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ABSTRACT 

 

We previously reported an association between human herpesvirus 8 (HHV-8) 

seroprevalence and increased prostate cancer risk among men on the Caribbean island of 

Tobago.  More recently, we have found a single nucleotide polymorphism (SNP) in the IL-6 

gp130 signaling receptor at position 148 associated with increased prostate cancer risk among 

HHV-8 seropositive men.  The high risk genotype (Gly) was associated with increased prostate 

cancer risk among HHV-8 seropositive men (OR= 3.1) compared to the low risk genotype (Arg).  

This research aims to further explore the effect of this SNP on gp130 function. 

The gp130 genotype at position 148 was determined in lymphoblastoid B cell lines 

(LCLs) derived from Tobago men (representing high and low risk genotypes) and two prostate 

cancer cell lines (PC3 and DU 145; high risk and low risk respectively). Growth curves were 

performed by Dr. Jill Henning for LCLs by using 25ng/mL of Interleukin-6 (IL-6), Interleukin-

11 (IL-11), or Oncostatin M (OSM). It was discovered that IL-6 had an effect on the growth of 

LCLs, but IL-11 and OSM did not. I repeated growth curves on LCLs using a concentration of 

10ng/mL, and found that there was still a difference in growth at this lower concentration.  

Levels of phosphorylated STAT3 were measured on cells treated with 10 or 100ng/mL IL-6, IL-

11, or OSM for various times (2-60 minutes). Comparative IL-6-mediated downstream signaling 

between the two genotypes was analyzed in LCLs at 10 minutes post-treatment using the 

CHARACTERIZATION OF A GP130 SIGNALING RECEPTOR POLYMORPHISM 

Katherine Kercher, M.S.  

University of Pittsburgh, 2013

 



 v 

JAK/STAT Pathway PCR Array Plates (SABiosciences, Valencia, CA), and the Human IL-6 

Pathway PCR Array Plates (Life Technologies, Grand Island, NY).  

LCLs homozygous for the high-risk gp130 genotype grew significantly faster compared 

to LCLs homozygous for the low-risk genotype in response to IL-6 but not IL-11 or OSM. LCLs 

homozygous for both high-risk gp130 genotype as well as LCLs homozygous for the low-risk 

genotype both showed activation of STAT3 in response to IL-6 by 10 minutes post-treatment.  

DU 145 (low-risk genotype) cells showed STAT3 activation following IL-6 treatment while PC3 

(high-risk genotype) failed to show any STAT3 activation even after 1hr of IL-6 treatment. Both 

cell lines showed STAT3 activation after OSM treatment while neither line showed activation 

following IL-11 treatment.  RT-PCR analyses of JAK/STAT pathway genes and IL-6 pathway 

genes in LCLs following IL-6 treatment showed differential gene regulation between genotypes.  

For example, using the IL-6 pathway plates, the high-risk genotype showed a down-regulation of 

TP53BP2 (apoptosis stimulating protein of p53-2), while the low-risk genotype showed an up-

regulation of this gene. This protein is known to inhibit cell growth and stimulate apoptosis, and 

is frequently suppressed in human cancers. This differential gene regulation of TP53BP2 is one 

example of a gene that is differentially regulated between the high- and low-risk genotypes. 

These data suggest that the G148R SNP of gp130 is involved in cell proliferation mediated by 

IL-6 downstream signaling. 

The public health relevance observed by these results suggests that the resulting 

genotypes in the G148R polymorphism exhibit different biological affects upon treatment with 

cytokines that utilize the gp130 signaling receptor. The high-risk genotype could result in an 

increase in inflammation, which could ultimately contribute to the development or advancement 

of prostate cancer.  



vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ..................................................................................................... XII 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 CYTOKINES AND SIGNALING ...................................................................... 2 

1.1.1 TYPE I CYTOKINES ..................................................................................... 2 

1.1.2 IL-6 FAMILY OF CYTOKINES ................................................................... 3 

1.1.3 JAK/STAT PATHWAY .................................................................................. 3 

1.1.4 GENES ACTIVATED BY THE JAK/STAT PATHWAY .......................... 4 

1.1.5 INTERLEUKIN-6 ........................................................................................... 6 

1.1.6 INTERLEUKIN-11 ......................................................................................... 7 

1.1.7 ONCOSTATIN M............................................................................................ 8 

1.1.8 GLYCOPROTEIN 130 ................................................................................... 9 

1.2 PROSTATE CANCER ...................................................................................... 10 

1.2.1 EPIDEMIOGY OF PROSTATE CANCER ............................................... 10 

1.2.2 CYTOKINES AND PROSTATE CANCER ............................................... 11 

1.2.3 INFLAMMATION AND PROSTATE CANCER...................................... 13 

1.3 HUMAN HERPESVIRUS 8 ............................................................................. 14 

1.3.1 VIRAL IL-6 .................................................................................................... 15 



vii 

1.3.2 HHV-8 SEROPREVALENCE AMONG MEN FROM TOBAGO WITH 

PROSTATE CANCER .............................................................................................. 16 

1.4 R148G POLYMORPHISM IN GP130 ............................................................ 17 

1.4.1 R148G AND INCREASED RISK FOR MYOCARDIAL INFARCTION

………………………………………………………………………………..20 

1.4.2 R148G AND INCREASED RISK FOR HYPERANDROGENISM ......... 21 

1.5 HYPOTHESIS ................................................................................................... 22 

2.0 MATERIALS AND METHODS .............................................................................. 23 

2.1 CELL CULTURE .............................................................................................. 23 

2.2 GENERATION OF LCLS ................................................................................ 23 

2.3 GP130 GENOTYPING ..................................................................................... 24 

2.4 GROWTH CURVES ......................................................................................... 25 

2.4.1 GROWTH CURVES BY TRYPAN BLUE EXCLUSION ........................ 25 

2.4.2 GROWTH CURVES USING XCELLIGENCE ......................................... 26 

2.5 WESTERN BLOTTING ................................................................................... 29 

2.6 IMAGEJ SOFTWARE ANALYSIS ................................................................ 30 

2.7 GENE EXPRESSION ANALYSIS .................................................................. 31 

2.7.1 RNA ISOLATION AND CDNA SYNTHESIS ........................................... 31 

2.7.2 JAK/STAT PATHWAY PCR ARRAY ....................................................... 31 

2.7.3 HUMAN IL-6 PATHWAY PCR ARRAY................................................... 33 

2.7.4 EXPRESSION SUITE ANALYSIS ............................................................. 34 

2.8 FLOW CYTOMETRY ...................................................................................... 35 

3.0 RESULTS ................................................................................................................... 38 



viii 

3.1 SPECIFIC AIM I ............................................................................................... 38 

3.1.1 LCLS GROWTH CURVES ......................................................................... 38 

3.1.2 IL-6RΑα AND GP130 DISTRIBUTION ON LCLS .................................. 41 

3.1.3 STAT3 ACTIVATION .................................................................................. 43 

3.1.4 GENE EXPRESSION ANALYSIS .............................................................. 47 

3.2 SPECIFIC AIM II ............................................................................................. 55 

3.2.1 IL-6 PRODUCTION BY PC3 AND DU 145 ............................................... 55 

3.2.2 GROWTH CURVES ..................................................................................... 56 

3.2.3 STAT3 ACTIVATION .................................................................................. 60 

3.2.4 IL-6Rα AND GP130 DISTRIBUTION ON PC3 AND DU 145 ................. 68 

4.0 DISCUSSION ............................................................................................................. 70 

4.1 AIM I ................................................................................................................... 70 

4.1.1 LCL GROWTH CURVE ANALYSIS ......................................................... 70 

4.1.2 LCL STAT3 ANALYSIS .............................................................................. 71 

4.1.3 LCL GENE EXPRESSION ANALYSIS ..................................................... 72 

4.1.4 AIM I CONCLUDING REMARKS ............................................................ 77 

4.2 AIM II ................................................................................................................. 78 

4.2.1 PROSTATE CANCER LINES GROWTH CURVE ANALYSIS ............ 78 

4.2.2 PROSTATE CANCER LINES STAT3 ANALYSIS .................................. 79 

4.2.3 AIM II CONCLUDING REMARKS ........................................................... 80 

5.0 CONCLUSIONS AND FUTURE DIRECTIONS ................................................... 82 

6.0 STRENGTHS AND LIMITATION.......................................................................... 84 

7.0 PUBLIC HEALTH SIGNIFICANCE ...................................................................... 85 



 ix 

APPENDIX A: LIST OF GENES IN JAK/STAT PLATE ARRAY ...................................... 86 

APPENDIX B: LIST OF GENES IN IL-6 PLATE ARRAY .................................................. 89 

BIBLIOGRAPHY………………………………………………………………………………91 



 LIST OF TABLES 

Table 1: HHV-8 gp130 Association with Prostate Cancer Risk…………………………………18 

Table 2: PCR Cycling Conditions for gp130 Genotyping....…………………………………….25 

Table 3: PCR Reaction Volumes for Gene Expression Analysis using JAK/STAT Plates.....…..32 

Table 4: PCR Cycling Conditions for Gene Expression Analysis using JAK/STAT Plates ...….32 

Table 5: PCR Reaction Volumes for Gene Expression Analysis using IL-6 Plates……………..33 

Table 6: PCR Cycling Conditions for Gene Expression Analysis using IL-6 Plates……………33 

Table 7: Sample ∆∆Ct to Fold Change Calulation………………………………………………35 

Table 8: Cell Lines used in this Research and their gp130 Status……………………………….37 

 

 x 



LIST OF FIGURES 

Figure 1: Location of gp130 148Gly/Arg………………………………………………………..19 

Figure 2: Baseline Growth Curves of DU 145 and PC3…………………………………………28 

Figure 3: LCLs Growth Curves in Response to 25ng/mL of IL-6……………………………....39 

Figure 4: LCLs Growth Curves in Response to 10ng/mL of IL-6……………………………….40 

Figure 5: LCLs Receptor Distribution on the Membrane………………………………………..42 

Figure 6: LCLs STAT3 Activation upon Treatment with 10ng/mL of IL-6………………...…..44 

Figure 7: LCLs STAT3 Activation upon Treatment with 100ng/mL of Cytokines………….….45 

Figure 8: Basal STAT3 Levels in LCLs………………………………………………………....47 

Figure 9: LCLs Gene Expression Analysis using JAK/STAT Plates……………………………50 

Figure 10: LCLs Gene Expression Analysis using Human IL-6 Plates………………………...54 

Figure 11: PC3 and DU 145 ELISA for IL-6 Production………………………………………..56 

Figure 12: PC3 and DU 145 Growth Curves Using Trypan Blue Exclusion Count……………..57 

Figure 13: PC3 and DU 145 Growth Curves Using Xcelligence Machine……………………...60 

Figure 14: PC3 and DU 145 STAT3 Activation upon Treatment with 10ng/mL Cytokines…....62 

Figure 15: PC3 and DU 145 STAT3 Activation upon Treatment with 100ng/mL Cytokines…..64 

Figure 16: Basal STAT3 Levels in PC3 and DU 145…………………………………………....65 

Figure 17: PC3 and DU 145 STAT3 Activation upon Treatment with 10ng/mL OSM…………67 

Figure 18: PC3 and DU 145 Receptor Distribution on the Membrane…………………………..69 

 xi 



 xii 

  ACKNOWLEDGEMENTS 

 

First, I would like to thank my committee members, Drs. Reinhart, Bunker, and Ferrell, 

for their direction and scientific suggestions for my project.  

Next, I would like to thank my current and former lab mates. I am truly blessed to get to 

get to spend 8 hours a day with you all. The laughter and lunchtime antics have kept me sane 

over the last two years. I could not have asked for a better laboratory experience. Also, thanks for 

reaching things on the top shelves.  

I would like to thank my advisor, Dr. Frank Jenkins for his patience and guidance both in 

and out of the laboratory.  In the past two years I have not only gained more knowledge in the 

science field, but I have developed my own way of thinking, which isn’t something that I would 

have learned in a classroom.  “It’s an education you can’t get anywhere else.” 

Finally, I would like to thank my friends and family who have supported me in more 

ways than imaginable over the last few years. I am who I am and where I am today because of 

you all, and I will forever be grateful.  

 

 



 1 

1.0  INTRODUCTION 

The idea that inflammation and cancer are associated is more than a century old. In 1863, 

Virchow hypothesized that the origin of cancer occurred at sites of inflammation
1
. Today, 

although the relationship between inflammation and cancer is more widely accepted and 

understood, the molecular and cellular mechanisms that mediate this relationship are still 

unclear. What we do know is that excessive, uncontrolled inflammation (chronic inflammation), 

increases your risk for developing cancer
2
. In response to infection or injury, the body’s immune 

cells release cytokines and chemokines that attract more immune cells in an attempt to repair 

damage or eliminate pathogens. However, a failure to strictly control this immune response 

could result in a chronic inflammatory environment that damages DNA, and ultimately might 

favor the initiation of cancer
3
.  

Since chronic inflammation is associated with increased risk for cancer, and cytokines 

help to regulate the response to a stressor, several studies have looked for potential 

polymorphisms in cytokine genes or their cellular receptors for associations with cancer risk. 

Hussain et al. reported that polymorphisms in some cytokine genes are associated with an 

increased risk for prostate cancer
3
. For example, polymorphisms in interleukin-1 are associated 

with an increased risk for gastric cancer
4
, while polymorphisms in IL-6 have been associated 

with colon and rectal cancers
5
. In addition, persistent or chronic viral infections can often set up 

a chronic inflammatory environment, and many viruses have been associated with an increased 
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risk for cancer. For example, hepatitis B virus and hepatitis C virus are both associated with an 

increased risk for liver cancer
1
. In addition, human papillomavirus has been shown to be the 

causative agent of cervical cancer
6
, and is also associated with head and neck cancers

7
. The 

following research focuses on a specific polymorphism in the IL-6 cytokine signaling receptor, 

gp130 and how genotypes of this receptor, in conjunction with a herpes viral infection, could 

lead to an increased risk of prostate cancer.  

1.1 CYTOKINES AND SIGNALING 

1.1.1 TYPE I CYTOKINES 

Cytokines are proteins that are secreted by cells and exert autocrine or paracrine 

functions by binding to receptors on cell surfaces and as a result transduce signals
8
. Cytokines 

have a broad range of actions on the target cell, including effects on cellular growth, 

differentiation, cell cycle control, apoptosis, cytolytic activity, and chemotaxis
8
. Although there 

is a diverse repertoire of cytokines, they can be divided into type I and type II cytokines. Type I 

cytokines (such as IL-6, TGF-β, and IFN-γ) have four α helices, denoted A, B, C, and D, and aid 

in enhancing cellular immune responses
8
. Type II cytokines (such as IL-4, IL-10, and IL-13) 

favor antibody responses
8
.  Type I cytokines are further categorized by their cellular receptor

9
.  

Of particular interest to our research are the type I cytokines that share the glycoprotein 130 

(gp130) signaling receptor.  
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1.1.2 IL-6 FAMILY OF CYTOKINES 

Cytokines that share the gp130 signaling receptor are often referred to as being in the IL-

6 family of cytokines.  The interleukin-6 (IL-6) family of cytokines includes 8 cytokines:  IL-6, 

IL-11, OSM (oncostatin M), LIF (leukemia inhibitory factor), CNTF (ciliary neurotrophic 

factor), CT-1 (cardiotrophin-1), IL-27 and CLC (cardiotrophin-like cytokine)
9,10

.  These 

cytokines are pleiotropic and exhibit overlapping biological functions
11

. The cytokine receptors 

involved in binding and signaling can be divided into the non-signaling primary receptors (such 

as IL-6RΑα, IL-11RΑ, and OSMR) and the signal transducing receptor gp130. The gp130 

receptor is expressed by most, if not all, cells in the body
12

 whereas the binding receptor 

expression is limited to cells that are known to respond to the respective cytokine.  The IL-6 

family of cytokines needs both their respective primary receptor and gp130 to induce 

intracellular signaling
10

. Binding of the cytokines to their primary receptors induces binding to 

and dimerization of gp130, and begins a cascade of events that lead to the induction of cytokine-

responsive target genes
11

.  One of the initial events following the association of cytokine, 

primary receptor, and gp130 is the activation of the JAK/STAT pathway.  

1.1.3 JAK/STAT PATHWAY 

The first step in the activation of the JAK/STAT pathway involves the activation of Janus 

tyrosine kinases (JAKs) in the cytoplasm, which occurs upon homodimerization of gp130 or 

herterodimerization of gp130 with LIFR or OSMR. The JAK family includes JAK1, JAK2, and 

TYK2
11

, with JAK1 being essential for IL-6 signal transduction
10

.  The activated JAKs 

phosphorylate tyrosine residues on the cytoplasmic end of gp130. These phosphorylated tyrosine 
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residues serve as docking sites for the Src homology 2 (SH2) domains of STAT proteins
13

. 

STAT denotes “signal transducer and activator of transcription”
9
, and these proteins serve as 

substrates for tyrosine-phosphorylation by JAKs.  Once phosphorylated, they are considered 

“activated”, dissociate from the receptor, homo-or heterodimerize, and translocate to the nucleus 

to induce expression of target genes
14

. After termination of the signal, STATs translocate back to 

the cytoplasm
15

. There are seven major STATs that have been identified: STAT1, STAT2, 

STAT3, STAT4, STAT5A, STAT5B, and STAT6. This family of proteins is named for two 

reasons: they transduce signals through the cytoplasm, and also function as transcription factors 

once in the nucleus
16

.  Of these, STAT3 is the most strongly activated by cytokines that utilize 

gp130 as their signal transducer.  STAT1 is also activated, but to a much lesser extent
11

. 

