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Vertically ordered (1-D) nanostructures provide a promising alternative to conventional 

nanoparticle films used as electrode materials for energy conversion and storage devices. These 

1-D nanostructures, in forms of nanowires or nanotubes, promote mass transfer and accessibility 

of the electrodes while providing a direct conduction path for electrons. Our work has been 

focused on synthesis and application of novel 1-D nanostructures for dye-sensitized solar cells 

(DSCs) and lithium-ion batteries (LIBs). 

The vertically aligned 1-D nanostructures are employed in DSCs to overcome the 

limitation of nanoparticle-based DSCs.  Much longer electron life time has been observed in 

DSCs based on 1-D nanostructures compared to the nanoparticle-based ones, which allows us to 

use thicker sensitized film to improve the efficiency. We have developed a facile low-

temperature hydrothermal method to synthesize vertically aligned ZnO nanowire arrays directly 

on transparent conductive oxide, and to use the ZnO nanowire arrays as a template to synthesize 

SnO2 nanotube arrays.  In addition, we have developed a convenient approach that involves 

alternate cycles of nanowire growth and self-assembled monolayer coating processes for 

synthesizing multilayer assemblies of 1-D nanostructures with ultrahigh internal surface areas.    

The vertically aligned nanostructure also enables us to fabricate high-efficiency solid-

state DSCs by replacing the liquid electrolyte with a solid hole transporting material. The 

vertically aligned nanostructures provide straight channels for filling the solid electrolyte, 
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enabling the use of thicker photoanodes for solid-state DSCs.  Significantly, by using vertically 

aligned multilayer arrays of TiO2-coated ZnO nanowires, liquid-electrolyte DSCs with power 

conversion efficiency up to 7.0% and solid-state DSCs with efficiency up to 5.65% have been 

obtained. 

Vertically ordered 1-D nanostructures also offer remarkable advantages for rechargeable 

LIBs including fast electron transport/collection and ion diffusion, enhanced electrode-

electrolyte contact area, and facile accommodation of strains caused during the charge and 

discharge cycles. We have developed a method to fabricate SnO2 nanotube arrays and hybrid Sn-

based nanotube arrays directly on current collecting substrate (Ti) and have evaluated their 

performance as anodes in rechargeable LIBs.  The hybrid Sn-based nanotube arrays synthesized 

by us delivered a capacity of 710 mAh/g after 80 cycles with a low capacity fade. 
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1.0  INTRODUCTION 

The tremendous challenges that face us to meet our future energy needs are now widely 

recognized. The annual world energy consumption is currently estimated to be 4.1 x 10
13

 joules, 

or 13 trillion watts.[1, 2] A major portion of these energy needs are currently met from fossil 

fuels. Between 2004 and 2030 the annual global consumption of energy is estimated to further 

rise by more than 50%.[3] As per the current policies, most of this increase in energy is expected 

to come from fossil fuels, resulting in almost a commensurate increase in CO2 emissions. A 

major portion of the energy currently produced in the US is from coal which is a major 

contributor to the CO2 emissions. The impact of these CO2 emissions is a matter of great 

concern. In the last 200 years, CO2 level in the atmosphere has increased from 280 ppm to 380 

ppm. Industrial activities, mainly power generation from coal, have also increased the total 

mercury flux from 1600 tons/year in the pre-industrial era to 5000 tons/year, of which 3000 tons 

is deposited on land and 2000 tons is deposited in the marine.[4] Despite these grave 

consequences, and the projected increase in gas and oil prices, less than 10% of the global energy 

production in 2030 is expected to come from renewable energy sources. There is no single 

solution to the challenges we face concerning meeting our energy needs without causing further 

environmental harm. The best approach would be to utilize various alternative technologies in 

tandem to reduce the overall dependence on fossil fuels.  
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Almost all alternative energy technologies, be it for conversion or storage, are limited by 

either the availability or the properties of current material. Photovoltaic devices are limited by 

the poor charge-carrier mobilities and narrow absorption spectra in current materials limiting the 

light harvesting and energy conversion efficiencies. Storage devices such as lithium-ion batteries 

and supercapacitors are limited by insufficient energy or power densities and efficiencies owing 

largely to the poor charge and mass transport properties. The high manufacturing costs and poor 

availability of the best performing materials have further limited the widespread use of these 

devices. Fundamental advances in synthesis, processing and control of material structure and 

properties could lead to significantly more efficient energy conversion and storage technologies. 

Of great interests are nanotechnology and nanostructure materials, which are expected to have a 

great impact on the potential widespread use of these technologies. Recently, ordered 

nanomaterials and device designs based on these nanomaterials have demonstrated very 

promising results for energy conversion and storage.[1, 5, 6] Though the unique advantages of 

these ordered nanostructures vary from device to device, the fundamental advantage of fast 

electron and charge transport is the chief driving force for keen interest in these materials.  

Our work has focused on synthesizing vertically ordered, 1-D nanostructures and 

examining their performance for energy generation and storage devices. More specifically, we 

have synthesized and evaluated the performance of these ordered nanostructures for dye-

sensitized solar cells (DSCs), a promising low-cost, third generation photovoltaic, and lithium-

ion batteries. To start of, we have spoken briefly about the potential of the photovoltaic market 

and the role DSCs could play in the future. 
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Background on Photovoltaic Market 

 

Now, more than ever before, energy is what makes our world continuously work.  World 

energy consumption is ca.4.7 x 10
20

 J (450 quadrillion BTU) and is expected to grow about 2% 

every year for next 25 years.[7] The current earth’s resources upon which the energy needs are 

dependent are finite and there is a pressing need of making a suitable transition to renewable 

fuels. Among all the renewable energy technologies, photovoltaic technology utilizing solar 

energy is the most promising one. The supply of energy from the sun to the earth is gigantic, i.e., 

3 x 10
24

 J/year or about 10
4
 times what mankind consumes currently. In other words, covering 

only 0.1% of the earth’s surface with solar cells with an efficiency of 10% would suffice to 

satisfy our current needs.[8] 

The photovoltaic market has had outstanding yearly growth, 33% growth per year since 

1997, and it is expected to grow by 25 to 30% per year in the next decades. While traditional 

energy sources become more expensive, PV will be much more competitive due to technology 

improvements and economies of scale.[9] Currently, mono and polycrystalline silicon have 

dominated the photovoltaic market. Even though silicon is far from and ideal material for 

photovoltaic conversion, the major reason for crystalline silicon market dominance is that 

manufacturers have been supplied with rejected materials from the semi-conductor industry. 

There have been various materials and technologies which have been studied to replace silicon 

solar cells with the aim of reducing the costs and improving the devices efficiencies. Table 1 

shows the record efficiencies for the various types of photovoltaic cells as reported in the 

literature.[10] Amongst these various types of photovoltaic cells listed, dye sensitized solar cells 

and organic solar cells can be classified as the third generation of photovoltaics. By this 
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classification we imply that they are currently in the research stage. Even at this early stage in 

their development cycle, DSCs have already attracted considerable interest for use as building 

integrated photovoltaics (BIPV) for supplementary electricity generation. In the next section, we 

have given a brief explanation of the working principles and the unique advantages of DSCs and 

our motivation to work in this field. 
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Table 1. Confirmed terrestrial cell and submodule efficiencies measured under the global AM 1.5 spectrum (1000 

W/m
2
) at 25°C 

Classification Efficiency (%) Description 

Silicon 

 Si (crystalline) 

 Si (multicrystalline) 

 Si (amorphous) 

 Si (nanocrystalline) 

 

25.0 ± 0.5 

20.4 ± 0.5 

10.1 ± 0.3 

10.1 ± 0.2 

  

UNSW PERL 

FhG-ISE 

Oerlikon Solar Lab, Neuchatel 

Kaneka 

III-V Cells 

 GaAs (thin film) 

 GaAs (multicrystalline) 

 InP (crystalline) 

 

28.8 ± 0.9 

18.4 ± 0.5 

22.1 ± 0.7 

 

Alta Devices 

RTI, Ge substrate 

Spire, epitaxial 

Thin Film Chalcogenide 

 CIGS (cell) 

 CIGS (submodule) 

 CdTe (cell) 

 

19.6 ± 0.6 

17.4 ± 0.5 

18.3 ± 0.5 

 

NREL, on glass 

Solibro, 4 serial cells 

GE Global Research 

Photochemical 

 Dye-sensitized (cell) 

 Dye-sensitized (module) 

 

 

11.9 ± 0.4 

9.9 ± 0.4 

 

Sharp 

Sony, 8 parallel cells 

Organic 

 Organic thin film (cell) 

 Organic (submodule) 

 

10.7 ± 0.3 

6.8 ± 0.2 

 

Mitsubishi Chemicals 

Toshiba (15 series cells) 
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1.1 DYE-SENSITIZED SOLAR CELLS 

Dye-sensitized solar cells (DSCs) are a very promising alternative to traditional 

photovoltaics for low cost energy production. The main difference between DSCs and 

conventional solar cells is that in DSCs the functional element, which is responsible for 

absorption of light (dye), is separated from the charge carrier transport media. This is contrary to 

conventional solar cells where a semiconductor assumes both functions. This separation of 

functions leads to lower purity demands on the raw materials side and makes it possible for 

DSCs to use low- to medium-purity materials which can be synthesized through low-cost 

processes. In essence, DSC can be looked as an analogous concept to photosynthesis where a dye 

is used to absorb the light from the sun. 

DSCs main advantages can be summarized as follows[7]: 

 Good performance under standard reporting conditions; 

 Stable performance at nonstandard conditions of temperature, irradiation and solar 

incidence angle; 

 Low cost 

 Available environmental-friendly raw materials 

 Semi-transparency and multi-color range possibilities 

1.1.1 Working Principle of Dye-Sensitized Solar cells (DSCs) 

A schematic representation of the operating principles of a conventional DSC is given by 

Figure 1. At the heart of the system is a nanoparticle semiconductor oxide film. The material of 

choice has been TiO2 although other wide band-gap semiconductor materials have also been 
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studied. Attached to the nanoparticle film is a monolayer of the charge transfer dye. This dye is 

responsible for the absorption of photons from the incoming light. The nanoparticle film, with a 

dye attached to it, is placed in contact with a redox electrolyte or an organic hole conductor. The 

electrolyte of choice till date has been a redox system containing and iodide/triodide couple in an 

organic solvent. Photoexcitation of the dye results in the injection of an electron into the 

conduction band of the semiconductor oxide. The original state of the dye is subsequently 

restored by electron donation from the electrolyte. The regeneration of the dye by the electrolyte 

intercepts the recapture of the conduction band electron by the oxidized dye. The redox couple is 

regenerated, in turn, by the reduction of triiodide at the counter electrode, with the circuit being 

completed via electron migration through the external load. Overall, the device generates electric 

power from light without any permanent chemical transformation. The voltage generated under 

illumination corresponds to the difference between the Fermi level of the electron in the 

semiconductor oxide and the redox potential of the electrolyte. 

 

Figure 1. Principle of operation of a traditional dye-sensitized solar cell 
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The article published in 1991 by Gratzel and co-workers[11] originated the interest in 

DSCs that still seems to be increasing each year. A conversion efficiency of 7.1% was reported 

at that time and evolution has continued progressively since then, with efficiency of 12.3% 

reported recently.[12] Much of the research has been centered on[13]: 

(a) improving the spectral absorbance of the dye, 

(b)  improving the electron transport in the cell by using a wide band-gap 

semiconductor of suitable morphology,  

(c) improving the stability of the cell by replacing the liquid electrolyte with solid 

hole-transport materials (HTMs).  

 

The best photovoltaic performance both in terms of conversion yield and long-term 

stability has so far been achieved using dyes with polypyridyl complexes of ruthenium. The 

ruthenium complex (Bu4N)2[Ru(4,4’-(COOH)-2,2,-bipyridene)2(NCS)2], known as N719 dye has 

become the paradigm of sensitizer for DSCs. N719 is the most commonly reported dye in 

published literature and hence, to evaluate our DSCs, we have used N719 dye for most of our 

work presented in this report. We have focused our work on improving the electron transport in 

DSC by replacing the nanoparticle film with vertically ordered nanostructures of metal oxides. 

We will discuss the advantages of vertically ordered structures over nanoparticle films for DSCs 

in the next section. 

1.1.2 Vertically Ordered Nanostructures for DSCs 

DSC anodes are typically constructed of nanoparticle films several micrometers thick. 

These films are typically composed of TiO2 nanoparticles to achieve high surface area supports 
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for the dye monolayer. The films must be thick to maximize the path length of incident light and 

hence the absorption by the dye. However, inefficient electron transport in the nanoparticle film 

results in low electron diffusion constants and recombination losses, preventing the usage of 

thicker photoanodes. 

Remarkably, the charge collection efficiency of these nanoparticle films is high due to the 

slow kinetics of the back reaction of injected electrons with the electrolyte. The electron 

diffusion lengths in these devices are accordingly long, up to several tens of micrometers. 

However, current research efforts on DSC improvements focus on the development of new dyes 

and electrolytes, thus changing the kinetics of the forward and reverse redox reactions. In these 

and other cases where surface recombination becomes significant, the low electron diffusion 

coefficients become significantly more detrimental to device performance. The slow percolation 

of electrons through a random polycrystalline nanoparticle network is the major factor limiting 

further improvement in the photocurrent efficiencies achievable using nanocrystalline DSCs. 

Table 2 lists the various efforts made in improving DSCs and how the use of nanoparticle film 

has proved to be a limitation in these efforts. 
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Table 2. Limitations of nanoparticle based DSCs 

Approach for 

Improving DSCs 
Main Purpose Limitation of the NP-based 

anodes 

Use solid electrolyte / 

ionic liquid 
Overcome packaging problems Ineffective filtration & short 

electron diffusion length 

Increase thickness of 

sensitized film 
Improve light harvesting efficiency 

(LHE) in the red and near-infrared 

region 

Short electron diffusion 

length 

Sensitizing with 

quantum dots 
Improve light harvesting efficiency 

(LHE) in the red and near-infrared 

region  

Ineffective filtration 

Use alternative redox 

couple 
Remove Pt, increase Voc and therefore 

overall efficiency 
Short electron lifetime 

 

 

Vertically ordered nanostructures, in the form of nanowires, nanotubes or nanorods, are a 

very promising solution to overcome these limitations. Figure 2 shows a schematic of the DSC 

architecture with vertically ordered structures. These vertically aligned nanostructures behave 

like nanoparticles assembled into columns resulting in significantly fewer grain boundaries. The 

vertically ordered structures thus provide straight conduction channels, a form of highway for the 

electrons. As a result, the electron mobility in these vertically aligned structures is larger than 

that in the nanoparticle films due to their directional and uninterrupted conduction channel, as 

opposed to the tortuous percolation network and grain boundaries of the nanoparticle films. This 

directed transport is expected to increase the electron diffusion constant, thus improving the 

efficiency of charge collection and enabling the production of optically thick cells which absorb 
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more incident light. Inorganic vertically ordered structures of wide-band gap semiconductors 

thus represent an ideal charge transport medium for nanostructured DSCs and represent a 

promising alternative to nanoparticle films. 

