
ESSAYS ON INTEGER PROGRAMMING IN

MILITARY AND POWER MANAGEMENT

APPLICATIONS

by

Serdar Karademir

BSc, Middle East Technical University, 2006

MSc, Middle East Technical University, 2008

Submitted to the Graduate Faculty of

the Swanson School of Engineering in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2013

UNIVERSITY OF PITTSBURGH

SWANSON SCHOOL OF ENGINEERING

This dissertation was presented

by

Serdar Karademir

It was defended on

July 1st, 2013

and approved by

Oleg A. Prokopyev, Ph.D., Associate Professor, Department of Industrial Engineering

Nan Kong, Ph.D., Assistant Professor , Biomedical Engineering, Purdue University

Jayant Rajgopal, Ph.D., Associate Professor, Department of Industrial Engineering

Andrew J. Schaefer, Ph.D., Professor, Department of Industrial Engineering

Dissertation Director: Oleg A. Prokopyev, Ph.D., Associate Professor, Department of

Industrial Engineering

ii

Copyright c© by Serdar Karademir

2013

iii

ESSAYS ON INTEGER PROGRAMMING IN MILITARY AND POWER

MANAGEMENT APPLICATIONS

Serdar Karademir, PhD

University of Pittsburgh, 2013

This dissertation presents three essays on important problems motivated by military and

power management applications. The array antenna design problem deals with optimal

arrangements of substructures called subarrays. The considered class of the stochastic as-

signment problem addresses uncertainty of assignment weights over time. The well-studied

deterministic counterpart of the problem has many applications including some classes of the

weapon-target assignment. The speed scaling problem is of minimizing energy consumption

of parallel processors in a data warehouse environment. We study each problem to discover

its underlying structure and formulate tailored mathematical models. Exact, approximate,

and heuristic solution approaches employing advanced optimization techniques are proposed.

They are validated through simulations and their superiority is demonstrated through exten-

sive computational experiments. Novelty of the developed methods and their methodological

contribution to the field of Operations Research is discussed through out the dissertation.

iv

TABLE OF CONTENTS

PREFACE . xi

1.0 INTRODUCTION . 1

1.1 PHASED ARRAY ANTENNA DESIGN 1

1.2 STOCHASTIC ASSIGNMENT . 3

1.3 SPEED SCALING OF PARALLEL PROCESSORS 4

1.4 OVERVIEW OF THE DISSERTATION . 6

2.0 IRREGULAR POLYOMINO TILING VIA INTEGER PROGRAM-

MING WITH APPLICATION IN PHASED ARRAY ANTENNA DE-

SIGN . 7

2.1 INTRODUCTION . 7

2.2 MODEL FORMULATION . 11

2.2.1 Nonlinear Exact Set Covering Model 11

2.2.2 Linearized Model . 16

2.3 COLUMN GENERATION APPROACH 18

2.3.1 A New Branching Strategy . 18

2.3.2 Delayed Column Generation (DCG) 23

2.3.3 A New Lower-Bounding Scheme . 25

2.4 HEURISTIC APPROACHES . 28

2.4.1 Construction Heuristics . 28

2.4.1.1 Zoom-in Algorithm (ZiA): . 28

2.4.1.2 Meta-rectangle Tiling Algorithm (MrTA): 35

2.4.2 Improvement Heuristics . 37

v

2.5 APPROXIMATION BOUNDS . 48

2.6 COMPUTATIONAL RESULTS . 52

2.6.1 Results for Exact Approaches . 52

2.6.2 Results for Heuristic Approaches . 56

2.7 PHASED ARRAY ANTENNA SIMULATIONS 58

2.8 CONCLUSION . 60

2.9 ACKNOWLEDGMENT . 74

3.0 ON GREEDY APPROXIMATION ALGORITHMS FOR A CLASS

OF TWO-STAGE STOCHASTIC ASSIGNMENT PROBLEMS 75

3.1 INTRODUCTION . 75

3.2 GREEDY APPROXIMATION ALGORITHMS 79

3.2.1 Basic Greedy Approach . 79

3.2.2 Greedy Approach of Escoffier et al. [50] 80

3.3 NECESSARY OPTIMALITY CONDITION 81

3.4 ENHANCED GREEDY APPROACH . 83

3.4.1 Improving the first-stage assignment (EGA-I) 84

3.4.2 Improving the second-stage assignment (EGA-II) 89

3.4.3 Improving EGA with Local Search (EGA LS) 92

3.4.4 Analytical Observations . 96

3.5 COMPUTATIONAL EXPERIMENTS . 99

3.5.1 Setup . 99

3.5.2 Results and Discussion . 102

3.6 CONCLUSION . 109

3.7 ACKNOWLEDGMENTS . 109

4.0 ON SPEED SCALING VIA INTEGER PROGRAMMING 110

4.1 INTRODUCTION . 110

4.2 OPTIMALITY CONDITIONS . 113

4.3 POLYNOMIALLY SOLVABLE CASES AND COMPLEXITY 115

4.4 A GREEDY APPROXIMATION ALGORITHM 117

4.5 FPTAS FOR SPECIAL CASE . 118

vi

4.5.1 A Dynamic Programming Approach 118

4.5.2 FPTAS . 119

4.6 AN OUTER APPROXIMATION ALGORITHM 121

4.7 COMPUTATIONAL EXPERIMENTS . 122

4.7.1 Implementation and Setup . 122

4.7.2 Results and Discussion . 124

4.8 ACKNOWLEDGEMENT . 126

5.0 CONCLUSION . 130

BIBLIOGRAPHY . 132

vii

LIST OF TABLES

1 Computational results for tetromino family: exact approaches. 54

2 Computational results for pentomino family: exact approaches. 55

3 Computational results for octomino family: exact approaches. 56

4 Computational results for octomino family: ZiA. 57

5 Computational results for pentomino and octomino families: MrTA. 58

6 Results for uncorrelated instances. 104

7 Results for correlated instances. 105

8 Results for pairwise-correlated instances. 106

9 Results for split-like instances. 107

10 Results for interleaved-like instances. 108

11 Results for CPLEX vs. OA implementation. 125

12 Results for OA implementation. 127

13 Results comparing OA and DP. 128

viii

LIST OF FIGURES

1 Monomino (F1), domino (F2), tromino (F3), tetromino (F4), and pentomino

(F5) families. 8

2 Array and two subarray examples: rectangular and L-shaped. 9

3 Radiation patterns for different time delay control scenarios. 10

4 Two polyominoes from pentomino family, F5. Polyomino f 1
pq is shown with its

rectangle hull. 12

5 Minimizing versus maximizing entropy on a 20 × 20 board using pentomino

family. 15

6 The bijections we use and example fractional domino tilings. 21

7 F-, T-, and W-pentominoes at 5× 5 zoom level. 30

8 Obtaining a 250 × 250 tiling of pentominoes using after two successive appli-

cations of zoom-in heuristic. Solution time is less than one second. 31

9 Zooming-in the point-up octomino. The initial 12× 16 tiling zoomed-in twice

at 12× 12 zoom level to obtain a 1728× 2304 tiling with 0.69% optimality gap. 33

10 Creating meta-rectangles. 36

11 An example of a meta-rectangle generated by Algorithm 3 using initial set of

rectangles {(2, 8), (4, 16), (16, 17)} and its final octomino tiling. 38

12 Dimensions of meta-rectangles generated by MrTA and the initialization step

of the tiling algorithm. 39

13 Initialization in Procedure Retile: A→ do not cover, B→ retile, and C→ penalize. 40

14 Randomizing an octomino meta-rectangle tiling. 44

15 The subset of octomino family, F8, used in experiments. 53

ix

16 Summary of array antenna simulations results: time delay control at element

level (E), 2 × 4 rectangular subarray level (R), partially optimized octomino

subarray level (P), and completely optimized octomino subarray level (P+). 61

17 Partially and completely optimized polyomino tilings for 64× 64 array size. . 62

18 Radiation patterns for 64× 64 array size with time delay control at 2× 4 rect-

angular subarray level (R), partially optimized octomino subarray level (P),

and completely optimized octomino subarray level (P+). 64

19 Partially and completely optimized polyomino tilings for 128× 128 array size. 66

20 Radiation patterns for 128× 128 array size with time delay control at element

level (E), 2 × 4 rectangular subarray level (R), partially optimized octomino

subarray level (P), and completely optimized octomino subarray level (P+). 68

21 Partially and completely optimized polyomino tilings for 256× 256 array size. 70

22 Radiation patterns for 256×256 array size with time delay control at 2×4 rect-

angular subarray level (R), partially optimized octomino subarray level (P),

and completely optimized octomino subarray level (P+). 72

23 A counterexample to show that the necessary optimality condition given by

Proposition 11 is not sufficient for optimality. Only arcs with nonzero weight

are shown. 82

24 The neighborhood N1. 94

25 The neighborhood N2. 95

26 A split instance for K = n = 2 (only nonzero arcs are shown). Thick lines

show first-stage and second-stage myopic solutions. 97

27 An interleaved instance for K = n = 2 (only nonzero arcs are shown). Thick

lines show first-stage and second-stage myopic solutions. 98

x

PREFACE

- to my parents

This dissertation is dedicated to my parents Ziya and Ayten, my sister Naciye, and my

brother Serhat, for their unconditional love and support. Nermin, only you know the sacri-

fices that have been made to be where I stand today; no words could express my feelings.

I would like to thank my dear friends who have been there for me when I needed. I appreciate

and thank for the academic support of my advisor. In my heart, I am in debt for anyone who

has contributed to this dissertation in one way or another. Finally, to me, this dissertation

exists because it concludes many things.

“It’s important in life to conclude things properly. Only then can you let go. Otherwise you

are left with words you should have said but never did, and your heart is heavy with remorse.”

-Life of Pi

xi

1.0 INTRODUCTION

This dissertation covers three important problems motivated by military and power manage-

ment applications. We study each problem to discover its underlying structure and formulate

mathematical models that capture details specific to the problem’s context. Using advanced

optimization techniques, we develop specialized exact, approximate, and heuristic solution

methods that are applicable in real-life scenarios. We validate our approaches and demon-

strate their superiority through extensive computational experiments and simulations. This

chapter provides a brief introduction to each problem; we give a problem statement, an

overview of the related literature, and a summary of our contributions.

1.1 PHASED ARRAY ANTENNA DESIGN

Chapter 2 of this dissertation explores a problem arising in array antenna design. An antenna

is a device that can rapidly scan objects in space by emitting a well-formed beam (e.g., radio

signal) in the direction of objects and then listening to the reflection of the beam from

objects. A phased array antenna is composed of many stationary antenna elements. Phased

array antennas are a crucial part of modern infrastructure with a wide range of applications

in defense, communication and surveillance. Details on theoretical foundations of antenna

designs and reviews of the current antenna technology are provided by [32, 88, 98].

The main beam of a modern phased array antenna is electronically steered. Electronic

control at the antenna element level is ideal, but a large number of elements in a typical

phased array antenna results in a complex engineering problem, whose solution is often too

expensive to implement [90]. Therefore, a group of elements is used to form a subarray,

1

which is treated as an oversized element, and the control input is introduced at the subarray

level. However, identical rectangular subarrays—as used in practice—introduce periodicity

that creates quantization sidelobes. Simply speaking, a sidelobe is a beam (typically of a

smaller magnitude) with a direction different from the main beam direction of the antenna.

Such undesired radiation greatly reduces the quality of the pattern generated by antennas,

and in modern electronic warfare, antennas can be deceived using sidelobe jamming. One

approach recently proposed for reducing quantization sidelobes is based on irregular tilings

with polyomino-shaped subarrays [89, 90].

A polyomino is a generalization of the domino and is created by connecting a fixed num-

ber of unit squares along edges [29, 61]. The number of different polyominoes, excluding

rotations and reflections, grows exponentially fast; 2, 108, and 63,600 different polyominoes

can be instructed using 3, 7, and 12 unit squares, respectively. The vast majority of the

related literature is focused on polyomino enumeration [18, 42, 47, 54, 76] and classifica-

tion [11, 21, 36, 59, 60].

Our work is focused on tiling a rectangular region using a given set of polyominoes.

Furthermore, among all possible tilings, we are interested in irregular ones. To the best of

our knowledge, this problem has not been studied by the operations research community

in the past. We develop a set-theoretic description of irregular polyomino tiling problem

and formulate it as a nonlinear exact set covering model, where irregularity of a tiling is

measured using the information-theoretic entropy concept. We develop an advanced exact

solution method based on the branch-and-price framework along with novel branching and

bounding ideas. To solve large-size instances, we propose efficient heuristics that are shown to

provide approximation guarantees. We report encouraging computational results including

actual phased array antenna simulations that demonstrate significant reductions in peak

sidelobes for irregular polyomino tilings obtained using the developed approach.

2

1.2 STOCHASTIC ASSIGNMENT

The class of stochastic assignment problem studied in Chapter 3 is a two-stage stochastic

extension of the classical deterministic linear assignment problem (LAP). The well-known

LAP consists of assigning a set of jobs to a set of agents such that the total weight of

the assignment is maximized. There exists many extensions of LAP with a wide range of

applications including the weapon-target assignment [33, 94, 99]. In our problem setting,

assignment weights are subject to change over time. Decision maker has to partially assign

jobs to agents in the first stage. Then, based on the scenario realized, the assignment is

completed in the second stage.

There has been a rapid increase in applications of stochastic optimization methodol-

ogy to a variety of important real-world problems including resource allocation, planning,

logistics, scheduling, and health care [24, 102]. A number of studies has been focused on

the design of exact solution methodologies, with typical examples in [1, 2, 7, 95, 105, 108].

Unfortunately, many standard deterministic optimization problems that are solvable in poly-

nomial time, become NP-hard if considered in the stochastic environment, e.g., maximum

weight matching [81] and spanning tree [52] problems. Thus, we can not expect to be able

to solve general stochastic integer and combinatorial optimization problems exactly for large

input sizes, and similar to the deterministic optimization literature, it is desirable to design

polynomial time approximation algorithms with reasonable performance guarantees. Recent

examples of this type of work include methods for solving two-stage stochastic extensions of

the shortest path [62], minimum spanning tree [46], min-cut [45, 62], and Steiner tree [66]

problems. For more detailed introductions and surveys to stochastic programming, we refer

the reader to [24, 96, 102, 104, 107, 110].

Kong and Schaefer [81] consider the two-stage stochastic maximum weight matching

problem on general graphs. They show that the problem is NP-hard and propose a greedy 1
2
-

approximation algorithm. Escoffier et al. [50] prove that the two-stage stochastic maximum

weight matching problem is APX-complete even for bipartite graphs of maximum degree

4 and general graphs of degree 3. Based on the concepts from [81], they also provide a

3

greedy max{ K
2K−1

, ∆
2∆−1
}-approximation algorithm, where K is the number of scenarios in

the second-stage and ∆ is the degree of the bipartite graph.

The work covered in Chapter 3 is essentially built on these two studies [50, 81]. Since

the maximum weight matching problem on bipartite graphs can be polynomially reduced to

the linear assignment problem, the two stage stochastic linear assignment problem is also

APX-complete. We propose a necessary optimality condition that generalizes and unifies the

key ideas behind the two algorithms by Kong and Schaefer [81] and Escoffier et al. [50]. Then

based on this optimality condition, we design a new greedy approximation algorithm. This

algorithm is computationally efficient as it employs Hungarian Method [83], the most popular

approach to solve the linear assignment problem. While the developed approach preserves

the existing approximation guarantees, we are not able to prove whether it provides a strictly

better approximation bound. However, analytical observations and extensive computational

results indicate that the proposed algorithm has strictly better performance on some rather

broad classes of the two-stage stochastic linear assignment problems.

1.3 SPEED SCALING OF PARALLEL PROCESSORS

Chapter 4 of the dissertation is concerned with a class of nonlinear mixed integer knapsack

problems motivated by the speed scaling of heterogeneous parallel processors. This is an

active research area in the computer science literature following the technological shift to

multi-core processors, increased online transaction volumes handled by servers with hundreds

of processors, and establishment of data processing centers with thousands of servers. In

this environment, electricity becomes the major cost item and optimal processor scheduling

that minimizes the total energy consumption is a crucial issue.

Dynamic speed scaling literature can be traced back to [116]. Majority of the related

studies is focused on the single processor case. Jobs with deadlines are considered by [14,

16, 68, 75, 116]. When deadlines do not exist, the aim has been to optimize some scheduling

metric in addition to minimizing energy consumption [5, 15, 17, 38, 85, 84].

4

The multiprocessor case has not attracted much attention, primarily due to its complex-

ity. Nevertheless, heterogeneous processors are becoming more common and require special

treatment [28]. Similar to the single processor case, work in [4, 6, 23, 86, 64, 65] emphasizes

the scheduling aspect of speed scaling. A more thorough review is provided in [3].

The focus of our work is a relatively high-level problem setting that includes heteroge-

neous parallel processors with sleep states. Given a processing requirement, our goal is to

select a subset of processors and distribute the load over these processors so as to minimize

the total energy consumption. The energy consumption curves are convex functions and

we refer to the problem as speed scaling with convex power functions (SSCPF). SSCPF is

naturally modeled as a mixed integer nonlinear program (MINLP), which can be seen as

the nonlinear extension of the linear fixed charge models. Two decisions are to be made:

which processors should be turned on and what should be their speeds. The latter decision

is known as the continuous nonlinear resource allocation problem (NRAP) [73]. Most of

the algorithms devised for NRAP are based on the Karush-Kuhn-Tucker (KKT) optimality

conditions and use of ε-accuracy notion [30, 31, 71, 72].

Using KKT conditions, first, we identify several polynomially solvable cases of SSCPF

and show that its general case is NP-hard. Next, a pseudo-polynomial dynamic program-

ming algorithm for a special case of SSCPF is presented. We also show that a simple greedy

heuristic provides an n-factor approximation guarantee for SSCPF. Using this approxima-

tion algorithm, the proposed dynamic program is converted into a fully polynomial-time

approximation scheme (FPTAS).

For the general case of our problem, we also implement the outer approximation algo-

rithm [48, 53, 100]. The underlying motive for outer approximation is to relax the MINLP

into a mixed integer linear program (MILP) through approximation of the nonlinear objec-

tive at certain points. The relaxation is iteratively refined using additional cuts within a

branch-and-bound framework until an optimal solution of the original problem is found.

Finally, we carry out comprehensive computational experiments aiming at comparing

the naive approach of using an off-the-shelf mixed integer programming solver, the outer

approximation implementation, and the dynamic programming method. Our results clearly

demonstrate the superiority of developed approaches.

5

1.4 OVERVIEW OF THE DISSERTATION

The remainder of the dissertation is organized as follows. Chapter 2 details our work on

design of phased array antennas. Stochastic assignment problem is discussed in Chapter 3.

Finally, we present our results for speed scaling of multiple heterogeneous processors in

Chapter 4. Chapter 5 concludes this dissertation.

6

2.0 IRREGULAR POLYOMINO TILING VIA INTEGER PROGRAMMING

WITH APPLICATION IN PHASED ARRAY ANTENNA DESIGN

2.1 INTRODUCTION

A polyomino is a generalization of the domino and is created by connecting a fixed number

of unit squares along edges [29, 61]. Figure 1 illustrates the first five families of polyominoes

F`, ` = 1, . . . , 5. The number of different polyominoes, excluding rotations and reflections,

grows exponentially fast in ` [61]. There are 2, 108, and 63,600 different polyominoes for

` = 3, 7, and 12, respectively. The vast majority of the related literature is focused on

polyomino enumeration [18, 42, 47, 54, 76] and classification [11, 21, 36, 59, 60]. Tiling

finite, general regions of the plane is known to be NP -complete even when using only the

right-tromino [93]. This result holds under the assumption that there is no restriction on the

number of copies of each polyomino used. If such restrictions exist (e.g., solving a puzzle),

then tiling a finite, rectangular, simply connected region is NP -complete if the pieces have

at least polylogarithmic area in the dimensions of the tiling region [43].

In this chapter, we focus on tiling a finite, rectangular, simply connected region using

a given finite set of polyominoes, without any restriction on the number of each polyomino

copies used. This problem is NP -complete [22, 55]. Another direct proof of this fact can

be provided using reduction from the classical NP -complete integer knapsack feasibility

problem [97]. Specifically, given nonnegative integers s1 < s2 < . . . < sn, and K, we

need to check whether there exist nonnegative integers x1, x2, . . ., xn that satisfy

s1x1 + s2x2 + . . .+ snxn = K. (2.1)

7

Consider a set P of rectangular polyominoes 1×s1, . . . , 1×sn. Then it is easy to observe

that a rectangular 1×K strip can be exactly covered (tiled) by some polyominoes from P iff

(2.1) has an integral solution. Further detailed discussion on polyomino tilings can be found

in works by [8, 25, 59, 60, 91, 101] and references therein.

Figure 1: Monomino (F1), domino (F2), tromino (F3), tetromino (F4), and pentomino (F5)

families.

Our work is motivated by a recent application of polyomino tilings in the design of phased

array antennas [89, 90]. An antenna is a device that can rapidly scan objects in space by

emitting a well-formed beam, most of the time a radio signal, in the direction of the objects

and then listening to the reflection of the beam from objects. A phased array antenna is

composed of many stationary antenna elements.

Phase shift and time delay are the key concepts behind electronically steering the beam

in modern phased array antennas. Electronic steering allows for instantaneous positioning,

multiple object tracking, and simultaneous precision tracking and background mapping. This

technology replaces mechanically steered antenna designs, where beam direction is constant

and the antenna itself is mechanically positioned in space. Moreover, mechanically steered

antennas are more vulnerable to electronic countermeasures as their beam position can be

predicted. Phased array antennas are a crucial part of modern infrastructure with a wide

range of applications in defense, communication, astronomy, meteorology, and surveillance.

8

Details on theoretical foundations of antenna designs and reviews of the current antenna

technology are provided by [32, 88, 98].

!me	 delay	 control	

phase	 shi2	 control	

Figure 2: Array and two subarray examples: rectangular and L-shaped.

Controls (phase shift and time delay) at the antenna element level is ideal, but, a large

number of elements (possibly, tens of thousands) in a typical phased array antenna results

in a complex engineering problem, whose solution is often too expensive to implement [90].

Therefore, a group of elements is used to form a subarray, which is treated as an oversized

element, and the control input (e.g., time delay) is introduced at the subarray level. An

example of rectangular subarray with time delay control at the subarray level and phase

shift control at the element level is given in Figure 2.

However, identical rectangular subarrays—as used in practice—introduce periodicity that

creates quantization sidelobes. Simply speaking, a sidelobe is a beam (typically of a smaller

magnitude) with a direction different from the main beam direction of the antenna. Such

undesired radiation greatly reduces the quality of the pattern generated by antennas, and

in modern electronic warfare, antennas can be deceived using sidelobe jamming. Figure 3a

shows a well-formed beam for a 64 × 64 array with element level time delay control. Five

significant sidelobes present in Figure 3b are caused by periodically tiled 2 × 4 rectangular

subarrays with subarray level time delay control.

One approach recently proposed for reducing quantization sidelobes is based on irreg-

ular tilings with polyomino-shaped subarrays [89, 90]. As modern phased array antennas

9

(a) Radiation pattern for 64 × 64 array with time
delay control at element level.

(b) Radiation pattern for 64 × 64 array with time
delay control at 2× 4 rectangular subarray level.

Figure 3: Radiation patterns for different time delay control scenarios.

contain thousands of antenna elements, this experimental observation poses a large-scale

combinatorial optimization problem. Specifically, given a set of polyominoes (i.e., possible

subarray shapes), the question is how to construct an irregular exact (or almost exact) tiling

of a given rectangular region (i.e., phased array antenna). Examples of rectangular and

L-shaped subarray structures are illustrated in Figure 2.

The rest of this chapter is organized as follows. In Section 2.2, we formulate the irregular

polyomino tiling problem as a nonlinear exact set covering model, where irregularity of a

tiling is incorporated into the objective function using the information-theoretic entropy

concept. While the proposed model can be linearized, standard solvers cannot handle even

small-size instances of the problem. Thus, an advanced exact solution method based on

the branch-and-price (B&P) framework along with novel branching and bounding ideas is

proposed in Section 2.3. This method is capable of solving small- and medium-size problem

instances. To solve large-size instances, we propose efficient heuristics (Section 2.4) that

can be shown to provide approximation guarantees under some conditions (Section 2.5).

Finally, Sections 2.6 and 2.7 summarize encouraging computational results including actual

10

phased array antenna simulations that demonstrate significant reductions in peak sidelobes

for irregular polyomino tilings obtained using the developed approach.

2.2 MODEL FORMULATION

2.2.1 Nonlinear Exact Set Covering Model

In this section we provide a set-theoretic interpretation of the problem and formulate it

as a nonlinear binary mathematical program. Let F` be the family of polyominoes with

` ∈ Z++ squares. Assume that F` is extended to include all possible rotations and reflections

of its elements. The rectangle hull of a polyomino is the smallest rectangular box that

contains the polyomino. Any f ∈ F` can be described as a set of squares covered when the

northwest corner of its rectangle hull is located at (0, 0), i.e., f = {(i1, j1), (i2, j2), . . . , (i`, j`)}.

Figures 4a and 4b illustrate this representation for F pentomino (reflected and rotated 1800

clockwise) and W pentomino (rotated 900 clockwise).

The rectangular (m × n) region to be tiled is described as the set B = {(i, j) : 0 ≤

i < m; 0 ≤ j < n; i, j ∈ Z}. Henceforth, we refer to B as a board. Denote by P =

{f 1, f 2, . . . , fK} ⊆ F` a subset of polyominoes that can be used for tiling B. For each fk ∈ P

define fkpq = {(i + p, j + q) : (i, j) ∈ fk} as the set of squares covered when the northwest

corner of the rectangle hull of fk is located at (p, q) (see Figure 4c), i.e., fkpq is simply a

translation of fk. Thus, the tiling problem (B,P) can be defined as follows: given a board B

and a set of polyominoes P , find an exact cover of B using subsets {fkpq : fkpq ⊆ B; fk ∈ P}.

Define Iij = {(k, p, q) | (i, j) ∈ fkpq} to be the set of all feasible triplets (k, p, q) (i.e.,

fkpq ⊆ B) that cover square (i, j) ∈ B. Finally, introducing a binary variable xkpq for each set

fkpq, the exact set covering constraints can be formulated as

∑
(kpq)∈Iij

xkpq = 1 ∀ (i, j) ∈ B . (2.2)

Any feasible solution of (2.2) defines a tiling T for B, where triplet (k, p, q) is used iff xkpq = 1.

See [9, 12, 13, 57] for a detailed treatment of the set partitioning problem.

11

(a) f1 = {(0,1),(1,0),(1,1),(2,1),(2,2)} (b) f2 = {(0,0),(1,0),(1,1),(2,1),(2,2)} (c) f1pq = {(p,q+1),...,(p+2,q+2)}

Figure 4: Two polyominoes from pentomino family, F5. Polyomino f 1
pq is shown with its

rectangle hull.

To capture the “irregularity” of polyomino tilings, we apply the information-theoretic

entropy concept [106], formally defined as follows. Let X be a discrete random variable with

finite support, where outcome i has probability pi. Then the information-theoretic entropy

of X, H(X), is given by:

H(X) = −
∑
i

pi lg(pi) , (2.3)

where lg(·) ≡ log2(·). When pi = 0, the value of the term pi lg pi is assumed to be zero,

which is consistent with limp→0+ p lg(p) = 0. Note that H(X) is nonnegative and concave

in pi. Its maximum is achieved for the uniform distribution, i.e., pi = 1
N

, i = 1, . . . , N , as

the solution to max{−
∑

i pi lg(pi) :
∑

i pi = 1, pi ≥ 0}. Entropy measures the uncertainty

inherent in a probability distribution. Also, information-theoretic entropy is closely related

to the notion of entropy in statistical mechanics. Specifically, consider each outcome of X

to be a micro-state that some physical system can possibly occupy. The less we are certain

about the micro-state of the system, the larger is its entropy. Conversely, consider a random

variable with a single outcome with probability 1. Then complete knowledge about the state

of the corresponding system is available; hence, its entropy is 0 (i.e., 1 · lg(1) = 0).

12

Information-theoretic entropy has a number of interesting applications in various disci-

plines [51, 77]. It has been used to obtain statistical distributions, laws of thermodynamics,

population density distributions in economics, and traffic density distributions in regional

and urban planning; the goal is to choose a probability distribution that satisfies the mo-

ment constraints and maximizes entropy. The key requirement for application of the entropy

concept is to define a proper probability distribution over the structural components of the

problem. An interesting example is the graph entropy, where pi is introduced for every vertex

i as a function of certain well-structured graph-theoretic quantities, see details in [41, 109]

and [40]. The maximum entropy sampling problem studied in [80, 87] is to select a subset

of correlated random variables that provides maximum information. Information content of

the selected subset is measured via the logarithm of the determinant of the principal minor

of the covariance matrix. For the minimum entropy set covering problem studied by [35, 67],

a probability distribution is defined on the cardinality of the subsets used in a cover. The

aim is to find a cover that corresponds to a probability distribution with minimum entropy.

This problem is a variation of the minimum cardinality set covering problem and is known

to be NP -hard [67].

In our setting, we consider a square to be a unit mass and define the center of gravity

(or the center of mass) for each polyomino f . Then the square that contains the center

of gravity of f is denoted by g = (i, j). Hence, the center of gravity for fpq is given by

gpq = (i + p, j + q). Our definition is flexible as any square within the rectangle hull of

f can be designated to be its center of gravity. For example, in the phased array antenna

application, the center of gravity may correspond to the square (i.e., antenna element) where

the subarray’s main beam is formed.

Our primary intuition is that, in a regular tiling with a periodic pattern (e.g., using

identical rectangular subarrays), centers of gravity are expected to accumulate on certain

rows and columns of B. Specifically, let ri and cj denote the numbers of centers of gravity on

row i and column j, respectively, for a given tiling T . Then define the following probability

distribution on the rows and columns: row i has probability ri
2T

and column j has probability

cj
2T

, where T is the total number of polyominoes used in T . These values can be interpreted

as an approximation of true probability that a particular row or column contains a center of

13

gravity. The periodicity in regular tilings would drift the probability distribution away from

being uniform. Hence, the lower the entropy of a tiling T is, the more periodic T must be,

and vice versa.

Figure 5 stands as a proof of concept to the above argument. Observe that centers of

gravity are perfectly aligned when entropy is minimized, while the maximization case ensures

that centers of gravity are almost uniformly distributed and the obtained tiling is noticeably

irregular. This metric also provides a theoretical upper bound on the objective function

value. Recall that uniform distribution has the maximum entropy, and thus,

H(X) ≤ H(Uniform) = −
m+n∑
i=1

1

m+ n
lg

(
1

m+ n

)
= − lg

(
1

m+ n

)
= lg(m+ n) .

This upper bound is important because it allows performance analysis of the heuristic algo-

rithms discussed in Section 2.4. Note that for the tiling in Figure 5, lg(20 + 20) = 5.3219,

implying the obtained solution is at most 10−2 away from optimal.

