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Organ transplantation is the definitive treatment for end-stage organ diseases that are otherwise 

untreatable. Modern immunosuppressants have largely subverted acute allograft rejection 

through non-specific inhibition of T cell activation and proliferation; however, chronic 

immunosuppression with current therapies carries increased risks of malignancy, infection and 

drug-associated toxicities. Furthermore, rates of long-term graft failure, mediated at least in part 

by chronic alloimmune responses, have not improved significantly. New therapies to modify the 

immune system and promote long-term graft survival are urgently needed. 

Myeloid lineage antigen-presenting cells, including dendritic cells (DC) and myeloid-

derived suppressor cells (MDSC), are innate immune cells that regulate antigen-specific 

immunity and are valuable targets to promote immune modulation. In this dissertation, I present 

data on three pathways that can be modulated to promote expansion and immunosuppressive 

function of MDSC or downregulate DC immunostimulatory function. Histone deacetylase 

inhibitors (HDACi) are anti-neoplastic agents that promote tumor cell growth arrest and 

apoptosis. Recent findings describe novel anti-inflammatory properties. The data presented 

demonstrate that HDACi promote GM-CSF-mediated MDSC expansion, while impeding DC 

differentiation and co-stimulatory molecule expression. In addition to modulation of the GM-

CSF pathway, new data presented in this thesis demonstrate that the DC-poietin Flt3 ligand 

(Flt3L) also promotes expansion and activation of MDSC capable of delaying allograft rejection 

when transferred to heart transplant recipients. STAT3 is a pivotal regulator of Flt3L-driven 
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myeloid cell expansion as STAT3 inhibition blocks expansion of immunostimulatory DC but 

further promotes MDSC expansion, without altering their suppressive capacity. Lastly, the 

immunoregulatory role of newly-described rapamycin-resistant outputs of the 

mammalian/mechanistic Target of Rapamycin (mTOR) in DC was examined. A novel mTOR 

signaling pathway that negatively regulates DC expression of anti-inflammatory IL-10 and B7-

H1 is described. 

 In summary, these data describe growth factor and signaling pathways that can be 

manipulated for the promotion of MDSC expansion and inhibition of DC stimulatory function. 

Future studies will be required to translate these findings into relevant organ transplantation 

models and develop their therapeutic potential. Manipulation of myeloid cell development and 

function is an innovative approach to immune modulation that may lead to new 

immunosuppressive strategies. 
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1.0  INTRODUCTION 

The mammalian immune system is composed of two distinct, but overlapping, arms termed 

innate and adaptive, which function in concert to eliminate foreign pathogens. Innate immune 

cells are the earliest responders to inflammatory insults and include granulocytes (i.e. 

neutrophils, basophils and eosinophils), macrophages and dendritic cells (DC), while adaptive 

immune responses are mediated by antigen-specific lymphocytes including B cells and T cells. 

Innate immune cells are principally composed of myeloid-lineage cells, while lymphoid cells 

mediate adaptive immunity with the exception of lymphoid-derived innate natural killer (NK) 

cells. Immunosuppressive agents classically target the effector phase of immunity by impeding T 

cell function to dampen unwanted inflammatory responses to self (autoimmunity) or 

immunologic non-self (alloimmunity/transplantation). However, it is becoming increasingly 

recognized that cells of myeloid origin represent valuable targets in modulating immunity due to 

their ability to prevent or suppress development of an adaptive immune response. Myeloid-

derived suppressor cells (MDSC) are a heterogeneous group of early myeloid progenitor cells 

that suppress immunity, while DC are fully differentiated myeloid cells at the interface of innate 

and adaptive immunity that initiate and regulate T cell responses. Understanding the biology of 

MDSC and DC development allows for opportunities to intervene and suppress unwanted 

adaptive immune responses. 
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1.1 MYELOID-DERIVED SUPPRESSOR CELLS ARE INNATE REGULATORS OF 

IMMUNITY 

Myeloid-derived suppressor cell (MDSC) is a new term (1) for a population of myeloid cells that 

have been recognized to suppress immunity since the 1980’s (2-5). There has been a recent 

resurgence and appreciation of the importance of these non-T and non-NK suppressive cells in 

the context of immune suppression associated with malignancy. MDSC can represent upwards of 

20-40% of nucleated splenocytes in murine tumor models or be elevated at least 5-fold in the 

peripheral blood of cancer patients (6-8). Aside from cancer, MDSC are found in states of acute 

and chronic inflammation such as autoimmune uveoretinitis (9), experimental autoimmune 

encephalomyelitis (10, 11), chronic contact eczema (12), inflammatory bowel disease (13), 

sepsis (14), viral infection (15) and trauma (16). Additionally, MDSC expand following 

immunization with complete Freund’s adjuvant (17) or vaccinia virus encoding IL-2 (18), 

suggesting that they may constitute a normal physiologic response to inflammation (19). Thus, 

enhancing our understanding of MDSC biology will advance our ability to exploit these cells for 

treatment of inflammatory diseases (20). 

1.1.1 Origin and characterization of MDSC 

MDSC arise from the bone marrow (BM) under conditions of acute or chronic inflammation and 

comprise a population of immature myeloid cells and myeloid progenitor cells that are unable to 

undergo complete differentiation and instead acquire suppressive activity (6). In mice and 

humans, the phenotype of MDSC is highly heterogeneous, but they are defined by their myeloid 

origin and suppressive function. Mouse MDSC are generally defined as CD11b+Gr1+ (6) but can 
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express IL-4Rα (CD124) (21), colony stimulating factor 1 receptor (CSF1R, M-CSF receptor, 

CD115) (22, 23), low/intermediate levels of the macrophage marker F4/80 (24, 25) and the co-

stimulatory molecules CD40 (26) and CD80 (B7.1) (27). The phenotype of MDSC in humans is 

less well-defined compared to murine MDSC. In general, human MDSC are defined as 

CD33+HLA-DR-/low. They typically express the myeloid marker CD11b but not the lineage 

markers CD3 (T cells), CD19 (B cells) or CD56 (NK cells) (28). 

1.1.2 Granulocytic and monocytic MDSC subsets 

More recently, MDSC have been recognized to be composed of two populations based on their 

morphology and further delineation of their surface antigen expression (29, 30). Granulocytic 

(also known as polymorphonuclear) and monocytic MDSC are morphologically similar to 

normal granulocytes and monocytes, respectively, but are functionally distinct due to their ability 

to suppress immune responses. In the mouse, the Gr1 antibody identifies two populations of 

cells. Gr1hi cells consist mainly of neutrophils while Gr1int/low cells are predominantly immature 

myeloid cells (31). Some groups have identified MDSC subsets based on their level of Gr1 

expression (32, 33); however, the RB6-8C5 Gr1 antibody clone binds a common epitope shared 

by the surface antigens Ly6G and Ly6C. Granulocytic MDSC are CD11b+Ly6G+Ly6C-/low while 

monocytic MDSC are CD11b+Ly6G-Ly6C+ (29). Furthermore, granulocytic (CD49d-) and 

monocytic (CD49d+) MDSC can be distinguished based on expression of the α4 integrin subunit 

CD49d (34). 

Humans don’t have an analogous Gr1 antigen, so characterization of granulocytic and 

monocytic MDSC subsets is more difficult. Monocytic MDSC are CD14+ (35) while 

granulocytic MDSC are positive for the human granulocyte markers CD15 and CD66b (28, 36). 
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Beyond morphologic and phenotypic characterization, granulocytic and monocytic MDSC have 

functionally distinct mechanisms of T cell suppression, which will be described in further detail 

below. The phenotypes of mouse and human MDSC are summarized in Table 1.1. 

 
 

Table 1.1 Granulocytic and monocytic MDSC have distinct phenotypes in mice and humans  

Species G r anulocytic M DSC  M onocytic M DSC  

Mouse CD11b+Gr1hiLy6G+Ly6C-/lowCD49d- 

  

CD11b+Gr1int/lowLy6G-Ly6C+CD49d+ 

Human Lin-CD11b+CD33+HLA-DR-/lowCD14-

CD15+CD66b+ 

Lin-CD11b+CD33+HLA-DR-/lowCD14+CD15-

CD66b- 

1.1.3 Regulation of MDSC expansion 

Under conditions of normal myelopoiesis, hematopoietic stem cells undergo successive 

differentiation into increasingly restricted progenitor cells that finally give rise to terminally 

differentiated macrophages, DC, granulocytes, megakaryocytes and mast cells (Figure 1.1). For 

reasons that are not well understood, under conditions of inflammation, immature myeloid cells 

and myeloid progenitors cannot undergo full differentiation into mature myeloid cells and are 

activated to express immunoregulatory factors. This situation is particularly well-described in the 

setting of cancer (6, 7). 
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Figure 1.1 Myeloid cell differentiation under normal physiological conditions 

Myeloid cells originate from haematopoietic stem cells (HSCs) and multipotent progenitor cells (MPPs). The figure 
illustrates the network of progenitor cells that gives rise to the various haematopoietic cell lineages. cDC, 
conventional DC; CDP, common DC progenitor; CLP, common lymphoid progenitor; CMLP, common 
myelolymphoid progenitor; CMP, common myeloid progenitor; DC, dendritic cell; GMP, granulocyte and 
macrophage progenitor; MCP, mast cell progenitor; MDP, macrophage and DC progenitor; MEP, megakaryocyte 
and erythroid progenitor; NK, natural killer; pDC, plasmacytoid DC. From Gabrilovich DI, Ostrand-Rosenberg S 
and Bronte V. Nat Rev Immunol. 2012;12(4):253-68. (7) 
 
 
  
 MDSC expansion is driven by cytokines and growth factors released by tumor cells and 

BM stromal cells in response to inflammation that promote myelopoiesis (Figure 1.2). Stem cell 

factor (SCF) (36), granulocyte-colony stimulating factor (G-CSF) (37), macrophage-colony 

stimulating factor (M-CSF) (38) and granulocyte macrophage-colony stimulating factor (GM-

CSF) (39-41) are all produced by tumors and drive the expansion of MDSC. Factors mediating 
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the expansion of MDSC in non-malignant inflammation are comparatively understudied. 

However, colony stimulating factors, including G-CSF, M-CSF and GM-CSF, are involved in 

the pathogenesis of autoimmune diseases (42), suggesting that these growth factors may also 

mediate expansion of MDSC in inflammatory settings other than cancer. In addition to these 

myelopoiesis-promoting growth factors, cytokines such as IL-1β (43) and IL-6 (44), 

prostaglandins (45, 46) and vascular endothelial growth factor (VEGF) (47, 48) have been 

reported to expand MDSC. While this is not an exhaustive list of factors involved in MDSC 

expansion, it highlights the diversity of factors implicated in MDSC expansion. 

 Many of the factors that promote the expansion of MDSC activate signal transducer and 

activator of transcription (STAT) 3.  This transcription factor is considered the major regulator of 

MDSC expansion, due to its ability to promote survival and proliferation of myeloid cells, while 

preventing their differentiation through expression of pro-survival and cell cycle regulators, such 

as B cell lymphoma-extra large (Bcl-xL), c-myc, cyclin D1 or survivin (6, 49). Addition of 

tumor-conditioned medium to BM DC cultures supplemented with GM-CSF and IL-4 enhances 

STAT3 activation and promotes immature myeloid cell proliferation while blocking DC 

differentiation (50). A similar state of STAT3 hyperactivity is seen in human MDSC where 

CD14+HLA-DR- MDSC in the peripheral blood of melanoma patients demonstrate activated 

STAT3 (51). Inhibition of STAT3 in tumor-bearing mice reduces the incidence of MDSC while 

promoting DC differentiation (52), and genetic ablation of STAT3 in hematopoietic cells in 

tumor-bearing mice enhances DC function (53).  

The mechanisms by which STAT3 promotes MDSC expansion are multifactorial and not 

fully understood. STAT3 activation promotes the expression of S100 calcium binding proteins, 

S100A8 and S100A9, which prevent differentiation of myeloid progenitors into DC and 
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macrophages and result in MDSC expansion in tumor-bearing mice (54). The mechanism by 

which S100 proteins promote MDSC expansion is not known (49). STAT3 activation 

additionally reduces protein kinase C (PKC) βII expression, which prevents DC progenitors from 

differentiating into DC (55). CCAAT-enhancer-binding proteins (C/EBP) are a family of 

transcription factors that are involved in granulopoiesis. C/EBPα is required for steady-state 

granulopoiesis, while C/EBPβ is necessary for “emergency,” or demand-driven, granulopoiesis 

following infection (56). Interestingly, C/EBPβ mRNA transcription is upregulated in 

granulocyte and macrophage progenitors by G-CSF or GM-CSF in vivo (56). G-CSF acts 

through STAT3 to upregulate C/EBPβ, and STAT3 and C/EBPβ regulate the cell cycle protein c-

myc (57), which is required in the hematopoietic lineage for MDSC expansion in tumor-bearing 

mice (58). The Grhi subset, which is typically associated with the granulocytic subset of MDSC, 

is more sensitive than the Gr1int (monocytic) subset of MDSC to hemizygous ablation of C/EBPβ 

(58). In the absence of C/EBPβ, there is an increase in DC and macrophages in spleens of tumor-

bearing mice (58) suggesting that immature myeloid cells can undergo normal differentiation in 

cancer. 

Aside from STAT3, several other pathways are involved in MDSC expansion. Tumor-

derived supernatants stimulate extracellular-signal-related kinase (Erk), at least in part due to the 

presence of GM-CSF, to expand MDSC (59). MDSC expanded by polymicrobial sepsis required 

the Toll-like receptor (TLR) signaling adaptor molecule myeloid differentiation primary 

response gene 88 (MyD88), but this is not mediated through TLR4 (14). Alternatively, trauma-

induced MDSC require STAT6 for expansion (60), and STAT5 is involved in MDSC survival 

(49, 61). Lastly, prostaglandins and downstream cyclooxygenase (COX) 2 are emerging as 

important regulators of MDSC expansion. Obermajer et al (62) have demonstrated that 
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prostaglandin E2 (PGE2) prevents DC differentiation in human peripheral blood mononuclear 

cell (PBMC) cultures supplemented with GM-CSF and IL-4, resulting in expansion of MDSC 

through activation of COX2. Other factors that also stimulate COX2 have similar effects, 

including lipopolysaccharide (LPS; a TLR4 agonist) and IL-1β (62). Similar results have been 

reported in mouse BM cell cultures, and tumor-bearing mice lacking the PGE2 receptor have 

reduced MDSC expansion (45). It is clear from the current literature that MDSC expansion is 

multifactorial and encompasses signaling pathways primarily including STAT3 but also other 

STAT family members, mitogen-activated protein kinases (e.g. Erk) and COX2. In addition, the 

primary signaling pathway responsible for MDSC expansion may depend on the specific model 

system, where different soluble factors predominating in the model dictate the primary signaling 

pathway required for expansion. 
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Figure 1.2 Schematics of possible signaling pathways involved in MDSC expansion 

Various cytokines produced by tumors or bone marrow stroma in response to chronic infections or inflammation 
activate several signal transduction pathways that result in activation of Stat3 and Stat5. Stat3 regulates transcription 
of subunits of Nox2 that results in increased production of ROS [reactive oxygen species], as well as upregulation of 
a number of anti-apoptotic proteins and possibly CEBPβ that, in turn, up-regulate c-myc. Altogether, these proteins 
contribute to the proliferation and survival of immature myeloid cells and prevent their differentiation to mature 
cells. This is manifest in expansion of cells with the MDSC phenotype. From Condamine T and Gabrilovich DI. 
Trends Immunol. 2011:32(1):19-25. (49) 

1.1.4 Suppressive mechanisms of MDSC and signals for their activation 

It is currently believed that MDSC require factors that not only induce their expansion but also 

factors that activate their suppressive function (6). MDSC employ numerous mechanisms to 

suppress T cell proliferation including amino acid depletion, modulation of oxidative stress and 

secretion of immunosuppressive cytokines (Figure 1.3). L-arginine is a substrate of arginase 1 

and inducible nitric oxide synthase (iNOS; NOS2), which are expressed by MDSC. Depletion of 

L-arginine reduces mRNA and protein expression of the T cell receptor (TCR) signaling 

complex ζ chain, resulting in reduced T cell proliferation (63, 64). Several studies have 
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demonstrated reduction of the ζ chain by MDSC (12, 64, 65). IL-4 (60, 66) and IL-13 (60, 64) 

induce MDSC arginase 1 expression downstream of IL-4 receptor α (IL-4Rα) (67), and STAT6 

is required for this activation of arginase 1 (60, 67). Additionally, PGE2 signals through COX2 

to promote MDSC arginase 1 expression (68). 
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Figure 1.3 Mechanisms of MDSC-dependent inhibition of T cell activation and proliferation 

Myeloid-derived suppressor cells (MDSC) can inhibit efficient antitumour T cell responses through a number of 
mechanisms. (A) Tumour-associated MDSCs induce the development of regulatory T (Treg) cells or expand 
existing Treg cell populations. The calcium-binding proteins S100A8 and S100A9 are involved in the chemotaxis of 
MDSCs and other myeloid cells; these effects are mediated in part through the activation of receptor for advanced 
glycation end-products (RAGE). At the same time, S100A8 and S100A9 along with gp91phox are part of the 
NADPH oxidase (NOX) complex that is responsible for the increased production of reactive oxygen species (ROS) 
by MDSCs. (B) Tumour-associated myeloid cells deprive T cells of amino acids that are essential for their growth 
and differentiation. (C) Tumour-associated myeloid cells release oxidizing molecules, such as hydrogen peroxide 
(H2O2) and peroxynitrite (ONOO-). Peroxynitrite causes nitration and nitrosylation of components of the T cell 
receptor (TCR) signaling complex, and H2O2 causes the loss of the TCR ζ-chain, thereby inhibiting T cell activation 
through the TCR. (D) Tumour-associated myeloid cells can also interfere with T cell migration and viability. The 
metalloproteinase ADAM17 (disintegrin and metalloproteinase domain-containing protein 17) cleaves CD62L, 
which is necessary for T cell migration to draining lymph nodes, and galectin 9 (GAL9) can engage T cell 
immunoglobulin and mucin domain-containing protein 3 (TIM3) on T cells to induce apoptosis. As the induction of 
the immunosuppressive pathways that are depicted in the figure is regulated by common transcription factors, these 
pathways can operate in more than one myeloid cell type. ARG1, arginase 1; ASC, asc-type amino acid transporter; 
CAT2B, cationic amino acid transporter 2 isoform 1 (L-arginine transporter); CCL2, CC-chemokine ligand 2; 
CCR2, CC-chemokine receptor 2; C/EBPβ, CCAAT/enhancer-binding protein-β; EIF2A, eukaryotic translation 
initiation factor 2A; ERK2, extracellular signal-regulated kinase 2; FOXP3, forkhead box P3; HIF1α, hypoxia-
inducible factor 1α; HuR, Hu-antigen R (also known as ELAVL1); IL, interleukin; IL-2R, IL-2 receptor; iNOS, 
inducible nitric oxide synthase; mTOR, mammalian target of rapamycin; MYD88, myeloid differentiation primary-
response protein 88; NK, natural killer; PI3K, phosphoinositide 3-kinase; STAT, signal transducer and activator of 
transcription; TGFβ, transforming growth factor-β; Xc-, cystine-glutamate transporter. From Gabrilovich DI, 
Ostrand-Rosenberg S and Bronte V. Nat Rev Immunol. 2012;12(4):253-68. (7) 
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 iNOS expressed by MDSC produces nitric oxide (NO), which in turns reacts with 

superoxide and other reactive oxygen species (ROS) produced by nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase to create reactive nitrogen species (RNS), including 

peroxynitrite. MDSC expression of NADPH oxidase subunits p47phox and gp91phox is regulated 

by STAT3 (69). Chalmin et al (59) have demonstrated that STAT3 is required for activation of 

MDSC suppressive activity downstream of TLR2 and MyD88 when stimulated with tumor-

derived exosomes containing heat shock protein 72 (Hsp72). Production of NO by iNOS is 

stimulated by IFNϒ activation of STAT1 (10, 30, 66, 70). C/EBPβ has been shown to regulate 

both arginase 1 and iNOS expression by MDSC (58). Interestingly, the complement 

anaphylotoxin C5a stimulates MDSC to increase ROS and RNS production (71). NO inhibits IL-

2 receptor signaling in T cells (72) and induces T cell apoptosis (10). RNS in the tumor 

microenvironment, presumably released by MDSC, result in chemokine C-C motif ligand 2 

(CCL2) nitration and reduction of T cell recruitment (73). Furthermore, nitration of tyrosines in 

the TCR-CD8 complex by MDSC prevents CD8+ T cells from binding to cognate peptide-major 

histocompatibility complex (MHC) complexes on antigen-presenting cells (APC) (74, 75). 

Substrate-specific mechanisms of suppression may exist for granulocytic and monocytic MDSC. 

Granulocytic MDSC preferentially produce high levels of superoxide and ROS but low levels of 

NO, and monocytic MDSC make large amounts of NO but relatively low levels of ROS (29, 30, 

76). However, this demarcation may not always hold true, as granulocytic MDSC expressed 

iNOS in a Trypanosoma cruzi infection model (70). 

 In addition to arginase 1, iNOS and NADPH oxidase, several other immunomodulatory 

mechanisms have been described for MDSC. Endotoxin-induced MDSC inhibit T cell 

proliferation by a heme oxygenase-1 (HO-1)-dependent mechanism (77). Expression of the 
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costimulatory molecules CD40 (26) and CD80 (27) and the coinhibitory molecule B7-H1 (78) 

have all been implicated in MDSC-mediated immune regulation through promotion of Treg 

development and/or function. MDSC have also been reported to secrete the immunoregulatory 

cytokines IL-10 and transforming growth factor β (TGFβ) (22, 62). 

