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In this paper, a method of determination of temperature and thermal stress distributions in a fuel 

element of a new gas-cooled, thermal spectrum particle bed reactor (GCT-PBR) was derived. It 

was capable of predicting failure and giving feedback on dimension design. To describe the fuel 

element, a three-layer conductive porous cylinder with infinite height and different materials was 

considered. A linear model of heat transfer in a one-dimensional porous medium with uniform 

internal energy source in cylindrical coordinate was first developed. Only steady state was 

considered. In thermal stress analysis, the thermal and mechanical properties of the solid phase 

and coolant were taken as constants, which were independent of temperature and time. Failure 

analysis was conducted based on von Mises criteria. The effect of geometry on thermal stress 

was investigated. It was shown that hot frit experienced the highest thermal stress and within 

design requirement, a thinner hot frit and a thicker cold frit would give a better performance.  
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1.0  INTRODUCTION 

1.1 SUMMARY 

A Particle Bed Reactor (PBR) is a gas-cooled, solid-core nuclear reactor by which energy is 

produced by nuclear fission and is removed by gas coolant. Unlike other reactors, the PBR 

makes nuclear fuel into small, coated particulate spheres and packs them between two concentric 

cylindrical shells [1]. The two cylindrical shells are called frits and the retention between them is 

called particle bed. The frits are porous to allow the flow of coolant but strong enough to confine 

the fuel particles. For the spherical fuel particles give a high surface area and are direct cooled by 

gas coolant, this design increases heat transfer efficiency and outlet propellant temperature of 

nuclear reactor. With distinct advantages of compactness, great energy efficiency and high power 

density, the PBR is an excellent choice for space use and nuclear thermal propulsion application.  

The particle bed reactor concept was originally proposed by researchers at Brookhaven 

National Thermal Program (BNL) in the early  980’s. Most of the PBR development was done 

as part of the U.S. Air Force Space Nuclear Thermal Propulsion program (SNTP) which lasted 

until 1993 [1]. The SNTP program aimed at designing a hydrogen-cooled PBR with an outlet 

temperature of 3000K for various U.S. Air Force missions and ended with great achievements. It 

verified feasibility of the PBR, developed fuel particles which could operate at very high 
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temperature, demonstrated a prototypical PBR engine, and figured out key points in thermal-

hydraulics and structural performance of PBR. 

The PBR concept talked here is a new gas-cooled, thermal spectrum particle bed reactor 

(GCT-PBR) proposed by Dr. Metzger John of University of Pittsburgh in 2012. Unlike the one 

designed for SNTP, the GCT-PBR will operate at modest temperature with an anticipated exit 

gas temperature of 650-1000  C [2]. The GCT-PBR has the ability to remove ~1MW/liter from 

the particle bed using helium as coolant and will operate for a long time between shut down. It 

has the potential to improve energy efficiency, save cost, be friendly to environment, and move 

nuclear reactor technology forward. The GCT-PBR will have various performances in space and 

terrestrial applications. 

The main objective of this thesis was to study heat transfer and thermal stresses of a fuel 

element in the reactor. The fuel element is the basic building block of the Particle Bed Reactor. It 

is the place where nuclear reaction, heat transfer, and heat removal take place. The fuel element 

experiences high temperature in high pressure with coolant flowing through. Heat transfer 

between the flowing coolant and still particle bed will induce a high temperature gradient which 

will cause thermal stresses. The thermal stresses can be large enough to force failure in materials. 

To be able to predict these failures and give feedback on the structure design, a comprehensive 

understanding of the temperature distribution and resulting thermal stress is essential.  

1.2 PROBLEM STATEMENT 

The outlet temperature of GCT-PBR (650-1000  C) is lower than the one designed for SNTP 

(~1649  C), however, the temperature gradient can be steep for the distance of heat transfer is 
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very short (~1cm). This temperature gradient will set up high thermal stresses. If the thermal 

stresses exceed the strength limitation of the structural materials, crushing will happen and 

integrity of structure will be destroyed. Thus to figure out temperature and thermal stress 

distributions is very important in designing shape, selecting materials and deciding control 

parameters. 

In this paper, a method of determining temperature and thermal stress distributions in a 

three-layer cylinder with different materials which represents the fuel element will be derived. 