Let Ri = {(k, p, q) | ∃ j such that (i, j) = gkpq} and Cj = {(k, p, q) | ∃ i such that (i, j) =

gkpq} be the sets of triplets with centers of gravity on row i and column j, respectively.

The nonlinear mixed integer programming (MIP) formulation for the irregular perfect tiling

problem is given by:

PNL: max −
∑
i

ri
2T

lg
(ri

2T

)
−
∑
j

cj
2T

lg
(cj

2T

)
(2.4)

s.to
∑

(kpq)∈Iij

xkpq = 1 ∀ (i, j) ∈ B (2.5)

ri =
∑

(kpq)∈Ri

xkpq ∀ i (2.6)

cj =
∑

(kpq)∈Cj

xkpq ∀ j (2.7)

xkpq ∈ {0, 1}, ri, cj ≥ 0 ∀ i, j, p, q, k (2.8)

A tiling TB is called imperfect if it does not cover some of the squares of B. A practically

interesting extension of the tiling problem arises when only a subset of rows and columns

14

(a) Minimum entropy tiling. (b) Maximum entropy tiling.

(c) H(X) = 4.1610. (d) H(X) = 5.3174.

Figure 5: Minimizing versus maximizing entropy on a 20×20 board using pentomino family.

15

along the edges of of B are not required to be tiled exactly [90]. For imperfect tilings, we

distinguish between the board frame, Bf , and the board center, Bc.

To construct an m × n imperfect tiling, consider a board B = {(i, j) : i = 0, . . . ,m +

2a − 1 and j = 0, . . . , n + 2b − 1}, where (a, b) is the dimension of the minimum rectangle

that contains each polyomino in P . For imperfect tilings, the board B is partitioned into

Bc = {(i, j) : i = a, . . . ,m + a − 1 and j = b, . . . , n + b − 1}, the m × n board center, and

Bf = B \ Bc, the board frame. To model this variant of the problem, constraint set (2.5) of

PNL is modified as:

∑
(kpq)∈Iij

xkpq = 1, ∀ (i, j) ∈ Bc and
∑

(kpq)∈Iij

xkpq ≤ 1, ∀ (i, j) ∈ Bf .

2.2.2 Linearized Model

In this section we derive a linearization of PNL using value disjunction reformulation. Observe

that values of ri and cj are bounded above by T = mn
`

. Thus, each ri and cj can be replaced

with T+1 new binary variables {ri0, ri1, . . . , riT} and {cj0, cj1, . . . , cjT}, respectively. Variable

rit (cjt) takes value 1 iff there are exactly t centers of gravity on row i (column j). Finally,

for each row i (column j), one needs to ensure that exactly one of the variables rit (cjt) is set

to be 1. The above discussion leads to the following linear binary program denoted as PL.

16

PL: max −
m∑
i=1

T∑
t=1

(
t

2T
lg

t

2T

)
rit −

n∑
j=1

T∑
t=1

(
t

2T
lg

t

2T

)
cjt

s.to
∑

(kpq)∈Iij

xkpq = 1 ∀ (i, j) ∈ B (2.9)

T∑
t=1

t rit =
∑

(kpq)∈Ri

xkpq ∀ i (2.10)

T∑
t=1

t cjt =
∑

(kpq)∈Cj

xkpq ∀ j (2.11)

T∑
t=0

rit = 1 ∀ i (2.12)

T∑
t=0

cjt = 1 ∀ j (2.13)

xkpq, rit, cjt ∈ {0, 1} ∀ i, j, p, q, k, t

The disjunctive constraints (2.10)-(2.11) link rit and cjt to the corresponding value of t.

Constraints (2.12)-(2.13) ensure that a single t value is chosen for each i and j.

Proposition 1. The binary variables rit and cjt in PL can be relaxed to be nonnegative

continuous without losing integrality.

Proof. Function φ(x) = x lg(x) is strictly convex in (0, 1] as:

φ′′(x) =
1

x
> 0 .

Next, consider strictly convex function φT (x) = x
T

lg(x
T

) defined on x ∈ (0, T]. Using con-

straints of the model (
∑T

t=1 t rt = ∆ ≤ T and
∑T

t=0 rt = 1) and Jensen’s Inequality [69],

whenever more than one rt is nonzero we have:

∆

T
lg(

∆

T
) = φT (∆) = φT

(
T∑
t=1

t rt

)

<
T∑
t=1

φT (t) rt

=
T∑
t=1

t

T
lg

(
t

T

)
rt.

17

Thus, the lower bound on the left hand side is attained only when r∆ = 1. Clearly, the

right-hand side of (2.10)-(2.11) is integral for any feasible solution of PL.

In the remainder of this chapter, we assume that variables r and c in PL are relaxed to

be nonnegative continuous. For additional discussion on value disjunction approach we refer

the reader to [70] and [82].

Note that the formulation can be further improved by tightening the upper bound on

r and c using information about B and P . For instance, one immediate improvement is

ri ≤ min{mn/`, n} and cj ≤ min{mn/`, m}. If only square tetromino are used, then,

ri ≤ min{mn/`, n/2} and cj ≤ min{mn/`, m/2}. Another point of view is to restrict ri

and cj based on optimality conditions. Since an ideal distribution would have T/(m + n)

centers of gravity on each row and column so that the resulting probability distribution is

uniform, one can constrain values of r and c not to deviate from T/(m + n) for too much.

However, as the main concern are the binary variables x, we have not spent too much effort

in this direction in our implementation.

2.3 COLUMN GENERATION APPROACH

As |F`| is exponential in `, the number of binary variables in PL also grows exponentially.

Such large-scale formulations are challenging for commercial MIP solvers, and branch-and-

price based methods are often employed [10, 19, 58, 111, 112]. We discuss a new branching

strategy for the exact set covering problem in Section 2.3.1 followed by a column generation

approach in Section 2.3.2. In Section 2.3.3, we propose a new duality-based lower-bounding

scheme.

2.3.1 A New Branching Strategy

Consider a tiling problem (B,P), P ⊆ F`. There are O(mn|P|) subsets of the ground set

B, however, only T = mn
`

of them is used in any feasible tiling. Hence, standard branching

on variables typically creates very long branches when excluding sets , i.e., xkpq = 0, whereas

18

it ends up with very short branches when including them, i.e., xkpq = 1, which is due to fre-

quently arising infeasibility as an inherent property of the exact set covering problem. The

depth of this unbalanced search tree is another concern. In order to mitigate these issues, we

propose a new branching strategy that results in a more balanced search tree with a consid-

erably shorter depth. A detailed treatment of branching strategies can be found in [111, 112].

Define Mk
pq = {s 7→ (i, j) : 1 ≤ s ≤ `; s ∈ Z; (i, j) ∈ fkpq; f

k ∈ P} to be a bijection

from the set of integers {1, . . . , `} to the set of squares fkpq and (Mk
pq)
−1 to be its inverse.

Let Iij[s] = {(k, p, q) : (i, j) = Mk
pq[s]} be the set of all triplets (i.e., the corresponding

polyomino translations fkpq) that cover location (i, j) ∈ B with their square mapped to s.

Thus, Iij =
⋃
s Iij[s]. Next, assume at some node of the branch-and-bound (B&B) tree we

have

0 <
∑

(kpq)∈Iij [s]

xkpq < 1 (2.14)

for some (i, j) and s. Then our branching strategy proceeds as follows:

xkpq = 0 ∀(k, p, q) ∈ Iij[s], (Left Branch)

xkpq = 0 ∀(k, p, q) ∈ Iij \ Iij[s]. (Right Branch)

All the sets having (i, j) mapped to s are removed from consideration on the left branch,

whereas only these set are allowed on the right branch. On both branches we fix some sets

of variables to zero. This shortens the depth of the tree compared to fixing only one variable

to 0. Also, both branches have some sets of variables that can take positive values, thus,

avoiding premature fathoming of the branch when compared to fixing a single variable to 1.

Consequently, the proposed branching strategy significantly balances the search tree.

The fact that each (i, j) ∈ B must be covered by exactly one polyomino implies that

every integral solution x of (2.9) must violate (2.14) for every (i, j) and s. The question is

whether it is sufficient, i.e., does every fractional solution satisfies (2.14) for some (i, j) and s?

Proposition 2. Consider a fractional solution x to (2.9) and let x1 > 0 and x2 > 0 be two

nonzero variables associated with polyominoes f 1 and f 2, respectively, that cover (i, j) ∈ B.

Then there exists two bijectionsM1 andM2, such that (2.14) is satisfied for (i, j) for some s.

19

Proof. Observe that there are no fractional solutions for monominoes as |Iij| = 1 for all (i, j),

thus assume |f | > 1. Choose two bijectionsM1 andM2 for polyominoes f 1 and f 2 such that

(M1)−1[(i, j)] 6= (M2)−1[(i, j)]. Then (2.14) is satisfied for (i, j) when s = (M1)−1[(i, j)]

because 0 < x2 < 1 and f 2 covers (i, j) with (M2)−1[(i, j)].

In the worst case, an exponential number of bijections may need to be considered

to ensure integrality. However, in our implementation we follow a practically more con-

venient approach and fix a single bijection to be used for all polyominoes. First, let

MB = {s 7→ (i, j) : s = i n + j + 1; (i, j) ∈ B} be a bijection from the set of integers

{1, 2, . . . ,mn} to B, i.e., the elements of the board are numbered consecutively as seen in

Figure 6a. Let 〈fkpq〉 be a tuple with elements of the set fkpq ordered in increasing value of

(MB)−1 and denote by 〈fkpq〉[s] the sth element of the tuple. Then

(MB)−1
[
〈fkpq〉[1]

]
≤ (MB)−1

[
〈fkpq〉[2]

]
≤ . . . ≤ (MB)−1

[
〈fkpq〉[`]

]
.

Define (Mk
pq)
−1 to map each element of the set fkpq to its position in the tuple 〈fkpq〉. Hence,

Mk
pq[s] = 〈fkpq〉[s] for all (k, p, q). The resulting bijections for F- and W-pentominoes are

shown in Figure 6a. For our implementation, we employ this simple bijection. Theoretically,

we may branch on all (i, j) and s, and still have a fractional solution. However, as observed

through our computational experiments, it is not a common occurrence, especially for larger

polyominoes with complex boundary shapes rather than simple dominoes.

Proposition 3. Branching on s = 1 only is sufficient to guarantee integrality for dominoes.

Proof. There is only one domino, F2, as shown in Figure 1; let its vertical orientation be f 1

and the horizontal orientation be f 2. Assume on the contrary that for a board B, there are

fractional x variables but further branching is not possible since no (i, j) ∈ B satisfies (2.14)

for s = 1. Choose a location (i, j) covered by at least two dominoes such that (i, j − 1) and

(i+ 1, j) are either covered by exactly one domino or they do not belong to B (i.e., j− 1 < 0

or i + 1 ≥ m). For a finite board, such (i, j) can always be found by selecting a location

covered by at least two dominoes and then moving left or down until required condition

is met, see Figure 6b. Then, we must have x1
i−1,j > 0, x2

i,j > 0, and x1
i−1,j + x2

i,j = 1.

20

(a) Bijections for board, F-pentomino, and W-pentomino.

j j

(1, i-1, j)

i (2, i, j) i

(b) Location (i, j) covered by f1i−1,j and f2i,j .

j

i

(c) Location (i, j) covered by f1i−1,j , f
1
i,j , f

2
i,j−1, and

f2i,j .

Figure 6: The bijections we use and example fractional domino tilings.

21

As 〈f 1
i−1,j〉[2] = 〈f 2

i,j〉[1] = (i, j), then (2.14) is satisfied for s = 1 and (i, j), which is a

contradiction.

The depth of the B&B tree for PL in traditional branching is O(mn |P|), P ⊆ F`. By

branching on (s, i, j) instead, the depth of the tree becomes O(mn`), which is a substantial

improvement if one recalls that F` is exponential in `. In all our experiments on using

our branching strategy, it has been sufficient for most of the time to prune a branch after

branching on s = 1 only. Fixing mn
`

locations that should be covered by the first square

of the polyominoes along a branch of the B&B tree, with respect to previously discussed

bijections, is often sufficient to fathom the branch.

In our implementation, starting from location (0, 0) of the board, we branch on the first

location (i, j) with an s satisfying (2.14). If there are multiple s values on which to branch,

then the one with maximum
∑

(kpq)∈Iij [s] x
k
pq is selected, so that one of the resulting branches

is minimally infeasible. Based on our experiments, this strategy dominates other options as

it is able to result in a feasible tiling faster.

Although the above results are in the context of the polyomino tiling problem, they are

directly applicable to the general set partitioning setting. Thus, it is necessary to compare

the proposed approach to the well-known branching strategy of [103], which relies on the

following observation. For every fractional solution x to the set partitioning problem, there

exists at least one pair of squares (i, j) and (i′, j′) such that 0 <
∑

k∈S(ij),(i′j′)
xk < 1, where

S(ij),(i′j′) is the index set for subsets covering both (i, j) and (i′, j′). Then,
∑

k∈S(ij),(i′j′)
xk = 1

is enforced on one branch and
∑

k∈S(ij),(i′j′)
xk = 0 on the other branch. Applied to the tiling

problem with dominoes only, this branching rule reduces to the single-variable branching

because dominoes covering the same two squares cannot be distinct, i.e., |S(ij),(i′j′)| ≤ 1

for all pairs (i, j) and (i′, j′). However, in a fractional solution, a single square (i, j) can

be covered by as many as four distinct dominoes at the same time, see Figure 6c. Thus,

|Iij[s]| = 2 and multiple variables appear in (2.14).

22

2.3.2 Delayed Column Generation (DCG)

Define a dummy polyomino f 0 to be a copy of B with no center of gravity. Observe that

f 0 does not contribute to the objective function and induces a single set f 0
00, which is also a

feasible solution to the problem. Let I =
⋃

(i,j)∈B Iij = {(k, p, q) : fkpq ⊆ B, fk ⊆ P} be the

set of all feasible triplets for (B,P), and I0 = {(0, 0, 0)}. As each triplet defines a column of

the original problem, we refer to them as columns.

Denote by PL(B, Ĩ) and PL(B, Ĩ) the exact set covering formulation PL for B using only

a set of columns Ĩ ⊆ I and its linear programming (LP) relaxation, respectively. We refer

to PL(B, Ĩ ∪ I0) as the master problem of PL(B, I). In the master problem, variable x0
00 for

the dummy polyomino is treated as an artificial variable and penalized in the objective using

the big-M method. In the following description of one iteration of DCG, pricing a set of

columns simply corresponds to computing their reduced costs for a given dual vector.

1. Let (x, r, c) be an optimal solution to PL(B, Ĩ ∪ I0). Extend x to x̂ = (x, 0) by setting

xkpq = 0 for xkpq ∈ x̂ \ x so that (x̂, r, c) is a solution of PL(B, I).

2. Let π be a dual vector for PL(B, Ĩ ∪ I0). Price the columns I \ Ĩ. If there are no positive

reduced cost columns, then (x̂, r, c) is an optimal solution of PL(B, I), stop.

3. Let Î ⊆ I \ Ĩ be a set of positive reduces cost columns. Ĩ ← Ĩ ∪ Î. Return to Step 1.

We refer the reader to [19, 111] for detailed discussion of the standard branch-and-price

approach. Specifically, columns are generated at each node until the master problem for the

node is optimal. The optimal objective value of the master is an upper bound for the branch

and if it is less than the current global lower bound (i.e., value of the incumbent solution),

then the branch is fathomed. If the solution is integral, its objective value is a lower bound

for the tree and if it is less than the current global lower bound, then the branch is fathomed.

Otherwise incumbent is replaced with the new solution, global lower bound is updated, and

the branch is fathomed.

If the optimal integral solution uses only the dummy polyomino, then it implies that the

branch is infeasible and it is fathomed. On the other hand, if optimal solution is fractional,

branching takes place. In fact, any integral solution obtained during each iteration of the

DCG procedure is stored if it improves the global lower bound. Moreover, an upper bound for

23

the branch is calculated at each iteration of the DCG procedure and the branch is fathomed

as soon as it is no longer promising. Details of this upper bound are given in the next section.

For efficiency purposes, we keep a list Int of columns that are eligible for pricing in

iteration t at node n of the the B&B tree. The list of eligible columns for the first iteration

at the root node includes all feasible columns, i.e., I0
1 = I. Reduced costs of xkpq, (k, p, q) ∈ Int ,

are computed using a given dual vector π for PL(B, Ĩ), the master problem in iteration t− 1

at node n. All columns Î that are added to the master after iteration t are removed from

further consideration: Int+1 = Int \ Î.

The branching strategy proposed in Section 2.3.1 is used in our implementation. Let In

be the set of triples eligible for pricing after the last iteration of the nth node. If the current

solution to the master problem is not integral, we branch on (s, i, j) satisfying (2.14) and set

all variables in Iij[s] to be zero on the left branch; thus, In+1
1 ← In \ Iij[s] for the left child

and In+2
1 ← In \ (Iij \ Iij[s]) for the right child. Consequently, each branching removes many

columns from consideration even before they are introduced to the master problem, which

improves the search significantly.

Setting variables to zero causes loss of feasibility (since some of them are nonzero); after

the LP solver restores feasibility at the end of the first iteration of the new node, possibly

by re-introducing x0
00 into the basis, then any variable xkpq fixed to zero by branching is

removed from the master problem. Thus, branching also removes many inactive columns

from the master problem on the two new branches, which stabilizes the size of the master

problem along all the branches of the tree. Since the size of Iij is usually large, the proposed

branching strategy is very effective. The dummy column x0
00 is neither removed from the

master problem nor branched on at any time. This is necessary as otherwise infeasibility may

arise after branching on the original variables {xkpq : k > 0}, which would cause problem in

getting a dual vector for the master.

Another approach that potentially speeds up the algorithm is to not generate any

columns, except at the root node, as long as branching is possible. Specifically, (i) for

the root node, price columns until the master problem is optimal, (ii) if either x0
00 > 0, or

the current solution is integral but not optimal, then price columns in the current iteration,

and (iii) in any other scenario, continue branching.

24

The main reason to solve the root node to optimality is to obtain a true upper bound

for the B&B tree. If x0
00 > 0, then columns have to be generated as otherwise branching

would fail. If the current solution is integral, we would like to make sure that it is optimal

so that we can either fathom the node or continue branching. In any other case, columns

are priced in the first iteration of the node to update the upper bound for the branch; but

immediately after the first iteration branching takes place, without adding any columns to

the master problem, as long as the obtained upper bound does not lead to fathoming of the

branch.

2.3.3 A New Lower-Bounding Scheme

We improve the lower-bounding scheme proposed by [58] within the context of branch-and-

price for solving the exact set covering problem. Unlike [58], our lower bound does not

depend on the maximum number of sets that form a partition. Since the proposed bound

is applicable to the general exact set covering problem, we follow the notation from [58] in

this section.

Consider an m-element ground set to be covered (exactly) and n subsets {f1, f2, . . . , fn}

of it. Associate a binary variable xj with the subset fj and let cj denote its cost. Then the

generic exact set covering problem is formulated as

ES : min

{
cTx :

∑
j∈N

fj xj = e; x ∈ {0, 1}|N |
}
,

where e is the m-dimensional vector of ones and N = {1, 2, . . . , n} is the index set for all

the subsets of the ground set. In the context of column generation, the restricted master

problem ESM is the LP relaxation of ES written for some subset N̂ ⊂ N :

ESM : min

∑
j∈N̂

cjxj :
∑
j∈N̂

fj xj = e; x ≥ 0

 .

Associating an m-dimensional dual vector π̂ with the exact covering constraints of ESM, the

corresponding complementary column generation subproblem, ESS, is given as

ESS : min

 ∑
j∈N\N̂

(cj − fTj π̂)xj :
∑

j∈N\N̂

fj xj ≤ e; x ∈ {0, 1}|N\N̂ |
 .

25

Similarly, associating an m-dimensional dual vector ŷ with the set packing constraints of

ESS, the dual of LP relaxation of ESS, referred to as ESS, is

ESS : max
{
eT ŷ : fTj π̂ + fTj ŷ ≤ cj,∀ j ∈ N \ N̂ ; ŷ ≤ 0

}
.

Proposition 4. Let π̂ be any dual vector to the partitioning constraints of the formulation

ESM and ŷ be a solution to ESS for π̂. Then

eT (π̂ + ŷ)

is a lower bound for the LP relaxation of ES.

Proof. Consider the following equivalent reformulation of ES:

ES′ : min

{
cTx :

∑
j∈N

fjxj = e;
∑
j∈N

fjxj ≤ e; x ∈ {0, 1}|N |
}
.

Let π and y be dual vectors for partitioning and packing constraints of the LP relaxation of

ES′, respectively. Then dual of ES′ is

ES
′
: max

{
eT (π + y) : fTj π + fTj y ≤ cj, ∀ j ∈ N ; π u.r.s., y ≤ 0

}
.

ESS and ES
′

share the same constraints for j ∈ N \ N̂ . For j ∈ N̂ , we have that fTj ŷ ≤ 0 as

ŷ ≤ 0 and cj − fTj π̂ ≥ 0 as π̂ is a dual feasible solution of ESM. Therefore, (π̂, ŷ) is feasible

to ES
′
.

Next we show that the lower bound eT (π̂+ ŷ) is superior to the bound proposed by [58].

Consider the LP relaxation of the following equivalent reformulation of ES:

min

{
cTx :

∑
j∈N

fjxj = e;
∑
j∈N

xj ≤ k; x ∈ {0, 1}|N |
}
,

where k is assumed to be an implied logical/optimality bound on the number of subsets

that can be used by any feasible exact set covering. Let the current minimum reduced cost

δ = min{cj − fTj π̂ : j ∈ N} with respect to the restricted master problem be nonpositive.

Similarly, π̂ is a dual feasible vector for the restricted master. One can also remove the

set of indices N̂ , corresponding to the columns currently in the restricted master, from

26

consideration when calculating δ as they have nonnegative reduced cost with respect to

π̂. Then (eT π̂ + kδ) is a valid lower bound for the LP relaxation of ES [58]. Note that

nonnegativity of δ would imply that π̂ is in fact feasible to the dual of LP relaxation of ES

and thus eT π̂ is the optimal objective value of the LP relaxation of ES.

Proposition 5. Let π̂ be any dual vector to the partitioning constraints of the formulation

ESM and ŷ be a solution to ESS for π̂. Then

eT ŷ ≥ kδ .

Proof. Let δ = min{cj−fTj π̂ : j ∈ N \N̂} be nonpositive. Denote by ESS(δ) and ESS(δ) the

formulations ESS and ESS where each reduced cost cj − fTj π̂ is replaced by δ. Furthermore,

let ESLPS (δ) be LP relaxation of ESS(δ). Clearly ESS(δ) is the dual of ESLPS (δ). Then it

follows that opt(ESS(δ)) = opt(ESLPS (δ)) ≥ kδ as
∑

j∈N xj ≤ k. Since polyhedron for ESS(δ)

is included in polyhedron for ESS, opt(ESS) ≥ opt(ESS(δ)).

As it is not desirable to solve a mathematical program each time the lower bound is

calculated, we propose a heuristic procedure to solve ESS in the context of the polyomino

tiling problem. It is clear that any feasible solution of ESS also leads to a valid lower bound.

In our implementation, we use the fact that all the polyominoes used in the tiling have the

same size. The algorithm is essentially a greedy heuristic and its details are provided in

Algorithm 1.

Proposition 6. Algorithm 1 returns a valid lower bound.

Proof. To show its correctness, i.e., that it returns a feasible solution, assume j′ is the last

subset considered by Algorithm 1. For j′, ŷi =
rj
`
≤ rj′

`
for every i ∈ I− as value of ŷi must

have been set by a previous subset j and rj ≤ rj′ . Therefore,
∑

i∈f̂j′
ŷi ≤ rj′ . This is true

for all 0 ≤ j ≤ j′. If there are more sets to consider, then it must be the case that all ŷi are

already considered. Therefore,
∑

i∈f̂j ŷi ≤ rj for all j > j′.

27

Algorithm 1: Bounding Heuristic

Input: (i) a 1× (m1 +m2) dual vector π̂ and (ii) an index set N for negative reduced

cost variables xj, their corresponding columns fj, |fj| = m1 +m2, and the set

f̂j of locations covered by subset j, |f̂j| = `.

1 Let J be a tuple of elements of the set N sorted in increasing order of the reduced

cost rj = cj − fTj π̂ = −fTj π̂.

2 Set ŷi = 0 for all i. Set j = 0 and L = 0.

3 while j < |N | and L ≤ m1 do

4 For i ∈ f̂j, let I0 and I− be the index sets of ŷi = 0 and ŷi < 0, respectively.

5 if |I0| > 0 then

6 Set ŷi =
rj
`

for i ∈ I0.

7 j ← j + 1 and L← L+ |I0|.

8 return
∑

i ŷi

2.4 HEURISTIC APPROACHES

Large-scale polyomino tiling is a difficult combinatorial optimization problem. This section

focuses on heuristic approaches since exact methods described in Sections 2.2 and 2.3 can

generate solutions only for small- and medium-size problems. Specifically, in Section 2.4.1,

we present two algorithms that construct tilings for large boards using exact solutions of

smaller boards. Obtained solutions can be further improved using methods described in

Section 2.4.2.

2.4.1 Construction Heuristics

2.4.1.1 Zoom-in Algorithm (ZiA): This algorithm is motivated by the tiling ability

of polyomino sets as defined by [59, 60]. A polyomino set P is said to have the strong rep-

tile (repetitive tiling) property if every member of P can be tiled using P at some common

scale a × b, i.e., each square of each piece is replaced with an a × b rectangle to obtain its

28

larger-scale model. We refer to the a × b scale as the zoom level. Pentomino family has

the strong rep-tile property at 5 × 5 zoom level, see Figure 7. Note that if there exists an

exact tiling of an a × b rectangular board by a polyomino set P , then P has the strong

rep-tile property at a × b zoom level. However, the statement in the opposite direction is

not necessarily true.

Given an initial m × n board B and its tiling T using a set of polyominoes P =

{f 1, . . . , fK}, assume P has the strong rep-tile property at a × b zoom level. Then a tiling

for an am × bn board can be obtained by replacing each fkpq used by T with T k, the tiling

of fk at zoom level a× b. Observe that repeating this procedure in an iterative manner, one

can obtain extremely large tilings very fast. Specifically, after t iterations, a tiling of the

board of size atm× btn is readily available. Moreover, tiling of each polyomino at a× b zoom

level has to be constructed only once (using any of the exact approaches) and can be used

later on as needed. The initial tiling can be of a relatively small size. The pseudocode for

ZiA is given in Algorithm 2. Assuming that initial tilings T 1, . . ., T K and T are computed

a priori, then the overall complexity of the method is O(a bmn).

Figure 8 shows a 250 × 250 tiling obtained after two applications of this algorithm on

the initial 10× 10 tiling of pentominoes using 5× 5 zoom level. Outline for the polyominoes

in the starting tiling are also shown in the figure. Entropy of the final tiling is only 0.008%

away from its theoretical upper bound lg(500).

In Figure 9, we start from a 12 × 16 exact tiling of point-up octomino with 8.41%

optimality gap. Then, using the tiling of point-up octomino with point-up octominoes at

12 × 12 zoom level (the smallest possible zoom level), the original tiling is enlarged to a

144 × 192 one with 1.34% optimality gap. Next iteration of the procedure results in a

1728× 2304 tiling with 0.79% optimality gap. Only a partial drawing of the complete tiling

is given due to memory size limitations. Finally, note that ZiA is applicable only if the

considered set P has the strong rep-tile property.

ZiA algorithm as described above is a bottom-up approach. One can further generalize

it to obtain a top-down approach. Assume we want to construct an m × n tiling. Let

m = Π
ω(m)
i=1 mαi

i and n = Π
ω(n)
i=1 n

βi
i be the prime factorizations of m and n where ω(m) (ω(n))

29

Algorithm 2: Zoom-in (ZiA)

Input: (i) m× n tiling T0 using P , (ii) zoom level a× b, and (iii) the exact tilings T k

for each polyomino fk ∈ P using P at the zoom level a× b.

1 T1 ← ∅

2 foreach (k, p, q) ∈ T0 do

3 T1 ← T1 ∪ {(k̄, a p+ p̄, b q + q̄) : (k̄, p̄, q̄) ∈ T k} // place a copy of T k at

(a p, b q)

4 return T1

(a) F-pentomino rotated 90◦. (b) T-pentomino rotated 270◦. (c) W-pentomino.

Figure 7: F-, T-, and W-pentominoes at 5× 5 zoom level.

and mi (ni) denote the number of distinct prime factors and the distinct prime factors of m

(n), respectively. Consider a grouping of {mi}ω(m)
i=1 and {ni}ω(n)

i=1 into J + 1 groups

{(
Πi∈Pjm

αji
i ,Πi∈Qjn

βji
i

)}j=J
j=0

such that
∑J

j=0 α
j
i = αi for all mi,

∑J
j=0 β

j
i = βi for all ni, and Pj = ∅ (Qj = ∅) im-

plies Πi∈Pjm
αji
i = 1 (Πi∈Qjn

βji
i = 1). If there exists a polyomino set P that can tile a

Πi∈P0m
α0
i
i ×Πi∈Q0n

β0
i
i , m0× n0, rectangular region and has the strongly rep-tile property for

all {(Πi∈Pjm
αji
i ,Πi∈Qjn

βji
i)}j=Jj=1 , {(aj, bj)}Jj=1, then one can zoom in the m0×n0 tiling for each

30

(a
)
10
×

10
ti
li
n
g
u
si
n
g
p
en
to
m
in
o
es
.

(b
)
F
ig
u
re

in
(a
)
zo
o
m
ed
-i
n
b
y
5
×
5
.

F
ig

u
re

8:
O

b
ta

in
in

g
a

25
0
×

25
0

ti
li
n
g

of
p

en
to

m
in

o
es

u
si

n
g

af
te

r
tw

o
su

cc
es

si
ve

ap
p
li
ca

ti
on

s
of

zo
om

-i
n

h
eu

ri
st

ic
.

S
ol

u
ti

on

ti
m

e
is

le
ss

th
an

on
e

se
co

n
d
.

31

(c) Figure in (b) zoomed-in by 5× 5. Gap = 0.008%.

Figure 8: Obtaining a 250×250 tiling of pentominoes using after two successive applications

of zoom-in heuristic. Solution time is less than one second.

32

(a
)
12
×

16
L
-o
ct
om

in
o
ti
li
n
g.

(b
)
F
ig
u
re

in
(a
)
zo
o
m
ed
-i
n
b
y
1
2
×

1
2
to

o
b
ta
in

1
4
4
×

1
9
2
ti
li
n
g
.

F
ig

u
re

9:
Z

o
om

in
g-

in
th

e
p

oi
n
t-

u
p

o
ct

om
in

o.
T

h
e

in
it

ia
l

12
×

16
ti

li
n
g

zo
om

ed
-i

n
tw

ic
e

at
12
×

12
zo

om
le

ve
l

to
ob

ta
in

a

17
28
×

23
04

ti
li
n
g

w
it

h
0.

69
%

op
ti

m
al

it
y

ga
p
.

33

(c) A partial drawing of tiling in (b) zoomed-in by 12× 12 to obtain a 1728× 2304 tiling. Gap = 0.69%

Figure 9: (continued).

