20m) 

0.53 0.78 1.30 0.53 (0.33) -0.78 (0.15) 1.30 (0.28) 0.13 0.06 0.12 

Forward with 
SmartWheel 
(18m) 

0.17 0.65 0.68 0.09 (0.24) 0.65 (0.15) -0.53 (0.47) 0.09 0.06 0.18 

Forward with 
VICON (18m) 

0.48 0.46 0.82 -0.46 (0.84)  0.13 (0.77) -0.80 (1.05) 0.19 0.17 0.24 
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Figure 10: Bland–Altman plot of distances measured using tape measure versus distances estimated from the 

G-WRMs during wheelchair propulsion trials for 10, 15 and 20 m distances on a flat surface. 
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Figure 11: Bland–Altman plot of distances estimated using VICON versus distances estimated from the G-

WRMs during wheelchair propulsion trials for a distance of 18 m on a flat surface. 

The G-WRM’ s battery life test in wireless mode indicated that the G-WRMs were able 

to collect and transmit data at a frequency of 64 Hz and 1 Hz for an average duration of 27 hours 

and 21 minutes, and 35 hours and 38 minutes, respectively. The G-WRM’s battery life tests in 

standalone SD card mode data indicated that the G-WRMs were able to collect data continuously 

at 64 Hz and store the data in the SD card at 1 Hz for and 139 hours and 54 minutes. The 

wireless data transmission test indicated that the average data loss rates for data sampled and 

transmitted at 64 Hz from the G-WRMs to a smartphone for durations of 1, 3 and 24 hours were 

0.3, 0.3, and 0.1%, respectively. 
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4.4 DISCUSSION 

An accurate wheel rotation monitor for wheelchair users can be an important clinical and 

consumer tool for tracking activity levels of this population. The activity information could also 

help inform wheelchair maintenance, justify wheelchair prescription, and monitor outcomes for 

clinical interventions. To address this need, we have utilized advancements in miniature senor 

technology to develop a compact and easy-to-use wheel rotation monitor to track mobility-

related variables such as linear speeds and distances traveled by wheelchair users. In addition, 

the ability of the G-WRM to provide the mobility parameters to consumers in real-time through 

smartphone applications opens up a wide variety of mobile health tracking possibilities ranging 

from community-based PA interventions by clinicians to goal settings by individuals themselves 

to improve their health and PA behavior. 

The results from this study indicate that the G-WRMs can accurately measure angular 

velocities and estimate speeds and distances traveled by wheelchair users over a spectrum of 

activities from everyday wheelchair propulsion to wheelchair sports such as handcycling. The 

absolute and mean percentage errors were lower than 3% for all the tests. While the absolute 

percentage error provides a single measure of each of the G-WRMs’ performance, the average 

error with standard deviation provides the tendency of the G-WRMs to over- or under-estimate 

for various trials. The higher percentage error for estimating linear speed during the double-drum 

test with slats was due to the wheelchair regularly bouncing which may be associated with 

slightly higher speeds. Multiple criterion measures used during the tests allowed us to assess 

both the engineering validity and real-world performance of G-WRMs during wheelchair-related 

activities. For example, the advantage of using SmartWheel and VICON measurement systems is 

that they track the distance traveled by the wheelchair user irrespective of whether the user is 
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traversing in a straight line. In addition, the high ICC values indicate a strong agreement between 

the estimated measures by G-WRMs with criterion measures. The Bland-Altman plots (Figure 

10 and Figure 11) showed that the mean differences were close to zero and more than 95% of the 

values lie within mean ± 2SD, indicating excellent agreement between the G-WRMs and 

criterion measures. We also found that it is important to calibrate each of the G-WRMs to 

accurately estimate angular velocities, as there can be slight variations between the gyroscope 

sensors. Furthermore, the battery tests indicate that the G-WRM can be used to continuously 

collect data for a full day while transmitting the information to a smart phone and for at least five 

continuous days while saving the data on a SD card. The Bluetooth tests indicate that the G-

WRM can transmit data continuously with minimal data loss. 

Comparing the results of this study with Coulter et al.’ s study, we find that the average 

absolute error for all tasks (0.59%) and the ICC values for activPAL in Coulter et al.’ s study are 

similar to our results, indicating that the G-WRM is a comparable device to track everyday 

mobility [100]. On similar lines, the performance of the G-WRM in estimating distances traveled 

is close to the results of Sonenblum et al.,  [85] who use an accelerometer-based device to track 

wheelchair movement. However, both studies only tested their devices with regular wheelchair 

propulsion [85, 100]. The utility of accelerometer-based devices in monitoring wheelchair sport 

activities is unknown. In our study, we have developed and evaluated G-WRM that can be used 

across the range of wheelchair related activities from propulsion to handcycling. In addition, the 

use of a gyroscope sensor instead of an accelerometer allows us to directly obtain angular 

velocity of the wheelchair’s wheel as compared to translating the acceleration values to rotation 

angles for calculating wheel rotations. This process of using angular velocities directly to 
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estimate linear speeds and distances traveled reduces computational complexity, which allows us 

to provide wheelchair users with real-time feedback through smartphone applications.  

One of the limitations of the G-WRM is that the device in itself may not be able to 

distinguish between self-propulsion and being pushed by a caretaker. However, the G-WRM can 

be used in conjunction with wearable accelerometers to track upper arm-movement to distinguish 

self-propulsion and external pushing [113]. Another limitation of this study is that the G-WRM 

was evaluated by only two test participants instead of a group of wheelchair users. In addition, 

most of the data collected and analyzed from the G-WRMs were collected at 64 Hz, which could 

be reduced for many real-world clinical applications. The G-WRM mentioned here has the 

capacity to be used independently or in conjunction with other motion and physiological-based 

wearable devices that wirelessly send data via Bluetooth to detect wheelchair users’ activity type 

and context in community settings. Future improvements in G-WRM will involve optimizing the 

sampling rate of the gyroscope based on the speeds detected during various types of wheelchair-

related activities and utilizing the passive reed switches to trigger data collection from the 

gyroscope only during active wheelchair use to conserve and extend the battery life. We are also 

working on combining the G-WRM and an upper arm worn accelerometer to estimate energy 

expenditure of wheelchair users. We plan to evaluate the usability of the G-WRM and the 

smartphone application with wheelchair users. Furthermore, we are currently in the process of 

identifying small businesses that are interested in collaborating with the Human Engineering 

Research Laboratories to commercialize the G-WRMs and make this technology available to 

multiple stakeholders including researchers, clinicians, and consumers. 
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4.5 CONCLUSIONS 

To our knowledge, this is the first study to develop and evaluate a gyroscope based wheel 

rotation monitor to estimate speeds and distances traveled by wheelchair users. The G-WRM is a 

versatile device that can be used to estimate speeds and distances over a spectrum of wheelchair-

related PAs from regular wheelchair propulsion to wheelchair sports such as handcycling. 
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5.0  DETECTING WHEELCHAIR-RELATED ACTIVITIES AND ESTIMATING 

ENERGY EXPENDITURE USING A PHYSICAL ACTIVITY MONITOR SYSTEM 

5.1 INTRODUCTION 

Regular physical activity (PA) levels among persons with disabilities (54% rated as ‘inactive’ in 

2008) are significantly lower than the PA levels of the general population (32% rated as 

‘inactive’ in 2008) [4]. Among people with disabilities are wheelchair users, whose sedentary 

lifestyle due to mobility limitations, physiological changes, environmental barriers, and limited 

accessibility of exercise equipment leads them to participate in much less PA [3, 9, 58, 144, 

145]. Moreover, obesity rates in persons with disabilities are much higher than in persons 

without disabilities (36% vs. 23% in 2008) [146].  Among those with disabilities, in wheelchair 

users, lack of regular PA and reduced energy expenditure due to limited use of large muscles of 

the body has led to even higher obesity and overweight levels [91, 147]. In addition, repeated use 

of upper extremities to perform transfers to and from their wheelchairs, and to propel manual 

wheelchairs often causes shoulder pain and injury in wheelchair users [134]. The publication 

Preservation of Upper Limb Function Following Spinal Cord Injury, a clinical practice guideline 

for health-care professionals, indicates that repetitive use of upper arms in wheelchair users 

during propulsion increases their risk of upper extremity pain and injury [134]. To address the 

dual purpose need of achieving optimal regular PA and reducing the risk of upper extremity 
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injury for wheelchair users we have developed a physical activity monitoring system sensor that 

can track their regular PA levels and wheelchair based activities such as wheelchair propulsion.  

Sensor-based physical activity monitors have been extensively used to detect and 

estimate PA levels in the general population [21, 26, 29, 30, 33, 55, 148]. The advantage of 

sensor-based activity monitors over self-report or log based PA monitoring is that they reduce 

PA tracking errors that result from recall and social acceptability biases that occur with the latter. 

Further, advances in micro-electromechanical based sensors have led to the development of 

small wearable activity monitors which are unobtrusive and can collect data over multiple days, 

making them more convenient to use than other methods [128, 149]. However, none of these 

commercially available activity monitors designed for the general population can accurately 

estimate PA in wheelchair users, as these devices typically do not take into account the types of 

PAs performed by wheelchair users. Therefore, researchers have evaluated the performance of 

various types of sensor based activity monitors among persons who use wheelchairs in regards to 

estimating and tracking PAs [11, 73, 85, 95-97, 100]. The technology underlying these activity 

monitors can be classified into those that track movement, those that track changes in 

physiologic conditions, or those that utilize a combination of both. These developments in 

activity monitor technology have led us to develop a physical activity monitoring system for 

wheelchair users.  

In general, accelerometer-based activity monitors have been used to evaluate community 

living, energy expenditure during three different speeds of propulsion, and wheelchair movement 

[11, 85, 89, 100]. Warms et al. found that the activity counts from a wrist-worn accelerometer 

had low to moderate correlation (0.30-0.77, p<0.01) with self-reported activity intensity for 

individual participants [11]. In another study using wrist-worn accelerometers, Washburn et al. 
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found significant correlations (0.52-0.66, p <0.01) between the activity counts from an 

accelerometer and energy expenditure over three pushing speeds [89].  However, a major 

limitation with using a single accelerometer on the wrist is the device’s inability to identify 

whether the PA involves manual wheelchair movement, which results in PA levels being 

significantly overestimated. Other research used wheel mounted tri-axial accelerometers to 

detect wheelchair movement.  For example, Coulter et al. investigated a wheel-mounted tri-axial 

accelerometer and found high validity for wheel revolutions, absolute angle and duration of 

movement (ICC(2,1)>0.999, 0.999, 0.981, respectively ) in wheelchair users [100]. Along 

similar lines, Sonenblum et al. used a wheel-mounted tri-axial accelerometer to detect wheelchair 

movement, and this device measured the distance travelled with an accuracy greater than 90% 

for various wheelchair and wheel types, propulsion techniques, speeds, and wheelchair-related 

activities of daily living [85]. Unfortunately, consumers cannot use this type of activity monitor 

to obtain near-real-time feedback about their mobility characteristics as this information is post 

processed based on the data stored in the devices.  

Tolerico et al. used a third type of monitor, a reed switch and pendulum-based Wheel 

Rotation Datalogger (WRD), to collect gross mobility characteristics of manual wheelchair users 

(MWUs) in the National Veterans Wheelchair Games (NVWG) and in community settings [97]. 

This study revealed that the MWUs used their wheelchairs for a mean (SD) distance of 6,745.3 

(1,937.9) m/day at a speed of 0.96 (0.17) m/s and 2,457.0 (1,195.7) m/day at a speed of 0.79 

(0.19) m/s in the NVWG and community, respectively. Although the WRD is portable, easy to 

use and can collect gross activity, a major limitation is its inability to capture upper extremity 

movements. This constraint hinders the device in distinguishing between self-propulsion and 

external pushing; additionally, the WRD is unable to estimate energy expenditure. 
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Researchers have utilized heart rate monitors to develop individualized heart rate models 

to estimate PA in terms of EE and MET in MWUs with spinal cord injury (SCI) [95, 96]. Hayes 

et al. showed that calibrated heart rate, using a maximum exercise test, in participants with SCI 

explained 55% of variance in EE for five activities of daily living compared to only 8.3% of 

variance in EE explained by the measured heart rate [95]. On the other hand, Lee et al. showed 

that individualized regression in persons with SCI using the heart rate ratio during PA and 

resting to estimate METs was better correlated (0.93) than the group regression of heart rate ratio 

(0.77) to predict METs [96]. A limitation of using heart rate monitors, however, is that the 

regression models need to be individualized by performing a range of PAs with different 

intensities in laboratory settings. 

Researchers have also evaluated the use of multiple sensors (e.g. many accelerometers) or 

multi-sensor (different sensors) to detect and estimate PA levels in wheelchair users. Postma et 

al. validated an activity monitoring system consisting of six accelerometers placed on each thigh, 

each wrist and the sacrum (two sensors) to detect wheelchair propulsion from a series of 

representative daily life activities. This activity monitor detected wheelchair propulsion with 

respect to other wheelchair-related activities with an overall agreement of 92%, a sensitivity of 

87% and a specificity of 92%. Hiremath et al. evaluated and developed new models for the 

multi-sensor based SenseWear activity monitor to detect four activities: resting, wheelchair 

propulsion, arm-ergometry and deskwork [88, 119]. The SenseWear activity monitor consists of 

an accelerometer, galvanic skin response, skin temperature, and near body temperature sensors. 

The results indicated that the classification accuracy for detecting four wheelchair-related PAs 

was 96.3% for Quadratic Discriminant Analysis and 94.8% for Naïve Bayes algorithms. The 
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average EE estimation error using the activity-specific EE prediction models for the four 

wheelchair-related activities was 5.3±21.5%.  

Based on our previous research and the emerging fields of mobile health (mHealth) and 

self-monitoring technologies, we developed an activity monitor system that tracks PA levels and 

provides feedback through smartphones [102-105]. The primary aim of this study was to 

evaluate the performance of a physical activity monitoring system that consists of two 

components: a gyroscope based wheel rotation monitor (G-WRM) for capturing wheelchair 

wheel movement and a wearable accelerometer device (wocket) that tracks upper arm (PAMS-

Arm) or wrist (PAMS-Wrist) accelerations in wheelchair users [120, 141]. The G-WRM and the 

wocket transmit the sensor information wirelessly to an Android-based smartphone, which 

provides the user with near-real-time feedback. Our secondary aim was to evaluate if the PAMS-

Arm or PAMS-Wrist incorporating multimodal information (G-WRM and wocket) was a better 

PA level estimator than the individual devices (G-WRM, wocket on arm, or wocket on wrist). 

Finally, a tertiary aim was to evaluate whether the wocket worn on the upper arm (arm wocket) 

was a better PA level estimator than the wocket worn on the wrist (wrist wocket). 

5.2 METHODS 

The study was approved by Institutional Review Boards of the University of Pittsburgh and the 

VA Pittsburgh Healthcare System. The study was conducted at the Human Engineering Research 

Laboratories (HERL), University of Pittsburgh, at the National Veterans Wheelchair Games 

(NVWG) 2012 held in Richmond, VA and in the participants’ home environments.  
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5.2.1 Subjects 

A total of 45 persons with SCI took part in the study. Subjects were included in the study if they 

met the following inclusion criteria: 18-65 years of age, used a manual wheelchair as their 

primary means of mobility (> 80% of their ambulation), and had a diagnosis of SCI.  Subjects 

were excluded from the study if they were unable to tolerate sitting for three hours, had active 

pelvic or thigh wounds (pressure ulcers), had a history of cardiovascular disease, or were 

pregnant (based on self-report).  

 

5.2.2 Procedures 

The first part of the study was performed by 45 MWUs with SCI in the structured laboratory 

environment at HERL (N=25) or in the semi-structured convention center environment at 

NVWG (N=20). A subsection of the population who took part at HERL (N=20) also participated 

in the study for a second time in their home environments. The sample size was determined 

based on a power analysis performed using G*Power 3.1.0 [150] and our previous study, which 

found significant correlations (p<0.05) between the criterion EE and mean absolute deviation of 

acceleration in both transverse (0.72) and longitudinal (0.77 ) directions for SW AM worn on the 

upper arm [87]. Based on an F-test for repeated measures ANOVA (within factors design) with 

two repetitions, an effect size of 0.25 (medium), an alpha of 0.05, correlation among repeated 

measures of 0.5, and a non-sphericity correction epsilon (ε) of one, we determined we could 

obtain over 80% of power with 34 subjects. 
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5.2.2.1 Protocol at HERL or NVWG 

Pre-Activity Session  

Before testing, the researcher explained the purpose and overall procedure of the study to 

the participants. After signing the informed consent, participants filled in a questionnaire that 

included questions on demographics (e.g., gender, ethnicity, age, injury level, and time of 

injury), wheelchair information (e.g., brand and model), and health and activity history. Body 

weight was measured to the nearest 0.5 kg using a Befour MX480D Wheelchair scale (Befour, 

Inc., WI, USA). Body height was either self-reported or measured to the nearest 0.1cm by taking 

the sum of the sitting height, sitting depth, and lower leg length [151] using a Stanley® Tape 

Rule (The Stanley Works, CT, USA). Skinfold measurements were performed at four sites 

(biceps, triceps, subscapular and suprailiac) using the Lange® skinfold caliper (Beta 

Technology, Inc., CA, USA) to the nearest 1mm.  

Activity Session 

Subjects were asked to perform at least ten physical activities (PAs) other than resting 

from a list of PAs. The PA list included: 1) propelling their wheelchair on a tile surface at a self-

selected medium pace, 2) propelling their wheelchair on a tile surface at self-selected fast pace, 

3) propelling their wheelchair on a medium pile carpet at a medium or slow pace, 4) propelling 

their wheelchair up and down a ramp at a self-selected pace, 5) being pushed in a wheelchair on 

a tile surface, 6) being pushed in a wheelchair on a medium pile carpet, 6) being pushed in a 

wheelchair up and down a ramp, 7) playing wheelchair basketball, 8) folding laundry, 9) 

performing deskwork involving reading and using a computer, 10) playing darts, 11) using a 

resistance band (Thera-band), 12) exercising on an arm ergometer at a self-selected pace and 

resistance. These activities include a range of common everyday activities that involve different 
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parts of the body and varying levels of intensity. Subjects who participated in the study at HERL 

were instructed to refrain from eating at least 2 hours prior to and from exercising at least 12 

hours prior to the experiment. The subjects wore a Cosmed K4b2 portable metabolic cart 

(COSMED srl, Rome, Italy), which collected the criterion EE for all the activities they chose to 

perform. For subjects who participated in the study at NVWG, the portable metabolic cart was 

optional. If the subjects reported in the questionnaire that they had not had food 2 hours prior and 

had not performed exercises in the previous 12 hours, they were asked whether they would wear 

a portable metabolic cart. The resting trial involved collecting the baseline EE for six minutes 

while the subjects sat still in their wheelchairs. 

During testing, the subjects were secured with a portable metabolic cart (if appropriate, as 

described above) and a Polar Heart rate monitor (Polar Electro Inc., NY, USA). Subjects were 

also secured with the physical activity monitoring system (PAMS), which included a gyroscope 

based wheel rotation monitor (G-WRM) and an accelerometer on the arm (wocket), as well as 

four other wockets secured to the participant’s wrist and waist, under the seat, and to the wheel. 

Each of these devices was described in detail if the participant had any questions. The research 

team then explained the activities to the subjects. In cases where subjects wished to try out a 

particular trial before performing it, they were asked to do so during a warm-up period of one to 

two minutes prior to the actual trial. All subjects used their own manual wheelchairs and 

performed each activity for a minimum of 6 minutes, with at least a 3-minute break between 

activity trials. One of the investigators noted the start and stop time for each activity trial. The 

activities were recorded on video, serving as a reference for subsequent timing and independent 

classification of the activities performed. The investigators collected data from the portable 

metabolic cart, the PAMS, the wockets, and the heart rate monitor. Subjects rated each activity 
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trial on Borg’s modified rate of perceived exertion (RPE) scale after each activity trial (range of 

scores possible, 6-20). Each testing session lasted for about three hours. All devices were time 

synchronized prior to each subject’s testing. 

5.2.2.2 Protocol in Home Environment   

Participants were invited to do a follow-up session if they were from the Pittsburgh region 

(within 60 miles of HERL) and were willing to use the PAMS while they performed 10 daily 

activities and a resting trial in their home environment. The follow-up session was scheduled 

within 6 months of their testing in the HERL environment and involved an activity session 

similar to the one performed in the laboratory environment.  

Activity Session  

Subjects were asked to perform a minimum of 10 PAs for at least 6 minutes per activity, 

and they could choose from the list of PAs performed in the laboratory environment or add new 

PAs that they wanted to perform in their home environments. The PAs that were performed in 

addition to the PAs mentioned above were: 1) propelling in their home on a tile or carpet surface, 

2) propelling in the community on asphalt surface, grass or ramp surface, 3) watching television, 

4) simulating eating, 5) sweeping the floor, 6) preparing food/simulating cooking, 7) making 

bed, 8) using dumbbells, 9) using handgrip, 10) washing dishes, 11) wheelchair pushups, 12) 

filing papers, 13) checking mail, 14) arranging groceries, 15) vacuuming, 16) doing laundry, 17) 

cleaning the table, and 18) playing video games on game systems such as the Wii. The resting 

trial involved collecting the baseline EE for six minutes while the subjects sat still in their 

wheelchairs. Following resting the participants performed the 10 PAs with a protocol similar to 

the Activity Session in the laboratory environment, which included securing the instruments, 
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performing PAs, collecting data from devices, and collecting the rate of perceived exertion data. 

Each testing session lasted for about two hours. 

5.2.3 Instrumentation and Data Collection  

The criterion device for EE measurement was a Cosmed K4b2 (COSMED srl, Rome, Italy) 

portable metabolic cart comprising an analyzer unit, a battery pack, and a face mask covering the 

subject’s mouth and nose. The analyzer unit and the battery pack were placed on the chest and 

the back of the subject, respectively. Participants wore the face mask attached to a head gear 

which channeled the air exhaled through a ventilation turbine and a sampling line into the 

analyzer unit. The analyzer unit measured the quantity of oxygen (O2) and carbon dioxide (CO2) 

in the expired air to estimate EE per breath. Research studies have shown that the K4b2 is both 

reliable and valid for the general population [32, 152]. In addition, a number of studies have used 

K4b2 in persons with SCI to measure EE and the volume of oxygen (VO2) consumption [65, 70, 

153]. The K4b2 was calibrated for every subject or every six hours before use to ensure its 

accuracy. Cosmed 9.2 software was used to retrieve and analyze the breath-by-breath data 

collected by the portable metabolic cart. The participants also wore a Polar T31 heart rate 

monitor secured to their chest with an elastic strap; it wirelessly transmitted heart rate 

information to the K4b2 via a wireless receiver. 