 Significant progress has been made identifying the factors and molecular mechanisms 

responsible for the expansion and activation of MDSC. There is overlap between growth factors 

and cytokines that expand MDSC and those that activate their suppressive program. Growth 

factors such as GM-CSF, M-CSF and G-CSF appear to expand MDSC predominantly through 

STAT3. Inflammatory cytokines including IFNϒ, IL-4 and IL-13 activate MDSC suppressive 

factors through STAT1 and STAT6. Further study is needed to understand the context in which 

these generalizations are accurate and to understand signals that block the differentiation of 

MDSC into fully differentiated myeloid cells. 

1.1.5 MDSC regulation of T cells can be antigen-specific or antigen non-specific 

The antigen specificity of MDSC appears to be highly dependent on the model, 

microenvironment and level of activation of target lymphocytes (79). Due to the lack of general 

immune suppression in cancer patients and the ability of peripheral T cells to respond to non-

tumor-associated antigens in tumor-bearing mice, it has been proposed that MDSC are capable of 

antigen-specific regulation (6, 79). MDSC are capable of inhibiting both CD4+ and CD8+ T cell 

responses (9, 10, 12, 30, 80). While both granulocytic and monocytic MDSC can suppress 

antigen-specific CD8+ T cell responses through MDSC subset-specific mechanisms (30), it is not 

known whether MDSC are capable of antigen-specific CD4+ T cell suppression (6) especially in 

view of their low or absent expression of MHC class II (19). Of particular importance for 
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potential cell therapies utilizing these cells, MDSC generated in vitro can promote Ag-specific T 

cell hyporesponsiveness (58). Since tumor-infiltrating human MDSC, but not peripheral blood 

MDSC, suppress mitogen-activated T cell proliferation non-specifically (81), it has been 

proposed that antigen-specific regulation by MDSC occurs in peripheral lymphoid organs, while 

non-specific suppression occurs within the tumor microenvironment (6). In a mouse model of 

cardiac allograft tolerance induced by donor splenocyte transfusion (DST) and anti-CD40L, 

suppression of T cells by graft-infiltrating MDSC was non-specific, while BM and splenic 

monocytes did not suppress (23). Taken together, these findings support the paradigm that 

MDSC can regulate antigen-specific T cells, but may suppress T cells non-specifically within an 

allograft. 

1.1.6 MDSC in transplantation 

The field of tumor immunology has driven much of the progress in our understanding of the 

biology of MDSC; however, recent interest in the role of MDSC in transplant rejection and 

tolerance has emerged (19, 20, 82, 83). Significantly, mouse CD11b+Gr1+ MDSC expand 

following transplantation of skin (84) or heart (23). DST and anti-CD40L are commonly used to 

induce experimental donor-specific allograft tolerance. Using this tolerizing regimen in mouse 

heart transplantation, Garcia et al (23) demonstrated that CD11b+Gr1+CD115+ MDSC are 

required for the induction of tolerance. In this model, MDSC emigrated from the BM in a CCR2-

dependent manner and entered the transplanted heart. MDSC isolated from the graft, but not the 

spleen or BM, suppressed T cell responses non-specifically and promoted Treg development. 

Tolerance was dependent on MDSC expression of the IFNϒ receptor, STAT1 and iNOS. 
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 In another model of transplant tolerance, costimulation blockade with anti-CD28 

monoclonal antibody (mAb) in rat kidney transplantation resulted in MDSC accumulation in the 

blood and allograft (85). Maintenance of tolerance was dependent on iNOS, and MDSC 

suppressed effector T cell proliferation and induced apoptosis while sparing Treg. Blood MDSC 

directed Treg into the graft by downregulating expression of CCL5 following anti-CD28 mAb 

treatment, resulting in high intragraft levels of CCL5, but low levels in the blood (86). 

 Although studies of human MDSC in transplantation are limited, CD14+ and CD14- 

MDSC subsets have been identified in human renal transplant recipients (87). With their potent 

immunosuppressive activity, numerous studies have evaluated the therapeutic application of 

adoptively transferred mouse MDSC generated in vitro or in vivo in skin transplantation (77, 84), 

islet transplantation (58, 78) and graft-versus-host disease (GVHD) (64, 88, 89). Although 

studies regarding the promotion of MDSC expansion and function and the influence of 

immunosuppressants on MDSC are lacking, these studies highlight the potential therapeutic 

application of targeting MDSC in situ and MDSC cellular therapies. 

1.1.7 Generation and transfer of MDSC to regulate immunity 

The ability to propagate MDSC in vitro is critical for their application as a cellular therapeutic 

and allows study of their development in the absence of a complex environment such as occurs 

in tumor-bearing mice. Myeloid cells are typically generated from BM of rodents whereas 

peripheral monocytes are most commonly used for human cultures. As discussed above, MDSC 

require factors that induce their activation in addition to their expansion (6). Mouse monocytic 

MDSC have been generated from BM cells cultured in G-CSF and/or GM-CSF and activated 

with IL-6 or IL-13 (58, 64). Lechner et al (90) examined the generation of MDSC from human 
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PBMC by comparing immune factors secreted by human tumor cell lines known to induce 

MDSC. They found that GM-CSF + IL-6 expanded MDSC with the most potent suppressive 

capacity, but GM-CSF + IL-1β, PGE2, TNFα or VEGF also induced suppressive MDSC (90). 

Consistent with these findings, Marigo et al (58) found that human BM-derived MDSC 

generated in GM-CSF and IL-6 were highly suppressive. Furthermore, addition of PGE2 to GM-

CSF and IL-4 human PBMC cultures blocked DC differentiation and led to generation of 

suppressive MDSC (91). These data suggest that generation of human MDSC in vitro is 

clinically feasible. 

 Cellular therapy using MDSC has been applied in several mouse models of disease and 

can modulate antigen-specific immune reactivity (Table 1.2). MDSC adoptive transfer is capable 

of promoting skin and islet allograft survival and reducing lethality of GVHD in the absence of 

additional immunosuppression. It is not known if addition of standard immunosuppressants will 

potentiate the efficacy of adoptively transferred MDSC. Notably, MDSC transfer resulted in 

antigen-specific hyporesponsiveness (92) or a lack of generalized immunosuppression (58). 

Improved methods for culturing MDSC in vitro and further understanding of factors that regulate 

their generation in vitro and in vivo will be critical to advance therapies exploiting MDSC. 
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Table 1.2 Adoptive transfer of MDSC promotes immune regulation in mouse models 

Source of MDSC Cell Dose 
and Route 

Model Mechanism and 
Outcome 

Reference 

Mouse tumor-bearing 
splenocytes 

3-5x106 i.v. 
2-3d after T 
cell transfer 

Antigen-specific 
transgenic CD8+ 

T cell (OT-I) 
responses 

Antigen-specific CD8+ T 
cell tolerance but T cells 

remained responsive to non-
specific αCD3 stimulation 

(92) 

Transplant recipient 
splenocytes 

2x105 i.v. on 
d-1 and d3 

MHC class II-
mismatched skin 

allograft 

50% long-term survival 
when transplant-activated 
MDSC transferred from 
ILT2 (HLA-G receptor) 
transgenic mice but not 

wild-type mice 

(84) 

Splenocytes from 
LPS-treated mice 

5x106 i.v. on 
d-1 

Male to female 
or MHC class II-
mismatched skin 

allograft 

Prolonged allograft survival 
dependent on heme 

oxygenase-1 

(77) 

Mouse tumor-bearing 
BM 

5x106 i.v. + 
5μg/mouse 

peptide 
antigen d1 
after T cell 

transfer 

Transgenic T cell 
induction of 

diabetes 

75% diabetes-free at d30 
(antigen-specific) with T 

cell anergy and induction of 
Treg 

(80) 

Tumor-bearing 
mouse BM 

2x107 i.v. 
with T cells 

NOD/SCID with 
transfer of 

diabetogenic T 
cells 

60% diabetes-free at d100 
with reduced lymphocyte 
infiltration and insulitis 

(80) 

B6 BM cultures with 
GM-CSF+G-
CSF+IL-13 

2 or 6x106 
i.v. with 

donor cells 

Graft-versus-host 
disease (B6 to 

BALB/c) 

Cell dose- and arginase-1-
dependent improved 

survival with inhibition of 
CD4+ and CD8+ T cell 

responses and maintained 
graft-versus-leukemia effect 

(64) 

129SvEv embryonic 
stem cell line 

cultured with M2 
cytokine cocktail 

(KL, VEGF, Flt3L 
and TPO)+M-CSF 

2x106 i.v. 
with donor 

cells, d4 and 
d10 

Graft-versus-host 
disease 

(129SvEv to 
BALB/c) 

82% long-term survival (89) 

BALB/c BM cultures 
with GM-CSF+IL-6 
or GM-CSF+G-CSF 

107 i.v. on 
d0, 7, 14 and 

21 

Islet allograft 
(B6 to BALB/c) 

Long-term survival in ~75% 
(GM-CSF+IL-6 MDSC) or 
~40% (GM-CSF+G-CSF 

MDSC) without generalized 
immune suppression 

(58) 

B6 BM cultures with 
GM-CSF with liver 
stellate cells (B6, 
BALB/c or C3H) 

2.5x106 

mixed with 
islets 

Islet allograft 
(BALB/c to B6) 

~45-65% long-term 
survival, B7-H1-dependent 

increase in Treg that 
mediate T cell 

hyporesponsiveness 

(78) 
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1.2 DENDRITIC CELLS REGULATE ADAPTIVE IMMUNITY 

Dendritic cells (DC) were first identified in 1973 by Ralph M. Steinman (93) who shared the 

Nobel Prize in Physiology or Medicine in 2011 “for his discovery of the dendritic cell and its 

role in adaptive immunity.” Since their discovery, DC have become a central focus of 

immunologists for understanding how the body recognizes self from non-self and initiates 

adaptive immunity. DC are a rare, heterogeneous population of innate APC that initiate and 

regulate adaptive T cell responses and maintain self tolerance in the normal steady state (94, 95). 

DC are sentinels stationed throughout the body especially at environment-body interfaces that 

function to alert the immune system to pathogens and orchestrate adaptive immune clearance of 

invading microbes (96). However, as directors of T cell reactivity, DC are important in the 

pathogenesis of immune-mediated disease, including autoimmunity and transplant rejection (97, 

98). Increasing our understanding of DC development and function is crucial to harness their 

powerful immune-directing properties and utilize strategies targeting DC in clinical medicine 

(94, 95, 99). 

1.2.1 DC classification and ontogeny 

DC originate from BM hematopoietic stem cells (HSC) and are classified into conventional DC 

(cDC), plasmacytoid DC (pDC), Langerhans cells (LC) and monocyte-derived DC (Figure 1.4) 

(100-102). cDC are further divided into migratory DC and lymphoid tissue-resident DC. 

Migratory DC are sentinels in the periphery that capture antigen and migrate to lymphoid organs 

where they present antigen to T cells. Lymphoid tissue-resident DC reside within secondary 

lymphoid organs and capture and present antigen (103). Lymphoid tissue-resident DC are 
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classified based on their expression of CD4 or CD8. CD4+ lymphoid tissue-resident DC and 

CD4-CD8- double negative DC primarily present antigen to CD4+ T cells, and CD8+ DC cross-

present antigen to initiate CD8+ T cell responses (104, 105). pDC are specialized DC that 

promote anti-viral immunity through the production of type 1 interferons (106). LC reside in the 

epidermal layer of the skin and are unique due to their local repopulation from skin-resident 

hematopoietic precursors (107, 108). Monocyte-derived DC are not found during the steady-state 

but are mobilized during inflammation and differentiate into ‘inflammatory DC’ (109). 

HSC residing in the BM proceed through a series of increasingly restricted stages of 

differentiation to common myeloid progenitors (CMP), macrophage and DC progenitors and 

common DC progenitors that ultimately give rise to pDC and precursor DC (pre-DC) (110) 

(Figure 1.4). Pre-DC exit the BM and enter the circulation where they give rise to cDC (110-

112). Fms-like tyrosine kinase 3 (Flt3, CD135) expressed on early hematopoietic precursors is 

central to the process of steady-state DC repopulation and differentiation (113). In addition to 

CMP, common lymphoid progenitors are capable of differentiating into DC (114, 115). This is 

restricted to a portion of CMP or CLP that express Flt3 (116, 117). These studies suggest a high 

level of plasticity in DC development and the ability of precursors ‘committed’ to non-myeloid 

lineages to produce DC.  
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Figure 1.4 Differentiation and trafficking of DC subsets 

(A) The figure shows the organization of the dendritic cell (DC) network, and includes the key surface phenotype 
markers of different DC subsets, which are delineated on the basis of their localization in secondary lymphoid 
tissues. Gut-associated DCs that express both CD103 and CD11b have been included in the CD11b+ DC subset. 
Inflammatory monocyte-derived DCs are rapidly recruited to sites of inflammation, whereas other DC subsets are 
normally present in the steady state. The relationship between inflammatory and steady-state DCs remains an open 
issue. Moreover, it is unclear whether monocyte-derived DCs can arise through in situ proliferation in addition to 
arriving at tissues via the circulation. (B) In the mouse bone marrow, haematopoietic stem cells (HSCs) differentiate 
into common myeloid progenitors (CMPs), a fraction of which express FMS-like tyrosine kinase 3 (FLT3) and 
differentiate into more-restricted macrophage and DC progenitors (MDPs). MDPs appear to be the direct precursor 
to common DC progenitors (CDPs), which give rise to the DC lineages. CDPs produce precursor DCs (pre-DCs) 
and plasmacytoid DCs (pDCs) that exit the bone marrow and travel through the blood to secondary lymphoid organs 
and non-haematopoietic tissues. A small proportion of DCs may also be derived from CLPs in the bone marrow and 
from early T cell progenitors in the thymus. Under steady-state conditions, lymphoid tissue-resident DCs that arise 
from pre-DCs are the only subsets found in the spleen. This population is comprised of three conventional DC 
subsets, namely CD4+ DCs, CD8α+ DCs and CD8α-CD4- double-negative (DN) DCs. Peripheral lymph nodes 
contain CD8α+ and CD8α- DC populations but are also populated by two groups of migratory DCs. Langerhans cells 
develop in the epidermis and migrate through the basement membrane to the draining lymph nodes via terminal 
lymphatic vessels that arise in the dermis. The dermal DC population is broadly composed of CD11b+ and CD103+ 
DCs, and these cells migrate through the lymphatics to the lymph node. Monocytes arrive at tissues from the blood. 
In response to inflammation, they can develop into monocyte-derived DCs, which adopt many of the characteristics 
of conventional DCs. DC-SIGN, DC-specific ICAM3-grabbing non-integrin. From Belz GT and Nutt SL. Nat Rev 
Immunol. 2012;12(2):101-13. (101) 
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In addition to Flt3L-induced signaling, M-CSF and GM-CSF are also involved in DC 

development. M-CSF promotes differentiation of monocytes, and M-CSF receptor is required for 

development of LC (118, 119). TGF-β1 is additionally required for LC development in the 

epidermis (120, 121). Although the GM-CSF receptor is not necessary for homeostatic DC 

development (113), GM-CSF promotes monocyte differentiation into DC under inflammatory 

conditions (111, 122). The DC developmental program exhibits further variability under 

conditions of inflammation, since engagement of TLR expressed on early hematopoietic 

progenitors can modulate their differentiation (123). 
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1.2.2 DC coordinate environmental signals to initiate and direct adaptive immunity 

Despite being highly heterogeneous, DC subsets share the common ability to perform the 

professional APC functions of acquiring, processing and presenting antigen to T cells. Immature 

cDC reside in the periphery, where they act as sentinels by constantly sampling the environment 

for pathogens and infected or dead cells through a variety of mechanisms, including receptor-

mediated endocytosis, macropinocytosis and phagocytosis (124). DC express receptors for the 

constant region of antibodies (Fc receptors) (125), complement receptors (126), heat shock 

protein receptors (127, 128), scavenger receptors (129) and C-type lectins (130). In addition, 

these cells have the ability to constitutively uptake soluble antigen (131). Innate immune cells, 

including DC, express pattern recognition receptors (PRR) that recognize conserved molecules 

expressed by microbes called microbe-associated molecular patterns (MAMP; also known as 

pathogen-association molecular patterns). PRR include surface receptors, most notably TLR 

(132), and cytoplasmic PRR such as nucleotide oligomerization domain (NOD)-like receptors 

(NLR) (133) and retinoic acid-inducible gene (RIG)-I-like receptors (RLR) (134). Thus, DC are 

well-equipped to detect infection or commensal bacterial products (135). In addition to MAMP, 

DC also respond to inflammation through their expression of cytokine receptors (136). 

After recognition of MAMP or in the presence of inflammation, DC undergo signaling 

events that result in their maturation. DC maturation leads to reduction in antigen uptake, 

upregulation of antigen presentation in MHC molecules and increased expression of 

costimulatory molecules (131). Maturation is accompanied by C-C chemokine receptor 7 

(CCR7) upregulation, which directs DC to draining lymph nodes (LN), where they interact with 

and efficiently prime antigen-specific T cells (137, 138). It is now appreciated that DC represent 

the primary professional APC for priming T cell responses (Figure 1.5) (139). 



 23 

 

Figure 1.5 Afferent and efferent limbs of immunity that resolve several demands of antigen presentation in 
vivo 
 
Antigens are captured by DCs in peripheral tissues and processed to form MHC-peptide complexes. These immature 
DCs derive successively from proliferating progenitors and non-proliferating precursors, the latter not being fully 
committed to form DCs. As a consequence of antigen deposition and inflammation, DCs begin to mature, expressing 
molecules that will lead to binding and stimulation of T cells in the T-cell areas of lymphoid tissues. If the antigen 
has also been bound by B cells, then both B and T cells can cluster with DCs, as shown. After activation, T (blue) 
and B (orange) blasts leave the T-cell area. B blasts move to the lining of the intestine, the bone marrow, and other 
parts of the lymphoid tissue, such as the medulla of lymph node, with some becoming antibody-secreting plasma 
cells. T blasts leave the blood at the original site of antigen deposition, recognizing changes in the inflamed blood 
vessels and responding vigorously to cells that are presenting antigen. This limits the T-cell response to the site of 
microbial infection. From Banchereau J and Steinman RM. Nature. 1998;392(6673): 245-52. (139) 

1.2.2.1 DC provide 3 signals to guide T cell activation and differentiation 

The ability of DC to activate naïve T cells and direct their differentiation relies on three signals 

(Figure 1.6). T cells recognize peptide-MHC complexes presented by DC via their antigen-

specific TCR (Signal 1). Costimulatory molecules provide signal 2 and further activate signals 

downstream of the TCR and promote additional effector functions in T cells (140). The majority 
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of costimulatory molecules belong to either the immunoglobulin or tumor-necrosis factor (TNF) 

superfamily (141). B7-1 (CD80) and B7-2 (CD86) are classic immunoglobulin superfamily 

costimulatory ligands expressed by DC that ligate CD28 on T cells (142, 143). Numerous other 

ligand-receptor pairs have been identified (144, 145).  

There is also a regulatory component to signal 2. T cells upregulate the inhibitory 

receptor cytotoxic T lymphocyte antigen-4 (CTLA-4; CD152) following activation (146). 

CTLA4 has a higher affinity for B7-1 and B7-2 than CD28 and inhibits T cell activation (147-

149). Additionally, coinhibitory ligands that dampen T cell activation are expressed by DC 

(141). B7-homolog 1 (B7-H1) and B7-DC are examples B7 family coinhibitory molecules that 

suppress T cell activation through programmed cell death-1 (PD-1) on T cells (150, 151). Thus, 

costimulatory and coinhibitory molecules finely tune signal 2 to balance the activation and 

suppression of T cell responses. 

