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Abstract— When evaluating a network topology, 
occasionally data structures cannot be segmented into 
absolute, heterogeneous groups. There may be a spectrum to 
the dataset that does not allow for this hard clustering 
approach and may need to segment using fuzzy/overlapping 
communities or cliques. Even to this degree, when group 
members can belong to multiple cliques, there leaves an ever 
present layer of doubt, noise, and outliers caused by the 
overlapping clustering algorithms. These imperfections can 
either be corrected by an expert user to enhance the 
clustering algorithm or to preserve their own mental models 
of the communities. Presented is a visualization that models 
overlapping community membership and provides an 
interactive interface to facilitate a quick and efficient means 
of both sorting through large network topologies and 
preserving the user’s mental model of the structure.

Keywords-visualization; overlapping communities; semi-
supervised clustering; user-defined cliques

I. INTRODUCTION

Visualizations are tools used to express both the 
structure of the data and cognitive mapping of the user 
observing and interacting with this data [1]. In a 
traditional sense, graph based data is handled using simple 
vertex and edge based representations and in some cases, 
cliques are derived from these graphs (networks or sub-
networks) and presented to the user in a means that help 
segregate and dissect closely associated vertices from one
another. This technique works in cases where the data is 
segmented into heterogeneous groups and vertices are 
easily discernible from one another; in the cases that data 
points (vertices) fall into multiple different groupings, 
there is a need to allow for  cliques or communities to 
overlap. These overlapping communities require new
representation in that the visualization needs to be created 
to highlight areas where the vertices fall into single 
inclusion communities and multi-communities.

Building upon the cognitive mapping and mental 
models these network visualizations with overlapping 
communities communicate, we consider that when there 
is a gray area for vertices to fall into (in terms of 
community identity) the line between absolute solution 
and best guess solution fades, and human involvement 
and interaction provide a critical improvement in 
acceptable grouping. In this paper we introduce user-
defined cliques as an approach to provide human 

feedback in the process of mixed-initiative community 
visualization. Optimally, there is mixture of both the 
machine learning algorithm and the user generated 
cliques. Presented is an approach to combine both semi-
supervised clustering and cluster visualization, rich in its 
interaction and aesthetics to provide the user with both an 
understanding of the machine learning clustering and the
ability to apply their own structure based on their mental 
model of the network. 

In section 2 we present the previous work related to 
these topics. Section 3 goes into detail of the 
visualization, the machine learning clustering algorithm 
(Label Propagation), and the novel approach of using a 
semi-supervised interface that allows and adapts to the 
user-defined and machine-learning cliques. Section 4 
provides an example in which we apply a dataset, created 
from UMAP (User Modeling, Adaptation and 
Personalization) publications, to showcase our design. 
Sections 5 and 6 conclude with our future work. 

II. BACKGROUND

A. Visualization 
There are a plethora of different, mainstream types of 

visualization software packages available for network data 
including Gephi [2], Pajek [3], Ucinet [4]. These are all 
limited to non-overlapping clustering approaches and do 
not allow the user the ability to put vertices into new 
groups without having to change meta-data about the 
vertex itself. Our approach allows for the inclusion and 
visualization of overlapping communities and an 
interactive, semi-supervised clustering approach.

Using biclusters in gene-expression, BicOverlapper 
[5] incorporates a hull based visualization using a singular 
color to display higher levels of overlap. An interesting 
approach to overlapping communities is Overlapper [6],
where they improved upon their design in BicOverlapper 
by highlighting vertices that overlapped by using a pie 
chart to show the number of overlaps. Vertices that have 
overlap are easily identified and to what degree.  We 
expand on this by including a variety of different colors 
(ten colors) with similar hull opacity to showcase multiple 
cliques definitively and areas of high overlap. Using 
multiple colors also allows for salient understanding of 
which clique each vertex comes from and where they 
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overlap. Additionally, we provide an improved pie chart 
structure that allows for both the identification of 
overlapping nodes, and to what degree they overlap. 

B. Clustering 
Since the work by Girvan & Newman [7], we have 

seen many different approaches to clustering network 
structures. See Fortunato [8] for a comprehensive 
overview. Among other things, approaches differ by their 
quality function [7], the ability to allow overlapping 
communities [9], and how cluster assignments are 
propagated through the network [10]. For our approach 
we applied an extended version of the Label Propagation 
Algorithm (LPA), which was proposed by Raghavan, 
Albert, and Kumara [11]. LPA iteratively determines the 
final cluster assignments. It initializes all vertices with a 
unique label, and then proceeds to update vertex labels by 
checking the labels of their neighbors. The most 
frequently occurring label among a vertex’s neighbors is 
chosen as its new label. Ties are broken randomly. During 
all iterations, all vertices are (possibly) assigned a new 
label asynchronously. The process continues until it 
converges on a stable set of label assignments, which 
usually occurs within a few iterations. 