The PAMS consisted of a G-WRM secured to the spokes of the wheelchair wheel and a 

wocket worn on the participant’s upper arm. The G-WRM (Human Engineering Research 

Laboratories, University of Pittsburgh, Pittsburgh, PA, USA) is a self-enclosed rechargeable 

Bluetooth-based wireless device that contains six reed switches and a two-axis gyroscope to 

measure angular velocity of the wheelchair wheel [120]. The G-WRM measured angular velocity 
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which was then converted into wheelchair velocity and distance traveled using the wheelchair 

diameter. Angular velocity from the G-WRM was sampled at 64 samples per sec (64Hz) during 

the testing and then down-sampled to one value per second to capture wheelchair velocity for 

various PA trials. The wocket (Northeastern University, Boston, MA, USA) is a small Bluetooth-

based wireless accelerometer that captures body motion using a tri-axial capacitive micro-

machined accelerometer [149]. The PAMS’s wocket was attached to the upper arm of the 

participant using an adjustable Velcro Nylon replacement strap. Four other wockets were secured 

to the participant’s wrist and waist, under the wheelchair seat, and to the wheelchair wheel. 

Sensor data collected from the wockets included tri-axial acceleration at 40Hz. Both the G-WRM 

and the five wockets were calibrated prior to the subject testing.  An Android cellphone was 

secured to the participant’s waist to collect the data from the G-WRM and wockets. 

5.2.4 Data Preparation and Feature Extraction 

Post-activity sessions, the raw data collected from the K4b2 and the G-WRM and wockets was 

cleaned and prepared for analysis. For each participant, the cleaned data was visually inspected 

in order to time synchronize and identify any sensor malfunction or erroneous data. The next step 

was to extract a set of time domain and frequency domain features (Appendix A), which are 

statistical measures used to distinguish between various types of wheelchair related PAs. The 

time domain features such as mean, mean absolute deviation and peaks are simple to extract and 

can be used to classify activities that are substantially different. The frequency domain features 

such as total power between a band of frequencies, energy and entropy provide the capability to 

allow differentiation of activities based on the key frequency of movement (wheelchair 

propulsion and arm-ergometry). However, the cost of using frequency features is the need for 
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higher computation. Therefore, in this study we developed models with and without frequency 

domain features. In addition to the time and frequency domain features we also added subject 

parameters such as weight, height, gender, age, injury characteristics, wheelchair weight and 

basal metabolic rates to see if these variables were substantial predictors of EE estimation for 

various activities. Furthermore, we created new features based on a combination of subject 

parameters and time domain features to study if these features can estimate the variation in the 

EE for wheelchair-based PAs. The features were extracted based on a 1 minute window size to 

be consistent with the EE estimation. Data collected from the K4b2 and the G-WRM and 

wockets was processed through data analysis programs written in MATLAB (The Mathworks, 

Inc., Natick, MA, USA). 

Following feature extraction the data was separated into training and testing datasets to 

enable development of PA classification and EE estimation models. In this study we evaluated 

using multiple types of cross validation (CV) including: 1) using 10-fold-CV on 80% of the 

subjects’ data to develop and train new models and then testing these new models on the 

remaining 20% of the subjects’ data (80-20CV), 2) using 50% of each subject’s data to develop 

models and testing the new models on the remaining 50% of each subject’s data (50-50CV), and 

3) leaving one subject out cross (LOSO) CV. Training and testing (validation) datasets for the 

80-20CV were prepared using a stratified approach with injury level (paraplegia versus 

tetraplegia) and gender (male versus female) in order to allocate 80% of the participants into the 

training dataset and 20% into the testing dataset. The LOSO cross-validation method left one 

subject’s data out and then developed the model on the remaining (N-1) subjects. The model 

developed on these remaining (N-1) subjects was evaluated on data from the left-out subject.  
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The data preparation steps resulted in a combined dataset of 3836 minutes (63 hours and 

56 minutes) from PAMS, the wrist wocket and the metabolic cart. The combined dataset 

consisted of 1555 minutes, 1001 minutes, and 1270 minutes of data for the HERL, NVWG and 

Home environments, respectively. The majority of the data analysis for developing regression 

models involved including all the EE data collected as it was difficult to attain a steady state 

among many of the PAs performed in this study. However, a small amount of analysis was also 

performed using steady-state EE. Steady-state conditions (EE in kcal/min) for each activity trial 

were obtained by first averaging breath-by-breath measures over 30 second periods [70] and then 

choosing EE values having coefficients of variation of less than 10% computed over a 1-minute 

window [24]. Steady state analysis led to 2183 minutes of steady state data (57.1%) for the 

combined dataset. 

5.2.5 Development of PA Classification Models 

The classification of the wheelchair-based PAs was broken down into a two-step process.  First, 

the PAs were classified into three classes including PAs that are near stationary (distance 

travelled < 1.8 m/min), PAs that might involve wheelchair movement (1.8m/min >=distance 

travelled<=12m/min), and PAs that have consistent wheelchair movement (distance travelled 

>12m/min). We chose this distance threshold based on the distance travelled by the participants 

for various PAs in this study. The PAs that might have involved wheelchair movement for this 

study included eating, sweeping the floor, preparing food, making the bed, cleaning the room, 

filing papers, playing darts, checking mail, doing laundry, and cleaning the car. The stationary 

and the moving PAs were further classified into: a) resting, arm-ergometry, and other household 

activities; b) wheelchair propulsion, caretaker pushing and basketball, respectively. The other 
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household activities in the stationary category included deskwork, folding clothes, using a 

resistance band, playing video games, and doing wheelchair pushups.  

We developed and evaluated various types of classification algorithms, including Naïve 

Bayes (NB), Decision Tress (DT) and Support Vector Machines (SVM). The classification 

models for G-WRM, PAMS (G-WRM and wocket on arm), wocket on arm, G-WRM and 

wocket on wrist, and wocket on wrist were developed using the 80-20CV to select the most 

appropriate features and evaluate the algorithms’ performance. Additionally, we have developed 

and evaluated various types of classification algorithms for PAMS-Arm using the 50-50CV and 

LOSO cross validation methods to assess if their performance is better than the 80-20CV 

method. We also developed classification algorithms for individual devices (G-WRM, wocket on 

arm, and wocket on wrist) and combinations of devices (PAMS, and G-WRM and wocket on 

wrist) to study their performance with respect to detecting various wheelchair based PAs. As 

discussed previously the G-WRM alone cannot distinguish between PAs such as wheelchair 

propulsion or care-taker pushing [120]. But G-WRM along with a wocket on the arm can 

combine complementary information from the wheelchair and the upper arm movement to better 

detect wheelchair based PAs. In addition, because a wrist wocket captures substantially more 

movement than the wocket on the upper arm for light non EE intensive activities such as 

deskwork or household activities, we performed PA detection using G-WRM and a wocket on 

the wrist to determine whether the wrist wocket was a better predictor of wheelchair based PAs 

compared to the upper arm wocket. 
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5.2.6 Development of EE Prediction Models 

We developed multiple EE estimation models to estimate activity-specific EE during stationary 

PAs, PAs that had small wheelchair movements, and PAs that had substantial wheelchair 

movements. In this way, we obtained seven EE estimation models for resting, arm-ergometry, 

other PAs while being stationary, PAs that had small wheelchair movements, wheelchair 

propulsion, caretaker pushing and basketball. Linear regression analysis using the 10-fold-CV 

method was used to identify key features and to develop EE estimation models in 80% of the 

subjects’ data. The regression models were then evaluated on the remaining 20% of the subjects’ 

data that was not used during the training phase through 80-20CV. In this study regression 

models were developed using the 80-20CV for the following combinations and individual 

devices: PAMS-Arm (G-WRM and arm wocket), PAMS-Wrist (G-WRM and wrist wocket), G-

WRM, arm wocket and wrist wocket. Additionally, we have developed multiple EE estimation 

models for PAMS-Arm using the 50-50CV and LOSO CV methods to assess if their 

performance is better than the 80-20CV method. We also developed multiple EE estimation 

models for PAMS-Arm using 80-20CV on the steady state data to compare if these models had 

less EE error than the models obtained from all the data (steady and non-steady state). The 

number of features for each model was limited to five so that we could limit the computation 

needed to apply these models for near-real time EE estimation on Android-based phones. 

Further, the model development process was data driven, involving selecting the best variables 

from a pool of sensor, demographic, and a combination of sensor and demographic variables to 

predict EE. 
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5.2.7 Data Analysis 

The performance of the activity classification algorithms was evaluated using several 

performance measures including: 1) precision: indicates the proportion with which the activity is 

detected correctly, 2) recall (or sensitivity): indicates the proportion of actual activities that are 

correctly identified, 3) specificity (or True Negative rate): indicates the proportion of activities 

not performed that are correctly identified, 4) accuracy: indicates the proportion of true positives 

and true negatives with respect to the total cases, and 5) overall accuracy: indicates the overall 

performance of the algorithm. Most of the data analysis presented here shows the key variables 

identified and the accuracy of classification.  

We performed comparisons between the criterion EE from the portable metabolic cart 

and the estimated EE from the combined and individual devices by calculating the mean absolute 

error, mean signed error, and percentage errors. Intraclass correlation coefficients (ICC (3,1)) for 

single measure using a two-way mixed model with consistency assessed the agreement between 

criterion EE and the EE estimated by the PAMS-Arm, PAMS-Wrist and individual devices. 

Bland and Altman plots assessed the agreement between the criterion and estimated EE [125].  In 

addition, the overall performance of PAMS-Arm, PAMS-Wrist, G-WRM, arm wocket, and wrist 

wocket was evaluated by sequentially applying the best classification and regression models on 

the training and the testing data (80-20CV).  All statistical analysis was performed using IBM 

SPSS Statistics software (ver. 20.0, IBM Corporation, NY, USA), with the statistical significance 

at an alpha level of 0.05. 
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5.3 RESULTS 

Forty five MWUs with SCI participated in this study. Out of the total number of participants, 39 

were male and 6 were female with a mean (SD) age of 41.0 (12.6) years, weight of 78.1 (18.1) 

kg, height of 1.8 (0.1) m, and body fat percentage of 20.58% (6.3%). The injury level of the 

participants varied from C5 to L5, with 14 participants having injuries at or above T3 and 31 

participants having injuries at or below T4. Twenty three of the 45 participants had an 

incomplete injury. The average number of years participants had used a manual wheelchair was 

12.6 (8.6) years. Self-reported PA indicated that 36 participants performed some form of regular 

PA; 5 performed occasional PA; and 4 performed no regular PA. Thirty one of the 45 

participants reported themselves to be non-smokers. The perceived nutritional level reported by 

participants varied from excellent to poor with 4 reporting excellent, 15 reporting very good, 16 

reporting good, 9 reporting fair and 1 reporting poor. The perceived fitness level reported by 

participants varied from excellent to fair with 3 reporting excellent, 15 reporting very good, 16 

reporting good, and 11 reporting fair.  

All 45 participants completed the study. Out of this total number, 37 finished 10 trials, 7 

finished 9 trials and 1 finished 8 trials. Most of these activity trials (701 out of 707 trials) were 

performed for 6 minutes per trial as requested, while 6 trials were between 2-4 minutes. Due to 

device malfunction of the metabolic cart K4b2, trials from two participants (22 trials out of 707 

trials) could not be retrieved and were discarded. This led to a total of 685 trials for the K4b2, 

with 679 trials between 5 to 6 minutes and 6 trials of 2 to 4 minutes. Due to device malfunction 

of the G-WRM and wockets, data from 24 trials (out of the 707) was lost as a result of a 

Bluetooth blockage or battery discharge.  
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Table 13 summarizes the following information: the metabolic costs in kcal/min from the 

K4b2 metabolic cart, the volume of oxygen consumed per kg of the participant (VO2/kg) from 

the K4b2 metabolic cart, the MET from the metabolic cart, the MET-SCI, the heart rate 

(beats/min), the rating of perceived exertion, and the number of subjects who completed each 

activity trial. Using the MET-SCI values as a reference, we identified arm-ergometry, wheelchair 

propulsion, basketball, floor sweeping, cleaning a room, making the bed, doing laundry and 

doing wheelchair pushups as moderate intensity activities (MET-SCI between 3.0 and 6.0), and 

the remaining wheelchair-based PAs in this study as light intensity activities (MET-SCI<3.0) 

[70]. The metabolic costs for different types of PAs, calculated based on our study’s MET-SCI 

values, were very similar to the MET-SCI values from Collins et al. (Table 14). Figure 12 shows 

the patterns for metabolic costs (EE and MET-SCI), RPE, and heart rate were similar for various 

wheelchair-related PAs.  
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Table 13: Metabolic costs in terms of EE, METs, heart rate, rate of perceived exertion, and number of subjects and minutes per activity for various 

wheelchair-based physical activities. 

Activity Trial 
No. of 
Subjects 

No. of 
Minutes 

Heart Rate in 
beats/min EE in kcal/min 

VO2/Kg in 
ml/min/kg  MET  MET SCI 

RPE 

Mean STD Mean STD Mean STD Mean STD Mean STD Mean STD 

Resting 43 363 69.9 16.2 1.1 0.3 3.1 0.8 0.9 0.2 1.1 0.3 6.0 0.1 

Arm-Ergometry 43 500 96.0 19.0 3.0 1.2 8.2 3.5 2.3 1.0 3.0 1.3 10.9 2.2 

Darts 33 214 91.1 15.3 2.7 0.8 7.2 2.1 2.1 0.6 2.7 0.8 8.7 2.0 

Deskwork  43 574 79.1 14.2 1.5 0.6 4.3 1.7 1.2 0.5 1.6 0.6 7.5 2.1 

Folding Clothes 42 343 92.5 17.6 2.3 0.6 6.2 1.6 1.8 0.4 2.3 0.6 8.6 2.3 

Propulsion 43 901 101.2 20.5 3.5 1.5 9.5 3.9 2.7 1.1 3.5 1.5 11.0 3.1 

Caretaker Pushing  42 341 75.3 14.2 1.3 0.4 3.4 1.0 1.0 0.3 1.3 0.4 6.4 1.3 

Resistance 43 367 86.2 15.2 2.0 0.7 5.4 1.8 1.6 0.5 2.0 0.7 10.0 2.3 

Basketball 19 112 110.2 19.7 4.5 1.7 12.8 4.3 3.7 1.2 4.8 1.6 12.6 2.7 

Eating 17 17 73.0 13.2 2.0 0.4 5.6 2.2 1.6 0.6 2.1 0.8 7.5 2.1 

Sweeping Floor 14 90 96.2 15.8 3.0 0.9 8.4 2.9 2.4 0.8 3.1 1.1 10.9 3.1 

Preparing Food 11 68 87.6 17.9 2.3 0.6 6.2 1.8 1.8 0.5 2.3 0.7 7.7 1.6 

Making Bed 1 6 90.6 7.3 2.7 0.6 8.1 1.7 2.3 0.5 3.0 0.6 7 0.0 

Cleaning Room 4 26 97.8 27.7 2.3 0.6 8.6 2.0 2.5 0.6 3.2 0.7 8.7 2.9 

Filing papers 2 12 91.8 16.1 1.1 0.2 5.1 0.9 1.5 0.2 1.9 0.3 7.5 2.1 

Check mail 2 8 89.9 12.9 2.3 0.6 7.4 1.5 2.1 0.4 2.7 0.6 6.0 0.0 

Laundry 2 16 89.2 7.0 2.7 0.4 9.4 1.1 2.7 0.3 3.5 0.4 9.0 2.6 

Video Game 1 6 72.3 2.8 1.9 0.2 4.2 0.4 1.2 0.1 1.6 0.2 13.0 0.0 

Cleaning Car 1 6 76.6 7.0 2.7 0.6 6.7 1.4 1.9 0.4 2.5 0.5 7.0 0.0 
Wheelchair 
Pushups 1 6 97.0 15.4 2.6 0.7 10.0 2.6 2.9 0.7 3.7 1.0 13.0 0.0 
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Figure 12: Plot of Metabolic costs (EE, MET SCI), RPE and heart rate for various wheelchair based PAs. 
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Table 14: Average metabolic costs from Collins et al. from the Compendium of PAs for persons with SCI. 

Activity  

Number 
of 
subjects 

EE in kcal/min VO2 in ml/kg/min 
SCI 
MET 

MET-SCI 
PAMS 
Study 

mean STD mean STD mean Mean 

Arm Cranking 26 3.7 1.1 10.0 3.9 3.7 3.0 

Darts 7 2.1 0.3 5.6 1.1 2.1 2.7 

Deskwork 27 1.6 0.4 3.9 1.0 1.5 1.6 

Wheeling 133 3.2 0.9 8.8 2.0 3.3 3.5 

Basketball  10 5.6 1.3 15.3 3.4 5.7 4.8 
Dusting and 
Vacuuming 38 2.5 0.8 6.6 1.5 2.4 3.1 

Bed Making 31 3.0 0.7 7.9 1.5 2.9 3.0 

Laundry 39 2.6 0.6 6.8 1.2 2.5 3.5 
 

Table 15 shows the performance of best classification algorithms using 80-20CV for 

detecting and classifying wheelchair-based PAs into the following categories: moving, may be 

moving, and not moving PAs (see Appendix B for all the algorithm performances). Table 16 

shows the performance (80-20CV) of various algorithms for detecting and classifying moving 

(M) PAs and non-moving PAs (see Appendix B for all the algorithm performances). The moving 

PAs were further classified into wheelchair propulsion, caretaker pushing, and basketball. The 

Non-Moving (NM) PAs were further classified into resting, arm-ergometry, and other activities. 

Figure 13 shows how the classifier picked up an acceleration-based feature (std_y_rtUarm). 

Similarly, Table 17 and Table 18 show the performance of various algorithms for PAMS-Arm at 

detecting and classifying wheelchair-based PAs using 50-50CV and LOSO CV, respectively. 

Since the performance of the classification algorithms using 50-50CV and LOSO CV were 

similar to the 80-20CV we decided to use the classification algorithms developed using the 80-

20CV. 
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Table 15: Performance of various algorithms for detecting and classifying wheelchair based PAs into moving, 

may be moving, and not moving PAs. 

Device Training 
Accuracy 

Testing 
Accuracy 

Features  Model 

PAMS-Arm 0.9356 0.9801 rms_v_G-WRM, mcr_v_G-WRM SVM 
PAMS-Wrist 0.9356 0.9801 rms_v_G-WRM, mcr_v_G-WRM SVM 
G-WRM 0.9356 0.9801 rms_v_G-WRM, mcr_v_G-WRM SVM 
Arm wocket 0.7870 0.7873 Ratio1DomFreq_w_Pwr_xyz_rtUArm, 

mad_med_xyz_rtUArm 
J48 

Wrist wocket 0.8074 0.7932 mean_x_rtWrist, 
entropy_WO_dcComp_xyz_rtWrist 

J48 

 

Table 16: Performance of various algorithms for detecting and classifying moving (M) PAs and non-moving 

(NM) PAs. 

Device M/N
M  

Training 
Accuracy 

Testing 
Accuracy 

Features Model 

PAMS-
Arm 

NM 0.8678 0.8495 2DomFreqPwr_xyz_rtUArm, stdev_z_rtUArm,     
ampl_xyz_rtUArm 

J48 

PAMS-
Arm 

M 0.9557 0.9340 stdev_y_rtUArm, ampl_y_rtUArm, entropy_v_G-
WRM 

SVM 

PAMS-
Wrist 

M 0.9713 0.9387 Ratio1DomFreq_w_Pwr_xyz_rtWrist, mean_x_rtWrist,    
3DomFreqPwr_xyz_rtWrist 

J48 

PAMS-
Wrist 

NM 0.9032 0.8638 3DomFreqPwr_xyz_rtWrist, mean_x_rtWrist, 
1DomFreqPwr_xyz_rtWrist 

J48 

G-WRM NM  0.6197 0.5018 rms_v_G-WRM, zcr_v_G-WRM, entropy_v_G-WRM NB 
G-WRM M 0.9206 0.8773 3DomFreqPwr_v_G-WRM, mcr_v_G-WRM, 

entropy_v_G-WRM 
J48 

Arm 
wocket 

M 0.9612 0.9151 Ratio1DomFreq_w_Pwr_y_rtUArm, 
3DomFreqPwr_y_rtUArm, rms_x_rtUArm 

J48 

Arm 
wocket 

NM 0.8678 0.8495 2DomFreqPwr_xyz_rtUArm'    'stdev_z_rtUArm'    
ampl_xyz_rtUArm' 

J48 

Wrist 
Wocket 

M 0.9713 0.9387 Ratio1DomFreq_w_Pwr_xyz_rtWrist, mean_x_rtWrist    
3DomFreqPwr_xyz_rtWrist 

J48 

Wrist 
Wocket 

NM 0.9032 0.8638 3DomFreqPwr_xyz_rtWrist, mean_x_rtWrist,   
1DomFreqPwr_xyz_rtWrist 

J48 
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Table 17: Performance of various algorithms for detecting and classifying wheelchair based PAs into moving, 

may be moving, and not moving PAs for PAMS-Arm using 50-50 CV. 

Activity Training 
Accuracy 

Testing 
Accuracy 

Variables Model 

Moving/ 
Nonmoving
/ May be 
moving 

0.9399 0.9394 'mean_v_DL_right_correct'    'mcr_v_DL_right' NB 
0.9405 0.9435 'mean_v_DL_right_correct'    'mcr_v_DL_right' J48 
0.9431 0.9383 'rms_v_DL_right'    'mcr_v_DL_right' SVM 

Moving 0.9551 0.9508 stdev_y_rtUArm, entropy_v_G-WRM, ampl_xyz_rtUArm NB 
0.9567 0.9662 Ratio1DomFreq_w_Pwr_y_rtUArm, 3DomFreqPwr_y_rtUArm, 

corr_x_xyz_rtUArm 
J48 

0.9504 0.9492 stdev_y_rtUArm, entropy_v_G-WRM , ampl_xyz_rtUArm SVM 
Nonmoving 0.8250 0.8501 mcr_xyz_rtUArm, corr_y_xyz_rtUArm, 

entropy_WO_dcComp_x_rtUArm 
NB 

0.8622 0.8838 3DomFreqPwr_y_rtUArm, ZMAD+XMAD, stdev_z_rtUArm J48 
0.8527 0.8588 mcr_xyz_rtUArm, mcr_z_rtUArm, NumPeaks_v_G-WRM SVM 

 
 

Table 18: Performance of various algorithms for detecting and classifying wheelchair based PAs into moving, 

may be moving, and not moving PAs for PAMS-Arm using LOSO CV. 