STAT3 is structurally similar to the other STAT proteins, yet is the only member of the 

STAT family that leads to embryonic lethality when ablated, which suggests that it plays a 

crucial role in development
17

.  STAT3 has a conserved amino-terminus, a DNA-binding domain, 

a SH2 domain that binds to tyrosine-phosphorylated gp130, and a carboxy-terminal 

transcriptional activation domain
18

. STAT3 becomes activated by tyrosine phosphorylation, like 

the other STAT proteins, at a single site by the carboxy-terminus (Y705)
10

.  STAT3 can also 

become activated by serine phosphorylation at site S727, which is located within the 

transactivation domain
10

. Phosphorylation at either site triggers dimerization of STAT proteins 

and allows translocation to the nucleus
10

.  

1.1.4 GENES ACTIVATED BY THE JAK/STAT PATHWAY 

Once the STAT proteins enter the nucleus they bind to target gene sequences through the 

transcriptional activation domain, which is poorly conserved among STAT proteins and allows 
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for unique transcriptional responses dependent upon which STAT protein is activated
15

. STAT3 

has been implicated in a variety of cell systems and processes, and seems to have different 

functions in different cell types
19

. Traditionally, STAT3 was thought to induce a limited set of 

target genes in response to IL-6 during inflammation. The list of genes has grown considerably 

since its discovery and STAT3 since has been shown to regulate a baffling complexity of 

responses, and depending upon the target tissue is capable of inducing proliferation, survival, or 

apoptosis
19

. For instance, STAT3 stimulates B cell proliferation and inhibits apoptosis in B cells 

by induction of the antiapoptotic gene Bcl-2.  However, in monocytes, STAT3 is known to 

down-regulate c-Myc and c-Myb and induce jun-B and IRF-1, which triggers differentiation and 

growth arrest in these cells. STAT3 also induces a number of genes that produce proteins 

necessary for the acute-phase response of the immune system including C-reactive protein, 

mannose-binding protein, serum amyloid A, and others
20,19

.  

Constitutive STAT3 activation by phosphorylation is present in a large majority of 

human neoplasms
21

. Most of the target genes of STAT3 are involved in tumorigenesis and 

metastasis
21

. It has been discovered that STAT3 is constitutively active in a number of tumor-

derived cell lines, and this activation is necessary in order to maintain the transformed 

phenotype
22

. STAT3 has also shown to be involved in cell motility and migration under both 

normal and abnormal biological situations
21

. Overall, STAT3 seems to play a crucial role in both 

inducing and maintaining and environment that favors malignant transformation. The IL-6 

family of cytokines are potent inducers of STAT3 and as a result, have been implicated in 

numerous human cancers, such as breast and prostate cancer, as well as many leukemias and 

lymphomas
23,16

.  
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1.1.5 INTERLEUKIN-6 

Interleukin-6 (IL-6) is a pleiotropic cytokine produced by both lymphoid cells and non-

lymphoid cells
24

. It is a 212 amino acid glycoprotein with a molecular mass ranging from 21 kDa 

to 28kDa, dependent upon the level of glycosylation and phosphorylation
24

. Traditionally, the 

cytokine binds to the interleukin-6 receptor (IL-6RΑ/gp80), and then this complex associates 

with gp130, allowing it to homodimerize with another molecule of gp130.  Together, this 

complex initiates intracellular signal transduction, something that the IL-6/IL-6RΑ complex 

cannot do without gp130. The IL-6RΑ is mainly expressed on hepatocytes, neutrophils, 

monocytes, macrophages, some leukocytes, and a number of epithelial cells (such as prostatic 

epithelial cells)
12

.  IL-6 acts as a B cell differentiation factor, and plays an essential role in 

immunoglobulin induction in these cells
24

. It has also been shown to act as a paracrine growth 

factor for EBV-immortalized B cells (lymphoblastoid cells)
25

.  In hepatocytes, IL-6 acts as a 

hepatocyte-stimulating factor, inducing the production of proteins such as C-reactive protein, β2-

fibrinogen, and other acute-phase proteins produced in the liver
24

. IL-6 also promotes 

proliferation and differentiation of cytotoxic T cells
26

.  IL-6 can also signal by utilizing a 

naturally occurring, soluble form of IL-6RΑ (sIL-6RΑ), which is found in various body fluids, 

such as urine and blood
12,27

.  This complex of IL-6 and sIL-6RΑ binds and signals through 

gp130, a process termed trans-signaling
12

. Trans-signaling allows IL-6 to act on cells that would 

normally be unresponsive to the cytokine due to the lack of expression of the IL-6RA binding 

receptor.  It has been shown that upon IL-6 binding to the IL-6RΑ, both IL-6 and the IL-6RΑ are 

internalized and degraded
28

. The internalization of IL-6/IL-6RΑ complex is largely dependent 

upon the cytoplasmic domain of gp130. Internalization of this complex, however, is not 

necessary for signal attenuation, and it is currently believed that de novo synthesized proteins are 
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responsible for the down-modulation of the STAT activity. The SOCS (suppressor of cytokine 

signaling) family of proteins has been implicated in this down-modulation
29

. 

IL-6 is considered both an inflammatory and anti-inflammatory cytokine and plays a 

central role in host defense mechanisms
26

. The activities of IL-6 are critical for balancing the 

interplay between acute and chronic immunologic responses, and recently it has proven to be a 

key player in the switch between innate and adaptive immune responses
24

.  Unfortunately, like 

many other cytokines, an uncontrolled production of IL-6 can lead to altered cell growth and 

differentiation.  Polymorphisms in cytokine genes and cytokine receptors are often linked to 

inflammation and cancer
3
. A SNP in a cytokine gene could potentially result in the 

overproduction of that protein, while a SNP in a cytokine receptor could lead to a heightened 

response by the cell or extended signaling. In both these scenarios, either overproduction of a 

cytokine or over sensitization by the receptor, chronic inflammation is likely to occur.   

1.1.6 INTERLEUKIN-11 

Interleukin-11 (IL-11) is a highly conserved, 178 amino acid protein that is also a 

member of the IL-6 family of cytokines
30

.  IL-11, after binding to the primary receptor (IL-

11RΑα), also utilizes gp130 for signal transduction.  It is a multifunctional cytokine that is 

produced throughout the body, although the in vivo source of IL-11 remains unclear
31,30

. Some 

functions of IL-11 include stimulation of megakaryocyte maturation and platelet production, 

growth of CD34
+
 hematopoietic progenitor cells, inhibition of adipogenesis, stimulation of 

osteoclasts, and protection of cells from apoptosis and cellular necrosis in the gut mucosa
32,33

.  

The protein is rarely detected in serum of healthy subjects, but is readily detected in response to 

virus during viral-induced inflammation and in many cancers, such as breast and ovarian 
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cancers
31

. There are two isoforms of IL-11RΑ; the first is expressed in low levels in the brain, 

lung, spleen, heart, bladder, kidney, muscle, intestines, salivary glands, bone marrow, testis, 

ovary, and uterus, the second is expressed in the thymus, lymph nodes, and testis
34

.  There is no 

evidence of a soluble form of the IL-11RΑ
34

.  

1.1.7 ONCOSTATIN M 

Oncostatin M (OSM) is a secreted 28 kDa glycoprotein
35

. It is a multifunctional cytokine 

produced by activated T lymphocytes and monocytes
35

.  Structurally and functionally, it is 

related to the IL-6 family of cytokines.  OSM acts on a wide variety of cell types including 

endothelial cells, lung cells, hepatic cells, and many tumor cell lines, and elicits different 

responses depending upon cell type
35

. It has been implicated in cellular processes such as gene 

activation, cell survival, differentiation, and proliferation
36

.  The OSM signaling receptor 

complex differs slightly from that of IL-6 and IL-11.  OSM can utilize both the OSM receptor 

subunit and the LIF receptor subunit in combination with gp130.  For example, OSM only needs 

one alpha receptor (either LIFR or OSMR) and one secondary signaling receptor (gp130) to form 

a heterodimer-signaling complex, whereas both IL-6 and IL-11 require two of their respective 

alpha receptors (IL-6RΑ or IL-11RΑ) and two secondary signaling receptors (gp130) to 

perpetuate signaling. The individual cytokine structures may have an effect on the difference in 

composition of signaling complexes. As stated previously, all IL-6 type cytokines are made up of 

four α-helices: A, B, C, and D. IL-6 and IL-11 have α-helices that are all arranged in the same 

direction, whereas for OSM the A α-helix is kinked
10

.  This structural difference may explain the 

difference in the composition of the signaling complexes
10

.  
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1.1.8 GLYCOPROTEIN 130 

Glycoprotein 130 (gp130) is also known as the interleukin-6 signal transducer (IL6ST), 

and is known to be a key mediator in regulating inflammation and immune responses
3
.  It is a 

130 kDa glycoprotein, and a shared cytokine signaling receptor. Gp130 has six domains: an Ig-

like domain (D1), cytokine binding domains (D2-D3), and three membrane-proximal fibronectin 

type III (FNIII) domains (D4-D6)
21

.  The gp130 protein forms oligomeric signaling complexes 

with cytokine receptors and their respective cytokines, such as IL-6/IL-6RΑ, IL-11/IL-11RΑ, 

OSM/OSMR, etc
37

. The complexes of cytokine, the respective alpha-receptor, and gp130 must 

form in a 2:2:2 ratio in order to be competent for signaling for IL-6 and IL-11
38

. As stated 

previously, this is not the case for OSM, which is capable of signaling upon association of OSM, 

OSMR or LIFR, and gp130. In certain cell types, the localization of gp130 is concentrated in 

microdomains, such as lipid rafts and caveolae
10

. Some cells can produce a soluble form of 

gp130, (sgp130) using differential splicing.  The sgp130 protein has been detected in human 

serum and shown to be a natural inhibitor of IL-6 trans-signaling by binding to IL-6/sIL-6RΑ 

complexes and preventing these complexes from binding to membrane-bound gp130
12

. The 

gp130 receptor is necessary for IL-6/IL-6RΑ internalization, and it is strictly dependent upon a 

di-leucine motif in the cytoplasmic domain of gp130
29

.  However, internalization of gp130 is 

independent of signal transduction (IL-6/IL-6RΑ binding) and is most likely constitutively 

internalized via clathrin coated pits
39

. Since internalization of gp130 is not ligation-dependent, it 

is present on the cell surface at all times
29

. 
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1.2 PROSTATE CANCER 

1.2.1 EPIDEMIOGY OF PROSTATE CANCER 

Prostate cancer is the most frequently diagnosed cancer in men in the United States
40

.  In 

the United States in 2013, it is estimated that there will be 238,590 new cases of prostate cancer 

and 29,720 deaths
41

.  Among the men alive today, it is estimated that 1 in 6 will be diagnosed 

with prostate cancer, and 1 in 33 will die from the disease
42

. Risk factors for prostate cancer 

include age, family history, and race
43

. The incidence and mortality rate of prostate cancer within 

the United States varies across ethnic groups.  African American men and Jamaican men of 

African descent have the highest incidence and mortality rate of men in the U.S., compared to 

Caucasian men and men of Asian descent
42

. This trend is not limited to the United States, as a 

study completed in Trinidad and Tobago also shows that the prevalence of screening-detected 

prostate cancer was 3-fold higher in the men that were of African descent compared to the men 

who were of Asian Indian descent
44

.  

With prostate cancer being the second leading cause of cancer deaths in the United 

States, there is a necessity to better understand the risk factors for prostate cancer through both 

epidemiological and molecular research
45

.  Although the cause of the difference in prostate 

cancer incidence and mortality between populations is not clear, there are several investigators 

who have suggested a genetic or hereditary component for prostate cancer susceptibility
40

.   
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1.2.2 CYTOKINES AND PROSTATE CANCER 

Human prostate cancer is a neoplasm, and its growth is initially dependent upon the 

androgen hormones, 5α-dihydrotestosterone and testosterone
13

. Hormones are chemical 

messengers released by a gland in one part of the body and typically carried to another organ or 

part, via blood, to act upon that part of the body
46

. Androgens are typically associated with the 

development of male sexual behavior, as well as maintenance of the male sex organs and the 

development of muscle mass
47

. Hormone therapy (androgen ablation) works to reduce the 

overall circulating levels of androgen in the body, and as a result alleviates the symptoms of 

prostate cancer by inhibiting prostate cancer growth and proliferation. Hormone therapy has been 

the standard treatment for prostate cancer for many years
14

, but has far from cured the disease. 

Many prostate cancers return after hormone therapy, as hormone-insensitive metastases 

(meaning that they do not need androgen to continue to grow and metastasize), and the prognosis 

after relapse is very poor
14

. The mechanisms through which androgen-independence develops is 

unknown, however, interleukin-6 (IL-6) seems to play a role
43

.  Up-regulation of IL-6 and the 

IL-6RΑ has been detected in malignant cancers
48

.  Circulating levels of this cytokine are also 

increased in patients with hormone-insensitive cancers, suggesting that IL-6 may be an alternate 

marker of the androgen independent, metastatic phenotype
43,48

.  

There is currently no effective therapy or treatment for metastatic prostate cancer, and a 

large part of that is due to the fact that the underlying mechanisms that lead to the development 

and spread of metastatic prostate cancer are unclear.  With that being said, a number of in vitro 

studies have been completed in an attempt to understand better the mechanism through which IL-

6 may promote metastasis
49,50

. While multiple prostate cancer cell lines have been created for in 

vitro study, there are three that are most commonly used:  LNCaP, PC3, and DU 145. LNCaP is 
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a hormone-sensitive cell line that does not produce IL-6 but responds to it in a paracrine manner, 

while PC3 and DU 145 are both cell lines from hormone-insensitive cancers that produce IL-6, 

and respond to IL-6 in both a paracrine and autocrine manner
48

. PC3 and DU 145 cell lines were 

used in this research.  Both cell lines are epithelial cell lines developed from human prostatic 

adenocarcinomas that metastasized to other parts of the body, have a doubling time of about 34 

hours
51,52

, and do not express androgen receptors, PSA (prostate-sepcific antigen) or 5α-

reductase (the enzyme that converts testosterone to its more active form, 5α-dihydrotestosterone, 

or DHT)
53

.  All three of the prostate cancer cell lines, LNCaP, PC3, and DU 145, express the IL-

6RΑ, IL-11Rα, OSMR, and gp130 receptors
54

.  

Because IL-6 has drawn considerable attention in the link between inflammation and 

cancer, the other members of the IL-6 family of cytokines are often overlooked.  Recently, 

however, IL-11 is gaining attention as a potential player in the development of cancer as well. 

IL-11 has been implicated as a crucial cytokine in the promotion of gastric inflammation and 

associated tumorigenesis
55

, as well as a serum marker of bladder cancer
56

.  Interleukin-11 serum 

levels have also been associated with hormone-resistant prostate cancer, and has the potential to 

be an indicator for prostate cancer progression
57

. The IL-11Rα has also been involved in cancer 

development, and several studies have shown that there is increased expression of IL-11Rα in 

prostate cancers
58, 59

.  

Oncostatin M is also gaining considerable attention in the link between inflammation and 

cancer. OSM has been implicated in mammary tumor metastasis
60

, as well as promoting 

proliferation in ovarian cancer cells
61

. It has been shown in vitro that OSM is capable of acting as 

a growth factor for prostate cancer cells
62

.  In vivo, patients with metastasizing prostate cancer 

were found to have significantly higher levels of serum OSM when compared to benign 
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hyperplasia and non-metastasizing prostate cancer
63,64

.  OSM has been suggested to be a better

target than IL-6 for prostate cancer therapy in late stages of the disease due to lack of side effects 

associated with OSM depletion compared to IL-6 depletion
64

.

Since all three of the cytokines described above seem to play a role in prostate cancer 

progression, it seems likely that polymorphisms in any of the cytokine genes, their primary 

receptors, or gp130 could affect the risk for developing advanced metastatic prostate cancer by 

altering the body’s normal responses to inflammatory stimuli. Altering the normal responses 

could result in chronic inflammation, DNA damage, and ultimately an environment that favors 

the initiation of cancer. 

1.2.3 INFLAMMATION AND PROSTATE CANCER 

When effective, an inflammatory response can properly alert the body to an infection or 

injury and aids in the healing process. However, this natural defense mechanism, when not 

controlled properly, can lead to chronic inflammation and possible progression to chronic 

diseases
36

.  As stated previously, a sustained inflammatory microenvironment favors the

initiation of cancer. This is done through a number of mechanisms. Inflammation provides a 

constant supply of reactive oxygen and nitrogen species, cytokines, chemokines, and growth 

factors
3
. These elements are capable of altering crucial biological processes, such as cell

proliferation, apoptosis, and cell cycle control, which are responsible for maintaining a 

homeostatic cellular environment. Continuous alterations in these processes can lead to genomic 

instability and mutations within the genome, which increases the risk of cancer development
3
.