Only steady state is considered here. In the process of heat transfer, the temperatures of the fluid 

phase and solid phase are taken the same. In thermal stress analysis, only thermal stresses 

generated by temperature gradient induced by heat transfer between the flowing coolant and still 

particle bed is taken into consideration. The thermal and mechanical properties of the solid phase 

and coolant are taken as constants, which do not change with temperature or time. 

The problem to be investigated here encompasses the following objectives:     

1. The description of heat transfer process in the particle bed in cylindrical coordinate.  The 

energy equation governing the mechanism of heat transfer in the particle bed with a 

uniform energy source is formulated.  

2.  The solution to the energy equation. Several numerical solutions are displayed and the 

factors which influence the temperature distribution are studied.  

3. Displacement and thermal stress analyses in the fuel element, which is composed of a 

cold frit, a particle bed and a hot frit, based on the obtained temperature profile. Failure 

analysis is also conducted by von Mises criteria.  

4. The study of fuel element geometry and thermal stress distribution. How changing 

dimension of fuel element affects thermal stress is investigated, which includes how 
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changing the cold and hot frit thicknesses affect thermal stress distributions in  -direction 

and  -direction. 
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2.0  BACKGROUND 

2.1 OVERVIEW 

The idea of using nuclear energy for space propulsion is not new. Going back a century ago, R. 

Goddard conceived using radium as an energy source in 1906 and Robert Esnault-Pelterie 

pointed nuclear energy was indispensable for space travel in 1912 [1]. Over the years, a number 

of books and articles [3-7] have been published on this subject. 

In the early years of space exploration and propulsion system design, the former Soviet 

Union and the United States were the two leading countries. The U.S. government put attention 

on this area long time ago. In the history of United States, space based reactor design has been 

evolving since the ROVER program of 1960s and its subsidiary NERVA program [8], In the 

NERVA program, Nuclear Thermal Propulsion technology base was established and a 

propulsion system was developed, modified and tested [9, 10]. Though much was gained from 

the two programs, there were three big problems that limited the nuclear rocket performance in 

the earlier designs: big size, low power density, and high pressure drop. 

To overcome these problems, a fundamental change in the conceptual nuclear reactor was 

essential. For sphere has the largest area per unit volume of all common shapes and fuel elements 

composed of randomly packed spheres can minimize the pressure drop, the idea of packing 

spherical fuel particulates to form fuel elements emerged. The first design using this concept was 
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the Rotating Bed Reactor (RBP) [11, 12] which had a rotating porous outlet frit. The particles 

were packed on the wall by centrifugation and there was no requirement for inner frit. This 

concept was investigated for about 10 years until the national Nuclear Thermal Propulsion effort 

was stopped. 

After a lull in the early  980s, United States’ interest in this area has been rejuvenated. In 

1982, a study of fixed bed reactor (FBR) started [13]. There was no rotating component in the 

FBR which was an advantage over RBP. However, the FBR had several disadvantages which 

limited its performance, such as thick particle-fuel bed, low economic efficiency and stringent 

requirements for hot frit material. Things started to change in 1985 when a novel concept was 

proposed [14] by Dr. James Powell of Brookhaven National Thermal Program (BNL), called 

Particle Bed Reactor (PBR).  

The PBR packed a number of fuel particles within two concentric, cylindrical, porous 

frits to form a fuel element. Several fuel elements with moderator, control rods, and other 

components would be assembled to form a reactor. Coolant would pass radially through the fuel 

elements and leave the reactor through nozzle to remove generated heat. With unique 

characteristics of compact size, high power density, and low weight, this concept was pursued 

with interest [15-18] the time it was proposed. 

Most work of PBR was done in Space Nuclear Application Program (SNTP) [19] which 

started in 1987 and was funded by the Strategic Defense Initiative (SDI) and the U. S. Air Force. 

The SNTP Program aimed at providing the nation a new, high performing hydrogen-cooled PBR 

with an outlet temperature of 3000K. In the program, the feasibility of the PBR was verified and 

a ground demonstration of a prototypical PBR engine was performed. The program lasted for 
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more than 10 years and identified major technical issues in fuel, material and thermal-hydraulic 

areas, which were necessary to develop the rocket engine based on a PBR. 

The PBR for SNTP program had an extremely high outlet temperature and the 

requirements for material and operation were stringent. Now it is time to design varied PBR 

depending on different applications. In 2012, Dr. Metzger John in University of Pittsburgh 

proposed a new concept of a gas-cooled, thermal spectrum particle bed reactor (GCT-PBR) 

based the PBR designed for SNTP. Differently, the GCT-PBR will operate for longer period and 

work at modest temperature. With the technology developments and successes of the SNTP 

Program, the GCT-PBR has a strong foundation to start from.  

