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ABSTRACT 

Comparisons between groups play a central role in clinical research. As these comparisons often 

entail many potentially correlated response variables, the classical multivariate general linear 

model has been accepted as a standard tool. However, parametric methods require distributional 

assumptions such as multivariate normality while non-normal data often exist in clinical 

research. For example, a clinical trial investigating a treatment for depression is designed as a 

longitudinal study and the main outcome is survey scores of subjects on several time points, 

while the scores are ordinal. Although non-parametric multivariate methods are available in the 

statistical literature, they are not seen to be commonly used in clinical research. Moreover, 

automatic deletion of cases with missing values in response variables is a shortcoming of 

standard software when performing multivariate tests. This dissertation addresses the issues of 

violation of multivariate normality assumption and missing data, focusing on the non-parametric 

multivariate Kruskal-Wallis (MKW) test, likelihood-based and permutation-based methods. 

First, an R-based program is written to compute the p-value of MKW test for group 

comparison. Simulation studies show that the permutation-based MKW test provides better 

coverage and higher power level than likelihood-based MKW test and classical MANOVA. 

Second, an extension of MKW test is proposed for multivariate data with missingness. The 

proposed method retrieves information in partially observed cases and is permutation-based. A 
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FOR NON-NORMAL MULTIVARIATE OUTCOMES 

Fanyin He, PhD 

University of Pittsburgh, 2013
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sensitivity analysis compares the performance of the proposed extension and the standard test 

utilizing only complete cases. Results show that the proposed extended method provides higher 

power level, encompassing a broad spectrum of multivariate effect sizes. An illustrative example 

using data from a psychiatric clinical trial is provided. The R program is ready to use for applied 

statistician. 

The public health relevance of this work lies in the development of a new powerful 

methodology with user-friendly computer software for group comparisons in non-normal 

multivariate data with or without missingness. 



vi 

TABLE OF CONTENTS 

ACKNOWLEDGEMENTS ....................................................................................................... XI 

1.0 INTRODUCTION ........................................................................................................ 1 

2.0 LITERATURE REVIEW ............................................................................................ 3 

2.1 MULTIVARIATE GENERAL LINEAR MODEL (GLM) ............................. 3 

2.1.1 Classical Tests .................................................................................................. 3 

2.1.2 Permutation-Based Tests ................................................................................ 5 

2.2 MULTIVARIATE KRUSKAL-WALLIS (MKW) TEST ............................... 6 

2.2.1 Kruskal-Wallis Test ......................................................................................... 6 

2.2.2 Likelihood-based Multivariate Kruskal-Wallis Test.................................... 7 

2.2.3 Permutation-based Multivariate Kruskal-Wallis Test ................................ 8 

2.3 MULTIVARIATE EFFECT SIZE .................................................................... 9 

3.0 PERFORMANCE OF MKW TEST ........................................................................ 11 

3.1 COMPARISON BETWEEN MANOVA AND MKW TEST ........................ 11 

3.2 COVERAGE OF MKW TEST......................................................................... 13 

3.3 POWER OF MKW TEST ................................................................................. 14 

4.0 MISSING DATA ISSUE ........................................................................................... 18 

4.1 MISSINGNESS MECHANISMS ..................................................................... 18 

4.2 FORMULATION OF THE TEST ................................................................... 19 



 vii 

4.3 SIMULATION STUDY..................................................................................... 21 

5.0 APPLICATION .......................................................................................................... 30 

5.1 YOGA DATA ..................................................................................................... 30 

5.2 APPLICATION ................................................................................................. 33 

5.2.1 Univariate Kruskal-Wallis Test ................................................................... 33 

5.2.2 Multivariate Tests .......................................................................................... 34 

6.0 DISCUSSIONS ........................................................................................................... 36 

6.1 SAMPLE SIZE CALCULATION.................................................................... 36 

6.2 SINGULARITY ISSUE..................................................................................... 37 

7.0 CONCLUSIONS ........................................................................................................ 38 