In addition to genetic factors playing a role in the etiology of prostate cancer, there have 

also been some reports of an infectious agent cofactor. Infectious agents have been more 
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commonly reported to be causative agents of cancer, and in 2008 it was estimated that 

worldwide, about 16.1% of cancers were attributable to infections
65

.  Hayes et al. reported an 

elevated risk for prostate cancer among men that are sexually active, or have sexually transmitted 

infections
34

. The mechanism through which sexual activity and sexually transmitted infections is 

related to prostate cancer remains unclear
66

, but one hypothesis would be that sexually 

transmitted infections could contribute to prostatic inflammation, and eventually lead to prostate 

cancer.  Chronic inflammation in the prostate due to infections, hormonal changes, dietary 

factors, and other unknown environmental exposures could all contribute to prostatic 

inflammation, and in turn prostate cancer
43

. With this knowledge, there were a series of 

investigations completed to examine possible associations between sexually transmitted 

infections and sexual behavior in relation to the development of prostate cancer.  There have 

been a number of human viruses investigated as causative agents or cofactors, such as herpes 

simplex virus (HSV), cytomegalovirus (CMV), papillomaviruses, and Epstein Barr virus (EBV), 

none of which showed a significant increase in risk for the development of prostate cancer
67

.  

1.3 HUMAN HERPESVIRUS 8 

Human herpesvirus 8 (HHV-8/KSHV) is the causative agent of Kaposi’s sarcoma (KS), 

primary effusion lymphoma (PEL), and multicentric Castleman’s disease (MCD), which are all 

different types of cancers.  It is a double-stranded DNA virus in the subfamily 

gammaherpesvirus. The HHV-8 genome encodes over 80 genes, and like all herpeviruses, is 

capable of establishing latency in the host, where it is incapable of being recognized by the 

host’s immune system. The virus does not usually cause clinical symptoms in most healthy 
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humans, and in fact most primary infections in healthy individuals only result in mild symptoms 

such as diarrhea, fatigue, and localized rash
68

. Typically, it is when the immune system is 

compromised that this herpesvirus causes severe disease, however the virus is capable of 

reactivating in immunocompetent individuals as well
69

.  When HHV-8 reactivates, it switches 

from latent to lytic infection in the host, and begins producing infectious virions
69

. Production of 

infectious virus particles can kill the host cell. Both the lytic and latent phases of HHV-8 

replication are thought to be important in the development of HHV-8-associated cancers
69

. The 

mode of transmission for HHV-8 is still being defined
68

. HHV-8 DNA can be detected in semen 

and in the female genital tract, as well as saliva and blood
70

. 

The HHV-8 genome is approximately 165 kb in length with over 85 open reading frames. 

There are currently 20 known genes that are specific to HHV-8, many of which are homologs to 

cellular genes, and a number of these are related to known oncogenes
69

.  Viral Bcl-2, cyclin D, 

interleukin-6, G-protein-coupled receptor, and ribonucleotide reductase are a few of the cellular 

homologs encoded by the HHV-8 genome
68

.  

1.3.1 VIRAL IL-6 

Viral IL-6 (vIL-6) is a protein encoded by ORF K2 of HHV-8.  It is 204 AA in length and 

is predicted to be 24.3 kDa
71

.  The vIL-6 shares about 25% identity with human IL-6, but it has 

been reported that it can stimulate all of the known human IL-6 signaling pathways
72

. Viral IL-6 

is of particular interest because it activates IL-6 signaling pathways and continues transmitting 

growth stimulatory signals. Normally, once the IL-6 signaling pathway is activated, IL-6RΑ is 

down-regulated. However, vIL-6 is capable of bypassing the need for IL-6RΑ and binding 

directly to gp130, keeping the growth stimulatory signal operating by activating STAT1, 3, and 5 
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as well as the MAP kinase-signaling cascade
69

. Constitutive activation of STAT3 has been 

shown to have oncogenic properties (cell transformation and tumorigenesis)
69

, and has been 

implicated with promoting metastatic progression of prostate cancer
73

.  

Due to the fact that HHV-8 has oncogenic potential, is sexually transmitted, is found in 

some prostate tissues, and has an interleukin-6 homolog, it is a practical candidate for an 

infectious agent cofactor for the development of prostate cancer.  

1.3.2 HHV-8 SEROPREVALENCE AMONG MEN FROM TOBAGO WITH 

PROSTATE CANCER 

Our laboratory completed a case-control study on participants from the Caribbean nation 

of Trinidad and Tobago, and also from the United States, to test whether HHV-8 seropositivity 

was associated with an increased risk for prostate cancer. Our findings showed a significant 

increase in risk among HHV-8 seropositive men when compared to corresponding control 

groups. In Tobago, men with prostate cancer were more likely to be HHV-8 seropositive when 

compared to the control subjects without cancer (OR 2.24; 95% CI 1.29-3.90), or to healthy men 

from Trinidad (OR 2.63; 95% CI 1.54-4.50).  Among United States men, there was also a 

difference reported:  Pittsburgh men with advanced prostate cancer had a higher seroprevelance 

rate when compared to blood donors from across the U.S. (OR 4.67; 95% CI 1.9-11.65)
45

. 

However, additional studies from our laboratory comparing African American men from the 

Washington D.C. area and Caucasians from Italy reported that there was not a significant 

difference in HHV-8 seroprevalence between patients with prostate cancer and controls
74

. It 

should be noted that there was a difference in the sampling of groups between these different 

studies. In the Tobago cohort, the controls consisted of men with normal DRE and PSA values 
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(clean controls)
45

 while in the Washington D.C. / Italy study, the controls consisted of men with 

benign prostatic hyperplasia (BPH)
74

.  Thus the controls were not the same. What is particularly 

troubling is that the control group in the Washington D.C. / Italy study consisted of men with 

BPH, since HHV-8 could be setting up a chronic inflammatory environment in the prostate, 

resulting in BPH. Our laboratory collaborated in an additional study, which similarly did not rule 

out men who had BPH in the control group
75

. As a result, the major differences between these 

studies were what the researchers were using as controls, which can drastically affect how the 

results are interpreted.  

In addition to being suggestive of an androgen-independent phenotype, elevated IL-6 

levels have also been associated with increased prostate cancer morbidity, as well as a number of 

other chronic diseases
48

. As a result, specific polymorphisms in cytokine genes and their 

receptors have been associated with an increased risk of cancer
3
. This information, together with 

the findings that men of African descent are at an increased risk for prostate cancer compared to 

Caucasian men or men of Asian descent led our laboratory and collaborators to search for a 

polymorphism in some aspect of the IL-6 signaling pathway that could lead to an increased risk 

for prostate cancer development.  

1.4 R148G POLYMORPHISM IN GP130 

The laboratory of Dr. Robert Ferrell at the University of Pittsburgh, Graduate School of 

Public Health sequenced nine reputed single nucleotide polymorphisms (SNPs) in gp130. Of the 

nine, two were informative: rs3730293 and rs3729960.  Rs3729960 is a glycine (GGT) to 

arginine (CGT) transition at position 148 in the extracellular ligand-binding domain of gp130. 
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This SNP was genotyped in 221 cases of prostate cancer and 260 controls. The initial findings 

from Dr. Ferrell’s laboratory showed that there was not an increased risk for prostate cancer 

among any of the genotyped SNPs.  However, further analysis that included both the HHV-8 

seropositivity along with genotype combinations (GG, CG, CC) showed an increased OR of 3.41 

(95% CI 1.36-8.55, p=0.009) for prostate cancer in men who are HHV-8 seropositive and have 

the GG genotype compared to men who are HHV-8 seronegative with the GG genotype (Table 

1).  

Table 1:  HHV-8 gp130 Association with Prostate Cancer Risk 

Table 1:  HHV-8 gp130 Association (Logistic Regression Analysis) with Prostate Cancer Risk 

  Case Non-Case    

HHV-8 gp130 N % N % OR 95% CI p-value 

- GG 37 16.7 48 18.5 1.0   

- CG 67 30.3 95 36.5 0.92 0.54-1.56 0.74 

- CC 41 18.6 57 21.9 0.93 0.52-1.68 0.82 

+ GG 21 9.5 8 3.1 3.41 1.36-8.55 0.009 

+ CG 38 17.2 38 14.6 1.3 0.70-2.42 0.41 

+ CC 17 7.7 14 5.4 1.58 0.69-3.60 0.28 

Total  221  260     

 

Structural modeling of this polymorphism shows that exchanging a glycine for an 

arginine does not disrupt the overall integrity of the molecule, but may affect the stability and 

function (Figure 1). It is not apparent whether or not the polymorphism affects the binding of 

gp130 to its respective primary cytokine receptors (IL-6RΑ, IL-11RΑ, or OSMR), but the 
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location of the polymorphism (in the D2 domain) is located within the cytokine-binding region 

of gp130. Benrick et al. suggest a few mechanisms for how this polymorphism might affect the 

stability and function of gp130: Arg148 hydrogen bonding may stabilize the surface loop in 

domain 2 of the receptor.  The more stabilized loop could influence the orientations of the 

cytokine binding domains, and affect the formation of a hexameric complex between the 

cytokine, the alpha receptor, and gp130
37

.  

 

 
 

Figure 1: Location of gp130 148Gly/Arg. Figure and legend reprinted with permission from 

Regulatory Peptides, Vol 146, Benrick et al., A non-conconservative polymorphism in the IL-6 

signal transducer (IL6ST)/gp130 is associated with myocardial infarction in a hypertensive 

population, 189-196, 2008, with permission from Elsevier: Location of gp130 148Gly/Arg in the 

structure of a hexameric complex between human IL-6, the cytokine homology region of IL-
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6RΑα, and the D1, D2 and D3 domains of gp130. (a) Backbone ribbon representation of the 

complex (side view) with the two IL-6 molecules coloured in red/yellow, the IL-6RΑα fragments 

colored in blue, an the two gp130 fragments colored in yellow and grey, respectively. (b) Inside 

view of the complex following a 90° rotation about a horizontal asix; the complex is observed 

from ‘underneath’ as compared to the view in (a). The position of Gly148/Arg148 in the D2 

domain of gp130 is indicated by showing an arginine substitution modeled into position 148 (in 

red) in one of the gp130 fragments and the original glycine (in green) in the second fragment. (c) 

Surface representation of the two symmetry-related D2 domains of gp130. The upper molecule 

shows a model of the D2 surface with substituted Arg148 (in red) and how the substitution might 

fill out a cavity next to Gly148 (in green) in the lower molecule. (d) Detailed view of how the 

Arg148 substitution can be modeled into the gp130 D2 domain so that three hydrogen bonds 

(yellow dotted lines) are formed to the backbone residues 149 and 150 and so that a hydrogen-

bond/salt bridge is formed between Arg158 and the side chain of Glu151. The side chain of 

Arg150 supports the backbone of the D1-D2 linker peptide at the position of Pro125, as 

indicated. Molecular graphics illustrations were created using MolMol 2K.2”
37

.  

 

1.4.1 R148G AND INCREASED RISK FOR MYOCARDIAL INFARCTION 

This particular SNP, a glycine to arginine transition at position 148 in the extracellular 

ligand-binding domain of gp130 (Gly148Arg) has been implicated in other diseases and 

conditions as well. A prospective randomized clinical trial completed by Benrick et al. 

demonstrated that there was a significantly decreased odds ratio for getting a myocardial 

infarction (MI) in individuals with the arginine variant (OR=0.56, p=0.02). They suggest that the 

arginine variant of gp130 is not completely void of activity, but rather that the substitution for 

arginine in place of the glycine could influence the cytokine binding domains of gp130, and 

perhaps result in a decreased responsiveness to cytokines utilizing gp130, and as a result a 

decrease in inflammation
37

. They followed up their statistical analysis with in vitro work. After 

transfecting BAF/3 cells with either the gp130 148Gly variant or the gp130 148Arg variant, 

Benrick et al. measured cellular proliferation and activation of STAT3 in response to Hyper-IL-6 
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(HIL-6), which can stimulate gp130 even in the absence of membrane-bound IL-6RΑ. Although 

there was no difference in gp130 surface expression between the two cell lines, there was a 

significant difference in their responsiveness to HIL-6, as shown by a difference in cellular 

proliferation and activation of STAT3, suggesting that the gp130 148Arg variant is associated 

with decreased biological activity
37

. 

1.4.2 R148G AND INCREASED RISK FOR HYPERANDROGENISM 

A study completed by Escobar-Morreale et al. found a connection between the 

Gly148Arg polymorphism and hyperandrogenism (an endocrine disorder characterized by 

excessive production and/or secretion of androgens). In addition to a decreased risk of 

myocardial infarction, it was also found that the 148Arg allele was more frequent in controls 

than in hyperandrogenic patients (0.17 vs. 0.08, p=0.026). Escobar-Morreale et al. found that the 

basal levels of 11-deoxycortisol and 17-hydroxyprogesterone were lower in controls with the 

148Arg allele.  These subjects also had a decreased response to adrenocorticotropin and a 

decrease in free testosterone levels.  These results support the notion that proinflammatory 

genotypes influence the pathogenesis of hyperandrogenism
76

. In this study, the 148Arg allele 

was again associated with a decrease in biological activity.  

In the studies completed by Benrick et al. and Escobar-Morreale et al., the 148Arg allele 

was associated with decreased biological activity.  Both studies show an association to a 

physiological outcome, mycocardial infarction and hyperandrogenism, respectively
37,76

. 

However, neither study examined the mechanism of action of this polymorphism. The decreased 

biological activity could be due to a number of factors, and this project sought to further 

characterize this polymorphism in various cell types.    
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1.5 HYPOTHESIS 

We previously showed an increased OR for developing prostate cancer is 2.24 among 

men who are HHV-8 seropositive. In addition, the OR for developing prostate cancer increases 

to 3.41 among men who are HHV-8 positive and have the GG allele of the G148R SNP. We 

hypothesize that the GG allele (high-risk) of this SNP has an increased biological activity 

compared to the CC allele (low-risk) in response to cytokines that utilize this receptor. This 

increased biological activity results in an amplified inflammatory response, which ultimately 

favors the initiation of cancer. We believe that the G148R SNP in gp130 could also interact with 

the viral IL-6 produced by HHV-8, which also utilizes the gp130 receptor.  
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2.0  MATERIALS AND METHODS 

2.1 CELL CULTURE 

Lymphoblastoid cell lines (LCLs) (see below) were maintained in RPMI 1640 (Cellgro
® 

Cat # 10-040) with 50µg/mL gentamycin, 10% fetal bovine serum (FBS), and supplemented with 

10ng/mL of rhIL-6 (Gibco Cat. # PHC004). 

Prostate cancer cell lines (PC3 and DU 145) were maintained in DMEM (Cellgro
® 

Cat # 

10-013) with 50µg/mL gentamycin and 10% FBS.  

2.2 GENERATION OF LCLS 

LCLs were generated by in vitro transformation of peripheral B cells with Epstein Barr 

Virus (EBV). Briefly, 5x10
5
 peripheral blood mononuclear cells (PBMCs) in 1 mL of B-cell 

media [BCM; 500mL of RPMI 1640, 10% FBS, 5.5mL of 100x L-glutamine (Gibco Cat. # 10-

040-CV), 10,000 U/mL Pen/10,000µg/mL Strep (Gibco), 100mM Sodium Pyruvate (Gibco), 

100x MEM Non-essential amino acids (Gibco), and 1M Hepes (Gibco)] were mixed with 1mL 

of EBV virus supernatant and incubated at 37°C for 20 minutes in a 15mL conical tube.  An 

additional 8mLs of BCM was added along with cyclosporine (final concentration 1µg/mL). The 

cells were plated at 100µL per well in a 96 well plate (final concentration 5,000 PBMCs per well 
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of a 96 well plate, approximately 250 B cells). On day 13, 75µL of BCM was added. At 7 weeks, 

the cells from each well were transferred to a well in a 24 well plate. At 10 weeks the cells from 

each well in the 24 well plates were transferred to a T-25 flask.  The LCLs were made in the 

laboratory of Dr. Giovanna Rappocciolo at the University of Pittsburgh Graduate School of 

Public Health.  

2.3 GP130 GENOTYPING 

The gp130 genotype of each cell line was determined using a TaqMan® Sample-to-

SNP™ kit specifically designed to analyze the G148R SNP according to the manufacturer’s 

instructions (Applied Biosystems Cat. # 4403313). Cells (either LCLs or prostate cancer cell 

lines) were spun down and resuspended in fresh media. 20µL of lysis solution (supplied in the 

kit) was added to 2µL of cells, vortexed, pipetted up and down, and incubated at room 

temperature for three minutes. Next, 20µL of stabilizing solution (supplied in the kit) was added 

to this mixture and mixed well. Master mix solution was made by adding 5µL of Taqman 

GTXpress master mix, 0.5µL of the gp130 SNP assay primers, and 2.5µL of nuclease-free water. 

2µL of the DNA lysate was added to 8µL of the master mix solution. Each 10µL sample was 

added to appropriate wells of a 96-well plate, sealed, centrifuged and subject to PCR 

amplification under the following cycling conditions:  
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Table 2: PCR Cycling Conditions for gp130 Genotyping 

Step Temperature Duration Cycles 

Pre-PCR Read 25°C 30 seconds Hold 

Enzyme Activation 95°C 20 seconds Hold 

Denature 95°C 3 seconds 

40 cycles 

Anneal/Extend 60°C 20 seconds 

Post-PCR Holding Stage 25°C 30 seconds Hold 

 

Two dyes were used to indicate each allele: VIC indicates a C (cytosine) allele, while 

FAM indicates a G (guanine) allele.  Based off of the allele frequency, the StepOnePlus™  

software plots the graph as an Allele 1 versus Allele 2, with each well of the 96-well plate treated 

as an individual point on the plot. Where each sample clusters on the allelic discrimination plot 

determines the genotype. There are three possible genotypes (CC, GC, and GG). Nuclease-free 

water was used as a negative control.  