34

aj × bj to obtain an m×n tiling. To give an example, a 100× 100 tiling of pentominoes can

be obtained by starting from an initial tiling of a 5× 5 board and zooming in for each zoom

level {(4, 4), (5, 5)} consecutively.

2.4.1.2 Meta-rectangle Tiling Algorithm (MrTA): This heuristic is motivated by

the meta-rectangle idea of [114] developed in the context of the classical cutting stock prob-

lem. Given a set of polyominoes P = {f 1, . . . , fK}, assume that there exists a set of rectangle

sizes R = {r1 = (x1, y1), . . . , rk = (xk, yk)} such that every r ∈ R can be tiled exactly using

polyominoes from P . Similar to the case for ZiA, these rectangular tilings can be obtained

a priori using any of the exact approaches. Two rectangles or meta-rectangles (fixed or

rotated) are juxtaposed horizontally or vertically to form a new meta-rectangle. Then the

obtained meta-rectangle has a polyomino tiling since it is known how to tile each rectangle

that constitutes the meta-rectangle.

As demonstrated in Figure 10 and described in Algorithm 3, we propose to construct

such meta-rectangle tilings by juxtaposing two rectangles horizontally and then repeating

each of them vertically until we reach the least common multiplier (lcm) of the vertical

dimensions of the two rectangles. This is the key difference compared to the approach of

[114]; it is necessary since we cannot tolerate waste (i.e., empty areas that are allowed in

the context of the cutting stock problem) in our tilings. Given an initial set of rectangles R

and maximum allowable meta-rectangle dimensions (x̄, ȳ), MrTA tries to construct all the

distinct-size x × y meta-rectangles (x ≤ x̄ and y ≤ ȳ) that can be obtained using different

rotations of the given rectangles from R. After obtaining the set of all meta-rectangles, one

can check if there exists a meta-rectangle with dimensions that are the same as or close to

the desired tiling dimensions.

Proposition 7. Given that x̄ ≥ ȳ, computational complexity of Algorithm 3 is O(x̄4 ln3 x̄).

Proof. Algorithm 3 compares two rectangles at most once as only the newly created meta-

rectangles are compared to the existing meta-rectangles and as each rectangle is created at

most once. There are at most x̄2 possible dimensions for each rectangle and at most one

rectangle is created for each possible dimension. Therefore, a maximum of x̄4 comparisons

35

Figure 10: Creating meta-rectangles.

can be performed in total. Checking whether a rectangle exists is constant time when

Rall, the set of all possible rectangles, is implemented as a two-dimensional array. Since

lcm(a, b) = a b/gcd(a, b), where gcd stands for greatest common divisor, lcm and gcd have the

same computational complexity. Given that a ≥ b, the complexity of Euclidean Algorithm

for gcd(a,b) is O(ln3 a) [92]. The result follows.

Figure 11 shows a 120×160 meta-rectangle and its corresponding octomino tiling, which

has 6.33% optimality gap. Figure 12 is a graphical illustration of the output generated by

MrTA. Subfigures have horizontal and vertical scales ranging from 1 to 160, where each (x, y)

indicates whether there exists a meta-rectangle of dimensions (x, y). Since rectangles (x, y)

and (y, x) are the same (rotations), the charts are upper triangular. Each chart shows all

the meta-rectangles created starting from different subsets of rectangles. For instance, in

Figure 12c, MrTA is initialized with the rectangles {(3, 8), (4, 10)}, which are known to be

tileable with octominoes. It can be observed that even using only two rectangles, MrTA is

able to find many distinct size tilings, denoted with black boxes in the figure. Note that if

one can provide as many rectangles of different prime number dimensions as possible, MrTA

may cover many of the rectangle dimensions on the entire plane, which makes it a highly

promising solution heuristic given the complexity of the problem we consider.

One generalization of this algorithm is to consider more than two rectangles at a time.

Another improvement is to compare the entropy of newly constructed meta-rectangles with

existing ones and keep the ones with the better objective function values. However, it is

36

Algorithm 3: Meta-rectangle Tiling (MrTA)

Input: (i) maximum allowed meta-rectangle dimensions (x̄, ȳ), (ii) a set of rectangles

R, with r ∈ R having dimensions r = (x, y) ≤ (x̄, ȳ), and (iii) a function

lcm(a,b) which returns the least common multiple of two positive integers

(a, b).

1 Rall ← R, Rnew ← ∅

2 while R 6= ∅ do

3 foreach ra ∈ R and rb ∈ Rall do

4 r1 = (xa + xb, lcm(ya, yb)) // ra and rb fixed

5 r2 = (xa + yb, lcm(ya, xb)) // ra fixed, rb rotated

6 r3 = (ya + xb, lcm(xa, yb)) // ra rotated, rb fixed

7 r4 = (ya + yb, lcm(xa, xb)) // ra and rb rotated

8 foreach i ∈ {1, 2, 3, 4} do

9 if ri ≤ (x̄, ȳ) and ri /∈ Rall then

10 Rnew ← Rnew ∪ ri

11 R ← Rnew; Rall ← Rall ∪Rnew; Rnew ← ∅

12 return Rall.

evident that these improvements would require recursive update of meta-rectangles, and

thus, complexity of the algorithm would increase considerably.

2.4.2 Improvement Heuristics

Next we briefly describe several heuristic procedures designed to improve tilings obtained

either by Zoom-in or Meta-rectangle Tiling Algorithms.

Retile: For m×n board B and its tiling T (not necessarily perfect), this procedure retiles a

given square sub-region of B referred to as window w of size (2d+1)×(2d+1) with its center

located at the square (r, c) ∈ B. An example of the initialization step of the Procedure Retile

on the corner of an imperfect tiling is shown in Figure 13. Specifically, the procedure (i) retiles

37

(a) A 100× 160 meta-rectangle.

(b) Octomino tiling of the meta-rectangle in (a) with a corresponding 6.33 % optimality gap.

Figure 11: An example of a meta-rectangle generated by Algorithm 3 using initial set of

rectangles {(2, 8), (4, 16), (16, 17)} and its final octomino tiling.

38

1 160
1

160

(a) All meta-rectangles created using only
{(4, 10), (5, 8)}.

1 160
1

160

(b) All meta-rectangles created using only
{(4, 10), (7, 8)}.

1160
1

160

1 160
1

160

(c) All meta-rectangles created using only
{(3, 8), (4, 10)}.

1 160
1

160

(d) All meta-rectangles created using 55 rectangles
tileable with octominoes (r ≤ (20, 20)).

Figure 12: Dimensions of meta-rectangles generated by MrTA and the initialization step of

the tiling algorithm.

39

squares labeled ‘B’ in order to increase local irregularity, and (ii) penalizes squares labeled

‘C’ in order to obtain a perfect tiling from an imperfect one. Squares labeled ‘A’ should

never be covered because polyominoes covering them have squares outside of the considered

window. Unlabeled squares are ignored as they do not belong to B. As long as the procedure

is allowed (with penalties) to cover squares labeled ‘C’, it always returns a feasible solution

(e.g., the original tiling). The running time of Procedure Retile depends on the size of the

retiling window determined by d; it could be chosen small enough such that the resulting

tiling subproblem is solvable in a fast manner using exact algorithms.

Figure 13: Initialization in Procedure Retile: A→ do not cover, B→ retile, and C→ penalize.

40

Procedure Retile

Input: (i) m× n master board B = Bc ∪ Bf and its tiling T using P , (ii)

(2d+ 1)× (2d+ 1) window w to be retiled and its center (r, c) on B, (iii)

Restriction on frame: (a) pack, (b) penalize & pack, (c) do not cover, and

(iv) a penalty coefficient α.

1 begin Initialize

2 Bw = {(i, j) : (r − d, c− d) ≤ (i, j) ≤ (r + d, c+ d); (0, 0) ≤ (i, j) < (m,n)}
3 Twc = {(k, p, q) ∈ T | fkpq ⊆ Bw}
4 Twf = {(k, p, q) ∈ T | 0 < |fkpq ∩ Bw| < |fkpq|}
5 Bw

c = {(i, j) : (i, j) ∈ fkpq, (k, p, q) ∈ Twc ; (i, j) ∈ Bc} // center - Figure 13

6 Bwf1 = {(i, j) : (i, j) ∈ fkpq, (k, p, q) ∈ Twf ; (i, j) ∈ Bw} // free frame

7 Bwf2 = Bw \ (Bwc ∪ Bwf1) // fixed frame

8 Rewrite the partitioning constraints in the model PL for the tiling problem (Bw,P) as

follows:

9 Bwc :
∑

(kpq)∈Iij x
k
pq = 1, ∀(i, j) ∈ Bwc ,

10 Bwf1:
∑

(kpq)∈Iij x
k
pq = 0, ∀(i, j) ∈ Bwf1,

11 Bwf2:
∑

(kpq)∈Iij x
k
pq ≤ 1, ∀(i, j) ∈ Bwf2 if ‘pack’,

12
∑

(kpq)∈Iij x
k
pq ≤ pij, pij ≤ 1, ∀(i, j) ∈ Bwf2 if ‘penalize & pack’,

13
∑

(kpq)∈Iij x
k
pq = 0, ∀(i, j) ∈ Bwf2 if ‘do not cover’.

14 if ’penalize & pack’ then

15 Add −α
∑

(ij)∈Bwf2
pij to the objective function of PL, where α is a penalty

coefficient.
16 Solve resulting formulation using one of the exact methods.

17 if ‘do not cover’ and formulation is infeasible then

18 return Infeasible

19 else

20 Let T w be the solution tiling obtained.

21 T ← (T \ Twc) ∪ T w.

22 return T

41

Randomize: This procedure attempts to improve the objective function value of a given

large-scale solution by resolving smaller size tiling problems. Specifically, it reapplies Proce-

dure Retile traversing along rows and columns of B with step sizes ∆r and ∆c, respectively.

Procedure Randomize has a linear time complexity in the size of the board. Figure 14 demon-

strates the procedure on an octomino meta-rectangle tiling obtained by MrTA. Figure 14c

shows the 120×160 tiling in Figure 14b “randomized” through its middle. Figure 14d shows

the distribution of the centers of gravity for the tiling in Figure 14c.

Procedure Randomize
Input: (i) m× n board B and its tiling T using P , (ii) retiling window size

(2d+ 1)× (2d+ 1), (iii) the vertical and horizontal increments ∆r and ∆c,

and (iv) penalty coefficient α.

1 if T is perfect then

2 FrameType = ‘do not cover’

3 else

4 FrameType = ‘pack’

5 Set r = 0 and c = 0.

6 while r < m do

7 while c < n do

8 T ←Retile(B, (T ,P), (2d+ 1)× (2d+ 1), (r, c), FrameType, α)

9 c← c+ ∆c

10 r ← r + ∆r

11 return T

Smoothen: Due to the inherent computational complexity of the considered problem, con-

struction algorithms presented in Section 2.4.1 do not necessarily obtain exact tilings for

any board B. Using construction heuristics, we still can obtain a tiling larger than the re-

quested one and then drop some of the polyominoes along the edges to obtain an inexact

tiling of B. This procedure then traverses along the boundaries of B and iteratively reapplies

Procedure Retile penalizing for covered members of Bf , the frame for B.

42

Procedure Smoothen
Input: (i) m× n board B and its imperfect tiling T using P , (ii) retiling window size

(2d+ 1)× (2d+ 1), (iii) penalty coefficient α, (iv) iteration limit MaxIter,

and (v)the vertical and horizontal increments ∆r and ∆c.

1 iter = 0

2 while iter < MaxIter do

3 r = 0, c = 0

4 while c < n do

5 T ←Retile(B, (T ,P), (2d+ 1)× (2d+ 1), (r, c), ‘penalize & pack’, α)

6 c← c+ ∆c

7 c = n− 1

8 while r < m do

9 T ←Retile(B, (T ,P), (2d+ 1)× (2d+ 1), (r, c), ‘penalize & pack’, α)

10 r ← r + ∆r

11 r = m− 1

12 while r ≥ 0 do

13 T ←Retile(B, (T ,P), (2d+ 1)× (2d+ 1), (r, c), ‘penalize & pack’, α)

14 r ← r −∆r

15 r = 0

16 while c ≥ 0 do

17 T ←Retile(B, (T ,P), (2d+ 1)× (2d+ 1), (r, c), ‘penalize & pack’, α)

18 c← c−∆c

19 if T is perfect then

20 return T

21 iter ← iter + 1

22 return T

43

(a
)

1
2
0
×
1
6
0
m
et
a
-r
ec
ta
n
g
le
.

F
ig

u
re

14
:

R
an

d
om

iz
in

g
an

o
ct

om
in

o
m

et
a-

re
ct

an
gl

e
ti

li
n
g.

44

(b
)
1
2
0
×
1
6
0
o
ct
o
m
in
o
ti
li
n
g
o
f
th
e
m
et
a
-r
ec
ta
n
g
le
.

F
ig

u
re

14
:

(c
on

ti
n
u
ed

).

45

(c
)
R
an

d
om

iz
at
io
n
in

p
ro
g
re
ss
;
th
e
ti
li
n
g
in

p
a
rt

(b
)
ra
n
d
o
m
iz
ed

th
ro
u
g
h
to

it
s
m
id
d
le
.

F
ig

u
re

14
:

(c
on

ti
n
u
ed

).

46

(d
)
C
en
te
rs

o
f
g
ra
v
it
y
fo
r
p
a
rt

(c
).

F
ig

u
re

14
:

(c
on

ti
n
u
ed

).

47

2.5 APPROXIMATION BOUNDS

In this section we show that a special case of MrTA heuristic is an approximation algorithm

if the initial set of rectangles includes exactly one rectangle and no rotations are allowed.

Observe that this special case of MrTA, henceforth referred to as Paste-Side-by-Side Al-

gorithm (PSA), reduces to merging multiple copies of the given rectangle horizontally and

vertically alongside each other (side-by-side) to create larger rectangles.

Consider m × n perfect tiling T0. Let ri and cj be the numbers of centers of gravity on

row i and column j, respectively. Recall that
∑
ri =

∑
cj = T . The entropy of T0 is

E0 = −
m∑
i=1

ri
2T

lg
(ri

2T

)
−

n∑
j=1

cj
2T

lg
(cj

2T

)
.

Assume that T1 is obtained from T0 by “pasting” it side-by-side a times vertically and b

times horizontally. Tiling T1 has am rows and b n columns. Let rij be the number of centers

of gravity on row ij for 1 ≤ i ≤ a and 1 ≤ j ≤ m. Similarly, let cij be the number of centers

of gravity on column ij for 1 ≤ i ≤ b and 1 ≤ j ≤ n. Then for all i and j:

rij = b rj and cij = a cj.

48

Then entropy of T1 is obtained as follows:

E1 = −
a∑
i=1

m∑
j=1

rij
2abT

lg
(rij

2abT

)
−

b∑
i=1

n∑
j=1

cij
2abT

lg
(cij

2abT

)
= −

a∑
i=1

m∑
j=1

b rj
2abT

lg

(
b rj

2abT

)
−

b∑
i=1

n∑
j=1

a cj
2abT

lg
(a cj

2abT

)
= −

a∑
i=1

m∑
j=1

rj
2aT

lg
(rj

2aT

)
−

b∑
i=1

n∑
j=1

cj
2bT

lg
(cj

2bT

)
= −

m∑
j=1

a
rj

2aT
lg
(rj

2aT

)
−

n∑
j=1

b
cj

2bT
lg
(cj

2bT

)
= −

m∑
j=1

rj
2T

lg
(rj

2aT

)
−

n∑
j=1

cj
2T

lg
(cj

2bT

)
= −

m∑
j=1

rj
2T

(
lg
(rj

2T

)
+ lg

(
1

a

))
−

n∑
j=1

cj
2T

(
lg
(cj

2T

)
+ lg

(
1

b

))

= −

(
m∑
j=1

rj
2T

lg
(rj

2T

)
+

m∑
j=1

rj
2T

lg

(
1

a

))
−

(
n∑
j=1

cj
2T

lg
(cj

2T

)
+

n∑
j=1

cj
2T

lg

(
1

b

))

= −

(
m∑
j=1

rj
2T

lg
(rj

2T

)
+

n∑
j=1

cj
2T

lg
(cj

2T

))
−

(
m∑
j=1

rj
2T

lg

(
1

a

)
+

n∑
j=1

cj
2T

lg

(
1

b

))

= E0 −
T

2T
lg

(
1

a

)
− T

2T
lg

(
1

b

)
= E0 + lg

√
a b .

Since the theoretical upper bound for entropy of any perfect tiling of an am× b n board is

lg(a m+ b n), the relative optimality gap for T1 is bounded by:

1− E0 + lg
√
a b

lg(am+ b n)
. (2.15)

Proposition 8. PSA is asymptotically optimal.

Proof. We show that

lim
(a,b)→(∞,∞)

f(a, b) = lim
(a,b)→(∞,∞)

E0 + lg
√
a b

lg(am+ b n)
= 1 .

49

Consider transformation to polar coordinates:

a = r cos θ and b = r sin θ .

Then f(a, b) can be rewritten as

Γ(r, θ) =
E0 + 1

2
lg(r2 sin θ cos θ)

lg(mr cos θ + n r sin θ)
.

Note that
{
θ | θ = k π

2
, k ∈ Z

}
is not in the domain of Γ(r, θ) because a ≥ 1 and b ≥ 1. Then

it is easy to see that

r → ∞ ⇔ (a, b) → (∞,∞) .

Consequently,

lim
(a,b)→(∞,∞)

f(a, b) = lim
r→∞

Γ(r, θ)

= lim
r→∞

E0 + 1
2

lg(r2 sin θ cos θ)

lg(mr cos θ + n r sin θ)

=
+∞
+∞

(apply L’Hospital’s rule)

= lim
r→∞

r (m cos θ + n sin θ)

m cos θ + n sin θ

2r sin θ cos θ

2r2 sin θ cos θ

= 1 .

Since the limit is independent of the angle θ, the direction one approaches to the limiting

value, limit of f(a, b) as (a, b)→ (∞,∞) exists and is equal to 1. Hence, the limiting value

of the bound (2.15) is 0 and the result follows.

Proposition 9. If the entropy of the initial tiling T0 is at least (1
2

+ ε) lg(m+ n), ε ∈ [0, 1
2
],

then PSA has an approximation guarantee of

1

2

lg(a bm + a b n)

lg(am + b n)
+ ε

lg(m + n)

lg(am + b n)
≥ 1

2
.

50

Proof. Recall that lg(am + b n) is an upper bound for an optimal solution of our problem.

Then

E0 + 1
2

lg(ab)

lg(am + b n)
≥

(1
2

+ ε) lg(m + n) + 1
2

lg(a b)

lg(am + b n)

=
1

2

lg(a bm + a b n)

lg(am + b n)
+ ε

lg(m + n)

lg(am + b n)

≥ 1

2

lg(am + b n)

lg(am + b n)
=

1

2
.

It is important to note that the theoretical upper bound of log(m+n) is hard to achieve when

m 6= n. It follows from the fact that either rows or columns, whichever is lesser in number,

needs to accommodate more centers of gravity per row or column as
∑
ri =

∑
cj = T .

Proposition 10. If a = b and the initial solution T0 is ε-optimal with respect to the theo-

retical upper bound, then the solution obtained by PSA is also ε-optimal.

Proof.

E0 + 1
2

lg(ab)

lg(am + b n)
≥

(1− ε) lg(m + n) + 1
2

lg(a2)

lg(a (m + n))

=
lg(a(m + n))

lg(a (m + n))
− ε lg(m+ n)

lg(a(m+ n))

= 1− ε lg(m+ n)

lg(a(m+ n))
≥ 1− ε .

Corollary 1. If a = b and the initial solution achieves the theoretical upper bound log(m+n),

then PSA always returns an optimal solution.

51

2.6 COMPUTATIONAL RESULTS

In this section, we present a computational study to evaluate performance of the exact

and heuristic approaches proposed in this chapter. The first part aims at assessing the

performance of the branching rule and delayed column generation approaches described in

Section 2.3. The second part summarizes results for heuristic algorithms and procedures

described in Section 2.4.

All routines except branch-and-price (B&P) are coded in PYTHON; CPLEX PYTHON

API [74] is used for routines requiring CPLEX (e.g., CPLEX with the proposed branching

strategy). The B&P algorithm is coded in C++ and uses the open source COIN-OR BCP

framework [37] for UNIX environment. CLP is used as LP solver for BCP. All code is

single-threaded. A 32-bit Windows 7 machine with dual-core Intel Xeon E3110 @ 3.00 GHz

processor and 3 GB RAM is used for all computations. Cygwin 1.7.9 on the same machine

is used for BCP.

2.6.1 Results for Exact Approaches

We compare three solution approaches to solve the model PL: (i) CPLEX, (ii) CPLEX

using the branching strategy (CPLEX-BR) proposed in Section 2.3, and (iii) branch-and-

price using BCP. For CPLEX and CPLEX-BR, all cuts and heuristics are enabled. The

BCP implementation is a pure B&P algorithm (i.e., no cuts or heuristics are used). Besides

running times, the number of nodes created/processed by each algorithm is also reported to

demonstrate the search capability of the algorithms. Time limit of 604,800 seconds (1 week)

is enforced for all experiments.

We consider tetromino, pentomino, and octomino families. Specifically, all members of

tetrominoes and pentominoes are used (see Figure 1). However, this is not possible for

octominoes as |F8| = 369 and this number grows to 2, 725 if we include rotations and reflec-

tions; the resulting formulations are far beyond tractable even for small board dimensions.

Therefore, a subset of F8 with only 13 octominoes is selected for the experiments. For this

subset of octominoes, illustrated in Figure 15, we have |P| = 76.

52

Figure 15: The subset of octomino family, F8, used in experiments.

A termination criterion of 0.5% relative gap is used for tetrominoes and pentominoes. For

octominoes, this cut-off percentage gap is raised to 3.0%, since this family is computationally

challenging for the LP solvers because of denser constraint matrices. The performance of the

algorithms is evaluated for the case where finding a feasible solution is trivial (e.g., a 25×25

board for pentominoes that could be tiled using only ‘l’ pentomino) and the other cases

where a feasible solution may not be trivial (e.g., a 22 × 26 board for tetrominoes). Large

board dimensions are selected rather straight forward as CPLEX and CPLEX-BR could not

get beyond moderate board sizes in the experiments.

Table 1 summarizes the results for the tetromino family. CPLEX and CPLEX-BR are

better than BCP up to dimension 20 × 20, however, beyond this size BCP dominates both

algorithms. Neither CPLEX nor CPLEX-BR are capable of solving instances beyond the

32 × 32 board dimension. Observe that CPLEX has an unstable search tree size relative

to the other two algorithms. For small dimensions, CPLEX finds good solutions at the

root node using heuristics. Beyond small board dimensions, CPLEX fails as search space

becomes intractable very fast. CPLEX-BR has a better search performance, however, for

larger dimensions even solving LPs becomes difficult. CPLEX-BR outperforms CPLEX in

53

almost all instances. BCP has a rather steady increase in the search tree size and running

time. Though it does not use any heuristics, delayed column generation approach gives it

the ability to process nodes much faster. The problem becomes intractable beyond 60× 80

board size.

Table 1: Computational results for tetromino family: exact approaches.

Size

Nodes Created/Processed Running Time (secs)

CPLEX CPLEX-BR BCP
CPLEX CPLEX-BR BCP

Rows # Cols Created Processed Created Processed Created Processed

12 12 10 10 93 60 1,153 673 1 5 7

12 18 99 50 30 30 275 144 5 8 4

12 24 888 583 694 460 1,875 1,103 85 75 41

16 16 1 1 1 1 235 118 5 5 5

16 19 1 1 1 1 2,265 1,303 9 9 62

16 20 1 1 1 1 309 161 8 7 9

16 25 1 1 1 1 1,297 670 44 46 44

20 20 1 1 1 1 977 496 29 30 219

20 23 1 1 1 1 497 250 56 56 28

20 24 794 499 651 330 539 270 467 222 32

20 30 1 1 1 1 805 408 114 115 58

22 26 117,552 76,912 479 240 2,429 1,235 16,635 298 132

24 24 530 530 907 464 789 400 711 560 58

24 25 17,998 10,109 1,859 960 715 362 7,125 1,386 55

25 28 831 509 1,131 580 1,151 585 1,612 1,181 97

28 30 † † 18,965 9,600 1,745 902 † 38,708 197

30 30 3,444 2,884 1,731 880 13,567 198

32 32 1,309 660 3,075 1,556 4,960 510

40 40 † † 4,259 2,165 † 1,198

40 60 39,005 19,707 18,349

40 80 49,587 25,085 49,477

50 80 91,641 46,276 106,292

60 80 194,041 97,827 496,570

† No feasible solution obtained beyond this size in 604,800 seconds (1 week) time limit.

Most of the conclusions drawn for the tetromino family are also valid for the pentomino

family, see results in Table 2. Though CPLEX cannot find a solution for 23 × 25 board in

one week, BCP is able to find a solution within allowed tolerances in less than four minutes.

54

Table 2: Computational results for pentomino family: exact approaches.

Size

Nodes Created/Processed Running Time (secs)

CPLEX CPLEX-BR BCP
CPLEX CPLEX-BR BCP

Rows # Cols Created Processed Created Processed Created Processed

10 10 1 1 1 1 493 290 1 1 2

10 13 1 1 1 1 381 238 2 2 3

13 15 138 80 101 50 1,597 956 13 29 24

15 15 1 1 1 1 1,529 861 13 13 34

15 17 1 1 1 1 2,159 1,154 22 22 60

15 19 1 1 1 1 591 307 16 16 19

17 20 1 1 1 1 719 363 71 75 33

20 20 1 1 1 1 463 231 68 66 28

20 24 1 1 1 1 1,297 659 623 616 100

20 30 1 1 1 1 1,503 780 328 325 141

23 25 † † 653 340 1,977 998 † 3,005 205

25 25 499 260 3,543 1,836 2,353 400

25 29 1,101 559 2,213 1,117 5,276 396

30 30 248,955 248,400 4,015 2,029 61,909 802

40 40 † † 7,875 3,954 † 4,553

40 60 8,015 4,061 11,789

40 80 138,577 69,859 276,085

40 100 241,883 122,193 435,134

50 100 155,641 78,301 508,267

60 80 70,243 35,244 320,726

60 100 128,255 64,446 441,318

† No feasible solution obtained beyond this size in 604,800 seconds (1 week) time limit.

As the number of squares that each octomino covers (i.e., 8) is large, the constraint

matrix for the related formulation is denser. Hence, the LP solution times are larger for all

algorithms and the time spent per tree node increases sharply as it can be observed from

Table 3. Both CPLEX and CPLEX-BR fail at rather small board sizes. BCP is more stable

and shows almost the same performance as for tetrominoes and pentominoes in terms of tree

search.

In summary, we conclude that the branching strategy and the B&P implementation based

on the delayed column generation dominates direct use of an MIP solver with traditional

55

Table 3: Computational results for octomino family: exact approaches.

Size

Nodes Created/Processed Running Time (secs)

CPLEX CPLEX-BR BCP
CPLEX CPLEX-BR BCP

Rows # Cols Created Processed Created Processed Created Processed

12 12 1 1 1 1 1,391 801 11 11 23

12 16 2,247 1,573 149 80 2,289 1,305 272 114 65

12 20 476 476 143 80 3,613 2,068 436 120 150

16 16 79 40 759 440 453 250 71 583 33

20 20 734 600 883 527 1,975 1,013 2,812 2,900 265

20 24 279 169 11,290 9,264 1,027 526 1,121 32,157 160

20 28 3,606 2,498 39,591 34,688 4,577 2,426 44,466 294,453 995

24 24 5,680 4,032 10,033 7,724 571 295 55,989 66,508 194

24 28 5,257 3,210 2,330 1,392 2,545 105 89,428 30,456 375

28 28 † † 6,506 4,769 4,229 2,160 † 201,501 1,739

32 32 10,117 5,937 41,633 21,662 514,897 20,452

40 40 † † 10,597 5,409 † 21,882

48 48 163,655 84,122 330,999

† No feasible solution obtained beyond this size in 604,800 seconds (1 week) time limit.

branching. The major aim of our efforts is to have an exact method that can solve moderate-

size problems. These solutions are used for construction/improvement heuristics.

2.6.2 Results for Heuristic Approaches

A computational study of ZiA using octomino family is povided in Table 4. For different

initial octomino tilings and zoom-in levels we report the setup time to construct initial

tilings, the relative optimality gap after t applications of ZiA, the time spent to perform

one iteration, the number of polyominoes used in the final tiling, and the final size of the

board. Since each polyomino itself is tiled using entropy maximization, each application of

ZiA further “randomizes” obtained tiling. This effect can be observed by comparing the

relative optimality gap as t increases. ZiA is very successful as it constructs large irregular

tilings of high quality in a very short time; it is able to obtain a 16 384× 16 384 tiling that

56

consists of more than 33 million octominoes, with less than 0.02% optimality gap in less

than one hour.

Table 4: Computational results for octomino family: ZiA.

Initial Tiling Size: 12×12 20×24 32×32

Zoom Level: 4× 4 6× 6 8× 8

Zoom-ins Setup Time (secs)† 23 + 2, 294 160 + 3, 075 20, 462 + 7, 763

t=1 Relative Gap % 0.73 0.39 0.12

Time (secs) 0.04 0.15 0.46

Polyominoes 288 2, 160 8, 192

Final Tiling Size 48×48 120×144 256×256

t=2 Relative Gap % 0.21 0.16 0.03

Time (secs) 0.33 3.95 26.09

Polyominoes 4,608 77,760 524,288

Final Tiling Size 192×192 720×864 2, 048×2, 048

t=3 Relative Gap % 0.11 0.11 0.02

Time (secs) 4.50 172 1, 145 + 1, 466ζ

Polyominoes 73, 728 2, 799, 360 33, 554, 432

Final Tiling Size 768×768 4, 320×5, 184 16, 384×16, 384

† 3% relative gap and 1,800 seconds time limit enforced in finding tiling of individual polyominoes at each zoom level.

ζ Due to memory limitations, data is processed sequentially: real computation time + read from / write to disk time.

Results for pentomino and octomino families using MrTA (with randomization proce-

dure) are summarized in Table 5. A set of exactly tileable rectangles, with dimensions at most

20 × 20, are provided to the algorithm as input. Subsequently, different sized large tilings

are generated, which are further “randomized” using one application of Procedure Random-

ize with two different retiling window sizes. A single pass of the procedure is able to get

the optimality gap below 1% except one instance. Note that multiple passes with different

window size are also possible.

57

Table 5: Computational results for pentomino and octomino families: MrTA.