APPENDIX: R CODE FOR MKW TEST................................................................................ 40 

BIBLIOGRAPHY ....................................................................................................................... 45 



viii 

 LIST OF TABLES 

Table 3.1. Type I errors of MANOVA tests and MKW tests in different scenarios .................... 13 

Table 3.2 Type I errors of MKW tests in different scenarios.. ...................................................... 14 

Table 3.3 Power simulations of MKW tests in different scenarios (p=4) .................................... 16 

Table 3.4 Power simulations of MKW tests in different scenarios (p=8) .................................... 17 

Table 4.1 Data generation summary ............................................................................................. 22 

Table 4.2 Missing patterns of bivariate data ................................................................................. 23 

Table 4.3 Simulation results of type I errors................................................................................. 25 

Table 4.4 Power simulations with normal outcomes, medium rate of missingness and varying 

effect sizes ..................................................................................................................................... 26 

Table 4.5 Power simulations with normal outcomes and high rate of missingness and varying 

effect sizes ..................................................................................................................................... 27 

Table 4.6 Power simulations with non-normal outcomes and medium rate of missingness and 

varying effect sizes ....................................................................................................................... 28 

Table 4.7 Power simulations with non-normal outcomes and high rate of missingness and 

varying effect sizes ....................................................................................................................... 29 

Table 5.1 Univariate Kruskal-Wallis tests on Yoga example ....................................................... 33 

Table 5.2 Missing pattern of improvement of cognitive functions in the four domains in Yoga 

example ......................................................................................................................................... 34 



 ix 

Table 5.3 p-values of MANOVA and MKW tests on Yoga example .......................................... 35 

Table 6.1 Effect sizes required to detect a difference between two groups with 80% power in pre-

specified sample sizes ................................................................................................................... 37 



 x 

LIST OF FIGURES 

Figure 4.1 Missing patterns of bivaraite data with medium rates of missingness ........................ 23 

Figure 5.1 Flow chart of Yoga data .............................................................................................. 32 



 xi 

ACKNOWLEDGEMENTS 

I gratefully acknowledge the suggestions and comments provided by my advisor Dr. Sati 

Mazumdar and my committee members Dr. Stewart Anderson, Dr. Gong Tang, Dr. Robert T. 

Krafty, Dr. Martica Hall and Dr. Bruce L. Rollman. I thank Dr. Pranab K. Sen (University of 

North Carolina) for statistical inputs and Dr. Triptish Bhatia (Dr Ram Manohar Lohia Hospital, 

New Delhi, India) for letting me use her data (supported by NIH, R01 TW008289). I am grateful 

for academic support from “Aging Well, Sleeping Efficiently: Intervention Studies” (AgeWise, 

supported by NIH, P01 AG20677-05), and “Improving Quality of Primary Care for Anxiety 

Disorders” (supported by NIMH, R01 MH 09421/MH/NIMH NIH HHS/United States). 

 

 



1 

1.0  INTRODUCTION 

Comparisons between several treatment groups play a central role in clinical research. As these 

comparisons often entail many potentially correlated dependent variables, the classical 

multivariate general linear model has been accepted as a key tool for this endeavor. The widely 

applied statistical procedures, univariate and multivariate analysis of variance (ANOVA and 

MANOVA) are subsumed under this model. For practitioners, the use of these statistical 

procedures does not pose any difficulties under normality assumptions due to the availability of 

software (SAS, SPSS, and STATA). However, difficulties exist if the assumption of normality is 

violated. This is especially true for multivariate data. Though practitioners are aware of the 

benefits of simultaneous inference in parametric and nonparametric methods, lack of readily 

available computer software for nonparametric MANOVA methods often prevents them from 

performing appropriate analyses. 

This dissertation addresses the issue of nonconformity with the multivariate normality 

assumption. I consider analytic methods pertaining to outcomes measured at a fixed time point, 

both continuous and discrete/ordinal variables and use likelihood-based and permutation-based 

theories for the methods. I focus on the multivariate Kruskal-Wallis (MKW) test (May and 

Johnson, 1997) for group comparisons. The dissertation concerns the nonparametric hypothesis 

tests for correlated multivariate outcomes in a MANOVA-like frame. The objective is to provide 

a guideline to practitioners for analyzing multivariate data for group comparisons. 