Signal 3 is mediated by soluble cytokines released by DC to direct the differentiation of 

naïve T cells into their T helper lineages (152). IL-12 supports the development of IFNϒ-

producing Th1 cells (153). Although DC participate in the induction of Th2 responses, the 

precise mechanisms by which DC perform this function are not fully understood (154). DC 

induce Th17 differentiation through production of IL-1β, IL-6, TGFβ and IL-23 (155), but they 

are also capable of limiting T cell activation through production of anti-inflammatory IL-10 

(156). Thus, DC provide coordinated stimulatory and inhibitory signals to T cells to regulate 

antigen-specific activation and differentiation. 
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Figure 1.6 T-cell stimulation and T helper 1 (TH1)/TH2-cell polarization require three dendritic cell-derived 
signals 
 
Signal 1 is the antigen-specific signal that is mediated through T-cell receptor (TCR) triggering by MHC class-II-
associated peptides processed from pathogens after internalization through specialized pattern recognition receptors 
(PRRs). Signal 2 is the co-stimulatory signal, mainly mediated by triggering of CD28 by CD80 and CD86 that are 
expressed by dendritic cells (DCs) after ligation of PRRs, such as Toll-like receptors (TLRs) that are specialized to 
sense infection through recognition of pathogen-associated molecular patterns (PAMPs) or inflammatory tissue 
factors (TFs). Signal 3 is the polarizing signal that is mediated by various soluble or membrane-bound factors, such 
as interleukin-12 (IL-12) and CC-chemokine ligand 2 (CCL2) that promote the development of TH1 or TH2 cells, 
respectively. The nature of signal 3 depends on the activation of particular PRRs by PAMPs or TFs. Type 1 and type 
2 PAMPs and TFs can be defined as those that selectively prime DCs for the production of high levels of TH1-cell-
polarizing or TH2-cell-polarizing factors. Whereas, the profile of T-cell-polarizing factors is primed by recognition 
of PAMPs, optimal expression of this profile often requires feedback stimulation by CD40 ligand (CD40L) 
expressed by T cells after activation by signals 1 and 2. IFN-ϒ, interferon-ϒ; TNF-β, tumor-necrosis factor-β. From 
Kapsenberg ML. Nat Rev Immunol. 2003;3(12):984-93. (96) 

1.2.3 DC establish and maintain tolerance 

During their generation in the thymus, most T cells expressing self-reactive TCR are removed to 

establish central tolerance (157). However, autoreactive T cells can escape thymic education and 

be activated during inflammatory responses to a pathogen, but these T cells are controlled 

through extra-thymic mechanisms to establish peripheral tolerance (98). In addition to being the 

most potent stimulators of T cells, DC have the ability to regulate T cell responses and are 

critical for central and peripheral tolerance (158, 159). cDC and pDC reside within the thymic 
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medulla and participate in T cell selection along with antigen-presenting thymic epithelial cells 

(157, 160-163). It was postulated (159) that steady-state DC continuously sample the 

environment and maintain T cell tolerance to antigens encountered in the periphery in the 

absence of inflammation. Indeed, DC present self antigens to T cells in vivo (164). DC exposure 

to apoptotic, but not necrotic, material maintains their immature state (165) and induces CCR7 

expression (166). Thus, DC acquire apoptotic material from the normal turnover of peripheral 

tissue cells and can maintain tolerance to these antigens (167). This was proven in situ by 

targeting antigen to steady-state DC, resulting in antigen-specific T cell deletion and 

hyporesponsiveness (168). Furthermore, constitutive deletion of DC in mice results in loss of 

CD4+ T cell self-tolerance and lethal autoimmunity (169). As a proof-of-principle, studies in 

human volunteers have demonstrated that subcutaneous injection of immature DC results in 

antigen-specific inhibition of CD8+ effector T cells (170) and development of CD8+ regulatory T 

cells (171). Thus, DC are able to regulate antigen-specific immunity in humans and are required 

for self-tolerance in mice. 
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1.2.4 mTOR is a ubiquitous regulator of metabolism that controls DC development and 

function 

The mammalian/mechanistic Target of Rapamycin (mTOR) is a serine/threonine kinase that is 

widely studied due to its evolutionarily conserved role in controlling cell growth and 

proliferation. Since the discovery that rapamycin (RAPA), an mTOR inhibitor, has powerful 

immunosuppressive properties, immunologists have begun unraveling the function of mTOR in 

immune cells. Historically, studies of mTOR biology have focused on its role in T lymphocytes 

because the anti-proliferative action of RAPA on these cells results in immunosuppression. 

However, recent advances have demonstrated that mTOR also has important functions in 

myeloid APC to regulate their differentiation and function (172). 

1.2.4.1 mTOR biology 

mTOR is a highly-conserved, integrative serine/threonine kinase that is a central regulator of cell 

growth and metabolism (173). mTOR is a member of the phosphatidylinositol 3-kinase (PI3K)-

related kinase protein family (173) and is a mammalian homolog of the TOR1 and TOR2 genes 

first identified in Saccharomyces cerevisiae (174). Until recently, it was unknown if a second 

mTOR gene exists in mammals, but a second mTOR-containing signaling complex was 

identified in 2004 (175, 176). In mammals, a single mTOR kinase performs the catalytic function 

of two separate complexes, mTOR complex 1 (mTORC1) and 2 (mTORC2) (Figure 1.7). 

mTORC1 is composed of regulatory associated protein of mTOR (raptor), mammalian lethal 

with Sec13 protein 8 (mLST8) and proline-rich substrate of Akt of 40 kD (PRAS40). mTORC2 

contains rapamycin-insensitive companion of mTOR (rictor), mLST8, mSIN1 and protein 

associated with rictor (PROTOR) (177). DEP domain-containing mTOR-interacting protein 
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(DEPTOR) interacts with both complexes and inhibits their activity (178). mTORC1 senses 

environmental signals, including nutrients, hormonal cues and energy levels, to regulate mRNA 

translation and protein and lipid synthesis (173, 179). Thus, mTORC1 functions as a central 

switch between catabolic and anabolic processes (179). Considerably less is known about signals 

that regulate mTORC2 activity. Rho family GTPases and protein kinase Cα (PKCα) are 

downstream of mTORC2 and regulate actin organization (175, 176). Together, mTORC1 and 

mTORC2 are believed to coordinate with one another to regulate the timing and spatial 

orientation of cell growth and division. 
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Figure 1.7 The two mTOR complexes have distinct constituent proteins and regulate different downstream 
processes 
 
Here (figure represents data from studies in mice) mTORC1 comprises deptor, PRAS40, raptor, mLST8, mTOR and 
TTI1-TEL2. mTORC2 is comprised of deptor, mLST8, protor, rictor, mSIN1, mTOR and TTI1-TEL2. Rapamycin 
binds to FKBP12 and inhibits mTORC1 by disrupting the interaction between mTOR and raptor. Regulation of lipid 
synthesis by mTORC1 is thought to occur mainly through sterol-regulatory-element-binding protein transcription 
factors (shown here as SREBP1) by a mechanism that is not completely understood. mTORC1 negatively regulates 
autophagy through multiple inputs, including inhibitory phosphorylation of ULK1, preventing formation of the 
ULK1-ATG13-FIP200 complex (which is required for initiation of autophagy). mTORC1 promotes protein 
synthesis through activation of the translation initiation promoter S6K and through inhibition of the inhibitory 
mRNA cap binding 4E-BP1, and regulates glycolysis through HIF-1α. mTORC2 inhibits FOXO3a through S6K1 
and AKT, which can lead to increased longevity. The complex also regulates actin cytoskeleton assembly through 
protein kinase C α (PKCα), Rho GTPases and Ras proteins. From Johnson SC, Rabinovitch PS and Kaeberlein M. 
Nature. 2013;493(7432):338-45. (179) 

1.2.4.2 Inhibition of mTOR 

The antifungal macrolide rapamycin (RAPA) was first isolated from soil samples from Easter 

Island in the 1970’s (180). RAPA functions as an allosteric inhibitor of mTORC1 that exerts its 

inhibitory effect by binding the immunophilin FK506-binding protein 1A, 12 kDa (FKBP12) 

(181). mTORC2 is insensitive to inhibition by RAPA (175, 176); however, prolonged exposure 

to RAPA can inhibit mTORC2 assembly (182, 183). Despite exhibiting homology with PI3K in 

the kinase domain, selective active site ATP-competitive mTOR inhibitors (i.e. Torin1, PP242) 

have been described recently that can inhibit signaling downstream of both mTOR complexes 
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with a half maximal inhibitory concentration (IC50) less than 10 nM (184-187). The use of ATP-

competitive mTOR inhibitors in non-immune cells has revealed the unexpected finding that 

RAPA does not inhibit mTORC1 completely. Independent of their ability to inhibit mTORC2, 

ATP-competitive mTOR inhibitors further inhibit cell proliferation and cap-dependent 

translation, as well as induce autophagy more effectively than RAPA (184, 185). 

1.2.4.3 mTOR regulates DC immunobiology 

mTOR is a crucial regulator of innate and adaptive immune cell function (172). Much of our 

knowledge of the function of mTOR comes from the investigation of RAPA, with a primary 

focus on T cell immunobiology. However, mTOR is emerging as an important regulator of DC 

homeostasis and function (188-190). RAPA reduces the number of splenic DC under 

homeostatic conditions and following mobilization with the DC poietin Flt3L (188). Flt3L 

stimulates mTOR signaling in DC, and deletion of phosphatase and tensin homolog (PTEN), a 

negative regulator of the PI3K-mTOR pathway, leads to mTOR-dependent expansion of CD8+ 

and CD103+ cDC subsets (191). Flt3L requires STAT3 activation to promote DC differentiation 

(192), and mTORC1 is a positive regulator of STAT3 (193-195). Thus, DC development 

downstream of Flt3L occurs through an Flt3L-mTORC1-STAT3 pathway. 

mTOR is also involved in diverse cellular processes in DC required for the generation of 

effective immune responses (172). RAPA disrupts macropinocytosis and receptor-mediated 

endocytosis in DC and reduces expression of antigen uptake receptors, an effect that is 

independent of the phenotypic immaturity of DC treated with RAPA (196, 197). In contrast to 

the calcineurin inhibitors cyclosporine A and tacrolimus, pre-treatment of DC with RAPA does 

not affect antigen processing or presentation on MHC class I or class II through classical routes 

or cross-presentation (198). However, RAPA augments antigen presentation in mouse DC by 
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stimulating autophagy, which directs antigen into the MHC class II compartment (199). RAPA 

treatment has been reported to enhance (200) or permit (190) CCR7 upregulation during human 

and mouse DC maturation, respectively, suggesting that mTORC1 signaling is not required to 

direct CCL19/21-mediated migration to secondary lymphoid organs. Furthermore, mouse 

RAPA-treated DC still migrate to secondary lymphoid organs following adoptive transfer (189).  

Despite normal migratory ability, RAPA dampens other aspects of phenotypic maturation 

and dramatically alters cytokine secretion by DC. RAPA prevents IL-4-dependent maturation of 

DC by decreasing expression of the IL-4 receptor (188). DC treated with RAPA show 

diminished upregulation of B7 family costimulatory molecules and MHC class II following 

maturation with various inflammatory stimuli (189, 190, 201, 202). Although RAPA reduces 

secretion of IL-12p70 following CD40 ligation (190), recent studies have shown that RAPA-

treated DC stimulated with LPS secrete increased levels of IL-12p70 and reduced levels of IL-10 

(195), particularly by the CD86lo immature DC subset (202). Furthermore, RAPA increases DC 

expression and secretion of IL-1β due to mTOR inhibition of caspase-1 (201, 203). Despite these 

paradoxical pro-inflammatory effects on DC cytokine production, DC treated with RAPA are 

weak stimulators of syngeneic and allogeneic T cells (189, 201, 202) but support regulatory T 

cells (190). In total, through studies using RAPA, we now appreciate that mTORC1 modulates 

DC antigen capture and presentation, co-stimulatory molecule expression and cytokine 

production. Considerably less is known about the function of mTORC2 in immunity. mTORC2 

is involved in fate decisions in the differentiation of T cells (204, 205), but its role in innate 

immune cells, including DC, is not known.  
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1.2.5 Donor and recipient DC regulate rejection in transplantation 

DC are central regulators of adaptive alloimmunity that act to initiate and regulate alloreactive T 

cell responses. T cell alloimmunity is mediated by three non-mutually exclusive pathways 

termed the direct, indirect and semi-direct pathways (Figure 1.8) that are initiated when APC 

migrate to secondary lymphoid organs (SLO) and interact with T cells (206). The direct pathway 

is mediated by donor APC, especially DC, that are transferred within the allograft during 

transplantation and present intact allogeneic MHC molecules to recipient T cells (207-209). The 

indirect pathway is initiated by recipient DC presenting processed donor alloantigen within 

recipient MHC class II molecules to CD4+ T cells (207). Additionally, indirectly-reactive CD8+ 

T cells can be cross-primed (210). The semi-direct pathway is mediated by recipient DC that 

acquire intact donor MHC complexes from donor cells; however, direct evidence that this 

mechanism of allorecognition occurs in vivo to mediate rejection is lacking (209). 
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Figure 1.8 Pathways of alloantigen presentation 

Three nonmutually exclusive pathways of allorecognition have been described. (A) In the direct pathway, recipient 
T cells recognize intact allogeneic MHC molecules on the surface of donor APCs. The direct pathway is responsible 
for the large proportion of T cells that have reactivity against alloantigens due to cross-reactivity of the T-cell 
receptor (TCR) with self and foreign MHC molecules. (B) In the indirect pathway, recipient APCs trafficking 
through the allograft phagocytose allogeneic material shed by donor cells (mostly peptides derived from allogeneic 
MHC molecules) and present it to recipient T cells on recipient MHC molecules. (C) In the semidirect pathway, 
recipient APCs acquire intact MHC molecules following direct contact with donor APCs and/or through fusion with 
donor APC-derived exosomes. These chimeric recipient APCs stimulate recipient T cells through direct and indirect 
pathways. From Sànchez-Fueyo A and Strom TB. Gastroenterology. 2011;140(1):51-64. (211) 
 
 
 

In transplantation, DC rapidly mature under the influence of endogenous inflammatory 

mediators released during ischemia/reperfusion injury that act on PRR (207, 212, 213). DC 

maturation is accompanied by C-C chemokine receptor 7 (CCR7) upregulation, which enhances 

their migration to secondary lymphoid organs (SLO), where they interact with and efficiently 

prime alloreactive T cells (137, 138, 206). While mature DC promote alloreactive T cell 
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responses (214), immature or maturation-resistant DC can suppress allograft rejection and 

promote transplant tolerance through induction of antigen-specific T cell anergy/deletion and 

Treg (95, 159, 215, 216). The ability of DC to initiate and regulate alloreactive T cell responses 

emphasizes the importance of targeting these APC with therapeutic agents and understanding the 

impact of immunosuppressants on DC immunobiology. 

1.3 STATEMENT OF THE PROBLEM 

In 2012, 28,052 organ transplants were performed in the United States to provide 

definitive treatment for end-stage organ disease (Organ Procurement and Transplantation 

Network). The discovery of pharmacologic immunosuppressive agents capable of inhibiting 

immune responses against an organ allograft was a medical breakthrough that overcame acute 

rejection, leading to the birth of the field of organ transplantation in the 1960’s. Modern 

pharmacologic immunosuppressive regimens have played a crucial role in achieving excellent 

short-term outcomes due to prevention and treatment of acute rejection episodes, but late graft 

failure (‘chronic rejection’) remains a significant obstacle (217) that exacerbates the current 

organ shortage. Additionally, general suppression of the immune system with chemical 

immunosuppressants carries significant risks, including infections, malignancy and toxicity 

(218). Clinically-utilized immunosuppressive regimens fail to prevent the development of global 

vascular narrowing within a transplanted organ or chronic allograft vasculopathy (CAV), an 

outcome of chronic immune responses against the allograft (219-221). The pathogenesis of CAV 

is multi-fold and poorly understood; however, anti-graft immune responses are the predominant 

factor in the development of CAV (222). 
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Alloantigen-specific T cells are central mediators of acute rejection and CAV (223-225). 

T cell function is tightly regulated by interactions with myeloid lineage cells, including MDSC 

and DC. While T cells are classically the primary target of immunosuppressants, DC are 

emerging as equally important drug targets (226). However, agents capable of boosting MDSC 

activity have not been investigated. MDSC and DC are potent regulators of antigen-specific T 

cell immunity and thus represent valuable targets for the prevention of anti-graft immune 

responses. Understanding the pathways regulating the development and function of MDSC and 

DC is an important step towards (i) utilizing these cells as cellular therapeutic agents and (ii) 

targeting them in situ with new immunomodulatory agents to skew immunity away from 

detrimental anti-graft responses to minimize the need for generalized immunosuppression and 

ultimately establish donor-specific tolerance. 

1.4 SPECIFIC AIMS AND HYPOTHESES 

The overall hypothesis of this thesis is that DC and MDSC differentiation and function can 

be manipulated with pharmacologic and biologic agents to favor their immune regulatory 

properties. Hypotheses directed towards examining three pathways governing the expansion, 

differentiation and/or function of DC and MDSC will be presented in the following Specific 

Aims. 
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1.4.1 Specific Aim 1 (Chapter 2): To assess the effect of histone deacetylase inhibition on 

MDSC differentiation and function 

Histone deacetylase inhibitors (HDACi) alter chromatin accessibility by inhibiting the removal 

of lysine residues from histone proteins to modulate gene expression. More recently, it has been 

shown that protein acetylation is an important post-translational modification that changes 

protein function (227). In addition to their anti-neoplastic properties, HDACi are emerging as 

anti-inflammatory agents (228) that reduce DC stimulatory capacity (228-232). HDACi inhibit 

DC differentiation (230, 233), thus we hypothesized that HDACi will augment MDSC expansion 

by preventing DC differentiation

1.4.2 Specific Aim 2 (Chapter 3): To determine if Fms-like tyrosine kinase 3 ligand 

expands and activates MDSC 

 (see also page 41). 

Fms-like tyrosine kinase 3 (Flt3) and its ligand, Flt3L, promote the development of DC (234-

236) through the transcription factor STAT3 (192). The ability of Flt3L to promote MDSC 

expansion has not been previously examined. STAT3 is a major transcription factor involved in 

the expansion and activation of MDSC (6, 49) and is activated by Flt3L (192). Therefore, we 

hypothesized that Flt3L will expand and activate MDSC in a STAT3-dependent manner (see also 

page 68). 
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1.4.3 Specific Aim 3 (Chapter 4): To ascertain the function of RAPA-resistant mTOR in 

DC 

mTOR is an integral regulator of APC and T cell function (172, 237) that is the catalytic subunit 

of two mTOR-containing complexes,- mTORC1 and mTORC2 (175, 176). mTORC1 regulates 

DC differentiation and promotes their stimulatory function (95, 172, 189). Much of our 

understanding of mTORC1 function in DC stems from the use of RAPA as an inhibitor of 

mTOR; however, RAPA spares mTORC2 function (175, 176). Additionally, mTORC1 exerts 

RAPA-resistant functions in mouse embryonic fibroblasts (184, 185). Due to the recent 

discovery of RAPA-resistant mTORC1 and mTORC2 outputs and new methods to inhibit these 

complexes, little is known about the role of RAPA-resistant mTOR in DC function. We 

hypothesized that RAPA-resistant mTOR has distinct immunoregulatory functions from RAPA-

sensitive mTORC1 in DC (see also page 80). 
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EXPANSION OF MYELOID-DERIVED SUPPRESSOR CELLS IN VITRO AND IN 

VIVO 
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This chapter was published as a full-length research article highlighted in the Spotlight on 

Leading Edge Research in the Journal of Leukocyte Biology (2012;91(5):701-9 PMID: 

22028329) (238), accompanied by an editorial (Reddy P. 2012;91(5):679-81 PMID: 22547132) 

(239). 

2.1 ABSTRACT 

Chromatin-modifying histone deacetylase inhibitors (HDACi) exhibit anti-inflammatory 

properties that reflect their ability to suppress dendritic cell function and enhance regulatory T 

cells. The influence of HDACi on myeloid-derived suppressor cells (MDSC), an emerging 
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regulatory leukocyte population that potently inhibits T cell proliferation, has not been examined. 

Exposure of GM-CSF-stimulated murine BM cells to HDACi led to a robust expansion of 

monocytic MDSC (CD11b+Ly6C+F4/80intCD115+) that suppressed allogeneic T cell proliferation 

in a nitric oxide synthase- and heme oxygenase-1-dependent manner with similar potency to 

control MDSC. The increased yield of MDSC correlated with blocked differentiation of BM 

cells and an overall increase in hematopoietic stem and progenitor cells (Lin-Sca-1+c-Kit+). In 

vivo, TSA enhanced the mobilization of splenic HSPC following GM-CSF administration and 

increased the number of CD11b+Gr1+ cells in BM and spleen. Increased numbers of Gr1+ cells 

that suppressed T cell proliferation were recovered from spleens of TSA-treated mice. Overall, 

HDACi enhance MDSC expansion in vitro and in vivo, suggesting that acetylation regulates 

myeloid cell differentiation. These findings establish a clinically applicable approach to augment 

this rare and potent suppressive immune cell population and support a novel mechanism 

underlying the anti-inflammatory action of HDACi. 
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2.2 INTRODUCTION 

Histone acetylation classically modulates gene expression, whereby acetyl groups bound to 

lysine residues of histone proteins relax DNA binding, permitting gene accessibility and 

transcription. Histone deacetylase inhibitors (HDACi) increase the extent of histone acetylation 

by inhibiting removal of acetyl groups from histones, resulting in tighter DNA binding and 

reduction in gene expression (240). Histone acetylation offers a precise regulatory mechanism 

where only a small proportion of genes are regulated by HDAC inhibition (229). However, new 

evidence demonstrates non-histone protein acetylation to also be an important post-translational 

modification, which suggests that acetylation is a more global regulatory mechanism than 

originally appreciated (227).  

Trichostatin A (TSA) is a naturally-occurring antifungal metabolite produced by 

Streptomyces that potently inhibits HDAC activity. TSA and other HDACi are well-known anti-

neoplastic agents that modulate gene expression, leading to cell cycle arrest, differentiation, or 

apoptosis (241). The HDACi suberoylanilide hydroxamic acid (SAHA; Vorinostat) is FDA-

approved for the treatment of cutaneous T cell lymphoma. Recently, HDACi have been shown to 

suppress inflammatory disease (228) and to inhibit experimental graft-versus-host disease 

(GVHD) (242), systemic lupus erythematosus (243) and colitis (244). One mechanism that 

correlates with these anti-inflammatory effects of HDACi is the ability of these agents to target 

dendritic cell (DC) and other myeloid lineage antigen (Ag)-presenting cell (APC) functions (228-

232). 