MrTA† Randomize (after MrTA)‡

setup (secs) size gap % time (secs) retiling area retilings / pass gap % time (secs)

Pentominoes 616

100 x 150 5.53 1
9 x 9 938 0.54 424

15 x 15 306 0.52 517

190 x 310 5.72 1
9 x 9 3,681 0.56 3,337

15 x 15 1,202 0.54 1,615

500 x 500 11.65 1
9 x 9 15,625 0.06 8,305

15 x 15 5,102 0.04 12,922

Octominoes 1,484

80 x 100 4.23 1
9 x 9 500 0.62 1,174

15 x 15 163 0.53 2,325

220 x 360 8.22 1
9 x 9 4,950 1.89 24,580

15 x 15 1,616 0.63 42,988

500 x 500 3.11 1
9 x 9 15,625 0.38 31,792

15 x 15 5,102 0.06 78,859

† (x̄, ȳ) ≤ (20, 20). This have to be done only once for each polyomino family.

‡ CPLEX-BR and BCP used for retiling of pentominoes and octominoes, respectively; 4% optimality gap and 300 seconds time limit enforced.

2.7 PHASED ARRAY ANTENNA SIMULATIONS

In this section we report on our phased array antenna simulations with irregular polyomino

tilings obtained using the developed optimization approach. The simulation tool is provided

by the Air Force Research Laboratory (AFRL), see also [90]. The goal of the experiments

is to verify that the proposed information-theoretic entropy-based concept is suitable for

measuring the irregularity of a polyomino tiling and that, in fact, such irregularity contributes

to antenna performance as indicated by previous results in the literature.

We consider four time delay control scenarios:

• element level control (E),

• rectangular 2× 4-subarray level control (R),

58

• ‘partially optimized’ (6-8% optimality gap) polyomino-shaped subarray level control (P),

• ‘completely optimized’ (<0.4% optimality gap) polyomino-shaped subarray level con-

trol (P+).

Octomino family from Figure 15 is used for scenarios P and P+. For each scenario we

report the results for four different array sizes: 32× 32, 64× 64, 128× 128, and 256× 256.

In all simulations, (i) we use isotropic antenna elements, (ii) elements are separated by half

wavelength at the center frequency fc, (iii) antenna operates at 1.3fc, and (iv) antenna is

steered to (0.5, 0.5) in UV space. Sidelobe power values reported are normalized.

Figure 16 includes four plots demonstrating results for each scenario as the array size

varies. Area gain, taper loss, and scan loss are several measures that are independent of the

array structure. Power gain monotonically increases with the array size. Its highest and low-

est values correspond to scenarios E and P+, respectively. However, the difference is almost

negligible (around 1.5 dB). The average sidelobe levels also decrease monotonically and are

about white noise level for all scenarios and array sizes. The most important characteristic is

the peak sidelobe level. Figure 16 confirms that using completely optimized (in terms of the

proposed irregularity metric) octomino tilings results in a significant suppression of sidelobes.

The peak sidelobe is about -11dB for rectangular subarrays (R) and about -19dB for partially

optimized tilings (P). The peak sidelobe level does not change much for partially optimized

tilings (P) as the array size increases. However, for completely optimized tilings (P+) each

quadrupling of the array size results in decrease of the peak sidelobe by approximately 5dB.

This result suggests that finding near optimal solutions is important as it substantially im-

proves the performance of the tiling. For 256 × 256 completely optimized array structure

(P+), the peak sidelobe is close to the peak sidelobe obtained with element level control.

Thus, irregularly tiled polyomino-shaped subarrays provide an attractive easy-to-implement

alternative to phased array antennas with element level control.

In Figure 20, we provide contour and surface plots of radiation patterns for 128 × 128

array size; corresponding partially and completely optimized tilings are given in Figure 19.

With element level control, beam formation is perfect as it is observed in Figures 20a and20b.

With rectangular subarrays, sidelobes are almost as significant as the main beam. With a

partially optimized tiling, a large set of sidelobes appears as shown in Figures 20e and 20f;

59

however, the peak sidelobe level is lower in comparison to the case of rectangular subarrays.

Note that the radiation pattern behavior is somewhat similar to the periodicity pattern

observed in the tiling in Figure 19a. With an optimally tiled array structure shown in

Figure 19b, sidelobes are suppressed to the white noise level and the peak sidelobe is not

significant, see Figures 20g and 20h.

Analysis for 128× 128 array is also valid for 64× 64 and 256× 256 array sizes. Magnetic

response for these array sizes are given in Figures 17 and 18 and Figures 21 and 22. The

results presented in this section are very encouraging as they prove that one could obtain

almost perfect beam formation by using irregularly tiled polyomino subarrays and eliminate

the need to implement complex and expensive element level controls in antenna design.

Redesign of antenna geometries using our results will have a significant impact considering

the wide range of fields where phased array antennas are used. Furthermore, eliminating

possibility for sidelobe jamming, our results have a strategic importance in electronic warfare.

2.8 CONCLUSION

Irregularly tiled polyomino-shaped subarrays improve performance of phased array antennas

and in this work we focus on obtaining such tilings with integer programming/combinatorial

optimization techniques. Tiling a region with a given set of polyominoes is a hard combi-

natorial optimization problem; deciding whether an exact tiling exists is an NP -complete

problem. We model the tiling problem as an exact set covering problem, where irregularity

is measured with an information-theoretic entropy-based objective function. The resulting

mathematical program is nonlinear, however, it can be linearized and relaxed to a certain

degree. A B&P framework with novel branching strategy and duality-based lower-bounding

is proposed to solve the problem exactly. Computational results show that our approach

significantly outperforms a state-of-the-art commercial solver. Successful heuristic and ap-

proximation algorithms are developed to obtain large size tilings. Our simulation study using

software provided by ARFL confirms that irregularity of the obtained tilings substantially

improves antenna performance.

60

32
64

12
8

25
6

−
100102030405060

dB

V
al

ue
s

C
om

m
on

 to
 A

ll
P

lo
ts

A
re

a
G

ai
n

T
ap

er
 L

os
s

S
ca

n
Lo

ss

32
64

12
8

25
6

3035404550
P

ow
er

 G
ai

n

E R P P
+

32
64

12
8

25
6

−
80

−
75

−
70

−
65

−
60

−
55

−
50

−
45

−
40

−
35

of

 e
le

m
en

ts
 o

n
ea

ch
 s

id
e

dB

A
ve

ra
ge

 S
id

el
ob

e
Le

ve
l

E R P P
+

32
64

12
8

25
6

−
45

−
40

−
35

−
30

−
25

−
20

−
15

−
10

of

 e
le

m
en

ts
 o

n
ea

ch
 s

id
e

M
ax

im
um

 S
id

el
ob

e
Le

ve
l

E R P P
+

F
ig

u
re

16
:

S
u
m

m
ar

y
of

ar
ra

y
an

te
n
n
a

si
m

u
la

ti
on

s
re

su
lt

s:
ti

m
e

d
el

ay
co

n
tr

ol
at

el
em

en
t

le
ve

l
(E

),
2
×

4
re

ct
an

gu
la

r
su

b
ar

ra
y

le
ve

l
(R

),
p
ar

ti
al

ly
op

ti
m

iz
ed

o
ct

om
in

o
su

b
ar

ra
y

le
ve

l
(P

),
an

d
co

m
p
le

te
ly

op
ti

m
iz

ed
o
ct

om
in

o
su

b
ar

ra
y

le
ve

l
(P

+
).

61

(a) P: 7.22% optimality gap

Figure 17: Partially and completely optimized polyomino tilings for 64× 64 array size.

62

(b) P+: 0.40% optimality gap

Figure 17: (continued).

63

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(a) E: contour plot. (b) E: surface plot

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(c) R: contour plot (d) R: surface plot

Figure 18: Radiation patterns for 64× 64 array size with time delay control at 2× 4 rectan-

gular subarray level (R), partially optimized octomino subarray level (P), and completely

optimized octomino subarray level (P+).

64

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(e) P: contour plot (f) P: surface plot

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

(g) P+: contour plot (h) P+: surface plot

Figure 18: (continued).

65

(a) P: 6.32% optimality gap

Figure 19: Partially and completely optimized polyomino tilings for 128× 128 array size.

66

(b) P+: 0.28% optimality gap

Figure 19: (continued).

67

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(a) E: contour plot (b) E: surface plot

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(c) R: contour plot (d) R: surface plot

Figure 20: Radiation patterns for 128×128 array size with time delay control at element level

(E), 2× 4 rectangular subarray level (R), partially optimized octomino subarray level (P),

and completely optimized octomino subarray level (P+).

68

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(e) P: contour plot (f) P: surface plot

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(g) P+: contour plot (h) P+: surface plot

Figure 20: (continued).

69

(a) P: 5.97% optimality gap

Figure 21: Partially and completely optimized polyomino tilings for 256× 256 array size.

70

(b) P+: 0.08% optimality gap

Figure 21: (continued).

71

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(a) E: contour plot. (b) E: surface plot

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(c) R: contour plot (d) R: surface plot

Figure 22: Radiation patterns for 256× 256 array size with time delay control at 2× 4 rect-

angular subarray level (R), partially optimized octomino subarray level (P), and completely

optimized octomino subarray level (P+).

72

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(e) P: contour plot (f) P: surface plot

U

V

−1 −0.5 0 0.5 1
−1

−0.5

0

0.5

1

−50

−45

−40

−35

−30

−25

−20

−15

−10

−5

(g) P+: contour plot (h) P+: surface plot

Figure 22: (continued).

73

2.9 ACKNOWLEDGMENT

We want to thank to Dr. Robert J. Mailloux for his valuable comments on interpretation

of the antenna simulation results and to Dr. Scott Santarelli for his assistance with antenna

simulation software. We also acknowledge Dr. Arje Nachman and Dr. Donald Hearn for

introducing us to the considered application.

74

3.0 ON GREEDY APPROXIMATION ALGORITHMS FOR A CLASS OF

TWO-STAGE STOCHASTIC ASSIGNMENT PROBLEMS

3.1 INTRODUCTION

Given a set V of n agents, a set U of n jobs and a weight (or cost) wij for each i ∈ V

and j ∈ U , the well-known linear assignment problem consists of assigning each agent to

exactly one job in such a manner that each job is performed by exactly one of the agents

and the total weight (cost) of the obtained assignment is maximized (minimized). In this

work we consider the maximization version and the mathematical program for the related

linear assignment problem can be given as follows [97]:

max
x

∑
i∈V

∑
j∈U

wijxij (3.1)

s.t.
∑
j∈U

xij = 1, for all i ∈ V, (3.2)

∑
i∈V

xij = 1, for all j ∈ U, (3.3)

xij ∈{0, 1}, for all i ∈ V, j ∈ U. (3.4)

Linear assignment problem (3.1)-(3.4) is also known as the weighted bipartite matching

problem. Namely, given a weighted bipartite graph G(V ∪ U,E) with |V | = |U | and arc

weights wij for all (i, j) ∈ E we need to find a perfect matching of maximum weight. Recall

that perfect matching is a matching which matches all vertices of the graph.

75

It is well known that the constraint matrix for (3.2)-(3.3) is totally unimodular [97].

Therefore, we can safely remove integrality constraints (3.4) and solve the linear program-

ming relaxation (3.1)-(3.4) to get the optimal solution. However, the most popular approach

to tackle the linear assignment problem is the Hungarian Method [83], which can be consid-

ered as an implementation of the primal-dual method for the respective minimum cost flow

problem. The Hungarian Method (HM) works with the dual of the linear program (3.1)-(3.3)

given by

min
α,β

n∑
i=1

αi +
n∑
j=1

βj (3.5)

s.t. αi + βj ≥ wij, i = 1, . . . , n, j = 1, . . . , n. (3.6)

We concider the following two-stage stochastic programming extension of (3.1)-(3.4),

which is further referred to as the two-stage stochastic linear assignment (2SSLA) problem.

Each edge (i, j), i ∈ V and j ∈ U , is associated with the first-stage weight wij, and the

second-stage weight qkij for scenario k, k = 1, . . . , K. The first-stage decision x is to choose

some matching in G that is not necessarily perfect. At the second stage a scenario k is

realized with probability pk. For each scenario k, the second-stage decision yk is to choose a

matching over those agents and jobs that are unmatched in the first stage in order to form a

perfect matching. The overall goal is to find a perfect matching with the maximum expected

weight. Then the two-stage stochastic programming extension of (3.1)-(3.4) can be written

as follows:

max
x,y

n∑
i=1

n∑
j=1

wij · xij +
K∑
k=1

pk ·
n∑
i=1

n∑
j=1

qkij · ykij (3.7)

s.t.
n∑
j=1

(
xij + ykij

)
= 1, i = 1, . . . , n, k = 1, . . . , K, (3.8)

n∑
i=1

(
xij + ykij

)
= 1, j = 1, . . . , n, k = 1, . . . , K, (3.9)

xij ∈ {0, 1}, ykij ∈ {0, 1}, i, j = 1, . . . , n, k = 1, . . . , K. (3.10)

76

2SSLA is partially motivated by the target-based weapon-target assignment (WTA) prob-

lem [94]. In the WTA problem, a battle manager must assign M weapons to N targets

maximizing the expected total damage to the targets. If complete information is initially

available, then all weapon-target assignment decisions can be made instantaneously and the

resulting problem is referred to as the static WTA problem [34, 94]. In the dynamic WTA

problem, decisions are made over several time periods and the battle manager may not

have perfect information about the future. The latter setting naturally leads to a stochastic

optimization model.

Over the last decade, there has been a rapid increase in applications of stochastic op-

timization methodology to a variety of important real-world problems including resource

allocation, planning, logistics, scheduling and health care [24, 102]. The key advantage of

stochastic programming is that it allows optimal (or near-optimal) decision making with

uncertainty considerations, which overcomes many limitations of classical deterministic op-

timization approaches as it has been demonstrated through a number of studies in the lit-

erature [107]. Thus, it is not surprising that algorithmic developments for stochastic integer

and combinatorial optimization problems have been among the most active research areas.

A number of studies has been focused on the design of exact solutions methodologies, with

typical examples in [1, 2, 7, 95, 105, 108].

Unfortunately, in general, stochastic optimization problems are inherently difficult to

solve. Many standard deterministic optimization problems that are solvable in polynomial

time, become NP-hard if considered in the stochastic environment, e.g., maximum weight

matching [81] and spanning tree [52] problems. Moreover, two- and multi-stage stochastic

linear programming problems with discrete distributions on the parameters are]P-hard

and PSPACE-hard, respectively [49]. Thus, we can not expect to be able to solve general

stochastic integer and combinatorial optimization problems exactly for large input sizes, and

similar to the deterministic optimization literature, it is desirable to design polynomial time

approximation algorithms with reasonable performance guarantees. Recent examples of this

type of work include methods for solving two-stage stochastic extensions of the shortest

path [62], minimum spanning tree [46], min-cut [45, 62], and Steiner tree [66] problems.

For more detailed introductions and surveys to stochastic programming, we refer the reader

77

to [24, 96, 102, 104, 107, 110]. Next we briefly describe two studies that are most closely

related to our work and outline the remainder of this chapter.

Kong and Schaefer [81] consider the two-stage stochastic maximum weight matching

problem on general graphs. They show that the problem is NP-hard and propose a greedy

1
2
-factor approximation algorithm. Escoffier et al. [50] prove that the two-stage stochastic

maximum weight matching problem is APX-complete even for bipartite graphs of maximum

degree 4 and general graphs of degree 3, which implies that there is no polynomial-time

approximation scheme (PTAS) for this problem as long as P6= NP. Based on the concepts

from [81], they also provide a greedy max{ K
2K−1

, ∆
2∆−1
}-approximation algorithm, where K

is the number of scenarios in the second-stage and ∆ is the degree of the bipartite graph.

Our work is essentially built on these two studies [50, 81]. In Section 3.2, we consider

the greedy approximation methods from their work for the two-stage stochastic linear as-

signment problem. Since the maximum weight matching problem on bipartite graphs can

be easily reduced to the linear assignment problem via addition of dummy agents and/or

jobs, the 2SSLA problem is also APX-complete. Section 3.3 covers a necessary optimality

condition that generalizes and unifies the key ideas behind the two algorithms by Kong

and Schaefer [81] and Escoffier et al. [50]. Then based on this optimality condition, in

Section 3.4, we design a new greedy approximation algorithm referred to as EGA. While

the developed approach preserves the existing approximation guarantees, we are not able

to prove whether EGA provides a strictly better approximation bound. However, analyti-

cal observations in Section 3.4.4 and extensive computational results in Section 3.5 indicate

that EGA has strictly better results on some rather broad classes of the two-stage stochastic

linear assignment problems.

78

3.2 GREEDY APPROXIMATION ALGORITHMS

3.2.1 Basic Greedy Approach

First, we discuss Greedy Algorithm (GA) for the more general two-stage stochastic matching

problem given in [81]. Because the linear assignment is a specific case of the maximum

weight matching problem, this algorithm can be simply adopted to 2SSLA. We need the

following notation:

Definition 1. A first-stage myopic solution is an optimal solution to:

(GA− I) : max

{
n∑
i=1

n∑
j=1

wijxij

∣∣∣ ∀j n∑
i=1

xij = 1, ∀i
n∑
j=1

xij = 1; ∀i, j xij ∈ {0, 1}

}
. (3.11)

Definition 2. A second-stage myopic solution for scenario k is an optimal solution to:

(GA− II) : max

{
n∑
i=1

n∑
j=1

qkijy
k
ij

∣∣∣ ∀j n∑
i=1

ykij = 1, ∀i
n∑
j=1

ykij = 1; ∀i, j ykij ∈ {0, 1}

}
. (3.12)

First- and second-stage myopic solutions correspond to deterministic linear assignment

problems with the appropriate choices of weights in the objective functions. Let xGA and

ZGA
1 be a first-stage myopic solution and the respective optimal objective function value.

Similarly, let yGAk and ZGA
2k be a second-stage myopic solution and the respective optimal

objective function value for scenario k. Finally, denote by ZGA
2 the expected value of the

second-stage myopic solutions, i.e.,

ZGA
2 =

K∑
k=1

pkZ
GA
2k .

Initially, GA finds a first-stage myopic solution (GA-I) and second-stage myopic solutions

for each scenario (GA-II). Then it compares the objective function value of the first-stage

myopic solution with the expected objective function value of the second-stage myopic solu-

tions. The final assignment weight ZGA corresponds to the better of them, i.e.,

ZGA = max
{
ZGA

1 , ZGA
2

}
. (3.13)

Thus, the final assignments are given either by (xGA,0, . . . ,0), or by (0,yGA1 , . . . ,yGAK). In

other words, all assignments are made completely either at the first stage, or at the second

stage for each scenario.

79

Theorem 1 ([81]). Greedy Algorithm is an approximation algorithm with the performance

guarantee 1
2

for the 2SSLA problem.

Observe that GA solves the deterministic linear assignment problem K + 1 times, e.g.,

using the Hungarian Method (HM) [83]. Consequently, given the complexity of HM, the

outlined algorithm obtains 1
2
–approximate solution of (3.7)-(3.10) in O(Kn3) arithmetic op-

erations.

3.2.2 Greedy Approach of Escoffier et al. [50]

A slightly more advanced greedy approach, further referred to as GAE, is proposed by

Escoffier et al. in [50]. The basic idea is that if
∑K

k=1 pkq
k
ij > wij for some i and j, then it

can not be optimal to assign agent i to job j in the first stage. This result follows from the

observation that any solution to the 2SSLA problem that assigns i to j in the first stage,

could be improved by assigning i to j in the second stage across all scenarios. In fact, as

it is demonstrated in Section 3.3, this result is a special case of a more general necessary

optimality condition.

Initially, GAE replaces all first-stage weights wij with

ŵij = max

{
wij,

K∑
k=1

pkq
k
ij

}

and obtains the first-stage myopic solution with the updated weights. Then, all agent-job

assignments (i, j), i.e., j = mate[i] and i = mate[j], such that ŵij =
∑K

k=1 pkq
k
ij are “moved”

to the second stage. Subsequently, GAE solves K assignment problems for all agents and

jobs moved to the second stage across all scenarios. Denote the resulting solution by ZGAE
1

and the above described algorithmic procedure by GAE-I. Next GAE compares ZGAE
1 with

the expected objective function value of the second-stage myopic solutions ZGA
2 . The final

assignment weight ZGAE corresponds to the better of them, i.e.,

ZGAE = max
{
ZGAE

1 , ZGA
2

}
.

Theorem 2 ([50]). GAE is an approximation algorithm with the performance guarantee

K
2K−1

for 2SSLA.

80

Theorem 3 ([50]). GAE is an approximation algorithm with the performance guarantee

∆
2∆−1

for 2SSLA, where ∆ is the degree of the bipartite graph.

Both of the above approximation bounds are slightly better than 1
2

approximation bound of

GA. The running time of GAE is O(Kn3).

3.3 NECESSARY OPTIMALITY CONDITION

Let A ⊆ V be a subset of agents and J ⊆ U be a subset of jobs such that |A| = |J |.

Consider a two-stage stochastic linear assignment problem on these subsets of agents and

jobs. Let W1[A, J] be the first-stage myopic solution and W2[A, J] be the expected value of

the second-stage myopic solutions over all scenarios.

Proposition 11 (Necessary Optimality Condition). Let A ⊆ V , J ⊆ U and |A| = |J |. If

W1[A, J] < W2[A, J] (W1[A, J] > W2[A, J]), then no optimal solution of 2SSLA can contain

a perfect assignment between agents in A and jobs in J in the first stage (second stage).

Proof. Consider an optimal solution of an instance of the 2SSLA problem. If W1[A, J] <

W2[A, J] (W1[A, J] > W2[A, J]) and the optimal solution contains a perfect assignment

between A and J in the first stage (second stage), then moving assignments between A

and J to the second stage (first stage) increases the weight of the current solution, which

contradicts our assumption about its optimality.

Unfortunately, the optimality condition of Proposition 11 is not sufficient for optimality

even if it is checked for all O(2n) possible subsets of V and U . Consider a simple instance

of the 2SSLA problem given in Figure 23. In the first stage, agents a1 and a2 are assigned

to jobs j2 and j1, respectively. In the second stage, agent a3 is assigned to job j3 under

both scenarios. The total weight of the assignment is 4 units. Notice that this solution does

not violate the necessary optimality condition for any subset of agents and jobs. However,

optimal assignment has a total weight of 5 units which is achieved by assigning a1 to j1, a2

to j3, and a3 to j2 in the first stage.

81

Figure 23: A counterexample to show that the necessary optimality condition given by

Proposition 11 is not sufficient for optimality. Only arcs with nonzero weight are shown.

Nevertheless, Proposition 11 can be applied to construct approximation algorithms. In

fact, algorithms GA (Section 3.2.1) and GAE (Section 3.2.2) are based on the necessary

optimality condition for some specific subsets of agents and jobs. Observe that GA is the

implementation of Proposition 11 when |A| = |J | = n. In other words, GA verifies the

necessary optimality condition only for A = V and J = U . If W1[V, U] (i.e., the weight of

the first-stage myopic solution given by GA-I) is greater than W2[V, U] (i.e., the expected

weight of the second-stage myopic solutions over all scenarios given by GA-II), then it moves

assignments between V and U to the second stage. Otherwise, all assignments are made in

the first stage.

Similarly, GAE is the implementation of the necessary optimality condition for all sets

A and J such that |A| = |J | = 1 and |A| = |J | = n. Recall that GAE-I moves assignment

(i, j) to the second stage if it has a better expected weight in the second stage. Thus,

A = {i}, J = {j}, W1[A, J] = wij, and W2[A, J] =
∑K

k=1 pkq
k
ij. Next, GAE compares ZGAE

1

with ZGA
2 = W2[V, U] and outputs the better solution, which is equivalent to checking the

necessary optimality condition for |A| = |J | = n. The only difference is that instead of

W1[V, U], we use the solution of GAE-I and compare it to W2[V, U].

82

3.4 ENHANCED GREEDY APPROACH

In this section we propose a more generic approximation approach, further referred to as

Enhanced Greedy Algorithm (EGA). The key idea is to apply the necessary optimality

condition described by Proposition 11 in a somewhat more sophisticated manner. Also,

EGA uses the Hungarian Method as a standard routine to solve all the deterministic linear

assignment subproblems.

Consider the dual problem of the LP relaxation of (3.7)-(3.9) given by:

min
α,β

n∑
i=1

K∑
k=1

αik +
n∑
j=1

K∑
k=1

βjk (3.14)

s.t.
n∑
k=1

(αik + βjk) ≥ wij, i = 1, . . . , n, j = 1, . . . , n, (3.15)

αik + βjk ≥ pkq
k
ij, i = 1, . . . , n, j = 1, . . . , n, k = 1, . . . , K. (3.16)

In the remainder of this chapter we refer to (3.15) and (3.16) as the “first-stage” and

“second-stage” dual constraints, respectively. Furthermore, for convenience of notation,

let q̃kij = pkq
k
ij.

EGA has two major steps. The first step (referred to as EGA-I) is to start with a first-

stage myopic solution and then attempt to improve the objective function value by “moving”

some of the assignments to the second stage via checking the necessary optimality condition.

The second step of the EGA (referred to as EGA-II) is to start with second-stage myopic

solutions and then attempt to improve the objective function value by “moving” some of

the assignments to the first stage. Subsequently, EGA chooses the solution with the better

objective function value and outputs it as the final solution.

Note that there is some relationship between the necessary optimality condition given by

Proposition 11 and the feasibility of the dual program (3.15)-(3.16). Any first-stage myopic

solution is feasible to the first-stage dual constraints (3.15) and second-stage myopic solutions

are feasible to the second-stage dual constraints (3.16). However, the myopic solutions are

not necessarily feasible to both (3.15) and (3.16) simultaneously. Thus, EGA-I starts with the

83

first-stage myopic solution feasible to the first-stage dual constraints, and uses the necessary

optimality condition to achieve feasibility of the second-stage dual constraints. Specifically,

it will be shown that the necessary optimality condition for specific pairs of subsets of agents

and jobs corresponds to some second-stage aggregated dual constraint that is obtained by ag-

gregating the respective subset of the second-stage dual constraints. Similarly, EGA-II starts

with the second-stage myopic solutions feasible to the second-stage dual constraints, and uses

the necessary optimality condition to achieve feasibility of some first-stage aggregated dual

constraint that is obtained by aggregating a subset of the first-stage dual constraints.

3.4.1 Improving the first-stage assignment (EGA-I)

In this section we describe the key ideas behind EGA-I. The pseudo-code of the approach is

given by Algorithm 4. The initial step of the method follows GAE (Section 3.2.2). Specifi-

cally, EGA-I applies the necessary optimality condition (Proposition 11) and considers sets

of unit cardinality, i.e., |A| = |J | = 1. For every agent-job pair (i, j), A = {i} and J = {j},

let W1[{i}, {j}] = wij and W2[{i}, {j}] =
∑

k q̃
k
ij. Then, the algorithm performs the following

weight update in the first stage:

ŵij = max {W1[{i}, {j}], W2[{i}, {j}]} = max

{
wij,

∑
k

q̃kij

}
. (3.17)

Subsequently, HM is applied to the resulting graph, all assignments with a modified weight

are moved to the second stage, and all edge weights are reset to their original values (lines

1 and 2 of Algorithm 4). We want to emphasize that after this point, EGA-I considers only

agents and jobs that are not moved to the second stage in line 1.

Next EGA-I checks the optimality condition for sets with cardinality greater than 1, i.e.,

|A| = |J | > 1. Observe that there are O(2n) possible combinations of A and J . Furthermore,

in order to compute W1[A, J] and W2[A, J], one needs to solve K + 1 deterministic linear

assignment problems for every subset. Because performing all of the above steps is compu-

tationally prohibitive, EGA-I considers only a few subsets that are promising and easy to

check.

84

Algorithm 4: EGA-I

Input: n agents, n jobs, K scenarios, wij, q
k
ij, pk

1 Run GAE-I

2 Reset all the first-stage weights to their original values and remove from consideration

all agents and jobs moved to the second stage by GAE-I

3 Let q̃kij = pkq
k
ij; define G0 and Gk to be the graphs for the first stage and the kth

scenario in the second stage, respectively

4 Run Hungarian Method on Gk for all k

5 Let C include closed subsets of agents and jobs in the obtained second-stage solution

6 foreach {A, J} ∈ C do

7 Let ∆ = W2[A, J]− (
∑

i∈A αi +
∑

j∈J βj), where α, β is the dual solution for G0

8 if ∆ > 0 then

9 Let G be the graph containing only A and J

10 Run Hungarian Method on G

11 Let Ẽ be set of edges selected in the resulting assignment

12 Let Ẽ = {e1, e2, . . . e|A|} be sorted in non-decreasing order of edge weight

13 Set we|A|+1
=∞ and let w ∈ R+ and t ∈ Z+ satisfy the following condition:

14 (1) t · w −
∑t

r=1 wer = ∆

15 (2) wet ≤ w < wet+1

16 Set wer = w for r = 1, t in G0

17 else

18 C ← C\{A, J}
19 Run Hungarian Method on G0.

20 begin Reset G0

21 while there exists {A, J} ∈ C not closed in G0 do

22 foreach Edge weight wij modified in {A, J} do

23 Reset w

24 Perform one iteration of Hungarian Method

25 C ← C\{A, J}
26 Move all closed subsets in C to the second stage

27 Redefine Gk to be the subgraph of agents and jobs moved to the second-stage for

scenario k.

28 Run Hungarian Method on Gk for all k

29 ZEGA
1 =

∑
i∈G0

wi,mate[i] +
∑

k

∑
i∈Gk q̃

k
i,matek[i]

30 return ZEGA
1 , G0, and Gk ∀ k

85

Definition 3 (Closed Subset). A closed subset in the first stage is a pair of subsets A of

agents and J of jobs such that all agent-job assignments remain within these two sets in the

first-stage myopic solution, i.e.,

J = {j ∈ U | j = mate[i] for some i ∈ A} ,

A = {i ∈ V | i = mate[j] for some j ∈ J} .

A closed subset in the second stage is a pair of subsets A of agents and J of jobs such that all

agent-job assignments remain within these two sets across all scenarios in the second-stage

myopic solutions, i.e.,

J = {j ∈ U | j = matek[i] for some i ∈ A and some scenario k} ,

A = {i ∈ V | i = matek[j] for some j ∈ J and some scenario k} .

Here, we want to provide some details about how EGA-I finds closed subsets. For the

first-stage myopic solution, given a subset of agents A, we simply construct J from the mates

of agents in A. For the second stage, EGA-I starts constructing a closed subset in the second

stage with empty sets A of agents and J of jobs. Given the second-stage myopic solution,

we arbitrarily choose an agent and add it to the set of agents A. Then, all jobs that this

agent is assigned to across various scenarios are added to the set of jobs J . Notice that

an agent may be assigned to the same job in several scenarios. Then, for all jobs that are

selected in the previous step, the algorithm updates A finding all agents that jobs from J are

assigned to across all scenarios. The algorithm continues in this manner until both sets cease

to change, which implies that a closed subset is constructed. The whole process described

above is repeated for the remaining agents and jobs until a partition of the set of agents and

jobs into a set of closed subsets is obtained.

If A and J correspond to one of the closed subsets in the second stage found by our

algorithm, then |A| = |J | by the definition of a closed subset. Moreover, the value of

W2[A, J] is readily available from the second-stage myopic solutions. After finding closed

subsets in the second stage, EGA-I identifies the ones that satisfy (line 7):∑
i∈A

αi +
∑
j∈J

βj < W2[A, J], (3.18)

86

where αi and βj are dual variables associated with the first-stage myopic solution. Clearly,

closed subsets that satisfy (3.18) violate the necessary optimality condition since the left-

hand side of (3.18) is an upper bound on W1[A, J]. We use the dual solution due to the fact

that the pair (A, J) is not necessarily closed in the first stage and we do not want to solve

an assignment problem to find W1[A, J].