2.4 GROWTH CURVES 

2.4.1 GROWTH CURVES BY TRYPAN BLUE EXCLUSION 

Growth curves of the LCLs were performed by trypan blue exclusion.  Cells were diluted 

1:10 in a 0.2% trypan blue solution (Roche Cat. # 05650640001) and cell counts determined 

using a hemocytometer. Trypan blue stains dead cells blue, while living cells remain unstained.  

Thus, a trypan blue exclusion assay permits determination of the number of live and dead cells in 
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each sample. LCLs were IL-6 starved overnight and seeded the following morning at 

2.5x10
5
cells/mL.  Cells were either left untreated or given 10ng/mL of rhIL-6 (Gibco Cat. # 

PHC004). This serves as time zero, and an aliquot of cells from each flask (untreated or rhIL-6-

treated) were collected at 24, 48, 72, 96, and 120 hours post treatment and counted.  Graphs were 

plotted using GraphPad Prism software.  

Growth curves of the prostate cancer cell lines were performed using the method 

described for the LCLs. Cells were seeded at 7.5x10
4
 cells/well in 2 mLs in a 6 well plate and 

allowed to adhere to the wells for 8 hours.  Regular media with serum was aspirated off, and 

serum-free DMEM was added to the cells for overnight serum-starvation. The next morning, 

cells were either treated with DMEM with serum but without cytokines or with 10ng/mL of 

rhIL-6, rhIL-11, or hOSM (Gibco Cat. # PHC004, R&D systems Cat. # 218-IL, and Gibco Cat. # 

PHC5015 respectively) diluted in DMEM with serum. This served as time zero, and cells from 2 

wells were harvested by trypsin detachment and counted at 24, 48, 72, and 96 hours post 

treatment. Experiments were completed in duplicate, and graphs were plotted on GraphPad 

Prism software.  

2.4.2 GROWTH CURVES USING XCELLIGENCE 

The Xcelligence machine (Roche, Inc) is a real-time cell analyzer, which measures the 

electrical impedance of cells in real time by electrodes on specialized E-plates. As cells grow and 

spread over the electrodes, the impedance of each well increases.  The Xcelligence computer 

program can be designed to take impedance measurements at regular intervals providing real-

time measurements of cell growth. The measurement is termed “cell index”, and an increase in 
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cell index correlates directly with electrical impedance, which is indicative of the biological 

activity of cells, and changes based on cellular growth, morphology, and viability.  

Prior to treatment with cytokines, we needed to determine the appropriate number of cells 

to add per well in the E-plates, which can vary based on cell size and growth rate. The 

Xcelligence machine is only capable of being used with adherent cells and as a result only PC3 

and DU 145 were used in these experiments (LCLs are non-adherent). Cells were seeded at 

densities of 10, 20, 30, or 40,000 cells/well in quadruplicates in E-plates. The attachment and 

proliferation was monitored every 30 minutes for 72 hours. Cell-sensor impedance was 

expressed as an arbitrary unit called the cell index. Each cell type has its own unique size, 

morphology, and growth rate, so this step is necessary to define a reasonable number of cells to 

use in the growth assay in response to cytokines.  For DU 145 cells, 40,000 cells/well was 

chosen, and for PC3 cells, 10,000 cells/well was chosen based on the initial cell titration growth 

curves (Figure 2). It was recommended that we use a concentration of cells that allowed us to see 

changes in growth over a specified period of time, without plateauing too quickly. We chose 

these concentrations (40,000 and 10,000 cells/well, respectively) because this concentration 

allowed for linear growth in terms of cell index. Since different starting concentrations are used 

for each cell line, raw data comparisons should not be made between cell lines, but rather 

between treatments for each cell line. 
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Figure 2: Baseline Growth Curves of DU 145 and PC3.  Cells were plotted at 40, 20, 10, or 

5,000 cells/well and allowed to settle for 30 minutes before placing them in the Xcelligence 

machine. Wells were run in triplicate, and cell index values were plotted and graphed using 

GraphPad Prism. 

 

 

The growth curves in response to 10, 25, or 100ng/mL of IL-6, IL-11, or OSM were 

performed on both PC3 and DU 145 cells. Briefly, cells were seeded at the appropriate densities, 
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and allowed to adhere for approximately 4 hours before increasing amounts of cytokines were 

added. Impedance measurements were taken from each well every 30 minutes for the next 48 

hours.     

2.5 WESTERN BLOTTING 

Phosphorylation of STAT3 (STAT3 activation) was measured by western blot using an 

antibody specific for the phosphorylated form of STAT-3.  LCLs were IL-6 starved overnight 

and seeded into T-25 flasks so that the final concentration of cells was 10,000 cells per µL, and 

increasing concentrations (10 or 100 ng/mL) of cytokines (rhIL-6, rhIL-11, or hOSM) were 

added to the cells, or they were left untreated.  At timepoints, aliquots of cells were removed and 

lysed in 4X lysis buffer (4X SDS Page Lysis Buffer: 6.5% SDS, 166mM Tris-HCl pH 6.8, 16% 

β-mercaptoethanol, 13% glycerol, 3% Bromophenol blue), to give a final concentration of 1X 

lysis buffer. For example, if we removed 300μL of cells, we would add it to 100μL of the lysis 

buffer. The final concentrations of all cell lysates for experiments were 10,000 cells/μL. This 

solution was boiled for 10 minutes, sonicated, and loaded into NuPAGE® Novex® 3-8% Tris-

Acetate Gels (Life Technologies Cat. # EA03785BOX). Gels were run for approximately 2 hours 

at constant voltage of 120V and electrotransferred onto a nitrocellulose membrane (Amersham 

Cat. # 45-000-930) overnight at 14V. The membranes were analyzed for the presence of Tyr705-

phosphorylated STAT3 using an anti-pSTAT3 antibody (Santa Cruz Biotechnology Cat. # sc-

8059) and for actin levels using an anti-actin antibody (Santa Cruz Biotechnology Cat. # sc-

1616).  After incubation with the appropriate antibody, membranes were washed and exposed to 

SuperSignal
®
 West Pico Chemiluminescent Substrate (Thermo Scientific Cat. # 34080) for 10 
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minutes at room temperature in the dark. After exposure, membranes were washed and X-ray 

film (GeneMate, Blue Lite Autorad Film, Cat. # F-9023-8X10) was exposed to the membranes 

for desired time (differed depending on antibody concentration), and then developed with an 

imaging device.  

2.6 IMAGEJ SOFTWARE ANALYSIS 

ImageJ software (National Institute of Health) was used to analyze and quantify the 

results obtained from the western blots. Exposed X-ray film produced in the western blot 

procedures was scanned and images uploaded to ImageJ software. Bands were analyzed and 

quantitated using the software.  Each pSTAT3 band was normalized first to its respective actin 

band, and then this ratio was normalized to the untreated control for each time point. For 

example, each sample or lane has an actin value and a pSTAT3 value. If actin was 10,000 and 

pSTAT3 was 250 for the untreated control, the ratio was 250/10,000, or 0.025. If the treated 

sample values were 20,000 for actin, and 1,500 for pSTAT3, the treated ratio was 1,500/20,000, 

or 0.075. Now we can normalize to the untreated control by dividing the ratio for the treated by 

the untreated (0.075/0.025) and we get a value of 3. This indicates that the treated sample had 3 

times the amount of pSTAT3 compared to the untreated. Graphs were plotted using GraphPad 

Prism software.  
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2.7 GENE EXPRESSION ANALYSIS 

2.7.1 RNA ISOLATION AND CDNA SYNTHESIS 

3x10
6 

LCLs were used per timepoint and treatment. For example, we used 10 minutes as 

a treatment time, so we needed 3x10
6
 cells for treatment with IL-6, and we needed 3x10

6
 cells 

that were left untreated. 6x10
6
 cells were IL-6-starved overnight in RPMI with 50μg/mL 

gentamycin and 10% FBS. The next day, cells were collected, centrifuged and resuspended in 

fresh RPMI at a concentration of 3x10
6
 cells/mL in 1 mL for each sample (treated and 

untreated).  At this time, cells were either left untreated or treated with 10ng/mL of rhIL-6. At 10 

minutes post treatment, cells were spun down, supernatants removed, and cells were frozen at -

80°C for later RNA isolation. RNA isolation was performed using RNeasy Mini Kit (Qiagen 

Cat. # 74104) according to the manufacturer’s instructions and the amount of RNA present was 

quantitated using a nanodrop machine (Thermo Scientific).  2µg of total RNA was used for each 

sample for cDNA synthesis. The cDNA synthesis was completed using the RT
2
 First Strand Kit 

(Qiagen Cat. # 330421) according to the manufacturer’s instructions. The cDNA was stored at -

20°C until use. The cDNA made from 2μg of total RNA was divided equally into each well of a 

96 well plate.  

2.7.2 JAK/STAT PATHWAY PCR ARRAY 

The JAK/STAT Pathway PCR Array was performed using plates from SABiosciences 

(Cat. # PAHS-039Z), which contains 84 primers for genes related to JAK/STAT mediated 

signaling, five housekeeping genes, and seven quality control wells.  The isolated cDNA, made 
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from 2μg total RNA, was added to RT
2
 SYBR Green/ROX qPCR Mastermix (SABiosciences 

Cat. # 330522), and then plated into each of the 96 wells. The following table shows the volumes 

used per reaction:  

Table 3: PCR Reaction Volumes for Gene Expression Analysis using JAK/STAT 

Plates 

Component Volume (µL) per 1 reaction 

Master Mix (2X RT
2
 SYBR Green Master Mix) 12.5 

cDNA+ Nuclease-free water 12.5 

Total volume per reaction (well) 25.0 

 

Plates were sealed with optical adhesive film and centrifuged to remove any air bubbles. 

The following thermal-cycling profile was used:  

Table 4: PCR Cycling Conditions for Gene Expression Analysis using JAK/STAT 

Plates 

Thermal-cycling profile 

Parameter 

Polymerase activation PCR (40 cycles) 

Hold Denature Anneal/Extend 

Temperature (°C) 95 95 60 

Time (mm:ss) 10:00 00:15 01:00 
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2.7.3 HUMAN IL-6 PATHWAY PCR ARRAY 

The IL-6 Pathway PCR Array was performed using plates from Applied Biosystems (Cat. 

# 4418794), which contains 92 primers for genes associated with IL-6 pathways and four primers 

of genes for candidate endogenous controls. The isolated cDNA, made from 2μg of total RNA, 

was added to Taqman® Fast Advanced Mastermix (Cat. # 4444556), and then plated into each of 

the 96 wells. The following table shows the volumes used per reaction:  

Table 5: PCR Reaction Volumes for Gene Expression Analysis using IL-6 Plates 

Component Volume (µL) for 1 reaction 

cDNA template + Nuclease-free water 10.0 

TaqMan® Fast Advanced Master Mix (2X) 10.0 

Total volume per reaction (well) 20.0 

 

Plates were sealed with optical adhesive film and centrifuged to remove any air bubbles. 

The following thermal-cycling profile was used:  

Table 6: PCR Cycling Conditions for Gene Expression Analysis using IL-6 Plates 

Thermal-cycling profile 

Parameter 

UNG incubation Polymerase activation PCR (40 cycles) 

Hold Hold Denature Anneal/Extend 

Temperature (°C) 50 95 95 60 

Time (mm:ss) 02:00 00:20 00:01 00:20 
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2.7.4 EXPRESSION SUITE ANALYSIS 

Gene Expression Analysis was completed using ExpressionSuite Software from Life 

Technologies™. This software uses the 2
(-ΔΔCt)

 method in order to quantify relative gene 

expression across a large number of genes. There are two different ways to analyze data from 

real-time PCR: absolute and relative. Absolute quantification determines the input copy number 

of the transcript of interest by using a standard curve. We used relative quantification, which 

describes the change in expression of a target gene in a treated sample relative to a reference 

group (untreated). For our purposes, using relative quantification is sufficient. For example, from 

these data we are able to determine the fold induction or reduction of gene expression following 

10ng/mL of IL-6 treatment. In order to perform relative quantification, the cycle threshold (Ct) 

values for each target gene were calculated by the RT-PCR machine (StepOnePlus™) based on a 

threshold value deemed appropriate for each plate.  When each Ct is calculated, the 2
(-ΔΔCt)

 

method can be used, as described below
77

.  

For these experiments, both internal and external controls are necessary. The internal 

controls are the housekeeping genes, in order to normalize for the amount of RNA added to each 

well. The external controls are the untreated plates, so that the normalized gene expression can 

be compared between treated and untreated samples. The first step is to calculate the ΔCt 

(change in Ct) for each gene of interest (GOI). This is achieved by taking the GOI Ct and 

subtracting from it the housekeeping gene (HKG) Ct. In some scenarios, more than one HKG is 

used, and in these cases, an average of the HKG Cts are used. The ΔCt is determined for each 

gene to normalize the amount of RNA added to each well. Once the ΔCt is calculated for each 

GOI on each plate, the ΔΔCt can be calculated by taking the ΔCt for each GOI of the treated 

plates and subtracting from it the ΔCt for each GOI of the untreated plates. This represents the 
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ΔΔCt value. In order to calculate the fold change for each GOI, the formula 2
(-ΔΔCt)

 was used.  

This value represents the relative quantity of the GOI in the treated samples compared to the 

untreated samples. For our experiments, our treatment was 10ng/mL of rhIL-6, and we measured 

relative fold changes compared to untreated samples at 10 minutes post-treatment.  The formulas 

used and an example of these calculations are shown below:  

 

ΔCt treated  = ΔCt (GOI) treated – ΔCt (HKG) treated 

ΔCt untreated = ΔCt (GOI) untreated – ΔCt (HKG) untreated 

ΔΔCt = ΔCt treated – ΔCt untreated 

Fold change = 2
(-ΔΔCt) 

Example:  

Table 7: Sample ΔΔCt to Fold Change Calculation 

Sample GOI Ct HKG Ct ΔCt [ΔCt (GOI)– ΔCt (HKG)] 

Treated 25.2 18.5 6.7 

Untreated 27.4 19.2 8.2 

ΔΔCt = ΔCt treated – ΔCt untreated = 6.7 – 8.2 = -1.5 

Fold Change = 2
(-ΔΔCt) 

= 2
-(-1.5)

 = 2
(1.5) 

=
 
2.8 

Conclusion: The treated GOI was up-regulated by 2.8 fold when compared to untreated GOI 

 

2.8 FLOW CYTOMETRY 

Flow cytometry was performed on both the LCLs and prostate cell lines to determine the 

expression of the IL-6 receptors gp80 and gp130. LCLs were collected by centrifugation and 

resuspended at a concentration of 1x10
6
 cells/mL in 4% formaldehyde (1 mL 37% formaldehyde, 



 36 

1 mL 9X PBS, 7 mL ddH2O) for 15 minutes at room temperature. After fixation, cells were 

washed twice and resuspended in 1X PBS at 1x10
6
 cells/mL. 100μL of the cell mixture was 

added to the desired number of wells of a 96 well plate, based on how many staining variables 

were needed. Cells were either left unstained, stained with isotype control antibodies for gp130 

and gp80, or stained with antibodies for gp130 and gp80. For the isotype controls, 10μL of 

antibodies were used as isotype controls for gp130 or gp80 (IL-6Rα) (isotype control, mouse 

IgG1, PE conjugated BD Pharmingen™ Cat. # 555749 or isotype control, mouse IgG1, APC 

conjugated BD Pharmingen™ Cat. # 555751, respectively). In order to stain for IL-6Rα, 5 μL of 

APC mouse anti-human gp80 (BD Pharmingen™ Cat. # 562090) was used on each desired 

sample. To stain for gp130, 20 μL of PE mouse anti-human gp130 (BD Pharmingen™ Cat. # 

555757) was used. Cells with antibodies were incubated for 30 minutes at room temperature. 

After incubation, cells were spun down, supernatant was aspirated off, cells were washed twice 

in 1XPBS and resuspended at a final volume of 1mL 1XPBS in flow cytometry tubes (BD 

Falcon™ 5mL polystyrene round-bottom tube Cat. #352058).  Samples for flow cytometry were 

read on the BD Accuri™ C6. Samples were first gated on a live population of cells based on the 

forward and side scatter properties, and then a histogram was made using the correct optical filter 

(FL4 for gp80 and FL2 for gp130). Histograms for unstained, isotype controls, and antibody of 

interest were overlayed to determine whether or not the receptor was present.  

The table below (Table 2) was made as a reference to the reader so that it is less 

confusing to remember the cell lines we used and their respective gp130 G148R alleles.  
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Table 8: Cell Lines used in this Research & their gp130 Status 

Cell Line Cell Type gp130 Status 

Low-Risk LCL Lymphoblastoid Cell Line CC 

High-Risk LCL Lymphoblastoid Cell Line GG 

DU 145 Prostate Cancer Cell Line CC 

PC3 Prostate Cancer Cell Line GG 
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3.0  RESULTS 

3.1 SPECIFIC AIM I 

Characterize the high-risk and low-risk genotypes in LCLs by examining growth curves, 

downstream signaling events, and gene expression in response to various concentrations of IL-6, 

IL-11, and OSM. This was completed through growth curves, Western blot analysis, gene 

expression analysis, and flow cytometry. 