Activity Training 
Precisio
n 

Variables Mode
l 

Moving / 
Nonmoving 
/ May be 
moving 

0.9238    mean_v_G-WRM, mcr_v_G-WRM NB 
0.9293 mean_v__G-WRM, mcr_v_G-WRM J48 
0.9231 mean_v_G-WRM, mcr_v_G-WRM SVM 

Moving 
 

0.9536 2DomFreqPwr_xyz_rtUArm, ampl_x_rtUArm, energy_v__G-WRM NB 
0.9435 Ratio1DomFreq_w_Pwr_y_rtUArm, 3DomFreqPwr_y_rtUArm, 

corr_x_xyz_rtUArm 
J48 

0.9469 stdev_y_rtUArm, entropy_v_DL_right, ampl_y_rtUArm SVM 

Nonmoving 
 

0.8213 mcr_xyz_rtUArm, corr_y_xyz_rtUArm, mcr_z_rtUArm NB 
0.8576 2DomFreqPwr_xyz_rtUArm, ampl_z_rtUArm, var_hist_xyz_rtUArm J48 
0.8527    mcr_xyz_rtUArm, mcr_z_rtUArm, ampl_x_rtUArm SVM 
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Figure 13: Plot of the acceleration feature chosen by the classification algorithm for PAMS-Arm to classify 

and detect propulsion, caretaker pushing and basketball activities. 

Table 19 shows the classification performance for wheelchair based PAs for the 

sequential classification of first detecting PAs that are near stationary, that might involve 

wheelchair movement or have consistent wheelchair movement, followed by detecting the PAs 

within stationary and consistent wheelchair movement PAs. The results are shown in terms of 

True Positive Percentage (TP%), True Negative % (TN%), Precision, Recall, True Negative Rate 

(TN Rate), Accuracy and Overall Accuracy for the best classifiers for PAMS-Arm, PAMS-

Wrist, G-WRM, arm wocket, and wrist wocket.  In addition Table 20 shows the confusion matrix 

for PAMS-Arm, where the best classification algorithms (from Table 15) were used to classify 

wheelchair based PAs.  Table 21 shows the performance of various algorithms for PAMS at 
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detecting and classifying moving (M) PAs and non-moving (NM) PAs using non-frequency 

domain-based features.   

Table 19:Classification performance in terms of TP%, TN%, Precision, Recall or sensitivity, Specificity or 

TN Rate, Accuracy and overall accuracy for the best classifiers on the validation dataset for PAMS-Arm, 

PAMS-Wrist, G-WRM, Arm wocket, and wrist wocket. 

Device Activity Trial TP% TN% Precision Recall TN 
Rate 

Accuracy 
% 

Overall 
Accuracy % 

PAMS-
Arm 

Resting  46.81   99.34   0.88   0.47   0.99   94.43 

89.26 

Arm-ergometry 92.39   99.51   0.98   0.92   1.00   98.21 
OA not moving 96.43   91.46   0.81   0.96   0.91   92.84 
Propulsion 99.26   98.10   0.95   0.99   0.98   98.41 
Caretaker 
Pushing 

93.62   99.56   0.96   0.94   1.00   99.01 

Basketball 56.67  100.00   1.00   0.57   1.00   97.42 
May be moving 100.00   98.17   0.57   1.00   0.98   98.21 

PAMS-
Wrist 

Resting  68.09   97.59   0.74   0.68   0.98   94.83 

88.47 

Arm-ergometry 93.48   98.05   0.91   0.93   0.98   97.22 
OA not moving 87.86   95.04   0.87   0.88   0.95   93.04 
Propulsion 97.04   97.83   0.94   0.97   0.98   97.61 
Caretaker 
Pushing 

95.74   99.34   0.94   0.96   0.99   99.01 

Basketball 53.33   99.79   0.94   0.53   1.00   97.02 
May be moving 100.00   98.17   0.57   1.00   0.98   98.21 

G-WRM 

Resting  0.00  100.00  N/A  0.00   1.00   90.66 

65.41 

Arm-ergometry 0.00  100.00   N/A  0.00   1.00   81.71 
OA not moving 100.00   61.98   0.50   1.00   0.62   72.56 
Propulsion 90.37   96.74   0.91   0.90   0.97   95.03 
Caretaker 
Pushing 

78.72   99.12   0.90   0.79   0.99   97.22 

Basketball 60.00   97.67   0.62   0.60   0.98   95.43 
May be moving 100.00   98.17   0.57   1.00   0.98   98.21 

Arm 
Wocket 

Resting  46.81   99.34   0.88   0.47   0.99   94.43 

70.38 

Arm-ergometry 89.13   95.38   0.81   0.89   0.95   94.23 
OA not moving 79.29   82.37   0.63   0.79   0.82   81.51 
Propulsion 65.19   97.01   0.89   0.65   0.97   88.47 
Caretaker 
Pushing 

55.32   97.15   0.67   0.55   0.97   93.24 

Basketball 50.00   99.58   0.88   0.50   1.00   96.62 
May be moving 83.33   92.46   0.21   0.83   0.92   92.25 

Wrist 
Wocket 

Resting  2.13   99.34   0.25   0.02   0.99   90.26 

74.55 

Arm-ergometry 93.48   99.27   0.97   0.93   0.99   98.21 
OA not moving 83.57   90.08   0.76   0.84   0.90   88.27 
Propulsion 85.93   99.46   0.98   0.86   0.99   95.83 
Caretaker 
Pushing 

82.98   88.16   0.42   0.83   0.88   87.67 

Basketball 23.33   99.79   0.88   0.23   1.00   95.23 
May be moving 75.00   94.09   0.24   0.75   0.94   93.64 
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Table 20: Confusion matrix for PAMS-Arm on validation dataset (20% of subjects’ data not used for 

training) using the best algorithms to classify wheelchair based PAs. 

True\Predicted Resting  Arm-
ergometry 

PAs not 
moving Propulsion Caretaker 

Pushing Basketball May be 
moving 

Resting  22 0 24 0 0 0 1 
Arm-ergometry 0 85 6 0 0 0 1 
PAs not moving 3 2 135 0 0 0 0 
Propulsion 0 0 0 134 1 0 0 
Caretaker Pushing 0 0 0 2 44 0 1 
Basketball 0 0 1 5 1 17 6 
May be moving 0 0 0 0 0 0 12 

 

Table 21: Performance of various algorithms for PAMS-Arm using 80-20 CV to detect and classify moving 

(M) PAs and non-moving (NM) PAs using non-frequency domain-based features. 

M/ NM Training 
Accuracy 

Testing 
Accuracy 

Features Model 

NM 0.8423 0.8315 mcr_xyz_rtUArm, corr_y_xyz_rtUArm,  zcr_z_rtUArm NB 
M 0.9308 0.8962 stdev_y_rtUArm, ZMAD*XMAD,  mean_v_G-WRM NB 
NM 0.8694 0.8100 mcr_xyz_rtUArm, ampl_x_rtUArm, stdev_hist_xyz_rtUArm J48 
M 0.9584 0.9387 stdev_xyz_rtUArm, ampl_x_rtUArm, mean_v_G-WRM J48 
NM 0.8561 0.8602 mcr_xyz_rtUArm, mcr_z_rtUArm,    ampl_z_rtUArm SVM 
M 0.9511 0.9387 stdev_y_rtUArm, ampl_y_rtUArm, mean_v_G-WRM SVM 

 
Table 22 shows the mean signed error for each activity-specific equation using the five 

features obtained using 10-fold cross validation on 80% of the subjects’ data. The regression 

models were also evaluated using the 20% of subjects’ data not used for training. Appendix C 

shows the five features that were chosen for the regression analysis to estimate wheelchair-based 

PAs for PAMS, G-WRM and wrist, G-WRM, wocket on arm and wocket on wrist. Similarly, 

Table 23 and Table 24 show the EE errors for activity-specific equations developed for PAMS-

Arm using 50-50CV and LOSO CV, respectively. Additionally, Table 25 shows the EE errors 

for activity-specific equations developed for PAMS-Arm using 80-20CV on steady state data. 

Since the EE errors for developing EE equations using 50-50CV and LOSO CV were similar to 

the 80-20CV, we decided to develop EE estimation equations based on the 80-20CV. In addition, 
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we used all the EE data collected (3836 minutes) for regression equation development using 80-

20CV compared to the steady state analysis data (2183 minutes) as the latter had similar training 

errors and larger variation in EE and movement sensor data. Further, we also evaluated the 

performance of the classification and the regression equations by first applying classification 

algorithms to the validation dataset (20% of subjects’ data not used for training) and then 

applying the corresponding activity specific regression equations (Table 26 and Table 27). The 

EE estimated by the activity specific equations was compared with the EE measured from the 

metabolic cart using MAE, MSE and Intraclass correlation coefficients. The EE estimated by the 

activity-specific equations were also evaluated by Bland Altman plots. Figure 14 and Figure 15 

show the Bland Altman plots for EE estimated by the activity-specific equations for various PAs 

and other activities not involving wheelchair movement in PAMS on the validation dataset. The 

x-axis is the average of the EE measured and the EE estimated in Kcal/min. The y-axis is the 

difference between the EE measured and the EE estimated in kcal/min. From the BA plots we 

can see that a majority of the points (>95%) lie within the mean±2SD, indicating an agreement 

between the EE estimated and criterion EE. Figure 16 and Figure 17 show that for most of the 

activities the MSE and MAE for PAMS-Arm and PAM-Wrist were lower than those for the 

individual devices (G-WRM and wocket on wrist or arm).  
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Table 22: Mean signed error for each activity-specific equation using the five features obtained by 10-fold 

cross validation on 80% of subject’s data and tested on the 20% of subjects’ data not used for training. 

Device PAMS-Arm PAMS-Wrist G-WRM Arm Wocket Wrist Wocket 
Activity Train Test Train Test Train Test Train Test Train Test 
Resting -7.05 -5.32 -6.82 -6.94 -7.00 -5.35 -6.92 -6.82 -6.82 -6.94 
Arm-
ergometry -14.44 -1.66 -7.69 5.34 -18.30 -7.58 -16.08 -6.14 -9.05 -31.61 

OA Not 
moving -10.14 -11.86 -9.73 -12.61 -12.10 -11.32 -10.14 -11.86 -9.73 -12.61 

May be 
moving -5.99 -7.27 -6.57 -1.50 -7.23 0.24 -5.99 -7.28 -6.57 -1.50 

Propulsion -7.50 -11.66 -5.16 -7.81 -6.31 -15.95 -8.99 -14.32 -10.95 -16.47 
Caretaker 
pushing -6.66 -0.96 -7.45 -4.77 -7.38 -6.39 -6.66 -0.96 -7.21 -5.66 

Basketball -1.87 -15.64 -1.91 -20.14 -1.70 -18.46 -2.70 -28.81 -5.13 -33.12 
 

Table 23: Mean signed error for each activity-specific equation using the five features obtained by 10-fold 

cross validation for PAMS-Arm on 50% of each subject’s data and tested on 50% of the remaining data not 

used for training. 

Activity Training 
Precision 

Testing 
Precision 

Features 

Resting  -6.80 -5.96 LeanBodyMass, var_hist_y_rtUArm, Ratio1DomFreq_w_Pwr_v_G-
WRM 3DomFreq_y_rtUArm, HeightSqRoot 

Arm-
ergometry 

-10.21 -13.84 LeanBodyMass, 2DomFreq_xyz_rtUArm, Completeness, 
mcr_z_rtUArm, YMAD*HeightSqrt 

OA Not 
moving 

-7.08 -7.74 Ratio1DomFreq_w_Pwr_xyz_rtUArm, Mufflin_BMR, 
stdev_xyz_rtUArm, mcr_x_rtUArm, LeanBodyMass 

May be 
moving 

-7.24 -9.61 LeanBodyMass, stdev_y_rtUArm, Ratio1DomFreq_w_Pwr_v_G-WRM, 
3DomFreq_x_rtUArm, mad_med_v_G-WRM 

Propulsion -3.84 -5.15 stdev_xyz_rtUArm, MassPow0.75, backtrend_xyz_rtUArm, 
3DomFreqPwr_v_G-WRM, is_male 

Caretaker 
pushing 

-6.00 -7.97 LeanBodyMass, ZMAD*HeightSq, backtrend_x_rtUArm, 
1DomFreq_xyz_rtUArm, 2DomFreq_y_rtUArm 

Basketball -1.81 -2.58 backtrend_v_DL_right, 3DomFreq_v_DL_right, Mufflin_BMR, 
mad_med_xyz_rtUArm, backtrend_xyz_rtUArm 
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Table 24: Mean signed error for each activity-specific equation using the five features obtained by LOSO 

validation for PAMS-Arm on all the subjects’ data. 

Activity MAE Training 
Accuracy  

Features 

Resting  20.02 -6.32 LeanBodyMass, 3DomFreqPwr_v_G-WRM, stdev_v_G-WRM,  
corr_z_xrtUArm, var_hist_z_rtUArm 

Arm-
ergometry 

19.21 -4.93 stdev_xyz_rtUArm, mean_v_G-WRM, LeanBodyMass, 
backtrend_xyz_rtUArm, mean_x_rtUArm 

OA Not 
moving 

20.49 -6.08 mad_mean_xyz_rtUArm, LeanBodyMass, 
Ratio1DomFreq_w_Pwr_xyz_rtUArm, TotalPower_z_rtUArm, 
2DomFreqPwr_z_rtUArm 

May be 
moving 

25.69 -8.95 Ratio1DomFreq_w_Pwr_y_rtUArm, stdev_hist_y_rtUArm, 
WHO_RMR, mcr_y_rtUArm, WHORMR_div_LBM 

Propulsion 37.46 -17.35 Ratio1DomFreq_w_Pwr_v_G-WRM, freqRatio_hist_z_rtUArm 
entropy_xyz_rtUArm, zcr_xyz_rtUArm, corr_blank1_rtUArm 

Caretaker 
pushing 

19.43 -5.65 Mufflin_BMR, stdev_z_rtUArm, rms_x_rtUArm, var_hist_xyz_rtUArm, 
var_hist_z_rtUArm 

Basketball 30.62 -10.95 Ratio1DomFreq_w_Pwr_x_rtUArm, WHO_RMR, HeightDivYMAD, 
2DomFreq_z_rtUArm, zcr_xyz_rtUArm 

 
 

Table 25: Mean signed error for each steady state based activity-specific equation using the five features 

obtained for PAMS-Arm by 10-fold cross validation on 80% of subjects’ data and tested on the 20% of the 

remaining subjects’ data not used for training. 

Activity Training 
Precision 

Testing 
Precision 

Features 

Resting  -4.01 -11.78 LeanBodyMass, var_z_rtUArm, energy_WO_dcComp_y_rtUArm, 
2DomFreq_y_rtUArm, freqRatio_hist_x_rtUArm 

Arm-
ergometry 

-12.81 -8.03 is_male, freqRatio_hist_x_rtUArm, 2DomFreq_v_G-WRM, 
mcr_x_rtUArm, entropy_y_rtUArm 

OA Not 
moving 

-7.22 -7.75 mad_mean_xyz_rtUArm, LeanBodyMass, WHORMR_div_HBBMR, 
freqRatio_hist_z_rtUArm, 3DomFreqPwr_y_rtUArm 

May be 
moving 

-5.83 6.86 LeanBodyMass, stdev_hist_xyz_rtUArm, 
Ratio1DomFreq_w_Pwr_z_rtUArm, NumPeaks_x_rtUArm, 
NumPeaks_xyz_rtUArm 

Propulsion -3.55 -0.13 mad_mean_y_rtUArm, MassPow0.75, 3DomFreqPwr_v_G-WRM, 
backtrend_xyz_rtUArm, mad_med_v_G-WRM 

Caretaker 
pushing 

-4.25 2.67 Mufflin_BMR, entropy_x_rtUArm, corr_z_xrtUArm, 
2DomFreqPwr_v_G-WRM, 2DomFreqPwr_z_rtUArm 

Basketball -1.01 -28.12 LeanBodyMass, stdev_z_rtUArm, corr_x_xyz_rtUArm, mcr_y_rtUArm, 
mad_med_v_G-WRM 
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Table 26: EE estimation performance for activity-specific (AS) equations on the validation dataset (20% of 

subjects’ data not used for training) post-classification for PAMS and G-WRM and wocket on wrist. 

Device Activity EE Met  EE AS MAE MSE ICC(3,1) 
  Mean SD Mean SD Mean Mean SD ICC LB UB P 

PAMS-
Arm 

 

Resting  1.09 0.27 1.21 0.21 19.41 -14.02 0.79 0.77 0.48 0.90 <0.05 
Arm-
ergometry 3.25 1.27 2.98 0.66 31.83 -2.13 0.49 0.47 0.19 0.66 <0.05 

OA not 
moving 1.86 0.85 1.93 0.78 30.47 -15.04 0.21 0.73 0.64 0.80 <0.05 

Propulsion 3.65 1.99 3.47 0.93 31.69 -11.56 0.28 0.69 0.57 0.78 <0.05 
Caretaker 
Pushing 1.3 0.39 1.25 0.28 14.10 0.25 0.40 0.82 0.68 0.90 <0.05 

Basketball 3.57 1.31 4.61 1.62 35.18 -31.96 2.25 0.84 0.56 0.94 <0.05 
May be 
moving 3.66 1.02 2.90 0.34 27.69 12.14 1.77 0.40 -0.47 0.76 0.13 

Overall 2.65 1.63 2.58 1.19 29.04 -9.82 0.07 0.82 0.79 0.85 <0.05 

PAMS- 
Wrist 

 

Resting  1.22 0.57 1.17 0.26 21.20 -4.00 0.58 0.62 0.30 0.80 <0.05 
Arm-
ergometry 3.15 1.27 2.87 1.05 23.29 3.85 0.34 0.85 0.77 0.90 <0.05 

OA not 
moving 1.91 0.86 1.91 0.39 28.73 -12.32 0.24 0.63 0.48 0.73 <0.05 

Propulsion 3.64 2.01 3.50 1.21 26.09 -8.39 0.24 0.84 0.78 0.89 <0.05 
Caretaker 
Pushing 1.4 0.64 1.31 0.27 16.28 -1.51 0.43 0.68 0.43 0.82 <0.05 

Basketball 3.61 1.30 4.30 2.02 28.64 -14.77 1.76 0.91 0.75 0.97 <0.05 
May be 
moving 3.66 1.02 2.97 0.32 29.69 9.26 2.18 0.61 0.05 0.84 0.02 

Overall 2.65 1.63 2.53 1.26 25.19 -5.65 0.06 0.89 0.87 0.91 <0.05 
 

Note: EE measured (EE Met), EE Activity Specific, Mean Absolute Error in percentage (MAE), 

Mean Signed Error (MSE) and Intraclass correlation coefficients with lower bound (LB), upper 

bound (UB) and significance values for various devices and their combinations are shown below. 
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Table 27: EE estimation performance for activity-specific (AS) equations on the validation dataset (20% of 

subjects’ data not used for training) post-classification for G-WRM, wocket on arm and wrist. 

Device 
Activity EE Met  EE AS MAE MSE ICC(3,1) 
 Mean SD Mean SD Mean Mean SD ICC LB UB P 

G-WRM 

OA not 
moving 2.22 1.21 1.91 0.39 39.22 -6.88 0.17 0.35 0.18 0.49 <0.05 

Propulsion 3.75 2.04 3.86 1.11 37.56 -22.24 0.40 0.78 0.69 0.84 <0.05 
Caretaker 
Pushing 1.32 0.56 1.27 0.35 18.27 -1.99 0.61 0.72 0.47 0.85 <0.05 

Basketball 2.72 1.07 3.57 1.46 45.98 -36.93 1.86 0.82 0.61 0.91 <0.05 
May be 
moving 3.66 1.02 2.96 0.25 31.77 8.73 2.24 0.37 -0.54 0.75 0.15 

Overall 2.65 1.63 2.52 1.19 37.15 -11.65 0.10 0.79 0.75 0.82 <0.05 

Arm 
Wocket 

Resting  1.09 0.27 1.27 0.26 22.58 -18.32 0.77 0.84 0.64 0.93 <0.05 
Arm-
ergometry 3.38 1.35 2.98 0.03 31.04 -2.04 0.39 -0.01 -0.49 0.32 0.51 

OA not 
moving 1.81 0.88 1.79 0.35 30.10 -12.73 0.20 0.59 0.45 0.70 <0.05 

Propulsion 3.93 2.12 3.73 0.92 37.30 -13.89 0.46 0.62 0.43 0.74 <0.05 
Caretaker 
Pushing 1.30 0.37 1.29 0.36 13.91 -1.22 0.45 0.85 0.72 0.92 <0.05 

Basketball 3.80 1.14 4.64 1.44 28.25 -24.11 1.75 0.77 0.36 0.92 <0.05 
May be 
moving 2.99 1.01 2.83 0.46 27.34 -4.12 0.70 0.43 -0.03 0.68 0.03 

Overall 2.65 1.63 2.54 1.09 29.76 -9.78 2.65 0.79 0.76 0.83 <0.05 

Wrist 
Wocket 

Resting  2.91 0.86 1.54 0.06 42.11 42.11 5.69 -0.28 -18.82 0.92 0.58 

Arm-
ergometry 3.18 1.28 2.90 0.77 22.48 0.50 0.35 0.75 0.61 0.83 <0.05 

OA not 
moving 2.14 1.17 1.98 0.42 29.53 -8.39 0.23 0.56 0.39 0.68 <0.05 

Propulsion 3.62 2.07 3.66 0.81 47.19 -25.65 0.51 0.50 0.28 0.65 <0.05 
Caretaker 
Pushing 1.30 0.56 1.32 0.27 20.89 -9.74 0.27 0.68 0.52 0.79 <0.05 

Basketball 4.03 1.25 5.88 2.23 65.86 -53.25 6.93 -0.04 -4.22 0.79 0.52 
May be 
moving 3.36 1.19 2.76 0.43 23.19 10.41 0.68 0.69 0.41 0.84 <0.05 

Overall 2.65 1.63 2.53 1.13 31.03 -10.01 0.08 0.76 0.72 0.80 <0.05 
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Figure 14: Bland and Altman plot of EE estimated using activity-specific equations for PAMS and EE 

measured for the various wheelchair-related PAs in the validation dataset. 

 

 

Figure 15: Bland and Altman plot of EE estimated using the activity-specific equation for other activities not 

involving wheelchair movement and EE measured for the various wheelchair-related PAs in PAMS on the 

validation dataset. 
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Figure 16: The Mean Signed Error (MSE) for PAMS-Arm, PAMS-Wrist, G-WRM, arm wocket, and wrist 

wocket. 
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Figure 17: The Mean Absolute Error (MAE) for PAMS-Arm, PAMS-Wrist, G-WRM, arm wocket, and wrist 

wocket. 