For all subsets that are closed in the second stage and satisfy (3.18), EGA-I updates the

first-stage weights (lines 6-18). In contrast to GAE-I, updating these weights properly turns

out to be a more difficult task when we have more than one agent-job pair to consider. Our

main goal is to update edge weights in the first stage for each closed subset of the second

stage in such a way that: (1) the resulting assignment with updated weights should favor

the sets to be also closed in the first stage and (2) if the set becomes also closed in the first

stage, then the weight of the assignment within this set should be exactly W2[A, J].

Next we discuss in detail the weight update procedure for pair (A, J). First, W1[A, J] is

computed by running HM. Define Ẽ to be the set of all agent-job assignments in the obtained

solution. Then we increase the weights wij in the first stage only for pairs (i, j) ∈ Ẽ according

to the following procedure (lines 10-16).

• Let Ẽ = {e1, . . . , e|A|} be sorted in non-decreasing order of the edge weights.

• Find w ∈ R+ and t ∈ Z+ , t ≤ |A|, that satisfy the following conditions:

t∑
r=1

(w − wer) = t · w −
t∑

r=1

wer = ∆, (3.19)

wet ≤ w < wet+1 , (3.20)

where we assume that we|A|+1
= +∞.

• Set the weight of each er ∈ Ẽ, 1 ≤ r ≤ t, to be w.

Let W̃1[A, J] be the weight of the optimal assignment in (A, J) after the weight update

procedure described above. It is easy to observe that W̃1[A, J] = W1[A, J] + ∆ = W2[A, J].

Simply speaking, we increase the weights of the edges with the smallest weights until we

have the total increase of ∆.

As an example, assume that {3, 10, 25} are the weights of the assignment in Ẽ (i.e.,

we have 3 agents and 3 jobs and the selected assignment edges have weights 3, 10, and

87

25). Thus, W1[A, J] = 38. Let W2[A, J] = 50. Then, ∆ = 12. If we start with t = 1,

then by (3.19), we get w = 15, which violates (3.20). Incrementing t, we set t = 2 and

find w = 12.5, which satisfies (3.20). Thus, we set we1 = we2 = 12.5. Now we have

W̃1[A, J] = 12.5 + 12.5 + 25 = 50 = W2[A, J].

Subsequently, EGA-I finds the first-stage myopic solution with the updated weights

(line 19). For every closed subset (A, J), we check whether it remains closed in the first-stage,

i.e., mate[i] ∈ J ∀i ∈ A. If this is not the case, we restore each modified assignment weight

of [A, J] and perform one iteration of HM to restore optimality. This phase ends when all the

remaining closed subsets are also closed in the first stage. Note that the number of weights

restored and the number of HM iterations performed are at most n. Next, the remaining

closed sets are moved to the second stage (line 26). Finally, EGA-I solves K deterministic

assignment problems with all the agents and jobs moved to the second stage (including those

moved after line 1) to find the second stage solution, and outputs the resulting assignment.

Lemma 1. Let ZEGA
1 be the weight of the assignment returned by EGA-I. Then

ZEGA
1 ≥ ZGAE

1 ≥ ZGA
1 . (3.21)

Proof. It is clear that the solution found after line 1 is exactly the solution found by GAE-I.

Next consider the first-stage solution and edge weights after line 25. Let {A, J} ∈ C be a

closed subset that is not removed from consideration during the procedure between lines 20-

25. Any assignment edge in the first stage that does not belong to closed subsets from C, now

has its original value as it was reset in line 23. Any assignment edge weight that belongs to

a closed subset {A, J} ∈ C is at least as large as its original value because the weight update

mechanism given by (3.19)-(3.20) only increases the weights of the edges. By construction,

since {A, J} ∈ C is also closed in the first stage, the total weight of the assignments in this

subset, W̃1[A, J](> W1[A, J]), is exactly equal to W2[A, J]. It implies that there exists an

assignment of A and J at the second stage with the same weight. Hence, the weight of the

assignment returned after line 25 is at least as large as weight of the assignment returned

after line 1. The necessary result follows.

88

3.4.2 Improving the second-stage assignment (EGA-II)

EGA-II starts with all agent-job assignments made in the second stage and then attempts

moving some of them to the first stage if it is worth doing so. Due to the lack of control in

preserving closed subsets after each weight update in the second stage, this approach is more

sensitive to variations in assignments across the scenarios. Using the necessary optimality

condition, EGA-II tries to achieve dual feasibility of the model given by (3.15) and (3.16).

First, it solves the optimization problem given by the objective function (3.14) and the

constraint set (3.16). Since the constraints are separable for scenarios, we use HM to solve

the assignment problem for each scenario separately (line 3 of Algorithm 5). Therefore,

initially all second-stage constraints of the form

αik + βjk ≥ q̃kij, ∀i, j, k (3.22)

are satisfied as the obtained assignments are the second-stage myopic solutions. Then the

algorithm searches for a pair (i′, j′) such that

(i′, j′) = arg max
(i,j)

{
wij −

K∑
k=1

(αik + βjk)
∣∣∣ wij − K∑

k=1

(αik + βjk) > 0

}
.

If such pair (i′, j′) does not exists, then the algorithm stops. Otherwise, it implies that the

first-stage dual constraint
{ ∑K

k=1 (αi′k + βj′k) ≥ wi′j′
}

is violated. Then consider slack

sk = αi′k + βj′k − q̃ki′j′ for each scenario (line 8). EGA-II updates the weight q̃ki′j′ according

to the following scheme:

• If
∑

k sk > 0:

q̂ki′j′ = q̃ki′j′ +

(
wi′j′ −

∑
k

q̃ki′j′

)(
sk∑
k sk

)
. (line 11)

• If
∑

k sk = 0:

q̂ki′j′ = wi′j′

(
q̃ki′j′∑
k q̃

k
i′j′

)
. (line 14)

89

The intuition behind these update strategies is attempting to keep agent i′ assigned to job

j′ across all scenarios after we update arc weights qki′j′ . Note that after the weight update,

we have
K∑
k=1

q̂ki′j′ = wi′j′ .

Therefore, any labeling feasible for the second-stage dual constraints
{
αi′k + βj′k ≥ q̂ki′j′ ∀k

}
is also feasible for the respective first-stage dual constraint.

Then for each scenario we remove assignment between job j′ and its mate (line 16), and

update dual variable βj′k (line 17), which is necessary to keep the respective constraints (3.16)

satisfied. Consequently, for each scenario there is only one agent-job assignment missing and

the current labeling, i.e., the values of dual variables (α, β), is feasible for (3.16). Thus, one

iteration of HM (line 18) is sufficient to achieve an optimal labeling for updated weights q̂ki′j′

for each scenario. This procedure (lines 4-18) is performed until for every pair (i, j) we have

K∑
k=1

(αik + βjk) ≥ wij, ∀i, j . (3.23)

Therefore, the following result holds.

Proposition 12. Let A and J be a pair of subsets of agents and jobs, respectively, such that

|A| = |J |. Then after line 18 of Algorithm 2,

∑
k

[∑
i∈A

αik +
∑
j∈J

βjk

]
≥ W1[A, J]. (3.24)

Proof. Follows directly from (3.23).

This result implies that after the above described procedure (lines 4-18), obtained assign-

ment satisfies the necessary optimality condition for all closed subsets in the second stage.

In other words, for all closed subsets in the first stage, the respective aggregated first-stage

dual constraints are satisfied. On the other hand, we do not consider the subsets of agents

and jobs that are not closed in the first stage since constructing assignments between ex-

ponentially many possible subsets of agents and jobs is prohibitively expensive. Therefore,

contrary to the case for EGA-I, EGA-II does not check subsets with cardinality strictly

greater than one.

90

Next consider an assignment (i,matek[i]) in the kth scenario. If q̂ki,matek[i] is an updated

weight, and we have the same assignment in all scenarios, i.e., (i,matek[i]) is a closed subset

in the second stage, we can move this assignment to the first stage without changing the total

weight of the current assignments and without affecting other assignments. If we can do this

for all such pairs, then we have an optimal solution due to the strong duality. However, it

may not be the case that each time we have the same assignment (i,mate[i]) in all scenarios

as the original problem is NP-hard. Therefore, moving this assignment to the first stage

changes assignments in the scenarios, where i is not assigned to mate[i].

On the other hand, keeping assignment (i,mate[i]), for the subsets that are not closed

in the second stage indicates that we have an updated arc weight which actually does not

exist and we can not find an assignment corresponding to it (i.e., primal infeasible). EGA-II

decreases the weight of the assignment for such pairs to their original values and updates

the assignments across all scenarios (lines 19-26) to accommodate for this change. Finally,

the remaining agent-job pairs with the updated weights are moved to the first stage and a

separate assignment problem is solved for them.

Lemma 2. Let ZEGA
2 be the weight of the assignment returned by EGA-II. Then

ZEGA
2 ≥ ZGA

2 . (3.25)

Proof. Denote by (α̃, β̃) the dual second-stage myopic solutions. Consider labeling (α̂, β̂)

obtained after line 26 of Algorithm 5. Since the weight updates only increase the arc weights,

we have
K∑
k=1

n∑
i=1

α̂ik +
K∑
k=1

n∑
j=1

β̂jk ≥
K∑
k=1

n∑
i=1

α̃ik +
K∑
k=1

n∑
j=1

β̃jk.

Observe that the procedure after line 26 can only potentially improve the weight of the final

assignment returned by EGA-II, which concludes the proof.

Theorem 4. Approximation bounds given for GAE in Theorems 2 and 3 are valid for EGA,

and its solution satisfies

ZEGA ≥ ZGAE ≥ ZGA.

Proof. The necessary result directly follows from Lemmata 1 and 2.

91

Proposition 13. Time complexity of EGA is O(Kn4).

Proof. First, we consider complexity of EGA-I. It is easy to observe that lines 1-4 take

O(Kn3) time. Next step is to find closed subsets. There can be at most n closed subsets and

O(Kn) time is required to construct each of them. Thus, in total O(Kn2) time is needed.

Next, solving the assignment problem for a closed subset (line 10) takes O(|A|3), which is

bounded by O(|A|n2). Since
∑
{A,J}∈C |A| ≤ n, the total complexity of solving assignment

problems for all closed subsets requires O(n3) time. The complexity of sorting in line 12

is O(|A| lg |A|) and similar to our previous argument, total time complexity of sorting is

O(n lg n). If one starts with t = 1 and tries each index sequentially, the complexity of

lines 13-16 for all closed subsets is O(n). Consequently, complexity of updating the weights

is O(n3). At most n iterations of HM is performed between lines 20-25; thus, the resetting

procedure is of O(n3) time complexity. Finally, solving K + 1 assignment problems (line 28)

requires O(Kn3). Consequently, the total time complexity of EGA-I is O(Kn3).

The most time consuming procedure for EGA-II is updating weights and assignments

(lines 4-18). Since there are n2 first-stage dual constraints, the outer loop requires O(n2)

operations. The inner loop is to increase cardinality of assignments by 1 across all scenarios,

in the worst case. Since each stage of HM requires O(n2) time, the complexity of the inner

loop is at most O(Kn2). Thus, the total time complexity of EGA-II is O(Kn4).

3.4.3 Improving EGA with Local Search (EGA LS)

In this section we introduce a greedy local exchange based heuristic that seeks to further

improve the results obtained by EGA-I and EGA-II. Let (X, Y) = (x, y1, y2, . . . , yK) be a

feasible assignment for the 2SSLA problem. Here, we distinguish between an assignment

(i, j) and a pair [i, j]. The former one indicates that agent i is assigned to job j whereas for

the latter one we do not imply any dependence. We say that pair [i, j] belongs to the partial

solution X (or Y) if assignments (i,mate[i]) and (mate[j], j) are both at the first stage (or

second stage). Define the following neighborhoods for a given solution (X, Y):

92

Algorithm 5: EGA-II

Input: n agents, n jobs, K scenarios, wij, q
k
ij, pk

1 Let q̃kij = pkq
k
ij and Gk be the graph for the kth scenario in the second-stage

2 foreach Scenario k do

3 Run Hungarian Method on Gk to find an assignment for the kth scenario

4 while There is an i and j such that [wij >
∑

k (αik + βjk)] do

5 Let (i′, j′) = arg max {wij −
∑

k (αik + βjk)}
6 Add (i′, j′) to set R

7 begin Update assignments on Gk ∀ k
8 Let sk = αi′k + βj′k − q̃ki′j′ // Slack for the kth scenario

9 if
∑

k sk > 0 then

10 foreach Scenario k do

11 q̃ki′j′ := q̃ki′j′ +
(
wi′j′ −

∑
k q̃

k
i′j′

) (
sk∑
k sk

)
12 else

13 foreach Scenario k do

14 q̃ki′j′ := wi′j′

(
q̃k
i′j′∑
k q̃

k
i′j′

)
15 foreach Scenario k do

16 Remove edge (mate [j′] , j) from assignment on Gk

17 βj′k = maxi
{
q̃kij′ − αik

}
18 Perform one iteration of Hungarian Method on Gk

19 begin Reset all Gk

20 while There is a pair (i,j) ∈ R such that mate [i] is not j ∀ k do

21 foreach Scenario k do

22 Reset edge weight q̃kij to its original value

23 if mate[i] = j then

24 Remove assignment (i, j) from Gk

25 Perform one iteration of Hungarian Method on Gk

26 Remove the pair (i, j) from R

27 Let G0 be the graph for the first-stage. Move all pairs (i, j) ∈ R from Gk, ∀ k, to G0

28 Run Hungarian Method on G0

29 ZEGA
2 =

∑
i∈G0

wi,mate[i] +
∑

k

∑
i∈Gk q̃

k
i,matek[i]

30 return ZEGA
2 , G0, and Gk ∀ k

93

• Neighborhood N1 for solution (X, Y) is defined to be the set of all solutions obtained by

moving any pair [i, j] from X to Y . This implicitly requires [i, j] ∈ X. Thus, to maintain

feasibility, if a solution (X,Y) ∈ N1(X, Y), then we have (mate[j],mate[i]) ∈ X and

(i, j) ∈ Y , assuming that (X,Y) is obtained from (X, Y) with respect to pair [i, j]. This

exchange process is illustrated in Figure 24.

• Neighborhood N2 for solution (X, Y) is defined to be the set of all solutions obtained

by moving any pair [i, j] from Y to X. This implicitly requires [i, j] ∈ Y . Thus, to

maintain feasibility, if a solution (X,Y) ∈ N2(X, Y), then we have (i, j) ∈ X and

(mate[j],mate[i]) ∈ Y . This exchange process is illustrated in Figure 25.

(a) Initial solution. (b) Final solution obtained.

Figure 24: The neighborhood N1.

Proposition 14. The solutions obtained by GAE and EGA-I are locally optimal with respect

to the neighborhood N1.

94

(a) Initial solution. (b) Final solution obtained.

Figure 25: The neighborhood N2.

Proof. Let (X, Y) be the solution returned after line 1 of Algorithm 4. Consider a pair

[i, j] ∈ X. We check whether there is a better solution (X,Y) ∈ N1(X, Y) with respect to

[i, j] as follows:
K∑
k=1

q̃kij > wi,mate[i] + wmate[j],j − wmate[j],mate[i]. (3.26)

Assume that [i, j] satisfies (3.26) and consider the respective dual solution for X. Then we

know that the constraints (3.6) are tight for (i,mate[i]) and (mate[j], j):

αi + βmate[i] = wi,mate[i]; αmate[j] + βj = wmate[j],j; and αmate[j] + βmate[i] ≥ wmate[j],mate[i].

Then, from (3.26), we have

K∑
k=1

q̃kij > wi,mate[i] + wmate[j],j − wmate[j],mate[i]

≥ (αi + βmate[i]) + (αmate[j] + βj) − (αmate[j] + βmate[i])

= αi + βj.

95

However, this is not possible because the necessary optimality condition for sets with unit

cardinality implies that αi + βj ≥ wij ≥
∑K

k=1 q̃
k
ij due to the update in (3.17). Therefore,

the necessary result follows.

Next consider EGA-II. Let (X, Y) be the solution obtained by EGA-II and [i, j] ∈ Y .

We check whether switching to a solution in the neighborhood N2 of (X, Y) with respect to

[i, j] improves the current solution. Formally, we verify whether

wij >
K∑
k=1

(
q̃ki,mate[i] + q̃kmate[j],j − q̃kmate[j],mate[i]

)
. (3.27)

If (3.27) is satisfied, then removing pair [i, j] for all scenarios in the second stage and assigning

i to j in the first stage improves the current solution. This process is illustrated in Figure 25.

However, we may further improve our new solution by running one iteration of Hungarian

Method for the first stage and K iterations of Hungarian Method for the second stage. Since

each iteration of Hungarian Method requires O(n2) time, this update requires O(Kn2) time.

Furthermore, at most n pairs may be moved to the first stage, which results in a total time

complexity of O(Kn3) for local search after EGA-II.

3.4.4 Analytical Observations

Next, we discuss performance of GA, GAE, and EGA on two carefully constructed classes

of test instances. Assume that in both classes, we have 2n agents, 2n jobs, and K scenarios,

K ≤ n. We partition the set of all agents and jobs into two groups: G1 and G2, where G1

contains the first n agents and n jobs and G2 contains remaining n agents and n jobs. Now

we describe two types of instances.

Split Instances: We construct this type of instances as follows:

wij =

1 for (i, j) ∈ G1,

2K for (i, j) ∈ G2 and i = j,

0 o/w.

96

qkij =

K for (i, j) ∈ G1 and i+ k − 1 ≡ j mod n,

K for (i, j) ∈ G2,

0 o/w.

and pk = 1/K, k = 1, . . . , K. The structure of these instances is illustrated in Figure 26. It

is optimal to make assignments for G2 in the first stage while for G1 it is optimal to make as-

signments in the second stage. Therefore, the total weight of the optimal assignment is 3nK.

Figure 26: A split instance for K = n = 2 (only nonzero arcs are shown). Thick lines show

first-stage and second-stage myopic solutions.

Interleaved Instances: We construct this type of instances as follows:

wij =

1 for (i, j) ∈ G1,

2K for (i, j) ∈ G2 and i = j,

0 o/w.

97

qkij =

K for (i, j) ∈ G1 and i+ k − 1 ≡ j mod n,

K for i ∈ G1, j ∈ G2, and i+ k − 1 ≡ j − n mod n,

K for i ∈ G2, j ∈ G1, and i+ k − 1 ≡ j mod n,

0 o/w.

and pk = 1/K, k = 1, . . . , K. The structure of these instances is illustrated in Figure 27.

The optimal solution should have all assignments within G1 in the second stage and all

assignments within G2 in the first stage, with the total weight of 3nK.

Figure 27: An interleaved instance for K = n = 2 (only nonzero arcs are shown). Thick

lines show first-stage and second-stage myopic solutions.

Proposition 15. The weights of the assignments obtained by GA, GAE, and EGA for split

instances are n(2K + 1), n(2K + 1), and 3nK, respectively.

Proof. It is easy to check that GA would make all assignments in the first stage and the total

weight of this assignment would be n(2K + 1). Next we consider GAE. From Figure 26, it

is clear that the first-stage myopic solution satisfies the necessary optimality condition for

the sets of unit cardinality. Thus, the solution returned by GAE is the same as the solution

returned by GA.

98

Finally, we consider EGA. Notice that the total weight of the assignments within G1

in the first stage is n whereas the expected total weight of assignments within G1 in the

second stage is nK. Thus, the first-stage myopic solution violates the necessary optimality

condition. Since G1 is a closed subset in the second-stage myopic solution, EGA-I moves

all assignments to the second stage. Therefore, the weight of the assignment returned by

EGA-I is at least 3nK. Since the weight of the optimal assignment for ‘split’ instances is

3nK and EGA returns the best of EGA-I and EGA-II, EGA finds the optimal solution.

Proposition 16. The weights of the assignments obtained by GA, GAE, and EGA for

interleaved instances are n(2K + 1), n(2K + 1), and 3nK, respectively.

Proof. Similar to the proof of Proposition 15.

Concluding this section, we want to emphasize the importance of the constructed problem

instances. They demonstrate that GA and GAE may provide results that are significantly

worse than the optimal solution, while EGA returns the optimal solution in both cases.

3.5 COMPUTATIONAL EXPERIMENTS

3.5.1 Setup

Five classes of test instances are considered in our computational study. To provide the

comparison of GAE and EGA, we set the first two classes to be similar to those used in [50].

Uncorrelated Instances: All edge weights are drawn from N(10, 15), the normal dis-

tribution with mean 10 and standard deviation 15, i.e.,

wij ∼ N(10, 15), ∀i, j, qkij ∼ N(10, 15), ∀i, j, k.

If the generated weight is negative, then it is set to zero. All scenarios have the same

probability.

99

Correlated Instances: For these instances, the second-stage weights are correlated.

Specifically,

wij ∼ N(10, 15), ∀i, j, qij ∼ N(10, 15), ∀i, j, qkij ∼ qij +N(0, 5), ∀i, j, k.

If the generated weight is negative, then it is set to zero. All scenarios have the same

probability. One can easily conclude that if the weight qij generated for edge (i, j) is low

(high), then the weight of edge (i, j) will be low (high) in all scenarios.

The intuition behind the next class of test instances is to have the necessary optimal-

ity condition satisfied for nearly all unit cardinality sets, but possibly violated for subsets

with two agents and two jobs. As it is demonstrated later, both GA and GAE fail to identify

such rather simple weight dependencies.

Pairwise-Correlated Instances: Unlike correlated instances, the correlation in these

instances is not just on a single agent and job, but on pairs of agents and jobs. Specifically,

we use

wij =

N(200, 40) for i ≡ 0 mod 3,

N(140, 30) for i ≡ 1 mod 3 and i ≤ j ≤ i+ 1,

N(140, 30) for i ≡ 2 mod 3 and i− 1 ≤ j ≤ i,

N(10, 15) o/w.

qkij =

N(200, 40) for k ≡ 0 mod 2, i ≡ 1 mod 3, and j = i,

N(200, 40) for k ≡ 1 mod 2, i ≡ 1 mod 3, and j = i+ 1,

N(200, 40) for k ≡ 0 mod 2, i ≡ 2 mod 3, and j = i,

N(200, 40) for k ≡ 1 mod 2, i ≡ 2 mod 3, and j = i− 1,

N(10, 15) o/w.

Next we provide details for split-like and interleaved-like instances. Both classes are

based on the instances introduced in Section 3.4.4 with some modifications that aim at

“randomizing” their structure. In particular, we add a third class of agents and jobs to the

‘split’ and ‘interleaved’ instances with uniformly generated assignment weights. Thus, there

are 3n agents, 3n jobs, and K scenarios, K ≤ n. Define G1, G2, and G3 to be the respective

sets, each with n agents and n jobs.

100

Split-like Instances: Let

wij =

U [900/K, 1000/K] for (i, j) ∈ G1,

U [500, 1000] for (i, j) ∈ G2,

U [100, 1000] for (i, j) ∈ G3,

U [2, 10] o/w.

qkij =

U [800, 900] for (i, j) ∈ G1 and i+ k − 1 ≡ j mod n,

U [100, 500] for (i, j) ∈ G2,

U [100, 1000] for (i, j) ∈ G3,

U [2, 10] o/w.

Interleaved-like Instances: Let

wij =

U [900/K, 1000/K] for (i, j) ∈ G1,

U [4000, 5000] for (i, j) ∈ G2 and i = j,

U [100, 1000] for (i, j) ∈ G3,

U [2, 10] o/w.

qkij =

U [800, 900] for (i, j) ∈ G1 and i+ k − 1 ≡ j mod n,

U [1500, 2000] for i ∈ G1, j ∈ G2, and i+ k − 1 ≡ j − n mod n,

U [1500, 2000] for i ∈ G2, j ∈ G1, and i+ k − 1 ≡ j mod n,

U [100, 1000] for (i, j) ∈ G3,

U [2, 10] o/w.

The probability for each scenario is set to be 1/K for each instance from either class.

In our computational experiments, we use CPLEX 12 [74]. The algorithms are coded in

C++ and implemented on a Windows XP based machine with Intel Xeon 3 GHz processor

and 3GB RAM. In our experiments we consider problems with 2, 3, 5, 10, and 20 scenarios

and 10, 20, 50, 100, and 200 agents/jobs. For each of these 25 configurations, we conduct

10 replications and report their averages as well as standard deviations.

101

3.5.2 Results and Discussion

We report statistics for CPLEX solver as well as GA, GAE, and EGA algorithms. The

first two columns in all tables are self-explanatory and report the sizes of test instances.

We provide average running time (in seconds) for CPLEX in Time column. As we enforce

the time limit of 3600 seconds for CPLEX, an average running time of 3600 seconds in this

column implies that CPLEX is unable to solve all IP formulations to optimality. In such cases

we use the LP relaxation solution for comparison purposes. The next four columns report the

percentage difference from the CPLEX solution for GA-I and GA-II, its standard deviation

for GA and the overall running time for GA (in seconds). Next we provide the percentage

difference of the solution returned only by GAE-I from the CPLEX solution (recall that GAE-

II is the same as GA-II). We also report the respective standard deviation and the combined

time of GAE-I and GAE-II. The next four columns correspond to the results obtained by

EGA. Finally, we provide results for EGA-II with the local search procedure including the

standard deviation and the time spent for performing the local search (excluding the time

for obtaining initial EGA-II solution). The best results are shown in bold.

Results for the uncorrelated instances are given in Table 6. It can be observed that

CPLEX has difficulty in solving large instances whereas the running time does not exceed

5 seconds for all other algorithms. As expected, EGA finds the best results in all cases.

EGA solution yields a significant improvement over GA solution and is reasonably better

than GAE solution. EGA-II (with and without local search) is successful in improving the

second-stage myopic solution.

Table 7 summarizes the results for the correlated instances. Both EGA-I and EGA-II find

nearly optimal solutions and local search further improves the solution of EGA-II. GAE-I

also performs very well on these instances, which is expected due to the structure of these

test instances. Note that if an edge has a large weight in one scenario, then it should have a

large weight in all scenarios. Thus, most of the time, it is better to make assignments for the

agents and jobs incident to such edges in the second stage. Since GAE checks the necessary

optimality condition for subsets of unit cardinality, its success on these instances is expected.

102

Results for the pairwise-correlated instances are summarized in Table 8. Both GA and

GAE perform rather poorly. On the other hand, EGA (especially EGA-I) is successful in

detecting correlation between pairs of agents and jobs. Since correlation is between pairs of

jobs but not for larger subsets, the local search procedure also performs well.

Results for the split-like instances are summarized in Table 9. One can observe that

CPLEX runs out of time for larger instances. Solutions found by GA and GAE are poor. In

fact, GA and GAE find almost the same solutions. On the other hand, solution of EGA-I

is only 1% worse than the CPLEX solution on average. EGA-II performs rather poorly for

large instances; however the local search procedure is able to eliminate this deviation as

shown in EGA-II LS. The reason that EGA-I is successful on this class of instances is that

it is the only algorithm that can move the whole set G1 of agents and jobs to the second

stage as this set does not satisfy the necessary optimality condition.

Table 10 reports results for the interleaved-like instances. This time EGA-II is the best

among all algorithms considered. Its solution is only about 0.3% worse than the CPLEX

solution. Since EGA-II is already very successful, additional improvement from the local

search heuristic is not expected. It is also interesting to observe that contrary to EGA, the

first-stage solution is better than the second-stage solution with GA and GAE.

In summary, we should point out that the results for the pairwise-correlated as well

as split-like and interleaved-like instances indicate that if the weight dependencies between

subsets of agents and jobs become more complicated (e.g., in comparison with the correlated

instances) then GA and GAE algorithms fail to correctly identify the proper assignments

between such subsets of agents and jobs. This is due to the fact that these algorithms check

the necessary optimality conditions only for subsets of size 1 and n. On the other hand, EGA

is specifically designed to locate some of these subsets of agents and jobs, which significantly

improves the quality of the obtained solutions.

103

T
ab

le
6:

R
es

u
lt

s
fo

r
u
n
co

rr
el

at
ed

in
st

an
ce

s.

S
ce

n
a
ri

o
s

A
g
e
n
ts

C
P

L
E

X
G

A
G

A
E

E
G

A
E

G
A

L
S

T
im

e
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
II

L
S

(%
)

S
d
e
v

(%
)

T
im

e
(s

)

2

1
0

0
9.

60
10

.2
4

2.
58

0
2
.0

0
1.

87
0

2
.0

0
6.

36
1.

65
0

3.
72

1.
71

0

2
0

0
10

.0
3

9.
15

2.
61

0
5.

33
1.

42
0

5.
33

4.
36

1.
20

0
2
.7

1
1.

29
0

5
0

0
6.

88
6.

95
1.

42
0

4.
55

0.
99

0
4.

55
3.

88
1.

19
0

3
.2

2
1.

03
0

1
0
0

1
6.

24
6.

28
0.

54
0

4.
80

0.
67

0
4.

80
3.

23
0.

87
0

3
.0

8
0.

76
0

2
0
0

10
5.

16
5.

36
0.

70
0

4.
53

0.
64

0
4.

50
2.

70
0.

60
0

2
.6

7
0.

57
0

3

1
0

0
9.

33
8.

84
4.

36
0

3
.4

8
2.

24
0

3
.4

8
6.

83
1.

84
0

3.
84

1.
19

0

2
0

0
6.

87
8.

05
1.

89
0

3
.7

7
1.

76
0

3
.7

7
6.

15
1.

85
0

4.
96

1.
76

0

5
0

0
6.

34
6.

65
0.

98
0

5.
65

0.
93

0
5.

65
5.

42
1.

06
0

4
.7

9
0.

74
0

1
0
0

7
5.

37
5.

10
0.

67
0

5.
03

0.
67

0
4.

83
3.

65
0.

47
0

3
.4

2
0.

54
0

2
0
0

32
5

4.
65

4.
74

0.
52

0
4.

55
0.

49
0

4.
21

3.
13

0.
46

0
3
.0

9
0.

50
0

5

1
0

0
12

.1
1

8.
82

2.
71

0
6.

85
2.

70
0

5.
68

8.
51

2.
63

0
2
.6

3
2.

33
0

2
0

0
7.

85
6.

74
1.

28
0

6.
63

1.
52

0
5.

71
6.

55
1.

51
0

5
.4

8
1.

56
0

5
0

1
5.

25
5.

53
1.

12
0

5.
10

1.
03

0
3
.9

7
4.

66
0.

97
0

4.
40

0.
89

0

1
0
0

11
9

4.
22

4.
10

0.
71

0
4.

20
0.

71
0

3.
51

3.
55

0.
67

0
3
.3

6
0.

64
0

2
0
0

21
13

3.
98

3.
68

0.
37

0
3.

98
0.

36
0

3.
51

3.
06

0.
48

2
3
.0

2
0.

49
0

1
0

1
0

0
8.

46
8.

