
A Semi-Supervised Approach to Visualizing and Manipulating
Overlapping Communities

Patrick M. Dudas
School of Information Sciences

University of Pittsburgh
Pittsburgh, USA
pmd18@pitt.edu

Martijn de Jongh
School of Information Sciences

University of Pittsburgh
Pittsburgh, USA

mad159@pitt.edu

Peter Brusilovsky
School of Information Sciences

University of Pittsburgh
Pittsburgh, USA
peterb@pitt.edu

Abstract— When evaluating a network topology,
occasionally data structures cannot be segmented into
absolute, heterogeneous groups. There may be a spectrum to
the dataset that does not allow for this hard clustering
approach and may need to segment using fuzzy/overlapping
communities or cliques. Even to this degree, when group
members can belong to multiple cliques, there leaves an ever
present layer of doubt, noise, and outliers caused by the
overlapping clustering algorithms. These imperfections can
either be corrected by an expert user to enhance the
clustering algorithm or to preserve their own mental models
of the communities. Presented is a visualization that models
overlapping community membership and provides an
interactive interface to facilitate a quick and efficient means
of both sorting through large network topologies and
preserving the user’s mental model of the structure.

Keywords-visualization; overlapping communities; semi-
supervised clustering; user-defined cliques

I. INTRODUCTION

Visualizations are tools used to express both the
structure of the data and cognitive mapping of the user
observing and interacting with this data [1]. In a
traditional sense, graph based data is handled using simple
vertex and edge based representations and in some cases,
cliques are derived from these graphs (networks or sub-
networks) and presented to the user in a means that help
segregate and dissect closely associated vertices from one
another. This technique works in cases where the data is
segmented into heterogeneous groups and vertices are
easily discernible from one another; in the cases that data
points (vertices) fall into multiple different groupings,
there is a need to allow for cliques or communities to
overlap. These overlapping communities require new
representation in that the visualization needs to be created
to highlight areas where the vertices fall into single
inclusion communities and multi-communities.

Building upon the cognitive mapping and mental
models these network visualizations with overlapping
communities communicate, we consider that when there
is a gray area for vertices to fall into (in terms of
community identity) the line between absolute solution
and best guess solution fades, and human involvement
and interaction provide a critical improvement in
acceptable grouping. In this paper we introduce user-
defined cliques as an approach to provide human

feedback in the process of mixed-initiative community
visualization. Optimally, there is mixture of both the
machine learning algorithm and the user generated
cliques. Presented is an approach to combine both semi-
supervised clustering and cluster visualization, rich in its
interaction and aesthetics to provide the user with both an
understanding of the machine learning clustering and the
ability to apply their own structure based on their mental
model of the network.

In section 2 we present the previous work related to
these topics. Section 3 goes into detail of the
visualization, the machine learning clustering algorithm
(Label Propagation), and the novel approach of using a
semi-supervised interface that allows and adapts to the
user-defined and machine-learning cliques. Section 4
provides an example in which we apply a dataset, created
from UMAP (User Modeling, Adaptation and
Personalization) publications, to showcase our design.
Sections 5 and 6 conclude with our future work.

II. BACKGROUND

A. Visualization
There are a plethora of different, mainstream types of

visualization software packages available for network data
including Gephi [2], Pajek [3], Ucinet [4]. These are all
limited to non-overlapping clustering approaches and do
not allow the user the ability to put vertices into new
groups without having to change meta-data about the
vertex itself. Our approach allows for the inclusion and
visualization of overlapping communities and an
interactive, semi-supervised clustering approach.

Using biclusters in gene-expression, BicOverlapper
[5] incorporates a hull based visualization using a singular
color to display higher levels of overlap. An interesting
approach to overlapping communities is Overlapper [6],
where they improved upon their design in BicOverlapper
by highlighting vertices that overlapped by using a pie
chart to show the number of overlaps. Vertices that have
overlap are easily identified and to what degree. We
expand on this by including a variety of different colors
(ten colors) with similar hull opacity to showcase multiple
cliques definitively and areas of high overlap. Using
multiple colors also allows for salient understanding of
which clique each vertex comes from and where they

2013 17th International Conference on Information Visualisation

1550-6037 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IV.2013.23

171

2013 17th International Conference on Information Visualisation

1550-6037 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IV.2013.23

171

2013 17th International Conference on Information Visualisation

1550-6037 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IV.2013.23

171

2013 17th International Conference on Information Visualisation

1550-6037 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IV.2013.23

180

2013 17th International Conference on Information Visualisation

1550-6037 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IV.2013.23

180

2013 17th International Conference on Information Visualisation

1550-6037 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IV.2013.23

180

2013 17th International Conference on Information Visualisation

1550-6037 2013

U.S. Government Work Not Protected by U.S. Copyright

DOI 10.1109/IV.2013.23

180

overlap. Additionally, we provide an improved pie chart
structure that allows for both the identification of
overlapping nodes, and to what degree they overlap.