DC are professional BM-derived APC with unparalleled ability to stimulate naïve and 

memory T cells and regulate their function (94, 95, 139). It has been demonstrated recently that 

HDACi reduce the stimulatory capacity of these potentially potent APC (228-232). Specifically, 



 41 

HDACi inhibit DC differentiation (230, 233) and reduce the expression of major 

histocompatibility complex (MHC) gene products, costimulatory molecules and 

proinflammatory cytokines by these cells, rendering them less immunostimulatory (230). In 

addition, HDACi increase the expression of indoleamine 2,3-dioxygenase (IDO) (231, 232), 

reduce production of T helper type 1 (Th1) cell-attracting chemokines, and selectively inhibit the 

induction of Th1 responses due to reduced bioactive interleukin (IL)-12 secretion (229). While 

studies of the anti-inflammatory activity of HDACi have focused on conventional myeloid DC 

(mDC), their influence on myeloid-derived suppressor cells (MDSC), that have emerged recently 

as important regulators of immune reactivity (6), has not been investigated. 

MDSC are a rare, heterogenous population of incompletely differentiated, immature 

myeloid and myeloid progenitor cells. They expand from BM progenitors under inflammatory 

conditions, particularly in cancer (6), and in response to granulocyte macrophage-colony 

stimulating factor (GM-CSF) ex vivo (64) and in vivo (245). Murine MDSC co-express CD11b 

and Gr1 and comprise 20-30% and 2-4%, respectively, of normal murine BM and splenocyte 

populations (6). MDSC potently inhibit T cell proliferation and are therefore regarded as 

important regulators of immune reactivity (6). They have emerged as potential therapeutic agents 

based on their ability to suppress GVHD (64) and to mediate experimental transplant tolerance 

(23). Given the ability of HDACi to impair DC differentiation (230, 233), we hypothesized that 

TSA might increase the generation of MDSC from GM-CSF-stimulated BM cells by preventing 

the differentiation of BM cells into mature myeloid cells. 

We demonstrate for the first time, the ability of HDACi to enhance the generation of 

functional MDSC both in vitro and in vivo. TSA inhibited the differentiation of BM cells 

stimulated with GM-CSF in vitro and augmented hematopoietic stem and progenitor cells 
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(HSPC) in BM cell cultures correlating with increased numbers of MDSC. The related HDACi 

SAHA also increased phenotypic MDSC in GM-CSF-exposed BM cultures. TSA administration 

following GM-CSF delivery enhanced the mobilization of splenic HSPC and augmented the 

expansion of BM and splenic CD11b+Gr1+ cells in vivo. Greater numbers of splenic Gr1+ cells, 

with potent ability to suppress allogeneic T cell proliferation, were recovered from mice given 

TSA and GM-CSF than from those given GM-CSF alone. Taken together, these novel findings 

demonstrate the ability of HDACi to enhance the expansion of MDSC in vitro and in vivo, 

correlating with their ability to expand HSPC and impede BM cell differentiation. 

2.3 MATERIALS AND METHODS 

Animals. Experiments used 8-12 week old male C57BL/6 (B6; H2Kb) and BALB/c (H2Kd) mice 

from The Jackson Laboratory (Bar Harbor, ME, USA). Mice were housed in the specific 

pathogen-free facility of the University of Pittsburgh School of Medicine, and studies were 

conducted under an institutional animal care and use committee-approved protocol. 

Cell culture and purification. BM cells were differentiated for 7 days (d), as described 

(202) in recombinant (r) mouse GM-CSF (1000 U/ml; Schering-Plough, Kenilworth, NJ, USA) 

alone or with r mouse IL-4 (1000 U/ml; R&D Systems, Minneapolis, MN, USA). On d7, non-

adherent MDSC were purified by labeling with phycoerythrin (PE)-conjugated anti-Gr1 

monoclonal antibody (mAb) and anti-PE immunomagnetic bead purification (Miltenyi Biotec, 

Auburn, CA, USA) (246). mDC were isolated as described (202). TSA (0.1-10 nM; Sigma, St. 

Louis, MO, USA) or SAHA (10-500 nM; Selleck, Houston, TX, USA) was added to cultures on 

d2, 4, and 6. 
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Flow cytometry. Phenotypes were analyzed as described (188, 202) using fluorochrome-

conjugated mAb and streptavidin (eBioscience, San Diego, CA, USA or BD Bioscience, San 

Jose, CA, USA). HSPC and DC progenitors were analyzed on d4 of BM cell culture (110). A 

lineage (Lin) mAb cocktail consisting of anti-CD19, -B220, -CD3, -CD4, -CD8, -NK1.1, -

Ter119, -CD11b and -CD11c was used to set the Lin- gate. Anti-CX3CR1 was purchased from 

Abcam (Cambridge, MA, USA). Appropriately-conjugated, species and isotype-matched IgG 

served as controls. Adjusted overall cell population frequency was calculated by multiplying the 

frequency of the indicated population by the number of events for the gate divided by the total 

number of events recorded in the live cell singlet gate. 

MDSC suppression assay. MDSC suppressor function was ascertained as described (33), 

with minor modifications. Isolated BM-derived Gr1+ MDSC (B6) were rested overnight and 

tested for suppressor activity in allogeneic mixed leukocyte reaction (MLR) where 1x104 γ-

irradiated DC (B6; 20 Gy) stimulated CD3+ BALB/c T cell responders (4x105) for 72 hours (h) 

in the presence of 0-3x104 MDSC in 96-well, round-bottom plates. MDSC were rested for 16h to 

allow lipopolysaccharide (LPS) stimulation of DC that were also isolated on d7 and tested as 

stimulators (data not shown). Nω-Hydroxy-nor-L-arginine (norNOHA; Calbiochem, Gibbstown, 

NJ, USA; 500 μM), NG-Methyl-L-arginine (L-NMMA; Sigma; 0.5 mM), or tin protoporphyrin 

(SnPP; Enzo Life Sciences, Farmingdale, NY, USA; 0.15 mM) were added where indicated. 

Alternatively, B6 splenic Gr1+ MDSC (2x105), isolated from treated mice, were tested for their 

ability to suppress proliferation of CD3+ BALB/c T cell (2x105) responders stimulated with γ-

irradiated B6 mDC (5x104). 
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Immunoblot. Immunoblotting was performed as described (202) on lysates from >1x106 

BM cells or isolated Gr1+ cells using primary mAb to acetyl-histone H4 (Lys8; Cell Signaling 

Technology), arginase-1 (BD PharMingen), heme oxygenase-1 (Enzo Life Sciences), inducible 

nitric oxide synthase (Abcam), β-actin (Cell Signaling Technology) and glyceraldehyde-3-

phosphate dehydrogenase (GAPDH, Novus Biologicals, Littleton, CO, USA).  

Hydrodynamic plasmid transfection of mice and TSA administration. B6 mice were 

injected with mouse GM-CSF-pcDNA3 (50 μg; Dr. Joyce Solheim, University of Nebraska 

Medical Center, Omaha, NE, USA) or enhanced green fluorescent protein (eGFP)-pcDNA3 (50 

μg; Addgene, Cambridge, MA, USA) expression vectors as described (247). TSA administration 

(1 mg/kg/d; i.p.) was initiated 1d later (d1) and continued through d5. Spleens and femoral BM 

were harvested for analysis on d6. 

Statistical analyses. Results are expressed as means ± 1 standard deviation (SD). 

Significant differences between means were determined using a one-tailed Student’s ‘t’ test and 

Prism (GraphPad Software, La Jolla, CA, USA), and p<0.05 was considered significant. 

2.4 RESULTS 

2.4.1 TSA enhances BM cell proliferation in response to GM-CSF and especially GM-

CSF + IL-4 stimulation and skews myeloid lineage differentiation 

We first examined the influence of TSA on murine BM cell cultures stimulated with either GM-

CSF or GM-CSF + IL-4. Under both conditions, addition of TSA (10 nM) led to a significant 

increase in total cells recovered on d7 (Figure 2.1A). Although TSA modestly increased the 
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proliferation of BM cells stimulated with GM-CSF alone, addition of TSA to GM-CSF in the 

presence of IL-4 enhanced cell proliferation approximately 3-4 fold (Figure 2.1A), and in a dose-

dependent manner (Figure 2.2A). We next investigated the identity of the BM-derived cells 

expanded in TSA-treated cultures. Growth in GM-CSF alone led to a higher frequency of mDC 

(CD11b+CD11c+) than growth in GM-CSF + IL-4 (Figure 2.1B). Under both conditions, 10 nM 

TSA reduced the incidence of CD11b+CD11c+ DC (Figure 2.1B), consistent with impairment of 

DC differentiation by HDACi (230, 233). As reported previously (248), plasmacytoid DC (pDC; 

B220+CD11c+) were not generated to a significant degree in either GM-CSF alone or GM-CSF + 

IL-4, and this was unchanged in the presence of TSA (Figure 2.1C). 
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Figure 2.1 TSA enhances the expansion of BM-derived cells stimulated with GM-CSF ± IL-4 and favors the 
development of CD11b+Gr1+ cells in GM-CSF-stimulated BM cell cultures 
 
(A) C57BL/6 (B6) mouse BM cells were grown in GM-CSF ± IL-4, with or without 10 nM TSA. Addition of TSA 
to cultures led to enhanced expansion of total cells in GM-CSF and especially GM-CSF + IL-4. Absolute cell 
number is the cell count per 20 ml culture starting with 3-4x106 BM cells. Means + 1SD for n=3 separate 
experiments are shown. Cell samples were analyzed by flow cytometry for phenotypic (B) myeloid DC (mDC; 
CD11b+CD11c+), (C) plasmacytoid DC (pDC; B220+CD11c+) or (D) putative myeloid-derived suppressor cells 
(MDSC; CD11b+Gr1+). (B) TSA reduced the percentage of mDC by half when added to GM-CSF cultures and by 
approximately one third when added to GM-CSF + IL-4-stimulated cultures. (C) Cultures stimulated with GM-CSF 
± IL-4 produced few pDC, and this was unchanged by TSA treatment. (D) TSA led to increased generation of 
CD11b+Gr1+ cells in GM-CSF-stimulated cultures, and this effect was reversed by addition of IL-4. (E) 
CD11b+CD11c- cells were gated and analyzed for Gr1 expression. The majority of these cells expressed Gr1 in the 
absence of IL-4, while most cells were Gr1- in the presence of IL-4, regardless of exposure to TSA. (F) Cells from 
GM-CSF-stimulated cultures were further analyzed for expression of Ly6C and G (Gr1 epitopes), F4/80 and CD115. 
TSA-exposed cultures showed a 3-fold increase in CD11b+Ly6C+ cells that were mostly F4/80intCD115+. Data are 
representative of n=2 or more independent experiments. *, p<0.05 when compared to untreated control, determined 
by unpaired Student’s ‘t’ test. 
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There is evidence that GM-CSF expands murine MDSC from BM cells in vitro (25, 64) 

and in vivo (245). We found that TSA had contrasting effects on the generation of CD11b+Gr1+ 

presumptive MDSC, depending on whether the BM cells were differentiated in GM-CSF alone 

or GM-CSF + IL-4 (Figure 2.1D). Specifically, addition of TSA to cultures stimulated with GM-

CSF alone led to an increase in the incidence of CD11b+Gr1+ cells, from approximately 30% to 

70% (Figure 2.1D). Similarly, addition of SAHA, a clinically-utilized HDACi, to GM-CSF-

stimulated BM cell cultures led to a dose-dependent increase in total cells (Figure 2.2B) and the 

frequency of CD11b+Gr1+ cells (Figure 2.2C and 2.2D). By contrast, in GM-CSF + IL-4-

stimulated cultures, TSA reduced the incidence of CD11b+Gr1+ cells but enhanced the incidence 

of CD11b+Gr1- cells (from approximately 55% to 80%; Figure 2.1D). Within the CD11b+CD11c- 

gate, TSA enhanced the proportion of CD11b+Gr1+ cells in GM-CSF-stimulated cultures and 

alternatively, CD11b+Gr1- cells when GM-CSF + IL-4 was used (Figure 2.1E). Therefore, TSA 

differentially alters BM cell myeloid lineage commitment when stimulated with GM-CSF, 

depending on the presence of IL-4. 
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Figure 2.2 TSA and SAHA dose-dependently increase BM cell yield, and SAHA enhances CD11b+Gr1+ cells 
in GM-CSF-stimulated BM cell cultures 
 
(A) B6 BM cells were cultured with GM-CSF, IL-4 and increasing concentrations of TSA. Total cells were 
enumerated on d7. Means + 1SD of n=5 or more independent experiments are shown. (B) B6 BM cells were 
cultured with GM-CSF and increasing concentrations of SAHA and enumerated on d7. (C, E) BM cell phenotype 
from (B) was determined by flow cytometry, and the frequency of CD11b+Gr1+ cells was quantified (D). Data in (B) 
and (D) are the means + 1SD of n=3 independent experiments, while (C) and (E) are representative of n=3 
independent experiments. *, p<0.05 when compared to untreated control, determined by unpaired Student’s ‘t’ test. 
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MDSC are divided into granulocytic and monocytic subsets depending on their 

expression of the Gr1 epitopes, Ly6G and Ly6C, respectively, and further classified according to 

their expression of CD115 (macrophage colony-stimulating factor receptor) and F4/80 (6). Cells 

isolated from GM-CSF-stimulated BM cultures were assessed for their expression of these 

surface markers. Addition of TSA to these cultures increased the frequency of CD11b+Ly6C+ 

cells that were predominantly F4/80intCD115+ approximately 3-fold (Figure 2.1F). SAHA 

demonstrated a comparable effect on GM-CSF-mediated BM cell differentiation, favoring 

CD11b+Ly6C+F4/80intCD115+ cells (Figure 2.2E). 

2.4.2 TSA expands hematopoietic stem and progenitor cells correlating with increased 

growth of myeloid cells 

Since TSA could induce differing myeloid lineage cell expansion, depending on the presence of 

IL-4 (Figure 2.1), we considered that its effect might be to enhance the proliferation of an 

upstream myeloid progenitor, with divergent differentiation directed by appropriate 

hematopoietic growth factors. To ascertain the influence of TSA on myeloid progenitors, BM 

cells cultured in GM-CSF ± IL-4 were harvested on d4 following 2d exposure to TSA (10 nM) 

and assessed for myeloid lineage progenitors, as demonstrated in Figure 2.3. 
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Figure 2.3 Gating strategy used to identify HSPC and myeloid progenitors in BM cultures on d4 

 
The percentage of cells within the gate is indicated. The example shown is from a GM-CSF + IL-4-stimulated 
culture. Hematopoietic stem and progenitor cells (HSPC; Lin-Sca-1+c-Kit+), myeloid progenitors (MP; Lin-Sca-1-c-
KithiFlt3+CX3CR1-), monocyte and dendritic cell progenitors (MDP; Lin-Sca-1-c-KithiFlt3+CX3CR1+) and common 
plasmacytoid and conventional DC progenitors (CDP; Lin-Sca-1-c-KitloFlt3+CD115+CX3CR1+) are shown. Data are 
representative of n=3 independent experiments. 
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TSA significantly increased the frequency of hematopoietic stem and progenitor cells 

(HSPC; Lin-Sca-1+c-Kit+), irrespective of the presence of IL-4 (Figure 2.4A and 2.4B), but 

exerted no significant enhancing effect on the frequency of myeloid progenitors (MP), monocyte 

and DC progenitors (MDP) or common DC progenitors (CDP). However, cultures containing 

exogenous IL-4 exhibited an increased frequency of MP compared to those stimulated with GM-

CSF alone (Figure 2.4A). In agreement with the increased frequency of HSPC in cultures 

exposed to TSA, the absolute number of HSPC in these cultures was increased approximately 3-

fold, irrespective of the presence of IL-4 (Figure 2.4C). BM cells exposed to GM-CSF and TSA 

overnight demonstrated enhanced acetylation of histone H4 (Figure 2.4D). These findings 

indicate that the increased number of myeloid lineage cells induced by TSA (Figure 2.1) 

correlated with early expansion of HSPC, with the fate of the HSPC being determined by 

specific exogenous growth factor addition to the cultures. 

 

 

 



 52 

 

Figure 2.4 Culture of BM cells in TSA leads to an increased frequency and absolute number of hematopoietic 
stem and progenitor cells  
 
B6 BM cells were harvested on d4 following 2d exposure to TSA (10 nM). (A) The relative frequency of HSPC and 
specific progenitor cell populations was determined by flow cytometry. HSPC were defined as Lin-Sca-1+c-Kit+, 
myeloid progenitors (MP) as Lin-Sca-1-c-KithiFlt3+CX3CR1-; monocyte and DC progenitors (MDP) as Lin-Sca-1-c-
KithiFlt3+CX3CR1+, and common DC progenitors (CDP) as Lin-Sca-1-c-KitloFlt3+CD115+CX3CR1+. Data are means 
+ 1SD of n=4 independent experiments. (B) Representative flow cytometry plots demonstrating the expansion of 
HSPC by TSA. Plots shown are Lin- gated and representative of n=4 independent experiments. (C) The absolute 
number of HSPC and specific myeloid progenitor populations was determined per plate. Cell number was 
determined by multiplying the average total number of cells isolated per plate for each treatment by the frequency of 
each progenitor. Data are means + 1SD of n=3 independent experiments. *, p<0.05 when compared to untreated 
control, determined by unpaired Student’s ‘t’ test. (D) BM cells were stimulated with GM-CSF (1000 U/ml) for 2 h 
prior to treatment with TSA at the indicated concentrations overnight. Acetyl-histone H4 and β-actin were detected 
by immunoblot. Data are representative of n=2 independent experiments. 

2.4.3 Increased numbers of mDC and functional MDSC are generated in the presence of 

TSA 

We next sought to verify the function of presumptive MDSC recovered from TSA-treated, GM-

CSF- and GM-CSF + IL-4-stimulated cultures. A >2-fold increase in the number of Gr1+ cells 

recovered by positive bead selection from GM-CSF alone-stimulated cultures was achieved in 

the presence of TSA (10 nM; Figure 2.5A), verifying the increase in these cells determined by 
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flow cytometry (Figure 2.1). Cells isolated by Gr1 positive selection were primarily 

CD11b+Ly6C+F4/80intCD115+ (Figure 2.5B). The ability of the presumptive MDSC to suppress 

alloreactive CD3+ T cell proliferation in MLR was determined. CD11b+Gr1+ cells differentiated 

in TSA were as potent in suppressing allogeneic T cell responses on a per cell basis as those 

from control cultures (Figure 2.5C and Figure 2.6A). MDSC from GM-CSF + IL-4-stimulated 

cultures (that yielded fewer cells [Figure 2.5A]) were slightly more effective on a per cell basis 

in suppressing CD3+ T cell proliferation than those generated in GM-CSF alone (Figure 2.6B 

and 2.6C). 
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Figure 2.5 Putative MDSC expanded by TSA exhibit suppression of T cell proliferation 
 
(A) MDSC were isolated by Gr1+ immunomagnetic bead selection from 7d cultures in GM-CSF ± IL-4 
supplemented with TSA (10 nM). TSA increased the numbers of MDSC from GM-CSF-stimulated cultures. 
Differentiation of BM cells in GM-CSF with TSA yielded approximately twice as many MDSC as untreated 
cultures. Significantly more MDSC were isolated from GM-CSF-stimulated cultures than those containing GM-CSF 
+ IL-4. (B) The phenotype of MDSC isolated by Gr1 positive selection was determined by flow cytometry. (C) 
MDSC (B6) isolated from cultures described in (A) were tested as suppressors in allogeneic MLR at graded ratios 
from 0 to 3x104 MDSC with 1x104 DC (B6) as stimulators and 4x105 CD3+ T cells (BALB/c) as responders. 
Addition of TSA to GM-CSF-stimulated cultures did not alter the ability of MDSC to suppress T cell proliferation. 
(D) Expression of arginase-1, iNOS, and HO-1 were detected by immunoblot of freshly-isolated Gr1 cells from 
GM-CSF-stimulated BM cell cultures or those containing TSA. Acetyl-histone H4 was also detected by 
immunoblot, and GAPDH was included as a loading control. (E) MLR were set up as in (C), with 3x104 MDSC. 
Inhibitors of arginase-1 (norNOHA), iNOS (L-NMMA) and HO-1 (SnPP) were added to cultures on d0. MDSC 
from GM-CSF- and GM-CSF/TSA-stimulated cultures required both iNOS and HO-1 to suppress T cell 
proliferation. The bar graph in (A) shows the means + 1SD of n=2 independent experiments. The dot plots in (B) are 
representative of n=3 independent experiments, and the data in (C), (D), and (E) are representative of n=2 
independent experiments. Error bars indicate SD of triplicate wells. Differences were considered significant 
compared to untreated control (*, p<0.05) using a Student’s ‘t’ test. 
 
 
 

MDSC suppress T cell proliferation by local depletion of L-arginine by arginase-1 and 

inducible nitric oxide synthase (iNOS). NO produced by iNOS also has direct T cell suppressive 

effects (6). Likewise, the cytoprotective and immunoregulatory enzyme heme oxygenase-1 (HO-

1) is a critical mechanism for the T cell suppressive capacity of MDSC (77). Cells isolated by 
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Gr1 positive selection were immunoblotted to detect expression of arginase-1, iNOS, and HO-1 

(Figure 2.5D). Gr1+ cells isolated from TSA-exposed cultures had lower expression of iNOS and 

HO-1 and did not express arginase-1. As expected, these cells had higher levels of acetylated 

histone H4 compared to control. Arginase-1 and iNOS are inhibited by the addition of nor-

NOHA and L-NMMA, respectively (64). Additionally, HO-1 is selectively inhibited by SnPP. 