2.2 GCT-PBR DESCRIPTION 

2.2.1 Reactor structure  

The basic components of the GCT-PBR are fuel elements array, moderator, control rods, and 

reflector. The fundamental fuel element design contains two frits and a fuel particle bed located 

just between them. Each fuel element is arranged in a hexagonal lattice, and is surrounded by 

light water which serves as the moderator. Several hexagonal patterns are assembled to form a 

core. The reflector is just located outside the core. Figure 2.1 depicts an outline of a typical 

reactor assembly and Figure 2.2 illustrates a schematic structure of a reactor core in cross 

section. The reflector is used to scatter neutrons to prevent them leaking from the core. The 

moderator serves to slow down the neutrons released during fission to maintain a chain reaction 

and the control rods are to control the speed of the fission reaction by absorbing neutrons. The 
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reactor, combined with other main structures such as propellant tank, thrust structure, pressure 

vessel, and nozzle, forms a thermal rocket engine, see Figure 2.3. 

 

 

 

Figure 2.1 Outline of a typical reactor assembly [19]. 
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Figure 2.2  Reactor cross-section [20]. 
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Figure 2.3  Particle Bed Reactor Based Rocket Engine [13]. 

2.2.2 Fuel element design 

Each fuel element of the GCT-PBR consists of a fuel particle bed located in two coaxially 

cylindrical shells, called frits. The spherical fuel particles are randomly packed in the particle 

bed. The outer frit, called cold frit, is an outer tapered cylindrical shell enclosing the fuel particle 
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bed; while the inner frit, called hot frit, is the inner cylindrical shell through which heated 

coolant gas will pass through to the centered outlet channel. Both frits are made of porous 

material. They will control and meter the coolant flow axially and circumferentially. During 

operation, the preheated cold gas goes axially through the inlet plenum, then traverses in a radial 

direction through the cold (outer) frit, particle bed, and hot (inner) frit, and finally goes out 

axially through the outlet plenum, as is shown in Figure 2.4 and Figure 2.5. 
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Figure 2.4  Axial view of the fuel element with coolant flow paths [2] 
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Figure 2.5  Cross-section of the fuel element [2]. 

2.3 MODEL 

To describe the fuel element, a three-layer porous cylinder with infinite height and different 

materials was considered, see Figure 2.6. The inner cylinder with radii    and    represents the 

cold frit. The middle cylinder with radii    and    represents the particle bed. The outer cylinder 

with radii    and    represents the cold frit. The inner and outer cylinders are made of the same 

material (material 1) and the middle cylinder is made of a different material (material 2). All 
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cylinders are porous. Heat transfer process was only considered in the middle cylinder. The 

temperatures of the inner and outer frits were assumed to be constants. Thermal stress analysis 

was taken in the three cylinders based on established temperature distribution. 

 

Figure 2.6  Analytical model of the fuel element in cylindrical coordinate 

 

Both cold frit and hot frit are made of Silicon Carbide (SiC). The mechanical and thermal 

properties of SiC are listed in Table 2.1. It is assumed the fuel particles are randomly packed 

between the frits with packing density of 64%.  The dimension and properties of the particle bed 
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are presented in Table 2.2. Helium is chosen as coolant with its properties and other useful 

parameters listed in Table 2.3.  The thickness of the cold frit and hot frit are expected to be on 

the order of 3~7 mm. 

 

  

Table 2.1  Mechanical and thermal properties of SiC 

Property Value 

Thermal conductivity 60 W/(m   C) 

Coefficient of thermal expansion 4.9*10
-6
     

Elastic modulus  410 GPa 

Poisson’s ratio 0.14 

Compressive strength    390 MPa 

Maximum use temperature (no load)   50    

Flexural strength 550 MPa 
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Table 2.2  Mechanical and thermal properties of the particle bed and its dimension 

Property Value 

Porosity 

Thermal conductivity 

64% 

38.4 W/(m   C) 

Coefficient of thermal expansion 4.9*10
-6
     

Elastic modulus 262.4 GPa 

Poisson’s ratio 0.0896 

Energy strength 1*10
9
 W 

Inner radius of the particle bed (  ) 0.0436 m 

Outer radius of the particle bed (  ) 0.0536 m 
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Table 2.3  Properties of helium and some other useful parameters 

 Items Value 

Specific heat of helium 5190 J/(kg   C) 

Thermal conductivity  of helium 0.142 W/(m   C) 

Density of helium 0.1786 g/L  

Inlet temperature  00    

Outlet temperature  1000  C 

Room temperature  5    

Cold frit thickness 3~7 mm 

Hot frit thickness 3~7 mm 
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3.0  HEAT TRANSFER IN PARTICLE BED 

3.1 FORMULATION OF THE PROBLEM 

The particle bed reactor is an energy exchange device which transfers nuclear energy into heat. 