The duration of light, moderate and high intensity PAs for the validation dataset was 

calculated by estimating METs, defined as the ratio of EE during a certain PA with respect to EE 

during resting for each participant. The duration of light, moderate and high intensity PAs based 

on the EE measured by k4b2, and EE estimated by PAMS-Arm and G-WRM are shown in Table 

28. The PAMS-Arm over-estimated for low intensity PAs and underestimated for moderate and 

high intensity PAs. Similarly, the G-WRM over-estimated for low intensity PAs and 

underestimated for moderate and high intensity PAs. The results indicate that PAMS-Arm was 

better in estimating the light, moderate and high intensity activity durations than the G-WRM 

compared to the criterion measure. 
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Table 28: Light, Moderate and High Intensity PA duration based on METs. 

METs based Intensity Actual mins Estimated mins 
Metabolic cart K4b2 PAMS-Arm G-WRM 

Light 387 406 488 
Moderate 116 97 15 
High 5 3 0 

5.4 DISCUSSION 

The classification algorithms used in the first phase to detect PAs that involve wheelchair 

movement indicated that PAMS-Arm, PAMS-Wrist, and the G-WRM device were better 

predictors compared to the arm or wrist wockets, as G-WRM accurately detected the presence of 

wheelchair movement. The key features involved in the G-WRM based classification algorithm 

were the root mean square and mean cross rate of velocity, both related to wheelchair movement. 

The classification accuracies for the arm and wrist wockets were very similar, but lower than G-

WRM for features involving the ratio of power of the dominant frequency with the total power, 

total movement, and entropy of acceleration. These features from the arm and wrist wockets 

could not distinguish PAs dependent on wheelchair movement as well as the G-WRM’s features.  

During the second phase of classification, PAs were classified within moving or non-

moving wheelchair related PAs. The results for this stage indicated that the arm and wrist 

wockets are better predictors of PAs than the G-WRM. From the features identified by the 

classification algorithms we see that majority of them were frequency-based features, as the PAs 

involve volitional upper arm movements. An interesting result was the reasonably high 

classification accuracy (92% for training and 88% for testing) of the G-WRM for moving PAs 

which involved propulsion, basketball and caretaker pushing (Figure 13).  The probable reason 

for the G-WRM’s ability to distinguish caretaker pushing from propulsion and basketball was 
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that the same investigator pushed all the participants. This pushing of wheelchair users by one 

individual may have resulted in a specific type of speed or acceleration pattern that the G-WRM 

was sensitive to. Future studies should try to evaluate whether the G-WRM is capable/able to 

distinguish caretaker pushing from propulsion when various caretakers push wheelchair users. 

Furthermore, the classification results for the 50-50CV (half subject out CV) and LOSO yielded 

a range similar to the 80-20CV, indicating that the training and testing datasets have large PA or 

movement variation within trials and between subjects.  

An in-depth classification performance analysis (Table 19) of the best classifiers 

indicated that PAMS-Arm and PAMS-Wrist had similar overall classification accuracy (89.26% 

vs. 88.47%), precision (lower precision for resting and may be moving) and recall (lower recall 

for resting and basketball). The analysis revealed that multimodal sensor information from G-

WRM and wocket for PAMS-Arm and PAMS-Wrist has higher accuracy than the individual 

devices (G-WRM and wockets). The confusion matrix analysis (Table 20) for PAMS indicated 

that the majority of the PAs were rightly predicted (diagonal elements). Further the analysis 

indicated that the misclassified PAs (non-diagonal) were classified into PAs that were 

biomechanically similar; for example, resting was classified as other household PAs in stationary 

category and basketball as PA that may involve wheelchair movement as the basketball activity 

may involve intermittent wheelchair movement. Even though misclassification resulted in lower 

classification accuracies, grouping activities into similar type of wheelchair-based activities led 

to EE or MET values similar to the EE or MET values obtained for correctly identified activities. 

It is also evident that the wockets on arm or wrist have higher accuracy than the G-WRM 

because the arm plays a major role in all the type of PAs studied here. In addition, the overall 

classification performance of arm and wrist wockets (70.38% vs. 74.55%) was close, with the 
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wrist wocket having a slightly higher accuracy. These results, along with the results from the 

combined devices above, indicate that the features chosen by the algorithms for arm and wrist 

wockets detect wheelchair-based PAs, thus leaving users the option of where to wear the wocket 

based on their comfort or preference.  

Since many of the classifier algorithms used frequency-based features to detect and 

classify PAs, we also evaluated the classification performance for non-frequency domain based 

features. The analysis (Table 16 and Table 21) indicated that the classification accuracy for 

PAMS-Arm was similar for non-moving activities (0.87 vs. 0.87 for training and 0.85 vs. 0.81 

for testing) and moving activities (0.96 vs. 0.95 for training and 0.93 vs. 0.94 for testing). 

Comparing the features chosen by the classifier algorithms for data containing frequency and 

non-frequency based data indicated that the classifier algorithms picked slightly different 

features with similar type of movement information, such as rate versus frequency and change in 

distance versus entropy. For example the mean cross rate of acceleration in resultant direction 

(mcr_xyz_rtUArm) was chosen by the classifier using non-frequency based data instead of the 

power of second dominant frequency (2DomFreqPwr_xyz_rtUArm) for non-moving PAs; and 

the mean velocity of the G-WRM (mean_v_G-WRM) was chosen instead of the entropy of the 

velocity of the G-WRM feature (entropy_v_G-WRM) for moving PAs. In future, we plan to 

develop classification and regression algorithms for the monitoring systems if we encounter 

difficulties implementing frequency-based features on smartphone (Android) platforms.   

Our algorithms’ overall classification accuracy for the detection of wheelchair based PAs 

(PAMS-Arm: 93.6% for training and 98.0% for testing), and the detection of PAs involving 

wheelchair movement (PAMS-Arm: 95.6% for training and 93.5% for testing) was similar to 

Sonenblum et al.’s detection of wheelchair movement for various wheelchair-related activities of 
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daily living (90-96%) [85]. This resemblance, in addition to our previous validation of G-WRM 

[120], indicates that our system can measure wheelchair use in activities of daily living. 

Additionally, the classification performance results (overall accuracy: 96%, sensitivity: 99% and 

specificity: 98%) for detecting wheelchair propulsion using PAMS-Arm were slightly higher 

than the results of Postma et al., who detected wheelchair propulsion compared to other activities 

(overall agreement: 92%, Sensitivity: 87% and specificity: 92%) [90]. The advantage of our 

system is the reduced number of devices: G-WRM on wheel and arm wocket instead of the six-

accelerometers based activity monitoring system used by Postma et al.  The overall classification 

accuracies for PAMS-Arm (89.3%) and PAMS-Wrist (88.5%) were lower compared to those in 

our previous study, during which we used the SenseWear activity monitor to detect resting, 

wheelchair propulsion, arm-ergometry and deskwork activities (96.3%) [119]. The lower 

classification accuracy was probably due to testing of a larger number of wheelchair-based PAs, 

performed at a self-chosen pace obtained in structured, semi-structured and unstructured natural 

environments.  

The next step in this study was estimating EE, an actionable parameter that wheelchair 

users can act on to attain a healthier lifestyle. The EE data collected for the various wheelchair-

based PAs in this study provided us with a large range of EE (1.1kcal/min for resting to 

4.5kcal/min) and MET-SCI values for light (<3 METs) and moderate intensity (3-6 METs) PAs 

(Table 13 and Figure 12). These activities were grouped into seven broad categories of 

wheelchair-related PAs for developing activity-specific regression equations. Activity specific 

EE estimation errors during training for PAMS-Arm and PAMS-Wrist were similar for most 

wheelchair-related PAs, with the exception of arm-ergometry exercise and stationary PAs. The 

probable reason for a higher EE error by PAMS-Arm is that upper arm movement is significantly 
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less compared to the wrist movement for arm-ergometry and stationary PAs. Also, we found that 

the activity-specific equation for basketball activity for both PAMS (-15.6%) and G-WRM and 

wocket on wrist (-20.1%) overestimated EE for basketball in the testing dataset. This 

overestimation could be due to variation in participants’ style of playing basketball and shooting 

at the net. Our development of regression equations indicated that most of the EE estimation 

equations chose demographic features such as weight of the person, lean body mass, height and 

gender, as total EE during resting and PAs for an individual depends on these parameters [154]. 

In two of the regression equations (arm-ergometry and propulsion) for the wrist, the equation 

chose each person’s injury characteristics (paraplegia versus tetraplegia) as one of the predictors. 

Choice of injury characteristics may be related to the higher mobility of persons with paraplegia, 

who can use triceps muscles, compared to persons with tetraplegia, who may not be able to 

control or use triceps muscles due to the level of injury. Use of triceps in persons with paraplegia 

can lead to higher self-chosen speeds during arm-ergometry and propulsion activities. However, 

there were three regression equations (arm-ergometry for PAMS-Arm, arm-ergometry for arm 

wocket, and basketball for wrist wocket) that did not use the demographic characteristics 

mentioned above for EE estimation. This indicates that the EE estimation equations for these 

PAs found that movement variables better explained the variance in the EE. However, estimating 

EE based on movement data alone may result in large EE errors. The EE estimation performance 

results using 50-50CV (half subject out CV) and LOSO for PAMS-Arm yielded an EE error 

range similar to the performance of EE estimation models using 80-20 CV. This EE error 

similarity reveals that the training and testing datasets have large EE variation within trials and 

between participants allowing us to continue using the EE models obtained from 80-20CV for 

the remainder of the analysis. 



116 

Further, the EE estimation error post-classification showed that the overall EE error 

based on mean signed error (EE overestimated cancels out EE underestimated) was lowest for 

PAMS-Wrist (-5.7%) followed by PAMS-Arm (-9.8%) and arm wocket (-9.8%), followed by 

similar values for the wrist wocket (-10.0%) and G-WRM (-11.7%). However, these results 

should be interpreted with caution, as the overall error is a good indicator only if all the activities 

were performed for the same duration (Figure 16 and Figure 17). Also, the classification 

algorithm for stationary PAs for G-WRM failed to classify and detect resting and arm-ergometry 

PAs for the validation dataset due to the lack of wheelchair movement for these PAs. Another 

important measure that needs to be considered during EE estimation is the MAE where the over 

(negative error) and under (positive error) estimations of EE don’t cancel each other out. The 

MAE values for PAMS-Arm (19.4% to 35.2%), PAMS-Wrist (16.3% to 29.7%), G-WRM 

(18.3% to 39.3%), arm wocket (13.9% to 37.3%) and wrist wocket (20.9% to 42.1%) show that 

the movement and demographic based variables did not predict the EE with low MAE (<10%). 

However, the EE estimated for PAMS-Arm and PAMS-Wrist had moderate to high ICC values 

for the majority of PAs compared to individual devices (G-WRM and wockets on arm or wrist), 

thus indicating that the EE values estimated by these systems are consistent with the EE 

measured by the portable metabolic cart.  Bland Altman plots for PAMS-Arm indicated that the 

EE estimated by the new regression models was balanced with over and under estimation of EE 

for up to 5kcal/min; the new equations tended to overestimate the EE above 5kcal/min. This may 

be due to the nonlinear relationship between EE and the movement of the arm and the wheelchair 

in participants performing wheelchair PAs.  In future we plan to study this relationship by 

evaluating nonlinear models and a combination of linear and nonlinear variables to estimate EE.   
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The correlations for the estimated EE and the criterion EE (ICC=0.84; range: 0.78 to 

0.89; p<0.05) for PAMS-Wrist during wheelchair propulsion were higher than the correlations 

found by Washburn et al. [89].  Washburn et al. found significant correlations (0.52-0.66, p 

<0.01) between the activity counts from a wrist worn accelerometer and EE over three pushing 

speeds [89]. A possible reason for this mismatch is the variability in participants’ wheelchair 

propulsion. Our participants performed wheelchair propulsion at a slow, medium or fast pace 

(self-selected) on various types of surfaces, thus providing us with more diverse data than that 

obtained from the three speeds studied by Washburn et al.[89].  

Furthermore, the EE estimation errors for PAMS-Arm (MAE 14.1% for caretaker 

pushing to 35.2% for basketball and MSE: -32.0% for basketball to 12.1% for may be moving) 

during the seven PAs were much higher than the EE estimation error for SenseWear (MAE: 

13.4% for deskwork to 18.2% for resting and MSE: -4.3% for resting to 9.9% for Arm-

ergometry) during the four PAs from our previous study [88]. The higher variation in our current 

study is due to the following reasons: a much larger number of wheelchair-based PAs collected 

in both laboratory and community settings; the merging of these numerous PAs into seven 

groups; collection of data at two time points for 20 participants; and the participants performing 

PAs at a self-selected pace or pattern.  

One of the limitations of this study was that a large percentage of our participants self-

reported that they were physically active on a regular (n=36) or occasional basis (n=5). Thus, the 

PA levels reported here are significantly higher compared to those in Washburn et al., who 

indicated that out of their subjects only 13-16% of persons with SCI reported consistent PA [73], 

and the majority reported virtually no regular PA [74]. However, our high PA levels might have 

been inflated due to self-reported PA levels, which tend to have a social acceptability bias. 
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Another limitation of this study is the inclusion of a large cohort of veterans with SCI tested 

during the National Veterans Wheelchair games (N=20). The majority of the veterans who took 

part in this study probably had a better standard of care regarding assistive technology; however, 

they still had current PA and health levels similar to the general population. Future studies 

should recruit a greater percentage of MWUs from the general population. Additionally, our 

study only recruited individuals with SCI to limit the influence of various disabilities on energy 

expenditures during wheelchair related PAs. However, the biomechanical aspects of wheelchair 

propulsion and performing activities of daily living are similar among individuals with different 

disabilities. Recruiting individuals with other disabilities would enable us to develop 

classification algorithms and EE estimation equations to quantify PA levels among different 

groups of persons with similar disabilities.  

Moreover, the classification and EE models developed here are based on arm acceleration 

and wheelchair velocity, both movement-based variables. Future work should develop PAMs to 

incorporate other forms of physiologic sensing, such as galvanic skin response, skin temperature, 

near body temperature, and heart rate, in order to detect resistance-based PAs. We are in the 

process of evaluating and developing PAMS so that it can be reliably deployed into longitudinal 

testing of one to two weeks in the community. In future, we plan to study specific movement 

related features, which could assist researchers and clinicians with quantifying upper arm 

movement associated with carpal tunnel syndrome or overuse syndrome. 
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5.5 CONCLUSIONS 

PA level measurement in wheelchair users can assist consumers to reach an optimal PA which 

can lead to a healthier lifestyle. In this study, we have developed and evaluated new 

classification and EE prediction models for MWUs based on upper arm and wheelchair 

movements detected with the help of a physical activity monitoring system. The new prediction 

models we developed can estimate PA levels in MWUs with SCI in laboratory and community 

settings. We hope that the availability of our physical activity monitoring system will encourage 

researchers and clinicians to study wheelchair-based PAs such as propulsion and transfers in 

community settings to help prevent shoulder pain and injuries in wheelchair users.  
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6.0  USABILITY TESTING OF PAMS 

6.1 INTRODUCTION 

Physical activity monitors can play a key role in assisting consumers who use manual 

wheelchairs to perform optimal physical activity (PA) and lead a healthy lifestyle. However, to 

our knowledge, there is no technology available on the market capable to estimate PA levels in 

consumers who use wheelchairs. As discussed in the earlier chapters we developed the Physical 

Activity Monitoring System (PAMS) to make PA monitoring technology accessible to manual 

wheelchair users (MWU) [88, 119, 120]. In this chapter we explore aspects of participatory 

action design research by involving consumers (end-users) in the development of PAMS [118, 

155]. Specifically, we implemented a user-centered design process to obtain the consumers’ 

feedback about this prototype technology prior to developing a market prototype [156]. This 

usability study allows us to understand the needs of our consumers, their perception of our 

technology and to identify existing barriers in the way of this technology’s acceptance. The 

usability testing of PAMS through a focus group of end-users increases the possibility of 

knowledge translation and is critical to the success of converting this device into a consumer 

product [157]. 

The purpose of this study was to evaluate the usability of PAMS in a small sample of 

manual wheelchair users (MWUs). The study measured the usability aspects of PAMS by 
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evaluating the ease of use, learnability, effectiveness of PAMS (outcomes), and the users’ 

attitudes and experiences (satisfaction) [156, 158-160]. The usability testing of PAMS evaluated 

securing and using the PAMS sensing devices, and interacting with the PAMS smartphone 

application (PAMS app). The evaluation of securing and using the PAMS sensing devices 

involved observing how the participants placed the accelerometer in an armband, how they wore 

the armband on their upper arm, and how they secured the gyroscope based wheel rotation 

monitor’s holder to the spokes of their wheelchairs. The accelerometer and wheel rotation 

monitor collect acceleration and angular velocity information from the upper arm and the 

wheelchair’s wheel, respectively, prior to sending it to an android-based smartphone. The 

android-based smartphone analyzes and provides the user with feedback regarding their PA 

levels. The PAMS app requires the user to start the communication between the sensors and the 

smartphone. The PAMS app also asks the user to provide their demographic parameters such as 

age, gender, weight and height to accurately estimate PA levels such as energy expenditure. 

Furthermore, the app applies machines learning algorithms to the sensor and the demographic 

data to estimate PA levels and displays the PA information on the phone’s touchscreen. 

Evaluating the use of the PAMS app included studying the users’ interaction with the 

smartphone, collecting their expectations about the device and their interpretation of the 

feedback data. In addition, we wanted to study from the consumers’ perspective additional 

aspects related to PAMS’ usability and possible applications, which we might have overlooked. 
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6.2 METHODS 

The study was approved by the Institutional Review Board of the University of Pittsburgh. The 

study was conducted at the Human Engineering Research Laboratories (HERL), University of 

Pittsburgh. The study was designed in collaboration with clinicians and researchers who work 

with persons who use wheelchairs. 

6.2.1 Participants  

Six persons with spinal cord injury (SCI) took part in the study. Participants were included if 

they met the following inclusion criteria: 18-65 years of age, used a manual wheelchair as their 

primary means of mobility (> 80% of their ambulation), had a diagnosis of SCI, and had 

experience using a computer. Participants were excluded from the study if they were unable to 

tolerate sitting for two hours and had active pelvic or thigh wounds (pressure ulcers).  The study 

did not exclude MWUs who had taken part in the earlier study of PAMS as they have not 

interacted with the technology and the population size of MWUs from the Pittsburgh region is 

small. Previous research has shown that about five users are sufficient to explain 80-85% of the 

problems associated with usability studies [156, 161].  

6.2.2 Instrumentation 

The usability testing evaluated PAMS, a device composed of an accelerometer (wocket) worn on 

the upper arm and a gyroscope based wheel rotation monitor (G-WRM) secured to the 

wheelchair wheel, and the PAMS smartphone application (PAMS app). The PAMS application is 
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a software service implemented on an Android-based smartphone, which wirelessly collects data 

from PAMS devices, analyzes the data and provides users with a brief PA summary in near-real-

time. The PAMS app utilizes classification and energy expenditure (EE) estimation algorithms to 

detect the user’s current activity and estimate their EE used to track the user’s PA levels. The 

preliminary classification algorithm implemented here was developed on 25 participants in a 

laboratory environment and could detect wheelchair-based PAs such as resting, arm-ergometry, 

darts, deskwork, folding clothes, wheelchair propulsion, external pushing, resistance band, and 

basketball. The PAMS app displays the following information: distance travelled, speed 

travelled, EE in calories and duration of moderate intensity activities such as propulsion and 

arm-ergometry. Prior to using the device, users have to select a particular sensor set on the 

PAMS app in order to ensure they choose the recharged wocket while the second wocket is 

recharging. 

6.2.3 Usability Protocol Design 

We used a formative testing method with the goal of diagnosing and fixing problems to evaluate 

the usability of PAMS [156]. The testing started with collecting baseline information related to 

the participants’ current PA levels, exercises they perform, methods they use to track PAs, use of 

smartphones, and food and PA balance. We also asked them questions related to PA Stages of 

Change Model, commonly asked by researchers or clinicians prior to any PA intervention 

towards a healthy lifestyle [162].  

Users evaluated PAMS by going through the following steps: getting familiar with the 

technology, securing the G-WRM to the spokes of the wheelchair, wearing the armband, 

interacting with the PAMS smartphone app and using PAMS while performing five wheelchair 
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based PAs. The evaluation of the ease of use and learnability of PAMS was performed through a 

System Usability Scale (SUS) [156, 160] adapted to this study with 7 point Likert scale 

responses [163]. Furthermore, the Technology Acceptance Model (TAM) was modified to suit 

PAMS and PA monitoring in wheelchair users compared to TAM being used to measure 

perceived usefulness of a tool or software that people use for their jobs [159]. We also asked the 

participants open-ended questions about their experience using PAMS and whether they would 

recommend this device to their friends. 

6.2.4 Procedures 

The study evaluated the usability of PAMS and the PAMS app on an Android based Nexus 

smartphone. Before testing, the investigator explained to each participant the purpose and overall 

procedure of the study. After signing the informed consent, participants filled in two 

questionnaires. The first questionnaire (Part I) included questions on demographics (e.g., gender, 

ethnicity, age, injury level, and time of injury), wheelchair information (e.g., brand and model), 

physical activity information, and the user’s prior experience with smartphones (Appendix D). 

The second questionnaire (Part II) was exploratory and included questions on physical activity 

stages of change, and food and physical activity balance. The five stages of change are: stage 1 

(pre-contemplation) during which the person has not yet acknowledged that there is a problem 

with their PA behavior that needs to be changed, stage 2 (contemplation) during which the 

person acknowledges the existence of a problem but is not yet ready to make a change, stage 3 

(preparation) during which the person is getting ready to change their PA behavior, stage 4 

(decision/action) during which the person is undergoing a change in behavior, and stage 5 

(maintenance) in which the person maintains an earlier implemented behavior change [162, 164]. 
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Before starting the interaction with PAMS, a brief orientation and demonstration on how 

to use PAMS and the PAMS app was provided to each participant with the help of a 10-minute 

long video and a manual. The video had the following subsections: 1) introduction, 2) using the 

PAMS app, 3) entering the demographic information in the PAMS app on the smartphone, 4) 

wearing the wocket on the upper arm, 5) securing the G-WRM and its holder to the spokes of the 

wheelchair wheel, and 6) performing a propulsion task while wearing PAMS. If after watching 

the video participants still had doubts about how to use PAMS and the PAMS app, they could 

refer to the manual and ask any additional questions to the investigator. The manual had similar 

subsections to the video and included pictures and text explaining how to use PAMS and the 

PAMS app. An additional section incorporated in the manual was the recharging section, 

explaining how to recharge PAMS and the smartphone. Participants reviewed the video and the 

manual prior to performing a number of tasks and evaluating PAMS and the PAMS app using a 

think aloud method. These tasks included: 1) using the PAMS app, 2) entering demographic 

information such as age, gender, height and weight in the PAMS app on the phone, 3) wearing 

the wocket on the upper arm, 4) securing the G-WRM and its holder to the wheelchair wheel, 5) 

performing five PAs for two minutes each while using PAMS. The evaluation process was 

recorded on video and audio, and we used this recorded data as reference methods for our data 

analysis. Using the PAMS app involved: switching on the phone, selecting the right set of 

sensors, waiting for the sensors to communicate with the phone, locking the screen, and going 

back to the application. Securing the G-WRM and its holder involved securing the holder to the 

spokes with four zip ties. During this procedure the participants could choose to remain in their 

wheelchair or transfer to a mat table. If the participants had limited function, they could ask the 

investigator to assist with securing the holder to the wheel’s spokes. After securing PAMS, the 
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participants answered a subsection of a questionnaire (Part III) related to the securement of 

PAMS. Following this, the participants performed five wheelchair related PAs for two minutes 

each to evaluate the PAMS's performance. The wheelchair related PAs the participants could 

choose from included wheelchair propulsion, being pushed by an investigator, reading, arm-

ergometry, deskwork, and resistance band. 