2 

An R-based program is written to compute the p-value of MKW test for group 

comparison. Simulation studies are done to compare the coverage and power levels of classical 

MANOVA, the likelihood-based MKW test and the permutation-based MKW test. 

Missing data often exist in clinical trials. However, in the MANOVA-like frame, the 

standard tests do not utilize information in partially observed cases.  In software algorithms such 

as the SAS MANOVA procedure and the SAS macro written by May and Johnson (1997) for 

MKW test, cases with missing values in response variables are deleted when performing the 

tests. I propose a nonparametric method for multivariate non-normal data with missingness, 

which is an extension of the MKW test. The method retrieves information in partially observed 

cases in missing data. 

I carry out a sensitivity analysis to compare the performance of the proposed extension of 

MKW test and the standard test utilizing only complete cases under missing completely at 

random assumption. Results show that the proposed extended method provides higher power 

level, encompassing a broad spectrum of multivariate effect sizes. An illustrative example using 

data from a psychiatric clinical trial is provided. 
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2.0  LITERATURE REVIEW 

2.1 MULTIVARIATE GENERAL LINEAR MODEL (GLM) 

2.1.1 Classical Tests 

The multivariate general linear model (GLM) subsumes MANOVA models utilizing a general 

statistical framework. Description of GLM can be found in many statistical text books and user 

guides for most statistical software packages. The term “general” refers to the fact that the GLM 

implements both regression and ANOVA models, univariate and multivariate in the same 

framework. 

A GLM can be written as 

𝐘 = 𝐗𝛃 + 𝛆, 

where 𝐘 is an 𝑛 × 𝑝 matrix of n observations by p response variables, and each column of 𝐘 

corresponds to a specific dependent variable. 𝐗(𝑛 × 𝑘),𝛃(𝑘 × 𝑝)  and 𝛆(𝑛 × 𝑝)  are design, 

parameter and error matrices, respectively. The n rows of 𝛆 are assumed to be independent and 

identically distributed as 𝐍(𝟎,𝚺), where is 𝚺 a 𝑝 × 𝑝 positive definite dispersion matrix. The 

ordinary least square estimate for 𝛃 is 𝐛 = (𝐗′𝐗)−𝟏𝐗′𝐘. The covariance matrix, 𝚺, is estimated 

by 𝐒 = (𝐘 − 𝐗𝐛)′(𝐘 − 𝐗𝐛)/[𝑛 − 𝑟𝑎𝑛𝑘(𝐗)]. 
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A linear hypothesis is most commonly written as  

H0:𝐋𝛃𝐌 = 𝟎 vs. HA: 𝐋𝛃𝐌 ≠ 𝟎, 

where 𝐋 and 𝐌 are matrices of specified constants, and 𝐋𝛃𝐌 is estimable. 

The common test statistics for testing a linear hypothesis given above are  

Wilks’ 𝜆 = det(𝐄) /det (𝐇 + 𝐄); 

Pillai’s trace 𝑉 = trace(𝐇(𝐇 + 𝐄)−1; 

Hotelling-Lawley trace 𝑈 = trace(𝐄−1𝐇); and 

Roy’s maximum root 𝜆1, the largest eigenvalue of 𝐄−1𝐇; 

where 𝐇 and 𝐄 represent, respectively, the sums of squares and cross-product matrices for the 

hypothesis and error matrices, that is, 

𝐇 = SS(𝐋𝐛𝐌) = 𝐌′(𝐋𝐛)′[𝐋(𝐗′𝐗)−𝐋′]−𝟏(𝐋𝐛)𝐌; and 

𝐄 = 𝐌′(𝐘′𝐘 − 𝐛′(𝐗′𝐗)𝐛)𝐌. 