16
2.

11
0

6.
21

1.
79

0
5.

65
7.

51
1.

57
0

2
.5

3
1.

35
0

2
0

0
4.

42
6.

56
1.

91
0

4.
26

1.
98

0
3
.9

6
6.

56
1.

98
0

4.
81

1.
81

0

5
0

26
4.

63
4.

81
1.

21
0

4.
58

1.
21

0
3
.7

4
4.

40
1.

16
0

4.
07

1.
26

0

1
0
0

15
36

4.
26

3.
58

0.
68

0
4.

26
0.

68
0

3
.3

1
3.

41
0.

48
0

3.
40

0.
48

0

2
0
0

36
00

3.
73

3.
49

0.
55

0
3.

73
0.

55
0

3.
40

2.
93

0.
41

3
2
.8

2
0.

36
0

2
0

1
0

0
4.

47
9.

87
3.

15
0

2
.3

4
2.

05
0

2
.3

4
9.

87
2.

05
0

4.
39

1.
90

0

2
0

0
5.

86
4.

39
1.

56
0

5.
47

1.
49

0
4.

50
4.

39
1.

49
0

3
.9

2
1.

10
0

5
0

96
4.

42
4.

03
1.

32
0

4.
42

1.
32

0
3
.3

1
4.

03
1.

32
0

3.
57

1.
20

0

1
0
0

23
91

3.
81

3.
80

0.
34

0
3.

81
0.

34
0

3
.3

2
3.

71
0.

34
0

3.
71

0.
34

0

2
0
0

36
00

0.
43

0.
76

0.
32

1
0.

43
0.

32
1

0.
23

0.
52

0.
18

5
0
.2

0
0.

00
0

104

T
ab

le
7:

R
es

u
lt

s
fo

r
co

rr
el

at
ed

in
st

an
ce

s.

S
ce

n
a
ri

o
s

A
g
e
n
ts

C
P

L
E

X
G

A
G

A
E

E
G

A
E

G
A

L
S

T
im

e
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
II

L
S

(%
)

S
d
e
v

(%
)

T
im

e
(s

)

2

1
0

0
6.

89
2.

49
0.

93
0

0.
32

0.
33

0
0.

19
0.

13
0.

15
0

0
.0

9
0.

11
0

2
0

0
4.

65
1.

90
0.

78
0

0.
56

0.
51

0
0.

55
0.

13
0.

16
0

0
.1

2
0.

16
0

5
0

0
4.

98
1.

18
0.

36
0

0.
61

0.
20

0
0.

60
0.

23
0.

17
0

0
.2

0
0.

14
0

1
0
0

0
4.

80
1.

05
0.

18
0

0.
73

0.
17

0
0.

72
0.

15
0.

16
0

0
.1

3
0.

16
0

2
0
0

2
4.

76
0.

82
0.

14
0

0.
81

0.
09

0
0.

80
0.

16
0.

09
0

0
.1

5
0.

08
0

3

1
0

0
5.

65
1.

70
1.

20
0

0.
73

0.
32

0
0.

31
0.

18
0.

00
0

0
.1

5
0.

00
0

2
0

0
4.

86
1.

24
0.

93
0

0.
69

0.
42

0
0.

57
0.

19
0.

17
0

0
.1

7
0.

17
0

5
0

0
4.

78
0.

67
0.

24
0

1.
00

0.
26

0
1.

00
0.

15
0.

10
0

0
.1

5
0.

10
0

1
0
0

0
4.

54
0.

66
0.

15
0

1.
18

0.
15

0
1.

18
0.

22
0.

08
0

0
.2

1
0.

08
0

2
0
0

3
4.

64
0.

46
0.

12
0

1.
22

0.
12

0
1.

22
0.

15
0.

07
0

0
.1

4
0.

07
0

5

1
0

0
4.

57
1.

06
0.

47
0

1.
13

0.
47

0
0.

95
0.

41
0.

26
0

0
.2

7
0.

24
0

2
0

0
4.

20
0.

65
0.

52
0

1.
20

0.
41

0
0.

87
0.

16
0.

11
0

0
.1

5
0.

11
0

5
0

0
4.

27
0.

45
0.

15
0

1.
43

0.
15

0
1.

43
0.

19
0.

10
0

0
.1

5
0.

08
0

1
0
0

0
4.

60
0.

32
0.

14
0

1.
61

0.
14

0
1.

59
0.

15
0.

07
0

0
.1

4
0.

07
0

2
0
0

5
4.

48
0.

24
0.

06
0

1.
63

0.
06

0
1.

63
0.

09
0.

04
0

0
.0

9
0.

03
0

1
0

1
0

0
4.

26
0.

50
0.

35
0

1.
17

0.
31

0
1.

17
0.

14
0.

23
0

0
.1

3
0.

23
0

2
0

0
4.

12
0.

46
0.

46
0

1.
84

0.
34

0
1.

42
0.

28
0.

32
0

0
.2

0
0.

31
0

5
0

0
4.

05
0.

25
0.

19
0

1.
97

0.
19

0
1.

97
0.

13
0.

13
0

0
.1

1
0.

09
0

1
0
0

1
4.

23
0.

20
0.

08
0

2.
02

0.
08

0
1.

82
0.

10
0.

07
0

0
.0

8
0.

07
0

2
0
0

10
4.

22
0.

14
0.

05
0

2.
03

0.
05

0
1.

38
0.

07
0.

03
1

0
.0

7
0.

04
0

2
0

1
0

0
3.

44
0.

28
0.

28
0

1.
71

0.
26

0
0.

80
0.

10
0.

07
0

0
.0

7
0.

06
0

2
0

0
3.

90
0.

19
0.

14
0

1.
91

0.
14

0
1.

18
0.

10
0.

11
0

0
.0

7
0.

07
0

5
0

0
4.

07
0.

10
0.

05
0

2.
21

0.
05

0
1.

33
0.

06
0.

04
0

0
.0

5
0.

04
0

1
0
0

3
4.

00
0.

11
0.

06
0

2.
23

0.
06

0
1.

51
0.

07
0.

04
0

0
.0

6
0.

04
0

2
0
0

25
26

4.
12

0.
06

0.
01

1
2.

39
0.

01
1

0.
52

0
.0

4
0.

01
2

0
.0

4
0.

01
0

105

T
ab

le
8:

R
es

u
lt

s
fo

r
p
ai

rw
is

e-
co

rr
el

at
ed

in
st

an
ce

s.

S
ce

n
a
ri

o
s

A
g
e
n
ts

C
P

L
E

X
G

A
G

A
E

E
G

A
E

G
A

L
S

T
im

e
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
II

L
S

(%
)

S
d
e
v

(%
)

T
im

e
(s

)

2

1
0

0
11

.3
5

36
.3

0
5.

00
0

10
.9

1
4.

69
0

3.
43

0
.0

0
0.

00
0

0
.0

0
0.

00
0

2
0

0
14

.1
4

31
.5

6
2.

86
0

13
.2

9
3.

63
0

3.
04

0.
44

0.
00

0
0
.0

0
0.

00
0

5
0

0
15

.3
1

28
.5

5
1.

55
0

14
.5

1
1.

24
0

4.
21

1.
16

1.
95

0
0
.0

0
0.

00
0

1
0
0

0
16

.3
4

27
.4

5
1.

70
0

15
.1

3
1.

90
0

4.
55

0.
42

1.
32

0
0
.0

0
0.

00
0

2
0
0

1
16

.3
8

26
.3

6
0.

88
0

14
.9

2
0.

75
0

4.
49

0.
63

1.
09

0
0
.0

0
0.

00
0

3

1
0

0
13

.8
7

35
.0

7
2.

62
0

9.
62

2.
25

0
3.

29
0
.0

0
0.

00
0

0
.0

0
0.

00
0

2
0

0
14

.6
5

30
.4

5
2.

19
0

11
.1

8
1.

95
0

4.
46

3.
48

2.
60

0
0
.0

0
0.

00
0

5
0

0
14

.6
6

28
.5

4
1.

57
0

10
.5

5
1.

09
0

3.
56

4.
02

1.
99

0
0
.0

0
0.

00
0

1
0
0

0
16

.0
8

27
.4

1
0.

97
0

11
.2

0
0.

93
0

5.
53

2.
37

2.
84

0
0
.0

0
0.

01
0

2
0
0

1
15

.6
6

26
.1

2
0.

90
0

11
.0

4
1.

10
0

4.
88

0.
60

1.
26

0
0
.0

0
0.

00
0

5

1
0

0
14

.5
7

35
.0

8
3.

06
0

13
.7

2
2.

47
0

5.
54

0
.0

0
0.

00
0

0
.0

0
0.

00
0

2
0

0
14

.8
7

30
.5

1
2.

55
0

12
.8

6
2.

43
0

3.
75

5.
23

1.
97

0
0
.0

0
0.

00
0

5
0

0
15

.4
6

28
.3

2
1.

72
0

14
.2

2
1.

33
0

4.
12

3.
65

1.
67

0
0
.0

0
0.

00
0

1
0
0

0
15

.4
2

27
.5

7
1.

27
0

13
.8

8
0.

68
0

4.
19

3.
84

2.
80

0
0
.0

1
0.

04
0

2
0
0

2
15

.9
7

26
.3

1
0.

92
0

13
.8

3
1.

11
0

4.
25

4.
76

2.
47

0
0
.0

0
0.

00
0

1
0

1
0

0
14

.8
7

36
.6

5
2.

65
0

14
.7

1
2.

49
0

2.
32

0
.0

0
0.

00
0

0
.0

0
0.

00
0

2
0

0
13

.1
4

30
.8

3
2.

24
0

12
.9

6
2.

11
0

0.
97

14
.7

6
0.

86
0

0
.0

0
0.

00
0

5
0

0
14

.8
2

28
.5

3
1.

29
0

14
.5

7
1.

15
0

2.
26

18
.6

8
1.

61
0

0
.0

0
0.

00
0

1
0
0

1
15

.7
2

27
.7

9
1.

21
0

15
.2

9
1.

10
0

2.
85

9.
22

1.
67

0
0
.0

0
0.

00
0

2
0
0

5
15

.6
0

26
.6

6
0.

88
0

15
.1

6
0.

74
0

2.
41

8.
70

1.
57

1
0
.0

1
0.

02
0

2
0

1
0

0
14

.8
7

35
.3

5
2.

13
0

14
.7

0
2.

15
0

2.
99

3.
92

0.
00

0
0
.0

0
0.

00
0

2
0

0
16

.0
4

30
.1

0
1.

84
0

15
.4

8
1.

74
0

4.
28

8.
80

3.
20

0
0
.0

0
0.

00
0

5
0

0
15

.6
7

28
.7

1
1.

63
0

15
.0

0
1.

42
0

3.
25

14
.1

1
1.

95
0

0
.0

0
0.

00
0

1
0
0

2
16

.1
7

27
.2

8
0.

95
0

15
.8

8
1.

03
0

2.
61

19
.1

2
1.

26
0

0
.0

0
0.

00
0

2
0
0

25
24

15
.9

1
26

.1
8

0.
64

1
15

.5
0

0.
48

1
2.

57
15

.7
0

1.
38

3
0
.0

0
0.

00
0

106

T
ab

le
9:

R
es

u
lt

s
fo

r
sp

li
t-

li
ke

in
st

an
ce

s.

S
ce

n
a
ri

o
s

A
g
e
n
ts

C
P

L
E

X
G

A
G

A
E

E
G

A
E

G
A

L
S

T
im

e
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
II

L
S

(%
)

S
d
e
v

(%
)

T
im

e
(s

)

2

1
0

0
22

.0
1

8.
41

2.
99

0
15

.3
9

2.
99

0
3.

17
1.

75
1.

32
0

0
.8

5
0.

99
0

2
0

0
17

.2
3

11
.8

9
1.

27
0

13
.8

9
0.

99
0

2.
00

3.
66

0.
75

0
1
.0

3
0.

79
0

5
0

0
14

.4
1

15
.6

0
0.

62
0

13
.3

0
0.

36
0

1.
20

6.
93

0.
32

0
1
.0

4
0.

25
0

1
0
0

0
13

.6
3

16
.7

3
0.

26
0

13
.1

9
0.

15
0

0
.7

3
6.

22
0.

15
0

0.
78

0.
09

0

2
0
0

5
12

.7
3

17
.1

2
0.

10
0

12
.5

7
0.

09
0

0
.3

3
6.

71
0.

07
0

0.
51

0.
07

0

3

1
0

0
25

.4
3

4.
01

3.
13

0
21

.2
0

3.
13

0
2.

67
0.

94
0.

72
0

0
.4

1
0.

47
0

2
0

0
19

.9
9

10
.1

2
1.

44
0

18
.7

5
1.

44
0

1
.1

2
5.

78
1.

17
0

1.
50

0.
67

0

5
0

0
19

.0
4

14
.6

2
0.

54
0

18
.8

5
0.

54
0

0
.7

1
9.

69
0.

37
0

1.
35

0.
35

0

1
0
0

1
18

.7
5

16
.2

2
0.

20
0

18
.7

1
0.

20
0

0
.3

3
9.

28
0.

09
0

0.
98

0.
09

0

2
0
0

27
18

.3
2

16
.8

4
0.

07
0

18
.3

2
0.

07
0

0
.1

8
7.

94
0.

03
0

0.
51

0.
03

0

5

2
0

0
23

.3
3

9.
29

1.
19

0
22

.7
0

1.
19

0
0
.3

7
7.

81
0.

35
0

2.
10

0.
35

0

5
0

0
23

.2
7

14
.4

3
0.

29
0

23
.2

1
0.

29
0

0
.4

3
11

.8
4

0.
33

0
1.

73
0.

31
0

1
0
0

5
23

.3
8

16
.1

9
0.

17
0

23
.3

7
0.

17
0

0
.2

2
11

.0
2

0.
08

0
0.

77
0.

08
0

2
0
0

86
0

22
.9

1
16

.7
9

0.
04

0
22

.9
1

0.
04

0
0
.1

1
10

.1
8

0.
03

1
0.

48
0.

03
0

1
0

5
0

2
26

.9
8

14
.1

9
0.

32
0

26
.9

7
0.

32
0

0
.2

5
13

.5
0

0.
22

0
0.

58
0.

15
0

1
0
0

12
0

26
.7

7
16

.1
0

0.
14

0
26

.7
7

0.
14

0
0
.0

7
13

.9
7

0.
06

0
0.

41
0.

06
0

2
0
0

36
00

26
.4

1
16

.8
0

0.
03

0
26

.4
1

0.
03

0
0
.1

1
12

.8
6

0.
03

2
0.

34
0.

03
0

2
0

1
0
0

28
92

28
.5

2
16

.2
0

0.
12

0
28

.5
2

0.
12

0
0
.1

6
15

.8
4

0.
10

0
0.

45
0.

10
0

2
0
0

36
00

28
.1

8
16

.7
7

0.
03

1
28

.1
8

0.
03

1
0
.1

0
15

.3
8

0.
02

5
0.

27
0.

02
0

107

T
ab

le
10

:
R

es
u
lt

s
fo

r
in

te
rl

ea
ve

d
-l

ik
e

in
st

an
ce

s.

S
ce

n
a
ri

o
s

A
g
e
n
ts

C
P

L
E

X
G

A
G

A
E

E
G

A
E

G
A

L
S

T
im

e
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

S
d
e
v

(%
)

T
im

e
(s

)
I

(%
)

II
(%

)
S
d
e
v

(%
)

T
im

e
(s

)
II

L
S

(%
)

S
d
e
v

(%
)

T
im

e
(s

)

2

1
0

0
6.

55
30

.2
1

0.
88

0
5.

67
0.

36
0

5.
67

0.
57

0.
73

0
0
.3

0
0.

36
0

2
0

0
6.

44
29

.4
5

0.
67

0
5.

68
0.

26
0

5.
68

0.
69

0.
64

0
0
.5

0
0.

44
0

5
0

0
5.

92
29

.5
7

0.
15

0
5.

76
0.

10
0

5.
75

0.
32

0.
13

0
0
.2

8
0.

12
0

1
0
0

0
5.

77
29

.3
5

0.
08

0
5.

70
0.

08
0

5.
70

0.
17

0.
05

0
0
.1

7
0.

05
0

2
0
0

3
5.

62
29

.3
0

0.
06

0
5.

60
0.

06
0

5.
60

0.
09

0.
01

0
0
.0

9
0.

01
0

3

1
0

0
9.

66
30

.6
9

1.
61

0
8.

59
0.

45
0

8.
53

0.
86

0.
87

0
0
.2

2
0.

39
0

2
0

0
9.

01
29

.3
1

0.
73

0
8.

40
0.

25
0

8.
32

0.
81

0.
41

0
0
.6

2
0.

39
0

5
0

0
8.

57
28

.9
9

0.
16

0
8.

45
0.

13
0

8.
42

0.
28

0.
07

0
0
.2

6
0.

06
0

1
0
0

1
8.

34
29

.2
4

0.
09

0
8.

32
0.

10
0

8.
31

0.
19

0.
04

0
0
.1

8
0.

04
0

2
0
0

12
8.

20
29

.3
6

0.
07

0
8.

20
0.

06
0

8.
19

0
.0

9
0.

01
0

0
.0

9
0.

01
0

5

2
0

0
10

.7
2

29
.2

9
0.

54
0

10
.3

6
0.

36
0

10
.3

6
0.

69
0.

52
0

0
.5

4
0.

40
0

5
0

0
10

.3
5

29
.5

1
0.

20
0

10
.3

2
0.

20
0

10
.2

4
0
.2

1
0.

08
0

0
.2

1
0.

08
0

1
0
0

4
10

.3
8

29
.4

3
0.

15
0

10
.3

7
0.

14
0

10
.3

3
0
.1

4
0.

05
0

0
.1

4
0.

05
0

2
0
0

98
4

10
.2

4
29

.4
0

0.
05

0
10

.2
4

0.
05

0
10

.2
2

0
.0

6
0.

02
0

0
.0

6
0.

02
0

1
0

5
0

1
12

.0
1

28
.7

5
0.

21
0

11
.9

9
0.

22
0

11
.9

0
0
.1

4
0.

06
0

0
.1

4
0.

06
0

1
0
0

65
11

.9
4

29
.1

1
0.

08
0

11
.9

4
0.

08
0

11
.9

0
0
.0

9
0.

04
0

0
.0

9
0.

04
0

2
0
0

36
00

11
.8

3
29

.1
9

0.
07

0
11

.8
3

0.
07

0
11

.8
2

0
.0

7
0.

01
1

0
.0

7
0.

01
0

2
0

1
0
0

32
73

12
.7

5
28

.9
6

0.
13

0
12

.7
5

0.
13

0
12

.7
4

0
.1

1
0.

02
0

0
.1

1
0.

02
0

2
0
0

36
00

12
.6

2
29

.1
2

0.
06

1
12

.6
2

0.
06

1
12

.6
1

0
.0

6
0.

01
3

0
.0

6
0.

01
0

108

3.6 CONCLUSION

This chapter discusses several greedy approximation algorithms for the 2SSLA problem. The

proposed necessary optimality condition unifies two recent greedy approximation algorithms

from the literature. It is further used in the development of a more advanced algorithmic

approach. While EGA preserves the approximation guarantees of GAE, we are not able

to prove whether EGA provides a strictly better approximation bound. However, analytical

observations and computational results indicate that EGA has strictly better results on some

rather broad classes of the two-stage stochastic linear assignment problem.

As future research directions, one can use the proposed necessary optimality condition to

develop new algorithms with better approximation guarantees, consider the extension to the

multi-stage stochastic linear assignment problem, or focus on the problems with stochastic

right-hand sides, e.g., when multiple jobs can be performed by the same agent. Further-

more, the results of the reported computational experiments indicate that the integrality

gap is very small for most of the considered test instances. Thus, development of approxi-

mation algorithms based on the LP relaxation of the original integer program is among other

promising research directions.

3.7 ACKNOWLEDGMENTS

Content of this chapter is reproduced from [78] with permission of Taylor & Francis.

109

4.0 ON SPEED SCALING VIA INTEGER PROGRAMMING

4.1 INTRODUCTION

Electricity cost is the major budget item for most data warehouses and computing centers.

Google engineers predict that energy cost is very likely to overtake the hardware cost in the

near future [20]. Energy efficiency is also a key concern for various types of battery-powered

remote devices. For these reasons, major chip manufacturers such as Intel, AMD and IBM

produce microprocessors that can run at variable speed. Thus, in order to minimize the total

energy consumption, modern operating systems need not only to schedule processes but also

to determine at which speed should the processors run.

Dynamic speed scaling literature, which can be traced back to [116], is focused on two

broad problem settings:

• Jobs have deadlines and the goal is to find feasible schedules minimizing energy con-

sumption [14, 16, 116]. Algorithms for a processor with sleep state under this problem

setting also exist [68, 75].

• Jobs do not have deadlines and besides minimizing energy consumption, the goal is to

find schedules that optimize some scheduling metric, e.g., average flow time [5, 15, 17,

38, 85, 84].

All these studies target the single processor case, which is a difficult problem by itself, whereas

the multiprocessor case has not attracted much attention, primarily due to its complexity.

Jobs with deadline on identical processors is studied by [4, 6, 23], while [86] focuses on the no-

deadline scenario. Nevertheless, heterogeneous processors are becoming more common and

require special treatment [28]. Authors of [64, 65] consider heterogeneous processors without

110

sleep states and no deadlines for jobs. We refer the reader to [3] for a more thorough review

of the speed scaling literature.

The focus of our work is a relatively high-level problem setting that includes heteroge-

neous parallel processors with sleep states. Given a processing requirement, our goal is to

select a subset of processors and distribute the load over these processors so as to minimize

the total energy consumption. Specifically, consider a data warehouse with a total of n

processors (or a CPU with n cores). Each processor can be either turned off or set to run

at some positive continuous speed s (i.e., frequency). If processor i runs at speed si > 0, it

consumes fixed γi (to turn the processor on) and variable αis
βi energy. Given service load

L (e.g., number of CPU cycles) to be satisfied by the warehouse, the speed scaling problem

is to decide which processors to turn on and determine their speeds in order to minimize the

total energy consumed.

Without loss of generality, assume Mi (L ≥ Mi) is an upper bound on the speed of

processor i and let the binary variable xi denote whether processor i is turned on. Given

nonnegative parameters αi, βi, and γi for all i, speed scaling with convex power functions

(SSCPF) can be modeled as the following mixed integer nonlinear program (MINLP):

SSCPF: min
x,s

n∑
i=1

(αis
βi
i + γixi)

s.t.
n∑
i=1

si ≥ L

Mixi ≥ si, ∀i

si ≥ 0, xi ∈ {0, 1}, ∀i

Solving convex MINLPs is challenging as they generalize the linear integer programming,

known to be NP-hard [56]. Relaxing integrality restrictions results in a convex optimization

problem. Thus, most of the exact solution approaches focus on using branch-and-bound

(B&B) framework where subproblems are either convex programs or their linear approxi-

mations. Duran and Grossmann [48] introduced the outer approximation (OA) algorithm,

which was further improved by Fletcher and Leyffer [53].

111

OA algorithm constructs lower linear approximations to the nonlinear functions via tan-

gent lines. At each iteration, first, integer optimal solution to the current relaxation is

obtained through B&B. Then, using a nonlinear program solver, the optimal fractional solu-

tion of the convex program that corresponds to the current integral solution is found. Finally,

the relaxation is updated by including approximation of the nonlinear functions using this

optimal fractional solution and the procedure is repeated. An optimal solution of the original

problem is found if the same integer solution is encountered as each integer solution provides

an upper bound while the current approximation is a lower bound [48]. If we assume that

all integer variables are bounded, then the number of integer solutions is finite. Thus, OA

algorithm is finite.

Rather than solving each relaxation to optimality, Quesada and Grossmann [100] provide

a more efficient implementation of the algorithm where only one search tree is kept and the

relaxation is updated as new integer solutions are found within a B&B framework. In

contrast to OA, the extended cutting plane (ECP) method proposed by Westerlund and

Pettersson [115] approximates nonlinear functions using values of the fractional variables

obtained from relaxation, and thus ECP does not solve any nonlinear programs. Method

is finite for any constant precision level ε > 0. However, to achieve the required precision,

a large number of cuts (approximations) may be needed, which is going to be a burden on

the linear program (LP) solver, especially when cuts are added globally and there are many

functions to be approximated. A thorough review of the MINLP literature is beyond the

scope of this work and we refer the reader to [26, 27].

In our problem setting, once an integral feasible solution is encountered, finding optimal

speed levels for the processors is known as the continuous nonlinear resource allocation

problem (NRAP) [73] in the literature. NRAP is essentially equivalent to the continuous

nonlinear knapsack problem (NKP). The book by Ibaraki and Katoh [73] provides a detailed

treatment of NRAP and its variants. Most of the algorithms devised for the convex, separable

nonlinear case are based on the Karush-Kuhn-Tucker (KKT) optimality conditions and use of

ε-accuracy notion [30, 31, 71, 72]. Integer NKP (i.e., the case when speed levels are required

to be integer) is beyond the scope of this study and interested readers may consult [31, 39].

112

One problem that is somewhat similar to SSCPF is the Convex Quadratic Transportation-

Cost Uncapacitated Facility Location Problem studied in [63]. The authors derive KKT

solutions to the distribution problem of a single customer given a set of facilities that are open.

The major difference of their problem is that the nonlinear structure of the transportation

cost function studied there is dependent on the customer but not facilities. To make a

comparison, NRAP is the problem with many customers and a single facility whereas the

distribution problem studied in [63] has many facilities but a single customer. Furthermore,

their work is purely motivated on strengthening the continuous relaxation of the problem.

To the best of our knowledge, the class of NRAPs represented by SSCPF has not been

studied in the past. In Section 4.2, based on KKT conditions, we discuss a line search

method to find optimal speed values for a given subset of processors. In Section 4.3, we

identify several polynomially solvable cases and show that the problem is NP-hard even when

βi = 2 for all i. Next, an approximation algorithm for SSCPF is provided in Section 4.4.

Section 4.5 describes a pseudo-polynomial time dynamic programming algorithm (DP) for a

special case of the problem. Subsequently , the DP is converted into a fully polynomial-time

approximation scheme (FPTAS). For the general case, we provide an outer approximation

implementation in Section 4.6. Section 4.7 summarizes our computational experiments.

4.2 OPTIMALITY CONDITIONS

Consider a set F ⊆ {1, . . . , n} of processors and assume that all processors belonging to this

set are turned on, i.e., xi = 1 iff i ∈ F . Then, SSCPF reduces to finding optimal speed

values for processors in F :

min
s

∑
i∈F

αis
βi
i (4.1)

s.t.
∑
i∈F

si ≥ L (4.2)

si ≥ 0 ∀i ∈ F (4.3)

113

Note that in (4.1), we disregard the term
∑

i∈F γi as it is constant for fixed F . Let λ and

µi be the dual variables corresponding to the constraints (4.2) and (4.3), respectively. Then

we can write KKT conditions as follows

∑
i∈F

si − L ≥ 0 , si ≥ 0 ∀i ∈ F (4.4)

λ ≥ 0 , µi ≥ 0 ∀i ∈ F (4.5)

λ

(∑
i∈F

si − L

)
= 0 , µisi = 0 ∀i ∈ F (4.6)

O

(∑
i∈F

αis
βi
i

)
−O

(
λ

(∑
i∈F

si − L

))
− O

(∑
i∈F

µisi

)
= 0 (4.7)

One can show that (4.7) is equivalent to

αiβis
βi−1
i − λ− µi = 0 ∀i ∈ F (4.8)

In general, if F is the set of processors that are turned on, the optimal speed values for

processors in F can be found by using the following procedure:

• set λ > 0 and µi = 0 (using (4.6)) for all i ∈ F ,

• solve the following equation in λ (e.g., using a standard line search method [44]):

L =
∑
i∈F

βi−1

√
λ

αiβi
(4.9)

• using (4.8), set

si = βi−1

√
λ

αiβi
∀i ∈ F (4.10)

Therefore, finding the optimal speed values for a given set of processors F essentially reduces

to line search, which is key to our solution approach. Next, using this solution approach, we

identify two polynomially solvable cases and show that SSCPF is NP-hard even when βi = 2

for all i.

114

4.3 POLYNOMIALLY SOLVABLE CASES AND COMPLEXITY

For SSCPF, each processor is characterized by three parameters: α, β, and γ. As we show

below, computational complexity of the problem depends on variation of these parameters

between processors.

Proposition 17. Whenever at least two of the parameters {α, β, γ} are the same for all

processors (e.g., αi = α and βi = β for all i), SSCPF is solvable in polynomial time.

Proof. The key observation is that if the number of processors used in an optimal solution

were known, say k, then we could solve the problem easily. Specifically, one sorts processors

in increasing order of the parameter that is not fixed and then selects the first k of them. The

obtained solution is optimal due to the following observation. Whenever a solution prefers a

processor j, k < j ≤ n, to a processor i, 1 ≤ i ≤ k, it can be improved by replacing processor

j with processor i even without changing the speed values (assuming that the value of the

parameter that varies is strictly smaller for i). Thus, the problem can be solved by simply

checking each possible value of k, 1 ≤ k ≤ n.

Proposition 18. If βi = 1 for all i, then the optimal solution consists of the single processor

i∗ ∈ arg min
1≤i≤n

{αiL+ γi}

Proof. This specific case of SSCPF is actually an instance of UFL problem with single cus-

tomer [63]. Nevertheless, we give a constructive proof here. Assume that a subset F of

processors is selected and turned on. Then (4.8) reduces to

αi − λ− µi = 0 ∀i ∈ F

A KKT solution for F is given by

i∗ ∈ arg min
i∈F
{αi}, λ = αi∗ , µi = αi − λ ∀i ∈ F, si∗ = L, si = 0 ∀i ∈ F \ {i∗}

Hence, it is optimal to turn on the processor with smallest α value. As it is always optimal to

turn on a single processor, it is clear that the one resulting with smallest energy consumption

should be turned on.

115

Theorem 5. Problem SSCPF is NP-hard even if βi = 2 for all i.

Proof. Consider a set of processors F to be turned on. If βi = 2, ∀i, then from (4.10) we

have

αjsj = αisi ∀i, j ∈ F
sj
si

=
αi
αj

∀i, j ∈ F (4.11)

⇒
∑

j∈F sj

si
=
∑
j∈F

αi
αj

∀i ∈ F

⇒ si =
L∑
j∈F

αi
αj

=
L

αi

1∑
j∈F

1
αj

, ∀i ∈ F (4.12)

If we rewrite the objective function for SSCPF when processors in the set F are turned on:

n∑
i=1

(αis
βi
i + γixi) =

∑
i∈F

αis
2
i +

∑
γi

=
∑
i

αi

(
L

αi

1∑
j

1
αj

)2

+
∑

γi

=
L2(∑
j

1
αj

)2

∑
i

αi
1

α2
i

+
∑

γi

=
L2(∑
j

1
αj

)2

∑
i

1

αi
+
∑

γi

= L2 1∑
i

1
αi

+
∑

γi (4.13)

One can show that, if we let αi = 1
γi
∀i, then (4.13) reduces to

L2 1∑
γi

+
∑

γi

Since the set F can be chosen in many ways, let’s define a new variable t =
∑
γi and consider

the function

g(t) = L2 1

t
+ t

116

One can also show that

if t > 0 then g(t) ≥ 2L and

t = L iff g(t) = 2L

and, therefore, 2L is a lower bound on objective function value in this special case and this

lower bound can be achieved iff there exists a subset of processors F which satisfies
∑
γi = L.