Investigators probed participants to talk if silences continued for several seconds. Neutral 

cues such as “keep talking” or “what are your thoughts” encouraged subjects to think aloud but 

did not bias the data by adding external ideas to the internal process of participants’ train of 

thought. Once the think aloud process was completed for each task, investigators asked follow-

up questions (Part III) regarding the evaluation of PAMS. Then, participants completed a 

customized usability questionnaire that included the SUS and the TAM to gather user feedback 

on the overall usability, ease of use, and perceived usefulness of PAMS.  At the end of the 

evaluation process, users participated in an interview with open-ended questions (Part III). The 

interview explored how users envisioned the features and application of this system beyond the 

current capabilities and use of PAMS and the PAMS app. For example, the investigators asked 

participants whether they were satisfied with how the PAMS app displayed information 

regarding the users’ PA. 

6.2.5  Data Analysis 

We used descriptive statistics to analyze the data obtained from the three questionnaires. We 

performed quantitative data analysis by assessing success rates, error rates, and frequency of 

specific problems [156, 165]. Qualitative data analysis was performed by analyzing the video 

data for evaluation of PAMS, problems experienced, comments, and answers to open-ended 
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questions. We used the video content analysis to identify common themes in the transcripts from 

both usability testing and in depth interviews. In addition, we assessed whether demographic 

variables such as level of injury had an impact on using the PAMS technology. 

6.3 RESULTS 

6.3.1 Demographics 

Five male MWUs and one female MWU with SCI participated in this study. The mean (SD) age 

of the participants was 30.7 (11.2) years, weight of 78.8 (13.4) kg, and height of 1.7 (0.1) m. The 

injury level of the participants varied from C7 to T12, with one participant having injuries at or 

above T3 and five participants having injuries at or below T4. Three of the six participants had a 

complete SCI. Three of the participants were of Caucasian ethnicity, while the other three were 

of African American ethnicity. The number of years participants had used a manual wheelchair 

was 9.8 (8.3) years. Self-reported PA indicated that five participants performed some form of 

regular PA and one performed no regular PA. Four of the participants reported to be non-

smokers. The perceived nutritional levels reported by participants varied from good to excellent 

with two for good, three for very good and one for excellent. Moreover, two participants also 

indicated they followed specific dietary plans. The perceived fitness level reported by 

participants varied from very good to fair with three for very good, two for good, and one for 

fair. Five of the six participants reported they had performed some form of PAs and exercise 

during the last month other than wheelchair propulsion. The PAs performed included weights, 

wheelchair basketball, sled hockey, arm-ergometry, resistance band, using other gym equipment, 
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swimming and wheelchair rugby. Further, based on the participants’ responses to the PA stages 

of change questionnaire we found that participants were at stage 2 (contemplation: N=1), stage 4 

(decision/action: N=1) and stage 5 (maintenance: N=4) phases of the readiness towards regular 

PA [162]. 

6.3.2 Smartphone Use 

The smartphone use questionnaire (Appendix D) indicated that five participants had smartphones 

(two: iPhones, two: Android based phones, and one: flip phone) out of which four had 

touchscreens. Table 29 shows the responses to the remaining questions on the smartphone use 

questionnaire.  
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Table 29: Responses of the participants to the smartphone use questionnaire. 

Question Response (N) 
Do you have a smartphone? Yes (5) 

No (1) 
• I tried but found it difficult to use;  
• I do not need other features except calls 

How long have you been using a smart phone? 1-2 years (1) 
2-3 years (1) 
3 years or longer (3) 

Please state your average hours of smart phone 
use per day? 

Less than 1 hour (1) 
2-4 hours (3) 
4-6 hours (1) 

When you use your smart phone, what 
functions do you usually use? 

Browsing internet 
Entertaining yourself (listening music, watching movie, etc.) 
Accessing social networking site (Facebook, Tweeter, etc.) 
Accessing email  
Text messaging 

On a scale of 1-5 (1 being low and 5 being 
high), how fluent do you regard yourself as a 
smart phone user? 

Median: 5 
Mean: 4.4 
 

On a scale of 1-5, how essential is a smart 
phone to you? 

Median: 4 
Mean: 3.4 

On a scale of 1-5, how satisfied are you with 
your current smart phone?  

Median: 3 
Mean: 3.2 

In your opinion, what do you miss from your 
smart phone? 

Simplicity of the operation (2), Bigger screen size (1); Faster 
processor (1), Bigger button or keyboard size (1) 

Do you have a smartphone? If no please 
explain: 

I' tried but found it difficult to use;  
I do not need other features except calls 

 

6.3.3 Food and Physical Activity Balance 

The food and physical activity balance part of the questionnaire (Appendix E) indicated that four 

participants did not keep an account of the calories consumed, while one participant tracked it on 

a regular basis and one tracked it occasionally. Five of the six participants did not track their 

wheelchair propulsion and the remaining participant tracked it with a Global Positioning System 

(GPS) application on his phone. Five of the six participants tracked their other types of PAs by 

tracking the time duration of their physical activity (N=4) and tracking the number of repetitions 

or sets of resistance exercises they performed (N=4). Four of the five participants who tracked 

their PA were satisfied with their current method of tracking PA with one of the participants 
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neither satisfied nor unsatisfied with the current method of tracking. Two participants had 

suggestions on how to maintain a balance between nutrition and PA by: a) limiting the amount of 

high fat food consumption (P7) and b) exercising caution toward eating habits and exercising 

every day (P11). Four of the participants had the following suggestions on how to measure the 

PA of wheelchair users: using a timer, using a GPS, tracking the number of transfers to and from 

the car, and using a specific PA plan adapted to different age and activity level groups. 

6.3.4 Securement of the Physical Activity Monitor System 

Participants’ responses to the ease of securing the G-WRM holder, i.e. a permanent securement, 

to the spokes of the wheelchair wheel varied from very easy to difficult with one for very easy, 

one for easy, three for neutral and one for difficult. Two participants (one who chose neutral and 

the other who selected difficult) indicated that it would be easy if they were to transfer to another 

surface or bed before securing the G-WRM holder to their wheelchair. However, all participants 

indicated that it was very easy to plug the G-WRM in and out of the holder, once this holder had 

been secured to the spokes of the wheelchair. The median (mean ± SD) satisfaction ratings (with 

5 as high and 1 as low) for the dimensions (size and weight) of the G-WRM, the dimensions 

(size and weight) of the wocket, and the comfort of wearing the wocket were 4.5 (4.5±0.5), 5 

(4.7±0.5), 5 (5.0±0.0), respectively.  

6.3.5 Evaluation of a Physical Activity Monitor System 

The evaluation of PAMS was collected through questionnaires including Evaluation of PAMS, 

System Usability Scale, Technology Acceptance Model, and open-ended questions. Table 30 
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shows the responses for the general evaluation of PAMS. Table 3 shows the responses to the 

overall System Usability Scale and Technology Acceptance Model. The final score for the SUS 

measured was a mean ± SD of 94±7 indicating that PAMS has a very high usability and 

learnability (A) [160, 166]. Furthermore, the responses of the participants to the modified TAM 

had a median range from 4.5 to 7 and mean range from 4.5 to 6.5 indicating that PAMS was 

useful [159]. 

Table 30: Responses to the Evaluation of a Physical Activity Monitor System questionnaire. 

Question Response (N) and comments 
Do you think the 
information 
provided by 
PAMS is helpful 
to you? 

Yes (6): 
• It can help me monitor my miles and speed. 
• I like knowing the distance I travel even when I am simply doing my 
daily activities. Track burning calories. 
• Allows the user to track activity in a way that they can use to better their 
physical activity. 
• I think this would be a great device in my daily activity as an athlete to 
stay healthy. 
• Helps show my activity level 
• To better know the condition; monitor my weight; going to gym; losing 
weight 

Are you satisfied 
with the way the 
information was 
presented on the 
smartphone 
application? 

Yes (5)  
• The application is very easy to understand and to work 
• Simple, and effective. Gives good data. 
• Information given in the application is very useful. 
• Very good as it provides calorie information  

No (1)  
• I would like the measuring tools in a form I ‘am used to seeing in my 
everyday life such as miles. 

Suggestion (1)  
• English conversion/option 

Do you wish to 
see any other 
physical activity 
information that is 
not provided by 
the PAMS? 

Yes (3) 
• Heart rate, timer, or time 
• I would like to know the amount of energy used while transfering from 
Wheelchair to car; I would like some monitoring of body fat composition to see 
how much body fat I burn while exercising on any of my ADLs. 
• Propulsion 

No (3) 
• Really touches upon useful data. 

Do you think the 
PAMS may help 
you change your 
physical activity 
levels? 

Very likely (2) 
• I would work harder to increase the speed 

Definitely (3) 
• The PAMS would allow to evaluate my work out on a daily basis. 

Neutral (1) 
• Not change but track easier for activity and calories burned 

 
 



132 

Table 31: Responses to the overall System Usability Scale and Technology Acceptance Model. 

Overall Usability Questionnaire: System Usability Scale  
Question Median Mean ± SD 

1. I think that I would like to use this system frequently.  7 6.5 ± 0.8 
2. I found the system unnecessarily complex.   1 1.2 ± 0.4 
3. I thought the system was easy to use.   7 7.0 ± 0.0 
4. I think that I would need the support of another person to be able to use this 
system.   

1 1.8 ± 1.6 

5. I found the various functions in this system were well integrated. 7 6.8 ± 0.4 
6. I thought there was too much inconsistency in this system.  1 1.2 ± 0.4 
7. I would imagine that most people would learn to use this system very 
quickly. 

7 6.7 ± 0.5 

8. I found the system very cumbersome or burdensome to use.  1 1.2 ± 0.4 
9. I felt very confident using the system.  7 6.8 ± 0.4 
10. I needed to learn a lot of things before I could get going with this system. 
  

1 2.0 ± 2.4 

Overall Usability Questionnaire: Technology Acceptance Model   
Question Median Mean ± SD 

1. Using PAMS gives me greater control over my physical activity levels. 7 5.7 ± 2.4 
2. Using PAMS improves my physical activity levels. 6 5.7 ± 1.4 
3. Using PAMS allows me to be physically active than would otherwise be 
possible. 

4.5 4.5 ± 2.1 

4. Using PAMS makes it easier to do my regular physical activity. 5.5 5.0 ± 2.4 
5. Overall, I find this product useful in achieving my regular physical activity. 7 6.5 ± 0.8 

 
 
Table 32: Performance rates in terms of success rate, error rate and frequency of problems. 

Task Success Rate Error Rate Frequency of problem 
Using the PAMS app 100 0 0 
Entering demographic information 100 0 0 
Wearing the wocket 100 0 0 
Securing the G-WRM Holder 70 30 3 
Placing the G-WRM in it’s holder 100 0 0 
Software failure 80 20 1 
Delay in data (synchronizing) 10 90 6 
Classification of correct PA 50 50 25 

 

6.3.6 Qualitative Data Analysis 

The qualitative data  analysis is included in Table 5. The data analysis  has been split into  major 
 
categories with appropriate subsections for each category. The subsections included general
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findings, positive findings, negative findings, suggestions, and recommendations (possible

solutions). 
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Table 33: Qualitative analysis from the transcripts obtained from video and audio recordings of the usability study. 

1. Food Tracking Methods 
a. General Findings 
Only two of the six participants tracked their food.  
Comments 
P11: “Actually yeah, I just got, I’ve just been more self-aware and self-conscious of what I’ve been eating in the last 3 months, about what I put in, how I 
prepare my food and what I eat. So in the least 3 months it’s been yogurt free and water in one meal a day. I am conscious about how I prepare that meal. 
No fried food, baked fish, steamed vegetables, No white rice, brown –wheat rice. That type of thing. But I’m not actually counting. But they say you don’t 
put no more portions than as big as your hand on your plate.” 
P10: “sometimes I have used MyFitnessPal to track calories” 

2. Current PA tracking methods 
a. General Findings 
Only one of the participants tracked his wheelchair based PA using a GPS-based application on his phone. The application showed speed, distance, and 
duration. 
Comments  
P8: “because I use my phone, and I have like I guess it’s just the GPS or whatever. So I turn it on whenever I do laps, or go for rides” 
P10: “From the questionnaire, may be one can use a bike computer but I have never tried it.” 
P11: “you do have to be conscious about what you eat and exercise on a daily basis. Because you know gravity is not nice when you are sitting down. You 
see what I’m saying? And that’s what’s happening” 

3. Need of PA tracking by the consumers 
a. General Findings 
Two of the participants indicated a need for some type of PA tracking monitor before being introduced to PAMS. 
Comments 
P8: “how many times did that wheel spin and how many differences, I mean how many times the disk would spin compared to this one.” 
P8: “you know like there’s the apps on the phone, but they’re not really specific to wheelchair users.” 
P10: “not really. I mean, you know I’ve looked at all the basic ones that you use for recording for an able bodied person” 
P10: “I am interested to see how much distance I covered” 
P10: “MyFitnessPal cannot track my physical activity.” 

4. Food Tracking Methods 
a. General Findings 
Only two of the six participants tracked their food.  
Comments 
P11: “Actually yeah, I just got, I’ve just been more self-aware and self-conscious of what I’ve been eating in the last 3 months, about what I put in, how I 
prepare my food and what I eat. So in the least 3 months it’s been yogurt free and water in one meal a day. I am conscious about how I prepare that meal. 
No fried food, baked fish, steamed vegetables, No white rice, brown –wheat rice. That type of thing. But I’m not actually counting. But they say you don’t 
put no more portions than as big as your hand on your plate.” 
P10: “sometimes I have used MyFitnessPal to track calories” 
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5. Current PA tracking methods 

a. General Findings 
Only one of the participants tracked his wheelchair based PA using a GPS-based application on his phone. The application showed speed, distance, and 
duration. 
Comments  
P8: “because I use my phone, and I have like I guess it’s just the GPS or whatever. So I turn it on whenever I do laps, or go for rides” 
P10: “From the questionnaire, may be one can use a bike computer but I have never tried it.” 
P11: “you do have to be conscious about what you eat and exercise on a daily basis. Because you know gravity is not nice when you are sitting down. You 
see what I’m saying? And that’s what’s happening” 

6. Need of PA tracking by the consumers 
a. General Findings 
Two of the participants indicated a need for some type of PA tracking monitor before being introduced to PAMS. 
Comments 
P8: “how many times did that wheel spin and how many differences, I mean how many times the disk would spin compared to this one.” 
P8: “you know like there’s the apps on the phone, but they’re not really specific to wheelchair users.” 
P10: “not really. I mean, you know I’ve looked at all the basic ones that you use for recording for an able bodied person” 
P10: “I am interested to see how much distance I covered” 
P10: “MyFitnessPal cannot track my physical activity.” 

7. Orientation and demonstration of PAMS: Video (Appendix H) 
a. Positive Findings 
The user’s liked that the video was short and informative. 
The video explained PAMS to both the non-smartphone and Smartphone users. 
The video explained PAMS in more detail to non-smartphone users. 
Comments 
P6: “That’s very detailed man.” 
P8: “Like the video, I really like how the video was short, it was sweet. It was bang, bang, bang. There was not a bunch of extra stuff to confuse you.” 
b. Negative Findings  
The G-WRM placement was not clear; three of the six participants had to either look at that part of the video carefully or asked further questions. 
Comments 
P6: “I had to watch it again” 
c. Recommendation 
Animation to show how the G-WRM holder goes between the spokes of the wheelchair and the buckle is facing out. 

8. Manual for PAMS  
a. Positive Findings 
The participants found that the PAMS Manual was self-explanatory with useful pictures (Appendix G).  
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Comments 
P8: “it’s very simplified. You know not everybody is going to be good with technology. So, especially if you get somebody a little older that’s trying 
maybe [t]o get back into doing some physical activity. You don’t throw out the stuff at them to confuse them, and they lose the whole idea of what 
they’re doing.” 

9. Application on Smartphone  
a. Positive Findings 
The application was very easy to use. 
Comment  
P7: “very easy. I was listening, but I was not watching.” 
P7: “experience with smarphones. I like the whole idea that is touch screen. I mean, touch screen makes it easier for a person to find things.” 
P6: “it’s really easy to work.” 
P8 “It’s to a point that it’s easy to read, there’s not a bunch of stuff you don’t need there. I like how you can adjust it to your height and weight and 
stuff. It’s your phone, or the app, it’s not just to anybody. It’s more specific. It kind of understands what one is doing while you’re using it.” 
P9: “P: It’s really easy. Very easy. I think even somebody who is not using an iphone on a regular basis nowadays would be able to figure that out.” 
P9: “it looks awesome. I like it a lot. I think this looks fantastic.” 
Function of resetting a particular Parameter for a session:  
P9: “It makes it really easy, the whole screen like that Reset that easily by the touch without having to set everything. 
b. Negative Findings 
Even though there was a scroll bar to input, height weight and age, it was not fast enough for one of the participant.  
Using a touchscreen was difficult for P11 as she had minimal prior experience with smartphones. For example, she repeatedly held an icon rather than 
feather touch it.  
Comments 
Inputting Demographic Data 
P10: “so one suggestion I can give for the demographic area here, cause this was sitting down at 140 pounds, and I am 210, I had to sit there and hit the 
button forever to go up.  Instead of being able to push it and scroll down faster” 
Smartphone  
P8: “It’s very simple. I mean, if somebody doesn’t have a basic knowledge of the smartphone I can understand it being a little confusing you know 
cause they look at a screen and they’re like: there’s no buttons.” 
c. Suggestion 
P7: “Include injury level to make it specific to wheelchair users. “ 
P7: “Like the pause button: to continue the exercise session” 
d. Observation 
Sensor Connection 
There was a delay between selecting the wocket set and then the sensors connecting to the app through bluetooth (coming ON). One of the participants 
(P10) tried “Reconnect” as the sensors didn’t connect to the app immediately. 
Learning while using the PAMS for the first time (+ve) 
P10 pressed the reconnect when the sensors didn't come on in less than 5 secs. We had not even told him there was that function available.  
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e. Recommendations 
Sensor Connection 
Show a message asking them to wait till the sensors come ON with a large message for at least a few seconds. Software wise we should not let them 
reconnect unless a sufficient amount of time has not passed. 
Touchscreen usage  
Change the time to open an App from the home screen for this person. Provide some training to use smartphone.  
Session Recording 
Design the application that user can have sessions that he can separately workout compared to the continuous tracking. The consumer should be able to 
stop the session if one wants to take a short break during their workout.  
Choice of Sensor Set (Green vs. Red Set)  
The OK button on choosing the wocket set should disappear immediately after chosen as two of the participants pressed it more than once as they 
thought it did not register their selection. 

10. Information by Application  
a. Positive Findings 
The information provided about Calories, Duration of PA, Distance travelled and speed were specific and appropriate.  
Comments 
P6: “definitely I think it’s really good information I could use. Pushing miles would be good for me at a practice so I know how many miles I push a 
day. Yeah, cause we push a lot at practice in the University. So yeah. I would like to know myself. Yeah.” 
P6: “Yeah, like speed. I want to see like if I start pushing fast, one day then work out for a month or so, then see if the speed would increase, if I get 
faster” 
P7: “Yeah, I kind of like the actual calories,  in my understanding how many calories I am putting in, I like to know how many I am burning.” 
P8: “Does this thing continuously read [estimate] your calories even while sitting there? That’s pretty cool.” 
P8: “It’s very simplified so that it can help you keep track of like your activities. Especially like somebody that’s maybe on a diet, and trying to really 
regulate their calorie burning and intake, it would allow them to, without doing excessive workout, they can keep track of their calories while they are 
like, you know maybe at work, or doing something at desk or something, and then they can get in there with some other physical activity too, and then it 
will monitor all that over a widespread as to just like not knowing, you know, it’s very helpful, I think so” 
P9: “It’s good. Everybody wants to know distance travelled, calories burned. Especially distance travelled. Everybody I interact with is like: I did so 
many miles today.” 
P9: “Calorie burn is a bonus. You guys have touched it all.” 
P11: “Well what is showing, yeah, very good. Yes, it is Calories, distance... No, cause those are your basics. I mean there could be more, but that’s 
satisfying.” 
When the application showed that the participant was performing arm-ergometry:  
P11: “I need that type of data in my life” 
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b. Negative Findings 
The application did not present the distance travelled and the speed in a form the participants were familiar with.  
Comments 
Units for Information displayed 
P7: “I would prefer it in miles per hour. More something that I am accustomed to see it. I can picture” 
P10: “Maybe, it would be good to also have English conversions.” 
c. Recommendation 
Allow users to choose English (mph and miles) and metric units (m/s and meters or kilometers).  