To some extent, the performance of fuel and coolant in the core determines the reactor’s service 

and economic value. To describe heat transfer process in the particle bed and provide 

information to prevent temperature from exceeding design limits, a model of fluid flowing 

through porous medium was taken here.  

Many studies [21-25] have been conducted on theoretical analysis of heat transfer in 

porous medium. In this chapter, heat transfer in a one-dimensional porous medium with uniform 

internal heat source in cylindrical coordinate was considered. Based on the model talked in 

Chapter 2.3, the middle cylinder with inner radius    and outer radius    represented the particle 

bed, see Figure 3.1. The direction of flowing fluid was taken in the negative radial direction 

which was in accord with the movement of coolant in the particle bed. Energy equation 

governing the mechanism of heat transfer was formulated. The assumptions made in the 

derivation and the auxiliary conditions associated with the energy equation were also 

enumerated. 
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Figure 3.1  Analytical model of the particle bed, cylindrical geometry 

3.2 ASSUMPTIONS MADE IN THE DERIVATION OF ENERGY EQUATION 

To simplify the model and reduce calculation time, some assumptions are made in the 

formulation of energy equation, see below. 

1. Only heat transfer in steady state is taken into consideration. 
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2. The heat flow is one-dimensional, that is, in  -direction only.  

3. The temperatures of the gas phase and solid phase are equal. 

4. The physical and thermal properties of the porous body and the fluid are constant. 

5. Heat conduction in the fluid phase is neglected. 

6. Heat transfer by radiation, which can occur at elevated temperature, is negligible here. 

3.3 ENERGY EQUATION FOR PARTICLE BED 

Based on the above assumptions, energy equation for the particle bed can be derived by applying 

the law of conservation of energy on an elemental control volume. For the model talked here, the 

law of conservation of energy can be stated as follows: In a control volume, the rate of thermal 

energy accumulated ( ̇  ) is equal to the rate of thermal energy flows in ( ̇  ) plus the rate of 

thermal energy generated by nuclear fission ( ̇   ) minus the rate of thermal energy flows out 

( ̇   ). In equation form, it is,  

  ̇    ̇    ̇     ̇    (3.1) 

Taking an infinite small element at   of thickness   , radian   , and unit height,                                                                                                                                                                                                                                                                                                                                            

called a control element, see Figure 3.2, the effort remained was to express each term in 

Equation (3.1) . 
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Figure 3.2 Typical control element at r of thickness dr, radian dθ and unit height from the particle bed 

 

Since we assumed all the energy generated is removed by the coolant in steady state, the 

rate of thermal energy accumulated in the control element is zero, so 

  ̇     (3.2) 
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 The rate of energy flows in can be written as the rate of energy conducted in and the rate 

of energy convected in. Applying Fourier’s law [26], the rate of energy entered the control 

element by conduction can be expressed in terms of temperature gradient,  

    

  

  
         (3.3) 

And the rate of convective energy flows in can be written by increase of internal energy 

of the fluid, 

 
 ̇   

   
         (3.4) 

So the total energy entering the volume has the following form 

  ̇      

  

  
        

 ̇   

   
         (3.5) 

where 

   is thermal conductivity of solid phase,  

       is temperature gradient,  

        is the lateral surface of the element, 

 ̇ is mass flow rate per unit height,                                                      

    is specific heat of the fluid phase.                     

If the rate of heat generation by nuclear fission per unit volume is  ̇, the rate of thermal 

energy generated in the element has the following expression, 

  ̇     ̇           (3.6) 

where 

           is the volume of the control element. 