C. Interactive Visualization 
When it comes to this sensemaking and user-defined 

approach in a visualization, Apolo [12] provides an 
interface incorporating both user interactions and machine 
learning in large datasets. They accomplish this by 
building on a single vertex and as users provide a paper of 
interest to interface, the network-like visualization builds 
by providing cited work and visual clues based on number 
of citations and relevance. Building on this visualization, 
TourViz [13] divides sub-domains of user interests into 
convex hulls to help segment multiple topics of interest. 
In contrast to this work, our approach takes into account 
the entire network structure, providing overall topology. 
Also, we provide not only the utilization of color changes 
(to distinguish group assignment), but also shape 
distinction by user-defined clusters and opacity changes to 
discern vertices already selected and grouped. 

III. METHODS

A. Visualization Approach 
We opted to use D3.js for our force-directed 

framework, which utilizes a Verlet integration with 
simple graph constraints [14]. Our prototype is a 
community enhanced force-based diagram, with the 
modification that we provide centralization vertices for all 
clique centroids. The reasoning for this was two-fold: 1) 
produce a more efficient, interactive visualization and 2) 
maximization of convex hull coverage. These are both 
covered in detail below.

First, addressing efficiency of the visualization, one 
of the major rendering issues found in most force-directed 

visualization of networks is not always the number of 
vertices and edges, but the edge overlap. This is due to 
that fact that when it comes to constructing the graph, 
edge overlap can be the more disorienting aesthetic 
properties [15] to deal with, and when faced with this 
problem without altering the edge shape can lead to an 
NP-hard problem [16]. We reduced overlap and the 
number of connections by creating a single vertex for 
each clique as a marker for the entire clique. Highly dense 
cliques have the potential to have �(�2)  number of 
connections between each vertex. With our approach, it is 
guaranteed that each clique will have a maximal number 
of connections of  �(n). While this may appear to reduce 
the natural connectivity and topology of the graph, 
clustering is completed utilizing the original network 
layout so as to preserve these inner-cluster relationships 
but minimize their overall effect on the rending of the 
visualization. Fig. 1 (left) illustrates a traditional
arrangement of a network topology. Instead of this layout 
we create a single vertex as a central point for the entire 
clique (Fig. 1 – Centroid Node). The centroid vertex has 
only one connection to all vertices in the clique, Fig. 1 
(right).

Figure 1. Removing Edge Crossing and Reducing Layout 
Computations by Using Centroid Vertex

To examine this approach, we completed measures 
for two separate datasets obtained from UMAP. The 
datasets include the original topology (Original) and our 
centroid approach (Centroid). We compared the number 
of vertices (v), number of edges (e), average cluster 
coefficient (CC), average path length (PL), and the total 
time (TT) to converge. The total time to converge was a 
measurement designated by our group built upon the 
tick() function in D3.js. To create the force-based 
diagram, d3.js implemented a tick() function to move the 
vertices and edges to their final arrangement based on link 
strength, link distance, gravity, and charge. These 
constraints are balanced using Dwyer’s layout constraints 
[17], where as shown in Fig. 2 the distance �  must be 
minimized.  
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Figure 2. Representing Graph Constraints [17] 

This is done by finding the smallest � value to satisfy
this constraint, where � [17] is defined as: 

� � = (��|��	|�	)

|��	| � ���

All constraints were kept constant throughout both 
trails. We defined the total time as the amount of time it 
took to finally hit equilibrium with the force-based 
criteria. For Table 1 the centroid topology took less time 
to come to equilibrium for both trials. Both factors that 
lead to better times for the centroid topology was the 
number of edges and connectivity of the network itself. 

TABLE I. COMPARING TIME TO CONVERGE, ORIGINAL VERSUS 
CENTROID TOPOLOGIES 

Dataset V e CC PL TT
1-Original 766 8038 0.876 1.97 02:18.1
1-Centroid 766 2262 - - 01:21.9
2-Original 766 2506 0.812 4.596 01:56.5
2-Centroid 766 1714 - - 01:32.6

To maximize awareness of the overlapping 
communities a convex hull [18] was applied to showcase 
the cliques and the overlap. The convex hull benefits by 
using this centroid vertex by not forcing the visualization 
graph constraints to focus strictly on the distances 
between vertices � , but using the repulsive force �
provided in the Barnes-Hut quad-tree [19]. The repulsion 
is approximated using a charge value 
� determined from 
the quad-tree resulting in: 

� ��,� = ∑ �
�(�����)�� (�����)�(�,�)∈��� � ����

� ��,� = 
����,��

� ����

In the case where the 
� < 0,  the graph layout is 
computed. This provides an even distribution of vertex 
distances and makes a more aesthetically pleasing 
interface by removing overlap of the vertices. Also, 
community overlap is easier to identify, because in the 
scenario where a vertex overlaps with two communities. It 
will have edges to both centroids or multiple centroids in 

the case of more than two overlaps and will pull evenly 
based on the force-based parameters.