Now we can make a reduction from the SUBSET SUM [56] problem to prove that the

general case of our problem is NP-hard. Consider an instance of the subset sum problem

defined over a set of integers R = {r1, r2, ..., rn} with n items and a required sum of L. Now,

we generate an instance of the speed scaling problem with n parallel processors as follows:

let βi = 2, ∀i, set γi = ri, let αi = 1
γi

, and consider a required load of L. Then in the light

of our previous discussion, there exists a subset of R with a sum of L iff the constructed

SSCPF instance has an optimal objective value of 2L.

Theoretical computational complexity of the other two cases when (1) αi = α for all i and

(2) γi = γ remain open problems.

4.4 A GREEDY APPROXIMATION ALGORITHM

Consider a subset of processors T ⊆ N = {1, 2, . . . , n}. We define the variable energy

consumption of T to be E(T) = min
{∑

j∈T αjs
β
j

∣∣ ∑
j∈T sj = L, sj ≥ 0

}
and the fixed

energy consumption of T to be Γ(T) =
∑

j∈T γj. Thus, total energy consumption using

processors in T is equal to E(T) + Γ(T). Using this notation, Algorithm 6 provides the

pseudocode for a greedy heuristic which we show to be an approximation algorithm.

Algorithm 6: Greedy Algorithm (GA)

1 Sort processors in increasing order of their fixed cost γ.

2 Let Tij be the set of processors {i, . . . , j}, 1 ≤ i ≤ j ≤ n.

3 Return Tij with smallest E(Tij) + Γ(Tij).

117

Proposition 19. GA is an n-factor approximation algorithm for SSCPF.

Proof. Let T ∗ be the set of processors selected by an optimal solution where i, j ∈ T ∗ are

the indices of the processors with smallest and largest γ values, respectively. Observe that

E(Tij) ≤ E(T ∗) as T ∗ ⊆ Tij. Furthermore, Γ(Tij) ≤ (j − i + 1)γj ≤ nΓ(T ∗). Hence, the

solution of GA satisfies Za ≤ E(Tij) + Γ(Tij) ≤ nZ∗.

GA has a time complexity of O(n2). It can be shown that the bound provided by GA is strict

when optimal solution includes only the processor with smallest γ value and the processor

with the largest γ value.

4.5 FPTAS FOR SPECIAL CASE

In this section we consider the special case of SSCPF where βi is the same (i.e., βi = β) for

all i = 1, . . . , n.

4.5.1 A Dynamic Programming Approach

Let E(·) and Γ(·) be defined as in previous section. Define T [i, γ] to denote a subset of

processors {1, 2, . . . , i} minimizing E(·) with a total fixed cost of Γ(·) = γ. If no such subset

exists, then we let T [i, γ] = ∅ where E(∅) =∞. Initializing T [0, γ] = ∅ for γ ∈ {0, 1, . . .}, all

T [i, γ], i ∈ N , can be found via the following recursion:

T [i, γ] =

 {i} ∪ T [i− 1, γ − γi] if E ({i} ∪ T [i− 1, γ − γi]) < E (T [i− 1, γ])

T [i− 1, γ] o/w

An optimal solution to the problem is given by T [n, γ∗], γ∗ ∈ arg min
{
γ + E

(
T [n, γ]

)}
.

Proposition 20. The dynamic programming algorithm given above is correct when βi = β

for all i = 1, . . . , n.

118

Proof. We prove by induction on i. Indeed T [0, γ] = ∅. Assume for i − 1, T [i − 1, γ] is the

set minimizing E(·). If i does not belong to the subset of processors from {1, 2, . . . , i} that

minimizes energy consumption, then it must hold that T [i, γ] = T [i − 1, γ]. Otherwise, let

T̃ [i − 1, γ] 6= T [i − 1, γ] be another subset of the processors {1, 2, . . . , i − 1}. By induction

hypothesis, E(T [i − 1, γ]) ≤ E(T̃ [i − 1, γ]). We show that E({i} ∪ T [i − 1, γ]) ≤ E({i} ∪

T̃ [i− 1, γ]). One can verify that,

λ =
βLβ−1(∑

j∈T

(
1
αj

) 1
β−1

)β−1
, sj =

(
λ

αjβ

) 1
β−1

∀j ∈ T, E(T) =
Lβ(∑

j∈T

(
1
αj

) 1
β−1

)β−1

is a KKT solution of the system defined by E(T) for any subset T . If E(T) ≤ E(T̃), then it

follows that

∑
j∈T

(
1

αj

) 1
β−1

≥
∑
j∈T̃

(
1

αj

) 1
β−1

⇒
(

1

αi

) 1
β−1

+
∑
j∈T

(
1

αj

) 1
β−1

≥
(

1

αi

) 1
β−1

+
∑
j∈T̃

(
1

αj

) 1
β−1

Hence, E({i} ∪ T [i− 1, γ − γi]) ≤ E({i} ∪ T̃ [i− 1, γ − γi]) for all T̃ .

The running time of the dynamic programming algorithm is O(nγ), where γ =
∑n

j=1 γj is

a simple upper bound on γ. Note that for any T , {i} ∪ T can be correctly compared to

T in constant time if the sum
∑

j∈T (1/αj)
1/(β−1) is readily available. One can construct

a counterexample to show that DP does not work when βi are allowed to be different.

Nevertheless, DP can be used as a heuristic when βi is not the same for all i.

4.5.2 FPTAS

To obtain a FPTAS, we follow the approach used for the knapsack problem [79, 113], and

scale γi values. We let γ̂j =
⌈γj
K

⌉
, which is equivalent to performing recursion on γ ∈

{0, K, 2K, 3K, . . .}. Furthermore, we modify DP to output a set T [n, γ∗] where

γ∗ ∈ arg min

{
γ +

E(T [n, γ])

K

}

119

Let T and T ∗ be the optimal set of processors for the scaled and the original instances,

respectively. Then the following relations hold:

Z = E(T) +
∑
j∈T

γj ≤ K

(
E(T)

K
+
∑
j∈T

⌈ γi
K

⌉)
≤

K

(
E(T ∗)

K
+
∑
j∈T ∗

⌈ γi
K

⌉)
= E(T ∗) +K

∑
j∈T ∗

⌈ γi
K

⌉
≤

E(T ∗) +K
∑
j∈T ∗

(γi
K

+ 1
)

= E(T ∗) +
∑
j∈T ∗

γi +K|T ∗| = Z∗ +K|T ∗|

For solution of the DP to be ε−approximate:

Z − Z∗

Z∗
≤ ε ⇒ K|T ∗|

Z∗
≤ ε ⇒ K ≤ ε

Z∗

|T ∗|

Algorithm 7 provides the pseudocode of a FPTAS for speed scaling problem.

Algorithm 7: FPTAS

1 Use GA to get Za ≤ nZ∗. Let K = εZ
a

n2 .

2 Scale the fixed costs: γ̂i =
⌈
γi
K

⌉
.

3 Run DP on the scaled instance.

Proposition 21. FPTAS outputs an ε-approximate solution to SSCPF in O
(
n3

ε

)
time when

βi = β, ∀i.

Proof. GA provides a solution with Z∗ ≤ Za ≤ nZ∗. Thus, the maximum fixed cost that the

DP algorithm has to look up is Za, which results in a time complexity of O(nZa). Setting

K = εZ
a

n
1
n
≤ εZ∗ 1

|T ∗| , the optimal solution to the scaled instance provides an ε-approximate

solution to the original instance. Thus,

O

(
n

⌈
Za

K

⌉)
= O

(
nZa n

2

εZa

)
= O

(
n3

ε

)

120

4.6 AN OUTER APPROXIMATION ALGORITHM

In this section we follow notation from [26]. Consider the generic MINLP:

MINLP: zMINLP = min
{
f(x, y) | gj(x, y) ≤ 0 ∀j, x ∈ X ∩Zn, y ∈ Y

}
where X ⊆ Rn and Y ⊆ Rp are polyhedral sets. Outer approximation is applicable when

functions f : X × Y → R and g : X × Y → Rm are convex and continuously differentiable.

Thus, relaxing integrality constraints results in a convex program that can be efficiently

solved. Since f and g are convex and differentiable, they can be linearly approximated

from below at any point (xo, yo) ∈ X × Y using the first order term of their Taylor series

expansions around (xo, yo). Now assume that H is the set of all (x, y) such that y ∈ Y is an

optimal solution to MINLP for each x ∈ X ∩ Zn. Then consider the resulting relaxation of

MINLP:

MINLP-OA: zMINLP−OA = min

{
z
∣∣∣ Of(xk, yk)T

 x− xk

y − yk

 ≤ z ∀(xk, yk) ∈ H,

Ogj(x
k, yk)T

 x− xk

y − yk

 ≤ 0 ∀j, ∀(xk, yk) ∈ H,

x ∈ X ∩ Zn, y ∈ Y, z ∈ R
}

Theorem 6 ([48]). If MINLP is feasible, f and g are convex and differentiable, and con-

straint qualification holds for each (xk, yk) ∈ H, then zMINLP = zMINLP−OA and every optimal

solution of MINLP is also an optimal solution of MINLP-OA.

SinceH is potentially huge, the successful implementation starts with a relaxation of MINLP-

OA written only for a small subset H ⊆ H and adds new cuts within a branch-and-cut

framework as necessary. We follow this approach in our work. Our functions are seperable

and smooth, and thus we explicitly give the outer approximation of SSCPF for a subset of

linearization points Hi ⊆ Hi for each processor i:

121

SSCPF-OA: min
x

n∑
i=1

(fi + γixi)

s.t.
n∑
i=1

si ≥ L

Mixi ≥ si ∀i

fi ≥ αiβis
βi−1
h s− αi(βi − 1)sβih ∀sh ∈ Hi, ∀i

si ≥ 0, fi ≥ 0, xi ∈ {0, 1} ∀i

Since the number of integral solutions to SSCPF is finite and we have to approximate func-

tions only at integral solutions, the outer approximation formulation proposed is finite.

Furthermore, we do not need a convex program solver as the optimal speed values for each

integral solution can be found using line search as discussed previously.

4.7 COMPUTATIONAL EXPERIMENTS

4.7.1 Implementation and Setup

We use commercial integer programming solver CPLEX [74] to implement the OA algorithm

using branch-and-cut (B&C). Root node formulation is SSCPF-OA. Each power function

αis
β
i is approximated at the points

{
L, L

2
, L

22 ,
L
23 , . . . ,

L
2t
, 0
}

where t is the smallest integer

satisfying 2t ≥ L. The reason to use such initial approximation of the functions is that

good solutions are expected to distribute the load over several processors and thus small

speed values are more likely to be used compared to large speed values. Hence, we are

approximating functions more precisely at the speed levels that are most likely going be

used by near-optimal solutions. For L = 1000, root node model includes approximation of

each function at (2 + 10) points as 29 < 1000 < 210. The relaxation solved at each node

provides a lower bound for the tree rooted at that node. We do not interfere with CPLEX

until an integral solution is found. Once an integral solution is found along one of the

122

branches, CPLEX calls our lazy constraint callback (LCC) implementation before accepting

the solution.

In the LCC routine, we first obtain the optimal speed levels for selected processors by

solving (4.9)-(4.10) using bisection as a line search method. Then, we approximate energy

consumption curve of each processor turned on at its optimal speed value obtained from

the line search. Note that once a processor is turned off through branching along one of

the branches (i.e., once branching sets xi = 0), we do not need to approximate its power

function again along that branch. The approximations are added to the SSCPF-OA locally,

i.e., the cuts are effective only for the tree rooted at the current node where integral solution

is encountered. Compared to adding cuts globally, this strategy helps in keeping the model

size at a moderate level along all the branches of the tree. If CPLEX encounters the same

integral solution again, it implies that the solution is feasible and thus provides a valid upper

bound for the search tree.

As Theorem 6 implies, when CPLEX terminates, we have an optimal integral solution

and objective function value. However, the values of continuous variables may be different

from their optimal values. This is due to the fact that any fractional solution along the

tangent lines active at an integral solution yields the same objective function value. To

understand why this is the case, one needs to notice that all the tangent lines active for a

given integral solution have the same slope λ, as (4.8) suggests when µi = 0, and
∑
si = L.

Our line search method indeed sets µi = 0 for all processors that are turned on. Yet, it is

straightforward to obtain optimal speed values using (4.9)-(4.10) once the optimal integral

solution is known.

The DP implementation is a simple forward recursion starting with T [0, 0] where we keep

track of
∑

j∈T (1/αj)
1/(β−1) for each γ value that has been discovered so far. As previously

discussed, this allow us to compare T and {i} ∪ T in constant time.

In our computational experiments, we use several different number of processors (n)

together with several different levels of the parameters L, α, β, and γ. For each setting,

10 replications are obtained and the minimum, median, and maximum of each measure of

interest is reported. A PC with 3.00 GHz CPU and 3 GB RAM is used for all computations.

123

4.7.2 Results and Discussion

The first set of results aims at comparing CPLEX and our OA implementation. CPLEX is

only able to solve quadratic programs and thus Table 11 summarizes results for instances

where β = 2. We uniformly generated γ values between 1 000 and 10 000. Three different

number of processors is used in experiments: n = 25, n = 100, and n = 500. Three levels

of service load is used for each value of n: L = 100, L = 500, and L = 1000. For each

combination of n and L, α values are generated uniformly between 100 and 500 or between

500 and 1000. One hour time limit and 0.1% relative termination gap is enforced for all

experiments.

For n = 25, there are only 25 binary variables and both CPLEX and OA are able to

solve instances to optimality very fast, though CPLEX sometimes needs almost 50 seconds

for the (L = 100, α ∼ U [100, 500]) setting. For n = 100, CPLEX runs out of memory in

less than half hour except for the (L = 1000, α ∼ U [500, 1000]) setting. The relative gap

at termination is about 50% for L = 100, 20% for L = 500, and 5% for L = 1000. In

comparison, OA implementation is able to obtain optimal solutions in less than 1 second for

all settings. For n = 500, CPLEX runs out of memory in less than half hour with a relative

termination gap above 55% for all instances. OA algorithm solves all problems to optimality

in less than 20 seconds.

In Table 12, we summarize results for OA implementation where β values vary between

2 and 12. Though we use both β ∼ U [2, 6] and β ∼ U [6, 12] for L = 100; β values greater

than 8 results in very large energy consumption values for L = 500 and L = 1000 (e.g.,

(103)12), which CPLEX is not able to handle correctly due to numerical instabilities. Thus,

we use only β ∼ U [2, 8] for L > 100. Table 12 also includes results for n = 2500 processors.

The levels of other parameters used are similar to what we have used in Table 11. We also

report the number of calls to the LCC routine and total number of cuts added during these

calls.

For n = 25, 100, and 500, it is straight forward for OA to find optimal solutions. Less

than 40 calls are made to the LCC through which at most 6000 cuts are added during B&C.

When n = 2500, OA is still performing well in general, however, for some parameter settings

124

Table 11: Results for CPLEX vs. OA implementation.

β = 2, γ ∼ U [1 000, 10 000]
CPLEX OA

gap (%) time (sec) gap (%) time (sec)

n L α: low α: high min med max min med max min med max min med max

25

100
100 500 0.00 0.00 0.00 5 20 48 0.01 0.07 0.10 0 0 0

500 1 000 0.00 0.00 0.00 1 2 5 0.00 0.04 0.10 0 0 0

500
100 500 0.00 0.00 0.00 0 0 0 0.00 0.00 0.10 0 0 0

500 1 000 0.00 0.00 0.00 0 0 0 0.00 0.01 0.02 0 0 0

1 000
100 500 0.00 0.00 0.00 0 0 0 0.00 0.00 0.01 0 0 0

500 1 000 0.00 0.00 0.00 0 0 0 0.00 0.00 0.00 0 0 0

100

100
100 500 50.74 51.98 53.53 1 329 1 365 1 423† 0.06 0.08 0.10 0 0 1

500 1 000 53.08 54.03 56.95 1 308 1 372 1 415† 0.01 0.06 0.08 0 0 1

500
100 500 27.11 27.73 30.08 1 413 1 527 1 554† 0.03 0.06 0.10 0 0 1

500 1 000 11.04 12.15 14.38 1 325 1 369 1 426† 0.00 0.01 0.02 0 0 0

1 000
100 500 6.23 6.99 8.48 1 369 1 415 1 500† 0.00 0.00 0.00 0 0 0

500 1 000 0.10 0.10 0.10 51 190 349 0.00 0.00 0.00 0 0 0

500

100
100 500 81.50 83.26 85.73 1 512 1 587 1 644† 0.02 0.08 0.10 5 6 19

500 1 000 84.70 87.07 87.85 1 525 1 572 1 625† 0.04 0.08 0.10 3 4 5

500
100 500 79.05 79.81 80.27 1 518 1 546 1 618† 0.04 0.09 0.10 4 4 4

500 1 000 70.90 72.20 72.87 1 452 1 488 1 511† 0.04 0.09 0.10 3 4 4

1 000
100 500 67.51 68.62 70.96 1 567 1 611 1 667† 0.06 0.09 0.10 3 3 4

500 1 000 54.90 56.57 57.27 1 787 1 820 1 886† 0.02 0.09 0.10 3 3 4

† Out of memory.

125

it is not able to close optimality gap in one hour. Termination gap is less than 9% in the

worst case, which requires almost half million cuts.

Table 13 summarizes the results comparing OA and DP. As expected, when the number

of processors, n, gets large, branching based OA becomes overwhelmed by the size of the

search space. When n = 2500, OA is able to close optimality gap only for the cases where it

becomes easy to separate “good” and “bad” power functions from each other. DP is rather

stable and its performance steadily degrades as the range of γ values gets larger. DP is

powerful as it is able find the optimal solution in less than 5 minutes for all the instances

we consider. The results suggest that OA is more suitable for small n whereas DP is more

effective for small γ range.

4.8 ACKNOWLEDGEMENT

We wish to thank Dr. Kirk Pruhs, Dr. Daniel Mossé, and Daniel Cole in the Computer

Science Department at University of Pittsburgh, for bringing this problem to our attention

and valuable discussions.

126

T
ab

le
12

:
R

es
u
lt

s
fo

r
O

A
im

p
le

m
en

ta
ti

on
.

γ
∼
U

[1
00

0,
10

00
0]

g
a
p

(%
)

ti
m

e
(s

ec
)

ca
ll

s
cu

ts

n
L

α
:

lo
w

α
:

h
ig

h
β

:
lo

w
β

:
h

ig
h

m
in

m
ed

m
ax

m
in

m
ed

m
ax

m
in

m
ed

m
ax

m
in

m
ed

m
ax

25

10
0

10
0

50
0

2
6

0.
00

0.
06

0.
10

0
0

0
2

7
12

50
14

0
24

6

6
12

0.
00

0.
00

0.
00

0
0

0
2

2
2

50
50

50

50
0

1
00

0
2

6
0.

00
0.

00
0.

00
0

0
0

2
2

2
50

50
50

6
12

0.
00

0.
00

0.
00

0
0

0
2

2
2

50
50

50

50
0

10
0

50
0

2
8

0.
00

0.
01

0.
10

0
0

0
2

2
2

50
50

50

50
0

1
00

0
2

8
0.

00
0.

00
0.

00
0

0
0

2
2

2
50

50
50

1
00

0
10

0
50

0
2

8
0.

00
0.

00
0.

00
0

0
0

2
2

2
50

50
50

50
0

1
00

0
2

8
0.

00
0.

00
0.

00
0

0
0

2
2

2
50

50
50

10
0

10
0

10
0

50
0

2
6

0.
02

0.
07

0.
09

0
0

1
15

18
22

55
8

71
6

79
5

6
12

0.
02

0.
07

0.
10

0
1

1
10

14
18

86
7

1
22

3
1

57
5

50
0

1
00

0
2

6
0.

01
0.

06
0.

09
0

0
1

13
15

21
69

7
84

5
1

25
3

6
12

0.
05

0.
08

0.
10

1
1

1
10

13
15

92
5

1
19

7
1

37
5

50
0

10
0

50
0

2
8

0.
00

0.
00

0.
00

0
0

0
2

2
2

20
0

20
0

20
0

50
0

1
00

0
2

8
0.

00
0.

00
0.

00
0

0
0

2
2

2
20

0
20

0
20

0

1
00

0
10

0
50

0
2

8
0.

00
0.

02
0.

10
0

0
0

2
2

2
20

0
20

0
20

0

50
0

1
00

0
2

8
0.

00
0.

01
0.

05
0

0
0

2
2

2
20

0
20

0
20

0

50
0

10
0

10
0

50
0

2
6

0.
04

0.
08

0.
10

4
4

7
28

37
69

1
85

0
2

09
3

3
07

8

6
12

0.
00

0.
00

0.
09

0
1

6
4

4
30

50
2

52
3

3
16

5

50
0

1
00

0
2

6
0.

02
0.

06
0.

10
4

5
10

33
38

10
0

3
42

3
3

74
9

7
82

0

6
12

0.
00

0.
00

0.
00

1
1

1
4

4
7

55
4

56
5

91
5

50
0

10
0

50
0

2
8

0.
03

0.
08

0.
10

3
3

3
12

16
20

3
69

8
4

49
4

5
40

6

50
0

1
00

0
2

8
0.

01
0.

06
0.

10
3

3
6

12
16

21
4

33
8

5
44

4
7

21
8

1
00

0
10

0
50

0
2

8
0.

00
0.

07
0.

09
1

2
2

4
7

10
1

67
2

2
91

1
3

91
2

50
0

1
00

0
2

8
0.

00
0.

07
0.

09
1

1
2

4
7

12
1

96
6

3
37

1
5

66
0

2
50

0

10
0

10
0

50
0

2
6

0.
10

1.
06

3.
04

1
50

9
3

60
0

3
60

0
78

5
3

95
6

8
61

8
22

67
7

13
2

49
1

30
7

82
9

6
12

0.
00

0.
01

0.
03

3
3

4
4

4
4

57
6

60
9

63
6

50
0

1
00

0
2

6
5.

15
7.

34
8.

98
3

60
0

3
60

0
3

60
0

38
5

66
3

1
24

0
37

37
1

60
14

7
11

8
59

9

6
12

0.
00

0.
00

0.
08

3
3

3
4

4
4

66
6

68
8

69
4

50
0

10
0

50
0

2
8

0.
00

0.
00

4.
58

4
7

3
60

0
2

3
1

62
5

2
68

0
3

47
2

35
5

85
0

50
0

1
00

0
2

8
0.

00
0.

00
0.

00
4

8
9

2
4

4
2

71
2

4
14

1
4

21
2

1
00

0
10

0
50

0
2

8
0.

00
0.

00
4.

91
6

9
3

60
0

2
4

1
15

2
2

71
0

4
46

7
44

0
89

9

50
0

1
00

0
2

8
0.

00
0.

00
2.

22
4

10
3

60
0

2
4

76
2

2
70

8
4

37
7

52
3

41
1

127

Table 13: Results comparing OA and DP.

α ∼ U [1, 1 000] OA DP

γ ∼ U [1, γ] gap (%) time (sec) time (sec)

n L γ β min med max min med max min med max

500

50

100

3 0.08 0.62 0.97 1 1 1 0 1 1

5 0.09 0.40 0.94 2 3 3 0 0 0

8 0.18 0.41 0.96 3 3 4 0 0 0

1 000

3 0.16 0.43 0.97 0 0 0 3 3 3

5 0.04 0.47 0.86 1 1 2 2 2 3

8 0.05 0.35 0.99 2 3 3 1 1 2

10 000

3 0.24 0.72 0.86 0 0 0 8 11 15

5 0.11 0.75 0.99 0 1 1 12 13 16

8 0.01 0.62 0.90 2 2 2 10 12 15

100

100

3 0.27 0.61 0.92 0 0 1 2 2 2

5 0.57 0.77 0.97 1 2 2 1 1 1

8 0.11 0.30 0.87 2 3 4 1 1 1

1 000

3 0.22 0.76 0.99 0 0 0 6 8 9

5 0.31 0.71 1.00 1 1 1 7 8 9

8 0.35 0.88 0.98 1 2 2 5 6 7

10 000

3 0.47 0.78 0.94 0 0 3 27 34 40

5 0.08 0.67 0.87 0 0 0 38 41 45

8 0.18 0.72 0.96 1 1 1 37 40 52

250

100

3 0.15 0.49 0.96 0 0 1 3 3 3

5 0.36 0.62 0.89 1 1 1 3 3 3

8 0.60 0.75 0.99 2 2 2 2 3 3

1 000

3 0.14 0.49 0.84 0 0 1 24 26 29

5 0.24 0.79 0.89 1 1 1 25 26 32

8 0.30 0.80 1.00 2 2 2 22 23 28

10 000

3 0.23 0.71 0.98 0 0 0 100 114 129

5 0.36 0.81 0.99 0 1 1 156 168 182

8 0.24 0.90 0.99 1 1 2 167 179 204

128

Table 13: (continued).

α ∼ U [1, 1 000] OA DP

γ ∼ U [1, γ] gap (%) time (sec) time (sec)

n L γ β min med max min med max min med max

2 000

50

100

3 65.95 70.52 80.41 3 600 3 600 3 600 4 4 5

5 74.03 79.30 83.66 3 600 3 600 3 600 3 3 3

8 72.05 80.80 82.91 3 600 3 600 3 600 2 2 3

1 000

3 0.87 33.81 49.13 6 3 600 3 600 9 10 11

5 48.63 50.89 71.15 3 600 3 600 3 600 5 7 7

8 52.70 63.51 78.65 3 598 3 600 3 600 4 5 5

10 000

3 0.05 0.73 0.99 5 5 6 16 26 37

5 0.22 27.09 59.05 9 3 600 3 600 20 24 33

8 31.98 54.76 59.14 3 600 3 600 3 600 14 17 25

100

100

3 47.98 56.80 73.64 3 600 3 600 3 600 8 9 9

5 75.65 79.54 83.64 3 600 3 600 3 600 5 5 6

8 71.33 77.43 80.20 3 600 3 600 3 600 4 4 6

1 000

3 0.03 0.97 23.46 4 5 3 600 22 23 25

5 42.95 46.72 53.57 3 600 3 600 3 600 16 18 21

8 52.88 57.86 63.25 3 600 3 600 3 600 11 13 15

10 000

3 0.02 0.54 0.98 3 3 5 63 73 83

5 0.41 0.89 0.99 4 4 7 69 80 86

8 23.88 28.65 35.36 3 598 3 600 3 600 61 74 87

250

100

3 61.35 68.50 75.39 3 600 3 600 3 600 23 24 27

5 79.45 84.18 87.30 3 600 3 600 3 600 14 16 17

8 82.16 84.22 85.08 3 600 3 600 3 600 10 11 12

1 000

3 0.13 4.50 32.62 4 1 802 3 600 75 84 91

5 49.42 58.81 60.83 3 600 3 600 3 600 67 72 79

8 69.56 72.90 75.08 3 598 3 600 3 600 52 55 61

10 000

3 0.05 0.82 0.93 3 3 5 262 328 363

5 0.55 11.54 21.95 5 3 600 3 600 339 371 907

8 45.03 46.43 47.40 3 600 3 600 3 600 326 397 486

129

5.0 CONCLUSION

This dissertation covers three important problems motivated by military and power manage-

ment applications. We study each problem to discover its underlying structure and formulate

nonlinear / stochastic mathematical models that capture details specific to the problem’s

context. Using advanced optimization techniques, we develop specialized exact, approximate,

and heuristic solution methods that are directly applicable in real-life scenarios. The range

of optimization techniques employed include decompositions, reformulations, and lineariza-

tions. Proposed approaches are evaluated and validated through extensive computational

experiments and simulations.

In Chapter 2, we introduce the phased array antenna design problem to improve the

imaging capability of the current antenna technology. Given that the problem is new to

the Operations Research literature, we provide a complete treatment of the subject. A for-

mal definition of the problem is given and a nonlinear mathematical model of the problem

based on a novel use of information-theoretic entropy concept is formulated. This model

is subsequently reformulated and linearized without sacrificing its strength. Next, an ad-

vanced decomposition method is proposed and implemented. To solve larger size instances,

heuristic/approximation algorithms that synthesize old and new ideas are developed. Com-

putational experiments show that our algorithms can handle large-scale instances efficiently.

Phased array antenna simulations demonstrate effectiveness of our designs in improving an-

tenna images.

Our work on phased array antenna is based on an empirical observation regarding the

relationship between subarray geometry and antenna beam formation. Antenna is thus a

black box in our implementation. However, antenna beam formation follows well-defined

physical concepts and there is room for improvement through use of these concepts. As a

130

future research direction, development of models incorporating physics of beam formation

into the proposed entropy concept might provide superior designs.

A two stage stochastic extension of the deterministic linear assignment problem (LAP) is

studied in Chapter 3. The well-known LAP has many applications, including weapon-target

assignment. We characterize a necessary optimality condition and use it in conjunction with

the well-known Hungarian Method to develop a superior approximation algorithm. The

proposed algorithm preserves the best known approximation bound and is shown to perform

better than previously proposed algorithms on several instances with special structure.

The problem setting studied in this dissertation can hardly be the only interesting ex-

tension of LAP, which has numerous variants. Interesting future research directions include

study of stochastic extensions with different objective functions, the multi-stage setting, ex-

tensions where availability of agents / jobs across stages is subject to change, and algorithms

with better approximation guarantees or inapproximability results.

Finally, we discuss an actively studied problem from Computer Science literature in

Chapter 4. Following the technological shift in the last decade, data warehouses with thou-

sands of processors are becoming one of the major budget items for companies and insti-

tutions with large transaction volumes. In this environment, electricity becomes the major

cost item and optimal processor scheduling that minimizes the total energy consumption is

a crucial issue. We formulate a mathematical model of the problem, identify polynomially

solvable instances, and provide a dynamic programming approach which we convert into a

FPTAS. A successful implementation of the outer approximation algorithm is also presented.

All the solution approaches are tested through computational experiments.

The setting of speed scaling problem considered in this dissertation is a static one. We

do not consider the variation of service load over time and the policies for such dynamic

environment. Yet the static case proves to be a hard one. As a future research direction, one

might study the setting where service load is given as a set of jobs that need to be scheduled

over time. Such an extension will require the use of scheduling tools together with different

performance metrics. The online version is also interesting due to the nature of the problem

tackled. Energy consumption and heat dissipation are closely related and their joint study

is yet another promising research direction.

131

BIBLIOGRAPHY

[1] S. Ahmed, M. Tawarmalani, and N. Sahinidis, A finite branch and bound al-
gorithm for two-stage stochastic integer programs, Mathematical Programming, 100
(2004), pp. 355–377.

[2] M. Albareda-Sambola, M. van der Vlerk, and E. Fernandez, Exact solu-
tions to a class of stochastic generalized assignment problems, European Journal of
Operational Research, 173 (2006), pp. 465–487.