Addition of these inhibitors to MLR containing MDSC from GM-CSF-stimulated cultures 

demonstrated that iNOS and HO-1 are independently indispensable for the suppressive function 

of the MDSC (Figure 2.5E). The function of MDSC expanded in the presence of TSA also 

required these enzymes. Thus, although Gr1+ cells isolated from TSA-exposed cultures displayed 

reduced levels of iNOS and HO-1, they still displayed potent T cell suppressive function. Taken 

together, these results indicate that increased numbers of MDSC can be recovered from BM cell 

cultures containing TSA, and that the suppressive function and mechanism of these cells is 

similar to those from control cultures. 
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Figure 2.6 MDSC generated from BM cultures stimulated with GM-CSF and IL-4 are moderately more 
suppressive than those generated in GM-CSF alone 
 
(A) Addition of TSA to GM-CSF + IL-4-stimulated cultures did not alter the ability of MDSC to suppress T cell 
proliferation. (B)-(C) Comparison of MDSC generated in GM-CSF or GM-CSF + IL-4 alone (B) with those also 
generated with 10 nM TSA (C). The plots in (A)-(C) are representative of n=2 or more independent experiments. 
Error bars indicate SD of triplicate wells. Differences were considered significant (*, p<0.05) using a Student’s ‘t’ 
test. 

 
 
 
Histone deacetylase inhibition during the generation of mDC from BM cells stimulated 

with GM-CSF + IL-4 led to increased numbers of a homogenous population of CD11c+ cells 

with reduced granularity compared to those from control cultures (Figure 2.7A and 2.7B). 

Consistent with previous reports (230, 231), exposure of BM cells stimulated with GM-CSF + 

IL-4 to increasing concentrations of TSA led to a dose-dependent reduction in several 

functionally important DC surface molecules, including CD40, CD80, CD86, MHC class II Ag 

(I-Ab) and the chemokine receptor CCR7 (Figure 2.7C and 2.7D). 
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Figure 2.7 TSA enhances expansion of immature DC in GM-CSF + IL-4-stimulated BM cell cultures 
 
(A) B6 BM cells were grown in GM-CSF ± IL-4, with or without 10 nM TSA. mDC were isolated by CD11c 
purification on d7 and enumerated by trypan blue exclusion. IL-4 was required for TSA-induced expansion of DC, 
leading to a 2-fold increase compared to cultures without TSA. Absolute cell number is the cell count per 20 ml 
culture starting from 3-4x106 BM cells. (B) mDC generated in BM cell cultures stimulated with GM-CSF + IL-4 and 
TSA (10 nM) demonstrated reduced size (forward scatter) and granularity (side scatter) compared to control. (C) DC 
phenotype was determined on d7 by flow cytometry after CD11c immunomagnetic purification. Mean fluorescence 
intensity (MFI) is shown in the upper right and % positive cells indicated above the horizontal bar. Isotype control is 
shown in grey. (D) Bar graph representing the ratio of MFI for the treatment group versus the control group for each 
molecule examined. Data are representative of n=3 or more independent experiments. Data in (A) and (D) are the 
means + 1SD obtained from n=3 or more independent experiments. Differences from control values were considered 
significant (*) if p<0.05 using an unpaired Student’s ‘t’ test. 
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2.4.4 TSA augments GM-CSF-mediated expansion of CD11b+Gr1+ BM cells in vivo 

In order to extend our in vitro finding that TSA enhanced MDSC production from BM cells 

(Figure 2.1 and 2.5), we tested its ability to promote expansion of these myeloid cells in vivo 

(Figure 2.8). In mice given TSA together with GM-CSF, a significant increase in the absolute 

number of BM cells was observed (Figure 2.8A). TSA increased the absolute number and 

adjusted frequency of total BM CD11b+Gr1+ cells significantly compared with mice treated with 

GM-CSF alone (Figure 2.8B-D). Conversely, B220+ cells, representing a non-myeloid cell 

population, were reduced significantly (Figure 2.8B and 2.8C). Of the two subsets of 

CD11b+Gr1+ cells, TSA exerted a greater effect on the Gr1hi subset (Figure 2.8C and 2.8D). 
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Figure 2.8 TSA enhances GM-CSF-mediated in vivo expansion of CD11b+Gr1+ cells in BM 
 
B6 mice receiving murine GM-CSF plasmid or control eGFP plasmid were treated with TSA (1 mg/kg/d) or vehicle 
(DMSO) for 5d. (A) Viable BM cells from one femur were enumerated using trypan blue exclusion. The absolute 
number (B) and adjusted frequency (C) of Gr1hi and Gr1lo subsets of BM CD11b+Gr1+ cells were identified by flow 
cytometry. (D) Representative flow cytometry plots of CD45+-gated cells (1x104 events) demonstrating MDSC 
gates. The data in (A)-(C) are plotted as means + 1SD for n=3 independent experiments with 2-4 animals per group. 
Significance values (*, p<0.05) were determined by unpaired Student’s ‘t’ test for total CD11b+Gr1+ cells and B220+ 
cells. 

2.4.5 TSA enhances GM-CSF-mediated expansion of splenic MDSC in vivo, correlating 

with enhanced mobilization of peripheral HSPC 

In BM cell cultures, TSA enhanced the number and frequency of HSPC (Figure 2.4) correlating 

with an increase in myeloid cells (Figure 2.1, 2.2, 2.5 and 2.7). We ascertained whether this 

effect of TSA could also be seen in vivo following GM-CSF administration (Figure 2.9). 

Although no significant effect was observed on HSPC residing in the BM (Figure 2.9A and 

2.9B), TSA significantly enhanced the absolute number (Figure 2.9C) and frequency (Figure 

2.9D and 2.9E) of HSPC in the spleens of mice treated with GM-CSF. 
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Figure 2.9 TSA increases the mobilization of peripheral HSPC following GM-CSF administration 
 
B6 mice given GM-CSF or eGFP plasmid were treated with TSA or vehicle (DMSO). HSPC (Lin-c-Kit+Sca-1+) 
were identified in BM cell (A)-(B) and splenocyte populations (C)-(D) by flow cytometry. The absolute number of 
HSPC in the BM from one femur (A) and the spleen (C) was determined from the adjusted frequency of HSPC in 
the BM (B) and spleen (D). Data are plotted as means + 1SD of n=5-9 from 3 independent experiments. 
Significance values (*, p<0.05) were determined by unpaired Student’s ‘t’ test. (E) Representative flow cytometry 
plots of Lin--gated cells demonstrating splenic HSPC. 

 
 
 
Unlike BM cells (Figure 2.8A), the absolute number of splenocytes was not increased 

significantly in mice given TSA in combination with GM-CSF (Figure 2.10A). However, as 

observed in the BM (Figure 2.8B-D), TSA significantly increased the absolute number and 

frequency of splenic CD11b+Gr1+ cells in animals given GM-CSF (Figure 2.10B-D). 

CD11b+Gr1+ cells that expanded in the spleen were predominantly Gr1lo. mDC expansion was 

not significantly increased by TSA in the spleens of mice given GM-CSF (data not shown), 

reflecting the need for IL-4 to allow expansion of mDC by TSA (Figure 2.7A). As in the BM, 

B220+ cells were not increased significantly in the spleen (Figure 2.10B and 2.10C); however, 

the trend in increased absolute number reflected an increased absolute number of splenocytes in 

TSA-treated mice given GM-CSF (Figure 2.10A). These splenocytes yielded a significantly 

increased number of Gr1+ cells (Figure 2.10E) that were functionally intact suppressors of 
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allogeneic T cell proliferation in MLR (Figure 2.10F). Thus, these data confirm in vivo our in 

vitro finding that TSA augments GM-CSF-mediated expansion of MDSC correlating with an 

increased number of splenic HSPC. 
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Figure 2.10 TSA enhances GM-CSF-mediated expansion of suppressive CD11b+Gr1+ cells in the spleen 
 
(A) Splenocytes were enumerated using trypan blue exclusion from mice receiving hydrodynamic infusion of GM-
CSF or eGFP plasmid and treated with TSA or vehicle (DMSO). The absolute number (B) and adjusted frequency 
(C) of Gr1hi and Gr1lo subsets of splenic CD11b+Gr1+ cells were determined by flow cytometry. B220+ cells were 
included as a negative control. (D) Representative flow cytometry plots of CD45+-gated cells (5x104 events) 
demonstrating CD11b+Gr1hi and CD11b+Gr1lo gates. (E) Gr1+ cells were isolated by positive bead selection from 
50x106 pooled splenocytes of each treatment group and live cells enumerated by trypan blue exclusion. (F) Isolated 
Gr1+ cells were tested as suppressors in MLR using B6 DC as stimulators and BALB/c CD3+ T cells as responders. 
Positive controls consisted of DC + T cells, in the absence of added Gr1+ cells. The data in (A)-(C) are plotted as 
means + 1SD for n=4 independent experiments, with 2-4 animals per group. Significance (*, p<0.05) was 
determined by unpaired Student’s ‘t’ test for total CD11b+Gr1+ cells and B220+ cells. The data in (E)-(F) are means 
+ 1SD of n=2 independent experiments, with 2-4 mice per group. Significance values (*, p< 0.05) were determined 
by unpaired Student’s ‘t’ test in (E) and paired Student’s ‘t’ test in (F). 
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2.5 DISCUSSION 

Several recent studies have described the ex vivo expansion of early stem cell progenitors using 

HDACi (249-253). While others have shown (249, 251, 252) that TSA increases HSPC 

proliferation under conditions favoring stem cell renewal, our finding that TSA expands HSPC in 

GM-CSF ± IL-4-stimulated BM cell cultures reveals that this effect is maintained even under 

strong differentiation signals from GM-CSF. A similar effect has been seen with human CD34+ 

cells stimulated with G-CSF in the presence of the HDACi valproic acid (250). To our 

knowledge, the present study presents the first evidence that in vivo administration of HDACi 

enhances peripheral HSPC, likely due to their increased mobilization from the BM since recent 

evidence demonstrates that HDACi may reduce HSPC adherence to BM stromal cells (254). 
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In addition, we found that addition of TSA to BM cell cultures stimulated with GM-CSF 

skews the differentiation of myeloid cells depending on the presence of IL-4. Exposure of BM 

cell cultures to TSA reduced the phenotypic differentiation of DC (Figure 2.1B), favoring a 

population of CD11c-CD11b+ cells. These observations are in agreement with previous reports 

that HDACi block DC differentiation (230, 233). The non-histone protein signal transducer and 

activator of transcription (STAT) 3 represents an intriguing target to further explain the 

mechanism of HDACi enhancement of MDSC expansion. STAT3 has a known acetylation site at 

lysine 685 that is required for its dimerization and transcriptional regulation (255), and exposure 

to HDACi promotes STAT3 activity by this mechanism (232). GM-CSF (245) and M-CSF (256) 

are among the soluble factors that induce MDSC expansion. Many of these factors activate 

STAT3, which is currently believed to be the most important transcription factor regulating 

MDSC expansion (6). Furthermore, STAT3 is indispensable for the maintenance of embryonic 

stem cell pluripotency and self-renewal (257). These findings make STAT3 a strong candidate 

for the molecular regulation of MDSC and potentially HSPC expansion in our model. 

Importantly, our findings provide a novel platform for the expansion of MDSC in vitro. 

Typically, MDSC are expanded in vivo using either GM-CSF or inflammatory stimuli such as 

bacterial LPS. However, GM-CSF has been used to generate monocytic MDSC in vitro from BM 

cells, and these MDSC required iNOS for suppressive activity (25). Our data support these 

findings where GM-CSF-expanded monocytic MDSC required iNOS activity to suppress T cell 

proliferation, but they did not require arginase-1 activity (Figure 2.5E). In addition, MDSC 

isolated from BM cultures in our studies required HO-1 for their suppressive activity, similar to 

those isolated from endotoxin-exposed mice (77). In contrast, Highfill et al (64) used GM-CSF to 

expand monocytic CD11b+Ly6C+ MDSC, but in their system, the MDSC required arginase-1 for 
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suppressive activity. This discrepancy may result from our use of higher concentrations of GM-

CSF (1000 U/ml vs. 250 U/ml), a longer culture period (7d vs. 4d) or different selection strategy 

(Gr1 vs. CD11b). TSA-expanded MDSC demonstrated a similar suppressive potency and 

mechanism of suppression as control MDSC, suggesting that the ability of HDACi to block 

complete myeloid differentiation (230, 233) leads to a build-up of immature myeloid cells and 

myeloid progenitors with intact suppressive function. In order to increase the potential to move 

this strategy to the clinic, further studies will be required to determine if this approach can also 

be used to expand human MDSC from peripheral blood mononuclear cells. 

In vitro and in vivo methods to generate MDSC represent valuable tools to explore the 

potential use of these potent regulatory cells for therapeutic purposes. Two groups (64, 89) have 

generated MDSC in vitro that suppressed GVHD, and others have adoptively transferred MDSC 

to alleviate experimental inflammatory bowel disease (13) and promote skin allograft survival 

(84). The use of HDACi to enhance GM-CSF-mediated expansion of MDSC will allow for 

further interrogation of these cells to develop their therapeutic potential. 
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3.1 ABSTRACT 

The Flt3 (Fms-like tyrosine kinase 3)-Flt3 ligand (Flt3L) pathway is critically involved in the 

differentiation and homeostasis of myeloid cells, including dendritic cells (DC); however, its role 

in the expansion and function of myeloid-derived suppressor cells (MDSC) has not been 

determined. Herein, we describe the ability of Flt3L to expand and activate murine MDSC 

capable of suppressing allograft rejection upon adoptive transfer. While Flt3L expands and 

augments the stimulatory capacity of myeloid DC, MDSC expanded by Flt3L have increased 

suppressive activity. Although STAT3 is considered the central transcription factor for MDSC 

expansion and function, inhibition of STAT3 did not block, but augmented Flt3L-mediated 

MDSC expansion, without affecting their suppressive capacity. However, STAT3 inhibition 

reduced Flt3L-mediated DC expansion, signifying that STAT3 regulates the switch between 

normal DC differentiation and accumulation of suppressive myeloid cells. Together, these 

findings enhance understanding of the immunomodulatory properties of Flt3L. 

3.2 INTRODUCTION 

Myeloid-derived suppressor cells (MDSC) are recently-characterized innate immunoregulatory 

cells that expand under inflammatory conditions, such as cancer, sepsis, allograft rejection, and 

autoimmunity [reviewed (6, 258)]. Although mouse and human MDSC exhibit considerable 

heterogeneity, they share the ability to induce apoptosis or suppress T cell proliferation and 

secretion of cytokines (19, 258). In mice, MDSC are broadly identified as CD11b+Gr1+ cells, 

while cell morphology and differential surface expression of the Gr1 antigens Ly6G and Ly6C 
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distinguish granulocytic (CD11b+Ly6G+) and monocytic (CD11b+Ly6C+) subsets (6). Expansion 

and activation of MDSC occurs through the action of growth factors that promote myelopoiesis 

(90, 245) and pro-inflammatory cytokines (6, 90).  

Fms-like tyrosine kinase 3 [Flt3; CD135; fetal liver kinase-2 (Flk2)] is a receptor tyrosine 

kinase expressed on hematopoietic stem cells and early precursors (259). The Flt3-Flt3 ligand 

(Flt3L) pathway is critically involved in dendritic cell (DC) homeostasis (234-236). Flt3L 

activates the transcription factor STAT3 (192), that is strongly implicated in MDSC expansion 

and function (6). However, the potential of Flt3L to support MDSC expansion/activation is 

undefined. Due to the potent ability of Flt3L to increase myeloid precursors and activate STAT3, 

we hypothesized that Flt3L-driven myelopoiesis would not only promote development of DC, 

but also suppressive MDSC. 

 Herein, we report that Flt3L expands and activates Ly6G+ and Ly6C+ MDSC. In contrast, 

DC expanded by Flt3L are more stimulatory than steady-state DC. Although DC expansion by 

Flt3L is dependent on STAT3, surprisingly, inhibition of STAT3 enhances Flt3L-induced 

mobilization of MDSC, without affecting their suppressive function. Adoptive transfer of Flt3L-

mobilized MDSC, but not steady-state CD11b+Gr1+ cells, prolongs fully MHC-mismatched 

cardiac allograft survival. 

 

 

 

 

 



 69 

3.3 MATERIALS AND METHODS 

Animals and drug administration. 8-12 week old male BALB/c (H2Kd) or C57BL/6 (B6; H2Kb) 

mice were given r human Flt3L (Chinese hamster ovary cell-derived; 10 µg/d i.p., Amgen) for 

10 d. The STAT3 inhibitor S31-201 (5 mg/kg; Selleck Chemicals) was administered i.p. as 

described (260). All studies were performed under an institutional animal care and use 

committee-approved protocol. 

Flow cytometry. Cell surface and intracellular marker expression was analyzed as 

described (202, 238).  

MLR and suppression assay. MDSC were isolated from splenocytes by positive 

selection with FITC anti-Ly6C, PE anti-Ly6G, or PE anti-Gr1 using anti-FITC or anti-PE 

microbeads (Miltenyi Biotec), as described (238, 261). DC were isolated by CD11c 

immunomagnetic bead selection and γ-irradiated (20 Gy). T cell proliferation using DC as 

stimulators was assessed in MLR at 72 h by [3H] TdR incorporation. 

Vascularized heart transplantation. Heterotopic intra-abdominal mouse heart 

transplantation was performed and graft survival monitored as described (261). 

Statistics. Data are presented as means ± 1 standard deviation. Significant differences 

between means and survival curves were determined using a two-tailed, Student’s ‘t’ test and 

log-rank test, respectively. 
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3.4 RESULTS AND DISCUSSION 

We first examined myeloid populations expanded by Flt3L. Total splenocyte number was 

increased (Figure 3.1A), and in agreement with previous studies (234, 236), Flt3L increased the 

frequency and absolute number of conventional DC (Figure 3.1B-D). Splenic CD11b+Gr1+ cells 

were also increased in frequency and absolute number by Flt3L; however, macrophage 

(CD11bintF4/80hi) frequency was unchanged (Figure 3.1B and 3.1C). Of the lymphoid 

populations examined, Flt3L only increased the frequency of Foxp3+ regulatory T cells (Treg); 

however, the absolute number of all T cell populations was augmented (Figure 3.2A-C). This 

increase in natural thymic-derived Treg is thought to be due to DC-mediated expansion of Treg 

(262), and similar results have been seen in human subjects following Flt3L administration 

(263). Since Flt3L has been given to human subjects safely (263, 264), it will be necessary to 

determine if Flt3L expands human MDSC in the peripheral blood. 
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Figure 3.1 Flt3L expands myeloid DC and CD11b+Gr1+ cells 
 

(A) Total viable splenocytes from Flt3L-treated mice were enumerated using trypan blue exclusion. (B)-(C) The 
frequency of splenic myeloid DC (CD11c+MHC class II+; CD11b+CD11c+), CD11b+Gr1+ cells, and macrophages 
(CD11bintF4/80hi) within CD45+-gated cells was determined and (D) absolute number quantified. Data are 
representative of n≥2 experiments with n≥3 mice per group. * p<0.05. 
 
 
 

We next sought to further characterize surface antigen expression on CD11b+Gr1+ cells 

expanded by Flt3L. Flt3L induced expansion of both CD11b+Ly6Cint/hi and CD11b+Ly6G+ cells 

(Figure 3.3A-C). CD11b+Ly6Chi cells expressed an intermediate level of F4/80 and were CD115 

(M-CSF receptor)+, consistent with surface antigen expression described for MDSC (Figure 

3.3A) (6). CD11b+Ly6Cint and CD11b+Ly6G+ cells were F4/80- and expressed only low levels of 

CD115 (Figure 3.3A and 3.3B). Previously, Solheim et al (265) described an increase in splenic 

CD11b+Gr1+ cells following adenoviral delivery of Flt3L to tumor-bearing mice; however, the 

suppressive function of these cells was not assessed. We now show that both Ly6C+ monocytic 

and Ly6G+ granulocytic MDSC from Flt3L-treated mice are suppressive in MLR (Figure 3.3D). 
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Moreover, both Flt3L-expanded Ly6C+ and Ly6G+ MDSC were significantly more potent 

suppressors than their counterparts from steady-state control mice (Figure 3.3D). By contrast, 

CD11c+ DC isolated from Flt3L-treated mice demonstrated increased allogeneic T cell 

stimulatory capacity (Figure 3.3E). Thus, these data reveal that Flt3L has reciprocal capacities to 

expand functionally distinct populations of stimulatory DC and suppressive MDSC. 

 

Figure 3.2 Flt3L reduces the frequency of splenic B cells and pan CD4+ T cells, while Foxp3+ Treg frequency 
is increased 

 
(A) CD45+-gated BALB/c splenocytes were analyzed for the frequency of lymphoid cell subsets, including B cells 
(B220+), CD4+ T cells (CD3+CD4+), CD8+ T cells (CD3+CD8+), and Treg (CD3+CD4+Foxp3+). (B) The frequency 
of lymphoid subsets was determined across multiple experiments and (C) absolute numbers quantified. Data are 
representative of n≥6 mice. * p<0.05 by two-tailed Student’s ‘t’ test. 

 
 
 
STAT3 is considered the key regulator of MDSC expansion and suppressive function (6, 

49), and Flt3L is a potent activator of STAT3 (192). Therefore, we next ascertained whether 

STAT3 is required for Flt3L-mediated MDSC expansion. Inhibition of STAT3 in vivo during 
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Flt3L administration reduced the frequency of myeloid DC (Figure 3.4A and 3.4B), consistent 

with earlier reports using conditional STAT3 knockout mice (192). By contrast, expansion of 

CD11b+Gr1+ cells by Flt3L was augmented by STAT3 inhibition (Figure 3.4A and 3.4B). 