Figure 3. Example of Overlapping Community Visualization 

B. Extending Label Propagation 
We have extended the original LPA to allow it to be 

an active part in our interactive clustering visualization. 
We added to ability to run the algorithm on weighted 
graphs, changing the label picking criterion from the most 
frequent label of the neighbors to a version where the 
frequencies are modified by the edge weights.  
Furthermore, the labeling process was extended to allow 
for discovery of overlapping clusters. The calculated 
cluster label weights are further weighted by the
proportions they appear in the label distribution of the 
adjacent vertices. The proportion weights for the new set 
of cluster labels of a vertex are calculated after selecting 
the top n labels. The calculated weights of these n labels 
are normalized and stored with the new cluster labels of 
the vertex. A weight wj for cluster label j is calculated 
using edge weights ei of adjacent vertex i and cluster label 
proportion pij of vertex i for label j:

� �! = ∑ "#
�$%

∑ �$%&%'*
+#-� � ����

To facilitate an interactive cluster visualization 
experience, we have made several modifications to LPA 
to make this possible. The original algorithm paper 
proposed an approach to seed a few vertices with cluster 
labels and leaving the rest unlabeled, allowing for clusters 
to form around those seeds. We have taken a slightly 
different approach, allowing vertices to be fixed. Once a 
vertex is fixed, it will no longer update its label. This 
allows clusters to grow around vertices in a similar way, 
with the added benefit that we can choose to fix vertices 
in an already existing complete set of cluster assignments 
and rerun the algorithm on this cluster assignment to 
update it. Second, featured prominently in our 
visualization, is granting the user the ability to group 
vertices.  Effectively this allows grouped vertices to 
behave as a single vertex. When any of the vertices of the 
group updates its (set of) label(s), all others follow suit. 
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Groups can also be fixed; if one of its members is a fixed 
vertex, the whole group becomes fixed.

This feature and the ability to recover overlapping 
communities have made it necessary to adjust the 
algorithm’s stopping criterion. Originally, the algorithm 
terminates after all vertices belong to the cluster to which 
the majority of its neighbors belong. Allowing vertices to 
be groups can cause the groups to flip between vertex 
clusters labels, which could cause the algorithm to get 
stuck in an infinite loop. 

To support overlapping clusters, the stopping 
criterion needed to be generalized. Before, the newly 
chosen cluster label was compared with the current 
assignment. If they differed, the vertex was assigned the 
new label and the global cluster assignment was deemed 
to be unstable; this required the algorithm to continue to 
iterate until none of the vertices would have to update 
their label assignment anymore. 

To guarantee algorithm termination with the new 
features in place, two adjustments were necessary:

1) A 2-phase stopping heuristic was put in place. 
After 500 iterations, cluster assignment distributions are 
recorded. After a customizable number of iterations are 
reached, the algorithm assigns the most frequently 
occurring (set of) cluster label(s) of this group to the 
group as the final assignment. After all groups are 
assigned their cluster(s), the algorithm terminates. 

2) We started using cosine similarity [20] to measure 
how close the new (set of) cluster(s) is to the old 
assignment. Once a preset minimum cluster similarity is 
reached, the algorithm terminates. Cosine similarity 
between cluster sets C of vertices a and b is defined as 
follows: 

� cosab(α) = ∑ ./1×.21n
i'1

3∑ (./1)�n
i'1 ×3∑ (.21)�n

i'1

� �	��

C. Interaction Workflow 
As part of an effort to provide a more interactive 

experience, work has been done to allow for a more 
dynamic workflow for clustering and visualizing data. 
The goal of this dynamic workflow is to allow users to 
execute clustering algorithms from within the 
visualization display and to interact with the cluster 
results.

The current prototype also combines a few 
affordances to help guide the user in the interactions 
themselves [21]. Edges on the graph reflect similarity 
between vertices (see Section 4 – UMAP Example for 
details on similarity measure used) and represented by the 
thickness of the line equating higher similarity. Vertices 
and text boxes provide a pointer cursor to make them 
known as selectable objects. Vertex size is determined by 
calculating the degree centrality. Also, each vertex is 
represented using a pie diagram which represents the 

amount of weighting provided by LPA to showcase to 
what degree each vertex belongs to this community. Fig. 4
shows an example of this weighting. 

Figure 4. Pie Chart Aesthetics to Highlight LPA Values  

Once a vertex is selected, the user has the option (and 
is encouraged) to select multiple vertices to group. This is 
completed using a control-click, which is comparable to 
traditional multi-file select [22].