The rate of energy left the control volume can be expressed by the energy entered in plus 

the change of it with respect to dr. 
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  ̇     ̇   (
  ̇  

  
)   (3.7) 

Substituting each form into Equation (3.1) and neglecting second-order differentials, the 

energy equation can be obtained, 

    (
   

   
 

 

 

  

  
)  

 ̇   

   

  

  
  ̇    (3.8) 

where 

     
                     means the net rate of heat added by conduction. It is the 

transport of thermal energy from one volume element to the next by conduction in the solid 

phase. The thermal conductivity of fluid phase is neglected in assumption. 

  ̇                 means the energy transport in r-direction due to bulk movement of 

the fluid. It is the net rate of energy transport by convection and has a deep connection with the 

physical and dynamic properties of the fluid. 

 ̇ is the rate of heat generation by nuclear fission per unit volume. 

3.4 AUXILIARY CONDITIONS 

The auxiliary conditions, which are essential to obtain numerical solution of the energy equation, 

will be postulated here. The coolant is preheated to    before entering the fuel element. Since we 

assume the temperature doesn’t change in the cold frit, the temperature of the coolant entering 

the fuel element particle bed can be taken as   . After travelling through the particle bed, the 

coolant gets a temperature rise      and leaves with temperature   . So 

      ,    at       . (3.9) 
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           ,    at       . (3.10) 

However, at steady state, the heat generated within the bed is equal to the heat removed 

from the bed, which means,  

  ̇    
    

    ̇        (3.11) 
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4.0  THERMAL STRESS ANALYSIS OF FUEL ELEMENT 

4.1 SUMMARY 

During operation, the fuel element is subjected to the most extreme environment, like high power 

density, high temperature, and high temperature gradient, which will cause high thermal stress 

and even crack in the fuel element. It is important to understand thermal stress in the fuel 

element to make sure it works safely. The determination of thermal stress is also a crucial part in 

shape design of the fuel element. Numerous papers have been published on the subject of 

thermal stress analysis in cylindrical structure. J. R. Matthews [27] calculated thermal stresses 

within a finite heat generating cylinder over a range of length to diameter ratios. Richard A. et al 

[28] gave an exact solution for thermal displacement and stresses in a finite elastic cylinder 

based on known radial temperature distribution. Orcan [29] presented the solution of elastic-

plastic cylinder with uniform internal heat generation and free ends. Z. Y. Lee et al. [30] 

analyzed transient thermal stresses under temperature change in multilayered hollow cylinder by 

Laplace transform and finite difference method. 

In this chapter, displacement and thermal stress analyses were conducted in the three-

layer cylinder with different materials, see Figure 2.5. Only thermal stress generated by 

temperature gradient induced by heat transfer between the flowing coolant and still particle bed 

was taken into consideration. The temperature of the particle bed was taken from the energy 
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equation obtained in Chapter 3.0 . In the cold and hot frits, temperatures were taken as constants. 

Displacement and thermal stress analyses were illustrated in the following part. The assumptions 

made in the derivation and the auxiliary conditions were also enumerated. 

4.2 ASSUMPTIONS MADE IN THERMAL STRESS ANALYSIS 

To simplify the model, we assume 

1. The material of each layer is homogeneous and isotropic. 

2. The mechanical and thermal properties of each layer are constant with respect to 

temperature and time. 

3. The boundaries (    and   ) of the three-layer cylinder are traction-free.  

4. No external forces are applied. 

5. Radial dimension of the fuel element is very small compared to its height in z-direction. 

6. The three-layer cylinder is undeformed and is in a stress-free state at room temperature. 

7. Thermal stress produced by radiation is neglected.  

4.3 GOVERNING EQUATIONS FOR PLANE STRAIN PROBLEM 

The governing equations are a set of equations that describe the relationship of displacement, 

strain and stress fields. They contain strain-displacement equations, constitutive equations, and 

equilibrium equations. By applying governing equations with specific assumptions and auxiliary 

conditions, numerical solutions of a problem can be got. 
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Since the radial dimension of the fuel element is very small compared to its height, the 

problem is reduced to a plane strain problem where the displacement field is independent of z-

direction. The laws and equations formulated for plane strain problem can be used here. 