Absolute numbers of CD11c+ and Gr1+ cells isolated from spleens of these mice demonstrated a 

similar pattern with STAT3 inhibition (Figure 3.4C-E). Flt3L causes an accumulation of 

common myeloid progenitors in conditional STAT3 knockout mice (192). Our data suggest that 

this increase in common myeloid progenitors resulting from blocked DC differentiation may 

serve as a source of immunosuppressive MDSC. Significantly, STAT3 inhibition at the time of 

MDSC mobilization by Flt3L did not block activation of their suppressive ability (Figure 3.4F). 

Further study will be required to elucidate the signaling pathway by which Flt3L expands 

MDSC. There is evidence that the Flt3 pathway is capable of activating STAT5 and MAP 

kinases (266-268), which are implicated in MDSC expansion and survival (49, 59, 61). MDSC 

suppress T cell proliferation through several immunosuppressive enzymes, including arginase-1, 

inducible nitric oxide synthase, heme oxygenase-1 (HO-1), and IDO (6, 77, 269). Both steady-

state control and Flt3L-mobilized Gr1+ cells independently required HO-1 and IDO for 

suppression of T cell proliferation (Figure 3.4F). 
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Figure 3.3 Flt3L expands myeloid DC with augmented T cell stimulatory capacity but suppressive 
CD11b+Gr1+ cells  

 
F4/80 and CD115 expression was determined on (A) CD11b+Ly6Cint/hi and (B) CD11b+Ly6G+ splenocytes and (C) 
their frequency quantified. (D) BALB/c Ly6C+ and Ly6G+ splenocytes (2x105) were used as suppressors of B6 
CD3+ T cells (2x105) stimulated with Flt3L-mobilized BALB/c CD11c+ DC (2x104). (E) BALB/c CD11c+ DC were 
used to stimulate B6 CD3+ T cells (1x105). Data are representative of n≥2 experiments with n≥3 mice per group. 
(A)-(C) and (E), * p<0.05. (D) *, # p<0.05 compared to DC + T cells and PBS administration, respectively. 
 
 
 

Adoptively-transferred BM-derived MDSC inhibit graft-versus-host disease (64), and 

allogeneic skin transplant-activated MDSC transferred to skin graft recipients prolong survival 

(84). Furthermore, MDSC are required for the induction of organ transplant tolerance by 

costimulation blockade (23). In the present study, Gr1+ cells isolated from splenocytes of Flt3L-

treated mice, but not control mice, significantly prolonged fully MHC-mismatched cardiac 

allograft survival in the absence of additional immunosuppression (Figure 3.4G), thus 

demonstrating their in vivo suppressive function. Flt3L has been reported to have both pro- and 

anti-inflammatory effects in disease models (270-272). Thus, the varying impact of Flt3L on 

immune responses in vivo remains poorly understood, and the role of MDSC in these models has 
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not been explored. Our data show that Flt3L mediates STAT3-independent expansion of 

suppressive MDSC but STAT3-dependent expansion of stimulatory CD11c+ DC. These findings 

have significant clinical relevance for the use of Flt3L as an immune modulating agent. 

Combination of Flt3L administration with STAT3 inhibition could promote effective immune 

regulation, given the expectation that STAT3 inhibition will counter Flt3L-driven DC generation 

but allow MDSC expansion and activation. Conversely, delivery of Flt3L with inhibitors of IDO 

or HO-1 would be expected to augment previously demonstrated immune adjuvant properties of 

Flt3L. 
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Figure 3.4 Flt3L-mobilized MDSC are expanded in a STAT3-independent manner and prolong cardiac 
allograft survival 
 
(A) STAT3 inhibitor (STAT3i) was co-administered with Flt3L, and DC and MDSC frequency was determined and 
(B) quantified. (C) Total viable splenocytes, (D) DC, and (E) Gr1+ cells were isolated and enumerated. (F) Splenic 
BALB/c Gr1+ cells (1x105) were used as suppressors of BALB/c CD3+ T cells (1x105) stimulated with B6 Flt3L-
mobilized CD11c+ DC (1.25x104). Inhibitors of nitric oxide synthase (NG-Methyl-L-arginine; L-NMMA; 0.5 mM), 
arginase-1 (Nω-Hydroxy-nor-L-arginine; norNOHA; 0.5 mM), HO-1 (tin protoporphyrin; SnPP; 0.15 mM), or IDO 
(1-methyl-D-tryptophan; 1-Me-D-trp; 0.2 mM) were added to co-culture where indicated. Horizontal line represents 
no suppression. (G) 5x106 BALB/c Gr1+ cells were administered to BALB/c recipients i.v., 1 d before B6 heart 
transplant, and allograft survival was monitored. Data are representative of n=2 independent experiments. (A)-(E) * 
and # p<0.05 compared to PBS and Flt3L groups, respectively. (F) * p<0.05 compared to PBS or Flt3L Gr1+ cells in 
the absence of inhibitor unless otherwise indicated. 
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4.1 ABSTRACT 

Mammalian target of rapamycin (mTOR) is an important, yet poorly understood integrative 

kinase that regulates immune cell function. mTOR functions in two independent complexes,- 

mTOR complex (mTORC) 1 and 2. The immunosuppressant rapamycin (RAPA) inhibits 

mTORC1 but not mTORC2, and causes a paradoxical reduction in anti-inflammatory IL-10 and 

B7-H1 expression by dendritic cells (DC). Using catalytic mTOR inhibitors and DC lacking 

mTORC2, we show that restraint of STAT3-mediated IL-10 and B7-H1 expression during DC 

maturation involves a RAPA-insensitive and mTORC2-independent mTOR mechanism. 

Relatedly, catalytic mTOR inhibition promotes B7-H1- and IL-1β-dependent DC induction of 

regulatory T cells (Treg). Thus, we define an immunoregulatory pathway where RAPA-sensitive 

mTORC1 in DC promotes effector T cell expansion and RAPA-insensitive mTORC1 restrains 

Treg induction. These findings identify the first known RAPA-insensitive mTOR pathway that is 

not mediated solely by mTORC2 and have implications for the use of catalytic mTOR inhibitors 

in inflammatory disease settings. 
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4.2 INTRODUCTION 

Dendritic cells (DC) are innate professional antigen (Ag)-presenting cells (APC) that initiate and 

regulate adaptive immunity (94, 95). DC control T cell reactivity by coordinating display of Ag 

to T cells in the context of major histocompatibility class (MHC) molecules with the delivery of 

co-stimulation and cytokines that dictate T cell differentiation and function. While co-

stimulatory molecules support T cell responses, co-inhibitory molecules restrain T cell reactivity. 

Our understanding of the precise molecular mechanisms regulating expression of pro-

inflammatory versus regulatory signals by DC remains unclear.  

B7-homolog 1 [B7-H1, programmed death-1 ligand 1 (PD-L1); CD274] is a B7 family 

co-inhibitory molecule expressed on DC in a regulated manner that binds to programmed death-1 

(PD-1; CD279) on activated T cells thereby reducing their proliferation and pro-inflammatory 

cytokine production (150, 274). The B7-H1/PD-1 pathway plays a crucial role in the 

maintenance of peripheral tolerance (275). B7-H1 stimulates T cell secretion of anti-

inflammatory IL-10 (276) and promotes the induction, maintenance, and function of regulatory T 

cells (Treg) from naïve T cells (277). Importantly, the precise upstream mechanisms regulating 

B7-H1 expression remain elusive, and the differential regulation of co-stimulatory versus co-

inhibitory molecule expression is poorly understood, despite their central role in the activation 

and constraint of adaptive T cell responses by DC. 

Mammalian target of rapamycin (mTOR) is a highly-conserved, serine/threonine kinase 

that controls APC and T cell function (172, 237). The mTOR kinase performs the catalytic 

function of two independent complexes, -mTOR complex (mTORC) 1 and mTORC2 (175, 176). 

mTORC1 consists of mTOR, raptor, mLST8 and PRAS40, while mTORC2 contains mTOR, 

rictor, mLST8, mSIN1, and PROTOR (177). Although rapamycin (RAPA) is a potent allosteric 
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inhibitor of mTORC1, it exerts little activity against RAPA-insensitive mTORC2 (175, 176). 

However, novel, highly-selective adenosine triphosphate (ATP)-competitive active site mTOR 

inhibitors that block both mTOR-containing complexes have revealed RAPA-resistant mTORC1 

and mTORC2 signaling in non-immune cells (184, 185). mTORC1 inhibition suppresses 

conventional DC maturation and promotes their tolerogenicity (95, 172, 189). Conversely, 

RAPA has paradoxical, pro-inflammatory effects on DC, including increased secretion of IL-

12p70 and IL-1β, with concomitant reduced secretion of IL-10 and expression of B7-H1 (195, 

201-203, 278, 279). These effects on DC are mediated by augmentation of NF-κB activity and 

reduction in signal transducer and activator of transcription (STAT)3 activity (195, 278, 279). 

RAPA-insensitive mTORC2 regulates the actin cytoskeleton in non-immune cells (175, 

176), while insight is emerging into its function in T lymphocytes. Selective deletion of 

mTORC2 in T cells impairs their differentiation into Th1 and Th2 (204) or only Th2 subsets 

(205). In contrast to the well-defined role of mTORC1, little is known about the function of 

mTORC2 in APC or innate immunity. In this study, we sought to define the role of RAPA-

resistant mTOR in molecular regulation of the ability of DC to promote T cell immunity. 

We find that RAPA-resistant mTOR negatively regulates conventional DC STAT3-

mediated IL-10 and B7-H1 expression. Deletion of the mTORC2 subunit rictor had the opposite 

effect, suggesting that residual RAPA-resistant mTORC1 activity or dual mTORC1 and 2 

inhibition mediates this central anti-inflammatory pathway in DC. Enhanced STAT3 activation 

in DC exposed to ATP-competitive mTOR inhibitors correlated with a reduction in SOCS3. 

Functionally, mTORC1-inhibited DC were unable to stimulate proliferation of Foxp3- effector T 

cells (Teff), while ATP-competitive mTOR inhibition additionally promoted the induction of 

Foxp3+ Treg in a B7-H1-dependent manner that also required IL-1β. These data reveal a novel, 
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RAPA-resistant anti-inflammatory pathway in DC that regulates IL-10 and B7-H1 and identifies 

divergent regulation of Teff and Treg responses by DC due to RAPA-sensitive and RAPA-resistant 

mTOR. 

4.3 MATERIALS AND METHODS 

Animals and drug administration. Male C57BL/6 (B6; H2Kb), BALB/c (H2Kd), B6.129S2-

Irf1tm1Mak/J (interferon regulatory factor-1; IRF-1 null), B6.129P2-Il10tm1Cgn/J (IL-10-/-), 

B6.129X1-Ebi3tm1Rsb/J (Epstein-Barr Virus induced gene 3; Ebi3-/-), and B6.129S1-Il12btm1Jm/J 

(IL-12/23p40-/-) mice were purchased from The Jackson Laboratory. Male B6.129S2-Il6tm1Kopf/J 

(IL-6-/-) and IL-10-green fluorescent protein (IL-10-gfp) mice were kindly provided by Dr. A. 

Jake Demetris and Dr. David Rothstein, respectively (University of Pittsburgh). Femurs and 

tibiae from mice containing loxP-flanked FoxO1, FoxO3, and FoxO4 crossed to mice containing 

tamoxifen-inducible Cre recombinase under the ROSA26 promoter (FoxO1/3/4fl/fl x ROSA26-

CreERT2) were used to generate BM-derived DC. B7-H1-/- mouse pairs on a B6 background 

were kindly provided by Dr. Lieping Chen (Johns Hopkins University) and bred at the 

University of Pittsburgh. Mice containing loxP-flanked rictor (rictorfl/fl) and ROSA26-CreERT2 

were maintained at the University of Pittsburgh. WYE-125132 (50 mg/kg (280) 

intraperitoneally; Selleck Chemicals) was dissolved in DMSO and administered in vehicle 

composed of 5% Tween 80 and 54% polyethylene glycol (Sigma-Aldrich; average Mn 300) at 

the time of LPS injection (E. coli 0111:B4; Sigma-Aldrich; 100 μg/kg intraperitoneally). 
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DC differentiation, purification, and stimulation. DC were generated from BM cells, as 

described (202, 238) using recombinant (r) mouse GM-CSF and r mouse IL-4 (both 1000 U/ml; 

R&D Systems). On d8 of culture, myeloid DC were selected from non-adherent cells by anti-

CD11c immunomagnetic bead purification (Miltenyi Biotec). Torin1 (184) [kindly provided by 

Dr. Nathanael S. Gray (Dana-Farber Cancer Institute) or purchased from Tocris Bioscience], 

AZD8055 (281) (Selleck Chemicals), WYE-125132, or RAPA (LC Laboratories) were added to 

cultures on d2 at the concentration indicated and refreshed on d4 and d6. Where indicated, 

TLR4-specific LPS (S. minnesota R595; 100 ng/ml; Alexis Biochemicals) was used to stimulate 

DC cultures on d7 for 16-18h. In some experiments, 250 nM STAT3 inhibitor VII (EMD 

Chemicals) was added on d7, 2h before LPS stimulation. 

Flow cytometric analyses. Cell surface and intracellular staining was performed as 

described (202, 238). Fluorochrome-conjugated mAbs were purchased from eBioscience, BD 

Bioscience, or Biolegend. P-STAT3 quantification by flow cytometry was performed as 

described (278). Data were acquired using an LSR II or LSR Fortessa flow cytometer (BD 

Bioscience) and analyzed using FlowJo 8.8.6 (Tree Star). Percent P-STAT3 positive cells were 

determined using Overton Subtraction (FlowJo) by comparing experimental samples with 

corresponding control samples stained with secondary antibody (Ab) only. 

Mixed leukocyte reaction (MLR). ϒ-irradiated (20 Gy) DC (B6; 1x104) were used as 

stimulators in 5d allogeneic MLR as described (190). Normal CD4+CD25- BALB/c T cell 

responders (1x105) were isolated by negative selection and labeled with carboxyfluorescein 

succinimidyl ester (CFSE) according to the manufacturer’s protocol (Invitrogen). In some 

experiments, neutralizing Ab was added to cultures at 10 μg/ml [αIL-1β (B122), αIL-10 (JES5-

16E3; BD Bioscience), αB7-H1 (MIH5), or αPD-1 (RMP1-14; eBioscience)]. The absolute 
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number of cells in MLR was determined on d5 by trypan blue exclusion or flow cytometry using 

CountBright Absolute Counting Beads (Invitrogen, Carlsbad, CA) according to the 

manufacturer’s protocol. Total cell numbers were multiplied by Treg frequency to determine the 

absolute number of Treg in MLR. 

Cytokine quantification. Enzyme-linked immunosorbent assays were performed on cell-

free DC supernatants according to the manufacturer’s instructions to quantify IL-12p40 and IL-6 

(Biolegend). IL-1β was quantified by cytometric bead array (BD Bioscience) according to the 

manufacturer’s protocol. 

Tamoxifen induction of Cre recombinase. 100 nM (Z)-4-hydroxytamoxifen (4OHT; 

Sigma-Aldrich) was added to BM cultures on d0 to delete FoxO transcription factors from 

FoxO1/3/4fl/fl x ROSA26-CreERT2 BM-derived DC. Tamoxifen (15 mg/ml; Sigma-Aldrich) was 

administered intraperitoneally in sunflower seed oil (Sigma-Aldrich) every 2d for 3 doses to 

rictorfl/fl x ROSA26-CreERT2 mice. BM cells were harvested from these mice 7d later and 

cultured to generate rictor-/- BM-derived DC. 

Immunoblot. Immunoblotting was performed on DC lysates as described (202, 238) 

using primary Abs from Cell Signaling with the exception of GAPDH (Novus Biologicals) and 

SOCS5 (Thermo Scientific). Densitometry was performed using ImageJ (National Institutes of 

Health). 

Human monocyte-derived DC (MoDC) generation. Peripheral blood mononuclear cells 

(PBMC) were isolated from normal leukopacks (Central Blood Bank, Pittsburgh, PA) by Ficoll-

Hypaque density gradient centrifugation followed by CD14 immunomagnetic bead selection 

(Miltenyi Biotec, Auburn, CA). PBMC (1.1x106 cells/ml) were cultured in RPMI-1640 

(Invitrogen, Carlsbad, CA) supplemented with pooled human AB serum (5% v/v, Gemini Bio-
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Products, West Sacramento, CA), L-glutamine (2 mM, Cellgro Manassas, VA), 

penicillin/streptomycin (100 U/ml, Lonza, Walkersville, MD), rhGM-CSF (1000 U/ml, R&D 

Systems, Minneapolis, MN) and rhIL-4 (1000 U/ml, R&D Systems) for 6 d. One half of the 

medium was refreshed every 2 d. Cultures were stimulated with TLR4-specific LPS (100 ng/ml; 

S. minnesota R595, Alexis Biochemicals, San Diego, CA) on d4. RAPA (10 ng/ml; LC 

Laboratories, Woburn, WA) or Torin1 (Tocris Bioscience, Minneapolis, MN) were added on d2 

and d4. 

Human CD34+ cell-derived DC. Human CD34+ cell-derived DC were generated from 

immunomagnetic bead-selected (Miltenyi Biotec, Germany), cryopreserved CD34+ cells from 

blood donors after informed consent, as described (282) with minor modifications. Briefly, 4x104 

CD34+ cells/ml were expanded in 6-well plates (Greiner, Germany) for 6 d with GM-CSF (50 

ng/ml, Miltenyi Biotec), stem cell factor (25 ng/ml, Miltenyi Biotec) and TNFα (2.5 ng/ml, 

Miltenyi Biotec) in RPMI-1640 supplemented with L-glutamine, penicillin/streptomycin and 

10% heat-inactivated FCS (PAA, Germany). On d6, cells were washed then cultured in fresh 

medium for an additional 7 d with GM-CSF (50 ng/ml) and IL-4 (50 ng/ml, eBioscience, 

Germany). Vehicle control or mTOR inhibitors were added on d2 at the indicated concentration 

and refreshed every 2 d. DC were stimulated with LPS (100 ng/ml; 0111:B4 strain, Sigma-

Aldrich, Germany) for 24 h. 

Statistical Analyses. Results are expressed as means + 1 standard deviation (SD). 

Unpaired, two-tailed Student’s ‘t’ test was used to determine the significance of differences 

between means (GraphPad Prism). 
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4.4 RESULTS 

4.4.1 RAPA-resistant mTOR is a negative regulator of conventional DC B7-H1 expression 

We first examined the surface phenotype of B6 BM-derived conventional DC propagated under 

conditions of either mTORC1 inhibition with RAPA or mTORC1 and 2 inhibition with the ATP-

competitive mTOR inhibitor Torin1. As reported previously for RAPA (201), DC differentiated 

in Torin1 were small and homogenous compared to control DC (Figure 4.1A). Although mTOR 

inhibition did not affect CD11c+ DC differentiation (Figure 4.1B), both RAPA and Torin1 

reduced the DC yield from BM cell cultures (Figure 4.1C). In agreement with previous studies 

(195, 278), RAPA reduced the expression of CD80, CD86, B7-H1, and B7-DC on both 

unstimulated and LPS-stimulated DC (Figure 4.1D-E and Figure 4.2). While Torin1 also reduced 

CD80, CD86, and B7-DC expression, by contrast with RAPA, Torin1 selectively and dose-

dependently enhanced B7-H1 expression on DC (Figure 4.1D-E). Expression of MHC 

molecules, CD40, CD54, CD80 and B7RP-1 was similarly regulated by RAPA and Torin1 

(Figure 4.2). B7-H3 and B7-H4 were not detected (data not shown). Torin1 reduced CD86 

expression similarly to RAPA on human monocyte-derived DC (Mo-DC) and CD34+ cell-

derived DC; however, B7-H1 expression was spared by Torin1 resulting in significantly higher 

expression than on RAPA-exposed DC (Figure 4.3). 
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Figure 4.1 ATP-competitive dual mTORC1 and 2 inhibition dose-dependently and selectively upregulates DC 
B7-H1 expression 
 
B6 mouse BM-derived conventional DC were differentiated in the presence of vehicle (DMSO) or the indicated 
mTOR inhibitor (10 ng/ml RAPA or various concentrations of Torin1 or AZD8055). (A) Forward scatter (FSC) vs. 
side scatter (SSC) flow cytometry plots of CD11c+-purified DC. (B) The frequency of CD11c+ DC in BM cell 
cultures was determined on d8. (C) mTOR inhibition reduced the yield of CD11c+ DC isolated from BM cell 
cultures on d8. Viable cell numbers were determined by trypan blue exclusion. (D) CD11c-gated cells were 
analyzed for CD86, B7-H1 (PD-L1) and B7-DC (PD-L2) expression by flow cytometry in unstimulated cultures and 
cultures stimulated with LPS on d7 for 18h. Isotype controls are indicated by the shaded histogram; unstimulated 
(gray line) and LPS-stimulated cells (black line) are also shown. The percent of cells staining positive and the MFI 
are indicated in the upper left and right corners, respectively. (E) Quantification of CD86, B7-H1 and B7-DC 
expression (MFI) across multiple experiments. (F) CD11c-gated cells from BM cultures exposed to increasing 
concentrations of AZD8055 (400, 800, and 1200 nM) were assessed for CD86 and B7-H1 expression. (G) B7-H1 
expression on wild-type (WT) or rictor-/- BM-derived DC. Percent positive cells and MFI are indicated in the upper 
left and right corners, respectively. (H) Quantification of (G) across multiple experiments. Bar graph values are 
normalized to WT or the DMSO treatment condition. n≥3 experiments for all data presented. * and # indicate 
p<0.05 when compared to control and RAPA, respectively. 
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Figure 4.2 RAPA- and Torin1-exposed DC phenotype 

RAPA or the indicated concentration of Torin1 was added to BM cell cultures from d2-d8, and the phenotype of 
CD11c-gated cells analyzed on d8 following overnight LPS stimulation. Isotype controls are indicated by the shaded 
histograms, and unstimulated (gray) and LPS-stimulated (black) conditions are indicated by solid lines. The percent 
of positive cells and MFI are indicated in the upper left and right corner, respectively. Data are representative of n≥3 
experiments. 
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Figure 4.3 Torin1 spares B7-H1 while similarly reducing CD86 expression compared to RAPA on human DC  

(A)-(B) Human Mo-DC were cultured in RAPA or Torin1 and matured overnight with LPS. (A) CD86 and (B) B7-
H1 expression was normalized to DMSO. (C) The B7-H1 to CD86 expression ratio was calculated and normalized 
to DMSO. (D)-(E) CD34+ cell-derived DC were stimulated with LPS overnight and (D) CD86 and (E) B7-H1 
expression determined. (F) Normalized B7-H1 to CD86 expression was calculated. * and # indicate p<0.05 when 
compared to control and RAPA, respectively. Each data point represents one individual donor. 
 