B. Clustering
Since the work by Girvan & Newman [7], we have

seen many different approaches to clustering network
structures. See Fortunato [8] for a comprehensive
overview. Among other things, approaches differ by their
quality function [7], the ability to allow overlapping
communities [9], and how cluster assignments are
propagated through the network [10]. For our approach
we applied an extended version of the Label Propagation
Algorithm (LPA), which was proposed by Raghavan,
Albert, and Kumara [11]. LPA iteratively determines the
final cluster assignments. It initializes all vertices with a
unique label, and then proceeds to update vertex labels by
checking the labels of their neighbors. The most
frequently occurring label among a vertex’s neighbors is
chosen as its new label. Ties are broken randomly. During
all iterations, all vertices are (possibly) assigned a new
label asynchronously. The process continues until it
converges on a stable set of label assignments, which
usually occurs within a few iterations.

C. Interactive Visualization
When it comes to this sensemaking and user-defined

approach in a visualization, Apolo [12] provides an
interface incorporating both user interactions and machine
learning in large datasets. They accomplish this by
building on a single vertex and as users provide a paper of
interest to interface, the network-like visualization builds
by providing cited work and visual clues based on number
of citations and relevance. Building on this visualization,
TourViz [13] divides sub-domains of user interests into
convex hulls to help segment multiple topics of interest.
In contrast to this work, our approach takes into account
the entire network structure, providing overall topology.
Also, we provide not only the utilization of color changes
(to distinguish group assignment), but also shape
distinction by user-defined clusters and opacity changes to
discern vertices already selected and grouped.

III. METHODS

A. Visualization Approach
We opted to use D3.js for our force-directed

framework, which utilizes a Verlet integration with
simple graph constraints [14]. Our prototype is a
community enhanced force-based diagram, with the
modification that we provide centralization vertices for all
clique centroids. The reasoning for this was two-fold: 1)
produce a more efficient, interactive visualization and 2)
maximization of convex hull coverage. These are both
covered in detail below.

First, addressing efficiency of the visualization, one
of the major rendering issues found in most force-directed

visualization of networks is not always the number of
vertices and edges, but the edge overlap. This is due to
that fact that when it comes to constructing the graph,
edge overlap can be the more disorienting aesthetic
properties [15] to deal with, and when faced with this
problem without altering the edge shape can lead to an
NP-hard problem [16]. We reduced overlap and the
number of connections by creating a single vertex for
each clique as a marker for the entire clique. Highly dense
cliques have the potential to have �(�2) number of
connections between each vertex. With our approach, it is
guaranteed that each clique will have a maximal number
of connections of �(n). While this may appear to reduce
the natural connectivity and topology of the graph,
clustering is completed utilizing the original network
layout so as to preserve these inner-cluster relationships
but minimize their overall effect on the rending of the
visualization. Fig. 1 (left) illustrates a traditional
arrangement of a network topology. Instead of this layout
we create a single vertex as a central point for the entire
clique (Fig. 1 – Centroid Node). The centroid vertex has
only one connection to all vertices in the clique, Fig. 1
(right).

Figure 1. Removing Edge Crossing and Reducing Layout
Computations by Using Centroid Vertex

To examine this approach, we completed measures
for two separate datasets obtained from UMAP. The
datasets include the original topology (Original) and our
centroid approach (Centroid). We compared the number
of vertices (v), number of edges (e), average cluster
coefficient (CC), average path length (PL), and the total
time (TT) to converge. The total time to converge was a
measurement designated by our group built upon the
tick() function in D3.js. To create the force-based
diagram, d3.js implemented a tick() function to move the
vertices and edges to their final arrangement based on link
strength, link distance, gravity, and charge. These
constraints are balanced using Dwyer’s layout constraints
[17], where as shown in Fig. 2 the distance � must be
minimized.

172172172181181181181

Figure 2. Representing Graph Constraints [17]

This is done by finding the smallest � value to satisfy
this constraint, where � [17] is defined as:

� � = (��|��	|�)

|��	| � ���

All constraints were kept constant throughout both
trails. We defined the total time as the amount of time it
took to finally hit equilibrium with the force-based
criteria. For Table 1 the centroid topology took less time
to come to equilibrium for both trials. Both factors that
lead to better times for the centroid topology was the
number of edges and connectivity of the network itself.