 

Figure 2. Ideal DSC architecture with vertically ordered nanostructure 

 

We have investigated the performance of various such vertically oriented nanostructures 

which have been discussed in some detail in this report. In Chapter 3.0 we discuss the synthesis 

and performance of ordered SnO2 nanotube arrays in DSCs. In Chapter 4.0 we have 

demonstrated synthesis of high surface area multilayer ZnO nanowire arrays and showed their 

remarkable performance in DSCs.  

1.1.3 Vertically Ordered Nanostructures for Solid-State DSCs 

Another area of research that has attracted considerable interest is the replacement of the 

volatile liquid electrolyte in DSCs. Although reported DSCs that yield the highest efficiencies 

are based on liquid electrolytes,[13-15] the main problem is that the use of liquid electrolyte 
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limits device stability. Improper sealing of the cell can lead to evaporative loss of the electrolyte 

and permeation of water and oxygen molecules which may react with the liquid electrolyte. This 

leads to deterioration of device performance. Manufacturing of multi-cell modules using liquid 

electrolytes is also difficult as the cells have to be connected electrically yet separated 

chemically. Many attempts have been made to overcome these limitations by replacing the liquid 

electrolyte with a solid or a quasi-solid hole-transport material (HTM).[13] 

To date, the power conversion efficiency of most solid-state DSCs has been far below the 

efficiency of their counterparts based on liquid electrolytes.[13, 15] This is likely because of two 

factors that have been identified by researchers.  First, the anode of most current DSCs uses a 

porous film of sintered nanoparticles, and effective filling of HTM into this porous film has been 

challenging, putting a limitation on the thickness of the nanoparticle film that could be used for a 

solid-state DSC. Secondly, the electron–hole recombination rate in a solid-state DSC has been 

observed to be much faster than in the corresponding liquid electrolyte DSC[16]; this also puts a 

limit on the thickness of the nanoparticle films, whose charge extraction relies on trap-limited 

diffusion for electron transport. As a result of these two factors, the optimum thickness of the 

sensitized film for solid-state DSCs has been found to be around 2 µm,[17-20]
 
which is 

significantly thinner than the film thickness typically used for liquid electrolyte DSCs.
 
The 

limitation on the thickness of the sensitized film leads to insufficient dye loading and thus low 

light harvesting efficiency. Anodes based on vertically ordered nanostructures could help 

overcome these limitations for solid-state DSCs. The vertically ordered nanostructures greatly 

facilitate filling of the sensitized films with solid-state HTM. They also provide a direct 

conduction path for electrons to travel between the dyes and the conducting substrate and thus 

significantly improve the electron-transport properties of the anodes.  Therefore, compared to 
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those based on sintered nanoparticles, much thicker anodes based on vertically aligned 

nanostructures may be used in solid-state DSCs, and higher efficiencies may be obtained. We 

have evaluated the performance of vertically oriented nanostructures, in the form of aligned ZnO 

nanowires in Chapter 5.0 of this report. The promising results observed using these nanowire 

arrays encouraged us to explore the use of our multilayer assembly of nanowires for solid-state 

DSCs and we have discussed the results we obtained in Chapter 6.0 of this report. 

1.2 LITHIUM-ION BATTERIES 

Lithium-ion batteries (LIBs) have been widely recognized as an important energy storage 

device for portable electronics as well as electric vehicles.[21, 22] The main motivation behind 

using batteries based on Li metal ion is the fact that Li is the most electropositive as well as the 

lightest metal, thus facilitating the design of systems with high energy densities. In the 

subsequent sections, we briefly discuss the working of LIBs and possible advantages which 

vertically ordered nanostructures may have for application in LIBs. 

1.2.1 Working Principle of Lithium-Ion Batteries  

The three main components of a lithium-ion battery are the anode, cathode and a 

separator between them to prevent short-circuit. The cell is filled with an electrolyte to facilitate 

easy transfer of Li ions between the electrodes. Figure 3 shows the schematic representation of a 

typical Li-ion cell. During charge, Li is removed from the cathode, transferred through the 

separator and inserted into the anode. The reverse movement of ions occurs during discharge i.e. 
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Li is extracted from the anode and collected at the cathode. The cell voltage is defined by the 

difference in the voltage of the cathode and the anode. The amount of Li that is stored in each of 

these electrode materials determines the capacity of the cell. The amount of electrical energy 

delivered by the battery per mass or volume depends on both the cells voltage and the capacity, 

which are dependent on those three functional components. The three main means to increase the 

energy deliverable by the battery are:  

 Increase the voltage of the cathode 

 Decrease the voltage of the anode 

 Increase the capacity of the materials used as electrodes 

In our work, we have synthesized of hybrid Sn-based nanotube arrays as a possible high 

capacity anode material for LIBs. The potential advantages of such vertically ordered 

nanostructures for LIBs are explained in the next section.  

 

 

Figure 3. Schematic of a typical Li-ion cell 
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1.2.2 Vertically Ordered Nanostructures for Lithium-Ion Batteries 

So far, much effort has been devoted to replacing the commercially available graphite 

anode materials in LIBs with alternate materials which offer higher lithium storage capacity.[5, 

23-28] In recent years, various metals and metal oxides have been investigated as potential anode 

materials in lithium-ion batteries. Among the various such materials systems, both tin (Sn)[29-

32] and tin oxide (SnO2)[33-35] have received considerable research interest because of their 

high theoretical capacities (993 mAh/g and 782 mAh/g, respectively, based on the stoichiometry 

of 4.4 Li ions intercalating with each Sn atom) and low discharge potentials.[36] 

A critical issue which has hampered the commercial use of these Sn-based anodes is the 

severe capacity fading observed during the intercalation and de-intercalation of Li ions. The 

main reason for this is the large volume change (>250%) brought about by the lithium insertion/ 

extraction process.[37, 38] These large volume changes lead to pulverization of the active 

materials and disconnection of the electrical contact with the current collector, which ultimately 

causes irreversible capacity fade. 

One promising way to overcome the capacity loss due to pulverization is to use 

nanostructured electrode materials which can better withstand the strains produced by the large 

volume changes. 1-D nanostructures in the form of nanowires or nanotubes offer a promising 

alternative to overcome this problem. Recently, ordered nanostructures grown directly on 

conducting substrates have been reported to give significantly improved performance.[34, 39-41] 

The main advantage of growing the nanostructures directly on the current collector is improved 

electrical contact. They also offer efficient pathway for electron transport, facilitate strain 

relaxation as well as offer improved electrolyte contact. Another major advantage is the ability to 

use the active material directly as the anode material without the addition of binders or other 
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conducting additives. The ability to use the active material without any additives should enable 

increased material loading resulting in higher capacity LIBs.[42-44] In the light of all these 

potential advantages, we have tested our SnO2 nanotube arrays directly on Ti substrate and 

evaluated their performance as anode material for LIBs. The details of this part of our work are 

discussed later in Chapter 7.0 In the next chapter, we have described the method used by us to 

grow ZnO nanowire arrays, which forms the backbone of all the materials synthesized by us and 

described in the subsequent chapters. 
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2.0  SYNTHESIS OF ZINC OXIDE NANOWIRE ARRAYS 

Before we get started with the main body of our work, I would like to briefly go over the 

method we used for synthesizing ZnO nanowires. Growing ZnO nanowires is a preliminary step 

and an integral part of all the work carried out and documented by us in this report. In order to 

avoid repetition, we thought it would be best to discuss this at the beginning. 

We have used a liquid-phase chemical process for growing arrays of ultralong ZnO 

nanowire arrays on seeded substrates. The substrate used for DSCs is a conducting glass 

substrate, Indium-doped Tin Oxide (ITO). The substrate used for work on LIBs is titanium foil. 

In the liquid-phase deposition (LPD) process, used by us to grow ZnO nanowires, the synthesis 

can be described by the following reaction: 

  

where hexamethylenetetramine (HMTA), NaOH, or NH4OH may be used as the hydroxide 

source. LPD approaches have the advantages of low growth temperature, low cost and ease in 

scale-up. A major drawback of the liquid phase approaches, however, is that ZnO forms both on 

the seeded substrates and in the bulk solution simultaneously. In the reaction mixture, there is a 

high degree of supersaturation with respect to ZnO or Zn(OH)2, which consequently induces the 

formation of ZnO solid in the bulk solution through homogeneous nucleation as well as on the 

surface of the pre-existing nuclei. 
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A method was developed in our lab for growing long ZnO nanowires solely on seeded 

substrates based on suppressing the homogeneous nucleation while maintaining the growth of 

pre-existing nuclei.[45] As a result, long, aligned ZnO nanowires could be obtained at a very fast 

rate without any contamination brought about due to growth of nanowires in the bulk solution. 

To suppress the homogeneous nucleation, the degree of supersaturation in the reaction system 

needs to be decreased. This was achieved by introducing ammonium hydroxide to the growth 

solution. Ammonium hydroxide forms complexes with the Zn ions,  

 

where n = 1,2,3, or 4. The complexes also serve as a buffer for Zn
2+

; it continuously supplies 

Zn
2+

 while lowering the degree of supersaturation of the reaction system. The use of ammonium 

hydroxide substantially suppresses ZnO homogeneous nucleation. However, by using 

ammonium hydroxide alone to effectively prevent formation of ZnO in the liquid phase, a high 

concentration of ammonium hydroxide is required, which also results in very slow growth of the 

wires on the seeded substrate due to excessively low degree of supersaturation. 

To avoid this, polyethyleneimine (PEI) was added to further suppress the homogeneous 

nucleation process. It was found that in the presence of both PEI and ammonium hydroxide, 

formation of ZnO in the bulk solution can be effectively prevented while ZnO nanowires could 

still grow at a reasonably high growth rate. This is because PEI preferentially adsorbs to certain 

crystal faces of ZnO clusters and inhibits further crystal growth along these faces.[46] In the 

homogeneous nucleation case, the ZnO clusters initially formed due to thermal fluctuation is so 

small that the polymer chain of PEI adsorbed to certain crystal faces is long enough to cover 

other faces and, as a result, the steric hindrance of the PEI chain inhibits the crystal growth along 

all faces. Consequently, the clusters have a very small chance to grow to the critical size that 
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thermodynamically favors the growth of crystals. On the seeded substrates, however, the pre-

existing seeds are large enough (5-20 nm) that despite PEI adsorption to certain crystal faces, the 

growing faces remain exposed to the reactants. Therefore, growth of ZnO nanowires can 

normally occur on the seeded substrates. The significance of this discovery was that ZnO 

nanowires now may grow on seeded substrates without precipitation in the bulk solution at a 

reasonable degree of supersaturation through coupled use of ammonium hydroxide and PEI. 

2.1 EXPERIMENTAL METHOD 

ZnO nanowire arrays were grown directly on indium doped tin oxide (ITO) glass 

substrates. The conducting glass substrates were first cleaned by acetone/ethanol sonication and 

rinsed thoroughly with DI water. The substrates were then subjected to ultra-violet ozone to 

remove any residual organics. The clean substrates were then seeded by spin coating with 5 mM 

zinc acetate solution in ethanol followed by thermal decomposition at 300ºC. The seeded 

substrates are placed in an aqueous growth solution containing 0.025 M zinc nitrate, 0.0125 M 

hexamethylenetetraamine, 0.005 polyethylenimine and 0.35 M ammonium hydroxide at 90ºC for 

6 hours. The synthesized ZnO nanowire arrays were then rinsed with DI water and calcinated in 

air at 450ºC for 1 hour. Figure 4 shows a representative cross-section scanning electron 

microscope image of ZnO nanowires grown on an ITO substrate. The length of the nanowires 

was approximately 10 µm and the diameter was 150-200 nm. Figure 5 shows the X-Ray 

diffraction (XRD) pattern the ZnO nanowires. A very strong peak was observed corresponding to 

the (002) plane of ZnO. The peak corresponding to this plane was significantly stronger than the 
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(101), (102) and (103) peaks, indicating a strong texture effect in accordance with c-axis 

elongated nanowires oriented normal to the substrate. 

 

 

Figure 4. Scanning electron microscope (SEM) image of ZnO nanowire arrays 

 

 

Figure 5. X-Ray Diffraction Spectra of ZnO nanowire arrays 
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3.0  ORDERED TIN OXIDE NANOTUBE ARRAYS FOR DYE-SENSITIZED SOLAR 

CELLS 

3.1 INTRODUCTION 

As discussed earlier, highest efficiencies for DSCs have been reported using a 

nanoparticle TiO2 network.[12] The main advantage of using such a random nanoparticle 

network is the high surface area available for dye adsorption leading to improved light 

harvesting. However, further improvements in device performance have been limited mainly due 

to the poor electron transport characteristics of TiO2 and the inherent problem of electron 

recombination in nanoparticle films. In addition to TiO2, various wide band-gap metal oxide 

semiconductors, including ZnO,[46] SnO2 [47] and Nb2O5 [48] have been studied for their 

potential use as photoanodes in DSCs. Among these, SnO2 is one of the most promising wide 

band-gap semiconductor materials for DSCs. Bulk electron mobility in SnO2 (µe=100-200 cm
2
V

-

1
s

-1
)[49] is orders of magnitude higher than  TiO2 (µe< 1 cm

2
V

-1
s

-1
)[50] and comparable to ZnO 

nanowires (µe= 200 cm
2
V

-1
s

-1
).[51]  The high electron mobility may open up possibilities to 

further improve DSCs, for example, by using redox mediators with faster kinetics than currently 

used ones.[52, 53] Very fast electron injection into SnO2 from the excited dye molecules has also 

been reported (≈ 150 ps) which is comparable to TiO2.[54] Furthermore, use of SnO2 as a 
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photoanode may make the DSC less susceptible to UV degradation, due to the large band gap of 

SnO2, leading to better long-term stability than DSCs employing ZnO or TiO2 electrodes.[55, 56] 

Mesoporous films of SnO2 nanoparticles have been used as photoanodes in DSCs.[48, 

57] The efficiencies of these DSCs, however, have been less than those using TiO2 nanoparticles.  