In the following part,   ,    ,     ,           represented the displacement fields, strain 

fields, and stress fields, respectively. In cylindrical coordinate,       in a state of plane strain, 

so the governing equations have the following expressions [31], 

Strain–displacement equations for plane strain problem in cylindrical coordinate are 

     
   

  
  

     
 

 
(
   

  
   ) (4.1) 

     
 

 
(
 

 

   

  
 

   

  
 

  

 
)  

Constitutive equations for plane strain problem in cylindrical coordinate are     

                              

                             (4.2) 

            

                        

Equilibrium equations for plane strain problem in cylindrical coordinate are 

 
    

  
 

 

 

    

  
 

 

 
              

 
    

  
 

 

 

    

  
 

 

 
      (4.3) 

where 

             (4.4) 

    is Kronecker delta, it is an indicial notation symbol defined as 
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     {
              
              

     (4.5) 

  is thermal expansion coefficient, 

   is the temperature difference, 

  and   are material parameters, known as the Lame constant, which have the following 

expressions 

   
  

           
    

   
 

      
   (4.6) 

ν is poisson’s ratio, 

Y is Young’s modulus. 

4.4 AUXILIARY CONDITIONS 

The auxiliary conditions are composed of boundary conditions and continuous conditions. 

Applying the auxiliary conditions to the governing equations postulated earlier, the stress 

equation for each layer can be obtained.  

4.4.1 Boundary conditions 

The lateral surfaces of the three-layer cylinder are traction-free.  From traction-stress equation 

[31], it can be seen that, 
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For the portion at      , the unit outward normal is       and the specified traction 

is    . It follows that                   

    
              

     ,    when       (4.7) 

For the portion at      , the unit outward normal is      and the specified traction is 

   . It follows that                   

    
                  

         ,    when       (4.8) 

4.4.2 Initial conditions 

There is no stress in the three-layer cylinder at room temperature. So the temperature difference 

   can be presented as  

            (4.9) 

Where 

     is temperature distribution in the three-layer cylinder. 

    is room temperature. 

4.4.3 Continuity conditions 

According to the structure integrity requirement, deformation must be continuous at the 

interphases, which means displacements at the interfaces (   and   ) are the same,  

                                        (4.10) 

                                           (4.11) 
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Where                           present the displacement distribution of the inner, middle 

and outer cylinders.  

Since the three-layer cylinder is made of different materials and is exposed to a non-

uniform temperature distribution, there must be pressure produced at the interfaces.  Assume the 

expansion of the inner cylinder is bigger than that of the middle cylinder and the expansion of 

the middle cylinder is bigger than that of the outer cylinder, so there exist pressure at the 

interface     and    , which is   and    respectively, see Figure 4.1, Figure 4.2, and Figure 4.3. 

 

Figure 4.1  Pressure in the inner cylinder with inner radius r1 and outer radius r2 
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Figure 4.2  Pressure in the middle cylinder with inner radius r2 and outer radius r3 
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Figure 4.3  Pressure in the outer cylinder with inner radius r3 and outer radius r4 

 

 

For the inner cylinder, at      , the unit outward normal is      and the specified 

traction is     . It follows that           

    
      ,     

     ,   when         (4.12) 
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For the middle cylinder, at      , the unit outward normal is       and the specified 

traction is    . It follows that         

    
       ,    

      ,    when        (4.13) 

For the middle cylinder, at      , the unit outward normal is      and the specified 

traction is      . It follows that 

    
        ,     

      ,   when         (4.14) 

For the outer cylinder, at      , the unit outward normal is       and the specified 

traction is     . It follows that    

    
         ,     

       ,   when       .    (4.15) 
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5.0  SOLUTIONS AND DISCUSSIONS 

In the previous two chapters, heat transfer process in the particle bed and thermal stress analysis 

in the fuel element were illustrated respectively. The energy equation with auxiliary conditions in 

Chapter 3.0 contained sufficient information to solve temperature profile and the stress analysis 

of Chapter 4.0 also presented enough details to obtain the displacement and stress distributions. 

Based on the above, methods of determination of the temperature and thermal stress distributions 

were derived in this chapter. The effects of frits dimensions on thermal stress were also 

discussed. 

5.1 SOLUTION TO ENERGY EQUATION 

The energy equation (3.8) can be presented as follows, 

  
   

   
  

 ̇   

    
   

 

 

  

  
 

 ̇

  
                              (5.1) 

This is a second-order linear ordinary differential equation. Let 

   
 ̇   

    
         

 ̇

  
   (5.2) 

The general solution for equation (5.1) is  
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                         (5.3) 

where  

   and    are constants to be determined. 