3.1.1 LCLS GROWTH CURVES 

Dr. Jill Henning had previously showed that high- and low-risk LCLs responded 

differently to IL-6.  In her experiment, she treated the cells with 25ng/mL of rhIL-6 and 

measured their growth over 72 hours (Figure 3). The high-risk (GG) LCLs responded much 

earlier and to a much greater extent than the low-risk LCLs when treated with IL-6. Since the 

LCLs were maintained in 10ng/mL of IL-6, we wanted to see how the cells responded to this 

dose of IL-6 rather than the 25ng/mL. Also, other studies completed have shown responsiveness 

to 10ng/mL of IL-6
78,79

. I repeated the growth curve experiments with 10ng/mL of IL-6 instead 

of 25ng/mL and measured cellular proliferation out to 120 hours (5 days) post treatment. We saw 

a similar response to 10ng/mL of IL-6; the high-risk cell line responded faster to the cytokine 

than the low-risk cell line compared to untreated controls (Figure 4).  
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Figure 3: LCLs Growth Curves in Response to 25ng/mL of IL-6.  Used with permission from 

Dr. Jill Henning: High-risk LCLs (A) respond faster and to a greater extent in response to 

25ng/mL of IL-6 than low-risk LCLs (B) do, as measured by cell proliferation. Cells were plated 

at 1x104/well in a 96 well plate in AIM V media and incubated at 37°C overnight. The next day 

each well was either left untreated or given 25ng of IL-6, IL-11 or OSM (R&D systems Cat. # 

206-IL, 218-IL, and 295-OM respectively). Cells from three wells for each treatment were 

collected and counted by trypan blue exclusion cell count on a hemocytometer at 0, 12, 24, 36, 

48, 60, and 72 hours post-treatment. Each line represents an LCL from a different individual
80

.  
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As you can see in figure 3 there are three different low-risk LCLs used and seven 

different high-risk LCLs used. Unfortunately, after being cultured without IL-6, a majority of 

these lines no longer responded to IL-6 because by not culturing them in IL-6 we essentially 

were selecting for the LCLs which do not need IL-6 to grow, and as a result no longer responded 

to IL-6. We managed to find one high-risk and one low-risk cell line from our original stock. We 

first needed to test the responsiveness of each cell line to IL-6. Since we were maintaining the 

lines in 10ng/mL of IL-6, we decided to perform growth curves using this concentration (Figure 

4).  
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Figure 4: LCLs Growth Curves in Response to 10ng/mL of IL-6.  High-risk LCLs (A) 

respond faster and to a greater extent in response to 10ng/mL of IL-6 than low-risk LCLs (B) do, 

as measured by cell proliferation. Cells were seeded at 2.5 x 10
5
 cells/flask and either treated 

with 10ng/mL of IL-6 or left untreated. Cell proliferation was measured by trypan blue exclusion 

every 24 hours. Experiments were completed in duplicate over the course of 5 days. Solid line 

indicates untreated while dotted line indicates treated with 10ng/mL of IL-6. Graphs were made 

using GraphPad Prism software. 

 

3.1.2 IL-6RΑα AND GP130 DISTRIBUTION ON LCLS 

Since only the high-risk LCLs showed a major responsiveness to IL-6 as shown by 

growth curves, we wanted to ensure that both cell lines still had the primary and secondary 

receptors on the cell surface. To test for this, flow cytometry for the receptors was completed. 

Both the high- and low-risk cell lines had both receptors on the cell surface (Figure 5), as you 

can see by the slight shift to the right compared to both the unstained and the isotype control. 

Since we only have one low-risk and one high-risk LCL line, we do not know if all of the LCLs 

that Dr. Henning had used have these receptors as well. However, Dr. Henning’s growth curves 

suggest that all of the LCLs of the same genotype act similarly, and led us to believe that these 

cell lines are representative of all of the high- and low-risk genotypes.  
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A.   

Low-Risk LCLs 

                          IL-6RΑα                                          gp130 

                  

B. 

High-Risk LCLs 

   IL-6RΑα                  gp130 

                

 

 

 

Figure 5: LCLs Receptor Distribution on the Membrane.  High- and low-risk LCLs both 

express the IL-6RΑα and gp130 receptors. Low-risk LCLs (A) and high-risk LCLs (B) were 

seeded at 1x10
6
 cell/mL. 100µL aliquots were seeded and either left unstained (black), stained 

with the appropriate isotype control antibody (blue), or stained with anti-IL-6RΑα or anti-gp130 

antibody (pink).  Graphs were made using AccuriC6 software. 

         Key: 

Black= Unstained 

Blue = Isotype Control 

Pink = Antibody 
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3.1.3 STAT3 ACTIVATION 

Since both the primary and secondary receptors were present on the cell surfaces of the 

LCLs, we decided to look at the proximal signaling events that occur after IL-6 binds.  Once IL-

6 binds, the JAK/STAT pathway is initiated. To see whether the difference in growth is a result 

of a defect in this pathway, we next measured the accumulation of phosphorylated STAT3 

(pSTAT3) in the cells after treatment with IL-6. In untreated cells, there is little to no pSTAT3 

accumulated in the cells. After addition of 10ng/mL of IL-6, pSTAT3 accumulated within the 

cells within 10 minutes in each cell line (Figure 6). The top band shows phosphorylated STAT3 

while the bottom band shows actin, which is used as a loading control. Phosphorylated STAT3 is 

an intracellular signaling event that occurs once the JAK/STAT pathway is initiated.  

A.     Low-Risk LCLs 

 

B.    High-Risk LCLs 
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Figure 6: LCLs STAT3 Activation upon Treatment with 10ng/mL of IL-6.  High- and low- 

risk LCLs both show STAT3 activation upon treatment with 10ng/mL of IL-6. Cells were treated 

for times indicated with 10ng/mL of IL-6 and then a Western blots were performed for pSTAT3, 

and actin was used as a loading control. Image J software and GraphPad Prism was used to 

quantify and graph data (C). This experiment was repeated twice using 10ng/mL of IL-6.  

 

 Although Dr. Jill Henning previously showed that there was no difference in growth in 

either the high- or low-risk LCLs when treated with IL-11 or OSM
80

, we decided to confirm this 

by looking at STAT3 activation in response to these cytokines. Cells were seeded and treated 

with a higher concentration (100ng/mL) of IL-6, IL-11, OSM, or left untreated. After treatment 

with 100ng/mL of IL-6 for 30 minutes, cells were harvested and cell lysates were analyzed by 

Western blot for phosphorylation of STAT3 (Figure 7). There was no STAT3 activation in 

response to IL-11 or OSM in either cell line, but both showed activation of STAT3 in response to 

IL-6, which is consistent with the results shown in Figure 6. 
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Figure 7: LCLs STAT3 Activation upon Treatment with 100ng/mL of Cytokines. High- and 

low-risk LCLs show STAT3 activation in response to 100ng/mL of IL-6, but not IL-11 or OSM. 

Cells were either left untreated, or treated for 30 minutes with 100ng/mL of IL-6, IL-11, or 

OSM. Western blots were completed for pSTAT3, and actin was used as a loading control. 

Image J software and GraphPad Prism was used to quantify and graph data.  
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 The same cell lysates that were used in Figure 7 were also used in Figure 8, where we 

analyzed the amount of STAT3 constitutively present in the cells. The STAT3 in the top blot of 

figure 8 represents the total STAT3 present, which includes both phosphorylated and 

unphosphorylated STAT3. This represents the pool of STAT3 proteins in the cell that act as 

substrates for phosphorylation. There seem to be dramatic differences in the amount of total 

STAT3 protein present in the cells between the high- and low-risk LCLs. However, the 

differences between treated and untreated STAT3 levels do not differ very much in the 

respective cell lines. For example, between untreated high-risk LCLs and treated high-risk LCLs, 

there are not major differences in the amount of total STAT3 protein present (Figure 8).  

 

A. 

 
B. 
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Figure 8: Basal STAT3 Levels in LCLs.  High- and low-risk LCLs show minimal changes in 

STAT3 expression upon treatment with 100ng/mL of IL-6. Using the same cell lysates shown in 

Figure 7, Western blots were completed for total STAT3 levels and actin was used as a loading 

control. Image J software and GraphPad Prism was used to quantify and graph data.  

 

3.1.4 GENE EXPRESSION ANALYSIS 

The small differences in timing in the activation of STAT3 would not result in the drastic 

differences seen between the growth curves of the high- and low-risk cell lines in response to IL-

6. We feel like a difference of 5 or 10 minutes between the activation of STAT3 would not result 

in the growth differences we see at 4-5 days post-treatment. Therefore, we hypothesize that as a 

result of IL-6 signaling and STAT3 activation, there are differences in the genes that are 

activated downstream. Our hypothesis was that the genes that are activated in the high-risk LCLs 

are genes involved in inflammation, proliferation, or differentiation, and the genes that are 

activated in the low-risk LCLs are genes that could perhaps induce apoptosis or genes involved 

in maintaining the current cellular state. The findings by using the gene expression analysis 

might help explain the differences seen between the growth curves of the two cell lines.  
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There are a large number of genes that are regulated by the JAK/STAT pathway. In order 

to examine a large number of genes that are turned on or off through this pathway, we decided to 

use pathway-focused, RT-PCR array plates. The first array plate used was the JAK/STAT 

pathway array from SABiosciences, which uses SYBR Green-based, real-time, RT-PCR 

technology to amplify cDNA using primers specific for genes regulated by this pathway. SYBR 

green technology works via SYBR green dye binding to amplified double-stranded DNA 

sequences. The binding, however, is nonspecific. This means that if there is nonspecific 

amplification, SYBR green still binds, and the readout is the same whether it bound to the target 

gene or to non-specific amplification.  

To analyze this phenomenon and ensure that there is specific amplification, melt curve 

analysis was performed on the samples. Because an exponential number of the same fragment of 

DNA was produced through PCR reactions, you can slowly increase the temperature to see at 

what point the DNA dissociates, or “melts”. As temperature increases, double-stranded DNA 

separates during denaturation by breaking the hydrogen bonds between base pairs. The 

complementary bases adenine and thymine form two hydrogen bonds, while guanine and 

cytosine form three hydrogen bonds. Consequently, the melting point of complementary 

fragments of DNA is dependent upon the content of DNA in that fragment. For example, an 

amplified fragment of DNA with a higher guanine and cytosine content will have a higher 

melting point than an amplified fragment of DNA with a lower guanine and cytosine content. As 

the DNA is denatured, the SYBR Green fluorescence is also decreased. The melting temperature 

is then calculated at the point which maximum fluorescence is lost. If there was any nonspecific 

amplification or primer dimers (amplification of the two primers hybridized to each other), the 

melt curves would show multiple peaks, or a very low melting temperature. This indicates that 
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the amplification you see may be nonspecific, and should not be trusted. Of the JAK/STAT 

pathway array, we could only use a small number of genes due to the unreliable results of the 

SYBR Green array plates (Figure 9 A and B, full gene listing in Appendix A). High- and low-

risk LCLs were treated for 10 minutes with 10ng/mL of IL-6, and then the cDNA made from 

these cells were used in the JAK/STAT pathway array plates. 

A. 

JAK/STAT Gene Table 

A2M SH2B2 BCL2L1 CCND1 CDKN1A CEBPB CRK CRP CSF1R CSF2RB CXCL9 EGFR 

EPOR F2 F2R FAS FCER1A FCGR1A ISG15 GATA3 GBP1 GHR HMGA1 IFNAR1 

IFNG IFNGR1 IL10RA IL20 IL2RA IL2RG IL4 IL4R IL6ST INSR IRF1 IRF9 

JAK1 JAK2 JAK3 JUN JUNB MMP3 MPL MYC NFKB1 NOS2 NR3C1 OAS1 

OSM PDGFRA PIAS1 PIAS2 PPP2R1A PRLR PTPN1 PTPRC SH2B1 SIT1 SLA2 SMAD1 

SMAD2 SMAD3 SMAD4 SMAD5 SOCS1 SOCS2 SOCS3 SOCS4 SOCS5 SP1 SPI1 SRC 

STAM STAT1 STAT2 STAT3 STAT4 STAT5A STAT5B STAT6 STUB1 TYK2 USF1 YY1 

B2M HPRT1 RPL13A GAPDH ACTB HGDC RTC RTC RTC PPC PPC PPC 

B. JAK/STAT Gene Table 

A2M SH2B2 BCL2L1 CCND1 CDKN1A 

CEBPB 

CRK CRP CSF1R CSF2RB CXCL9 EGFR 

EPOR F2 F2R FAS FCER1A FCGR1A ISG15 GATA3 GBP1 GHR HMGA1 IFNAR1 

IFNG IFNGR1 IL10RA IL20 IL2RA IL2RG IL4 IL4R IL6ST INSR IRF1 IRF9 

JAK1 JAK2 JAK3 JUN JUNB MMP3 MPL MYC NFKB1 NOS2 NR3C1 OAS1 

OSM PDGFRA PIAS1 PIAS2 PPP2R1A PRLR PTPN1 PTPRC SH2B1 SIT1 SLA2 SMAD1 

SMAD2 SMAD3 SMAD4 SMAD5 SOCS1 SOCS2 SOCS3 SOCS4 SOCS5 SP1 SPI1 SRC 

STAM STAT1 STAT2 STAT3 STAT4 STAT5A STAT5B STAT6 STUB1 TYK2 USF1 YY1 

B2M HPRT1 RPL13A GAPDH ACTB 
HGDC 

RTC RTC RTC PPC PPC PPC 

Key: 

Green = Housekeeping Genes 

Purple = Genes with bad melt curves 

Grey = Genes with less than 2-fold changes in expression 

Red = Genes with greater than 2-fold changes in expression 
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Figure 9: LCLs Gene Expression Analysis using JAK/STAT Plates.  Gene expression of 

high- and low-risk LCLs differs in response to 10ng/mL of IL-6 at 10 minutes post treatment. 

Gene expression was analyzed on isolated RNAs from low-risk and high-risk LCLs either left 

untreated or treated with 10ng/mL of IL-6 for 10 minutes using the JAK/STAT Pathway Plate 

Array from SAbiosciences™. (A) Gene table for the JAK/STAT Pathway array plates. (B) Gene 

table showing the housekeeping genes (green), the genes that were excluded due to bad melt 
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curves (purple), the genes with less than a 2-fold change in regulation (grey), and the genes that 

show a 2-fold change or greater (red). (C and D) Graphical representation of the high-risk and 

low-risk up- and down-regulated genes, graphed using GraphPad Prism. This figure shows the 

results from one experiment, so significant differences cannot be calculated.  

 

 

 The genes that are up- or down-regulated in response to 10ng/mL of IL-6 based off of the 

JAK/STAT pathway PCR array differ between the high- and low-risk LCLs (Figure 9 C and D), 

where we originally thought that there would be somewhat of an overlap. If we analyze the 

specific genes, there are a number that are involved in growth and proliferation, and could 

explain the differences seen in the growth curves. In the low-risk LCLs, we see an up-regulation 

of CXCL9 (chemokine (C-X-C motif) ligand 9) and GHR (growth hormone receptor), while 

OSM (oncostatin M) and SOCS3 (suppressor of cytokine signaling 3) are down-regulated. In the 

high-risk LCLs, CSF2RB (colony stimulating factor 2, receptor beta), JAK2 (janus kinase 2), 

and SRC (v-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog) are up-regulated, while 

SMAD5 (SMAD family member 5) and SOCS4 (suppressor of cytokine signaling 4) are both 

down-regulated.   

After obtaining these data, we wanted to repeat the experiment. This time, however, we 

wanted to use a technology that was more reliable than SYBR Green. This way, we would not 

have to ignore over half of the data due to poor melt curve analysis. Taqman probes are used to 

increase specificity in real time PCR arrays. Taqman probes work by relying on the Taq 

polymerase exonuclease activity to cleave a sequence specific oligonucleotide probe from the 

target DNA sequences. As long as the reporter fluorescent molecule and the quencher are within 

close distance to one another, the quencher prevents the reporter from fluorescing. Once the 

probe is cleaved, the fluorescent marker is able to produce fluorescence without it being 

quenched by the quencher molecule attached to the other end of the probe. The fluorescence 
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intensity is again indicative of the amount of template cDNA present in the sample. Taqman 

technology is more specific because the fluorescence is only generated when the probe gets 

separated from the quencher on the target cDNA sequence, and thus nonspecific amplification is 

not an issue, and melt curves are not necessary. There are, however, a few genes or wells in 

which there was no amplification or it was undetectable. Figure 10 below shows the gene table 

for the Human IL-6 Pathway PCR Array plate, followed by a gene table showing the wells that 

were excluded due to undetectable amplification, and thus results cannot be compared.  

We used Taqman plates from Applied Biosystems. However, they did not have a plate 

specific to the JAK/STAT pathway. We chose to use an IL-6 pathway-specific plate. Again, cells 

were treated with 10ng/mL of IL-6 for 10 minutes and cDNA was isolated to be used on the 

plates. Fold change was analyzed in the treated samples compared to the untreated control 

samples. The entire experiment (i.e. from treatment to cDNA synthesis) was repeated twice, so 

experiments were analyzed in duplicate.   