The open-circuit voltage (VOC) of SnO2 nanoparticle-based DSCs has been limited to less than 

0.4 V.[47, 48, 57, 58] Such a small VOC prohibits further exploration of using mesoporous films 

of SnO2 nanoparticles as photoanodes for DSCs.  As a promising alternative to sintered 

nanoparticles, 1-D nanostructures facilitate electron transport by providing a direct conduction 

pathway for the electrons. Gubbala et al has used SnO2 nanowires as photoanodes in DSCs, and 

a VOC of 0.56 V is obtained, a 0.2 V increase compared to DSCs that use sintered SnO2 

nanoparticles.[58]  Although a VOC of 0.56 V is still too low to be considered for DSC 

applications, this result indicates that 1-D nanostructures may overcome some of the limitations 

of sintered nanoparticles. The SnO2 nanowires in their DSCs, however, are randomly placed on 

the substrate, and therefore the advantages of 1-D nanostructures may not be fully taken. In 

DSCs, photogenerated electrons need to travel through the sensitized film to be collected before 

they recombine. Apparently, aligning the 1-D nanostructures vertically across the thickness of 

the sensitized film, compared to random placement, provides a significantly more efficient path 

for electron transport and thus can reduce the recombination probability of photogenerated 

electrons.  In addition, vertically aligned 1-D nanostructures also provide straight channels for 

filling the sensitized film with solid-state electrolytes, which is a promising approach to solve the 

packaging challenge and improve the long-term stability of DSCs.  Therefore, vertically aligned 

1-D nanostructures have recently attracted considerable interest for their potential use as 

photoanodes in DSCs.  Both vertically aligned ZnO nanowires[45, 46] and TiO2 nanotubes[59] 
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have been used to fabricate DSCs and, indeed, faster electron transport and improved electron 

collection efficiency, compared to photoanodes based on sintered nanoparticles, has been 

reported. DSCs fabricated by using vertically aligned SnO2 1-D nanostructures, however, have 

not been reported, primarily due to the difficulty in synthesis of such nanostructures.   

Here, we report a method for synthesizing vertically aligned SnO2 nanotube arrays by 

using ZnO nanowire arrays as a sacrificial template. The sacrificial ZnO nanowires are converted 

to SnO2 nanotubes via liquid-phase SnO2 deposition and simultaneous ZnO dissolution. The 

resulting SnO2 nanotube arrays are used to fabricate DSCs, showing improved photovoltaic 

performance compared to SnO2 nanoparticle-based devices. In addition, it is found that coating 

the SnO2 nanotubes with a conformal thin layer of TiO2 leads to significant increase in open 

circuit voltage (VOC) and fill factors (ff) for the DSCs, resulting in much higher efficiencies.  

Transient photovoltage measurements indicate that the photogenerated electron lifetime in the 

hybrid TiO2-SnO2 nanotubes is substantially longer than in TiO2 nanoparticles, TiO2 nanotubes, 

and ZnO nanowires, suggesting promises of the TiO2-coated SnO2 nanotubes for further 

improvement of DSCs. 

3.2 EXPERIMENTAL METHODS 

3.2.1 Growth of ZnO Nanowire Arrays 

ZnO nanowire arrays were grown directly on indium doped tin oxide (ITO) glass 

substrates by method described in Section 2.1. 
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3.2.2 Conversion to SnO2 Nanotube Arrays 

The synthesized ZnO nanowire arrays were rinsed with DI water and calcined in air at 

450°C for 1 hr. The nanowire array was then placed in an aqueous solution of 0.09 M 

ammonium hexafluorostannate ((NH4)2SnF6) and 0.1 M H3BO3 at room temperature for 30 min, 

which resulted in the formation of vertical SnO2 nanotube array. For preparing the aqueous 

solution, 0.15 M bulk solution of ammonium hexafluorostannate (AHFS) ((NH4)2SnF6) (Aldrich) 

was prepared by dissolving 4 g AHFS in 100 ml water. The aqueous solution for conversion was 

prepared by mixing 3 ml of 0.15 M AHFS, 1 ml of 0.5 M H3BO3 and 1 ml water. The 

synthesized SnO2 nanotube array was then calcined in air at 450°C for 1 hr.  

3.2.3 Synthesis of Hybrid TiO2-SnO2 Nanotube Arrays 

For synthesizing hybrid TiO2-SnO2 nanotube arrays, a thin layer of TiO2 was deposited 

on the surface of SnO2 nanotubes by immersing the SnO2 nanotube array in a solution of 0.1 M 

(NH4)2TiF6 and 0.2 M H3BO3 for 20 min. This solution was prepared by mixing 3 ml of 0.1667 

M bulk solution of ammonium hexaflurotitanate (AHFT) ((NH4)2TiF6,  Aldrich), prepared by 

dissolving 3.3 g AHFT in 100 ml water, and 2 ml of 0.5 M H3BO3.  

3.2.4 Synthesis of TiO2 Nanoparticles 

TiO2 nanoparticle-based electrode was prepared by applying a paste of TiO2 nanoparticle 

onto the conducting substrate (ITO) by doctor blading. The paste used consisted of commercially 

procured TiO2 nanoparticles (15 nm) dissolved in 10 ml ethanol and 0.2 ml isopropoxide. The 
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TiO2 nanoparticle film obtained by this method was 10-11 µm thick. The method used for 

synthesizing TiO2 nanotubes has been published by our group before.[59] 

3.2.5 Fabrication and Characterization of DSCs 

The area of the photoanodes was limited to about 0.5 cm
2
. The excess tubes was removed 

from the substrate with a blade. The films were immersed in 0.5 mM (Bu4N)2[Ru(4,4’-(COOH)-

2,2-bipyridene)2(NCS)2] (N719 dye) solution in ethanol overnight. A 60 µm thick hot melt 

sealing foil (SX1162-60, Solaronix) frame was sandwiched between the sensitized photoanode 

and the counter-electrode with one side left open. The counter-electrode used was platinized ITO 

electrode and was prepared by decomposing a Pt salt (H2PtCl6) at a temperature of 400°C. A 

solution consisting of 0.1 M LiI, 0.1 M I2, 0.5 M tert-butyl pyridine, and 0.6 M 

tetrabutylammonium iodide in acetonitrile was introduced from the open end of the sealing 

frame. The open end was then immediately sealed with silicone adhesive. The cells were then 

immediately tested under 100 mW/cm
2
 AM 1.5G simulated sunlight (Model 67005, Oriel) and 

the J-V curve was recorded using Reference 600 potentiostat (Gamry Instruments). Photovoltage 

decay measurements were performed using the same light source and Reference 600 potentiostat. 

Electrochemical Impedance Spectroscopy (EIS) studies were performed under both 100 mW/cm
2
 

AM 1.5G simulated sunlight and dark conditions. The impedance spectra were obtained over a 

frequency range of 0.01-100 kHz. The magnitude of the alternative signal was 20 mV. 
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3.3 RESULTS AND DISCUSSIONS 

Figure 6 schematically shows the process for synthesizing vertically aligned SnO2 

nanotube arrays by using ZnO nanowires as a sacrificial template. The process starts with 

growing vertically aligned ZnO nanowires on ITO-coated glass substrate by a hydrothermal 

method. This is followed by conversion of ZnO nanowire arrays to SnO2 nanotubes via SnO2 

deposition and simultaneous ZnO dissolution by placing the ZnO nanowire array in an aqueous 

solution of (NH4)2SnF6 and H3BO3. The conversion process can be described by the following 

chemical reactions:[59-61] 

            4H6FSnOO2HSnF 22

2

6                              (3.1) 

O3HHBF4HFBOH 2433                   (3.2) 

OHZn2HZnO 2

2                       (3.3) 

During the conversion process, (NH4)2SnF6 hydrolyses on the surface of the nanowires resulting 

in the deposition of SnO2 on the surface of ZnO nanowires. (NH4)2SnF6 hydrolysis also results in 

formation of acids which aid in the dissolution of ZnO. It should be noted that a small amount of 

HF may be present in the solution post the conversion process and necessary precautions were 

taken. 
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Figure 6. Schematic illustration of the process for synthesizing vertically aligned SnO2 nanotube arrays. 

 

3.3.1 Morphological Characterization 

Figure 7a shows a representative cross-section SEM image of a ZnO nanowire array 

synthesized by the hydrothermal method previously developed by our group and discussed in 

Section 2.1.[45]  The wires are 10 µm in length and 150-200 nm in diameter. Figure 7b and 

Figure 7c show representative cross-section and top-view SEM images of a SnO2 nanotube 

array. It is observed that the SnO2 nanotubes retain the length of ZnO wires, most of them are 

open at the top end, and the hollow cores have approximately the same width as the original ZnO 

wires. Figure 7d shows energy dispersive X-ray (EDX) spectra recorded before (curve a) and 

after (curve b) the conversion process. In comparison to curve a, curve b shows strong peaks for 

Sn and O and no detectable peak for Zn, indicating that all the ZnO nanowires have been 

converted to SnO2 nanotubes. 
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Figure 7. ZnO nanowires and converted SnO2 nanotube arrays. (a) SEM image of ZnO nanowire array on ITO. 

Scale bar, 5 µm. (b) SEM image of converted SnO2 nanotube array. Scale bar, 5 µm. (c) Top-view SEM image of 

SnO2 nanotube array. Scale bar, 2 µm. (d) EDX spectra for ZnO nanowire array, curve a, and SnO2 nanotube array 

after conversion, curve b.  
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3.3.2 Determination of Crystal Structure 

Figure 8a shows the X-Ray diffraction (XRD) pattern for the SnO2 nanotubes. The XRD 

pattern can be indexed to tetragonal rutile structured SnO2 (JCPDS card no. : 41-1445). No peaks 

corresponding to crystalline ZnO were detected, confirming the conversion of ZnO nanowires to 

SnO2 nanotubes. The as-synthesized SnO2 nanotubes are polycrystalline. The size of individual 

SnO2 crystals in the polycrystalline nanotubes was estimated by using the Scherrer equation, 

  cos/89.0D , where λ is the wa elen th of the  -ray (1.5405   
 
), β is the peak width at 

half-maximum in radians, and θ is the Bra  ’s an le.[62, 63]  Using this equation, the mean 

particle size was estimated to be 3.3 nm on the basis of the (110) peak. Figure 8b shows a 

transmission electron microscopy (TEM) image of an individual SnO2 nanotube, where the 

hollow core and a wall of 15-20 nm thick can be clearly seen. Figure 8c shows a high-resolution 

TEM (HRTEM) image of the wall of an individual SnO2 nanotube. The lattice spacing of 0.34 

nm shown in Figure 8c corresponds to the (110) plane of SnO2.  
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Figure 8. (a) X-ray diffraction pattern for SnO2 nanotube array. (b) TEM image for a single SnO2 nanotube. (c) 

HRTEM image, showing lattice spacing corresponding to (110) plane for SnO2. 
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3.3.3 J-V Characterization 

The synthesized SnO2 nanotubes were then used to fabricate DSCs. Figure 9 shows the 

photovoltaic performance of a representative DSC based on SnO2 nanotube arrays.  The DSC 

yielded an efficiency of 1.13% with a short-circuit current (JSC) of 8.05 mA/cm
2
 and a VOC of 

0.50 V. The VOC obtained is almost 0.20 V higher than those reported for SnO2 nanoparticle 

based DSCs.[47, 58] This increase in VOC could be attributed mainly to the faster electron 

transport and lower recombination rates for the nanotube based DSC. These factors were verified 

by studying the recombination kinetics discussed later. The measured JSC was significantly 

higher than the previously reported JSC for similar DSCs based on SnO2 1-D nanostructures.[64] 

This could be mainly attributed to the higher roughness factor, resulting from longer nanotubes 

of our arrays, compared to previously reported SnO2 1-D nanostructures. Increase in roughness 

factor would imply higher dye loading and consequently higher light harvesting efficiency and 

higher current densities. 
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Figure 9. J-V characteristics of DSCs based on SnO2 nanotube arrays as photoanode. 

 

However, VOC and fill factors (ff) for these devices are still low when compared to typical 

TiO2-based devices, which is characteristic of SnO2 as a photoanode.[58, 64, 65] Efficiency of 

DSCs based on photoanodes of SnO2 has been shown to improve by coating the surface of SnO2 

with a conformal barrier layer such as TiO2 or Al2O3.[47, 55, 65] As can be seen from the band-

edge diagram in Figure 10, the conduction band of TiO2 lies between that of the N719 dye and 

SnO2. Hence, the electrons injected into TiO2 from the dye would be readily injected into the 

SnO2 nanotube array. This should result in better electron transfer from the dye to the current 

collecting surface. The TiO2 layer would also act as a barrier layer, thereby preventing back 

transfer of electrons which have been injected in the photoanode. This should result in significant 

reduction of recombination losses and hence improve device performance. 
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Figure 10. Energy band diagram of SnO2, TiO2 and N 719 dye with respect to the electrochemical scale at pH=1 

 

3.3.4 Characterization and Performance of Hybrid Nanotubes 

We here use a liquid-phase deposition method to coat the walls of SnO2 nanotubes with a 

thin layer of TiO2. The method involved immersing SnO2 nanotube array in a solution of 

(NH4)2TiF6 and H3BO3 for up to 30 min, and the deposition of TiO2 can be described by the 

following chemical reactions:[66] 

  4H6FTiOO2HTiF 22

2

6          (3.4) 

O3HHBF4HFBOH 2433           (3.5) 

Figure 11a and Figure 11b show an SEM image and an EDX spectrum, respectively, of 

the SnO2 nanotube array coated with TiO2, indicating fairly uniform deposition of TiO2 while 

retaining the morphology of the original SnO2 nanotube array. Figure 11c and Figure 11d show 

a TEM image and a line-scan EDX profile, respectively, of a single TiO2-coated SnO2 nanotube, 

confirming uniform deposition of a 20-25 nm thick TiO2 layer on the SnO2 nanotube. 
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Figure 11. SnO2 nanotubes coated with TiO2. (a) SEM image. Scale bar, 5µm. (b) EDX spectra. (c) TEM image of a 

TiO2-coated SnO2 nanotube. Scale bar, 50nm. (d) Line-scan EDX profile obtained along the line shown in (c). 
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We then fabricated DSCs using these hybrid TiO2-SnO2 nanotubes. A representative J-V 

characteristic of these DSCs is shown in Figure 12.  The photovoltaic performances of DSCs 

based on (i) SnO2 nanotubes and (ii) hybrid TiO2-SnO2 nanotubes are summarized and compared 

in Table 3. In comparison, coating the SnO2 nanotubes with a thin layer of TiO2 led to a 

significant improvement in VOC and ff ―VOC increased from 0.50 to 0.70 V, and ff from 0.28 to 

0.50. The much improved photovoltaic performance could be mainly attributed to slower 

recombination rates due to surface passivation of sub-band-edge surface states.[49] Also, the 

conduction band-edge of SnO2 is 0.4 V more positive than TiO2.[58] Thus the electrons injected 

into TiO2 from the dye would be readily injected into the SnO2 nanotubes, allowing fast electron 

transport to the current-collecting surface. TiO2 forms an energy barrier forcing electrons to 

travel towards the current-collecting surface.[55, 58] These factors result in considerable 

reduction in recombination rate leading to improved VOC. The increase in JSC could be attributed 

to better dye uptake by the hybrid TiO2-SnO2 nanotubes. The increase in JSC, VOC and ff lead to 

significant increase in the efficiency of DSC. 