With the auxiliary conditions,  

    
    

    
  

        
     

   
     

 
      

          
    

     

   
 

   
 

      
     (5.4) 

5.2 OUTLINE TO SOLVE DISPLACEMENT AND THERMAL STRESS 

EQUATIONS 

From former analysis, the temperature distribution in the three-layer cylinder can be got, 

      

{
 

 
                                                                    

   

    
 

   
     

   
                              

                                                                     

 (5.5) 

Using semi-inverse method, assume that the displacement field exhibits the same 

cylindrical symmetry as the boundary conditions, so that 

                     (5.6) 

where      is a function that the governing equations and boundary conditions are satisfied. 

It follows from the strain-displacement equation (4.1) that, if the displacement field is 

cylindrical symmetric, then the components of the strain field are given by 
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            (5.7) 

So the constitutive equation (4.2) can be expressed as      

                   
    

 
               

           
    

 
                      (5.8) 

      (       
    

 
)                

And the equilibrium equation (4.3) becomes  

 
    

  
 

 

 
            (5.9) 

Substituting constitutive equation (5.8) into equilibrium equation (5.9), it yields, 

 
        

      

 
 

    

  
 

        

    
         

(5.10) 

where  

       and         are the first and second derivative of      with respect to  . 

      is the first derivative of    with respect to  .  

In the following part, the superscripts 
in

, 
mid

 and 
out

 represented the inner, middle, and 

outer cylinders, respectively. The subscripts 1 and 2 represented material 1 and material 2, 

respectively. It can be seen that Equation (5.10) is a second-order linear ordinary differential 

equation. Substituting the temperature distribution into it gives 
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where  

                     are constants to be determined. 

   
               

        
   

              

             
  (5.12) 

Substituting equation (5.11) to constitutive equations (5.8) gives 
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(5.13) 

    
                  

  

  
                                                

           With the auxiliary condition in 4.4, there are eight equations (4.7), (4.8), (4.10)~(4.15) 

with eight unknowns (                        ), which are sufficient to get the exact 

solutions of displacement fields and stress fields in the three-layer cylinder. 

5.3 RESULTS AND DISCUSSIONS 

5.3.1 Temperature distribution 

With given parameters’ values in  hapter 2.3, temperature equation (5.1) is a function of mass 

flow rate  ̇  and radius  , Figure 5.1 presents different temperature distributions with different 
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mass flow rates. To make sure the outlet temperature satisfies the requirement of the design 

which is  000  C, the mass flow rate should be controlled at 0.5 kg·s
-1

·m
-1

, see Figure 5.2. This 

could be realized by controlling coolant velocity and pressure. 

 

  

Figure 5.1 Temperature distributions in the middle cylinder with mass flow rate of 0.4, 0. , and 0.8 kg·s
-

1
·m

-1
, respectively. 
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Figure 5.2  Temperature distribution in the middle cylinder with mass flow rate of 0.5 kg·s
-1
·m

-1
 and outlet 

temperature of  000   . 
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5.3.2 Displacement and thermal stress analysis 

Figure 5.3~Figure 5.7 illustrate displacement and stress distributions in the three-layer cylinder 

based on frits thicknesses of 3mm (    =0.0406 m,     =0.0566 m).  

 

 

Figure 5.3  Displacement distribution in the three-layer cylinder with r1=0.0406 m, r4=0.0566 m. 
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Figure 5.4  Radial thermal stress in the three-layer cylinder with r1=0.0406 m, r4=0.0566 m. 
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Figure 5.5  Circumferential stress in the three-layer cylinder with r1=0.0406 m, r4=0.0566 m. 
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Figure 5.6  Axial stress in the three-layer cylinder with r1=0.0406 m, r4=0.0566 m. 

 

Figure 5.3 shows the radial displacement in the three-layer cylinder and Figure 5.4-Figure 5.6 

illustrate the stress distributions in three directions.  The displacement by expansion in the three-

layer cylinder is infinite small, but thermal stress produced by temperature gradient is extremely 

huge. The radial thermal stresses are continuous and compressive. However, tension appears in 

 -direction and  -direction. The circumferential stress and axial stress have significant jumps at 

the interfaces as shown in Figure 5.5 and Figure 5.6. The discontinuity was due to the differences 

in the material properties such as Young’s modulus and poisson’s ratio. Linear thermal 

expansion coefficients of the two materials were assumed the same. 

 In the particle bed and cold frit, tension circumferential stress is not wanted for SiC is 

typically very brittle. It belongs to ceramic material which has excellent mechanical properties in 
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compression, but performs badly under tension. To keep the fuel particles in position, 

compressive stress in the particle bed was also preferred.  