A.  

IL-6 Gene Table 

18S GAPDH HPRT1 GUSB AKT1 ARAF BAX BCL2 BRAF CCL2 CD4 CHUK 

CXCL12 FRAP1 GRB2 HRAS IKBKB IKBKE IKBKG IL10 IL18 IL1A IL1B IL2 

IL4 IL6 IL6R IL6ST IL8 JAK3 KRAS MAP2K1 MAP2K2 MAP2K3 MAP2K4 MAP2K5 

MAP2K6 MAPK1 MAPK12 MAPK3 MAPK6 MAPK7 MRAS MYC NFKB1 NFKB2 NFKBIA NFKBIB 

NFKBIE NRAS PIAS3 PIK3C2A PIK3C2B PIK3C2G PIK3C3 PIK3CA PIK3CB PIK3CD PIK3R1 PIK3R2 

PIK3R3 PIK3R4 PIK3R5 PIM1 PPP1R12A PPP1R15A PPP1R1B PPP2CA PPP2CB PPP2R1A PPP2R1B PPP2R2A 

PPP2R2B PPP2R4 PPP2R5A PPP2R5C PTPN11 PTPN6 RAF1 REL RELA RELB RRAS RRAS2 

SHC1 SHC2 SHC3 SOCS1 SOCS2 SOCS3 SOCS5 SOCS6 STAT3 TIMP1 TNF TP53BP2 
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B. 

IL-6 Gene Table 

18S GAPDH HPRT1 GUSB AKT1 ARAF BAX BCL2 BRAF CCL2 CD4 CHUK 

CXCL12 FRAP1 GRB2 HRAS IKBKB IKBKE IKBKG IL10 IL18 IL1A IL1B IL2 

IL4 IL6 IL6R IL6ST IL8 JAK3 KRAS MAP2K1 MAP2K2 MAP2K3 MAP2K4 MAP2K5 

MAP2K6 MAPK1 MAPK12 MAPK3 MAPK6 MAPK7 MRAS MYC NFKB1 NFKB2 NFKBIA NFKBIB 

NFKBIE NRAS PIAS3 PIK3C2A PIK3C2B PIK3C2G PIK3C3 PIK3CA PIK3CB PIK3CD PIK3R1 PIK3R2 

PIK3R3 PIK3R4 PIK3R5 PIM1 PPP1R12A PPP1R15A PPP1R1B PPP2CA PPP2CB PPP2R1A PPP2R1B PPP2R2A 

PPP2R2B PPP2R4 PPP2R5A PPP2R5C PTPN11 PTPN6 RAF1 REL RELA RELB RRAS RRAS2 

SHC1 SHC2 SHC3 SOCS1 SOCS2 SOCS3 SOCS5 SOCS6 STAT3 TIMP1 TNF TP53BP2 
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Key: 

Green = Housekeeping Genes 

Purple = No amplification 

Grey = Genes with less than 2-fold changes in expression 

Red = Genes with greater than 2-fold changes in expression 
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Figure 10: LCLs Gene Expression Analysis using Human IL-6 Plates. Gene expression of 

high- and low-risk LCLs differs in response to 10ng/mL of IL-6 at 10 minutes post treatment. 

Gene expression was analyzed on isolated RNA from low-risk and high-risk LCLs either left 

untreated or treated with 10ng/mL of IL-6 for 10 minutes using the Human IL-6 Pathway PCR 

Array from Applied Biosystems
®
. (A) Gene table for the IL-6 Pathway array plates. (B) Gene 

table showing the housekeeping genes (green), the genes that were excluded due to insufficient 

amplification (purple), the genes with less than a 2-fold change in regulation (grey), and the 

genes that show a 2-fold change or greater (red). (C and D) Graphical representation of genes 

that were up- or down-regulated by 2-fold or greater, graphed using GraphPad Prism. The star 

denotes only one experiment was compared, so results could not be statistically compared.  

 

Results showed that there were significant changes in a few genes from both high- and 

low-risk cell lines (Figure 10 C and D). In the high-risk LCLs, TNF, IL-6, SOCS1 and SOCS2 

were all up-regulated by a fold change of two or more, while TP53BP2 was down-regulated by a 

fold change of two or more. In the low-risk LCLs, SH2, IL-6, TP53BP2 were up-regulated by a 

fold change of two or more, while SH3 and IL1β were down-regulated by a fold change of two 

or more. 
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3.2 SPECIFIC AIM II 

Although we see differences between the high- and low-risk LCLs, we wanted to see if 

this would hold true for different kinds of cells. We switched our interest to prostate cancer cells, 

and had two well-characterized cell lines, PC3 and DU 145, readily available. The gp130 status 

was determined and it was found that PC3 expressed the high-risk gp130 allele (GG), while DU 

145 expressed the low-risk gp130 allele (CC). A benefit of using prostate cancer cell lines was 

that these cell lines were known to express primary receptors for other cytokines that also utilize 

the gp130 signaling receptor, namely IL-11 and OSM. Seeing how the high- and low-risk 

prostate cancer cell lines respond to IL-6, IL-11, and OSM would help us to better characterize 

the nature of the gp130 G148R polymorphism.  

Aim II was to translate experiments to prostate cancer cell lines, and develop and 

characterize the GG and CC genotypes in response to various concentrations of IL-6, IL-11, and 

OSM. This will be completed by growth curves, Western blot analysis, and flow cytometry. 

3.2.1 IL-6 PRODUCTION BY PC3 AND DU 145 

Clearly, there is a large difference between  B lymphocytes and prostate cancer epithelial 

cells. One of the main differences is that while B lymphocytes respond to IL-6, they do not 

produce IL-6.  However, both PC3 and DU 145 produce low levels of IL-6. We wanted to ensure 

that the amount of IL-6 we were adding (10ng/mL-100ng/mL) was significantly greater than the 

amount of IL-6 that they produce. To do this, we performed an ELISA for IL-6, which showed 

that although PC3 and DU 145 produce IL-6, it is in the 10-20pg/mL range, about 1,000-fold less 

than the amount of IL-6 that we were adding to the cells exogenously (Figure 11). If IL-6 had an 
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effect on growth, we should still be able to see it by using the concentrations that we used with 

the LCLs.  

I L -6  P r o d u c tio n

C e l l   L in e

I
L

-
6

 (
p

g
/m

L
)

D
u

1
4
5

P
C

3

M
ed

ia

0

5

1 0

1 5

2 0

 

Figure 11: PC3 and DU 145 ELISA for IL-6 Production. PC3 (high-risk) and DU 145 (low-

risk) both produce low levels of IL-6. Fresh media or spent media removed from cells that were 

cultured to 80-90% confluency was analyzed for IL-6 production by ELISA. Both PC3 and DU 

145 prostate cancer cells produced low levels (between 10-20 pg/mL of IL-6). Experiments were 

run in duplicate, and graphed using GraphPad Prism.   

 

3.2.2 GROWTH CURVES  

We performed growth curves on PC3 and DU 145 using 10ng/mL of IL-6, IL-11, and OSM 

using trypan blue exclusion over the course of four days. We saw no significant differences in 

growth from the untreated cells (Figure 12). However, we hypothesized that although 10ng/mL 

was a high enough concentration for the LCLs, it was not high enough to see significant 

differences for the prostate cancer lines. Also, it might be hard to see small differences in growth 

by using trypan blue exclusion. Also, by only taking timepoints every 24 hours it is possible to 

miss important changes in growth that may have occurred between timepoints. To remedy this, 
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we decided to repeat the growth curves using various increasing concentrations of cytokines 

using an Xcelligence machine.  
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Figure 12: PC3 and DU 145 Growth Curves using Trypan Blue Exclusion Count. DU 145 

(A) and PC3 (B) did not show any significant changes in growth when treated with 10ng/mL of 

indicated cytokine compared to untreated cells. Cells were seeded into 6 well plates and treated 

with 10ng/mL of indicated cytokine, harvested every 24 hours for 5 days, and counted using 

trypan blue exclusion. Experiments were completed in duplicate, and graphed using GraphPad 

Prism.  
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An Xcelligence machine measures real-time changes in morphology, proliferation and 

attachment. It allows us to see small changes at more frequent timepoints without disturbing the 

cells. After deciding the optimal concentration of cells to use, PC3 and DU 145 cells were treated 

with 10, 25, and 100ng/mL of IL-6, IL-11, or OSM. Untreated and vehicle controls were used, 

and experiments were completed in quadruplicate. No significant differences were seen between 

untreated and cells treated with varying concentrations (10, 25, or 100ng/mL) of cytokines in 

either of the cell lines (Figure 13).  
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Figure 13: PC3 and DU 145 Growth Curves Using Xcelligence Machine. DU 145 (A) and 

PC3 (B) did not show any significant changes in growth when treated with various 

concentrations of indicated cytokine when compared to untreated cells. Cells were seeded at 

40,000 cells/well (DU 145) or 10,000 cells/well (PC3) based off of initial growth curves (data 

not shown). Four hours after cells were seeded, various concentrations of cytokines (IL-6, IL-11, 

or OSM) were added. Real-time growth was measured for 14 hours post treatment with 

cytokines. Experiments were completed in triplicate and graphed using GraphPad Prism.  

 

3.2.3 STAT3 ACTIVATION 

Western blot analysis of STAT3 activation (pSTAT3) was completed in a similar way 

with PC3 and DU 145 as with the LCLs. In response to 10ng/mL of IL-11 there was no 

activation of STAT3 in either of the cell lines, while both cell lines showed a strong response to 

10ng/mL of OSM. There was a dramatic difference in how PC3 (high-risk) and DU 145 (low-

risk) responded to 10ng/mL of IL-6. The low-risk DU 145s responded to IL-6 (as measured by 

STAT3 activation) by 10 minutes post treatment. The high-risk PC3s, however, did not show any 

STAT3 activation in response to IL-6 even by 20 minutes post treatment (Figure 14).  
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A. 

PC3 (High-risk) 
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B. 

DU 145 (Low-risk)  
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Figure 14:  PC3 and DU 145 STAT3 Activation upon Treatment with 10ng/mL Cytokines. 

The PC3 cell line (high-risk) responded to OSM, but not IL-6 or IL-11, while the DU 145 cell 

line (low-risk) responded to IL-6 and OSM, but not IL-11 as measured by activation of STAT3. 

High-risk PC3s (A) and low-risk DU 145s (B) were seeded in 6 well plates and serum-starved 
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overnight. Cells were treated with regular media, or media with 10ng/mL of indicated cytokine 

and harvested 5, 10, or 20 minutes post treatment and cell lysates were analyzed for pSTAT3. 

Actin was used as a loading control. Image J software was used to quantify bands and GraphPad 

Prism was used to graph the data.  

 

We hypothesized that perhaps the 10ng/mL that was sufficient to activate STAT3 in the 

LCLs might not be a high enough concentration to see a response from the prostate cancer cell 

lines in the cases of IL-6 for PC3s and IL-11 for both the PC3s and DU 145s. Cytokines have 

different optimal concentrations, and thus perhaps 10ng/mL was not the optimal concentration 

for IL-11 and for IL-6. We increased the concentration of all three cytokines used to 100ng/mL.  

In response to 100ng/mL of IL-6, IL-11, and OSM, we still saw a strong STAT3 

activation in both high- and low-risk cell lines to OSM by 30 minutes post treatment. When 

100ng/mL of IL-11 was used, we still did not see any STAT3 activation in either the high- or 

low-risk cell lines by 30 minutes post treatment. Interestingly, in response to 100ng/mL of IL-6, 

there was no STAT3 activation in the PC3 (high-risk) cell line, while DU 145 saw a strong 

activation of STAT3 by 30 minutes post treatment (Figure 15). This experiment was repeated 

three times, and each time we still saw the same response. This is particularly puzzling, since 

there have been a number of studies that have shown that STAT3 is activated in response to IL-6 

in vitro in both PC3 and DU 145 cells
81

.  
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Figure 15: PC3 and DU 145 STAT3 Activation upon Treatment with 100ng/mL Cytokines. 

The PC3 cell line (high-risk) responded to 100ng/mL of OSM, but not IL-6 or IL-11, while the 

DU 145 cell line (low-risk) responded to 100ng/mL of OSM and IL-6, but not IL-11 as 

evidenced by activation of STAT3. Prostate cancer cell lines were seeded into 6 well plates and 

treated with 100ng/mL of indicated cytokine or left untreated, and harvested at 30 minutes post 

treatment. Cell lysates were analyzed for pSTAT3 by Western blot (A), and actin was examined 

as a loading control. ImageJ software was used to quantify bands and GraphPad Prism was used 

to graph the data (B).   
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 We also decided to look at levels of total STAT3 before and after 30 minutes of treatment 

with 100ng/mL of IL-6 (Figure 16). We see that in both PC3 and DU 145 cells, STAT3 is 

constitutively active in untreated cells. In addition, levels of STAT3 do not change very much 

(less than 2-fold) when treated with 100ng/mL of IL-6 for 30 minutes. This experiment was not 

repeated.  
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Figure 16: Basal STAT3 Levels in PC3 and DU 145. The PC3 cell line and the DU 145 cell 

line show minimal changes in total STAT3 expression upon treatment with 100ng/mL of IL-6. 

Using the same cell lysates shown in Figure 15, Western blots were completed for total STAT3 

levels and actin was used as a loading control. Image J software and GraphPad Prism was used to 

quantify and graph data.  
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 Since both PC3 and DU 145 responded to 10ng/mL of OSM as early as 5 minutes post 

treatment, we wanted to see if there was a difference in signaling at earlier timepoints in 

response to OSM.  In response to 10ng/mL of OSM, we took timepoints as early as 30 seconds 

and went out to 10 minutes. Both cell lines showed STAT3 activation by 2 minutes post 

treatment, but there was  not a substantial difference between the two (Figure 17).  
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B. 

PC3 (High-risk) 
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Figure 17: PC3 and DU 145 STAT3 Activation upon Treatment with 10ng/mL OSM. The 

PC3 cell line (high-risk) and the DU 145 cell line (low-risk) both show particularly early 

activation of STAT3 in response to 10ng/mL of OSM. Cells were seeded in 6 well plates and 

treated with 10ng/mL of OSM for indicated times, harvested, and cell lysates were analyzed for 

pSTAT3 by Western blotting. Actin was used as a loading control. ImageJ software was used to 

quantify bands and GraphPad Prism was used to graph the data.  

 



 68 

3.2.4 IL-6Rα AND GP130 DISTRIBUTION ON PC3 AND DU 145 

Although there is literature that states that both PC3s and DU 145s express the primary 

and secondary receptors for IL-6
82

, we wanted to clarify that the receptors were still present on 

both of the cells lines, and the lack of signaling in PC3s was not due to lack of receptor presence 

on the cell surface. Flow cytometry analysis for the receptors showed that both PC3s and DU 

145s expressed the primary (IL-6RΑα) and secondary receptors (gp130) for IL-6, and the lack of 

STAT3 activation in PC3s was not due to a lack of receptor presence (Figure 18).  
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B.                                                                      

PC3 (High-risk) 

   IL-6RΑα             gp130 

                                 

 

 

 

 

Figure 18: PC3 and DU 145 Receptor Distribution on the Membrane. The PC3 cell line and 

the DU 145 cell line both express the IL-6RΑα and gp130 receptors. DU 145 (low-risk) (A) and 

PC3 (high-risk) (B) were set up at 1x10
6
 cell/mL. 100 μL aliquots were removed from this and 

placed into 96 well plates and either left unstained (black), stained with the desired isotype 

control antibody (blue), or stained with anti-IL-6RΑα or anti-gp130 (pink).  Graphs were made 

using AccuriC6 software. 

 

 

 

         Key: 

Black= Unstained 

Blue = Isotype Control 

Pink = Antibody 
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4.0  DISCUSSION 

4.1 AIM I 

4.1.1 LCL GROWTH CURVE ANALYSIS 

 As seen in Figures 3 and 4, low- and high-risk LCLs show a marked difference in their 

growth responsiveness to IL-6. We hypothesized that this difference in response could be due to 

a defect in the signaling receptor or in the downstream signaling pathway. Figure 5 shows that 

both the high- and low-risk LCLs express the primary (IL-6Rα) and the secondary receptors 

(gp130) on their cell surfaces. This indicates that although they showed a difference in cellular 

proliferation in response to IL-6, this is not due to a lack of receptor presence on the membrane. 

However, we do not know whether or not the location of the receptors on the membrane is 

affecting how the receptors signal. As stated previously, gp130 is commonly concentrated in 

lipid rafts and caveolae
10

, and although LCLs are expressing the primary receptor for IL-6 

(Figure 5), we do not know where this binding receptor is localizing on the membrane in relation 

to its signaling receptor gp130. As seen in Figure 3, however, we can see that the growth curves 

of LCLs in response to IL-6 remain consistent across all LCLs developed from Tobago men. We 

hypothesize that this indicates that there is something about the receptor polymorphism G148R 

that specifically affects how these cells respond to IL-6.  