 36 

 

Figure 12. J-V characteristics of DSCs using SnO2 nanotube arrays with (blue curve) and without (red curve) TiO2 

coating. 

 

 

Table 3. Photovoltaic performance of DSCs based on (i) bare SnO2 nanotubes and (ii) TiO2-coated SnO2 nanotubes 

 
Bare SnO2 nanotubes TiO2-coated SnO2 nanotubes 

JSC   (mA/cm
2
) 7.99 ± 0.06

 
9.91 ± 0.17 

VOC (V) 0.49 ± 0.01 0.68 ± 0.02 

ff 0.27 ± 0.01 0.49 ± 0.01 

η  (%) 1.06 ± 0.07 3.47 ± 0.06 
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Our best performing cell delivered an efficiency of 3.53%, with JSC of 10.08 mA/cm
2
, 

VOC of 0.70 V, and ff of 0.50.  This efficiency is still low when compared to typical TiO2 

nanoparticle-based DSCs. This is mainly due to the low internal surface area of our nanotube 

arrays when compared to a nanoparticle film. This results in lower dye adsorption and hence 

lower light absorption. This constraint may be overcome by synthesizing longer nanotubes. In 

the next chapter we have reported a method for synthesizing multilayer ZnO nanowire arrays 

with lengths of up to 40 µm.[66] Work is currently underway to convert these multilayer 

assemblies into SnO2 nanotubes.  

3.3.5 Photovoltage Decay Measurements 

To further understand the performance of DSCs based on SnO2 nanotubes and hybrid 

TiO2-SnO2 nanotubes, transient photovoltage measurements were conducted, by monitoring the 

VOC as a function of time upon turning off the illumination. The idea behind performing these 

experiments was to study the electron recombination kinetics.  The experiments were repeated 

with DSCs based on TiO2 nanoparticles, TiO2 nanotubes, and ZnO nanowires of same thickness 

and the results were compared. Figure 13a shows VOC decay as a function of time for five 

different anodes: (i) TiO2-coated SnO2 nanotubes, (ii) SnO2 nanotubes, (iii) TiO2 nanotubes, (iv) 

ZnO nanowires, and (v) TiO2 nanoparticles. It was observed that DSCs based on TiO2-coated 

SnO2 nanotubes and SnO2 nanotubes showed much slower VOC decay rate than DSCs based on 

the other three electrodes, indicating much slower recombination rates.  From the VOC decay rate, 

the photoelectron recombination lifetime (τr) may be determined by the following equation:[67, 

68] 
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where kB is the Boltzmann constant and T is temperature. The calculated τr is plotted in Figure 

13b for five different electrodes. It is observed that τr for TiO2-SnO2 nanotubes, SnO2 nanotubes, 

and TiO2 nanotubes are almost two orders of magnitude higher than TiO2 nanoparticles. They are 

also much higher than the literature reported τr for SnO2 nanoparticles.[58]   
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Figure 13. Open-circuit voltage decay curve and calculated electron recombination lifetime for five different 

anodes: (i) TiO2-coated SnO2 nanotubes, (ii) SnO2 nanotubes, (iii) TiO2 nanotubes, (iv) ZnO nanowires, and (v) 

TiO2 nanoparticles. (a) Voltage-decay curve. (b) Electron lifetime determined from open-circuit voltage decay 

measurement.  
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The much larger τr in the nanotubes compared to nanoparticle films may be explained by 

an internal radial electric field that is developed within the walls of the nanotubes. The wall of 

the tubes is thick enough to develop a potential difference. This potential difference drives the 

electrons inwards, away from the interface, thereby preventing the recombination reaction.[59] 

The primary reason for longer lifetimes in TiO2 based nanotubes as compared to ZnO nanowires 

is due to the intrinsic material properties. It has been reported that the conduction band of TiO2 is 

composed of d-orbital electrons that are less susceptible to recombination than the electrons in 

ZnO.[69]  Among the five different electrodes, the hybrid TiO2-SnO2 electrode exhibits slowest 

recombination rates, slightly slower than the bare SnO2 nanotube arrays. This could be due to the 

energy barrier formed by the TiO2 coating, forcing the electrons to flow towards the current 

collecting surface and preventing the electrons from flowing in the opposite direction. 

Introduction of TiO2 may have also passivated the reactive low-energy SnO2 surface states.[49] 

These factors lead to further lowering the recombination rates, resulting in enhanced VOC and ff 

for DSCs based on the hybrid TiO2-SnO2 electrodes. To ensure a fair comparison for the various 

photoanodes tested for open-circuit voltage decay, we tried to ensure a uniform film thickness of 

approximately 10 µm for all devices. The photovoltaic performance of DSCs fabricated using the 

different photoanodes used for comparison in these studies is tabulated in Table 4. 
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Table 4. Photovoltaic performance data of DSCs based on different electrodes used for open-circuit voltage decay 

study experiments.(i) TiO2 nanoparticles, (ii) ZnO nanowires, (iii) TiO2 nanotubes, (iv) Bare SnO2 nanotubes, (v) 

TiO2-coated SnO2 nanotubes 

 TiO2 

Nanoparticles 

ZnO 

Nanowires 

TiO2 

Nanotubes 

Bare SnO2 

Nanotubes 

TiO2-

coated 

SnO2 

nanotubes 

JSC   

(mA/cm
2
) 

12.8 5.20 6.50 8.05
 

10.08 

VOC (V) 
0.82 0.56 0.76 0.50 0.70 

ff 
0.66 0.36 0.60 0.28 0.50 

η (%) 
6.93 1.05 2.96 1.13 3.53 

 

 

3.3.6 Electrochemical Impedance Spectroscopy Studies 

We also performed electrochemical impedance spectroscopy (EIS) to further understand 

the improved performance of the hybrid electrodes. Figure 14a shows the Nyquist plots for 

DSCs based on hybrid TiO2-SnO2 and bare SnO2 nanotubes obtained by EIS carried out under 

illumination of AM 1.5G simulated sunlight at an applied bias of VOC. The impedance 

components of the interfaces in the DSCs are observed in three different frequency regimes. The 

arcs observed in the EIS spectra may be assigned to the impedances due to conducting 

layer/semiconductor interface, Pt/electrolyte interface, and photoanode/dye/electrolyte 

interface.[70, 71] In the middle frequency range of 0.1 – 10
4
 Hz, the semicircle on the Nyquist 

plot is associated with the charge transfer across the photoanode/dye/electrolyte interface and the 

size of the semicircle represents the resistance to recombination. 
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As can be seen from the Nyquist plots in Figure 14a, the semicircle observed in the 

middle frequency range is larger in the case of hybrid TiO2-SnO2 nanotube photoanode than that 

for bare SnO2 nanotube photoanode. This indicates increased recombination resistance which 

results in lower recombination rates at the photoanode/dye/electrolyte interface for DSCs using 

the hybrid TiO2-SnO2 photoanodes. The electron lifetime, τr, can be estimated from the 

maximum angular frequency of the impedance semicircle arc at middle frequencies, according to 

the relation:  

max2

1

πf
τ r             (3.7) 

where fmax is the maximum frequency of the mid-frequency peak.[65] Thus, a peak shift to a 

lower frequency represents longer electron recombination lifetime. For DSCs with hybrid TiO2-

SnO2 photoanode, a longer electron lifetime of 18.9 ms is obtained compared to 12.8 ms for 

DSCs based on bare SnO2 photoanode. The longer electron recombination lifetime of hybrid 

TiO2-SnO2 photoanode compared to bare SnO2 photoanode is in agreement with the trend 

observed in the transient photovoltage measurement. It needs to be noted that the absolute values 

for recombination lifetimes obtained by EIS differ from those reported by photovoltage decay 

measurements. The primary reason for this could be that, in photovoltage decay measurements, 

the cell was allowed to decay through low carrier density states resulting in longer electron 

lifetimes. On the other hand, EIS measurements were performed at open-circuit voltage, when 

electron density is the highest.  

 



 43 

 

Figure 14. Electrochemical impedance spectroscopy (EIS) for DSCs based on (i) hybrid TiO2-SnO2 nanotubes and 

(ii) bare SnO2 nanotube arrays under illumination of AM 1.5G simulated sunlight at an applied bias of VOC. (a) 

Nyquist plots. (b) Bode phase angle versus frequency plots 
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Figure 15. Electrochemical impedance spectroscopy (EIS) for DSCs based on (i) hybrid TiO2 –SnO2 nanotubes and 

(ii) bare SnO2 nanotube arrays under dark conditions. 

 

Electrons with longer τr lead to longer diffusion length (Ln) and can more easily escape 

the electron recombination. Ln can be derived using the following equations:[72-74]  

 
reffn τDL 2

            (3.8) 

                                   effwkeff kL/RRD 2          (3.9) 

where Rw, Rk, L, Deff, and keff represent the resistance of electron transport in photoanode, 

resistance of charge transfer related to recombination, thickness of the photoanode，effective 

electron diffusion coefficient, and constant of effective rate for recombination, respectively. The 

values of these parameters were estimated from the central arc of Nyquist and Bode phase plots 

as described by J.L. Song.[74] Rw is determined from the diameter of the middle semicircle in 

Nyquist plot shown in Figure 14a and Rk is determined from the diameter of the middle 
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semicircle in Nyquist plot obtained under dark conditions shown in Figure 15. keff is estimated 

from the maximum peak frequency obtained from the Bode phase plot in Figure 14b. The 

calculated values are tabulated in Table 5.  These results indicate that the hybrid photoanode is 

superior to bare SnO2 nanotube photoanode with significantly larger Ln, Deff, and τr but smaller 

keff. Besides the expected increase in electron lifetime, a larger effective diffusion coefficient was 

also observed in case of the hybrid photoanode. The reason for large Deff could be due to the 

passivation of the low energy SnO2 surface trap states. These results explain the improved 

photovoltaic performance of hybrid TiO2-SnO2 photoanode as compared to the bare SnO2 

photoanode. 

 

Table 5. Parameters determined by EIS for photoanodes based on (i) bare SnO2 nanotubes and (ii) TiO2 -coated 

SnO2 nanotubes. 

 Rw (Ω) Rk/Rw keff  (s
-1

) τr (ms) 

Deff  (x 10
4
 

cm
2
/s) 

Ln (µm) 

Bare 

SnO2 

nanotubes 

145 ± 15 12.75 ± 1.45 11.9 ± 1.08 12.89 ± 1.17 1.71 ± 0.33 14.72 ± 0.79 

TiO2-

coated 

SnO2 

nanotubes 

165 ± 20 33.45 ± 2.35 8.39 ± 0.06 18.91 ± 0.14 2.89 ± 0.11 23.31 ± 0.12 
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3.4 CONCLUSIONS 

We have developed feasible processes to synthesize long, vertically ordered SnO2 and 

hybrid TiO2-SnO2 nanotube arrays. All the processes involved in the synthesis are carried out in 

aqueous solution at low temperatures.  We have fabricated DSCs by using the vertically ordered 

nanotube arrays of both SnO2 and hybrid TiO2-SnO2, and found that coating the SnO2 nanotubes 

with a thin layer of TiO2 significantly improves the DSC performance.  The best performing cell 

is fabricated by using the hybrid TiO2-SnO2 anodes, which yields an efficiency of 3.53%.  In 

addition, we have studied the photogenerated electron recombination kinetics of different 

photoanode materials and observed that the electron recombination lifetime in the anodes of 

SnO2 and hybrid TiO2-SnO2 nanotubes are significantly higher than in nanoparticle-based anodes 

and also significantly higher than 1-D nanostructures of ZnO and TiO2. These results open up the 

possibility of further improvement of DSCs by using redox mediators with faster kinetics, which 

would otherwise be hampered by fast recombination of electrons. The use of vertically ordered 

1-D nanostructures as anodes in DSCs may also facilitate filling of the pores with solid hole 

transporting materials, making them promising candidate anodes for solid-state DSCs.[52, 53] 

We have discussed some aspects of the advantage of vertically ordered nanostructures for solid-

state DSCs in more detail in Chapter 5.0 and Chapter 6.0  Furthermore, the vertically ordered 

SnO2 nanostructures also have unique advantages for applications in gas sensors[75] and lithium-

ion batteries.[76, 77] The application of these SnO2 nanotubes for LIBs has been explored by us 

and discussed in Chapter 7.0  
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4.0  MULTILAYER ASSEMBLY OF NANOWIRE ARRAYS FOR DYE-SENSITIZED 

SOLAR CELLS 

4.1 INTRODUCTION 

As discussed in the last chapter, a key challenge of using vertically aligned 1-D 

nanostructures in DSCs, compared to mesoporous films, is that they typically have a low internal 

surface area. This results in insufficient dye adsorption and therefore low light harvesting 

efficiency.[59, 78-80]
 
As a result, the efficiency of the DSCs based on vertically aligned 1-D 

nanostructures is significantly lower than that of nanoparticle-based ones. In a recent report,[81]
 

an efficiency of 6.9%, currently the highest one in the literature for DSCs based on 1-D 

nanostructures, has been achieved using TiO2 nanotube arrays fabricated on conducting glass 

substrate (ITO). However, the fabrication process involves complex sputtering and anodization 

of thick Ti films, which are difficult to scale up both technically and economically.  Therefore, to 

fabricate arrays of long and vertically aligned 1-D nanostructures by an economically viable 

method remains challenging.  

In our previous work, described in Section 2.1,[45] we have developed a wet chemical 

process for rapid growth of ZnO nanowire arrays. By using this process, ZnO nanowires of more 

than 40 µm long may be readily obtained.  However, such long wires are typically fused at their 

root and, as a result, a significant percentage of the surface area gained by increasing the wire 
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length is lost. Fusion of the wires is largely due to the widening of the wires as they grow long, 

which occurs in almost all published methods for growing ZnO nanowires in chemical baths. 

Therefore, to avoid wire fusion, we need to develop a method to grow wires only at the top 

surface while protecting the lower section of the wires. Here we present an innovative solution to 

this challenge by synthesizing multilayer assemblies of ZnO nanowire arrays, which possess an 

internal surface area that is more than five times larger than that of single-layer ZnO nanowire 

arrays.  

A key strategy for preventing the fusion of wires at their root in our process is to grow the 

wires in multiple stages — wires only grow for about 10 µm in each stage and a self-assembled 

monolayer (SAM) coating is used to protect the wires grown in previous stages from widening 

and fusing in the next growth stage. This process is schematically shown in Figure 16 and is 

described in the next section.   