 

 

Figure 5.7  Von Mises stress in the three-layer cylinder with r1=0.0406 m, r4=0.0566 m. 

 

Figure 5.7 illustrates yield stress by von Mises criteria [32] in the three-layer cylinder. As 

we expected, hot frit experiences the highest stress. Cracking is most likely to be initiated at the 

rim of the hot frit. Thus, more focus should be put on the hot frit design to make sure it 

accommodates the stress load and works without failure.  
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5.3.3 Geometry and thermal stresses 

A summary of the effect of frits thickness on thermal stress was illustrated here. Just radial and 

circumferential stresses were presented. In plane strain state, the axial stress can be expressed in 

form of the other two stresses [33]. Since we didn’t want particles redistribution in the particle 

bed, thermal stress in  -direction and  -direction in the three-layer cylinder with different frit 

thickness were investigated.  

 

Figure 5.8  Radial thermal stresses in the three-layer cylinder with hot frit of 3mm (r1=0.0406m), 5mm 

(r1=0.0386m), and 7mm (r1=0.0366m), respectively. 
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Figure 5.9  Circumferential thermal stresses in the three-layer cylinder with hot frit of 3mm (r1=0.0406m), 

5mm (r1=0.0386m), and 7mm (r1=0.0366m), respectively. 

 

 



47 

 

Figure 5.10  Radial thermal stresses in the three-layer cylinder with cold frit of 3mm (r4=0.0566m), 5mm 

(r4=0.0586m), and 7mm (r4=0.0606m), respectively. 
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Figure 5.11  Circumferential thermal stresses in the three-layer cylinder with cold frit of 3mm 

(r4=0.0566m), 5mm (r4=0.0586m), and 7mm (r4=0.0606m), respectively. 

 

Figure 5.8 through Figure 5.9 illustrate how changing hot frit thickness affects thermal 

stress in  -direction and  -direction. When the thickness of hot frit decreases, radial stress 

decreases. As to circumferential stress, when the thickness of hot frit decreases, tensile stress 

goes down. This is good for tensile stress is not wanted in the particle bed. It is not hard to 

understand for a thinner hot frit has a better compliance with the change.  

The next group of figures, Figure 5.10 to Figure 5.11, illustrate how changing cold frit 

thickness affects thermal stress in  -direction and  -direction. When the thickness of cold frit 

increases, radial thermal stress increases but tensile circumferential stress decreases. This is 
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because a thicker cold frit gives more confine on the whole structure.  As we don’t want tension 

exist in the particle bed and SiC performs better under compression, in the design limit, a thicker 

cold frit was preferred. 
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6.0  CONCLUSIONS 

In this paper, a method of determination of temperature and thermal stress distributions in the 

fuel element was derived. To describe the fuel element, a three-layer porous cylinder with 

infinite height and different materials was considered. Heat transfer process was only considered 

in the particle bed. Temperatures of the frits were assumed to be constant. Numerical result of 

the temperature distribution in the particle bed was derived. In displacement and thermal stress 

analysis, the problem was taken as plane strain problem. The thermal and mechanical properties 

of the solid phase and coolant were taken as constants, which were independent of temperature 

and time. Some basic ideas were demonstrated in this study. 

1. The steady state energy equation in a conductive porous medium with internal energy 

source in cylindrical coordinate was derived. The temperature of the solid phase and fluid 

phase are considered to be the same. The mechanical and thermal properties of solid and 

fluid phases are assumed to be constant. 

2. Temperature distribution was obtained from the energy equation. It should be noted that 

different mass flow rate would lead to different temperature distribution with respect to r.  

To satisfy the requirement of the new design with an outlet temperature of 1000 , the 

mass flow rate should be 0.5 kg·s
-1

·m
-1 

and this can be realized by controlling pressure 

and velocity of the coolant.  
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3. Displacement and thermal stress analyses in the three-layer cylinder were conducted 

based on presented temperature distribution. Thermal stress varied characteristically in 

each layer, especially for the occurrence of discontinuities at the interfaces. Radial 

thermal stress was compressive but tension appeared in circumferential stress in the 

particle bed and cold frit. Failure analysis was conducted based on von Mises criteria. It 

was shown that hot frit was most dangerous. 

4. How changing thickness of frit affects thermal stress distribution was conducted. It was 

shown that within design requirement, a thinner hot frit and a thicker cold frit would give 

a better performance.  
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