TABLE I. COMPARING TIME TO CONVERGE, ORIGINAL VERSUS
CENTROID TOPOLOGIES

Dataset V e CC PL TT
1-Original 766 8038 0.876 1.97 02:18.1
1-Centroid 766 2262 - - 01:21.9
2-Original 766 2506 0.812 4.596 01:56.5
2-Centroid 766 1714 - - 01:32.6

To maximize awareness of the overlapping
communities a convex hull [18] was applied to showcase
the cliques and the overlap. The convex hull benefits by
using this centroid vertex by not forcing the visualization
graph constraints to focus strictly on the distances
between vertices � , but using the repulsive force �
provided in the Barnes-Hut quad-tree [19]. The repulsion
is approximated using a charge value
� determined from
the quad-tree resulting in:

� ��,� = ∑ �
�(�����)�� (�����)�(�,�)∈��� � ����

� ��,� =
����,��

� ����

In the case where the
� < 0, the graph layout is
computed. This provides an even distribution of vertex
distances and makes a more aesthetically pleasing
interface by removing overlap of the vertices. Also,
community overlap is easier to identify, because in the
scenario where a vertex overlaps with two communities. It
will have edges to both centroids or multiple centroids in

the case of more than two overlaps and will pull evenly
based on the force-based parameters.

Figure 3. Example of Overlapping Community Visualization

B. Extending Label Propagation
We have extended the original LPA to allow it to be

an active part in our interactive clustering visualization.
We added to ability to run the algorithm on weighted
graphs, changing the label picking criterion from the most
frequent label of the neighbors to a version where the
frequencies are modified by the edge weights.
Furthermore, the labeling process was extended to allow
for discovery of overlapping clusters. The calculated
cluster label weights are further weighted by the
proportions they appear in the label distribution of the
adjacent vertices. The proportion weights for the new set
of cluster labels of a vertex are calculated after selecting
the top n labels. The calculated weights of these n labels
are normalized and stored with the new cluster labels of
the vertex. A weight wj for cluster label j is calculated
using edge weights ei of adjacent vertex i and cluster label
proportion pij of vertex i for label j:

� �! = ∑ "#
�$%

∑ �$%&%'*
+#-� � ����

To facilitate an interactive cluster visualization
experience, we have made several modifications to LPA
to make this possible. The original algorithm paper
proposed an approach to seed a few vertices with cluster
labels and leaving the rest unlabeled, allowing for clusters
to form around those seeds. We have taken a slightly
different approach, allowing vertices to be fixed. Once a
vertex is fixed, it will no longer update its label. This
allows clusters to grow around vertices in a similar way,
with the added benefit that we can choose to fix vertices
in an already existing complete set of cluster assignments
and rerun the algorithm on this cluster assignment to
update it. Second, featured prominently in our
visualization, is granting the user the ability to group
vertices. Effectively this allows grouped vertices to
behave as a single vertex. When any of the vertices of the
group updates its (set of) label(s), all others follow suit.

173173173182182182182

Groups can also be fixed; if one of its members is a fixed
vertex, the whole group becomes fixed.

This feature and the ability to recover overlapping
communities have made it necessary to adjust the
algorithm’s stopping criterion. Originally, the algorithm
terminates after all vertices belong to the cluster to which
the majority of its neighbors belong. Allowing vertices to
be groups can cause the groups to flip between vertex
clusters labels, which could cause the algorithm to get
stuck in an infinite loop.

To support overlapping clusters, the stopping
criterion needed to be generalized. Before, the newly
chosen cluster label was compared with the current
assignment. If they differed, the vertex was assigned the
new label and the global cluster assignment was deemed
to be unstable; this required the algorithm to continue to
iterate until none of the vertices would have to update
their label assignment anymore.

To guarantee algorithm termination with the new
features in place, two adjustments were necessary:

1) A 2-phase stopping heuristic was put in place.
After 500 iterations, cluster assignment distributions are
recorded. After a customizable number of iterations are
reached, the algorithm assigns the most frequently
occurring (set of) cluster label(s) of this group to the
group as the final assignment. After all groups are
assigned their cluster(s), the algorithm terminates.

2) We started using cosine similarity [20] to measure
how close the new (set of) cluster(s) is to the old
assignment. Once a preset minimum cluster similarity is
reached, the algorithm terminates. Cosine similarity
between cluster sets C of vertices a and b is defined as
follows:

� cosab(α) = ∑ ./1×.21n
i'1

3∑ (./1)�n
i'1 ×3∑ (.21)�n

i'1

� �	��

C. Interaction Workflow
As part of an effort to provide a more interactive

experience, work has been done to allow for a more
dynamic workflow for clustering and visualizing data.
The goal of this dynamic workflow is to allow users to
execute clustering algorithms from within the
visualization display and to interact with the cluster
results.