11. Securement of G-WRM holder and G-WRM 
a. Positive Findings 
Three of the participants found it really easy to place the G-WRM holder, which is a onetime installation on their wheelchairs. 
All the participants could easily place and remove the G-WRM in and out of the G-WRM holder. 
Comments 
P9: “I think the device where it is now, of mounting it on your chair, It’s a lightweight, it’s easy to slip in, it’s a very compact device. I did not do an 
even great job of even securing it to the spokes very well but it did not move around too much it seemed. It seemed it stayed there just like that. Very 
easy to use, popping it back out the case there, it did not like jump on me, it smoothly came out and rested.” 
P8: “It’s very simple” 
P8: “It’s perfect. ...I Have a couple more spokes than others do, I thought it might be a problem but it was fine, You did a good job designing that 
piece.” 
P9: “I could sit on and do it, but I would rather transfer. I would get out of the chair and make myself more comfortable to look at it. I think I would do 
a better job at placing it out of the chair, especially the first piece.” 
b. Negative Findings 
Two of the participants had difficulty to attach the G-WRM holder to their wheelchair while sitting on the wheelchair, as they did not have trunk 
control.   
Comments 
Putting the G-WRM holder 
P6: “If I transfer I can put the datalogger” 
P7: “difficult to put datalogger sitting on the chair”  
c. Suggestion 
Need to come up with a different design for the G-WRM holder for wheels that have really close spokes.  
Pinching the G-WRM’s buckle to pull it out could be difficult for someone who has high level injury (P10). However, pushing it or having a clip to pull 
it out would be easier for persons with tetraplegia. 
Comments  
P9: “In some cases spokes very close.” 
P7: “Give good directions of getting out of the chair” 
P9: “I think you can always ask someone to help you when you’re putting that on. It’s very easy..” 
P10: “Use long zip ties.” 
P10: “There are only so many wheel types, you should just make 3-D models that just go right on,”  
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12. Securement of Armband 

a. Positive Findings  
P6: “will forget it on the arm; easy to wear wocket” 
P8: “I actually cannot recognize this thing is on me anymore.” 
P8: “It’s simple to wear” 
P9: “The armband is easy to use, lightweight, not much to it around your arm that makes it difficult to propel the chair or anything, ….” 
b. Suggestion 
Comment 
P10: “You can have gasket or a rubber ring so that the armband does not slip down my hand” 
c. Recommendation 
Need to have armbands of various lengths to accommodate consumers with various upper arm circumferences. The armband length can be increased by 
increasing the length of Velcro loops until the Velcro hook.  

13. Suggestion for improvement of PAMS 
a. Negative Findings  
Comments  
P6: “Classification was not right as it was not picking the right thing.” 
P7: “remove the classification altogether” 
P9: “I know you are still working on the algorithms. But I think it’s neat that it’s picking up a little bit of wheelchair propulsion, deskwork, slow down. I 
know it will be better.” 
P9: “I could see people getting frustrated if the technology is not reliable: Oh, I’ve been there and pushed and pushed and pushed...” 
b. Suggestions  
Comments 
Weather or Waterproofing  
P8: “the wocket – are these waterproof?” 
Impact Sports 
P10: “Test these in rugby chairs” 
c. Recommendations   
Classification and PA detection 
We have to make sure that the algorithms can correctly detect the wheelchair based activities. We will Incorporate the classification algorithms and 
extensively validate their performance. Also we need to ensure that the data from the G-WRM and wocket are time synchronized prior to classification.  
Weather or Waterproofing  
We need to design a waterproof version of the G-WRM as the consumers may face rain, and snow while using G-WRM in the community settings.  

14. Usefulness of PAMS  
a.  Positive Findings  
All the participants thought that PAMS is useful in tracking PA and in many cases help them achieve their PA goals.  
Comments 
P7: “I think PAMS again will help, definitely help the athletes training. You know our wheelchair users did our training in various sports. I think it 
would be imp for them to know what other physical activity, what impact physical activity is having on their body. I think that’s good.” 



140 

Table 33 (continued) 
 

P9: “I think this device would be very helpful to me in my daily activity for sure. Just as somebody who is conscious of his health and tries to stay as 
healthy as possible, I think this would be very helpful in monitoring my activities, set better goals for myself, monitor my daily activity better.” 
P8: “Nailed it on the head” 
P9: “I think it would definitely change my PA level, cause it would allow me to see what I do and perfect it better. My PA doing exactly the mileage I 
want to do, or getting more. Out of it each day, from speed, calories burned, definitely allow me to change my work out, make it better and better as I 
got familiar with.” 
P9: “It’s an easy application, easy to put on the chair, easy to use on the phone. Most people, a lot of people now have, even they might not have a 
smartphone, they are learning the touch screen technologies through just your regular phone now has a touch screen. It’s very common to everybody, 
you know, at the bank or anywhere else, it’s there, at the grocery store. Everybody is familiar with that technology a little bit, so it’s very easy to use, 
not too many different screens to change to, you just put in your information and it gives you the information you are getting out.” 
P9: “Overall, I am very satisfied with the technology, so I would definitely push on others, my friends and others who play sports or not play sports, to 
try this device on a regular basis.” 
P10: I think it will be nice to integrate or allow MyFitnessPal app to be able to get data from this device as MyFitnessPal tells me what to eat and how 
much calorie I have to burn on a daily basis to reach my goal. 
P10: “If you can sync it with a computer, let me see what my lazy days are. That’s what it comes down to.” 
Investigator: Once you reach the goal, would you still keep – the things that you’re doing, using, or would you drop the diet and PA? 
P11: “but for a lot of people it’s not easier to maintain. Right. But no, I would still use the device to maintain, to maintain. Because I would want to see, 
I would want to know that I’m not falling of.” 
P11: “But if I had this right now, and I have it, and I could take it home, now whatever I’m doing with the resistance bands, or the exercises being for 
the physical therapy . If they could tell me that I’m actually physically doing something, and I’m helping, oh, you would be surprised. That’s 
encouraging, you know. Same difference as they say, well if you’re not good about going to the gym, take a friend with you and... And me, I don’t have 
nobody that I know. I do, some of my friends go to gym after work, which is not convenient for me at the time.” 
Monitoring 
P8: "I would use it everyday" 
P11: “To better know what condition I am, to monitor my calories, my weight, and since I go to the gym, that would be a good idea, for, you know, for 
losing weight, burning calories or fat or so, that would really help, cause yeah, it would be a helpful thing for somebody in my position. Yes, that really 
would” 
P11: “Definitely, because I would be more interested in how the distance, calories etc. you know what I mean? That would even motivate me. Cause I 
would know. Cause if you see something, in a written, or you know you are losing calories or fat in your body, that makes you even striving harder, vs 
not seeing it….”  
Investigator: So you think that constant positive feedback, even if it does not show yet in the mirror, it would be the thing to keep you going? 
P11: "Yes, because not only the outer work is showing, the inner, that you’re losing. Because that inner you would eventually see it on the outside. A lot 
of people would like this.  Even walking, not just wheelchair users. Because you know, it still don’t matter, people that walk don’t have a lot of 
discipline." 
b. Suggestion  
Clinical tool for new users  
P8: “The only thing that I really think it could use, we were talking about how it could do the propulsion to distance rate [Show distances covered per 
propulsion push].” 
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15. Technology Acceptance Model  

Three of the participants (P7, P10 and P11) indicated that the system will not make them more active or will not make it easier to attain their desired 
PA. From triangulation of observation, qualitative and quantitative data we found that if the participant was an athlete or was very active they were 
more likely to report that  PAMS will make them more active or will make it easier for them to do PA. However, P11 also reported that information 
provided by PAMS would encourage her to perform PA.  
a. Positive findings 
Comments 
Motivation 
P8. “Yeah, definitely, it helps to have an actual push. Cause when you do it on your own you’re just like: yeah, I guess it’s fine” 
P11: “encouraging information” 
b. Negative findings 
Comments 
Will the system make me more active? 
P7: “: No, I think the person already buying it is already going in that route. You are not going to get nobody to say this is going and say oh this is going 
to make me more active.” 
P10: “I like this for tracking sense, to know what my calories are burned, you know being able to see my distances is nice, but it’s not that it makes it 
easier, or it would change anything for me. For other people who are maybe told ok, you need to become more active, it’s a good way for a doctor also 
to sit there and say – ok, try and burn an extra 500 calories.” 
Motivation 
P7: “Do I think it would help motivate people to be Physically active? No, I don’t think it would motivate people to be physically active.” 
P7: “I don’t think it will motivate me to do more PA” 
P11: “It is not the motive for doing the act. It would be in the middle somewhere” 
P11: “no, that would not make it easier, no. In the middle. Cause you would do it anyway. It just keeps track.” 

16. Market for tools to track PA from Consumers Perspective 
a. General Findings 
Comments 
P7: “I don’t know anything else on the market right now. Not that I’m looking. But I, out of the top of my head, I don’t know anything like that on the 
market for wheelchair users.” 
P8: “you know like there are these apps on the phone, but they’re not really specific to wheelchair users.” 
P11: “it’s encouraging. It’s, what do I want to say...I’m impressed, I like it, it’s encouraging, it will motivate me a lot to do what I need to do, as for 
physical activities. But you are asking me my overall feeling about it? I like it, I like it. I would use it if it was on the market.” 
b. Suggestion 
P7 indicated that we should market this technology to Nursing Homes and also provided a marketing tip.  
Comments 
P7: “How about for a few, for one hour a day you do everything without having no one  push you around. That might happen.” 
Marketing tip 
P7: “Here is a device that can help you monitor your PA to improve your life expectancy. Who does not want to live forever?” 
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17. Social networks 

a. General Findings 
Consumer’s perspective on using PAMS along with social networks.  
Comments 
P7: “Facebook will help with competing with others” 
P8: “Would you be able to share that data on Facebook? If so that would be cool.” 
P9: “I think this is, in this time and age the social networks and technology this is a fantastic device to have for a wheelchair user, you know, for all 
levels of exercise and anything they want to do. I think this could really help a lot of people get out there and do a little bit more when they have 
something showing them what they’re doing on a regular basis.  Just going outside and about. And I think it would be fun, knowing a lot people with 
disabilities, the idea of a Facebook and all that. Somebody who is not even an athlete to somebody who’s a friend and showing them what I did to 
someone else who doesn’t maybe play sports. See what they try to do. It could really enhance other peoples’ lives, and how us, who are trying, to 
enhance newer wheelchair users, showing them the things that can be done out there.” 
P10: “if you can connect it to social network, then it will be really good for team coaching.” 

18. Wish list of suggestions for future PAMS 
a. General Findings 
Comments  
Holder for Smartphone 
P6 and P8: Leg band for holding the phone while exercising or a band to hold the smartphone on the person or the wheelchair  
PAMS for Pushrim-Activated Power-Assist Wheelchairs (PAPAW) 
P11 recently got a PAPAW to prevent her upper arm from injury and pain. We will have to adapt the algorithms to take this technology into 
consideration.  
Timer and Seconds Counter 
P6: “yeah, because, sometimes it’s all about the breaks.” 
Surface Roughness 
P8: “Surface roughness” 
Heart Rate 
P6: “include heart rate” 
Transfers to car 
P7: “the amount of times a manual wheelchair user transfers from chair to vehicle/car.” 
Fat content  
P7: if it can show fat content 
P11: “Showing that I am burning fat” 
PAMS for Aqua therapy 
Based on what P11 told us that she performs a lot of Aqua therapy for PT 
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19. Other Qualitative Questions 

a. General Findings 
Comments  
Why no smartphone 
P11: “I tried but I found it’s too difficult. I did not need all these features..” 
Difference in perspective: 
P11: “Is not, and that’s where, all my discipline has to come in. Because I don’t like the way I look.” 
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6.4 DISCUSSION  

Five of the six participants reported they performed some form of regular PA which is 

significantly above the US average for MWUs (13-16%) [73, 74]. Some possible explanations 

for this anomaly are: self-reporting, our inability to measure the participants’ PA levels in the 

community, and the fact that the majority of the participants who responded to the flyer and the 

recruitment were self-opted and happened to be physically active. Future studies should 

specifically sample wheelchair users who are not physically active and resemble the average PA 

levels among MWUs in the US. However, the demographics related to the SCI with respect to 

the level of injury and the completeness of injury was reasonably represented. Regarding the use 

of weight management techniques, three participants understood the importance of cooking and 

eating habits [108]. One participant specifically stated she was very conscious of her food 

selection, a second participant claimed he tracked calories on a regular basis, and a third one 

monitored his calorie intake infrequently. The participants’ interest in tracking their calories 

suggests a possible development for the PAMs app, namely incorporating aspects of behavior 

monitoring techniques and other education components to motivate individuals to pay attention 

to the food they consume [107, 108, 130].  One of the participants (P10) suggested that if we 

allowed MyFitnessPal, an app with food tracking capability, to access the PA information from 

the PAMS app this function would assist him to better balance his food and PA.   

On the technology front the baseline questionnaire data indicated that most of the MWUs 

(N=5) in this study had a smartphone and could use this technology fluently. This indicates that 



 145 

 

the telecommunication technology used by MWUs is similar to the general population (91% of 

adults in US have a cellphone with 56% of adults having a smartphone) allowing us to use the 

smartphone as a feedback device for monitoring PA levels for MWUs [167]. Four of the six 

participants reported they used the time duration of performed PAs to track their total amount of 

PA. In addition, one of the participants regularly uses a GPS-based smartphone app to track his 

propulsion activity. Based on the SUS, TAM scores and the qualitative data analysis we found 

that PAMS was easy to use and participants rated the system high for satisfaction, usability and 

learnability. Further, five of the six participants indicated they would use PAMS on a daily basis 

if available on the market. As none of the participants in this study population were at stage 1  

(pre-contemplation) of the PA Stages of Change model, i.e. not yet acknowledging that there was 

a problem with their PA behavior that needed to be changed, this might have biased the users’ 

satisfaction with PAMS. This device fulfills a need all participants already had. [162, 164]. In 

addition to the PA stage of change bias we identified a technology bias, as most of the 

participants used on a daily basis their smartphones, a major component of PAMS. The usability 

study’s observations and recommendations for designing the next version of PAMS are included 

in Table 5. 

The usability study allowed us to identify some key problems we plan to address during 

our next iteration in the development of PAMS: a better method for securing the G-WRM holder 

and the G-WRM, improved PA detection and classification, and providing additional wheelchair 

movement information.  
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6.4.1 Securing the G-WRM holder and the G-WRM 

From this research, we concluded that the current design of the G-WRM holder works for the 

majority of the manual wheelchair users who use wheels with less spokes (spokes that are at least 

2 inches apart at the rim). However, we need to redesign the G-WRM holder and the G-WRM in 

order to successfully secure the G-WRM on wheels with more spokes (closer than 2 inches at the 

rim) or on wheels that do not have spokes without any obstruction to the user. One of the 

participants (P6) had problems with securing the G-WRM on the wheel because he had an older 

model of the wheelchair wheel with more spokes. Some of the design options are using the hub 

of the wheel or using other types of attachments such as Velcro to hold the device. Four of the 

participants indicated that the video and manual should clearly instruct them to transfer out of the 

wheelchair before securing the G-WRM holder, as this step was necessary for an easy and 

successful securement of the G-WRM holder. One of the participants also expressed the concern 

that persons with tetraplegia missing the ability to pinch might not be able to use the buckle 

design to place and remove the G-WRM in its holder. A possible design solution is adding to the 

G-WRM and its holder a push-release engagement, which would allow the user to push in to 

either lock an unlocked device or release a previously secured device from the holder. The G-

WRM also requires an additional clip to help people with little finger dexterity to hold the G-

WRM; these users could hold the G-WRM by the clip rather than clasping the whole device. 
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6.4.2 PA detection and classification  

One major problem that needs to be immediately addressed is the imprecise working of the 

classification algorithm. The problem resulted due to two reasons: a) use of preliminary 

classification algorithms developed in a laboratory environment to detect wheelchair based PAs; 

and b) problems related to data synchronization between the G-WRM and the wocket. To 

address the first set of problems we plan to use the two level classification algorithms we have 

developed recently, which first classify PAs based on wheelchair movement and then 

appropriately detect PAs such as resting, arm-ergometry, other sedentary PAs, PAs that may 

involve small amounts of wheelchair movement, wheelchair propulsion, caretaker pushing and 

basketball (Chapter 5). For the second part of the problem we require the firmware developer to 

set the wocket’s frequency for sending data at 1Hz, an alteration of the current rate of 40Hz. 

Additionally, the Android programmer should perform rigorous tests to ensure a correct 

alignment of the data prior to applying the classification algorithms. The data management on 

the PAMS app side should use appropriate software framework to process data from external 

sensors. Moreover, some classification errors shown by the Android-based smartphone indicate 

the presence of a delay in obtaining the data from one of the sensing devices. The firmware and 

PAMS app developers should fix this delay, probably caused by a Bluetooth protocol issue. 

6.4.3 Wheelchair Movement Information 

Even though the classification algorithm did not always detect correctly all wheelchair-based 

PAs, the participants were very satisfied with the wheelchair movement information in terms of 
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distance and speed. The video analysis for a random sample of participants (N=2) confirmed the 

accuracy of the distance and speed information, which was consistent with the validation based 

study [120]. A minor adjustment we need to incorporate in the PAMS app is offering users the 

ability to input their wheelchair wheel diameter rather than always using the default value of 0.61 

m (~24 inches), applicable to the majority of the wheelchairs. As our participants expressed the 

desire to measure the speed and distance in mph and mile, we will modify the app to give users 

the option of choosing between the metric and the US/Imperial system. 

6.4.4 Usefulness of PAMS 

To our knowledge, there have been no studies performed on evaluating the usability of PA 

monitors among wheelchair users. The overall usability analysis of PAMS showed that all 

participants were very satisfied with PAMS and found the information provided by PAMS 

effective towards monitoring their PA. The majority of participants enjoyed interacting with the 

interface and indicated they would continue to use this device even after meeting their PA level 

goals. In addition, the triangulation analysis revealed that participants who reported they were 

athletes (more active on a regular basis) indicated that PAMS would encourage them to be 

physically more active than participants who were not athletes. One participant (P8) also 

suggested that PAMS could be used as a clinical tool for new wheelchair users. The results of 

this study are very encouraging and allow us to reduce or remove barriers that limit translating 

the PAMS technology into a consumer product. 

One of the limitations of this study is the small sample size (N=6) of participants. In 

future we plan to perform multiple usability studies to iteratively incorporate user feedback in the 
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design and development of PAMS as a consumer product [156, 161]. We also plan to perform 

rigorous tests in the laboratory to evaluate the battery recharging and use of PAMS for one to 

two weeks prior to performing a longitudinal study of PAMS in community settings. The 

software and the device development teams should also perform content analysis of recorded 

videos to guide further developments and refinement of PAMS and the PAMS app. 

6.5 CONCLUSION 

PAMS can play a crucial role in informing consumers who use wheelchairs about their PA 

levels. The study indicated that participants were very satisfied with PAMS and were ready to 

use it on a daily basis if available on the market. After incorporating the modifications mentioned 

in this study and performing some more laboratory tests, PAMS will be ready for longitudinal 

testing among MWUs in community settings. 
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7.0  DISCUSSION AND RECOMMENDATIONS FOR FUTURE WORK 

7.1 INTRODUCTION  

For the past two decades, extensive research has been performed on utilizing activity monitors in 

the ambulatory population without disabilities. However, only limited research has been 

performed in wheelchair users, a population which faces a number of additional challenges 

including environmental barriers, physiological changes and mobility limitations. Therefore, our 

research evaluated and developed algorithms for existing activity monitors and developed new 

physical activity monitors especially for wheelchair users. Physical activity monitors for manual 

wheelchair users can play a crucial role in understanding their current PA patterns in the 

community, providing them with information regarding their PA levels, and motivating them to 

lead a healthy lifestyle. Optimal PA levels in MWUs can reduce physical health problems, and 

improve the psychological well-being and quality of life. However, caution needs to be exercised 

when using activity monitors for this population. On one hand we want to increase their PA level 

but on the other we want to avoid increasing the risk of upper arm pain and injury.  
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7.2 RESEARCH STUDIES PERFORMED 

Our approach began with the development and evaluation of new models for SenseWear, an off-

the-shelf activity monitor, designed for the general population without disabilities. The EE 

estimation algorithms indicated that activity specific models estimated EE better than a general 

model, which led us to develop and evaluate classification models to detect resting, wheelchair 

propulsion, arm-ergometry, and deskwork. The results indicated that the average EE estimation 

error using the activity-specific EE prediction models for these four wheelchair-related activities 

post classification (accuracy: 96.3%) was 5.3±21.5%. The high classification accuracy and low 

EE estimation errors suggest that the SenseWear can assist researchers and clinicians to classify 

and estimate the EE for the four activities tested in this study among MWUs with SCI. 

 

Based on previous research conducted at HERL and the studies discussed above, we 

found that wheelchair mobility characteristics are crucial in studying PA patterns in MWUs. This 

insight motivated us to develop and evaluate a gyroscope based wheel rotation monitor (G-

WRM) as a component of a newly developed Physical Activity Monitor System (PAMS). PAMS 

consists of a G-WRM, which tracks wheelchair mobility, and an accelerometer, which tracks 

upper arm movement. We tested PAMS in 45 MWUs with SCI in structured (HERL) and semi-

structured (NVWG) environments and we also tested a subsection of this population (N=20) a 

second time, in their home environments. We classified the PAs into resting, arm-ergometry, 

other sedentary activities, activities involving some wheelchair movement, propulsion, basketball 

and caretaker pushing. The EE estimation results (error: -9.8%) and the classification results 

(accuracy: 89.3%) indicated that PAMS can track wheelchair-based activities in laboratory and 



 152 

 

home environments. Furthermore, we evaluated the usability of PAMS in six MWUs with SCI. 

The usability study indicated that users were very satisfied with PAMS and would use this 

device if it were available on the market. We used participatory action design concepts to 

evaluate this newly developed technology and hope that the results of this study will reduce the 

barriers of transforming PAMS into a market product.  

7.3 ALIGNMENT WITH THE PURPOSE OF THE REHABILITATION ACT AND 

NIDRR’S MISSION 

The research projects discussed in this dissertation assist persons with severe disabilities and 

therefore are closely aligned with the first priority of the Rehabilitation Act of 1973: serving 

individuals with severe disability [168]. Our work is also closely aligned with the National 

Institute of Disability and Rehabilitation Research's (NIDRR’s) mission and interests, in that it 

involves “developing rehabilitation technology” which increases health and function and quality 

of life among “individuals with the most significant disabilities” [168, 169]. We developed a 

physical activity monitor system that is “engineered to meet the special needs of individuals with 

disabilities,” is easily usable by consumers in future, and is therefore aligned with Sections 204. 

(a)(2)(B)(iv). We provide PA level feedback to consumers, researchers and clinicians through 

“existing telecommunications systems” (smart phone), matching the goal of Section 204. (a)(7); 

in future, consumers will share this physical activity information with their friends and family 

through social networks to encourage healthier lifestyles. Moreover, we believe that our work 

will increase knowledge of and improve methods in the rehabilitation of individuals with severe 
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disabilities by assisting therapists and rehabilitation professionals to evaluate the efficacy of 

physical rehabilitation programs, matching the goal of Section 204. (a) (2)(B)(vi).  

As per the NIDRR's Long-Range Plan for Fiscal Years 2010-14, improvements in health 

and function are critical antecedents to improve employment for persons with disabilities [169]. 