Under the multivariate normality assumption, all of the above four test statistics can be 

approximated by 𝐹 distributions (Anderson 2003). 

MANOVA is the most commonly used method to compare groups for a set of continuous 

dependent variables. MANOVA uses one or more categorical independent variables to form 

groups, with more than one dependent variable and tests the differences in the centroids of means 

of several dependent variables, for different groups. MANOVA is subsumed in GLM by 

specifying 𝐗,𝛃,𝐋 and 𝐌. Once the statistics are obtained, they are translated into 𝐹 statistics in 

order to test the null hypothesis. The four statistics, mentioned in the previous paragraph, may 

give identical F values. When they differ, Pillai’s trace is often used because it is considered by 

many to be most powerful and robust. Roy’s largest root is an upper bound on F, and therefore 
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gives a lower bound estimate of the probability of 𝐹 . Thus, Roy’s largest root is generally 

disregarded when it is significant but the others are not significant. 

2.1.2 Permutation-Based Tests 

A permutation-based test is a type of statistical test in which the distribution of the test statistics 

under the null hypothesis is determined by calculating all possible values of the test statistic 

under rearrangements of the labels of groups on the observed data points. After the results are 

obtained from the actual experiment, one can determine the results that could have occurred for 

other rearrangements if the null hypotheses were true. The primary use of permutation-based 

tests is to obtain p-values. The p-value based on permutation distribution is the proportion of test 

statistics in the set of all possible re-arrangements that are more extreme than the test statistics 

value calculated with the original dataset before any rearrangement. Permutation-based tests 

exist for any statistic regardless of whether or not its distribution is known. The major drawback 

to permutation-based tests is that they can be computationally intensive and may require 

“custom” code for difficult-to-calculate statistics (Pesarin, 2001 and Edgington, 2007).  

The basic premise in permutation-based tests is the assumption that it is possible that all 

of the treatment groups are equivalent, and that every member of them is the same before 

sampling began. This is the notion of exchangeability under the null hypothesis. An important 

consequence of this assumption is that tests of difference in location (like a permutation-based t-

test) require equal variance. In this respect, the permutation-based t-test shares the same 

weakness as the classical Student’s t-test (the Behrens-Fisher problem). 
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2.2 MULTIVARIATE KRUSKAL-WALLIS (MKW) TEST  

2.2.1 Kruskal-Wallis Test 

The Kruskal-Wallis test (Kruskal and Wallis, 1952) is a univariate nonparametric method to test 

whether the variable of interest is differently distributed in two or more independent groups. 

Kruskal-Wallis test is analogous to one-way analysis of variance (ANOVA), while ANOVA is a 

parametric test. The Kruskal-Wallis test is an extension of Wilcoxon rank sum test, while 

Wilcoxon rank sum test is for two-group test. The Kruskal-Wallis test is widely used in analyses 

involving non-normal data. 

Let 𝑌𝑖𝑗 be the original observation of jth subject from ith group, where 𝑗 = 1, … ,𝑛𝑖; 𝑖 =

1, … ,𝑔. 𝑛 = ∑ 𝑛𝑖
𝑔
𝑖=1  is the total sample size. We first rank the 𝑛 observations among all the 

groups to get ranks 𝑅𝑖𝑗 corresponding to 𝑌𝑖𝑗. Tied values are assigned to average ranks. The null 

hypothesis of Kruskal-Wallis test is that the medians of 𝑌𝑖𝑗 are the same in the 𝑔 groups. 

The mean rank of group 𝑖 is denoted as  

𝑅�𝑖. =
∑ 𝑅𝑖𝑗
𝑛𝑖
𝑗=1

𝑛𝑖
. 

Let 

𝑅� =
𝑛 + 1

2
. 

The test statistic is 

𝐾 = (𝑛 − 1)
∑ 𝑛𝑖(𝑅�𝑖.−𝑅�)2𝑔
𝑖=1

∑ ∑ �𝑅𝑖𝑗 − 𝑅��
2𝑛𝑖

𝑗=1
𝑔
𝑖=1

. 