The current prototype also combines a few
affordances to help guide the user in the interactions
themselves [21]. Edges on the graph reflect similarity
between vertices (see Section 4 – UMAP Example for
details on similarity measure used) and represented by the
thickness of the line equating higher similarity. Vertices
and text boxes provide a pointer cursor to make them
known as selectable objects. Vertex size is determined by
calculating the degree centrality. Also, each vertex is
represented using a pie diagram which represents the

amount of weighting provided by LPA to showcase to
what degree each vertex belongs to this community. Fig. 4
shows an example of this weighting.

Figure 4. Pie Chart Aesthetics to Highlight LPA Values

Once a vertex is selected, the user has the option (and
is encouraged) to select multiple vertices to group. This is
completed using a control-click, which is comparable to
traditional multi-file select [22].

 Objects that are selected are then temporarily
grouped into a user-defined sub-group and labeled using
different glyphs, differentiating themselves from the
predefined, machine learned groups that are labeled using
color. The groups are then automatically passed to a
modified version of the LPA. The information provided
by the user is then incorporated in the clustering process
and after completion, the cluster assignments of the
current dataset are updated in the visualization display.
For the final affordance, the user-defined group is
differentiated by changing the opacity to be completely
opaque.

IV. UMAP EXAMPLE

A. UMAP Dataset
To run an information evaluation of our approach, we

explored it using a real-world dataset that represents a
similarity measure among a group of authors that have
published in the UMAP (User Modeling, Adaptation and
Personalization conference series. To create this dataset,
we have extracted data from the DBLP [23] database,
which created a 766 vertex and 8038 edge network.
DBLP is a computer science bibliography database. It has
indexed over 2 million articles from many conferences,
books and journals. We have parsed a dump of DBLP
database to extract the relevant publications and other
information for the group of UMAP authors we are
examining. This data was used to build similarity
relationships based on the Jaccard index [24], author
similarity depends on the number of papers co-authored
together, taking into account how many papers each of the
authors authored in total.

B. Visualization Example
We visualized the UMAP data with three different

settings for overlapping cluster: 1 (no overlap), 3, and 5.
The results are shown in Fig. 5.

174174174183183183183

(a)

(b)

(c)

Figure 5. Visualizing UMAP data with no, 3, and 5 overlapping
clusters respectively

For this example we will be using the 3 overlapping
clusters (Fig. 5 - b). To proceed, the user would select
multiple vertices to group them together (using control-
clicks). Selections will be based on overlapped areas with
high correlations, depicted using the pie chart in Fig. 6.

Figure 6. Pie Charts Showcasing LPA correlation

Once selected, the outline of the vertex changes to
provide affordance that the vertex was selected. After the
user has stopped selecting vertices, the visualization
updates to showcase the user-defined group by using a
different glyph, shown in Fig. 7. This triggers the
visualization to update values in the database and
activates the LPA to rerun with updated ground truth.
Results are then sent back to visualization via an AJAX
callback and the visualization shows the updated graph.

Figure 7. User-Defined Clusters

The final aesthetic is the color change to signify
group inclusion and opacity change to illuminate already
clustered nodes. Fig. 8 shows the updated community, the
user-defined community (using an alternate glyph), and
the processed vertices (changing the opacity to complete
opaque). This process continues and the user-defined
groups will be differentiated from one another by using a
new glyph.

Figure 8. Final Aesthetic to Highlight Completed Nodes

V. FUTURE WORK

To continue this work we want to validate first the
claim that our approach allows for easy understanding of
community identity using convex hulls and optimization
proposed in this paper. To do this, we will need to provide
a user-study of this mechanism and show that a mixture
between user-defined and machine learned clustering can
build an optimal and accurate model of the network
topology and the user’s mental model.

There is also a novel and yet strikingly obvious need
to understand what it means to belong to multiple
overlapping communities. Much work has been done in
social capital that illustrates the strength of weak ties in
bridging multiple communities [25]. We are interested in

175175175184184184184

studying these networks more in depth to see if these
vertices that fall between multiple communities can be
defined more precisely using arguments from social
capital. Gilbert [26] supports the claims made in this
paper in regards to a spectrum to vertex-to-vertex
variability and we believe that social capital and
overlapping communes go hand in hand.

VI. CONCLUSION

Presented is a semi-supervised clustering
implementation using convex hulls to illustrate
overlapping community structures. We believe that when
it comes to community identification, data points cannot
be restricted to a single clique inclusion, that data points
can have a gray area that can mask them into multiple
communities. To that degree, even when clustering
algorithms provide the ability to compute overlapping
communities there is necessity to involve the experts in
those networks to obtain noiseless, error-free networks
and community detection.