This work concentrated on the individual level of NIDRR’s units of analysis for employment 

research and tried to address components of objectives 1.2 and 1.4 under the research and 

development goals [169]. A physical activity monitor system that quantifies a manual wheelchair 

user's upper extremity usage can indicate good arm function (Strategy 1.4.1), which is important 

to maintain mobility needed for employment [169]. Increased mobility helps MWUs live 

independently and participate in their community. Additionally, an increase in PA levels in 

MWUs can reduce secondary health conditions (Strategy 1.2.1), such as pain, fatigue, weight 

gain, muscle wasting, pressure ulcers and deconditioning, which also have an impact on work 

attendance and performance [169]. 

7.4 CONTRIBUTIONS 

The contributions of our research are the following: we proved that off-the-shelf activity 

monitors cannot be directly used in MWUs, we explored collaborations with the industry 

(BodyMedia Inc.), we developed an activity monitor specific for wheelchair users (both 

hardware and software) which provides a comprehensive summary of PAs, consumers evaluated 

PAMS prototype and liked it, and we are currently exploring commercialization partners through 

Small Business Innovation Research grants. During this research we developed and evaluated 
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algorithms for an off-the-shelf activity monitor and for a newly built physical activity monitoring 

system specifically developed for MWUs with SCI. We used data from a single multi-sensor 

based SenseWear activity monitor and multiple sensors based PAMS to quantify PAs in MWUs 

with an SCI. We provided real-time feedback to our participants about their PA levels in terms of 

distance, speed, EE and duration of moderate intensity PAs through an Android-based 

smartphone in MWUs with SCI. Furthermore, we validated PAMS through testing done both in 

laboratory and home environments.  

7.5 ACCURACY OR ERROR ESTIMATION IN ACTIVITY MONITORS 

A number of studies evaluated the validity of physical activity monitors in ambulatory 

population without disabilities by measuring the accuracy, namely the complement of error 

(Accuracy = 100% - Error%). Some studies reported very high accuracies (>90%), others 

reported high to medium level accuracies (>70%) and a third group reported low accuracies. In 

this section we discuss the accuracy of activity monitors in terms of the EE error estimation 

compared to a criterion. The EE error estimation can be divided into at least three parts a) error 

due to certain types of PAs where the device over/underestimates the EE, b) average error over a 

session including several PAs or extending over an entire day (24 hours), during which the 

device combines the over and under estimation of the EE, and c) error in a group of participants, 

for certain specific PAs or over a session, where the error is a combination of over and under 

estimation of EE within and between the participants. All these errors are important as they 

impact the performance of the device in a) specific interventions such as aerobic exercises or 



 155 

 

strengthening exercise, b) over a session or a 24 hour day, and c) in new participants who were 

not involved in the modeling phase of the algorithms. Researchers should consider the 

advantages and disadvantages of various errors discussed here prior to developing activity 

monitors to assess performance in a specific PA or to estimate the overall EE. Along these lines, 

athletes can use activity monitors towards improving their performance in a specific PA or 

regular consumers can use activity monitors in modifying their overall EE in order to maintain or 

decrease their weight.   

Even though developers of activity monitors need to control the EE error types, the 

performance of an activity monitor is also determined by its ability to quantify most of the PAs 

at a reasonable cost and ease of use. Additionally, developers need to consider the consistency of 

the device, a feature which impacts the wheelchair users’ ability to track PA patterns on a day-to-

day basis. In other words, a reasonably accurate (>80%) and reliable activity monitor that tracks 

multiple types of wheelchair based PAs may be more beneficial than a very accurate (>90%) 

device which identifies a smaller number of PAs. A device that can work with multiple PAs 

might be able to pick and show the relative difference of PA levels performed on a regular basis 

within the same person allowing users to maintain or increase their PA levels. Another important 

aspect is that the performance of the activity monitor may change slightly in an individual who 

progresses from a sedentary to an active PA behavior meeting the regular PA quota. The energy 

expended in this person may be reduced slightly as they might become more efficient in 

performing the same PA. In this case the change in demographic variables, such as weight and 

fat content (based on skinfold measure), measured on a regular or monthly basis may be able to 

better predict the EE.  
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7.6 FUTURE RESEARCH AVENUES  

The three studies performed here identified two solutions: SenseWear and PAMS. Both devices 

perform activity monitoring in various wheelchair-based PAs among MWUs with SCI. In 

addition, these studies stimulated our interest towards a number of new avenues of research in 

the field of activity monitoring among persons with disabilities. This section is divided into 

immediate or near future priorities and long term priorities. 

7.6.1 Near Future Priorities 

7.6.1.1 Estimation of PA in METs 

Another way of approaching the PA quantification is to estimate the PA data in terms of METs, 

which is independent of the subject parameters [18, 70]. The PA estimation in terms of METs 

can then be used to estimate EE in wheelchair users. MET values can also be used to identify the 

duration of PA in light, medium and vigorous PAs.  

7.6.1.2 Algorithms  

Our research group will perform studies to evaluate various machine learning and traditional 

statistical algorithms to detect and estimate PA levels for various wheelchair-based PAs. We will 

also implement simple decision based algorithms to mimic common sense approach to prevent 

errors from applying machine learning algorithms on data that has not been previously dealt 

with. This will reduce frustration among researchers and consumers when tracking PA in 

community settings.  
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7.6.1.3 Longitudinal Evaluation of PAMS in Community 

Based on the models and the technology developed here we will ensure the reliability and 

robustness of our device through multiple laboratory-based tests. Then we plan to perform a 

longitudinal study of one to four weeks. Future studies should compare the PA level estimation 

from PAMS with criterion measures such as doubly labeled water [93].  

7.6.1.4 Monitoring Upper Arm Movements and Exercise Interventions 

The publication Preservation of Upper Limb Function Following Spinal Cord Injury, a clinical 

practice guideline for health-care professionals, indicates that wheelchair users are at high risk of 

shoulder pain, rotator cuff injuries and carpal tunnel syndrome due to improper technique and 

overuse of upper extremities during wheelchair propulsion and transfers [134]. To address this 

problem we need to study the use of PAMS in monitoring propulsion and transfers. Based on our 

research we identified characteristic features of upper arm movement that may play a crucial role 

in objectifying and detecting upper arm movement during propulsion and transfers. We plan to 

modify PAMS so that it can be used as a clinical tool to train new wheelchair users in 

community settings.  

Future research should develop and evaluate PAMS to estimate PAs that involve larger 

muscles in wheelchair users such as rowing, handcycling, tennis, and basketball. Further, this 

device can help evaluate the effectiveness of exercise based intervention programs to improve 

health and function among wheelchair users [59, 62, 65].  
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7.6.2 Long term priorities  

7.6.2.1 Monitoring Wheelchair Use in Community Settings 

Upcoming research should evaluate whether G-WRM, a key component of PAMS, can track 

manual wheelchair use in the community settings over several months. Monitoring assistive 

technology use in community settings will permit evidence based practice in wheelchair usage 

and prescription [117, 118].  

 

7.6.2.2 Extending PAMS to Wheelchair users with Other disabilities 

Research should be performed to develop algorithms for PAMS to estimate PA in persons with 

other disabilities such as multiple sclerosis, cerebral palsy, and amputees. This also involves 

identifying how PAMS can monitor PA in power wheelchair users. 

7.6.2.3 Making PA tracking Fun 

Future research should investigate how to make the interaction between users and the PAMS app 

enticing. If users were motivated to use PAMS consistently, on a daily basis, this would increase 

their adherence to a healthy lifestyle. Aspects of Human Computer Interaction such as games, 

incorporation of social networks and virtual buddies could motivate users to attain and maintain 

their PA levels. The creation of virtual buddies can take into account a number of parameters 

such as interviews, personal goals and customizing the physical activity monitor for each 

individual. Self-monitoring along with social support can play a crucial role in improving the 

quality of life of wheelchair users.  
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APPENDIX A 

FEATURES USED FOR CLASSIFICATION AND REGRESSION EQUATIONS AND 

THEIR DESCRIPTION. 

Table 34: Features used for classification and regression equations and their description. 

Feature Description of a feature 
mean_x_rtUArm Mean of acceleration in one axis 
stdev_x_rtUArm Standard deviation of acceleration in one axis 
rms_x_rtUArm Root mean square of acceleration in one axis 
mad_med_x_rtUArm Mean absolute deviation with respect to median in one axis 
zcr_x_rtUArm Zero cross rate in one axis 
mcr_x_rtUArm Mean cross rate in one axis 
ampl_x_rtUArm Amplitude in one axis 
energy_x_rtUArm Energy content of one axis acceleration 
entropy_x_rtUArm Entropy content of one axis acceleration 

corr_x_xyz_rtUArm 
Correlation between acceleration of an axis with the resultant 
acceleration 

corr_x_yrtUArm Correlation between acceleration of two axes 
TotalPower_x_rtUArm Total power for frequencies in the range of 0.3-15 Hz 
1DomFreq_x_rtUArm Dominant frequency content in the range of 0.3-15 Hz 
1DomFreqPwr_x_rtUArm Dominant frequency content's Power 
2DomFreq_x_rtUArm 2nd dominant frequency content in the range of 0.3-15 Hz 
2DomFreqPwr_x_rtUArm 2nd dominant frequency content's Power 
3DomFreq_x_rtUArm 3rd dominant frequency content in the range of 0.6-2.5 Hz 
3DomFreqPwr_x_rtUArm 3rd dominant frequency content's Power 
Ratio1DomFreq_w_Pwr_x_rtUArm Ratio of dominant frequency's power with total power 
NumPeaks_x_rtUArm Number of peaks  
mad_mean_x_rtUArm Mean absolute deviation with respect to mean 
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Table 34 (continued) 

dist_axis_x_rtUArm Difference between acceleration's of two of the axes  
var_x_rtUArm Variance in acceleration 
energy_WO_dcComp_x_rtUArm Energy without the DC component in one axis 
entropy_WO_dcComp_x_rtUArm Entropy without the DC component in one axis 
var_hist_x_rtUArm Variance of six minutes or less of acceleration in one axis 
stdev_hist_x_rtUArm Standard deviation of six minutes or less of acceleration in one axis 
backtrend_x_rtUArm Back trend of one axis acceleration 
freqRatio_hist_x_rtUArm Ratio of dominant frequency of the current and the past minute 
XMAD*YMAD Multiplication of mean absolute deviation in two axes 
XMAD+YMAD Sum of mean absolute deviation in two axes 
Weight Weight of the person 
Height Height of the person 
Age Age of the person 
is_male Gender of the person 
WeightPlusWheelchair Weight of the person and their wheelchair 
is_parapelgia Does the person have paraplegia or tetraplegia 
Completeness Completeness of injury 
XMAD*Height Mean absolute deviation multiplied by height 
XMADDivHeight Mean absolute deviation divided by height 
XMAD*HeightSqrt Mean absolute deviation multiplied by square root of height 
XMAD*HeightSq Mean absolute deviation multiplied by square of height 
HeightDivXMAD Height divided by mean absolute deviation 
MassPow0.75 Mass to the power of 0.75 
HeightSqRoot Square root of height 
HeightSquare Square of height 
HB_BMR Harris-Benedict basal metabolic rate 
Mufflin_BMR Mufflin basal metabolic rate 
WHO_RMR World Health Organization resting metabolic rate 
LeanBodyMass Lean body mass 
WHORMR_div_HBBMR World Health Organization resting metabolic rate divided by HB_BMR 
WHORMR_div_mass World Health Organization resting metabolic rate divided by mass 

WHORMR_div_LBM 
World Health Organization resting metabolic rate divided by lean body 
mass 
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APPENDIX B 

CLASSIFICATION PERFORMANCE OF NAÏVE BAYES, DECISION TREE AND 

SUPPORT VECTOR MACHINE ALGORITHMS USING 80-20CV. 

Phase I: Classification performance of Naïve Bayes, Decision Tree and Support Vector Machine 

algorithms using 10-fold cross validation on the 80% of subjects’ data used for training and 

testing on the 20% of subjects’ data not used for training.  The algorithms classified the PAs into 

wheelchair based PAs that involve moving continuously for most of the time, PAs that may 

require moving in the wheelchair and stationary activities Table 35. 
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Table 35: Phase I: Classification performance of Naïve Bayes, Decision Tree and Support Vector 

Machine algorithms using 80-20CV. 

Device Training 
Accuracy 

Testing 
Accuracy 

Features Model 

PAMS-Arm 0.9299 0.970179 mean_v_G-WRM, mcr_v_G-WRM NB 
PAMS-Arm 0.9350 0.902584 mean_v_G-WRM, mcr_v_G-WRM J48 
PAMS-Arm 0.9356 0.980119 rms_v_G-WRM, mcr_v_G-WRM SVM 
PAMS-Wrist 0.9299 0.970179 mean_v_G-WRM, mcr_v_G-WRM NB 
PAMS-Wrist 0.9350 0.902584 mean_v_G-WRM, mcr_v_G-WRM J48 
PAMS-Wrist 0.9356 0.980119 rms_v_G-WRM, mcr_v_G-WRM SVM 

G-WRM 0.9299 0.970179 mean_v_G-WRM, mcr_v_G-WRM NB 
G-WRM 0.9350 0.902584 mean_v_G-WRM, mcr_v_G-WRM J48 
G-WRM 0.9356 0.980119 rms_v_G-WRM, mcr_v_G-WRM SVM 

Arm Wocket 0.7157 0.765408 stdev_xyz_rtUArm, corr_y_xyz_rtUArm NB 

Arm Wocket 0.7870 0.787276 Ratio1DomFreq_w_Pwr_xyz_rtUArm, 
mad_med_xyz_rtUArm 

J48 

Arm Wocket 0.7256 0.765408 stdev_xyz_rtUArm, corr_y_zrtUArm SVM 
Wrist Wocket 0.7737    0.876740 mean_x_rtWrist, mad_med_xyz_rtWrist NB 
Wrist Wocket 0.8074 0.793241 mean_x_rtWrist, entropy_WO_dcComp_xyz_rtWrist J48 
Wrist Wocket 0.7680 0.829026 mean_x_rtWrist, ampl_y_rtWrist SVM 

 
 

Phase II: Classification performance of Naïve Bayes, Decision Tree and Support Vector 

Machine algorithms using 10-fold cross validation on the 80% of subjects’ data used for training 

and testing on the 20% of subjects’ data not used for training.  The algorithms classified the 

Moving (M) PAs into wheelchair propulsion, caretaker pushing, and basketball Table 36. The 

algorithms classified the Non-Moving (NM) PAs into resting, arm-ergometry, other activities. 
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Table 36: Phase II: Classification performance of Naïve Bayes, Decision Tree and Support Vector Machine 

algorithms using 80-20CV. 

Device M/ 
NM  

Training 
Accuracy 

Testing  
Accuracy 

Features Model 

PAMS-
Arm 

M 0.9501 0.9434 2DomFreqPwr_y_rtUArm, ampl_z_rtUArm, energy_v_G-
WRM 

NB 

PAMS-
Arm 

NM 0.8423 0.8315 mcr_xyz_rtUArm, corr_y_xyz_rtUArm, zcr_z_rtUArm NB 

PAMS-
Arm 

M 0.9151 0.9612 Ratio1DomFreq_w_Pwr_y_rtUArm, 
3DomFreqPwr_y_rtUArm,    rms_x_rtUArm 

J48 

PAMS-
Arm 

NM 0.8678 0.8495 2DomFreqPwr_xyz_rtUArm, stdev_z_rtUArm,     
ampl_xyz_rtUArm 

J48 

PAMS-
Arm 

M 0.9557 0.9340 stdev_y_rtUArm, ampl_y_rtUArm, entropy_v_G-WRM SVM 

PAMS-
Arm 

NM 0.8561 
 

0.8602 mcr_xyz_rtUArm, mcr_z_rtUArm, ampl_z_rtUArm SVM 

PAMS-
Wrist 

M 0.9677 0.9009 mcr_xyz_rtWrist, ampl_x_rtWrist, dist_axis_z_rtWrist NB 

PAMS-
Wrist 

NM 0.8655 0.8351 mcr_xyz_rtWrist, mean_x_rtWrist, dist_axis_z_rtWrist NB 

PAMS-
Wrist 

M 0.9713 0.9387 Ratio1DomFreq_w_Pwr_xyz_rtWrist, mean_x_rtWrist,    
3DomFreqPwr_xyz_rtWrist 

J48 

PAMS-
Wrist 

NM 0.9032 0.8638 3DomFreqPwr_xyz_rtWrist, mean_x_rtWrist, 
1DomFreqPwr_xyz_rtWrist 

J48 

PAMS-
Wrist 

M 0.9234 0.8396 entropy_WO_dcComp_xyz_rtWrist, NumPeaks_x_rtWrist,     
corr_z_xrtWrist 

SVM 

PAMS-
Wrist 

NM 0.8821 0.8315 NumPeaks_x_rtWrist, ampl_z_rtWrist, backtrend_x_rtWrist SVM 

G-WRM M 0.8873 0.8019 3DomFreqPwr_v_G-WRM, freqRatio_hist_v_G-WRM,  
zcr_v_G-WRM 

NB 

G-WRM NM  0.6197 0.5018 rms_v_G-WRM, zcr_v_G-WRM, entropy_v_G-WRM NB 
G-WRM M 0.9206 0.8774 3DomFreqPwr_v_G-WRM, mcr_v_G-WRM, entropy_v_G-

WRM 
J48 

G-WRM NM  0.6203 0.2437 2DomFreq_v_G-WRM'    'zcr_v_G-WRM    mcr_v_G-WRM J48 
G-WRM M 0.8079 0.7453 ampl_v_G-WRM, 3DomFreqPwr_v_G-WRM, 

entropy_v_G-WRM 
SVM 

G-WRM NM  0.6197 0.5018 stdev_v_G-WRM, rms_v_G-WRM, mad_med_v_G-WRM SVM 
Arm 
Wocket 

M 0.9501 0.9293 2DomFreqPwr_y_rtUArm, ampl_z_rtUArm, 
TotalPower_y_rtUArm 

NB 

Arm 
Wocket 

NM 0.8423 0.8315 mcr_xyz_rtUArm'    'corr_y_xyz_rtUArm'    'zcr_z_rtUArm' NB 

Arm 
Wocket 

M 0.9612 0.9151 Ratio1DomFreq_w_Pwr_y_rtUArm, 
3DomFreqPwr_y_rtUArm, rms_x_rtUArm 

J48 

Arm 
Wocket 

NM 0.8678 0.8495 2DomFreqPwr_xyz_rtUArm'    'stdev_z_rtUArm'    
ampl_xyz_rtUArm' 

J48 

Arm 
Wocket 

M 0.9308 0.8585 stdev_y_rtUArm, ampl_y_rtUArm, 
2DomFreqPwr_xyz_rtUArm 

SVM 

Arm 
Wocket 

NM 0.8561 0.8602 mcr_xyz_rtUArm, mcr_z_rtUArm, ampl_z_rtUArm SVM 
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Table 36 (continued) 
 

Arm 
Wocket 

M 0.9501 0.9293 2DomFreqPwr_y_rtUArm, ampl_z_rtUArm, 
TotalPower_y_rtUArm 

NB 

Arm 
Wocket 

NM 0.8423 0.8315 mcr_xyz_rtUArm'    'corr_y_xyz_rtUArm'    'zcr_z_rtUArm' NB 

Arm 
Wocket 

M 0.9612 0.9151 Ratio1DomFreq_w_Pwr_y_rtUArm, 
3DomFreqPwr_y_rtUArm, rms_x_rtUArm 

J48 

Arm 
Wocket 

NM 0.8678 0.8495 2DomFreqPwr_xyz_rtUArm'    'stdev_z_rtUArm'    
ampl_xyz_rtUArm' 

J48 

Arm 
Wocket 

M 0.9308 0.8585 stdev_y_rtUArm, ampl_y_rtUArm, 
2DomFreqPwr_xyz_rtUArm 

SVM 

Arm 
Wocket 

NM 0.8561 0.8602 mcr_xyz_rtUArm, mcr_z_rtUArm, ampl_z_rtUArm SVM 

Wrist 
Wocket 

M 0.9677 0.9009 mcr_xyz_rtWrist, ampl_x_rtWrist, dist_axis_z_rtWrist NB 

Wrist 
Wocket 

NM 0.8655 0.8351 mcr_xyz_rtWrist, mean_x_rtWrist, dist_axis_z_rtWrist NB 

Wrist 
Wocket 

M 0.9713 0.9387 Ratio1DomFreq_w_Pwr_xyz_rtWrist, mean_x_rtWrist    
3DomFreqPwr_xyz_rtWrist 

J48 

Wrist 
Wocket 

NM 0.9032 0.8638 3DomFreqPwr_xyz_rtWrist, mean_x_rtWrist,   
1DomFreqPwr_xyz_rtWrist 

J48 

Wrist 
Wocket 

M 0.9234 0.8396 entropy_WO_dcComp_xyz_rtWrist, NumPeaks_x_rtWrist,    
corr_z_xrtWrist 

SVM 

Wrist 
Wocket 

NM 0.8821 0.8315 NumPeaks_x_rtWrist, ampl_z_rtWrist, backtrend_x_rtWrist' SVM 
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APPENDIX C 

FEATURES CHOSEN BY REGRESSION ANALYSIS USING 80-20CV TO ESTIMATE 

EE FOR VARIOUS WHEELCHAIR-RELATED PAS.   

Table 37: Features chosen by regression analysis using 80-20CV to estimate EE for various wheelchair-

related PAS. 