 

Figure 16. Schematic illustration for growing two-layer assembly of ZnO nanowires 
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4.2 EXPERIMENTAL METHODS 

4.2.1 First Layer Growth and Hydrophobic Coating 

The first step was to grow the first layer of wires on ITO by the method described in 

Section 2.1. The length of the wires grown in this first stage is around 10 µm. The next step was 

to coat the nanowire array with a self-assembled monolayer (SAM) coating. This was achieved 

by dipping the substrate in 0.2 wt% octadecyltrichlorosilane (CH3(CH2)17SiCl3, OTS) in 

hexane for 2 h. The SAM coating rendered the top surface of the nanowires superhydrophobic 

which was confirmed by water contact angle measurements.  

4.2.2 Growth of Multilayer Nanowire Arrays 

The substrate was then treated by ultraviolet ozone (UVO) for 3 minutes. After the UVO 

treatment the substrate was placed into a fresh growth solution resulting in the growth of a 

second layer of ZnO nanowires. This process of SAM coating and UVO treatment was repeated 

several times to obtain a four layer nanowire assembly. 

4.2.3 DSC Fabrication 

After synthesizing the multilayer assembly of nanowire arrays, we fabricated DSCs using 

them as the photoanode. DSCs were fabricated in a similar way as described in Section 3.2.5. 

The fabricated DSCs were then immediately tested using the procedure described earlier. 

Incident photon-to-current efficiencies (IPCE) were measured with the same potentiostat. 
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Monochromatic illumination was achieved through M 77250 monochromator (Oriel). Roughness 

factor (RF) was determined by measuring the adsorbed dye amount. Dye molecules were 

stripped from the surface the nanowires using 0.01 M NaOH. The amount of dye desorbed was 

quantified on a USB2000 Spectrometer (Ocean Optics) by measuring the absorbance of the dye, 

N719. A value of 1.6 nm
2
/dye molecule was used to estimate the roughness factor.  

4.3 RESULTS AND DISCUSSIONS 

4.3.1 Morphological Characterization 

Figure 17a shows an SEM image of the first-layer ZnO nanowire array directly grown on 

ITO. The ZnO nanowires are about 10 µm long and 200 nm wide. It should be noted that in order 

to reduce the possibility for wires to fuse at their root, the concentration of the precursor 

Zn(NO3)2 used in this process was 0.01 M, which was much lower than the typical concentration 

of 0.025 M reported in the literature and used by us previously.[45, 46] This layer of nanowires 

was then coated with a SAM of OTS, which rendered the top surface of the nanowire arrays 

superhydrophobic with a water contact angle of about 165°, as shown in the inset of Figure 17a. 

Prior to the growth of the second-layer wires, the substrate was treated by UVO.  By controlling 

the UVO treatment time, only the SAM coating at the top end of the wires was removed while 

most of the coating on the sidewall of the wires was left. After this treatment, the water contact 

angle of the ZnO nanowire arrays was reduced to about 70°. The substrate was then placed into a 

chemical bath to grow the second-layer ZnO nanowires. Figure 17b shows an SEM image of a 

two-layer assembly of ZnO nanowire arrays, where a boundary between the two layers of wires 
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was clearly observed. A closer examination of the boundary, seen in Figure 17b, indicated that 

the second-layer wires started their growth from the top end of the first-layer wires and grew 

along the same orientation as the first-layer wires.  The area density of the second-layer wires 

was slightly smaller than that of the first-layer. This is because some first-layer wires were not 

long enough to reach the top surface of the array and, thus, the aqueous solution during the 

second stage of growth.  Therefore, they failed to serve as the seed for the growth of the second-

layer wires. The second-layer wires were slightly wider than the first-layer wires, because as the 

wires grew vertically they also grew laterally, although at a much slower rate. The differences in 

width and density between the wires in different layers led to the visible boundary between the 

adjacent layers under SEM. Such differences also suggested that the growth of the new-layer 

wires did not significantly change the morphology of the previous-layer wires and, therefore, 

widening and fusion of the previous-layer wires at their root was effectively avoided during the 

growth of the new-layer wires.  
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Figure 17. SEM images of one and two layers of ZnO nanowire arrays. a, the first-layer ZnO nanowire array (inset, 

optical image of a water droplet on the array after it is coated with a SAM coating). Scale bar, 10 µm. b, a two-layer 

assembly of ZnO nanowire array 
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The internal surface area of the multilayer assembly of nanowire arrays should keep 

increasing as more layers are added to the assembly by repeating this process. As a proof of 

concept, we have made a four-layer assembly using this approach.  Figure 18 shows an SEM 

image of a four-layer assembly of ZnO nanowire arrays, with each layer of about 10 µm thick.  
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Figure 18. SEM image of a four-layer assembly of ZnO nanowire arrays. The thickness of each layer is about 10 

µm.  Scale bar, 10 µm. 
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4.3.2 Roughness Factor Calculations 

In order to quantify the increase in surface area achieved by growing the multi layer 

assembly, we have performed roughness factor (RF) calculations. RF is defined as the ratio of 

the actual surface area of the nanowires to the projection area of the substrate. The RF of the 

four-layer assembly presented in Figure 18 is plotted as a function of the number of layers by 

curve 1 in Figure 19. It can be seen that the total RF of the four-layer array assembly is about 

510, which is more than five times larger than what one can possibly obtain with a single-layer 

array. On the basis of curve 1, the RFs of the individual layers in the assembly (estimated as the 

increase in RF resulting from the addition of new layer to the assembly) are plotted as curve 2 in 

Figure 19. 

Curve 2 indicates that RF of each layer varies although the thickness of all layers is the 

same. When the thickness is fixed, RF of each layer is proportional to the product of the wire 

diameter and the wire density.  For the same reason that the second-layer wires are wider and 

less dense than the first-layer wires, the width of the wires in each new layer is consistently 

larger than that of the previous layers, while concurrently the area density becomes smaller. 

Therefore, the RF for each layer depends on the relative weighing of the two factors: the 

diameter and the area density of the wires. Curve 2 indicates that under our experimental 

conditions, the RF of the third layer was the largest, followed by the second and the first layers, 

and the RF of the fourth layer was the smallest. 
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Figure 19. Roughness factor (RF) versus the number of layers for multiple assemblies of ZnO nanowire arrays. 

Curve 1 is the total RF versus the number of layers in the assembly; curve 2 is the RF for each individual layer 

 

4.3.3 Limitations of Multilayer Growth 

An intriguing question is whether there is a limit on the number of layers that one may be 

able to assemble through this approach. Through experiments, we have found that this assembly 

approach fails when the distance between the SAM-coated wires is too large to prevent aqueous 

solution from infiltrating into the underneath wire arrays. Top-view SEM images of the wires in 

different layers show that as the number of layers increases, the area density of wires decreases 

and the gap between adjacent wires becomes larger, as seen in Figure 20. The aqueous solution 

will enter the space between the wires if this gap becomes so large that the capillary force 

generated between the hydrophobic sidewalls of the wires fail to overcome the hydrostatic 

pressure.  Experimentally, we have found that this happens when we try to assemble more than 

4-5 layers of wires through this approach. When the aqueous solution is able to infiltrate into the 
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previously synthesized wire arrays, wires underneath the new layer will be widened and even 

fused during the growth of the wires of the new layer. 

 

Figure 20. Diameter and density of the wires grown in different layers of the assembly. a), b), c) and d) top-view 

SEM images of wires grown in the first, second, third, and fourth layers, respectively.  Scale bar, 10 µm. e) plot of 

wire diameter versus the layer. f) plot of wire density versus the layer number. 
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The multilayer assembly of ZnO nanowire arrays provides an ideal electrode structure for 

DSCs. However, compared to TiO2, ZnO has significant disadvantageous material properties 

when used as an anode material for DSCs, which may result in low open circuit voltage and 

small fill factor, leading to a low energy conversion efficiency.[59] Therefore, for better 

characterization of DSCs based on such anode structures and to compare them with DSCs based 

on TiO2 nanoparticles, we coated the ZnO nanowires with a layer of about 20-30 nm thick TiO2  

by a solution deposition method[59]  before we sensitized the nanowire arrays and made final 

DSCs.  Using this approach, we fabricated a series of DSCs, using assemblies of one, two, three, 

and four layers of ZnO nanowire arrays, respectively. The thickness of each layer was kept at 10 

µm, and the morphology of each layer may be represented by Figure 18. 

4.3.4 J-V Characterization 

The J-V characteristics of these DSCs are presented in Figure 21a.  As expected, the 

short circuit currents (JSC), largely dependent upon the surface area of the arrays, increase almost 

linearly with RF as the total thickness of the assembly increases. The energy conversion 

efficiencies are 2.1, 4.6, 6.2, and 7.0% for the DSCs made using a one-, two-, three-, and four-

layer assembly of nanowire arrays, respectively. To our knowledge, the 7.0% efficiency obtained 

from the four-layer, 40 µm thick assembly is already the highest efficiency reported in the 

literature for DSCs based on 1-D nanostructures. This efficiency is still lower than what has been 

reported for DSCs based on sintered nanoparticles, partly because the RF of the current four-

layer assembly, which is about 510, is still smaller than the RF of ~780 reported for sintered 

nanoparticle films.[11] 
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However, it is believed that the RF of the multilayer assembly can be further increased by 

increasing the thickness of the array in each layer and, therefore, DSCs based on such multilayer 

assemblies may outperform the nanoparticle-based DSCs. Figure 21a also shows a slight 

decrease in the VOC and ff as the thickness of the multilayer arrays increased, possibly due to the 

increase in the series resistance of the DSCs. Figure 21b shows the incident-photon-to-current 

conversion efficiency (IPCE) versus wavelength for the DSCs fabricated using different numbers 

of array layers.  As can be seen, increasing the total thickness of the multilayer assembly 

improves IPCE at all wavelengths varying from 350 to 800 nm.  An important feature observed 

in these IPCE curves is a significant red-shift of the peak IPCE with increasing assembly 

thickness, indicating that the red-light absorption may be effectively improved by thickening the 

sensitized film with a vertically ordered structure. The consistently increasing IPCE, with a 

nearly 80% IPCE for the 40 µm thick assembly, also indicates that the electron collection by the 

multilayer arrays up to 40 µm thick is reasonably efficient. Relative to the increases in JSC and 

IPCE upon addition of the second and the third layer wires, growing the fourth layer wires 

brought a less significant increase in these parameters because the increase in RF (~70) as a 

result of adding the fourth layer wires was smaller than those (~150) brought by the second and 

the third layers. 
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Figure 21. Photovoltaic performance of DSCs fabricated using TiO2-coated multilayer assembly of ZnO nanowire 

arrays. (a) J-V characteristics; (b) IPCE versus wavelength. 

   

In addition to their application as an anode material for DSCs, ZnO nanowire arrays have 

been used in ultrasensitive chemical and biological sensors, organic solar cells, light emitting 

diodes, nanogenerators, and nano-piezotronic devices.[82] It is hoped that the multilayer 

assemblies of ZnO nanowire arrays and the approach to synthesizing such assemblies may find 

use in the development of these devices.  Furthermore, ZnO nanowire arrays have been used as 

templates for fabricating TiO2, Fe2O3, SnO2 and CdSe nanotube arrays.[59, 83, 84] There is no 

apparent technical barrier to the use of these processes in fabricating multilayer TiO2, Fe2O3, and 

CdSe nanotube arrays by employing the multilayer ZnO nanowire arrays as template. Such 

vertically aligned structural materials with a high internal surface area may find applications for 

catalysis and as electrodes in batteries and fuel cells.[85, 86] 
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4.4 CONCLUSIONS 

In summary, we have developed a convenient approach to synthesizing multilayer 

assemblies of high surface-area nanowire arrays. The approach involves alternate cycles of 

nanowire growth and self-assembled monolayer coating processes.  As a demonstration, 

assemblies of one to four layers of ZnO nanowire arrays with a total thickness of up to 40 µm 

have been synthesized.  The internal surface area of the 4-layer assembly is more than five times 

larger than what one can possibly obtain with a single layer array.  Such multilayer assemblies 

have been used to fabricate DSCs which yield power conversion efficiencies of up to 7%.[66] 

The potential of such an approach to synthesizing multilayers of vertically aligned nanowire 

arrays has not been fully explored, and it is believed that by optimizing process parameters and 

by increasing the thickness of each layer, the internal surface area of such assemblies can be 

further increased and, therefore, DSCs with better performances may be fabricated. 
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5.0  SOLID-STATE DYE-SENSITIZED SOLAR CELLS BASED ON ZINC OXIDE 

NANOWIRE ARRAYS 

As discussed earlier in Section 1.1.3, the use of liquid electrolyte limits device stability 

and, hence, many attempts have been made to overcome these limitations by replacing the liquid 

electrolyte with a solid or a quasi-solid hole- transport material HTM.[13]  We also discussed, 

that, compared to anodes based on sintered nanoparticles, much thicker anodes based on aligned 

1-D nanostructures may be used in solid-state DSCs, and higher efficiencies may be obtained. In 

the next section we report the work done by us on solid-state DSC using ordered ZnO nanowire 

array as the photoanode. Figure 22 shows a schematic illustration of ZnO nanowire-based solid-

state DSC. 

 

Figure 22. Schematic illustration of ZnO nanowire based solid-state DSC 
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5.1 INTRODUCTION 

The role of an electrolyte in a DSC is to transfer the electrons to the photo-oxidized dye 

molecules and then to transport the positive charge to the counter electrode. Inorganic p-type 

semiconductors can be effectively used as solid hole-transport materials as a substitute for the 

liquid electrolyte for DSCs. Copper-based materials, CuI and CuSCN, have been extensively 

investigated.[87, 88] They exhibit high conductivity, exceeding 10
-2

 S/cm.[89] Although cells 

with CuI have been reported to show better performance, they are not very stable due to the 

stoichiometric excess of iodine molecules adsorbed at the CuI interface.[90] DSCs incorporating 

CuSCN as the HTM show improved stability.[13] CuSCN has a hexagonal lattice in which (001) 

planes of Cu
I
 atoms are separated by layers of SCN

-
 ions aligned parallel to the c-axis.[91] The 

stabilization of the oxidized state leads to easy donation of the electrons to the Ru
II
 of the photo-

oxidized dye N719. 

Among the 1-D nanostructures, vertically aligned ZnO nanowires have attracted 

considerable interest because of their unique material properties as well as the convenience and 

robustness of the synthesis processes for growing ZnO nanowires on a variety of substrates. 

Numerous novel applications in optics, optoelectronics, energy conversion, and photovoltaics 

have been demonstrated by using the aligned ZnO nanowire arrays.[92, 93] In particular, single 

crystalline ZnO nanowires enable fast electron transport and have been used for nanowire-based 

DSCs.[46] ZnO nanowires have also been used for fabrication of solid-state DSCs, but the 

nanowires used were very short (actually in the form of nanorods) and hence the reported 

efficiency of the solid-state DSCs was  ery low (≈0.1%).[94] This could be mainly due to the 

insufficient area for the dye adsorption offered by the short ZnO nanorods. Potentially, the 

performance of solid-state DSCs could be significantly improved by using long ZnO nanowires, 
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but such effort has not been reported, primarily due to the difficulty in the synthesis of long 

vertically aligned ZnO nanowires and integration of such nanowires into solid-state DSCs. 