To handle the user interactions involved with this
visualization, great care was taken in making sure both
the visualization itself and the LPA could handle the size
of the network and the interactions. Modifications were
made to the visualization to showcase the communities in
better quality and minimize edge crossing. The LPA was
adjusted to allow for fixed vertices within the algorithm,
allowing it to obtain an optimal solution in a relatively
small amount of time. We believe that as networks are
examined more in-depth, that platforms like this that take
both visual information and user involvement can balance
out both the human mental model of the network and the
machine learning techniques used for efficiency.

REFERENCES

[1] A. Tversky and I. Simonson, "Context-dependent
preferences," Management science, vol. 39, pp. 1179-
1189, 1993.

[2] M. Bastian, et al., "Gephi: An open source software
for exploring and manipulating networks," 2009.

[3] V. Batagelj and A. Mrvar, "Pajek-program for large
network analysis," Connections, vol. 21, pp. 47-57,
1998.

[4] S. P. Borgatti, et al., "Ucinet for Windows: Software
for social network analysis," 2002.

[5] R. Santamaría, et al., "BicOverlapper: a tool for
bicluster visualization," Bioinformatics, vol. 24, pp.
1212-1213, 2008.

[6] R. Theron, et al., "Overlapper: movie analyzer,"
Infovis Confererence Compendium, pp. 140-141,
2007.

[7] M. E. J. Newman and M. Girvan, "Finding and
evaluating community structure in networks," Physical
review E, vol. 69, p. 026113, 2004.

[8] S. Fortunato, "Community detection in graphs,"
Physics Reports, vol. 486, pp. 75-174, 2010.

[9] G. Palla, et al., "Uncovering the overlapping
community structure of complex networks in nature
and society," Nature, vol. 435, pp. 814-818, 2005.

[10] B. J. Frey and D. Dueck, "Clustering by passing
messages between data points," science, vol. 315, pp.
972-976, 2007.

[11] U. N. Raghavan, et al., "Near linear time algorithm to
detect community structures in large-scale networks,"
Physical Review E, vol. 76, p. 036106, 2007.

[12] D. H. Chau, et al., "Apolo: making sense of large
network data by combining rich user interaction and
machine learning," 2011, pp. 167-176.

[13] D. H. Chau, et al., "TourViz: interactive visualization
of connection pathways in large graphs," in
Proceedings of the 18th ACM SIGKDD international
conference on Knowledge discovery and data mining,
2012, pp. 1516-1519.

[14] M. Bostock, et al., "D³ Data-Driven Documents,"
Visualization and Computer Graphics, IEEE
Transactions on, vol. 17, pp. 2301-2309, 2011.

[15] H. Purchase, "Which aesthetic has the greatest effect
on human understanding?," in Graph Drawing, 1997,
pp. 248-261.

[16] M. R. Garey and D. S. Johnson, "Crossing number is
NP-complete," SIAM Journal on Algebraic Discrete
Methods, vol. 4, pp. 312-316, 1983.

[17] T. Dwyer, "Scalable, versatile and simple constrained
graph layout," in Computer Graphics Forum, 2009,
pp. 991-998.

[18] F. P. Preparata and M. I. Shamos, "Introduction,"
Computational Geometry, pp. 1-35, 1985.

[19] J. Barnes and P. Hut, "A hierarchical O (N log N)
force-calculation algorithm," 1986.

[20] G. Salton, "Automatic text processing. 1989," ed:
Addison Wesley, 1989.

[21] A. Dieberger, et al., "Social navigation: techniques for
building more usable systems," interactions, vol. 7,
pp. 36-45, 2000.

[22] A. Ritter and S. Basu, "Learning to generalize for
complex selection tasks," in Proceedings of the 14th
international conference on Intelligent user interfaces,
2009, pp. 167-176.

[23] M. Ley, "The DBLP computer science bibliography:
Evolution, research issues, perspectives," in String
Processing and Information Retrieval, 2002, pp. 481-
486.

[24] P. Jaccard, Etude comparative de la distribution
florale dans une portion des Alpes et du Jura: Impr.
Corbaz, 1901.

[25] R. S. Burt, "The social capital of structural holes," The
new economic sociology: Developments in an
emerging field, pp. 148-190, 2002.

[26] E. Gilbert and K. Karahalios, "Predicting tie strength
with social media," in Proceedings of the 27th
international conference on Human factors in
computing systems, 2009, pp. 211-220.

176176176185185185185