 
 

AZD8055, another ATP-competitive mTOR inhibitor, similarly increased B6 DC B7-H1 

expression (Figure 4.1F and Figure 4.4A), thus confirming B7-H1 upregulation was due to on-

target mTOR inhibition. Surprisingly, rictor-/- DC lacking mTORC2 activity displayed 

diminished B7-H1 expression following LPS stimulation (Figure 4.1G-H). DC differentiation 

was not affected, while the DC yield was reduced slightly in rictor-/- BM cultures (Figure 4.4B-

C). Together, these data suggest that RAPA-resistant mTORC1 is a negative regulator of DC B7-

H1 expression downstream of TLR4 while mTORC2 is a positive regulator of B7-H1 expression. 
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Figure 4.4 AZD8055 enhances the ratio of B7-H1 to CD86 expression and promotes CD86loB7-H1hi DC 
 
(A) CD86 and B7-H1 expression was analyzed on CD11c-gated cells following culture with AZD8055 at the 
indicated dose. Unstimulated DC (gray lines) or those stimulated with LPS overnight (black lines). The percent of 
positive cells and MFI are indicated in the upper left and right corners, respectively. Isotype controls are indicated 
by shaded histograms. (B) Percentage of CD11c+ DC in WT and rictor-/- BM cultures. (C) Absolute number of 
CD11c+ DC isolated from WT and rictor-/- BM cultures. (D) Co-expression of CD86 and B7-H1 was analyzed on 
CD11c-gated cells cultured in AZD8055. (E) CD86loB7-H1hi DC gated in (D) were quantified relative to DMSO 
controls. (F) B7-H1 and CD86 expression was normalized to DMSO control DC expression and the ratio determined 
for each treatment group. AZD8055 concentrations ranged from 400 nM to 1200 nM. Data are from n≥3 
independent experiments. *, p<0.05 compared to DMSO or DMSO+LPS controls. 
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Further analysis revealed that enhanced B7-H1 expression on Torin1-conditioned DC 

occurred predominantly on immature CD86lo cells (Figure 4.5A-B). Similarly, AZD8055-

conditioned DC were mainly CD86loB7-H1hi (Figure 4.4A and 4.4D-E). The ratio of co-

inhibitory (B7-H1) to co-stimulatory (CD86) B7 family molecule expression was enhanced on 

Torin1- and AZD8055-conditioned DC to a greater extent than on RAPA-conditioned DC, with 

or without LPS stimulation (Figure 4.5C and Figure 4.4F). Human Mo-DC, but not CD34+ cell-

derived DC, differentiated in Torin1 exhibited a trend towards an elevated B7-H1 to CD86 

expression ratio compared to those differentiated in RAPA (Figure 4.3C and 4.3F). 
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Figure 4.5 Torin1-conditioned DC are predominantly CD86loB7-H1hi 
 
(A) Analysis of the co-expression of CD86 and B7-H1 on CD11c-gated cells with percentage of CD86loB7-H1hi DC 
indicated in the gate. (B) Quantification of the frequency of CD86loB7-H1hi DC across multiple experiments. (C) 
Ratio of the normalized B7-H1 MFI divided by the normalized CD86 MFI for the indicated culture conditions. n≥5 
experiments for all data presented. * and # indicate p<0.05 when compared to DMSO and RAPA, respectively. 

4.4.2 STAT3 but not IRF-1 is required for upregulation of B7-H1 on DC by Torin1 

The B7-H1 promoter contains two IRF-1 binding sites that are required for constitutive expression 

and IFNϒ-induced upregulation of B7-H1 in cancer cell lines (283). We analyzed B7-H1 

expression on wild-type and IRF-1 null Torin1-conditioned DC, but IRF-1 was not required for 

augmented DC B7-H1 expression (Figure 4.6A-B and Figure 4.7A-C). 



 92 

 

Figure 4.6 RAPA-resistant mTOR negatively regulates B7-H1 expression by reducing STAT3 activation 
independent of FoxO 
 
(A) WT or IRF-1 null BM cell cultures were exposed to Torin1 (100 nM), stimulated with LPS (100 ng/ml) 
overnight on d7, and CD11c+ DC interrogated for B7-H1 expression by flow cytometry on d8. (B) Quantification of 
B7-H1 MFI from (A) relative to DMSO control. * = p<0.05 compared to WT. (C) DMSO or Torin1-exposed DC 
were cultured as described in the methods. STAT3 inhibitor VII (250 nM) was added to cultures 2h before LPS 
stimulation for 18h and B7-H1 expression analyzed on CD11c-gated DC. (D) Quantification of B7-H1 MFI from 
(C) across multiple experiments normalized to DMSO control DC expression. * = p<0.05 compared with the 
corresponding group not receiving STAT3 inhibitor VII. (E) FoxO1/3/4fl/fl x ROSA26-CreERT2 BM cells were 
exposed to 4OHT, and B7-H1 expression determined on CD11c-gated DC on d8. (F) Quantification of B7-H1 MFI 
from (E) normalized to the DMSO+EtOH group. Data are from n=2-4 independent experiments. 
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STAT3 binds the B7-H1 promoter and is required for B7-H1 expression by lymphoma 

cell lines (284). Importantly, STAT3 has also been identified as a critical regulator of B7-H1 on 

human APC (285). STAT3 inhibition reversed enhanced B7-H1 expression (Figure 4.6C-D), 

eliminated concomitant CD86loB7-H1hi expression (Figure 4.7D-E) and reduced the B7-

H1/CD86 ratio on Torin1-conditioned DC (Figure 4.7F). These data demonstrate that enhanced 

DC B7-H1 expression induced by Torin1 occurs through an IRF-1-independent and STAT3-

dependent pathway. 
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Figure 4.7 STAT3 but not IRF-1 is required for generation of CD86loB7-H1hi DC by ATP-competitive mTOR 
inhibition 
 
(A) WT or IRF-1 null BM cell cultures were exposed to Torin1 (100 nM) from d2-d8 as described in the methods. 
Cultures were stimulated with LPS (100 ng/ml) overnight on d7 and CD11c+ DC interrogated for CD86 and B7-H1 
expression by flow cytometry. (B) Quantification of CD86loB7-H1hi DC. (C) The ratio of B7-H1 to CD86 
expression was determined on CD11c+ DC on d8. (D) DC were differentiated in the presence of Torin1 and exposed 
to STAT3 inhibitor VII on d7 for 2h before stimulation with LPS overnight. Representative dot plots of CD86 vs. 
B7-H1 expression are shown. (E) Quantification of CD86loB7-H1hi gate in (D) normalized to DMSO controls. (F) 
Ratio of B7-H1 to CD86 MFI normalized to DMSO controls. Bar graphs demonstrate the mean + SD from n=2-4 
independent experiments with * indicating p<0.05 when compared to WT DC (A-C) or samples not treated with 
STAT3 inhibitor (D)-(F). 
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O class forkhead-box (FoxO) transcription factors mediate immune homeostasis (286) 

and control the ability of DC to limit T cell expansion following viral infection (287). FoxO 

promotes STAT3 activity, and FoxO3 transcription correlates with elevated B7-H1 expression by 

tumor-associated DC (288). Torin1-conditioned DC were generated from FoxO1/3/4-/- BM cells 

by exposing FoxO1/3/4fl/fl x ROSA26-CreERT2 BM cells to 4OHT (289). Deletion of FoxO3a 

was confirmed by immunoblot (data not shown). FoxO was not required for B7-H1 upregulation 

by Torin1 (Figure 4.6E-F), thus suggesting a STAT3-dependent but FoxO-independent 

mechanism of RAPA-resistant mTOR negative regulation of B7-H1. 

4.4.3 ATP-competitive mTOR inhibition enhances STAT3 signaling by reducing SOCS3 

expression 

Studies with RAPA have implicated mTORC1 as a positive regulator of STAT3 in DC (195, 

278); however, reduced IL-10 secretion by RAPA-exposed DC leads to reduced autocrine 

STAT3 activation (279). DC were pre-incubated with RAPA or Torin1 for 2h before LPS 

stimulation (hereby referred to as ‘short-term’ mTOR inhibition). As reported (177), RAPA 

abolished mTORC1 signaling (P-S6K T389), but only Torin1 blocked mTORC2 signaling (P-

Akt S473; Figure 4.8A). Both short-term RAPA and Torin1 inhibited STAT3 phosphorylation 

following LPS stimulation (Figure 4.8B-C). In contrast, DC differentiated in the presence of 

Torin1, but not RAPA, from d2-d8 (hereby referred to as ‘RAPA- or Torin1-conditioned DC’) 

demonstrated augmented STAT3 phosphorylation 3h after LPS stimulation (Figure 4.8D-F). 

Suppressor of cytokine signaling (SOCS) proteins regulate cytokine signaling by inhibiting Janus 

kinase (JAK)-STAT pathways (290). RAPA conditioning led to augmented SOCS1 and SOCS5, 

which are negative regulators of STAT1 (291) and STAT6 (292), respectively (Figure 4.8G). 
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Torin1 suppressed expression of the key STAT3 negative regulator SOCS3 (Figure 4.8E and 

4.8G) (293). As such, we make the novel observation that extended mTORC1 and 2 inhibition by 

Torin1, but not mTORC1 inhibition by RAPA, downregulates SOCS3 and enhances STAT3 

signaling. 
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Figure 4.8 Extended exposure to ATP-competitive mTOR inhibition reduces SOCS3 expression, resulting in 
sustained STAT3 activation 
 
CD11c+ cells were isolated from 7d BM cell cultures and pre-treated with DMSO, RAPA (10 ng/ml) or Torin1 (100 
nM) for 2h before LPS stimulation for 30 min (A) or 1-3h (B). Total cell lysates were immunoblotted for the 
indicated protein. (C) P-STAT3 signal was quantified relative to total STAT3 signal at 3h following LPS stimulation 
and normalized to control. (D) DC were differentiated in the presence of DMSO (vehicle) or Torin1 (100 nM) from 
d2-d8. DC were isolated by CD11c immunomagnetic purification, and P-STAT3 signal determined by flow 
cytometric analysis following LPS stimulation for 3h. Grey histogram depicts samples stained with secondary Ab 
only. MFI for P-STAT3 signal and secondary Ab only are indicated in the top left corner, and percent positive cells 
are indicated in the upper right corner. (E) RAPA- or Torin1-conditioned DC were purified as described in (D), 
stimulated with LPS for 0-3h, and total cell lysates immunoblotted for the indicated protein. (F) Quantification of P-
STAT3/STAT3 signal 3h after LPS stimulation. (G) SOCS protein was assessed in RAPA- or Torin1-conditioned 
DC. WT or rictor-/- DC were stimulated with LPS for (H) 30 min or (I) 0-3h and probed as indicated. (J) P-
STAT3/STAT3 signal was quantified at 3h post-LPS. Data are representative of n=2-3 independent experiments. * 
and # indicate p<0.05 when compared to DMSO or WT and RAPA, respectively. 
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Rictor-/- DC were unable to phosphorylate Akt S473; however, mTORC1 signaling was 

intact (Figure 4.8H). These cells exhibited diminished P-STAT3 following LPS stimulation, and 

there was no change in SOCS3 expression (Figure 4.8I-J). Importantly, these data establish that 

RAPA-resistant mTORC1 negatively regulates STAT3 while mTORC2 is a positive regulator of 

STAT3. 

4.4.4 RAPA-resistant mTOR inhibition augments IL-10 production, but it is not required 

for B7-H1 upregulation 

STAT3 phosphorylation occurs late (1-3h) after LPS stimulation of DC (Figure 4.8), suggesting 

autocrine signaling that induces phosphorylation. Autocrine IL-10 signaling is required for 

STAT3 phosphorylation following LPS stimulation (279). IL-10 production was increased 

markedly in B7-H1hi Torin1-conditioned IL-10-gfp reporter DC (Figure 4.9A and 4.9C). The IL-

10 MFI was increased in Torin1-conditioned DC compared to RAPA-conditioned and control 

DC (Figure 4.9B and 4.9D). Both RAPA- and Torin1-conditioned DC secreted increased IL-

12/23p40 (Figure 4.9E). Rictor-/- DC secreted elevated IL-12p40 also (data not shown). IL-6 and 

IL-1β secretion by DC after LPS stimulation was reduced and increased respectively, by RAPA, 

but unaffected by Torin1 (Figure 4.9F-G). 
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Figure 4.9 Torin1-exposed DC produce increased IL-10, but B7-H1 upregulation does not require autocrine 
IL-6 or IL-10 
 
(A) BM from IL-10-gfp reporter mice was differentiated in RAPA or Torin1 from d2-d8. DC were stimulated on d7 
where indicated, and interrogated for B7-H1 and IL-10 co-expression by flow cytometry. (B) IL-10-gfp histogram 
for CD11c-gated DC. MFI is indicated in the upper right corner. (C) The percentage of B7-H1+IL-10+ DC from (A) 
was quantified across multiple experiments. (D) Quantification of IL-10 MFI across multiple experiments 
normalized to DMSO control DC. Cell-free supernatants were assessed for (E) IL-12/23p40, (F) IL-6 and (G) IL-1β; 
N.D. indicates not detected. *, # p<0.05 compared to DMSO or DMSO+LPS and RAPA or RAPA+LPS, 
respectively. DC were differentiated from IL-6-/- (H,I) or IL-10-/- (J,K) BM cells in the presence of Torin1. B7-H1 
expression was analyzed on CD11c-gated DC by flow cytometry and quantified. * p<0.05 compared to WT or 
WT+LPS. Data are from n=2-3 independent experiments. 
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IL-6, IL-10, IL-23, and IL-27 all stimulate STAT3 phosphorylation (293-295). Neither 

autocrine IL-6 nor IL-10 was required for enhanced B7-H1 expression by Torin1 on control or 

LPS-stimulated DC (Figure 4.9H-K). Autocrine IL-23 and IL-27 were also not required, as 

determined using IL-12/23p40-/- and Ebi3-/- BM cell cultures, respectively (Figure 4.10A-D). 

Collectively, these results identify a RAPA-resistant mTOR pathway that co-regulates B7-H1 

and IL-10 expression that does not depend on autocrine cytokine stimulation. 

 

 

Figure 4.10 B7-H1 upregulation by Torin1 does not require autocrine IL-12/23 or IL-27 
 
CD11c+ DC differentiated from (A) and (B) IL-12/23-/- (IL-12/23p40-/-) or (C) and (D) IL-27-/- (Ebi3-/-) BM cells 
differentiated in Torin1 from d2-d8 were analyzed for expression of B7-H1. *, p<0.05 when compared to WT DC. 
Data are from n=3 independent experiments. 
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4.4.5 DC mTORC1 promotes Teff expansion while RAPA-resistant mTOR restrains Treg 

induction via B7-H1 

We next sought to determine how ATP-competitive mTOR inhibition modulates the T cell 

stimulatory function of DC. RAPA reduces the T cell stimulatory capacity of DC (188-190, 201, 

202). Torin1 shared this ability, although its effect was less than that of RAPA (Figure 4.11A-B). 

Although B7-H1 has been shown to restrain T cell proliferation (150), B7-H1-/- RAPA-DC that 

express low CD80 and CD86 were less stimulatory than wild-type DC (Figure 4.11A-B). These 

data are in agreement with early reports describing a T cell proliferation-promoting effect of B7-

H1 (276). 
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Figure 4.11 Enhanced induction of Treg by Torin1-exposed DC is B7-H1- and IL-1β-dependent 
 
(A) WT or B7-H1-/- DC propagated in the indicated mTOR inhibitor were washed extensively and used as 
stimulators of CD4+CD25- normal BALB/c T cells in a 5d CFSE-dilution MLR. (B) Percent of proliferating T cells 
(CFSElo) was calculated across multiple experiments. (C) Representative contour plots depicting the percentage of 
induced Treg (CD25hiFoxp3+) in the MLR from (A) are shown. (D) The data from (C) were calculated across 
multiple experiments. (E) Representative contour plot of CFSE dilution of Foxp3+ and Foxp3- T cells. (F) 
Quantification of multiple experiments from (E). *, #, and ^ p<0.05 compared to WT DMSO, WT RAPA, and the 
corresponding WT condition, respectively. (G) IL-1β was neutralized in MLR and Treg induction determined as in 
(C) and (H) quantified across experiments. *, ^ p<0.05 compared to corresponding isotype control and WT 
conditions, respectively, unless otherwise indicated. All data are representative of n≥3 independent experiments. In 
some experiments, TGFβ (10 ng/ml) was added at the start of culture as a positive control and T cells without DC 
stimulators were included as a negative control. 
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B7-H1 is a key regulator of Treg induction and function (277). Since Torin1-conditioned 

DC express elevated levels of B7-H1, we determined their ability to induce Treg (Figure 4.11C-

F). Torin1-conditioned DC induced a significantly greater frequency of Treg compared to control 

and RAPA-conditioned DC (Figure 4.11C-D). Enhanced induction of Treg by Torin1-conditioned 

DC was dependent on B7-H1 (Figure 4.11C-D) but independent of PD-1 (Figure 4.12A-B). 

Although Torin1-conditioned DC made increased IL-10 (Figure 4.9A-D), it was not required for 

their ability to induce Treg (Figure 4.12A-B). Neither genetic deletion nor neutralization of B7-

H1 reduced Treg induction by control DC (Figure 4.11C-D and Figure 4.12A-B). The absolute 

number of Treg induced by RAPA-conditioned DC was reduced dramatically compared to control 

(Figure 4.12C). Torin1-conditioned DC induced a greater number of Treg compared to RAPA-

conditioned DC, which was reduced in the absence of B7-H1 (Figure 4.12C). 
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Figure 4.12 Enhanced Treg induction by Torin1-DC is PD-1- and IL-10-independent 
 
(A)-(D) WT or B7-H1-/- B6 DC generated in DMSO, RAPA or Torin1 were used as stimulators of CFSE-labeled 
CD4+CD25- BALB/c T cells in 5d MLR. (A) B7-H1, PD-1 or IL-10 were neutralized by addition of Ab at the start 
of MLR and the percent of Treg determined. (B) Absolute numbers of Treg in MLR from (A) were determined by 
flow cytometry and normalized to control. (C) Total viable cell numbers were determined on d5 by trypan blue 
exclusion, and the absolute number of induced Treg was calculated. Exogenous TGFβ (10 ng/ml) was added to 
cultures as a positive control, where indicated. (D) IL-1β was neutralized in MLR. The absolute number of Treg was 
determined by flow cytometry and normalized to control. (E,F) Quantification of (E) CFSEloFoxp3+ and (F) 
CFSEloFoxp3- cells in MLR with IL-1β neutralization. (A-B and D-F) *, ^ p<0.05 compared to corresponding 
isotype control and WT condition, respectively. (C) *, #, and ^ p<0.05 compared to WT DMSO, WT RAPA, and the 
corresponding WT condition, respectively. Data are representative of n≥3 independent experiments. 
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CFSE dilution profiles of Foxp3+ and Foxp3- T cells were used to determine the relative 

contribution of inhibition of effector T cell (Teff; Foxp3-) proliferation to induction of Treg (Figure 

4.11E-F). Consistent with our previous report (190), RAPA-conditioned DC stimulated Teff 

poorly but stimulated CFSEloFoxp3+ T cells similarly to control DC (Figure 4.11E-F). Torin1-

conditioned DC also stimulated Teff cells less than control DC; however, they approximately 

doubled the frequency of CFSEloFoxp3+ T cells (Figure 4.11E-F). These data demonstrate that 

ATP-competitive mTOR inhibition in DC enhances their ability to induce Treg in a B7-H1-

dependent manner and augment CFSEloFoxp3+ T cells, while RAPA-conditioned DC specifically 

reduce proliferation of Teff without affecting CFSEloFoxp3+ T cells. 

There is evidence that IL-1β promotes Treg induction (296), and mTORC1 regulates IL-1β 

production by DC (201, 203). Although Torin1 did not alter IL-1β secretion by DC (Figure 

4.9G), neutralization of IL-1β suppressed Treg induction by Torin1-conditioned DC (Figure 

4.11G-H). Treg induction and augmentation of CFSEloFoxp3+ T cells were further reduced when 

IL-1β-inhibited Torin1-conditioned DC were B7-H1-deficient (Figure 4.11G-H and Figure 

4.12D-F). These data suggest that B7-H1 and IL-1β act cooperatively to promote Treg induction 

by Torin1-conditioned DC. 