In the present work, solid-state DSCs are fabricated with 11-12 µm long, vertically 

aligned ZnO nanowires as the photoelectrode, CuSCN as the solid HTM, and N719 as the light 

absorbing dye. Figure 23 shows the energy-band diagram of the synthesized DSC.[95, 96] The 

conduction band of ZnO and valence band of CuSCN are such that they enable electron flow 

across the ZnO/N719 dye/CuSCN interface as indicated by the arrows. Efficient filling of the 

nanowire arrays with CuSCN is demonstrated. The resulting solid-state DSC, based on ZnO 

nanowires completely embedded in CuSCN, yields a remarkably higher photocurrent density 

(JSC= 8 mA/cm
2
) compared to previously reported data for similar solid-state DSCs based on 

either 1-D nanostructures (JSC= 0.34 mA/cm
2
)[94] or nanoporous nanocrystalline ZnO (JSC= 4.5 

mA/cm
2
).[96]  A power conversion efficiency of 1.7% under an irradiation of AM 1.5G 

simulated sunlight is obtained, which is significantly higher than the previously reported 

efficiency (about 0.1%) [94] of solid-state DSCs based on ZnO nanorods. Furthermore, the 

efficiency obtained for our DSCs was comparable to the TiO2 nanoparticle-based solid-state 

DSCs. The efficiencies reported for solid-state DSCs using TiO2 nanoparticles as the photoanode 

and CuSCN as the HTM are in the order of 1.5-2%. [16, 17] 
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Figure 23. Energy-band diagram of the ZnO/N719 dye/ CuSCN interface 

5.2 EXPERIMENTAL METHODS 

5.2.1 Growth of ZnO nanowire arrays 

Ordered ZnO nanowires were grown on indium-doped tin oxide (ITO)-coated glass 

substrates by method described in Section 2.1. 

5.2.2 CuSCN deposition 

To prepare the solution for HTM deposition, 0.1 g CuSCN was dissolved in 5 ml 

propylsulphide and the solution was stirred overnight and then allowed to settle for 6 hr. The 

supernatant was separated from the undissolved CuSCN and aliquots of 2 ml were removed from 

this supernatant. These aliquots were further diluted with 250 µL of propylsulphide before use. 



 66 

The ITO glass substrate, with dye-coated ZnO nanowires, was then placed on a hot plate at 75°C. 

Small droplets, each drop size being 2 µL, were then dropped on the substrate. After each drop, 

the solution was spread evenly on the surface using air flow and the solvent was allowed to 

evaporate completely. This procedure was repeated 25-30 times resulting in ZnO nanowires 

embedded with CuSCN and a thin film of CuSCN on the top of the nanowires. 

5.2.3 Fabrication and Characterization of DSCs 

A major advantage of using solid HTMs is that it does not necessitate the use of Pt 

counter-electrode for catalyzing the electrolytic reaction. Thus, instead of using a Pt counter-

electrode one can use simply to metallic conducting electrode. In our work, we have deposited a 

100 nm thick layer of gold by e-beam evaporation after CuSCN deposition. This gold layer acts a 

back contact. 2 cm long Cu strips were attached to both the front and back contacts to enable 

electrical connections for cell characterizations. J-V curves were obtained by method described 

in Section 3.2.5. Incident photon-to-current efficiencies (IPCE) were measured with the same 

potentiostat. Monochromatic illumination was achieved through M 77250 monochromator 

(Oriel). Light harvesting efficiency was quantified by measuring the absorbance of the dye using 

USB2000 Spectrometer (Ocean Optics). 
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5.3 RESULTS AND DISCUSSIONS 

5.3.1 Morphological Characterization 

Ordered ZnO nanowires were grown on indium-doped tin oxide (ITO)-coated glass 

substrates by a liquid-phase deposition (LPD) process previously developed by our group.[45] 

With coupled use of ammonium hydroxide and polyethyleneimine, formation of ZnO in the bulk 

solution and hence depletion of reactants was successfully prevented, and wires of up to 12 µm 

in length were grown without replenishing the growth solution. Figure 24 shows representative 

cross-section and top-view SEM images of a ZnO nanowire array. The wires are 12 µm long, 

and 150-200 nm in diameter. It is worth noting that the surface of the nanowire array is clean and 

free of particles and the root of the wires remains separated from each other—both are important 

factors that affect the performance of the DSCs fabricated based on such arrays. 

 

 

Figure 24. SEM images of an ZnO nanowire array. The wires are 11-12 µm long, and 150-300 nm in diameter. (a) 

Cross-section image. Scale bar, 2 µm. (b) Top-view image. Scale bar, 1 µm. 
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After coating the ZnO nanowires with the dye, the array was filled with a solid-state 

electrolyte, CuSCN, by a solvent based technique. Various methods have been reported for 

deposition of CuSCN.  Electrochemical deposition[95] and solvent-based techniques have been 

the most commonly used.[88]
 
In our work, CuSCN was deposited from a solution of n-

propylsulphide. During the CuSCN deposition stage, it was important to avoid formation of 

voids which mi ht beha e as ‘dead-zones’ and lead to loss in efficiency. Figure 25 shows cross-

section and top-view SEM images of ZnO nanowires completely embedded in CuSCN with an 

about 1 µm thick CuSCN layer on top. This layer of solid electrolyte is essential to avoid short-

circuiting of the cell. However, too thick a layer of CuSCN on top would lead to increase in 

series resistance of the cell, because of the relatively low electrical conductivity of CuSCN, 

leading to poor device performance. Hence, it was critical to ensure that the CuSCN layer 

formed at the top was uniform, yet thin for optimum device performance.  

 

 

Figure 25. SEM images of ZnO nanowire array after CuSCN deposition. (a) Cross-section image. Scale bar, 2 µm. 

(b) Top-view image. Scale bar, 10 µm. 
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Figure 26a and Figure 26b represent the energy-dispersive X-ray (EDX) spectra taken at 

the top surface and the base of the nanowire array, respectively, after deposition of CuSCN.  As a 

comparison, Figure 26c shows the EDX spectrum taken before the deposition of CuSCN. 

Figure 26a shows strong peaks corresponding to Cu, S, and C on the top surface of the nanowire 

array without detectable peaks for Zn and O, which indicates that the surface is completely 

covered by CuSCN.  Figure 26b shows peaks from both CuSCN and ZnO at the very bottom of 

the array, which confirms the thorough filling of the nanowire array with the solid electrolyte. 

 

 

Figure 26. EDX analysis of the ZnO nanowire array before and after CuSCN deposition. (a) The top surface after 

CuSCN deposition. (b) Cross-section at the base of the array after CuSCN deposition. (c) Cross-section at the base 

of the array before CuSCN deposition. 
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5.3.2 J-V and Quantum Efficiency Measurements 

After evaporating a gold thin film on the top of the CuSCN layer as a back contact, the 

cells were tested under AM 1.5G simulated sunlight. A typical J-V curve for the fabricated solid-

state DSC is shown in Figure 27. The cell delivered a short-circuit current density (JSC) of 8 

mA/cm
2 

and an open-circuit voltage (VOC) of 0.57 V. Peak efficiency of 1.7% was obtained and 

the corresponding fill factor was 0.37.  
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Figure 27. J-V characteristic of the solid-state DSC under AM 1.5G simulated sunlight (upper line) and under dark 

conditions (lower line). 

 

The obtained JSC of 8 mA/cm
2
 is significantly higher than JSC (0.34 mA/cm

2
)[94] of 

previously reported nanowire-based solid-state DSCs. The improvement in photocurrent could 

be attributed mainly to the increased light absorption due to the increased dye loading enabled by 

using a nanowire array with a higher roughness factor. The vertical channels formed by the 
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ordered nanowire array significantly facilitated filling of the cell with the solid HTM and thus a 

much thicker sensitized film could be used in the cell, which allowed much higher loading of the 

dye. 

The significantly improved JSC leads to a much higher power conversion efficiency of 

1.7%. This efficiency is comparable to the best reported TiO2 nanoparticle-based solid-state 

DSCs using CuSCN as the HTM (1.5-2%).[16, 17] Although our cell yields significantly higher 

JSC, the open-circuit voltage (VOC) and the fill factor are lower than TiO2 nanoparticle-based 

solid-state DSCs. This is mainly due to the inherent material characteristics of ZnO, which is 

known to yield lower fill factors and VOC compared to TiO2 when used as the photoanode in 

conventional liquid electrolyte DSCs.[45, 46]   

The photo spectral response of the ZnO nanowire-based solid-state DSC was also studied 

to determine the charge collection efficiency of the anode. Figure 28 shows the incident-photon-

to-current conversion efficiency (IPCE) and the light harvesting efficiency (LHE) curves.  IPCE 

is the ratio of number of electrons collected in the external circuit to the number of photons 

incident on the surface. For DSCs, IPCE can be expressed using the following equation: 

IPCE(λ)= LHE(λ) x IQE,                                                         (1) 

where λ is the wavelength, and IQE is the internal quantum efficiency, an indicator of electron 

injection and charge collection efficiency. As seen in Figure 28, the IPCE curve is close to the 

LHE curve, indicating very high IQE. The value of IQE at peak absorption wavelength (530 nm) 

is about 0.9. The high IQE indicates efficient electron injection and collection at the anode of 

solid-state DSCs enabled by the aligned ZnO nanowires. 
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Figure 28. IPCE and light harvesting efficiency (LHE) curves for the solid-state DSC. 

 

Although the efficiency and the fill factor are too low to be considered for practical 

applications, the solid-state DSC fabricated in this work may be improved through several 

approaches. First, the high electron collection efficiency at the anode indicates that there is still 

much space for increasing the dye loading by further increasing the length of the nanowires 

while maintaining high electron collection efficiency. This could result in efficiencies greater 

than the TiO2 nanoparticle-based solid-state DSCs, whose thickness is limited by the difficulty in 

pore filling by HTM.[17] An ordered nanowire array structure provides vertical channels 

facilitating filling of the cell with solid HTM, making possible the use of thicker nanowire films. 

Longer nanowires could be obtained by allowing the nanowires to grow for longer duration, but 

this is typically accompanied by the lateral growth of nanowires, which leads to fusion of 

nanowires at the bottom and eliminates the surface area gained by increasing the wire length. 

Innovative approaches are currently being developed by our group to avoid fusion of nanowires 

while increasing their length, which may improve the efficiency of solid-state DSCs. Second, 

compared to TiO2, ZnO has significant disadvantageous material properties when used as an 
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anode material for DSCs, which result in low open circuit voltage and small fill factor, leading to 

low energy conversion efficiency.  Therefore, converting the ZnO nanowire to TiO2 nanotube by 

a method previously published by our group[59] may improve the performance of the solid-state 

DSCs. Such effort is currently underway. Third, effective filling of the nanowire arrays with 

CuSCN remains challenging, and will become more challenging when longer nanowires are used 

as the anode.  In this work, CuSCN is deposited by repeatedly dropping a solution of CuSCN in 

n-propylsulphide onto the film.  This method may form voids between the nanowires which 

mi ht beha e as ‘dead-zones’ and lead to loss in efficiency. Alternate deposition techniques, 

such as electrochemical deposition, may improve infiltration of the solid HTM into nanowire 

arrays and lead to improved cell performance.  Fourth, alternative HTM, such as spiro-OMeTAD 

[2,2’,7,7’-tetrakis-(N,N-di-p-methoxyphenylamine)9,9’-spirobifluorene],[18] could lead to 

higher fill factors, and alternative dyes with a higher molar extinction coefficient than N719 may 

result in higher photocurrent. These approaches, which can be used either individually or in 

combination, may improve the performance of the solid-state DSCs, making them viable for 

practical applications.  

5.4 CONCLUSIONS 

We have fabricated solid-state DSCs using a vertically aligned ZnO nanowire array as the 

anode and CuSCN as the solid HTM. The fabricated cell yielded high current densities and 

promising efficiencies when compared to similar solid-state DSCs. The primary reason for this 

result is the increased surface area for dye adsorption offered by the long, vertically oriented 

ZnO nanowire array.  The anode made of such an array allows for effective filling of the 
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sensitized film with the solid HTM and retains high electron collection efficiency at a film 

thickness as large as 12 µm. This encouraged us to explore the possibility of using a thicker 

photoanode for solid-state DSCs, with the hope of increasing light harvesting efficiency and 

consequently, the device efficiency. In the next chapter, we are going to talk about solid-state 

DSCs using the multilayer nanowire arrays as the photoanode and spiro-OMeTAD as the HTM. 
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6.0  HIGH-EFFICIENCY SOLID-STATE DYE-SENSITIZED SOLAR CELLS  

In the previous chapter we talked about how we have fabricated solid-state DSCs with a 

single layer nanowire array as the photoanode and achieved performance comparable to similar 

liquid-state DSCs. We demonstrated very high electron injection and collection efficiency using 

ZnO nanowire array as the photoanode opening up the possibility of using thicker photoanodes. 

Despite a lot of effort, synthesizing vertically ordered nanostructures with a sufficiently high 

internal surface area and incorporating them in solid-state DSCs has proven to be challenging till 

date.[79, 80] As a result solid-state DSCs based on such photoanodes have suffered from low 

dye loading and hence in low efficiencies.[97, 98]  

Herein, we talk about the fabrication of solid-state DSCs based on multilayer array of 

nanowire arrays. The procedure for growing these vertically ordered multilayer arrays has been 

described earlier in Chapter 4.0 [66] Along with providing a high surface area for dye loading, 

the multilayer arrays also provide vertical channels for electrolyte filling, opening up 

opportunities for fabricating high efficiency solid-state DSCs. We have been successfully able to 

fabricate solid-state DSCs using the multilayer nanowire arrays as photoanode and spiro-

OMeTAD as the solid hole transport material (HTM). By using an effective HTM filling process, 

we were able to use a 50 µm thick photoanode, resulting in solid-state DSCs with a power 

conversion efficiency of 5.65%. Instead of using CuSCN, we have used spiro-OMeTAD 

(2,20,7,70-tetrakis-(N,N-di-p-methoxyphenylamine)9,90-spirobifluorene) for these experiments. 
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Compared to the previously used, CuSCN, and other such inorganic p-type semiconductors, 

organic hole transport materials possess the advantage of having plentiful sources, easy film 

formation and potentially being low cost. Also, spiro-OMeTAD can be effectively doped by 

chemical or electrochemical oxidation to achieve the desired conductivity. The high solubility 

and respectable charge carrier mobility further make Spiro-OMeTAD an attractive option.[15, 

99] Solid-state DSCs with Spiro-OMeTAD have achieved efficiencies of over 5%.[100] Figure 

29 shows the chemical structure of Spiro-OMeTAD.[18]  

 

 

Figure 29. Molecular Structure of spiro-OMeTad 
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6.1 RESULTS AND DISCUSSIONS 

6.1.1 Morphology Characterization 

Figure 30 shows an SEM image of a four-layer ZnO nanowire array. This multi leyer 

nanowire assembly was synthesized in the same manner as discussed in Chapter 4.0 The entire 

array is about 50 µm thick, and the 4 individual layers are 11, 15, 14 and 10 µm thick, 

respectively, from bottom to top. The four-layer ZnO nanowire array possesses a roughness 

factor of about 510. To achieve better DSC photovoltaic performance, the ZnO nanowires were 

coated with a layer of TiO2 by the method described earlier in Section 3.2.3.  
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Figure 30. SEM image of a four layer assembly of ZnO nanowire arrays. Scale Bar, 10 µm. 
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Figure 31 shows a scanning transmission electron microscopy (STEM) elemental 

mapping image of a TiO2-coated ZnO nanowire and a line-scan energy dispersive X-Ray 

Spectrum across the width of the nanowire. The ZnO nanowire is uniformly coated with a 20-30 

nm thick layer of TiO2.  