 Objects that are selected are then temporarily 
grouped into a user-defined sub-group and labeled using 
different glyphs, differentiating themselves from the 
predefined, machine learned groups that are labeled using 
color. The groups are then automatically passed to a 
modified version of the LPA. The information provided 
by the user is then incorporated in the clustering process 
and after completion, the cluster assignments of the 
current dataset are updated in the visualization display. 
For the final affordance, the user-defined group is
differentiated by changing the opacity to be completely 
opaque. 

IV. UMAP EXAMPLE

A. UMAP Dataset 
To run an information evaluation of our approach, we 

explored it using a real-world dataset that represents a
similarity measure among a group of authors that have 
published in the UMAP (User Modeling, Adaptation and 
Personalization conference series. To create this dataset, 
we have extracted data from the DBLP [23] database,
which created a 766 vertex and 8038 edge network. 
DBLP is a computer science bibliography database. It has 
indexed over 2 million articles from many conferences, 
books and journals. We have parsed a dump of DBLP 
database to extract the relevant publications and other 
information for the group of UMAP authors we are 
examining. This data was used to build similarity 
relationships based on the Jaccard index [24], author 
similarity depends on the number of papers co-authored 
together, taking into account how many papers each of the 
authors authored in total. 

B. Visualization Example 
We visualized the UMAP data with three different 

settings for overlapping cluster: 1 (no overlap), 3, and 5. 
The results are shown in Fig. 5. 
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(a) 

(b) 

(c) 

Figure 5. Visualizing UMAP data with no, 3, and 5 overlapping 
clusters respectively 

For this example we will be using the 3 overlapping 
clusters (Fig. 5 - b). To proceed, the user would select 
multiple vertices to group them together (using control-
clicks). Selections will be based on overlapped areas with 
high correlations, depicted using the pie chart in Fig. 6.

  

Figure 6. Pie Charts Showcasing LPA correlation 

Once selected, the outline of the vertex changes to 
provide affordance that the vertex was selected. After the 
user has stopped selecting vertices, the visualization 
updates to showcase the user-defined group by using a 
different glyph, shown in Fig. 7. This triggers the 
visualization to update values in the database and 
activates the LPA to rerun with updated ground truth. 
Results are then sent back to visualization via an AJAX 
callback and the visualization shows the updated graph. 

Figure 7. User-Defined Clusters 

The final aesthetic is the color change to signify 
group inclusion and opacity change to illuminate already 
clustered nodes. Fig. 8 shows the updated community, the 
user-defined community (using an alternate glyph), and 
the processed vertices (changing the opacity to complete 
opaque). This process continues and the user-defined 
groups will be differentiated from one another by using a 
new glyph.  

Figure 8. Final Aesthetic to Highlight Completed Nodes

V. FUTURE WORK

To continue this work we want to validate first the 
claim that our approach allows for easy understanding of 
community identity using convex hulls and optimization 
proposed in this paper. To do this, we will need to provide 
a user-study of this mechanism and show that a mixture 
between user-defined and machine learned clustering can 
build an optimal and accurate model of the network 
topology and the user’s mental model. 

There is also a novel and yet strikingly obvious need 
to understand what it means to belong to multiple 
overlapping communities. Much work has been done in 
social capital that illustrates the strength of weak ties in 
bridging multiple communities [25]. We are interested in 
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studying these networks more in depth to see if these 
vertices that fall between multiple communities can be 
defined more precisely using arguments from social 
capital. Gilbert [26] supports the claims made in this 
paper in regards to a spectrum to vertex-to-vertex 
variability and we believe that social capital and 
overlapping communes go hand in hand.

VI. CONCLUSION 

Presented is a semi-supervised clustering 
implementation using convex hulls to illustrate 
overlapping community structures. We believe that when 
it comes to community identification, data points cannot 
be restricted to a single clique inclusion, that data points 
can have a gray area that can mask them into multiple 
communities. To that degree, even when clustering 
algorithms provide the ability to compute overlapping 
communities there is necessity to involve the experts in 
those networks to obtain noiseless, error-free networks 
and community detection.  

To handle the user interactions involved with this 
visualization, great care was taken in making sure both 
the visualization itself and the LPA could handle the size 
of the network and the interactions. Modifications were 
made to the visualization to showcase the communities in 
better quality and minimize edge crossing. The LPA was 
adjusted to allow for fixed vertices within the algorithm, 
allowing it to obtain an optimal solution in a relatively 
small amount of time. We believe that as networks are 
examined more in-depth, that platforms like this that take 
both visual information and user involvement can balance 
out both the human mental model of the network and the 
machine learning techniques used for efficiency.  
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