 71 

4.1.2 LCL STAT3 ANALYSIS 

STAT3 activation analysis, as measured by phosphorylation of STAT3 at tyrosine residue 

705, shows that although the low-risk LCLs do not proliferate as well in response to IL-6 as the 

high-risk LCLs, there is still STAT3 activation occurring (Figures 6 and 7). Together, Figures 6 

and 7 indicate that for both the high- and low-risk LCLs, there is no defect in the JAK/STAT 

pathway, and both activate this pathway in response to IL-6. Although there was a slight timing 

difference between the two cell lines, this difference would not account for the different 

responses to IL-6 seen in the growth curves. If the differences in growth were simply due to a 

10-minute slower signaling in the low-risk cell line, a natural assumption would be that the low-

risk cell line would eventually catch up and proliferate in the same manner as the high-risk 

LCLs. These data led us to believe that the differences in growth may be due to differential gene 

activation as a result of JAK/STAT signaling. For example, perhaps in the high-risk cell line, 

genes that induce proliferation and survival are being turned on, while in the low-risk cell line, 

genes that induce differentiation (which slows cellular growth and proliferation), or genes that 

induce apoptosis may be turned on. 

The lack of response to IL-11 and OSM in both cell lines (Figure 7) could be due to lack 

of primary receptor on the cell lines. We have not found any literature to suggest that 

lymphoblastoid cell lines possess the primary receptors for either IL-11 or OSM. Since Dr. Jill 

Henning previously showed that IL-11 and OSM do not have any effect on growth in response to 

either of these cytokines
80

, and we saw no STAT3 activation, we did not investigate these 

cytokines any further in relation to LCLs.  

Figure 8 shows that high- and low-risk LCLs have differing levels of constitutive total 

STAT3 in the cells, but neither cell line showed a dramatic increase in total STAT3 upon 
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treatment with 100ng/mL of IL-6. Levels of total STAT3 exhibited around a 2-fold change or 

less, while upon 100ng/mL of IL-6 treatment, levels of pSTAT3 in the same cellular lysate 

exhibited a 40 to over 100-fold increase. To summarize, upon IL-6 treatment, we see dramatic 

increases in pSTAT3 levels, but only very small increases in overall STAT3 levels. This 

indicates that upon treatment, STAT3 that is already present in the cytoplasm is being converted 

to pSTAT3, and there is very little de novo protein synthesis. In addition, cells were IL-6 starved 

overnight, and yet we are still seeing constitutive STAT3 present in the cells, most notably in the 

high-risk LCLs. Although studies have shown that EBV-transformed B cells produce IL-6 as an 

autocrine growth factor
83

, our particular LCLs were tested and found that they did not produce 

IL-6 as measured by ELISA (Jenkins, unpublished data). As a consequence, we do not fully 

understand why the high-risk LCLs have a higher constitutive amount of STAT3 than the low-

risk LCLs do, and it is possible that the difference in STAT3 levels could be contributing to the 

differences in growth. However, if the differences in the levels of STAT3 in the LCLs is 

resulting in the differences in their growth phenotypes, we expect that we would not see 

differences in gene expression. 

4.1.3 LCL GENE EXPRESSION ANALYSIS 

 When we looked at the JAK/STAT Pathway PCR Array plates, we saw that there were up 

and down-regulation of a number of genes, and they were differentially regulated between the 

high- and low-risk LCLs. It is difficult to paint a complete picture with just the few genes that 

were up- or down-regulated. However, it did give us a few ideas for genes that might be 

responsible, at least in part, for the differences in growth that we see from the LCLs in response 

to IL-6.   



 73 

 CXCL9 (also known as Mig, which denotes ‘monokine induced by gamma interferon’) is 

up-regulated in the low-risk LCLs (Figure 9). CXCL9 has been known to be a T cell 

chemoattractant. Studies have shown that CXCL9 specifically attracts anti-tumoral T 

lymphocytes, and could therefore lead to a reduced tumor growth in vivo
84

. GHR (growth 

hormone receptor) gene encodes for the transmembrane receptor for growth hormone. Binding of 

the growth hormone to the growth hormone receptor leads to intracellular signaling through the 

JAK/STAT pathway leading to growth
85

.  Although it may seem counter intuitive for the low-

risk cell line to up-regulate this gene, it may be somehow trying to compensate for the lack or 

defect in signaling through the IL-6 pathway. OSM is down-regulated in the low-risk LCLs. 

OSM has been described previously, but notably it has been shown to act as a growth factor for 

an HHV-8 related cancer called Kaposi sarcoma. OSM has also been shown to enhance the 

development of certain cells such as endothelial cells and hematopoietic cells
8
. A down-

regulation of OSM would result in less secreted OSM by the low-risk LCLs, and as a result 

would not have an enhanced effect on the surrounding target cells or tissues. SOCS3 is a 

suppressor of cytokine signaling, as the name suggests. It works to negatively regulate cytokine 

signaling within the cell. It is down-regulated in the low-risk LCLs, which does not match the 

lack of growth seen in response to IL-6.  

CSF2RB, JAK2, and SRC are all up-regulated in the high-risk LCLs. CSF2RB is a 

subunit of receptors to the following cytokines:  IL-3, IL-5, and GM-CSF. Deregulated signaling 

in these cytokine pathways is often associated with chronic inflammatory diseases and 

hematological malignancies. This receptor system seems to be primarily involved in emergency 

situations, where a large amount of hemopoietic cells are required to elevate the immune 

response
86

. An up-regulation of this gene could lead to inflammation in the high-risk LCLs. 
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JAK2 is widely expressed in most cells and is involved in signaling of IL-3, GM-CSF, IL-5, and 

IFY-γ, but not IL-6, IFN-α or IFN-β
87

. It is interesting that both JAK2 and CSF2RB are up-

regulated, considering that both of these genes are involved in GM-CSF/IL-3/IL-5 signaling. 

SRC is also up-regulated in the high-risk LCLs, and is part of the SRC family kinases (SFK). 

When not controlled properly, these SFKs show oncogenic activity and have been known to 

induce malignant transformation of cells. Additionally, SFK deregulation has been found in 

about 80% of colorectal cancers
88

. The down-regulated genes, SMAD5 and SOCS4 are both 

negative regulators of signaling. SMAD5 works with other SMAD proteins to transduce signals 

from TGF-β that regulate cell proliferation, differentiation and death. Ultimately, SMAD5 works 

to inhibit proliferation of hematopoietic progenitor cells
89

. SOCS4 works very similarly to 

SOCS3 (explained previously), by inhibiting cytokine signaling. By down-regulating inhibitory 

signals, you allow the cell to respond to growth stimulatory signals, which is seen in the high-

risk LCLs.   

These data encouraged us to repeat the experiments. The JAK/STAT plates were only 

completed once, and since we used SYBR green technology, we had to delete or exclude a 

majority of genes due to melt curves that caused us to mistrust the data. By using Taqman plates, 

we could ensure that a majority of the data is usable. The Human IL-6 Pathway PCR Array 

plates were performed in duplicates, and also showed a number of genes that were significantly 

up- or down-regulated in response to IL-6 10 minutes post-treatment.  

In the high-risk LCLs, TNF, IL-6, SOCS1, and SOCS2 are all up-regulated, while 

TP53BP2 is down-regulated (Figure 10). TNF is a pro-inflammatory cytokine that exerts 

multiple biological effects. Locally, low-levels of TNF expression is helpful to the host defense 

in response to injury or infection. However, if TNF expression is not tightly controlled, 
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overproduction of this cytokine results in systemic inflammation and tissue damage
90

. An 

increased gene expression of 7.1-fold over untreated controls in the high-risk LCLs could be 

leading to the increased growth we saw in the growth curves. TNF is not significantly increased 

or decreased in the low-risk LCLs. TNF has also been shown to enhance IL-6 production
91

. IL-6 

was up-regulated in both the high- and low-risk LCLs. IL-6, as mentioned previously, has a wide 

variety of biological activities: IL-6 both promotes and inhibits growth, induces differentiation 

and regulates gene expression. IL-6 has been known to enhance proliferation of B-cells in vitro, 

and also induce antibody production of B-cells. Overall, IL-6 has been shown to have a central 

role in host defense mechanisms by regulating the immune response
91

. An increased gene 

expression of two-fold or greater in both the high- and low-risk cell lines could induce 

proliferation of LCLs in vivo. SOCS1 and SOCS2 (Suppressor of Cytokine Signaling 1 and 2) 

are both up-regulated in the high-risk LCLs. SOCS proteins are negative regulators of cytokine 

signaling, and SOCS 1 and SOCS2 have been shown to specifically inhibit IL-6 cytokine 

signaling
92

. As a result, it The SOCS proteins were not significantly up- or down-regulated in the 

low-risk LCLs. TP53BP2 encodes a protein known as apoptosis stimulating protein of p53-2, 

which is also known as ASPP2 and 53BP2L. This protein typically inhibits cell growth and 

stimulates apoptosis through a p53-mediated pathway. The expression of this protein is 

frequently suppressed in human cancers; without the protein expression, cells are less likely to 

undergo apoptosis and more likely to grow uncontrollably and favor the initiation of cancer 
93

. 

This gene is up-regulated in the low-risk LCLs and down-regulated in the high-risk LCLs. This 

is an interesting find because this would favor the initiation of cancer in the high-risk LCLs and 

not in the low-risk LCLs. The TP53BP2 gene is up-regulated by almost 4-fold compared to the 



 76 

untreated in the low-risk LCLs, while it is down-regulated by greater than 4-fold in the high-risk 

LCLs.  

In the low-risk LCLs, SH2, IL-6, and TP53BP2 are up-regulated, while both SH3 and IL-

1β are down-regulated (Figure 10). SHC3 is also known as the Src homology 2 domain 

containing transforming proteins 3. SHC proteins are adaptor proteins that serve as substrates for 

tyrosine kinases. Once phosphorylated, these proteins associate with receptor tyrosine kinases 

and Grb2. The association with Grb2 leads to the activation of the Ras pathway
94

 and the MAP 

kinase cascade
95

. The activation of these pathways results in cell proliferation, differentiation, 

migration and survival
95

. SHC3 is down-regulated in the low-risk cell line, and there is no 

significant up or down-regulation of any of the SHC family member proteins in the high-risk cell 

line. Since SHC3 is down-regulated in the low-risk cell line, this would result in less Ras and 

MAP kinase cascade activation, and as a result less proliferation and differentiation. A down-

regulation of SHC3 in the low-risk cell line also supports the idea that the genes regulated by IL-

6 signaling in the low-risk cell line do not favor the initiation or progression of cancer. IL-1β is a 

member of the interleukin-1 family of cytokines, which is comprised of 11 total members. IL-1β 

is a proinflammatory cytokine, and has been implicated in a number of autoimmune diseases. 

When IL-1β is blocked, there is a dramatic decrease in inflammation
96

. IL-1β is down regulated 

in the low-risk LCLs, which would induce less inflammation in the low-risk genotype than in the 

high-risk genotype. These data fit with our growth curves, which show that the low-risk LCLs 

grow much slower and do not respond as well to IL-6 as the high-risk cell line. IL-1β was not 

significantly up or down regulated in the high-risk LCLs.  

Using the array plates is a good way to survey a large amount of genes involved in this 

pathway in a short amount of time. However, once certain genes are designated as important, 
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further work could be done to look deeper into the differences between genes deemed important 

in this pathway. Future work could look into the differences found using the IL-6 pathway array 

plate. Specifically, looking into the differences seen in the regulation of the TP53BP2 gene 

would be particularly interesting. This gene could be inducing apoptosis in the low-risk cell line 

and preventing such in the high-risk cell line. This would result in an increased survival and 

proliferation in the high-risk cell LCLs.  

There are a number of reasons why we could be seeing differential activation of genes 

between the high- and low-risk LCLs upon IL-6 stimulation. IL-6 has been shown to activate 

both the JAK/STAT and MAPK pathways in B cells
97,98

. It is possible that the high- or low-risk 

cell line is also activating alternate pathways upon IL-6 stimulation. STAT3 has also been known 

to be modified after activation by other proteins in the cell, which could alter its’ binding 

activity, or cause it to preferentially bind to certain DNA sequences rather than others
99

.  

4.1.4 AIM I CONCLUDING REMARKS 

We saw that there was a difference in growth and downstream gene expression as a result 

of IL-6 stimulation in the high- and low-risk lymphoblastoid cell lines. Based off of our data, we 

were able to conclude that these differences may be the result of the G148R SNP in the gp130 

extracellular ligand binding domain. Although gp130 is expressed on most, if not all, cells of the 

body, we reasoned the effect that the G148R SNP has on IL-6 signaling seen in the LCLs might 

not be identical on all cells of the body. In another kind of cell, it is likely that this SNP could 

have different effects, particularly a SNP involved in cytokine signaling, since we do know that 

the same cytokine can activate different components in different cell types
100

. In addition to 

wanting to look at other cells, we also wanted cells that expressed the primary receptors to IL-11 
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and OSM, to investigate whether the G148R SNP has an effect on these cytokine signaling 

pathways as well.  

4.2 AIM II 

4.2.1 PROSTATE CANCER LINES GROWTH CURVE ANALYSIS 

Prostate cancer cells PC3 and DU 145 are adherent cell lines that have been used 

extensively in prostate cancer research, and are well characterized
53

. As stated previously, they 

are both androgen insensitive, and lack the androgen receptor, 5α-reductase, and PSA
53

. We had 

both of these cell lines in our lab, and when genotyped for the gp130 G148R SNP, we found that 

PC3s expressed the high-risk genotype, and DU 145s expressed the low-risk genotype. In 

addition, literature has shown that both of these cell lines express the primary receptors for IL-6, 

IL-11, OSM
59,62,101

. To add to this even further, IL-6 has been shown to be in neoplastic prostate 

tissues at concentrations 18-fold higher when compared to benign or normal prostate tissue
102

.  

Previous studies have shown that exogenous IL-6 has a significant effect on growth of 

PC3 and DU 145 cells, at concentrations ranging from 10-100ng/mL
50

, while other studies 

showed that androgen insensitive cell lines, PC3 and DU 145, did not exhibit any growth 

increase when treated with exogenous IL-6
49

. Another study has shown that OSM is capable of 

enhancing the growth of DU 145 cells, but not PC3s
62

. In our research, we have shown that 10, 

25, or 100ng/mL of cytokines IL-6, IL-11, or OSM do not have a significant effect on the growth 

of DU 145s or PC3s (Figures 12 and 13).  
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Although this indicates that IL-6, IL-11, and OSM do not have any effect on growth in 

either PC3 or DU 145 cell lines, it does not necessarily mean that there is not a difference in 

downstream signaling due to the R148G polymorphism. IL-6 is a growth and differentiation 

factor for B lymphocytes
103

, so we would expect that when exogenous IL-6 is added, that there is 

an effect on growth. Even though none of the cytokines had a differential effect on growth, we 

decided to move forward and see if the polymorphism resulted in a difference in downstream 

signaling. 

4.2.2 PROSTATE CANCER LINES STAT3 ANALYSIS 

By looking at STAT3 activation (phosphorylation of STAT3), we are able to see the 

effects of cytokines on proximal signaling events. Figures 13-15 show that both PC3 and DU 145 

respond as early as 2 minutes post treatment to 10ng/mL of OSM, that neither cell line responds 

to 10-100ng/mL of IL-11, and only DU 145 shows STAT3 activation to 10-100ng/mL of IL-6. 

These data contrast data in the literature, which have shown a number of different things 

involving these cell lines. One study completed by Mori et al. stated that in PC3s, STAT3 failed 

to become tyrosine phosphorylated after treatment with OSM
62

. Other research has shown that in 

DU 145 cells, STAT3 is activated by 25-200ng/mL of IL-11 as early as 10 minutes post 

treatment
59

. Pitulis et al. showed that PC3 cells phosphorylated STAT3 upon treatment with 

25ng/mL IL-6
81

, however this is not what we saw in our results when treated with 10 or 

100ng/mL.  

There are a number of reasons that PC3s may not be responding to IL-6. First, the 

receptor may be deficient in signaling. Although IL-6RΑα and gp130 are both present on the cell 

surface (Figure 16), it may be incapable of inducing signaling for some reason. To test this 



 80 

hypothesis, you could transfect the cells with a plasmid expressing the high-risk receptor, and 

then repeat the experiments. If signaling is restored, it would mean that there is something wrong 

with the receptor that is inhibiting signaling through the JAK/STAT pathway. Second, it is 

possible that PC3 (high-risk) are signaling through STAT1 rather than the more common 

STAT3. This hypothesis can also be easily tested by looking at activation of STAT1 

(phosphorylation of STAT1) rather than STAT3. It is also possible that after being cultured for a 

lengthy period of time, any cells are capable of mutating and changing over a period of time. In 

fact, our PC3 or DU 145 cells might behave differently than cells in other laboratories, and this 

seems to be evident by the discrepancies surrounding this research that can be found in the 

literature.    

4.2.3 AIM II CONCLUDING REMARKS 

The reasoning for the signaling deficiency in the high-risk prostate cancer cell line PC3 is 

unclear, however, it is obvious that researchers need to look into this further. PC3 and DU 145 

are often used to study hormone insensitive prostate cancer, and IL-6 is often implicated in 

helping the hormone insensitive phenotype develop after androgen ablation by interacting with 

the androgen-signaling pathway
13,104,105

. Analyzing this pathway in cells that are unresponsive to 

IL-6 is problematic.  