 

 

Figure 31. TEM analysis of TiO2-coated ZnO nanowires. (a) STEM elemental mapping image. (b) Line-scan EDX 

profile obtained along the dotted line in (a). 

 

Although the four-layer nanowire array provides straight channels for electrolyte filling, 

the effective filling of solid HTM in such high aspect ratio nanostructures is still challenging. 

First, we tried a literature reported process for filling the nanostructure with the solid HTM.[101-

103] The method involves using a single application of 200 mg/ml of spiro-OMeTAD solution. 

This was followed by spinning off the excess solution and drying the solvent off. The excess 

solution on the top of the film acts a reservoir during the filling process. As the solvent 

evaporates, the concentration of spiro-OMeTAD in the reservoir increases and more spiro-
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OMeTAD diffuses into the film. Figure 32 shows a representative SEM image of the nanowire 

array filled with spiro-OMeTAD by this single-stage process. It was observed that spiro-

OMeTAD has infiltrated down to the bottom of the nanowire array, almost 50 µm below the top 

surface. However, a large number of voids were observed, especially in the bottom three layers, 

indicating that this HTM filling process is ineffective for high aspect ratio nanostructures. 
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Figure 32. SEM image of a four layer TiO2-coated ZnO nanowire array filled with spiro-OMeTAD by the single-

step process. Scale bar, 20 µm. 
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We believe the main reason for the inefficient filling is the increase in the viscosity of the 

HTM solution associated with the evaporation of the solvent. This increase in viscosity leads to a 

lower rate of diffusion rate, inhibiting effective infiltration. As a consequence, the solution on the 

top of the nanowires forms a solid overlayer during the subsequent drying before enough HTM 

diffuses into the nanowire film. The formation of this overlayer makes it extremely difficult for 

the HTM to effectively fill the entire nanowire film even with multiple applications of the HTM 

solution. The SEM image in Figure 32 is a representative result of such multiple applications, 

resulting in an approximately 7 µm thick overlayer.  

To overcome the limitations of this process and to ensure effective filling of HTM, we 

have developed a multi-step HTM filling procedure. Instead of applying an excess volume of the 

HTM solution in one step, we apply the solution in multiple steps. The concentration of the 

solution used is the same as before i.e. 200 mg/ml. In each step, we apply only a small volume, 

about one-half of the total space occupied by the nanowire array. By applying the solution in a 

volume smaller than the pore volume of the array in each step, the overlayer formation is 

avoided to a large extent. Figure 33 shows a representative SEM image of a four-layer TiO2-

coated ZnO nanowire array with spiro-OMeTAD by the multi-step process. It is evident that the 

filling of spiro-OMeTAD is significantly improved and the thickness of the overlayer is only 

about 1 µm. AS discussed earlier in Chapter 6.0 this overlayer is essential to avoid short-

circuiting while depositing the gold back contact. After filling the multi layer nanowires with 

spiro-OMeTAD, DSCs were fabricated and characterized in the same way as described in 

Section 5.2.3. 
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Figure 33. SEM image of a four layer TiO2-coated ZnO nanowire array filled with spiro-OMeTAD by the multistep 

process. Scale bar, 20 µm. 
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6.1.2 Photovoltaic Performance 

To illustrate the effectiveness of our multi-step process for filling HTM, we have 

fabricated two groups of solid-state DSCs. The first group of solid-state DSCs is filled with 

spiro-OMeTAD by the single step process and the second group of cells is filled with spiro-

OMeTAD by our multistep method. The short circuit current density (JSC), open-circuit voltage 

(VOC), fill factor (ff), and power conversion efficiency (η) of the two groups of cells are tabulated 

in Table 6 and Table 7. Figure 34 shows the J-V characteristics of two representative cells. The 

plot of incident photon-to-current conversion efficiency (IPCE) versus wavelength is shown in 

the inset. JSC of both groups of cells are about 12 mA/cm
2
 which is greater than the value 

reported for the nanoparticle based solid-state DSCs[104-106] and also significantly higher than 

the JSC for our solid-state DSC using a single layer of ZnO nanowire array.[107] The main 

reason for this is that the use of a thicker photoanode leads to significantly higher dye loading 

resulting in better light absorption and hence higher photocurrents.  
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Table 6. Photovoltaic performance date for solid-state DSCs using single-step HTM filling process 

Cell no. JSC (mA/cm
2
) VOC (V) ff η (%) 

1 11.9 0.714 0.488 4.15 

2 12.0 0.730 0.517 4.52 

3 11.9 0.673 0.498 3.99 

4 11.7 0.691 0.514 4.16 

5 11.3 0.695 0.521 4.09 

6 11.6 0.673 0.522 4.07 

7 12.1 0.718 0.511 4.42 

8 11.5 0.719 0.520 4.30 

Average 11.75 0.702 0.511 4.21 

 

Table 7. Photovoltaic performance data for solid-state DSCs using multi-step HTM filling process 

Cell no. JSC (mA/cm
2
) VOC (V) ff η (%) 

9 12.2 0.788 0.568 5.46 

10 12.2 0.792 0.589 5.68 

11 12.4 0.798 0.594 5.86 

12 12.3 0.790 0.591 5.74 

13 12.0 0.786 0.608 5.73 

14 12.5 0.786 0.571 5.61 

15 11.9 0.778 0.591 5.48 

Average 12.2 0.788 0.587 5.65 
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Figure 34. J-V Characteristics of two representative solid-state DSCs fabricated by filling the four-layer TiO2-

coated ZnO nanowire arrays single-step (curve 1) and multistep (curve 2) processes. Inset, IPCE versus wavelength 

plot. 

 

Comparison of the device characteristics for the two groups of solid-state DSCs reveals 

that the multi-step filling process results in significantly improved device performance. 

Compared to the single-step method, JSC, VOC, and ff have increased on average from 11.75 to 

12.2 mA/cm
2
, 0.702 to 0.788 V, and 0.511 to 0.587, respectively. These improvements lead to 

significant improvement in the overall power conversion efficiency from 4.21% to 5.65%. 

6.1.3 Electrochemical Impedance Spectroscopy 

To better understand the improved performance of solid-state DSCs fabricated using 

multi-step process, we have performed electrochemical impedance spectroscopy (EIS) on both 
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groups of solar cells. Figure 35 shows EIS spectra of two representative solid-state DSCs (under 

illumination of AM 1.5G simulated sunlight) for the two groups of solar cells. In the frequency 

range of 0.1-1 x 10
4
 s

-1
, the Nyquist plots for both solar cells are in the form of a large 

semicircle. The semicircle in this frequency range on the Nyquist plots is associated with the 

charge transfer across the photoanode/electrolyte interface and the size of the semicircle 

represents the recombination resistance between electrons in the photoanode and the holes in the 

HTM.[108-111] The semicircle representing the cell made by multistep filling process is larger 

than that of the single-step filling process as can be seen from the Nyquist plots. This represents 

and increased recombination resistance in the case of the DSC fabricated using the multi-step 

process. The increased recombination resistance leads to a longer electron lifetime, which is 

manifested by the left-shift of the characteristic frequency in the Bode phase plots. In addition, 

the reduced overlayer thickness on top of the array, as a result of multistep HTM filling process, 

should decrease the series resistance of the cell. Both the reduced series resistance and the longer 

electron lifetime contribute to the improvements in the device performance for the solid-state 

DSC. 
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Figure 35. EIS spectra under illumination of AM 1.5G simulated sunlight of two representative solid-state DSCs. 

(a) Nyquist plots. (b) Bode phase angle versus frequency plots. 

 

6.2 CONCLUSIONS 

The development of the multilayer nanowire arrays and the multistep filling process 

represent significant advancements in the development of solid-state DSCs. It opens further 

opportunities for improvement of solid-state DSCs by simultaneous use of a range of strategies, 

such as using dyes with a high extinction coefficient,[106] using alternate HTMs and 

dopants[105, 112-114] and by cosensitization or using energy relay dyes.[115-117] Another area 

of improvement could be further increasing the thickness of the photoanode which would result 

in better light harvesting efficiency. It should be noted that though the probability of electron-

hole recombination increases with the nanowire length, no significant increase was observed 

when the thickness of the nanowire arrays was increased from 10 to 50 µm.  
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7.0  VERTICALLY ORDERED TIN BASED NANOTUBE ARRAYS AS HIGH 

CAPACITY ANODE MATERIAL FOR LITHIUM-ION BATTERIES 

7.1 INTRODUCTION 

We had earlier discussed the unique advantages of vertically ordered nanostructures for 

Lithium-Ion Batteries (LIBs) in Section 1.2. We have fabricated and evaluated the performance 

of LIBs using our SnO2 nanotube arrays as an anode material. The nanotube arrays, grown on a 

Ti foil were directly used as an anode material in LIB and they delivered a reversible capacity of 

610 mAh/g at a cycling rate of 200 mA/g. A large irreversible capacity loss was observed after 

the first discharge cycle for our cell using SnO2 nanotube array as the anode. This irreversible 

capacity loss is a characteristic drawback for SnO2-based devices. The reason for this is the 

irreversible reduction of SnO2 to Sn resulting in the formation of irreversible Li2O accompanied 

by electrolyte decomposition during the first discharge cycle.  

This Li2O matrix has an advantage in that it provides a facile environment for subsequent 

alloying and dealloying reactions whilst prevent agglomeration of Sn particles. However, it may 

also lead to excessive blocking of the Sn sites, thereby limiting the rechargeable capacity for the 

battery. One alternative to overcoming this is to use composite Sn/SnO2 anodes which would 

help in limiting the Li2O formation and hence in reducing the irreversible capacity loss. With the 

intention of reducing the irreversible capacity loss, we have fabricated hybrid nanotube arrays 
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(containing a mixture of Sn, SnO and SnO2) by thermal reduction of the aforementioned 

nanotube arrays. The hybrid nanotube arrays exhibited a significantly lower irreversible capacity 

loss after the first discharge and also delivered higher capacities and improved cycling 

capabilities. The hybrid nanotube arrays delivered a capacity of 710 mAh/g after 80 cycles with a 

low capacity fade. 

7.2 EXPERIMENTAL METHODS 

7.2.1 Synthesis of arrays of ZnO nanowire, SnO2 nanotube, and hybrid nanotubes arrays 

ZnO nanowires and SnO2 nanotube arrays were prepared by the same method described 

by us earlier in Chapter 2.0 and Chapter 3.0  respectively. The main difference was the substrate 

used for this part of the work. Instead of a conducting glass substrate, a Ti substrate was used for 

growing the nanostructures for LIBs. For synthesizing hybrid nanotube arrays, the SnO2 

nanotube array was subjected to thermal reduction in a H2 atmosphere. Reduction was carried 

out by placing the SnO2 nanotube array in a furnace maintained under a 30 kPa H2 pressure at 

400°C for 1 hour.  

7.2.2 Fabrication and Characterization of Lithium-ion Batteries 

The electrochemical measurements were carried out by fabricating 2032 coin cell LIBs in 

a half cell configuration using Li foil as counter electrode and 1 M LiPF6 in 1:1 v/v mixture of 

ethylene carbonate (EC) and dimethyl carbonate (DMC) as the electrolyte. The nanotube arrays 
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grown on Ti substrate were directly used as anode. The typical active material loading was 1-2 

mg. A polypropylene film was used as the separator. The coin cells were assembled in a glove 

box with an inert atmosphere. The cells were galvanostatically cycled in a fixed voltage window 

of 0.02 - 1.20 V versus Li/Li
+
 at a constant current density of 200 mA/g. 

7.3 RESULTS AND DISCUSSIONS 

We have grown ordered SnO2 nanotube arrays by using ZnO nanowires as a sacrificial 

template using the method described earlier.[118] The process starts with growing vertically 

aligned ZnO nanowires directly on Ti substrate by a hydrothermal method. This is followed by 

conversion of ZnO nanowire arrays to SnO2 nanotubes via SnO2 deposition and simultaneous 

ZnO dissolution by placing the ZnO nanowire array in an aqueous solution of (NH4)2SnF6 and 

H3BO3. The detailed explanation for the method used for synthesizing these ordered SnO2 

nanotube arrays has been described in Section 3.2.2.  

7.3.1 Performance of SnO2 Nanotube Arrays as Anode Material 

The primary motive behind this part of the work was to analyze the performance of these 

ordered SnO2 nanotube array as an anode in LIB. The synthesized nanotube array fabricated on 

Ti is used directly as the anode without addition of any additives or binders. In order to 

understand the electrochemical processes taking place within the cell we studied the differential 

capacity versus voltage plots, shown in Figure 36a. These plots were obtained by performing 

galvanostatic cycling in a voltage window of 0.02 – 1.20 V. The cycling rate was fixed at 200 
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mA/g. The first discharge curve started from the open-circuit voltage of the cell which was 

around 2.70 V. The corresponding first discharge capacity was very high, that is 1650 mAh/g, 

which is higher than the theoretical value. The higher than expected capacity can be attributed to 

surface-electrolyte interphase (SEI) film formation due to electrolyte decomposition. Three 

distinct peaks were observed during the first discharge cycle. The peak located at 1.0 V 

corresponds to the irreversible reduction of SnO2 to Sn resulting in the formation of Li2O as 

denoted by equation 7.1. The subsequent peaks observed at 0.5 V and 0.25 V could be attributed 

to the alloying reaction of Li and Sn with different Li content. This alloying reaction is denoted 

by the forward reaction equation 7.2. 