4.4.6 ATP-competitive mTOR inhibition elevates DC B7-H1 expression in vivo and 

augments their ability to induce Treg 

To determine if RAPA-resistant mTOR modulates DC B7-H1 expression in a more physiologic 

setting, we investigated in vivo modulation of DC by ATP-competitive mTOR inhibition. WYE-

125132 is an ATP-competitive mTOR inhibitor with in vivo bioavailability (280). We first 

verified that WYE-125132 augmented DC B7-H1 expression while reducing CD86 expression in 



 106 

vitro (Figure 4.13A-D). When given as a single dose at the time of LPS administration, WYE-

125132 enhanced splenic DC B7-H1 expression while reducing CD86 expression (Figure 4.13E-

G). Furthermore, the B7-H1 to CD86 expression ratio was increased (Figure 4.13H). These DC 

augmented Treg induction ex vivo compared to control DC (Figure 4.13I-J). Together, these 

findings confirm that RAPA-resistant mTOR controls B7-H1 expression and modulates the 

ability of DC to induce Treg in vivo. 
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Figure 4.13 ATP-competitive mTOR inhibition in vivo augments DC B7-H1 expression and their ability to 
induce Treg 
 
(A)-(D) DC were differentiated in the presence of DMSO or WYE-125132 (WYE; 400 nM) from d2-d8 and 
stimulated with LPS. (A) Representative histograms and (B) quantification of CD86 and (C) B7-H1 expression. MFI 
is indicated in the upper right corner of each histogram. (D) B7-H1 to CD86 expression ratio. Values were 
normalized to unstimulated DMSO DC. (E)-(H) Mice were treated with WYE (50 mg/kg) and given LPS (100 
μg/kg). Data are representative of n=3 independent experiments. (E) Splenic CD11b+CD11c+ DC were analyzed by 
flow cytometry for CD86 and B7-H1 expression 18h later with representative histograms shown. MFI values are 
shown in the upper right corner of each histogram. (F) CD86, (G) B7-H1 and (H) the B7-H1 to CD86 ratio were 
determined across several experiments and normalized to the vehicle control. (I) Splenic DC isolated in (E) were 
used to induce Treg ex vivo from CD4+CD25- BALB/c T cells. (J) Treg induction was quantified across multiple 
experiments. Data are representative of n=4 mice per treatment group. * p<0.05 compared to DMSO. 
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4.5 DISCUSSION 

Herein we describe a novel RAPA-resistant and mTORC2-independent signaling pathway in 

conventional DC that controls B7-H1 and IL-10 expression downstream of TLR4. This novel 

signaling network coordinates the ability of DC to stimulate Teff and Treg responses. DC 

conditioned in ATP-competitive mTOR inhibitors dose-dependently and selectively upregulated 

B7-H1 expression. Elevated IL-10 production by Torin1-conditioned DC was found in a B7-H1hi 

population. B7-H1 upregulation by Torin1 was STAT3-dependent, but did not require 

FoxO1/3/4 or autocrine IL-6, IL-10, IL-12/23, or IL-27 signaling. Augmented STAT3 

phosphorylation correlated with a reduction in SOCS3 expression. Rictor-/- DC did not exhibit 

augmented STAT3 phosphorylation or B7-H1 expression. ATP-competitive mTOR inhibition 

resulted in DC that markedly enhanced B7-H1-dependent but PD-1 independent Treg induction in 

the absence of exogenous TGFβ. IL-1β, but not IL-10, was required for enhanced Treg induction 

by DC conditioned in Torin1 and acted additively with B7-H1. Together, these findings establish 

how distinct mTOR complex signaling coordinates to regulate DC stimulatory function at a 

molecular level. The proposed mechanisms by which RAPA-sensitive and RAPA-resistant 

mTOR controls DC STAT3 activation and B7-H1 expression are summarized in Figure 4.14. 
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Figure 4.14 Proposed model of mTOR regulation of STAT3 activation and B7-H1 expression in DC 

mTORC1 and mTORC2 both independently regulate STAT3 activation through RAPA-sensitive and RAPA-
resistant pathways. RAPA-sensitive mTORC1 is a positive regulator of STAT3 activity; however, a parallel and 
RAPA-insensitive mTORC1 pathway exists where mTORC1 positively regulates SOCS3, a negative regulator of 
STAT3 activity. Inhibition of this pathway with ATP-competitive mTOR inhibitors results in reduced SOCS3 
expression, increased STAT3 phosphorylation following LPS stimulation and increased expression of B7-H1 and 
IL-10. DC differentiated in the presence of ATP-competitive mTOR inhibitors promote Treg induction in a B7-H1-
dependent, but PD-1-independent, manner. Additionally, RAPA-sensitive mTORC1 regulates CD86 and IL-12p70 
expression. mTORC2 is a RAPA-insensitive positive regulator of STAT3 activity. 
 
 
 

mTOR is a central regulator of T cell function (237) that is targeted for clinical 

immunosuppression, yet the impact of mTOR, particularly RAPA-resistant mTOR, on innate 

immune cells is poorly understood (172, 297). RAPA is a potent and selective mTORC1 

inhibitor; however, prolonged exposure can inhibit mTORC2 by preventing its assembly in 

certain cell types (182). After verifying specific mTOR complex specificity of RAPA and ATP-

competitive mTOR inhibitors, we used this strategy to dissect the function of RAPA-sensitive 
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and RAPA-resistant pathways in conventional DC. RAPA-sensitive mTOR (mTORC1) 

promoted co-stimulatory CD80 and CD86 expression and reduced IL-12 secretion. RAPA 

inhibits phosphorylation of inhibitory residues on glycogen synthase kinase-3 leading to NF-κB 

p65 activation and increased IL-12 secretion after TLR4 ligation (195, 202, 278, 279, 298). Our 

data support these findings where RAPA-sensitive mTORC1 suppresses IL-12 production. A 

recent study demonstrated a similar role for mTORC2 in DC following LPS activation where 

rictor knockdown enhanced pro-inflammatory cytokine and reduced IL-10 secretion. However, 

elevated IL-12 secretion in these cells did not require NF-κB, but was due to hyperactive FoxO1 

(299). The present study identifies, for the first time, a RAPA-resistant mTORC1 pathway that is 

critical for controlling the immune regulatory properties of DC and further elaborates on 

signaling events downstream of TLR4. 

ATP-competitive mTOR inhibition promoted DC IL-10 and B7-H1 expression and 

enhanced STAT3 activation. Enhanced STAT3 activation and reduced SOCS3 expression were 

only seen following prolonged ATP-competitive mTOR inhibition. These data demonstrate that 

the kinetics of mTOR inhibition (short-term exposure vs. long-term conditioning), in addition to 

the complexes being targeted, are critical to understanding the function of mTOR in DC. Initial 

publications describing ATP-competitive mTOR inhibitors revealed unexpectedly, that RAPA 

did not inhibit mTORC1 completely; however, ATP-competitive mTOR inhibitors fully 

inhibited residual, RAPA-resistant mTORC1 (184, 185). Further studies have since shown that 

RAPA-resistant mTOR provides broad transcriptional regulation that does not occur with 

inhibition of mTORC1 by RAPA (300). To our knowledge, the present report describes the first 

RAPA-resistant mTOR pathway that is not dependent on RAPA-sensitive mTORC1; however, 

the contribution of transcriptional level control by RAPA-resistant mTOR in the proposed 
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pathway is unknown. Contrastingly, RAPA produces the opposite effects, whereby B7-H1 and 

IL-10 are diminished. Raptor-deficient DC lacking RAPA-sensitive and RAPA-resistant 

mTORC1 activity display reduced IL-10 production (301). Extended exposure of rictor-/- DC to 

RAPA was not sufficient to upregulate B7-H1 (data not shown). Our findings can therefore be 

ascribed to a novel, RAPA-resistant mTORC1 pathway that is subordinate to RAPA-sensitive 

mTORC1, or to concomitant inhibition of RAPA-resistant mTORC1 and mTORC2. 

Our data highlight the distinct function of mTOR-containing complexes in DC when 

compared with T cells. mTOR-deficient T cells show reduced STAT3 phosphorylation (302), 

similarly to DC exposed to short-term mTOR inhibition. However, extended exposure of DC to 

ATP-competitive mTOR inhibition augmented STAT3 activation. While rictor-/- DC demonstrate 

reduced STAT3 activation, rictor-/- T cells exhibit normal STAT3 activation (204, 205). 

Furthermore, resting rictor-/- T cells express reduced SOCS3 (205). Our data show that extended 

ATP-competitive mTOR inhibitor conditioning reduces DC SOCS3 expression, but rictor 

deletion has no effect on SOCS3 in DC. These apparent inconsistencies support how mTOR 

signaling occurs differentially in DC and T cells. 

Evidence is accumulating for a role of mTOR in DC in shaping T cell responses. Our 

data demonstrate that, while RAPA-sensitive mTORC1 promotes co-stimulatory molecule 

expression and Foxp3- Teff proliferation, RAPA-resistant and rictor-independent mTOR reduces 

IL-10 secretion and restrains Treg induction by downregulating co-inhibitory B7-H1. 

Interestingly, although DC B7-H1 expression was required for augmented Treg induction by 

Torin1-conditioned DC, the only known receptor for B7-H1, PD-1, was not required. PD-1-

independent B7-H1 activity has been reported (303), and our data also suggest that unidentified 

B7-H1 receptors may exist. IL-1β was required for Treg induction and functioned additively with 
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B7-H1 on Torin1-conditioned DC. Neutralization of IL-1β (data not shown) and genetic deletion 

of B7-H1 also reduced Treg induction by RAPA-conditioned DC but not control DC, which 

suggests that other effects of mTORC1 inhibition are required that function collectively with IL-

1β and B7-H1 to promote Treg induction. 

ATP-competitive inhibition to target RAPA-resistant mTOR may be useful for the 

treatment of inflammatory disorders. mTORC2 signaling is required for Th1 and Th2 (204) or 

only Th2 (205) differentiation, and deletion of mTOR in T cells causes diversion to Foxp3+ Treg 

following stimulation (302). Our data supports the development of ATP-competitive mTOR 

inhibitors for clinical use, especially since similar findings regarding B7-H1 expression were 

obtained in human DC cultures and following administration of an ATP-competitive mTOR 

inhibitor to mice. Further development of ATP-competitive mTOR inhibitors will be required 

since some have brief half-lives (281), and their in vivo pharmacology is poorly understood. 

Given the paradoxical enhancement of IL-12p70 (195, 202, 298) and IL-1β (201, 203) 

production by RAPA-conditioned DC and the reported pulmonary inflammation that can be 

associated with RAPA (304), augmentation of DC-derived IL-10 secretion and lack of increased 

IL-1β production by ATP-competitive mTOR inhibitors may mitigate untoward side effects of 

mTORC1 inhibition. Together, these studies demonstrate a novel, immune regulatory pathway 

mediated by RAPA-resistant mTOR downstream of TLR4 that is relevant for clinical 

applications of mTOR inhibition. 



 113 

5.0  SUMMARY AND FUTURE DIRECTIONS 

Myeloid lineage cells, including MDSC and DC, are innate immune cells that regulate adaptive 

immunity and are increasingly recognized as targets to modify immune responses. The data 

presented identify novel pharmacologic and biologic agents able to modify the expansion and 

function of these cells. HDACi and Flt3L both promote the expansion of MDSC, and Flt3L 

activates their suppressive function. The HDACi SAHA is a clinically-approved anti-neoplastic 

agent, and numerous immunomodulatory effects of HDACi have been described, including 

enhancement of Treg expansion and function (305) and inhibition of DC stimulatory functions 

(229-231, 306, 307). Following encouraging results in mouse models of GVHD (231, 242), 

HDACi are undergoing evaluation in clinical trials for therapy of acute and chronic GVHD. The 

role that MDSC play in the immune modulatory properties of HDACi in inflammatory disease 

settings is currently unknown. Evaluation of MDSC expansion by HDACi in appropriate, 

clinically-relevant transplantation models would be of benefit to determine if these cells 

contribute to immune modulation. Additionally, it will be necessary to investigate the ability of 

MDSC generated in HDACi in vitro to prolong long-term allograft survival following adoptive 

transfer to determine if this method of augmenting MDSC production ex vivo will have benefit 

for cellular therapy applications. Furthermore, the ability of HDACi, particularly FDA-approved 

SAHA, to expand MDSC in human PBMC cultures will be critically important to move these 

findings into the clinic. 
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Flt3L also strongly promoted MDSC expansion; however, the mechanism remains 

unclear. STAT3 was not required for MDSC expansion by Flt3L when inhibited with a chemical 

agent in vivo, but future studies will be required to verify this by genetic ablation of STAT3 

within the hematopoietic or myeloid lineage using a Cre-Lox system. This system will also be 

useful to determine if STAT3 is required for MDSC expansion by HDACi. There is evidence 

that HDACi promote STAT3 acetylation and activation, and STAT3 prevents DC maturation and 

reduces T cell stimulatory function (232, 255, 308). The varying role of STAT3 in MDSC 

expansion in these studies highlights the shortcomings of our current understanding of factors 

regulating MDSC expansion since it appears to be model-dependent. Nevertheless, the finding 

that STAT3 inhibition during Flt3L administration diminishes immunostimulatory DC expansion 

while augmenting MDSC expansion suggests that targeting this pathway should be evaluated in 

experimental organ transplantation. Also, given the safety and efficacy of Flt3L in expanding DC 

in human volunteers (263, 264), it will be important to validate MDSC expansion by Flt3L in 

humans. 
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The dearth of knowledge of the influence of clinical immunosuppressants on MDSC 

expansion and function currently hinders targeting these cells to alleviate anti-allograft immune 

responses. mTOR is a central regulator of myeloid cell differentiation and immune function 

(172, 191), thus it will be interesting to determine if mTOR inhibition promotes MDSC 

expansion due to inhibition of DC differentiation. Inhibition of mTOR with RAPA or ATP-

competitive mTOR inhibitors did not reduce the percentage of CD11c+ DC in BM cell cultures 

stimulated with GM-CSF + IL-4, but conditions favoring MDSC expansion (i.e. excluding IL-4 

in culture) were not investigated. Further studies will be required to determine if mTOR 

inhibition favors or is permissive to MDSC expansion in transplantation and chronic 

inflammatory disease. 

 

 

 

 

 

 

 

 

 

 

 

 

 



 116 

 Aside from MDSC immunobiology, mTOR inhibition regulates DC expansion, 

maturation and T cell stimulatory function (172). Historically, studies have interrogated mTOR 

function in DC using RAPA; however, until the recent discovery of RAPA-insensitive mTORC1 

and mTORC2 (175, 176, 184, 185), the immunologic function of RAPA-insensitive mTOR was 

largely unknown. It has since been shown that mTORC1, but not mTORC2, is required for 

Langerhans cell homeostasis (309) and that mTORC2 negatively regulates TLR4-mediated pro-

inflammatory cytokine secretion by DC (299). The data presented herein demonstrate a rictor-

independent but RAPA-resistant function of mTOR that regulates anti-inflammatory STAT3, IL-

10 and B7-H1. The signals that preferentially stimulate mTORC1 or mTORC2 in DC are not 

known, as both are activated by LPS stimulation. These data highlight the need for further 

investigation of RAPA-sensitive versus RAPA-resistant mTOR immune regulation to determine 

if targeting these pathways will be beneficial for subverting alloimmune responses. Indeed, 

progress is being made to improve the pharmacologic properties of ATP-competitive mTOR 

inhibitors in vivo since their half-lives currently limit their efficacy. 

 Together, the data presented within this dissertation highlight the opportunities moving 

forward to exploit myeloid cell immunobiology at the levels of differentiation, expansion or 

function of terminally differentiated myeloid cells to skew immune reactivity. Further studies 

will be required to translate these findings to in vivo disease models to advance the potential of 

HDACi, Flt3L and ATP-competitive mTOR inhibitors as therapeutic agents. It is anticipated that 

strategies harnessing manipulation of myeloid cells will become an important new approach to 

manipulate immune responses for the promotion of transplant acceptance. 
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American Association of Immunologists Trainee Abstract Award, 2011 
 

American Association of Immunologists Trainee Abstract Award, 2012 
 

American Association of Immunologists Trainee Abstract Award, 2013 – Awarded but declined 
 

American Transplant Congress Young Investigator Award, 2013 

A.5 FELLOWSHIPS 

Predoctoral Fellowship; Interdisciplinary Training in Transplantation Biology; NIH/NIAID 
T32AI074490; September 2010-June 2011 
 
American Heart Association Great Rivers Affiliate Predoctoral Fellowship (11PRE7070020). 
Rapamycin-resistant mTOR regulation of dendritic cell function and heart allograft rejection. 
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APPENDIX B 

ABBREVIATIONS 

B.1 ABBREVIATIONS BEGINNING WITH A NUMBER OR A-M 

1-Me-D-trp, 1-methyl-D-tryptophan; 4OHT, (Z)-4-hydroxytamoxifen; Ab, antibody; Ag, 

antigen; APC, antigen-presenting cell; ATP, adenosine triphosphate; B6, C57BL/6; B7-H1, B7-

homolog 1; Bcl-xL, B cell lyphoma-extra large; BM, bone marrow; C/EBP, CCAAT-enhancer-

binding protein; CAV, chronic allograft vasculopathy; CCL, chemokine C-C motif ligand; CCR, 

chemokine receptor; cDC, conventional dendritic cell; CDP, common dendritic cell progenitor; 

CFSE, carboxyfluorescein succinimidyl ester; CMP, common myeloid progenitor; COX, 

cyclooxygenase; CSF1R, colony stimulating factor 1 receptor; CTLA-4, cytotoxic T lymphocyte 

antigen-4; d, day; DC, dendritic cell; DEPTOR, DEP domain-containing mTOR-interacting 

protein; DMSO, dimethyl sulfoxide; DST, donor splenocyte transfusion; Ebi3, Epstein-Barr 

Virus induced gene 3; eGFP, enhanced green fluorescent protein; Erk, extracellular-signal-

related kinase; FKBP12, FK506-binding protein 1A, 12 kDa; Flt3; Fms-like tyrosine kinase 3; 

Flt3L, Fms-like tyrosine kinase 3 ligand; FoxO, O class forkhead box; FoxP, P class forkhead 

box; GAPDH, glyceraldehyde-3-phosphate dehydrogenase; G-CSF, granulocyte-colony 

stimulating factor; gfp, green fluorescent protein; GM-CSF, granulocyte macrophage-colony 
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stimulating factor; GVHD, graft-versus-host disease; h, hour; HDACi, histone deacetylase 

inhibitor/inhibition; HO-1 heme oxygenase-1; HSC, hematopoietic stem cell; Hsp, heat shock 

protein; HSPC, hematopoietic stem and progenitor cells; IC50, half maximal inhibitory 

concentration; IDO, indoleamine 2,3-dioxygenase; IL, interleukin; iNOS, inducible nitric oxide 

synthase; IRF1, interferon regulatory factor 1; JAK, Janus kinase; LC, Langerhans cell; Lin, 

lineage; LN, lymph node; L-NMMA, NG-Methyl-L-arginine; LPS, lipopolysaccharide; mAb, 

monoclonal antibody; MAMP, microbe-associated molecular pattern; M-CSF, macrophage-

colony stimulating factor; mDC, myeloid DC; MDP, monocyte and dendritic cell progenitor; 

MDSC, myeloid-derived suppressor cell; MFI, mean fluorescence intensity; MHC, major 

histocompatibility complex; MLR, mixed leukocyte reaction; mLST8, mammalian lethal with 

Sec13 protein 8; MoDC/Mo-DC, monocyte-derived dendritic cell; MP, myeloid progenitor; 

mTOR, mammalian/mechanistic Target of Rapamycin; mTORC, mTOR complex; MyD88, 

myeloid differentiation primary response gene 88 

B.2 ABBREVIATIONS BEGINNING WITH N-Z 

NADPH, nicotinamide adenine dinucleotide phosphate; NK, natural killer; NLR, NOD-like 

receptor; NO, nitric oxide; NOD, nucleotide oligomerization domain; norNOHA, Nω-hydroxy-

nor-L-arginine; PBMC, peripheral blood mononuclear cell; PD-1, programmed death-1; pDC, 

plasmacytoid dendritic cell; PD-L1, programmed death-1 ligand 1; PGE2, prostaglandin E2; 

PI3K, phosphatidylinositol 3-kinase; PKC, protein kinase C; PRAS40, proline-rich substrate of 

Akt of 40 kDa; pre-DC, precursor dendritic cell; PROTOR, protein associated with rictor; PRR, 

pattern recognition receptor; PTEN, phosphatase and tensin homolog; r, recombinant; RAPA, 
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rapamycin; raptor, regulatory associated protein of mTOR; rictor, rapamycin-insensitive 

companion of mTOR; RIG, retinoic acid-inducible gene; RLR, RIG-I-like receptor; RNS, 

reactive nitrogen species; ROS, reactive oxygen species; SAHA, suberoylanilide hydroxamic 

acid; SCF, stem cell factor; SD, standard deviation; SLO, secondary lymphoid organ; SnPP, tin 

protoporphyrin; SOCS, suppressor of cytokine signaling; STAT, signal transducer and activator 

of transcription; TCR, T cell receptor; Teff, effector T cell; TGF, transforming growth factor; Th, 

T helper; TLR, Toll-like receptor; TNF, tumor necrosis factor; Treg/Treg, regulatory T cell; TSA, 

trichostatin A; VEGF, vascular endothelial growth factor; WT, wild-type 
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