Device Activity  Training 
MAE % 

Testing 
MAE % 

Features 

PAMS-
Arm 

Resting  -7.05 -5.32 LeanBodyMass, mean_v_G-WRM,    
entropy_WO_dcComp_z_rtUArm, 1DomFreq_x_rtUArm,     
rms_z_rtUArm 

PAMS-
Arm 

Arm-
ergometry 

-14.44   -1.66 backtrend_xyz_rtUArm, Ratio1DomFreq_w_Pwr_xyz_rtUArm, 
entropy_WO_dcComp_y_rtUArm, NumPeaks_z_rtUArm, 
energy_v_G-WRM 

PAMS-
Arm 

OA Not 
moving 

-10.14 -11.86 ZMAD*HeightSqrt, is_male, stdev_z_rtUArm, 
stdev_hist_z_rtUArm, 1DomFreqPwr_x_rtUArm 

PAMS-
Arm 

May be 
moving 

-5.99 -7.27 mad_mean_x_rtUArm, LeanBodyMass, stdev_hist_x_rtUArm, 
2DomFreqPwr_y_rtUArm, mad_med_x_rtUArm 

PAMS-
Arm 

Propulsion   -7.50 -11.66 Ratio1DomFreq_w_Pwr_xyz_rtUArm, 
2DomFreqPwr_xyz_rtUArm, MassPow0.75,   freqRatio_hist_v_G-
WRM,, 1DomFreqPwr_v_G-WRM, 

PAMS-
Arm 

Caretaker 
pushing 

-6.66 -0.96 LeanBodyMass, energy_WO_dcComp_z_rtUArm, 
entropy_x_rtUArm, mcr_z_rtUArm, 
entropy_WO_dcComp_y_rtUArm 

PAMS-
Arm 

Basketball -1.87 -15.64 backtrend_v_G-WRM, LeanBodyMass, mad_med_xyz_rtUArm,    
2DomFreqPwr_x_rtUArm, entropy_WO_dcComp_xyz_rtUArm 

PAMS-
Wrist 

Resting  -6.82 -6.94 LeanBodyMass, dist_axis_x_rtWrist,     
freqRatio_hist_xyz_rtWrist, mcr_xyz_rtWrist, zcr_x_rtWrist 

PAMS-
Wrist 

Arm-
ergometry 

-7.69 5.34 XMAD+YMAD, mean_v_G-WRM, NumPeaks_x_rtWrist,    
freqRatio_hist_x_rtWrist, energy_WO_dcComp_x_rtWrist 

PAMS-
Wrist 

OA Not 
moving 

-9.73 -12.61 NumPeaks_y_rtWrist, is_male, TotalPower_y_rtWrist, 
stdev_hist_xyz_rtWrist, entropy_y_rtWrist 

PAMS-
Wrist 

May be 
moving 

-6.57 -1.50 LeanBodyMass, ampl_y_rtWrist, stdev_hist_z_rtWrist, 
WHORMR_div_LBM, WHO_RMR 
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Table 37 (continued) 
 

PAMS-
Wrist 

Propulsion -5.16 -7.81 3DomFreqPwr_v_G-WRM, backtrend_v_G-WRM, MassPow0.75, 
corr_y_xyz_rtWrist, TotalPower_xyz_rtWrist 

PAMS-
Wrist 

Caretaker 
pushing 

-7.45 -4.77 LeanBodyMass, 2DomFreqPwr_z_rtWrist, stdev_hist_v_G-WRM,  
corr_x_xyz_rtWrist, 1DomFreq_z_rtWrist 

PAMS-
Wrist 

Basketball -1.91 -20.14 backtrend_v_G-WRM, NumPeaks_xyz_rtWrist, NumPeaks_v_G-
WRM,  Mufflin_BMR, 2DomFreqPwr_x_rtWrist 

G-WRM Resting  -7.00   -5.35 LeanBodyMass, mean_v_G-WRM, 3DomFreq_v_G-WRM,    
2DomFreq_v_G-WRM,  HB_BMR 

G-WRM Arm-
ergometry 

-18.30 -7.58 freqRatio_hist_v_G-WRM, entropy_WO_dcComp_v_G-WRM,   
Ratio1DomFreq_w_Pwr_v_G-WRM, '2DomFreq_v_G-WRM,    
'HeightSquare' 

G-WRM OA Not 
moving 

-12.10 -11.32 LeanBodyMass, Ratio1DomFreq_w_Pwr_v_G-WRM, 
HeightSqRoot, 2DomFreq_v_G-WRM, 3DomFreq_v_G-WRM 

G-WRM May be 
moving 

-7.23 0.24 LeanBodyMass, Completeness, WHORMR_div_LBM, 
WHO_RMR, stdev_hist_v_G-WRM 

G-WRM Propulsion -6.31 -15.95 3DomFreqPwr_v_G-WRM, backtrend_v_G-WRM,   
MassPow0.75, 3DomFreq_v_G-WRM, ampl_v_G-WRM 

G-WRM Caretaker 
pushing 

-7.38 -6.39 LeanBodyMass, stdev_hist_v_G-WRM, Age, 
WHORMR_div_mass, WHORMR_div_LBM 

G-WRM Basketball   -1.70 -18.46 backtrend_v_G-WRM, LeanBodyMass, NumPeaks_v_G-WRM,    
freqRatio_hist_v_G-WRM,   Ratio1DomFreq_w_Pwr_v_G-WRM 

Arm-
Wocket 

Resting  -6.92 -6.82 LeanBodyMass, HeightDivZMAD, energy_xyz_rtUArm, 
ZMAD+XMAD, HeightSquare 

Arm-
Wocket 

Arm-
ergometry 

-16.08 -6.14 backtrend_xyz_rtUArm, Ratio1DomFreq_w_Pwr_xyz_rtUArm,    
entropy_WO_dcComp_y_rtUArm, NumPeaks_z_rtUArm, 
1DomFreqPwr_z_rtUArm 

Arm-
Wocket 

OA Not 
moving 

-10.14 -11.86 ZMAD*HeightSqrt, is_male, stdev_z_rtUArm, 
stdev_hist_z_rtUArm, 1DomFreqPwr_x_rtUArm 

Arm-
Wocket 

May be 
moving 

-5.99 -7.28 mad_mean_x_rtUArm, LeanBodyMass, stdev_hist_x_rtUArm, 
2DomFreqPwr_y_rtUArm, mad_med_x_rtUArm 

Arm-
Wocket 

Propulsion -8.99 -14.32 Ratio1DomFreq_w_Pwr_xyz_rtUArm, 
2DomFreqPwr_xyz_rtUArm, MassPow0.75, 
freqRatio_hist_x_rtUArm, NumPeaks_z_rtUArm 

Arm-
Wocket 

Caretaker 
pushing 

-6.66 -0.96 LeanBodyMass, energy_WO_dcComp_z_rtUArm, 
entropy_x_rtUArm, mcr_z_rtUArm, 
entropy_WO_dcComp_y_rtUArm 

Arm-
Wocket 

Basketball -2.70 -28.81 mad_med_xyz_rtUArm, LeanBodyMass, ZMAD*Height,   
entropy_WO_dcComp_x_rtUArm, ampl_z_rtUArm 

Wrist-
Wocket 

Resting  -6.82 -6.94 LeanBodyMass, dist_axis_x_rtWrist,   freqRatio_hist_xyz_rtWrist, 
mcr_xyz_rtWrist, zcr_x_rtWrist 

Wrist-
Wocket 

Arm-
ergometry 

-9.05 -31.61 XMAD+YMAD, freqRatio_hist_x_rtWrist, energy_x_rtWrist,    
Ratio1DomFreq_w_Pwr_y_rtWrist, is_parapelgia 

Wrist-
Wocket 

OA Not 
moving 

-9.73 -12.61 NumPeaks_y_rtWrist, is_male, TotalPower_y_rtWrist,  
stdev_hist_xyz_rtWrist, entropy_y_rtWrist 

Wrist-
Wocket 

May be 
moving 

-6.57 -1.50 LeanBodyMass, ampl_y_rtWrist, stdev_hist_z_rtWrist, 
WHORMR_div_LBM, WHO_RMR 

Wrist-
Wocket 

Propulsion -10.95 -16.47 entropy_WO_dcComp_xyz_rtWrist, freqRatio_hist_x_rtWrist, 
is_male, is_parapelgia, 1DomFreq_xyz_rtWrist 
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Table 37 (continued) 
 
Wrist-
Wocket 

Caretaker 
pushing 

-7.21    -5.66 LeanBodyMass, 2DomFreqPwr_z_rtWrist, corr_z_xyz_rtWrist, 
HeightSquare, WHORMR_div_LBM 

Wrist-
Wocket 

Basketball -5.13 -33.12 NumPeaks_xyz_rtWrist, backtrend_xyz_rtWrist, mcr_z_rtWrist, 
1DomFreqPwr_y_rtWrist, corr_y_xyz_rtWrist 
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APPENDIX D 

PHYSICAL ACTIVITY MEASUREMENT  

IN MANUAL WHEELCHAIR USERS WITH SCI – PART I  

Part I: Demographics and Basic Information 
 
Date: ___/___/______ 
 
Gender:   Male (1)      Female (0)              
 
Age: ______ 
          
Body weight:  ______ lbs           
 
Height: ______  feet  ______inches 
 
SCI Level ________________________ 
 
Completeness of Injury:  Complete     Incomplete 
 
Date of Injury Onset: ___/___/______ 
 
Ethnic Origin:  

  African American (1) 
 Asian American (2)  
 Caucasian (3) 
 Hispanic (4) 
 Native American (5) 
 Other (6): _________________________ 
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Manual Wheelchair Make (brand): 
☐ Action/Invacare  ☐ Pride 
☐ Everest and Jennings ☐ Sunrise/Quickie   
☐ Kuschall   ☐ TiLite/TiSport  
☐ Otto Bock   ☐ Other (please specify): ________________________ 
 
Manual Wheelchair Model: _________________ 
 
Diameter of your wheelchair’s wheel in inches: _________________ 
 
When did you start using a manual wheelchair: ____/____/____ (mm/dd/year) 
 
Which is your dominant hand?     Right  Left 
 
Are you an athlete?   Yes   No 
 
Do you smoke?      Yes     No 
 
Have you had or do you presently have any of the following conditions?  
 High blood pressure      Seizures     Lung disease     Fainting or dizziness 
  Diabetes     High cholesterol    Shortness of breath at rest or with mild exertion 
  Unusual fatigue or shortness of breath with usual activities 
 
Do you follow any specific dietary intake plan?     Yes     No 
 
In general how do you feel about your nutritional habits? 

 Excellent 
 Very good 
 Good 
 Fair 
 Poor 
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Physical Activity Information 
 
 
1. What is the approximate distance you propel your wheelchair on a typical day?  
 
 ______miles per day 
 ______miles per week (include weekdays and weekends) 
 Don’t know/Not sure  
 
2. During the past month, other than your regular job and propelling your wheelchair, 
did you participate in any physical activities or exercises? (Check all that apply)  
 

Activity Type Check 
() 

Frequency (number of 
times per week) 

Average duration of each 
exercise session (minutes) 

Handcycling    
Wheelchair 
Basketball 

   

Wheelchair Tennis    
Wheelchair Rugby    
Arm-ergometry    
Swimming    
Weights    
Resistance Band    
Sled Hockey    
Other:     
Other:    
Other:    

 

 

3. In general, how do you rate your fitness level? 
 Excellent 
 Very good 
 Good 
 Fair 
 Poor 
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Smart Phone Use Information 
 

1. Do you have a smart phone (i.e., a phone that can access internet)? 
 If no, please provide a reason (check all that apply, and skip the rest of questions from the 
Smart Phone Use Information questionnaire) 

 Cost  
 I’ve tried, but I found it difficult to use 
 I do not need other features except calls.  
 Other, please specify  _________ 

 
 Yes (check all that apply):  

 IPhone 
 Blackberry 
 Motorola android 
 HTC android 
 Samsung galaxy 
 Other, please specify _________ 

 
2. Does your phone have touch screen capability? 
 Yes 

 Very easy to use 
 Somewhat easy to use 
 A little difficult to use 
 Difficult to use 

 
 No 

 
3. How long have you been using a smart phone?  
 Less than a month 
 1-6 month 
 6 month – a year 
 1-2 year 
 2-3 year 
 More than 3 years 

 
4. What provider that you’re using right now for your smart phone? 
 Verizon     AT&T 
 T-Mobile    Sprint 
 Virgin     Cricket 
 Other, please specify___________________ 
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5. Please state your average hours of smart phone use per day (including phone calls, 
internet browsing, email etc.)?  

 
 Less than 1 hour 
 1-2 hours 
 2-4 hours 
 4-6 hours 
 More than 6 hours 

 
6. When you use your smart phone, what functions do you usually use? (Choose all that 

apply)  
 

 Browsing internet 
 Entertaining yourself (listening music, watching movie, etc.) 
 Accessing social networking site (Facebook, Tweeter, etc.) 
 Accessing email  
 Text messaging 
 Other, please specify ___________________ 

 
7. On a scale of 1-5 (1 being low and 5 being high), how fluent do you regard yourself as a 

smart phone user? 
 

1 2 3 4 5 

 
8. On a scale of 1-5 (1 being low and 5 being high), how essential is a smart phone to you? 
 

1 2 3 4 5 

 
9. On a scale of 1-5 (1 being low and 5 being high), how satisfied are you with your current 

smart phone? 
 

1 2 3 4 5 

 
10. In your opinion, what do you miss from your smart phone (check all that apply)? 
 
 Bigger screen size 
 Bigger button or keyboard size 
 Bigger font size 
 Simplicity of the operation 
 None of the above 
 Other, please specify_______ 
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APPENDIX E 

PHYSICAL ACTIVITY MEASUREMENT IN MANUAL WHEELCHAIR USERS WITH 

SCI – PART II 

Part II: Exploratory Questionnaire 
 
Physical Activity Stages of Change 
“Physical activity or exercise includes activities such as continuously propelling your 
wheelchair for half a mile, propelling your wheelchair at a faster pace, handcycling, wheelchair 
basketball, wheelchair tennis, wheelchair rugby, arm-ergometry, swimming, weights, resistance 
band or any other activity in which the exertion is at least as intense as these activities.” 
 
1. I am currently physically active.  

a. Yes 
b. No 

 
2. I intend to become more physically active in the next six months. 

a. Yes 
b. No 

 
“For activity to be regular, it must add up to a total of 30 minutes or more per day and be done 
at least five days per week. For example, you could perform one 30-minute exercise session or 
perform three 10-minute exercise sessions for a total of 30 minutes.” 

 
3. I currently engage in regular physical activity.  

a. Yes 
b. No 

 
4. I have been regularly physically active for the past six months.  

a. Yes 
b. No 
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Food and Physical Activity Balance 
 
How do you balance food (nutrition) and physical activity (energy expenditure)? 
 
1. Do you keep an account of the calories of food you eat or consume over a day?  

 
a. Yes (check all that apply ) 
 By recording or logging your meals (food label or nutrition facts) 
 By using an online weight management or calorie consumption tool 
 Other. Explain _________________ 
 

b. No 
 

2. Do you track the amount of wheelchair propulsion on a daily basis?  
 

a. Yes (check all that apply ) 
 Track the distance travelled by counting the number of blocks 
 Track the distance travelled by bike pedometer 
 Track the time duration of wheelchair propulsion 
 Other. Explain _________________ 
 

b. No [Go to Question 4 below] 
 

3. Are you satisfied with the current way of measuring the amount of wheelchair 
propulsion? 

 
a. Very satisfied 
b. Satisfied 
c. Neither satisfied nor dissatisfied  
d. Dissatisfied 
e. Very dissatisfied  

 
4. Do you track the amount of physical activity you perform (other than wheelchair 

propulsion)?  
 
a. Yes (check all that apply ) 
 Track the time duration of your physical activity 
 Track the number of repetitions or sets for resistance exercises  
 Track your pulse (example: heart rate) 
 Other. Explain _________________ 
 

b. No [Go to Question 6 below] 
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5. Are you satisfied with the current way of measuring physical activity? 

 
a. Very satisfied 
b. Satisfied 
c. Neither satisfied nor dissatisfied  
d. Dissatisfied 
e. Very dissatisfied  
 

6. Do you have other methods to maintain a balance between nutrition and physical 
activity?  

 
a. Yes. Explain _________________ 
b. No 

 
7. Do you have any suggestion on how physical activity of wheelchair users should be 

measured? 
 
a. Yes. Explain _________________ 
b. No 
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APPENDIX F 

PHYSICAL ACTIVITY MEASUREMENT IN MANUAL WHEELCHAIR USERS WITH 

SCI – PART III 

Part III: Usability Testing of PAMS 
 
Securement of a Physical Activity Monitor System 

 
1. In general, what do you think about the securement of the physical activity monitor 

system. 
 

a. Very easy 
b. Easy 
c. Neutral 
d. Difficult 
e. Very difficult 
Explain _________________ 
 

2. How satisfied are you with 
 
a. the dimensions (size and weight) of the wheel rotation monitor? 
 
Not satisfied at 

all 
Not very 
satisfied 

More or less 
satisfied 

Quite Satisfied Very Satisfied 

1 2 3 4 5 

 
b. the dimensions (size and weight) of the wocket?  
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Not satisfied at 
all 

Not very 
satisfied 

More or less 
satisfied 

Quite Satisfied Very Satisfied 

1 2 3 4 5 

 
 
c. how comfortable is the Wocket to wear? 
 
Not satisfied at 

all 
Not very 
satisfied 

More or less 
satisfied 

Quite Satisfied Very Satisfied 

1 2 3 4 5 
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Evaluation of a Physical Activity Monitor System 
 

1. Do you think the information provided by PAMS is helpful to you? 
 
Explain _________________ 
 

2. Are you satisfied with the way the information was presented on the smartphone 
application?  

 
Explain _________________ 

 
3. Do you wish to see any other physical activity information that is not provided by the 

PAMS? 
 
a. Yes. Explain _________________ 
b. No 
 

4. Do you think the PAMS may help you change your physical activity levels?  
 

a. Definitely 
b. Very likely  
c. Likely 
d. Neutral 
e. Unlikely 
f. Very unlikely 
g. Not sure at this point 
Explain _________________ 
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Overall Usability Questionnaire: System Usability Scale 
 
1. I think that I would like to use this system frequently. 

 
Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 

2. I found the system unnecessarily complex.  
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 

3. I thought the system was easy to use.  
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 

4. I think that I would need the support of another person to be able to use this system.  
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 

5. I found the various functions in this system were well integrated. 
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 
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6. I thought there was too much inconsistency in this system.  
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 
7. I would imagine that most people would learn to use this system very quickly. 

 
Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 
8. I found the system very cumbersome or burdensome to use. 

 
Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 
9. I felt very confident using the system. 

 
Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 

10. I needed to learn a lot of things before I could get going with this system.  
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 
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Overall Usability Questionnaire: Technology Acceptance Model   
 

1. Using PAMS gives me greater control over my physical activity levels. 
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 
2. Using PAMS improves my physical activity levels. 
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 
3. Using PAMS allows me to be physically active than would otherwise be possible. 
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 
4. Using PAMS makes it easier to do my regular physical activity.  
 

Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 

 
 
5. Overall, I find this product useful in achieving my regular physical activity.  

 
Strongly 
Disagree 

1 
2 3 4 5 6 

Strongly 
Agree 

7 
O O O O O O O 
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Open Ended Questions  
 

1. What are your overall impressions about the PAMS?  
 
Explain _________________ 
 

 
2. Would you recommend the PAMS to a friend? 

 
a. Definitely will recommend 
b. Might consider recommending 
c. Will not recommend 
d. Not sure at this point 

 
3. Do you have any comments or suggestions to improve the PAMS?  

 
Explain _________________ 
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APPENDIX G 

PAMS INSTRUCTION MANUAL 

PAMS 

Instruction Manual 

 
Last Revised 5/23/2013 

Authors: Natthasit Wongsirikul, Shivayogi Vishwanath Hiremath 
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Briefcase Overview 

Inventory 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Logger & Holder 

Android Phone 

Wockets Charger 

Outlet Adapter 

Armband 

Wockets

 

USB Cords 
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Connecting Devices to Phone 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Android 

Phone

Data Logger 

Wocket 
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In order for the app to work, both the Data Logger and one Wocket has to be 

connected to the mobile phone via Bluetooth. 

Manual Instruction on Connecting Devices to Phone 

Turning the phone On/Off 

The power switch is on the right side of the phone  

 

To turn on, press and hold onto the button until phone turn on  
The first thing you will see is the screen lock. To deactivate it, touch the lock then drag it to the 
right.   

 

 

 

 

 

 

 

Note: Screen Locking 
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The power switch also works as a screen-locker. The phone will go into a screen lock mode if 
you press on the power button. This mode is a protective feature that prevents the device from 
responding to touch or gestures while not in use. It also helps save powers. Even though the 
screen is off, the phone and the apps are still running in the background.  
 
Connecting Devices to Phone  

When you turn on the phone and unlock the screen, the first thing you will see is the app screen 
asking you to select a wocket set. 
 

 

 

 

 

 

 

 

Select the wocket set that matches the wocket color you are using. Tap to select. 
Then tap Ok to run the App. 
The following screen will appear. Wait until both device #1 and device #2 connections are 
established.  
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Both devices are not connected                                                   Both devices are connected 

Entering Demographic Information 

Once devices are connected, you have to enter your demographic information into the phone so 
as to get accurate results. On the bottom of the phone, tap on the menu 
 
 
 
 
 
 
 
The app’s menu will pop up on the screen. Select “Demographic Info.” and the following screen 
will appear. You can leave this screen by selecting “Back to main screen”. 
 

 

 

 

 

 

 

You will need to enter your weight, height, gender, and age into the phone. After you have input 
the correct information, hit ”Save” then “Go Back” to return to the previous menu. 
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Screen Locking 

After you are sure that the app is running properly, you can screen lock the phone by just 
pressing the power switch on the right side. The phone’s screen will turn off but the app is still 
running.  
 
 
 
 
 
 
 
 
Returning to the Home Screen 
In the case when you accidentally tap on something, that brings you to somewhere on the phone 
that you did not intend or the app quits expectedly, you can navigate your way back to the app by 
following this method.  
On the bottom of the phone, tap the home button  
 
 
 
 
No matter where you are on the phone, if you tap the Home button you will always go to the 
main screen.  
Tap on the Collect Data App        and it will take you back to the app page 
 

 

 

 

 

 

 

 

 

 



 190 

 

Swapping Wocket 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Android Phone 

Green Wocket 

Red Wocket 
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Swapping Wocket 

In the case where the wocket you are using is running out of battery or ran out of battery, you 
will want to switch it with another fully charged wocket. You will need to change the connection 
between the phone and the new wocket. 
 
On the bottom of the phone, tap on the menu button. 
 
Then the following Menu will appear. 
Tap on “Reconnect” 
 

 

 

 

 

 

 

 

 

 

The app will then take you back to the start where you can select the Wocket Set based on color. 

 

Select the appropriate color set then tap Ok to establish new device to phone connection.  
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Putting on the Devices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Data Logger @ Wheel 

Wocket @ Arm 

Android Phone  
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Putting on the Devices 

Wocket: Place the wocket into the armband pouch. Then wear the armband. 

 

 

 

 

 

Data Logger 

The Data Logger comes with its Holder. First, you or an assistant will put the Data Logger 
Holder onto the wheel by attaching it to the spokes using zip ties. Example is shown below 
 

 

 

 

 

 

 

 

 

 

 

 

Once the Data Logger Holder is secured to the wheel, you can put the Data Logger into its holder 
by just inserting it in. 
 

Data Logger 

Holder 

Ziptie 
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To release the Data Logger from its Holder, squeeze the buckle on the side to release like so. 
Then pull the Data Logger out. 
 

 

 

 

 

Click! 
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Recharging Devices 
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Recharging Devices 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Orange light indicates wocket is charging. Green light indicates wocket is fully charged. When 
the wocket is not being used, leave it in the charger. The wocket is always on, only when it is in 
the charger that it is off.  
 

 

 

Phone Battery 
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APPENDIX H 

BRIEF ORIENTATION AND DEMONSTRATION VIDEO OF PAMS 

Brief orientation and demonstration video of PAMS is included as an attachment to the 

dissertation. 
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