OLiSneLiSnO 22 44           (7.1) 

SnLiSnxexLi x                                    (7.2) 

A broad peak observed at around 0.6 V during the first charge cycle could be attributed to 

the Li dealloying reaction denoted by the backward reaction in equation 7.2. The peak 

corresponding to equation 1 at 1.0 V disappeared after the first few cycles. These observations 

are consistent with other reports on SnO2-based devices.[29, 34, 42] Figure 36b shows the 

typical charge-discharge capacities and the corresponding columbic efficiency for the first 20 

cycles for the LIB fabricated with SnO2 nanotube arrays as the anode material. After a very high 

first discharge capacity, the observed capacity during the first charge was 694.2 mAh/g, resulting 

in a columbic efficiency of 42.1%. This large irreversible loss after the first discharge can be 

attributed to electrolyte decomposition and the irreversible reaction denoted by equation 7.1. The 

SnO2 nanotube array deli ered a capacity of ≈  00 m h/  after 20 cycles. 

 



 93 

 

Figure 36. Electrochemical performance of SnO2 nanotube array electrode. (a) Differential capacity versus voltage 

plots. (b) Cycling performance and coulombic efficiency at 200 mA/g cycling rate. 

7.3.2 Performance of Hybrid Nanotube Arrays as Anode Material 

With the intention of reducing the irreversible capacity loss and attain higher recyclable 

capacities, we have synthesized hybrid nanotubes consisting of a mixture of Sn, SnO and SnO2 

phases. Hybrid nanotube arrays were formed by thermal reduction. The SnO2 nanotubes were 

exposed to a H2 environment and heated at a temperature of 400°C for 1 h in a furnace. A stream 

containing 20% H2 was passed through the furnace at a flow rate of 500 sccm to maintain the 

reducing environment. The result of the thermal reduction was the formation of hybrid nanotubes 

consisting of Sn, SnO and SnO2 domains. The nanotube morphology was retained following this 

partial thermochemical reduction as can be seen in the SEM image in Figure 37a. The hybrid 

nanotubes formed after the thermal reduction were slightly thinner than the SnO2 nanotubes. 

Peaks corresponding to Sn, SnO and SnO2 were observed in the XRD pattern shown in Figure 

37b, confirming the hybrid nature of our nanotubes. The SnO2 peaks were sharper as compared 

to the XRD pattern for pure SnO2 nanotubes indicating that the reduction process was 

accompanied by simultaneous particle growth for SnO2. The nanotube morphology could also be 
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clearly seen in the TEM image in the inset of Figure 37c. Figure 37c and Figure 37d show the 

HRTEM image of the hybrid nanotube taken at the edge of the wall and the center of the wall, 

respectively. The walls of the tube are polycrystalline in nature and consist of a mixture of Sn, 

SnO and SnO2 crystals. The lattice spacing measurements shown in the HRTEM image can be 

ascribed to (110) plane of SnO2, (200) plane of Sn and (110) plane of SnO, respectively. For the 

thermal reduction, a range of temperatures from 200°C to 700°C were investigated. At lower 

temperatures, negligible or no reduction of SnO2 was observed whereas at higher temperatures, 

SnO2 reduced completely to Sn, resulting in subsequent melting and agglomeration of Sn. Under 

our conditions, we were able to obtain a hybrid mixture, thereby successfully reducing the oxide 

content, while at the same time the nanotube morphology was retained.  
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Figure 37. Hybrid nanotube arrays. (a) Top-view SEM image of hybrid nanotube arrays after thermal reduction. 

Scale bar, 2 µm.  (b) XRD pattern for hybrid nanotube array. (c) HRTEM image at the edge of the wall of hybrid 

nanotube showing Sn crystal. Scale bar, 10nm.  (d) HRTEM image at the wall of the nanotube showing 

polycrystalline nature of the hybrid nanotube. Scale bar, 5nm. 
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Figure 38b shows the charge-discharge curves and the coulombic efficiencies for LIBs 

fabricated with the hybrid nanotube array as the anode. The cycling rate was again fixed at 200 

mA/g. As compared to the SnO2 nanotube array, a lower first discharge capacity is observed, 

1210 mAh/g versus 1650 mAh/g. The first charge capacity was 778 mAh/g and the 

corresponding coulombic efficiency calculated is 64.25% for the first cycle. This increase in 

capacity retention is a significant improvement over bare-SnO2 nanotube arrays and is also 

higher than previous reports for Sn-based systems.[42, 119] The hybrid nanotubes also exhibited 

better stability and higher charge retention delivering a capacity of 710 mAh/g after 80 cycles. 

 

 

Figure 38. Electrochemical performance of hybrid nanotube array electrode. (a) Differential capacity versus voltage 

plots. (b) Cycling performance and coulombic efficiency at 200 mA/g cycling rate. 

 

To better understand the improved performance of our hybrid nanotube arrays, we 

studied the differential capacity versus voltage plots shown in Figure 38a. As seen in the 

differential capacity plots for pure SnO2 nanotubes, in Figure 36a, a peak was observed at 

around 0.95 V during the first discharge which disappeared for the subsequent cycles. This peak 

corresponds to the irreversible formation of Li2O. However, we believe a lower SnO2 content, in 
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the case of the hybrid nanotubes, led to lower Li2O formation in the first cycle which can be 

interpreted from the resultant lower first discharge capacity. Thus, we can conclude that Li2O 

formation was suppressed using our hybrid nanotube arrays. Furthermore, the peak 

corresponding to the alloying reaction of Li and Sn shifted to a slightly lower potential as 

compared to the pure SnO2 nanotube array anode (0.23 V versus 0.25 V) indicating higher 

lithium alloying content for the hybrid nanotubes, resulting in higher capacities for subsequent 

cycles.  

Differences were also observed in the differential capacity plots for the pure and hybrid 

nanotubes during the charge cycle. A single anodic peak is observed at around 0.6 V during the 

first charge cycle for the pure SnO2 nanotubes. On the other hand, the differential capacity plot 

for the hybrid nanotubes during the first charge cycle shows two distinct peaks at 0.5 V and 0.6 

V indicating a stage-wise delithiation mechanism. This goes to show the lithium extraction is 

taking place in a stage-wise manner for hybrid nanotubes as compared to a single stage 

delithiation in case of SnO2 nanotubes. This stage-wise delithiation mechanism should result in 

more complete removal of lithium resulting in higher capacity. The improved performance due 

to stage-wise delithiation mechanism because of the presence of nanoscale Sn particles has been 

reported before.[120]  

It is believed that an SnO phase is formed due to the ability of metal nanoparticles (Sn) to 

reduce the Li2O to form metal oxide (SnO) via equation 4.[28, 34] The lithiation mechanism of 

the hybrid nanotubes can be expressed as: 

OLiSnOeLiSnO 22 22                      (7.3) 

OLiSneLiSnO 222                      (7.4) 

SnLiSnxexLi x                      (7.5) 
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The presence of SnO, after repeated cycling, was confirmed from the ex-situ XRD 

performed on the hybrid nanotube anode after 20 cycles of charge and discharge shown in 

Figure 39. This reversible formation of SnO should lead to higher capacities for subsequent 

cycles by preventing agglomeration of Sn nanoparticles. Furthermore, the Sn and SnO phases 

also have a higher theoretical capacity as well as faster kinetics for LixSn formation as compared 

to SnO2.[40] In comparison, for SnO2 anodes, majority of the nanoparticles comprising the pure 

SnO2 nanotubes get completely reduced to Sn while some SnO2 remains unreacted after the first 

discharge cycle. The reduction of SnO2 also leads to large amount of Li2O formation which may 

block some Sn alloying sites resulting in capacity fade. Hence, the improved capacity retention 

observed in case of hybrid nanotubes can be attributed to the presence of an Sn and an SnO 

phase, as well as significant reduction in Li2O formation. 

  

 

Figure 39. XRD pattern for the hybrid nanotube array after 20 cycles of charge and discharge. 

 

The hybrid nanotube arrays also exhibit a high capacity and better cycling stability when 

compared to other such hybrid particle-based Sn electrodes.[29] The performance was also 
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comparable to that reported by Meduri et al using hybrid nanowire structures.[34] On the other 

hand, the performance of our LIBs based on pure SnO2 nanotube arrays is significantly better 

than their pure phase SnO2 nanowires. The improved performance of our nanotube arrays could 

be attributed to the unique advantages offered by their hierarchical structure. The vertically 

ordered nanotube structure, grown directly on the current collecting substrate, ensures good 

electrical contact as well as high electrolyte contact area. The nanotube morphology also 

provides sufficient space for withstanding the strains caused by expansion due to lithium 

insertion and extraction. Hence, the nanotube structures can deliver a high capacity and good 

cycleability. Another major advantage, of using these ordered nanotube arrays, is that they can 

be grown directly on the current collector by our method and hence do not require the use of any 

binders or conducting additives. This should help increase the loading of the active material for 

LIBs resulting in higher capacities. 

7.4 CONCLUSIONS 

We have developed a process to fabricate ordered SnO2 nanotube arrays directly on 

current collecting substrate by using a sacrificial temperature approach. The entire synthesis was 

carried out in aqueous solution at low temperatures making the process attractive for scale-up. 

These SnO2 nanotube arrays delivered a rechargeable capacity of 600 mAh/g after 20 cycles 

when used anode in LIBs. In addition we have also developed a strategy to fabricate hybrid 

nanotube arrays with higher Sn content with the intention of reducing the irreversible capacity 

loss in the first cycle as well as achieve better capacity retention. These hybrid nanotubes exhibit 

a reversible storage capacity of 710 mAh/g after 80 cycles. The nanotube arrays should be able 
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to better withstand the strains generated by lithium insertion/extraction, resulting in better 

cycling stability. The better performance of the hybrid mixture can be attributed to a lower SnO2 

content, which leads to lower irreversible formation of Li2O, as well as the presence of Sn and 

SnO phases.  
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8.0  SUMMARY AND FUTURE OUTLOOK 

Vertically ordered (1-D) nanostructures provide a promising alternative to conventional 

nanoparticle films used as electrode materials for energy conversion and storage devices. These 

1-D nanostructures, in forms of nanowires or nanotubes, help maximize the electrode surface 

area while maintaining good electrical connections to the current collector. We have successfully 

fabricated and integrated such vertically ordered nanostructures in dye-sensitized solar cells 

(DSCs) and lithium-ion batteries (LIBs) and demonstrated improvement in device performance. 

Our work consists of three distinct parts: In the first part, i.e. Chapter 3.0 and Chapter 4.0 we 

have spoken about the advantages and applications of vertically ordered nanostructures for 

DSCs. In Chapter 5.0 and Chapter 6.0 we have explored the potential advantages of the 

synthesized nanostructures for solid-state DSCs which hold promise for higher stability than 

their liquid-state counterparts. Finally, in Chapter 7.0 we have studied the application of 

vertically ordered Sn-based nanotube arrays as a potential anode material in LIBs. 

8.1.1 Vertically Ordered Nanostructures for DSCs 

In Chapter 3.0 we have described the method developed in our lab for fabricating 

vertically ordered SnO2 nanotube arrays by a low temperature hydrothermal method. The method 

involved using ZnO nanowire array as a sacrificial template and all the steps are easily scalable. 
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We integrated these nanotube arrays in DSCs and studied the electron recombination kinetics. 

We observed that the electron recombination lifetimes are much higher for SnO2 nanotube based 

devices than other photoanodes. These results open up the possibility of further improvement by 

using redox mediators with faster kinetics, which would otherwise be hampered by fast 

recombination of electrons.  

In Chapter 4.0 we have described a convenient approach to synthesize multilayer 

assembly of high surface area of nanowire arrays. The main motivation behind this work was to 

improve the surface area of the vertically ordered nanostructures which is one of the main factors 

limiting their efficiencies. The internal surface area of our multilayer nanowire assembly is more 

than five times greater than the single layer array and we were able to achieve power conversion 

efficiencies of up to 7%.  

In the ongoing work in our lab, we are currently trying to convert our multilayer 

nanowire arrays into SnO2 nanotubes. This should enable us to take the dual advantage of the 

high roughness factors offered by the multilayer assembly as well as the excellent electronic 

properties of SnO2 nanotubes. Another exciting idea is to fabricate hybrid devices in which 

nanoparticles are coated along the walls and between the nanotubes. The nanoparticle network 

would help boost the surface area for dye adsorption and the underlying nanotube framework 

would ensure efficient electron transport and collection. Our hypothesis is that when these 

nanoparticle networks are coated on the nanotubes, they will absorb the electron from the dye 

and pass it onto the nanotube framework. The electrons could then be collected at the current 

collecting substrate without them having to pass through a tortuous network, resulting in 

improved device performance.  
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8.1.2 Vertically Ordered Nanostructures for Solid-State DSCs 

A major factor inhibiting the commercialization of DSCs is the volatile nature of the 

liquid electrolyte used for hole transport. Replacing these liquid electrolytes with solid HTMs 

represents an ideal solution to overcome the problem of device stability. In Chapter 5.0 and 

Chapter 6.0 we have successfully being able to incorporate 1-D nanostructures in the device 

architecture for solid-state DSCs and demonstrated unique advantages over the traditional 

nanoparticle framework. Using our multilayer nanowire assembly, we were able to achieve a 

power conversion efficiency of 5.65% which is comparable to the nanoparticle based solid-state 

DSCs. The photoanode made of such a vertically ordered array allows for effective filling of the 

photoanode with the solid HTM while retaining high electron collection efficiency. Due to these 

advantages, vertically ordered nanostructures represent great alternatives for further 

improvement of solid-state DSCs. Use of alternate dyes and HTMs should lead to improved 

device performance and higher efficiencies.  

8.1.3 Vertically Ordered Nanostructures for LIBs 

In Chapter 7.0 we have described the fabrication of hybrid Sn-based nanotube arrays and 

their application as anode material in LIBs. The hybrid nanotubes exhibited reduced first cycle 

irreversible loss as well as excellent capacity retention. The primary reason for the reduced 

irreversible loss in the hybrid nanotubes was higher Sn content and subsequent reduction in Li2O 

formation. The good cycling stability could be attributed to the ability of the nanotube structure 

to better withstand the strains generated by lithium insertion and extraction. The use of such 

vertically oriented hybrid nanotubes could be extended to other anode materials with a higher 
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theoretical capacity, such as Si and Ge, opening up possibilities for fabricating LIBs with better 

stability and higher capacity retention. 
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APPENDIX A 

INCIDENT PHOTON TO CURRENT CONVERSION EFFICIENCY (IPCE) 

Incident photon to current conversion efficiency (IPCE) is a measure of the ratio of 

photons that generate electrons in the external circuit to incident photons of monochromatic 

light. For our work, IPCE was calculated by chronoamperometric scan using a monochromatic 

light source. Wavelength of incident light was changed using a monochromator and the 

corresponding short-circuit current (JSC) was determined. IPCE can then be calculated using the 

following formula:  

 

where JSC is the short-circuit current in mA/cm
2
, P is the power of the incident light in W/cm

2
 

and λ is the wavelength of the incident monochromatic light in nm. 
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