Researchers have also shown that STAT3 is constitutively active in PC3 and DU 145 

cells
78

. Our research shown in Figure 16 supports these findings. Both DU 145 and PC3 have 

constitutive levels of STAT3 in the cells, and upon 100ng/mL of IL-6 stimulation, levels of 

STAT3 showed less than a two-fold change. This can be compared to Figure 15 which shows a 

25-30 fold change in pSTAT3 levels upon IL-6 stimulation by 30 minutes post treatment. 
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Similarly to the LCLs, this indicates that a majority of the phosphorylated STAT3 is simply 

being converted from STAT3 that is already present, and there is not a lot of de novo STAT3 

protein synthesis. It is also a possibility that STAT3 may be constitutively present because of the 

autocrine feedback loop present in these prostate cancer cells, since they produce low levels of 

IL-6 (Figure 11)
106

.  
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5.0 CONCLUSIONS AND FUTURE DIRECTIONS 

The R148G polymorphism in the gp130 signaling receptor has various effects on 

different cell types, as evidenced by our research using lymphoblastoid cell lines and prostate 

cancer cell lines. In LCLs, IL-6 plays a role in growth and proliferation, and the R148G SNP 

may alter the way the LCLs respond to IL-6. High- and low-risk LCLs show differences in 

growth in response to IL-6, as evidenced by the growth curves. Upon IL-6 stimulation, both the 

high- and low-risk LCLs phosphorylate STAT3 by 10 minutes post-treatment, but activate a 

different set of genes upon STAT3 activation.  The genes that are up- or down-regulated may 

explain the various responses we see in growth upon IL-6 treatment.  We cannot make any 

conclusions on how this SNP affects the response to IL-11 or OSM in the LCLs, since we do not 

believe that they express the primary receptors for these cytokines. Another interpretation of the 

results could be that the constitutive STAT3 levels differ between the high- and low-risk 

genotype, and this is resulting in the differences in growth that are seen. However, we still see a 

significant amount of phosphorylation in the low-risk LCLs, which would indicate that despite 

the differences in STAT3 levels, it is still being phosphorylated, and should result in cell 

proliferation which is slower, but eventually catches up to the high-risk LCLs. This most likely 

indicates that there is a more downstream mechanism that is being differentially regulated to 

result in growth differences between the high- and low-risk LCLs. 
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Additional studies need to be completed to further elucidate which genes are activated in 

each gp130 genotype, why they are differentially regulated in the same type of cells, and how 

these genes work to regulate growth responsiveness to IL-6 in LCLs.  

When we switched to prostate cancer cells, we did not see any effect on growth in either 

the high- or low-risk genotype (PC3 and DU 145, respectively) in response to IL-6, IL-11, or 

OSM. We have discovered that PC3s do not activate STAT3 in response to IL-6 treatment, 

despite the fact that they have both the primary and secondary receptors for IL-6. It is possible 

that they are activating STAT1 or STAT3 at another less common residue. Additionally, it is 

accurate to say that research using PC3 and DU 145 cell lines often show discrepancies between 

studies on how these cell lines respond to IL-6, IL-11, or OSM. Consequently, investigators 

should be more cautious when trying to draw conclusions using these cell lines in relation to the 

role of these cytokines in development of prostate cancer. It would be ideal in future studies to 

use primary prostate or primary prostate cancer cells with a high- and low-risk genotype when 

analyzing how the G148R SNP affects the responsiveness to IL-6, IL-11, or OSM.  
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6.0 STRENGTHS AND LIMITATIONS 

As with many research projects, we would like to recognize that there were some 

limitations to this research. We would like to recognize that a few of the Western blots were only 

performed once, and not repeated. In particular, the Western blots on total STAT3 (Figures 8 and 

16) were only performed once. In addition, although we had replicates for the ELISA and growth

curve experiments, they were not repeated. The strength of Dr. Jill Henning’s research was that 

she was able to use three low-risk cell lines and seven high-risk cell lines, while we were limited 

to one of each genotype. This research would be strengthened if we used multiple cell lines of 

each genotype. 

We do believe that by utilizing multiple array plates each which utilize different 

technologies, we were able to verify with certainty that there are different genes that were up- or 

down-regulated by 10 minutes post treatment with IL-6. Another very strong asset to our project 

was the ability to use B cells that were transformed from the Tobago men that the prostate cancer 

studies were performed on. The Xcelligence machine was also a very big advantage, as we were 

able to confirm the growth curve analysis using a much more specific and sensitive method. 
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7.0  PUBLIC HEALTH SIGNIFICANCE 

The cause of prostate cancer still remains largely unknown. What is known is that age, 

family history, and race are all risk factors for prostate cancer
43

. We have previously 

demonstrated that there was a positive association between prostate cancer and human 

herpesvirus 8 (HHV-8) (OR=2.24; 95% CI 1.29-3.90), and further showed a positive association 

between HHV-8, GG allele of gp130, and prostate cancer (OR=3.41, 95% CI 1.36-8.55, 

p=0.009). We further elucidated the role that the G148R SNP has in inflammation in response to 

various cytokines. By further understanding the role that this SNP has in the development of an 

inflammatory state and possibly establishing an environment for the initiation of cancer, we will 

also be able to understand how to lower the risk for prostate cancer. In addition, by genotyping 

men with beginning stages of prostate cancer, we would be able to inform them that they may be 

at a higher risk for prostate cancer, and they can be more carefully followed over the course of 

their lives. By no means is this the only way that prostate cancer develops. Rather, there are 

many different situations, pathways, risk factors, environmental factors, and cellular factors that 

may all contribute to the development of prostate cancer. By better understanding each one, 

hopefully the scientific community can work together to ease the burden prostate cancer has on 

men in the United States as well as other nations.  
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APPENDIX A: LIST OF GENES IN JAK/STAT PLATE ARRAY 

JAK/STAT Plate Array from SABiosciences (Cat. # PAHS-039Z) 

Symbol Description 

A2M Alpha-2-macroglobulin 

SH2B2 SH2B adaptor protein 2 

BCL2L1 BCL2-like 1 

CCND1 Cyclin D1 

CDKN1A Cyclin-dependent kinase inhibitor 1A (p21, Cip1) 

CEBPB CCAAT/enhancer binding protein (C/EBP), beta 

CRK V-crk sarcoma virus CT10 oncogene homolog (avian) 

CRP C-reactive protein, pentraxin-related 

CSF1R Colony stimulating factor 1 receptor 

CSF2RB 
Colony stimulating factor 2 receptor, beta, low-affinity (granulocyte-

macrophage) 

CXCL9 Chemokine (C-X-C motif) ligand 9 

EGFR Epidermal growth factor receptor 

EPOR Erythropoietin receptor 

F2 Coagulation factor II (thrombin) 

F2R Coagulation factor II (thrombin) receptor 

FAS Fas (TNF receptor superfamily, member 6) 

FCER1A Fc fragment of IgE, high affinity I, receptor for; alpha polypeptide 

FCGR1A Fc fragment of IgG, high affinity Ia, receptor (CD64) 

ISG15 ISG15 ubiquitin-like modifier 

GATA3 GATA binding protein 3 

GBP1 Guanylate binding protein 1, interferon-inducible 

GHR Growth hormone receptor 

HMGA1 High mobility group AT-hook 1 

IFNAR1 Interferon (alpha, beta and omega) receptor 1 

IFNG Interferon, gamma 

IFNGR1 Interferon gamma receptor 1 

IL10RA Interleukin 10 receptor, alpha 

IL20 Interleukin 20 

IL2RA Interleukin 2 receptor, alpha 

IL2RG Interleukin 2 receptor, gamma 

IL4 Interleukin 4 

IL4R Interleukin 4 receptor 

IL6ST Interleukin 6 signal transducer (gp130, oncostatin M receptor) 

INSR Insulin receptor 

IRF1 Interferon regulatory factor 1 

IRF9 Interferon regulatory factor 9 

JAK1 Janus kinase 1 
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JAK2 Janus kinase 2 

JAK3 Janus kinase 3 

JUN Jun proto-oncogene 

JUNB Jun B proto-oncogene 

MMP3 Matrix metallopeptidase 3 (stromelysin 1, progelatinase) 

MPL Myeloproliferative leukemia virus oncogene 

MYC V-myc myelocytomatosis viral oncogene homolog (avian) 

NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-cells 1 

NOS2 Nitric oxide synthase 2, inducible 

NR3C1 
Nuclear receptor subfamily 3, group C, member 1 (glucocorticoid 

receptor) 

OAS1 2'-5'-oligoadenylate synthetase 1, 40/46kDa 

OSM Oncostatin M 

PDGFRA Platelet-derived growth factor receptor, alpha polypeptide 

PIAS1 Protein inhibitor of activated STAT, 1 

PIAS2 Protein inhibitor of activated STAT, 2 

PPP2R1A Protein phosphatase 2, regulatory subunit A, alpha 

PRLR Prolactin receptor 

PTPN1 Protein tyrosine phosphatase, non-receptor type 1 

PTPRC Protein tyrosine phosphatase, receptor type, C 

SH2B1 SH2B adaptor protein 1 

SIT1 Signaling threshold regulating transmembrane adaptor 1 

SLA2 Src-like-adaptor 2 

SMAD1 SMAD family member 1 

SMAD2 SMAD family member 2 

SMAD3 SMAD family member 3 

SMAD4 SMAD family member 4 

SMAD5 SMAD family member 5 

SOCS1 Suppressor of cytokine signaling 1 

SOCS2 Suppressor of cytokine signaling 2 

SOCS3 Suppressor of cytokine signaling 3 

SOCS4 Suppressor of cytokine signaling 4 

SOCS5 Suppressor of cytokine signaling 5 

SP1 Sp1 transcription factor 

SPI1 Spleen focus forming virus (SFFV) proviral integration oncogene spi1 

SRC V-src sarcoma (Schmidt-Ruppin A-2) viral oncogene homolog (avian) 

STAM Signal transducing adaptor molecule (SH3 domain and ITAM motif) 1 

STAT1 Signal transducer and activator of transcription 1, 91kDa 

STAT2 Signal transducer and activator of transcription 2, 113kDa 

STAT3 
Signal transducer and activator of transcription 3 (acute-phase response 

factor) 

STAT4 Signal transducer and activator of transcription 4 

STAT5A Signal transducer and activator of transcription 5A 

STAT5B Signal transducer and activator of transcription 5B 

STAT6 Signal transducer and activator of transcription 6, interleukin-4 induced 
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STUB1 
STIP1 homology and U-box containing protein 1, E3 ubiquitin protein 

ligase 

TYK2 Tyrosine kinase 2 

USF1 Upstream transcription factor 1 

YY1 YY1 transcription factor 

B2M Beta-2-microglobulin 

HPRT1 Hypoxanthine phosphoribosyltransferase 1 

RPL13A Ribosomal protein L13a 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

ACTB Actin, beta 

HGDC Human Genomic DNA Contamination 

RTC Reverse Transcription Control 

RTC Reverse Transcription Control 

RTC Reverse Transcription Control 

PPC Positive PCR Control 

PPC Positive PCR Control 

PPC Positive PCR Control 
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APPENDIX B: LIST OF GENES IN IL-6 PLATE ARRAY 

Human IL-6 Pathway Plate Array from Life Technologies (Cat. # 4418794) 

Symbol Description 

18S DIM1 dimethyladenosine transferase 1 homolog 

GAPDH Glyceraldehyde-3-phosphate dehydrogenase 

HPRT1 Hypoxanthine phosphoribosyltransferase 1 

GUSB Glucuronidase, beta 

AKT1 V-akt murine thymoma viral oncogene homolog 1 

ARAF V-raf murine sarcoma 3611 viral ongoene homolog 

BAX BCL2-associated X protein 

BCL2 B-cell CLL/lymphoma 2 

BRAF V-raf murine sarcoma viral oncogene homolog B1 

CCL2 Chemokine (C-C motif) ligand 2 

CD4 CD4 molecule 

CHUK Conserved helix-loop-helix ubiquitious kinase 

CXCL12 Chemokine (C-X-C motif) ligand 12 

FRAP1 Mechanistic target of rapamycin 

GRB2 Growth factor receptor-bound protein 2 

HRAS Harvey rat sarcoma viral oncogene homolog 

IKBKB Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase beta 

IKBKE Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase epsilon 

IKBKG Inhibitor of kappa light polypeptide gene enhancer in B-cells, kinase gamma 

IL10 Interleukin-10 

IL18 Interleukin-18 

IL1A Interleukin-1 alpha 

IL1B Interleukin-1 beta 

IL2 Interleukin-2 

IL4 Interleukin-4 

IL6 Interleukin-6 

IL6R Interleukin-6 

IL6ST Interleukin-6 Signal Transducer 

IL8 Interleukin-8 

JAK3 Janus kinase 3 

KRAS Kirsten rat sarcoma viral oncogene homolog 

MAP2K1 Dual-specificity mitogen-activated protein kinase 1 
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MAP2K2 Dual-specificity mitogen-activated protein kinase 2 

MAP2K3 Dual-specificity mitogen-activated protein kinase 3 

MAP2K4 Dual-specificity mitogen-activated protein kinase 4 

MAP2K5 Dual-specificity mitogen-activated protein kinase 5 

MAP2K6 Dual-specificity mitogen-activated protein kinase 6 

MAPK1 Mitogen-activated protein kinase 1 

MAPK12 Mitogen-activated protein kinase 12 

MAPK3 Mitogen-activated protein kinase 3 

MAPK6 Mitogen-activated protein kinase 6 

MAPK7 Mitogen-activated protein kinase 7 

MRAS Muscle RAS oncogene homolog 

MYC V-myc myelocytomatosis viral oncogene homolog 

NFKB1 Nuclear factor of kappa light polypeptide gene enhancer in B-Cells 1 

NFKB2 Nuclear factor of kappa light polypeptide gene enhancer in B-Cells 2 

NFKBIA 
Nucelar factor of kappa light polypeptide gene enhancer in B-cells inhibitor 

alpha 

NFKBIB 
Nucelar factor of kappa light polypeptide gene enhancer in B-cells inhibitor 

beta 

NFKBIE 
Nucelar factor of kappa light polypeptide gene enhancer in B-cells inhibitor 

epsilon 

NRAS Neuroblastoma RAS viral oncogene homolog 

PIAS3 Protein inhibitor of activated STAT3 

PIK3C2A Phosphadtidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 alpha 

PIK3C2B Phosphadtidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 beta 

PIK3C2G Phosphadtidylinositol-4-phosphate 3-kinase, catalytic subunit type 2 gamma 

PIK3C3 Phosphadtidylinositol 3-kinase, catalytic subunit type 3 

PIK3CA Phosphadtidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit alpha 

PIK3CB Phosphadtidylinositol-4,5-bisphosphate 3-kinase, catalytic subunit beta 

PIK3CD Phosphatidylinositol 3-kinase catalytic delta polypeptide 

PIK3R1 Phosphoinositide-3-kinase, regulatory subunit 1 

PIK3R2 Phosphoinositide-3-kinase, regulatory subunit 2 

PIK3R3 Phosphoinositide-3-kinase, regulatory subunit 3 

PIK3R4 Phosphoinositide-3-kinase, regulatory subunit 4 

PIK3R5 Phosphoinositide-3-kinase, regulatory subunit 5 

PIM1 Pim-1 oncogene 

PPP1R12A Protein phosphatase 1, regulatory subunit 12A 

PPP1R15A Protein phosphatase 1, regulatory subunit 15A 

PPP1R1B Protein phosphatase 1, regulatory (inhibitor) subunit 1B 

PPP2CA Protein phosphatase 2, catalytic subunit, alpha isozyme 

PPP2CB Protein phosphatase 2, catalytic subunit, beta isozyme 
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PPP2R1A Protein phosphatase 2, regulatory subunit A, alpha 

PPP2R1B Protein phosphatase 2, regulatory subunit A, beta 

PPP2R2A Protein phosphatase 2, regulatory subunit B, alpha 

PPP2R2B Protein phosphatase 2, regulatory subunit B, beta 

PPP2R4 Protein phosphatase 2A activator, regulatory subunit 4 

PPP2R5A Protein phosphatase 2, regulatory subunit B', alpha 

PPP2R5C Protein phosphatase 2, regulatory subunit B', gamma 

PTPN11 Protein tyrosine phosphatase, non-receptor type 11 

PTPN6 Protein tyrosine phosphatase, non-receptor type 6 

RAF1 V-raf-1 murine leukemia viral oncogene homolog 1 

REL V-rel reticuloendotheliosis viral oncogene homolog 

RELA V-rel reticuloendotheliosis viral oncogene homolog A 

RELB Avian reticuloendotheliosis viral (v-rel) oncogene related B 

RRAS Related RAS viral (r-ras) ongoene homolog 

RRAS2 Related RAS viral (r-ras) ongoene homolog 2 

SHC1 SHC (Src homology 2 domain containing) transforming protein 1 

SHC2 SHC (Src homology 2 domain containing) transforming protein 2 

SHC3 SHC (Src homology 2 domain containing) transforming protein 3 

SOCS1 Suppressor of cytokine signaling 1 

SOCS2 Suppressor of cytokine signaling 2 

SOCS3 Suppressor of cytokine signaling 3 

SOCS5 Suppressor of cytokine signaling 5 

SOCS6 Suppressor of cytokine signaling 6 

STAT3 
Signal transducer and activator of transcription 3 (acute-phase response 

factor) 

TIMP1 TIMP metallopeptidase inhibitor 1 

TNF Tumor necrosis factor 

TP53BP2 Tumor protein p53 binding protein, 2 
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