[3] S. Albers, Algorithms for Dynamic Speed Scaling, in 28th International Symposium
on Theoretical Aspects of Computer Science (STACS 2011), T. Schwentick and C. Dürr,
eds., vol. 9 of Leibniz International Proceedings in Informatics (LIPIcs), Dagstuhl,
Germany, 2011, Schloss Dagstuhl–Leibniz-Zentrum fuer Informatik, pp. 1–11.

[4] S. Albers, A. Antoniadis, and G. Greiner, On multi-processor speed scaling
with migration: extended abstract, in Proceedings of the 23rd ACM symposium on
Parallelism in algorithms and architectures, SPAA ’11, New York, NY, USA, 2011,
ACM, pp. 279–288.

[5] S. Albers and H. Fujiwara, Energy-efficient algorithms for flow time minimization,
ACM Transactions on Algorithms, 3 (2007).

[6] S. Albers, F. Müller, and S. Schmelzer, Speed scaling on parallel processors,
in Proceedings of the 19th annual ACM symposium on Parallel algorithms and archi-
tectures, SPAA ’07, New York, NY, USA, 2007, ACM, pp. 289–298.

[7] A. Alonso-Ayuso, L. Escudero, and M. Teresa Ortuño, BFC, a branch-and-
fix coordination algorithmic framework for solving some types of stochastic pure and
mixed 0–1 programs, European Journal of Operational Research, 151 (2003), pp. 503–
519.

[8] J. Ash and S. Golomb, Tiling deficient rectangles with trominoes, Mathematics
Magazine, 77 (2004), pp. 46–55.

[9] A. Atamtürk, G. Nemhauser, and M. Savelsbergh, A combined lagrangian,
linear programming, and implication heuristic for large-scale set partitioning problems,
Journal of Heuristics, 1 (1996), pp. 247–259.

132

[10] P. Avella, A. Sassano, and I. Vasil’ev, Computational study of large-scale p-
median problems, Mathematical Programming, 109 (2007), pp. 89–114.

[11] A. Bains and T. Biedl, Reconstructing hv-convex multi-coloured polyominoes, The-
oretical Computer Science, 411 (2010), pp. 3123–3128.

[12] E. Balas and M. Padberg, On the set-covering problem, Operations Research, 20
(1972), pp. pp. 1152–1161.

[13] , Set partitioning: A survey, SIAM Review, 18 (1976), pp. pp. 710–760.

[14] N. Bansal, H.-L. Chan, T.-W. Lam, and L.-K. Lee, Scheduling for speed bounded
processors, in Automata, Languages and Programming, L. Aceto, I. Damg̊ard, L. Gold-
berg, M. Halldórsson, A. Ingólfsdóttir, and I. Walukiewicz, eds., vol. 5125 of Lecture
Notes in Computer Science, Springer Berlin / Heidelberg, 2008, pp. 409–420.

[15] N. Bansal, H.-L. Chan, and K. Pruhs, Speed scaling with an arbitrary power
function, in Proceedings of the 20th Annual ACM-SIAM Symposium on Discrete Al-
gorithms, SODA ’09, Philadelphia, PA, USA, 2009, Society for Industrial and Applied
Mathematics, pp. 693–701.

[16] N. Bansal, T. Kimbrel, and K. Pruhs, Speed scaling to manage energy and
temperature, Journal of the ACM, 54 (2007), pp. 1–39.

[17] N. Bansal, K. Pruhs, and C. Stein, Speed scaling for weighted flow time, in
Proceedings of the 18th annual ACM-SIAM symposium on Discrete algorithms, SODA
’07, Philadelphia, PA, USA, 2007, Society for Industrial and Applied Mathematics,
pp. 805–813.

[18] G. Barequet, M. Moffie, A. Ribó, and G. Rote, Counting polyominoes on
twisted cylinders, in Proceedings of 2005 European Conference on Combinatorics,
Graph Theory and Applications (EuroComb ’05), Ed. S. Felsner, Discrete Mathematics
and Theoretical Computer Science Proceedings AE, 2005, pp. 369–374.

[19] C. Barnhart, E. Johnson, G. Nemhauser, M. Savelsbergh, and P. Vance,
Branch-and-price: Column generation for solving huge integer programs, Operations
Research, 46 (1998), pp. 316–329.

[20] L. A. Barroso, The price of performance, Queue, 3 (2005), pp. 48–53.

[21] C. Berge, C. Chen, V. Chvatal, and C. Seow, Combinatorial properties of
polyominoes, Combinatorica, 1 (1981), pp. 217–224.

[22] R. Berger, The undecidability of the domino problem, Mem. Amer. Math. Soc. No.,
66 (1966), p. 72.

133

[23] B. Bingham and M. Greenstreet, Energy optimal scheduling on multiprocessors
with migration, in International Symposium on Parallel and Distributed Processing
with Applications, 2008, ISPA ’08, 2008, pp. 153 –161.

[24] J. Birge and F. Louveaux, Introduction to Stochastic Programming, Springer, 1997.

[25] O. Bodini, Tiling a rectangle with polyominoes, Discrete Mathematics and Theoretical
Computer Science, (2003), pp. 81–88.

[26] P. Bonami, L. T. Biegler, A. R. Conna, G. Cornuejols, I. E. Grossmann,
C. D. Laird, J. Lee, A. Lodi, F. Margot, N. Sawaya, and A. Wachter,
An algorithmic framework for convex mixed integer nonlinear programs, Discrete Op-
timization, 5 (2008), pp. 186–204.

[27] P. Bonami, M. Kilinç, and J. Linderoth, Algorithms and software for convex
mixed integer nonlinear programs, in Mixed Integer Nonlinear Programming, J. Lee and
S. Leyffer, eds., vol. 154 of The IMA Volumes in Mathematics and its Applications,
Springer New York, 2012, pp. 1–39.

[28] F. Bower, D. Sorin, and L. Cox, The impact of dynamically heterogeneous mul-
ticore processors on thread scheduling, Micro, IEEE, 28 (2008), pp. 17 –25.

[29] P. Brass, W. Moser, and J. Pach, Research Problems in Discrete Geometry,
Springer, New York, 2005.

[30] K. M. Bretthauer and B. Shetty, The nonlinear resource allocation problem,
Operations Research, 43 (1995), pp. pp. 670–683.

[31] K. M. Bretthauer and B. Shetty, The nonlinear knapsack problem – algorithms
and applications, European Journal of Operational Research, 138 (2002), pp. 459 –
472.

[32] E. Brookner, Phased arrays for the new millennium, in Phased Array Systems and
Technology, 2000. Proceedings. 2000 IEEE International Conference on, 2000, pp. 3
–19.

[33] R. Burkard, M. Dell’Amico, and S. Martello, Assignment problems, Cam-
bridge University Press, 2012.

[34] H. Cai, J. Liu, Y. Chen, and H. Wang, Survey of the research on dynamic weapon-
target assignment problem, Journal of Systems Engineering and Electronics, 17 (2006),
pp. 559 – 565.

[35] J. Cardinal, S. Fiorini, and G. Joret, Tight results on minimum entropy set
cover, Algorithmica, 51 (2008), pp. 49–60.

134

[36] G. Castiglione, A. Frosini, E. Munarini, A. Restivo, and S. Rinaldi,
Combinatorial aspects of l-convex polyominoes, European Journal of Combinatorics,
28 (2007), pp. 1724–1741.

[37] COIN-OR, Branch-Cut-Price Framework 1.3.1, https://projects.coin-or.org/

Bcp, 2011.

[38] D. Cole, S. Im, B. Moseley, and K. Pruhs, Speed scaling for stretch plus energy,
Operations Research Letters, 40 (2012), pp. 180 – 184.

[39] C. D’Ambrosio and S. Martello, Heuristic algorithms for the general nonlinear
separable knapsack problem, Computers & Operations Research, 38 (2011), pp. 505 –
513.

[40] M. Dehmer and F. Emmert-Streib, Structural information content of networks:
Graph entropy based on local vertex functionals, Computational Biology and Chemistry,
32 (2008), pp. 131–138.

[41] M. Dehmer and A. Mowshowitz, A history of graph entropy measures, Information
Sciences, 181 (2011), pp. 57 – 78.

[42] M. Delest and G. Viennot, Algebraic languages and polyominoes enumeration,
Theoretical Computer Science, 34 (1984), pp. 169–206.

[43] E. Demaine and M. Demaine, Jigsaw puzzles, edge matching, and polyomino pack-
ing: Connections and complexity, Graphs and Combinatorics, 23 (2007), pp. 195–208.

[44] J. Dennis and R. Schnabel, Numerical Methods for Unconstrained Optimization
and Nonlinear Equations, Classics in Applied Mathematics, Society for Industrial and
Applied Mathematics, 1987.

[45] K. Dhamdhere, V. Goyal, R. Ravi, and M. Singh, How to pay, come what
may: Approximation algorithms for demand-robust covering problems, in Foundations
of Computer Science, 2005. FOCS 2005. 46th Annual IEEE Symposium on, 2005,
pp. 367–378.

[46] K. Dhamdhere, R. Ravi, and M. Singh, On stochastic minimum spanning trees,
in Proceedings of the 11th International Conference on Integer Programming and Com-
binatorial Optimization, 2005.

[47] E. Duchi, S. Rinaldi, and G. Schaeffer, The number of z-convex polyominoes,
Advances in Applied Mathematics, 40 (2008), pp. 54–72.

[48] M. A. Duran and I. E. Grossmann, An outer-approximation algorithm for a class
of mixed-integer nonlinear programs, Mathematical Programming, 36 (1986), pp. 307–
339.

135

https://projects.coin-or.org/Bcp
https://projects.coin-or.org/Bcp

[49] M. Dyer and L. Stougie, Computational complexity of stochastic programming
problems, Mathematical Programming, 106 (2006), pp. 423–432.

[50] B. Escoffier, L. Gourves, J. Monnot, and O. Spanjaard, Two-stage stochas-
tic matching and spanning tree problems: Polynomial instances and approximation,
European Journal of Operations Research, 205 (2010), pp. 19–30.

[51] S. Fang, J. Rajasekera, and H. Tsao, Entropy optimization and mathemati-
cal programming, International series in operations research & management science,
Kluwer Academic Publishers, 1997.

[52] A. Flaxman, A. Frieze, and M. Krivelevich, On the random 2-stage minimum
spanning tree, Random Structures and Algorithms, 28 (2006), pp. 24–36.

[53] R. Fletcher and S. Leyffer, Solving mixed-integer nonlinear programs by outer
approximation, Mathematical Programming, 66 (1994), pp. 327–349.

[54] H. Fukuda, N. Mutoh, G. Nakamura, and D. Schattschneider, A method
to generate polyominoes and polyiamonds for tilings with rotational symmetry, Graphs
and Combinatorics, 23 (2007), pp. 259–267.

[55] M. R. Garey and D. S. Johnson, Computers and intractability: a guide to the the-
ory of NP-completeness, Series of books in the mathematical sciences, W. H. Freeman,
1979, ch. Appendix: A list of NP-Complete Problems, p. 257.

[56] , Computers and intractability: a guide to the theory of NP-completeness, Series
of books in the mathematical sciences, W. H. Freeman, 1979.

[57] R. Garfinkel and G. Nemhauser, The set-partitioning problem: Set covering with
equality constraints, Operations Research, 17 (1969), pp. pp. 848–856.

[58] A. Ghoniem and H. Sherali, Complementary column generation and bounding
approaches for set partitioning formulations, Optimization Letters, 3 (2009), pp. 123–
136.

[59] S. Golomb, Tiling with polyominoes, Journal of Combinatorial Theory, 1 (1966),
pp. 280–296.

[60] , Tiling with sets of polyominoes, Journal of Combinatorial Theory, 9 (1970),
pp. 60–71.

[61] , Polyominoes: Puzzles, Patterns, Problems, and Packings, Princeton University
Press, 2nd ed., 1994.

[62] D. Golovin, V. Goyal, and R. Ravi, Pay today for a rainy day: improved approx-
imation algorithms for demand-robust min-cut and shortest path problems, in STACS
2006, Springer, 2006, pp. 206–217.

136

[63] O. Günlük, J. Lee, and R. Weismantel, MINLP strengthening for separable con-
vex quadratic transportation-cost UFL, tech. rep., Technical Report RC24213 (W0703-
042), IBM Research Division, 2007.

[64] A. Gupta, S. Im, R. Krishnaswamy, B. Moseley, and K. Pruhs, Scheduling
heterogeneous processors isn’t as easy as you think, in Proceedings of the 23rd Annual
ACM-SIAM Symposium on Discrete Algorithms, SODA ’12, SIAM, 2012, pp. 1242–
1253.

[65] A. Gupta, R. Krishnaswamy, and K. Pruhs, Nonclairvoyantly scheduling power-
heterogeneous processors, Sustainable Computing: Informatics and Systems, 1 (2011),
pp. 248 – 255.

[66] A. Gupta, R. Ravi, and A. Sinha, LP rounding approximation algorithms for
stochastic network design, Mathematics of Operations Research, 32 (2007), pp. 345–
364.

[67] E. Halperin and R. Karp, The minimum-entropy set cover problem, Theoretical
Computer Science, 348 (2005), pp. 240 – 250.

[68] X. Han, T.-W. Lam, L.-K. Lee, I. K. To, and P. W. Wong, Deadline scheduling
and power management for speed bounded processors, Theoretical Computer Science,
411 (2010), pp. 3587 – 3600.

[69] G. Hardy, J. Littlewood, and G. Pólya, Inequalities, Cambridge Mathematical
Library, Cambridge University Press, 1952.

[70] U. Haus, D. Michaels, and A. Savchenko, Extended formulations for MINLP
problems by value decompositions, in EngOpt 2008 – International Conference on En-
gineering Optimization, 2008.

[71] D. S. Hochbaum, Lower and upper bounds for the allocation problem and other non-
linear optimization problems, Mathematics of Operations Research, 19 (1994), pp. pp.
390–409.

[72] D. S. Hochbaum, A nonlinear knapsack problem, Operations Research Letters, 17
(1995), pp. 103 – 110.

[73] T. Ibaraki and N. Katoh, Resource allocation problems: algorithmic approaches,
MIT Press series in the foundations of computing, MIT Press, 1988.

[74] IBM ILOG CPLEX 12, http: // www-01. ibm. com/ software/ integration/

optimization/ cplex-optimizer/ .

[75] S. Irani, S. Shukla, and R. Gupta, Algorithms for power savings, in Proceed-
ings of the 14th annual ACM-SIAM symposium on Discrete algorithms, SODA ’03,
Philadelphia, PA, USA, 2003, Society for Industrial and Applied Mathematics, pp. 37–
46.

137

http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/
http://www-01.ibm.com/software/integration/optimization/cplex-optimizer/

[76] I. Jensen, Enumerations of lattice animals and trees, Journal of Statistical Physics,
102 (2001), pp. 865–881.

[77] J. Kapur and H. Kesavan, Entropy optimization principles with applications, Aca-
demic Press, 1992.

[78] S. Karademir, N. Kong, and O. A. Prokopyev, On greedy approximation algo-
rithms for a class of two-stage stochastic assignment problems, Optimization Methods
and Software, ahead-of-print (2012), pp. 1–26.

[79] H. Kellerer, U. Pferschy, and D. Pisinger, Knapsack problems, Springer Ver-
lag, 2004.

[80] C. Ko, J. Lee, and M. Queyranne, An exact algorithm for maximum entropy
sampling, Operations Research, 43 (1995), pp. pp. 684–691.

[81] N. Kong and A. Schaefer, A factor 1/2 approximation algorithm for two-stage
stochastic matching problems, European Journal of Operational Research, 81 (2006),
pp. 387–394.

[82] M. Köppe, Q. Louveaux, and R. Weismantel, Intermediate integer programming
representations using value disjunctions, Discrete Optimization, 5 (2008), pp. 293–313.

[83] H. Kuhn, The hungarian method for the assignment problem, Naval Research Logistics
Quarterly, 2 (1955), pp. 83–97.

[84] T.-W. Lam, L.-K. Lee, H.-F. Ting, I. To, and P. Wong, Sleep with guilt and
work faster to minimize flow plus energy, in Automata, Languages and Programming,
S. Albers, A. Marchetti-Spaccamela, Y. Matias, S. Nikoletseas, and W. Thomas, eds.,
vol. 5555 of Lecture Notes in Computer Science, Springer Berlin / Heidelberg, 2009,
pp. 665–676.

[85] T.-W. Lam, L.-K. Lee, I. To, and P. Wong, Speed scaling functions for flow
time scheduling based on active job count, in Algorithms - ESA 2008, D. Halperin and
K. Mehlhorn, eds., vol. 5193 of Lecture Notes in Computer Science, Springer Berlin /
Heidelberg, 2008, pp. 647–659.

[86] T.-W. Lam, L.-K. Lee, I. K. K. To, and P. W. H. Wong, Competitive non-
migratory scheduling for flow time and energy, in Proceedings of the 20th annual sym-
posium on Parallelism in algorithms and architectures, SPAA ’08, New York, NY, USA,
2008, ACM, pp. 256–264.

[87] J. Lee, Constrained maximum-entropy sampling, Operations Research, 46 (1998),
pp. pp. 655–664.

[88] R. Mailloux, Phased array theory and technology, Proceedings of the IEEE, 70
(1982), pp. 246–302.

138

[89] R. Mailloux, S. Santarelli, and T. Roberts, Wideband arrays using irregular
(polyomino) shaped subarrays, Electronics Letters, 42 (2006), pp. 11–12.

[90] R. Mailloux, S. Santarelli, T. Roberts, and D. Luu, Irregular polyomino-
shaped subarrays for space-based active arrays, International Journal of Antennas and
Propagation, 2009 (2009). Article ID 956524, 9 pages.

[91] W. Marshall, Packing rectangles with congruent polyominoes, Journal of Combina-
torial Theory, 77 (1997), pp. 181–192.

[92] R. Mollin, An introduction to cryptography, Discrete mathematics and its applica-
tions, Chapman & Hall/CRC, 2007.

[93] C. Moore and J. Robson, Hard tiling problems with simple tiles, Discrete & Com-
putational Geometry, 26 (2001), pp. 573–590.

[94] R. A. Murphey, Integrated assignment and path planning, PhD thesis, University of
Florida, 2005.

[95] L. Ntaimo, Disjunctive decomposition for two-stage stochastic mixed-binary programs
with random recourse, Operations Research, 58 (2010), pp. 229–243.

[96] L. Ntaimo and S. Sen, A comparative study of decomposition algorithms for stochas-
tic combinatorial optimization, Computational Optimization and Applications, 40
(2008), pp. 299–319.

[97] C. H. Papadimitriou and K. Steiglitz, Combinatorial optimization: algorithms
and complexity, Dover books on mathematics, Dover Publications, 1998.

[98] D. Parker and D. Zimmermann, Phased arrays - part I: Theory and architectures,
IEEE Transactions on Microwave Theory and Techniques, 50 (2002), pp. 678–687.

[99] E. L. Pasiliao, Algorithms for multidimensional assignment problems, PhD thesis,
University of Florida, 2003.

[100] I. Quesada and I. E. Grossmann, An LP/NLP based branch and bound algorithm
for convex MINLP optimization problems, Computers & Chemical Engineering, 16
(1992), pp. 937–947.

[101] M. Reid, Tiling with similar polyominoes, Journal of Recreational Mathematics, 31
(2002), pp. 15–24.

[102] A. Ruszczyński and A. Shapiro, eds., Handbooks in OR&MS: Stochastic Program-
ming, Vol. 10, Elsevier, 2003.

[103] D. Ryan and B. Foster, An integer programming approach to scheduling, Computer
scheduling of public transport urban passenger vehicle and crew scheduling, (1981),
pp. 269–280.

139

[104] R. Schultz, Stochastic programming with integer variables, Mathematical Program-
ming, 97 (2003), pp. 285–309.

[105] S. Sen and H. Sherali, Decomposition with branch-and-cut approaches for two-
stage stochastic mixed-integer programming, Mathematical Programming, 106 (2006),
pp. 203–223.

[106] C. Shannon, A mathematical theory of communication, Bell System Technical Jour-
nal, 27 (1948), pp. 379–423.

[107] A. Shapiro, D. Dentcheva, and A. Ruszczyński, Lectures on Stochastic Pro-
gramming: Modeling and Theory, Society for Industrial and Applied Mathematics,
2009.

[108] H. Sherali and X. Zhu, On solving discrete two-stage stochastic programs hav-
ing mixed-integer first- and second-stage variables, Mathematical programming, 108
(2006), pp. 597–616.

[109] G. Simonyi, Graph entropy: A survey, Combinatorial Optimization, 20 (1995),
pp. 399–441.

[110] M. van der Vlerk, Stochastic programming with simple integer recourse, in Encyclo-
pedia of Optimization, C. Floudas and P. Pardalos, eds., Springer, 2009, pp. 3795–3797.

[111] F. Vanderbeck, On dantzig-wolfe decomposition in integer programming and ways
to perform branching in a branch-and-price algorithm, Operations Research, 48 (2000),
pp. pp. 111–128.

[112] , Branching in branch-and-price: a generic scheme, Mathematical Programming,
130 (2011), pp. 249–294.

[113] V. V. Vazirani, Approximation algorithms, springer, 2004.

[114] P. Wang, 2 algorithms for constrained two-dimensional cutting stock problems, Oper-
ations Research, 31 (1983), pp. 573–586.

[115] T. Westerlund and F. Pettersson, An extended cutting plane method for solving
convex MINLP problems, Computers & Chemical Engineering, 19 (1995), pp. S131–
S136.

[116] F. Yao, A. Demers, and S. Shenker, A scheduling model for reduced CPU energy,
in Proceedings of 36th Annual Symposium on Foundations of Computer Science, 1995,
pp. 374 –382.

140

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Computational results for tetromino family: exact approaches.
	2. Computational results for pentomino family: exact approaches.
	3. Computational results for octomino family: exact approaches.
	4. Computational results for octomino family: ZiA.
	5. Computational results for pentomino and octomino families: MrTA.
	6. Results for uncorrelated instances.
	7. Results for correlated instances.
	8. Results for pairwise-correlated instances.
	9. Results for split-like instances.
	10. Results for interleaved-like instances.
	11. Results for CPLEX vs. OA implementation.
	12. Results for OA implementation.
	13. Results comparing OA and DP.

	LIST OF FIGURES
	1. Monomino (F1), domino (F2), tromino (F3), tetromino (F4), and pentomino (F5) families.
	2. Array and two subarray examples: rectangular and L-shaped.
	3. Radiation patterns for different time delay control scenarios.
	(a). Radiation pattern for 6464 array with time delay control at element level.
	(b). Radiation pattern for 6464 array with time delay control at 24 rectangular subarray level.
	4. Two polyominoes from pentomino family, F5. Polyomino f1pq is shown with its rectangle hull.
	(a). f1= { (0,1),(1,0),(1,1),(2,1),(2,2)}
	(b). f2= { (0,0),(1,0),(1,1),(2,1),(2,2)}
	(c). f1pq={ (p,q+1),…,(p+2,q+2) }
	5. Minimizing versus maximizing entropy on a 2020 board using pentomino family.
	(a). Minimum entropy tiling.
	(b). Maximum entropy tiling.
	(c). H(X) = 4.1610.
	(d). H(X) = 5.3174.
	6. The bijections we use and example fractional domino tilings.
	(a). Bijections for board, F-pentomino, and W-pentomino.
	(b). Location (i,j) covered by f1i-1,j and f2i,j.
	(c). Location (i,j) covered by f1i-1,j, f1i,j, f2i, j-1, and f2i,j.
	7. F-, T-, and W-pentominoes at 55 zoom level.
	(a). F-pentomino rotated 90.
	(b). T-pentomino rotated 270.
	(c). W-pentomino.
	8. Obtaining a 250250 tiling of pentominoes using after two successive applications of zoom-in heuristic. Solution time is less than one second.
	(a). 10 10 tiling using pentominoes.
	(b). Figure in (a) zoomed-in by 55.
	(c). Figure in (b) zoomed-in by 55. Gap = 0.008%.
	9. Zooming-in the point-up octomino. The initial 1216 tiling zoomed-in twice at 1212 zoom level to obtain a 1728 2304 tiling with 0.69 % optimality gap.
	(a). 12 16 L-octomino tiling.
	(b). Figure in (a) zoomed-in by 1212 to obtain 144192 tiling.
	(c). A partial drawing of tiling in (b) zoomed-in by 12 12 to obtain a 1728 2304 tiling. Gap = 0.69 %
	10. Creating meta-rectangles.
	11. An example of a meta-rectangle generated by Algorithm 3 using initial set of rectangles {(2,8),(4,16),(16,17)} and its final octomino tiling.
	(a). A 100160 meta-rectangle.
	(b). Octomino tiling of the meta-rectangle in (a) with a corresponding 6.33 % optimality gap.
	12. Dimensions of meta-rectangles generated by MrTA and the initialization step of the tiling algorithm.
	(a). All meta-rectangles created using only {(4, 10), (5, 8)}.
	(b). All meta-rectangles created using only { (4, 10), (7, 8)}.
	(c). All meta-rectangles created using only {(3, 8) , (4, 10)}.
	(d). All meta-rectangles created using 55 rectangles tileable with octominoes (r(20,20)).
	13. Initialization in Procedure Retile: A do not cover, B retile, and C penalize.
	14. Randomizing an octomino meta-rectangle tiling.
	(a). 120 160 meta-rectangle.
	(b). 120160 octomino tiling of the meta-rectangle.
	(c). Randomization in progress; the tiling in part (b) randomized through to its middle.
	(d). Centers of gravity for part (c).
	15. The subset of octomino family, F8, used in experiments.
	16. Summary of array antenna simulations results: time delay control at element level (E), 24 rectangular subarray level (R), partially optimized octomino subarray level (P), and completely optimized octomino subarray level (P+).
	17. Partially and completely optimized polyomino tilings for 6464 array size.
	(a). P: 7.22% optimality gap
	(b). P+: 0.40% optimality gap
	18. Radiation patterns for 6464 array size with time delay control at 24 rectangular subarray level (R), partially optimized octomino subarray level (P), and completely optimized octomino subarray level (P+).
	(a). E: contour plot.
	(b). E: surface plot
	(c). R: contour plot
	(d). R: surface plot
	(e). P: contour plot
	(f). P: surface plot
	(g). P+: contour plot
	(h). P+: surface plot
	19. Partially and completely optimized polyomino tilings for 128128 array size.
	(a). P: 6.32% optimality gap
	(b). P+: 0.28% optimality gap
	20. Radiation patterns for 128128 array size with time delay control at element level (E), 24 rectangular subarray level (R), partially optimized octomino subarray level (P), and completely optimized octomino subarray level (P+).
	(a). E: contour plot
	(b). E: surface plot
	(c). R: contour plot
	(d). R: surface plot
	(e). P: contour plot
	(f). P: surface plot
	(g). P+: contour plot
	(h). P+: surface plot
	21. Partially and completely optimized polyomino tilings for 256256 array size.
	(a). P: 5.97% optimality gap
	(b). P+: 0.08% optimality gap
	22. Radiation patterns for 256256 array size with time delay control at 24 rectangular subarray level (R), partially optimized octomino subarray level (P), and completely optimized octomino subarray level (P+).
	(a). E: contour plot.
	(b). E: surface plot
	(c). R: contour plot
	(d). R: surface plot
	(e). P: contour plot
	(f). P: surface plot
	(g). P+: contour plot
	(h). P+: surface plot
	23. A counterexample to show that the necessary optimality condition given by Proposition 11 is not sufficient for optimality. Only arcs with nonzero weight are shown.
	24. The neighborhood N1.
	(a). Initial solution.
	(b). Final solution obtained.
	25. The neighborhood N2.
	(a). Initial solution.
	(b). Final solution obtained.
	26. A split instance for K=n=2 (only nonzero arcs are shown). Thick lines show first-stage and second-stage myopic solutions.
	27. An interleaved instance for K=n=2 (only nonzero arcs are shown). Thick lines show first-stage and second-stage myopic solutions.

	PREFACE
	1.0 INTRODUCTION
	1.1 PHASED ARRAY ANTENNA DESIGN
	1.2 STOCHASTIC ASSIGNMENT
	1.3 SPEED SCALING OF PARALLEL PROCESSORS
	1.4 OVERVIEW OF THE DISSERTATION

	2.0 IRREGULAR POLYOMINO TILING VIA INTEGER PROGRAMMING WITH APPLICATION IN PHASED ARRAY ANTENNA DESIGN
	2.1 INTRODUCTION
	2.2 MODEL FORMULATION
	2.2.1 Nonlinear Exact Set Covering Model
	2.2.2 Linearized Model

	2.3 COLUMN GENERATION APPROACH
	2.3.1 A New Branching Strategy
	2.3.2 Delayed Column Generation (DCG)
	2.3.3 A New Lower-Bounding Scheme

	2.4 HEURISTIC APPROACHES
	2.4.1 Construction Heuristics
	2.4.1.1 Zoom-in Algorithm (ZiA):
	2.4.1.2 Meta-rectangle Tiling Algorithm (MrTA):

	2.4.2 Improvement Heuristics

	2.5 APPROXIMATION BOUNDS
	2.6 COMPUTATIONAL RESULTS
	2.6.1 Results for Exact Approaches
	2.6.2 Results for Heuristic Approaches

	2.7 PHASED ARRAY ANTENNA SIMULATIONS
	2.8 CONCLUSION
	2.9 ACKNOWLEDGMENT

	3.0 ON GREEDY APPROXIMATION ALGORITHMS FOR A CLASS OF TWO-STAGE STOCHASTIC ASSIGNMENT PROBLEMS
	3.1 INTRODUCTION
	3.2 GREEDY APPROXIMATION ALGORITHMS
	3.2.1 Basic Greedy Approach
	3.2.2 Greedy Approach of Escoffier et al. egms

	3.3 NECESSARY OPTIMALITY CONDITION
	3.4 ENHANCED GREEDY APPROACH
	3.4.1 Improving the first-stage assignment (EGA-I)
	3.4.2 Improving the second-stage assignment (EGA-II)
	3.4.3 Improving EGA with Local Search (EGA LS)
	3.4.4 Analytical Observations

	3.5 COMPUTATIONAL EXPERIMENTS
	3.5.1 Setup
	3.5.2 Results and Discussion

	3.6 CONCLUSION
	3.7 ACKNOWLEDGMENTS

	4.0 ON SPEED SCALING VIA INTEGER PROGRAMMING
	4.1 INTRODUCTION
	4.2 OPTIMALITY CONDITIONS
	4.3 POLYNOMIALLY SOLVABLE CASES AND COMPLEXITY
	4.4 A GREEDY APPROXIMATION ALGORITHM
	4.5 FPTAS FOR SPECIAL CASE
	4.5.1 A Dynamic Programming Approach
	4.5.2 FPTAS

	4.6 AN OUTER APPROXIMATION ALGORITHM
	4.7 COMPUTATIONAL EXPERIMENTS
	4.7.1 Implementation and Setup
	4.7.2 Results and Discussion

	4.8 ACKNOWLEDGEMENT

	5.0 CONCLUSION
	BIBLIOGRAPHY