In large samples, 𝐾 is approximately 𝜒2 distributed with (𝑔 − 1) degrees of freedom. 
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2.2.2 Likelihood-based Multivariate Kruskal-Wallis Test 

The multivariate extension of the univariate Kruskal-Wallis test is a rank-order procedure in 

which the 𝑛 scores of each of the 𝑝 variables are ranked separately. If certain observations are 

tied, each of these observations is assigned the mean of the ranks for which the observations are 

tied. It should be noted that this procedure of assigning ranks poses no difficulty if the number of 

scores for the different variables are not equal. The null hypothesis is that for each variable, the 

expected values of the mean ranks are equal for the different groups. Large sample theory 

suggests that the MKW statistic is approximately 𝜒2  distributed. However, in small samples 

permutation theory is needed to get the exact distribution. 

Katz and McSweeney (1980) provided an explicit description of this MKW test. They 

also provided computational formulas and post-hoc techniques which could be used to isolate 

sources of differences if the null hypothesis is rejected. However, the testing procedure discussed 

in their paper was based on large sample properties of the statistic which was approximately 𝜒2 

distributed. May and Johnson (1997) have written a SAS macro that computes the probability 

values and tabulates the exact distribution for the univariate and MKW test. 

Multivariate Kruskal-Wallis test transforms original data to its ranking, and therefore it is 

distribution-free. The ranking is performed separately for each dependent variable, and is across 

groups. Let 𝑌𝑖𝑗𝑘 be the original observation of kth variate for jth subject from ith group, where 

𝑘 = 1, … ,𝑝; 𝑗 = 1, … ,𝑛𝑖; 𝑖 = 1, … ,𝑔. Denote 𝑅𝑖𝑗𝑘 as the rank corresponding to 𝑌𝑖𝑗𝑘. In case of 

ties, mid-ranks are used. Let  

𝑅�𝑖.𝑘 = �
𝑅𝑖𝑗𝑘
𝑛𝑖

𝑛𝑖

𝑗=1

,  
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then 𝐸(𝑅�𝑖.𝑘) = 𝑚 = (𝑛 + 1)/2. The vector 𝐔𝐢 = (𝑅�𝑖.1 − 𝑚, … ,𝑅�𝑖.𝑝 − 𝑚)′ denotes the average 

ranks for the ith group corrected for m for each variate. 𝐔𝐢 is a measure of directed distance from 

the mean vector of ranks for the ith group. An estimate of the pooled within-group covariance 

matrix is 

𝐕 =
1

𝑛 − 1
���𝐑𝐢𝐣 − 𝑚𝟏𝐩�

𝑛𝑖

𝑗=1

𝑔

𝑖=1

�𝐑𝐢𝐣 − 𝑚𝟏𝐩�
′
. 

Under the null hypothesis that there is no difference in group means for the p variables, 

𝐸(𝐔𝐢) = 𝟎𝒑. 

The MKW test is expressed as 

𝑊2 = �𝑛𝑖𝐔𝐢′𝐕−𝟏𝐔𝐢

𝑔

𝑖=1

. 

In large samples, 𝑊2 is approximately centrally 𝜒2 distributed with 𝑝(𝑔 − 1) degrees of 

freedom. 

2.2.3 Permutation-based Multivariate Kruskal-Wallis Test 

When there are too many possible orderings of the data to allow complete enumeration in a 

reasonably time efficient manner, an asymptotically equivalent permutation-based test can be 

created by generating the exact distribution by Monte Carlo sampling, which takes a small 

(relative to the total number of required permutations) random sample of the possible replicates. 

This type of permutation-based test is known as Monte Carlo permutation-based test. The 

necessary size of the Monte Carlo sampling depends on the need for accuracy of the test 

(Edgington and Onghena, 2007). 
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Monte Carlo permutation-based test can be used to get a more accurate 𝑝-value of MKW 

test in small samples. The procedure is as follows: 

(a) Calculate the statistic for the data, and denote it as 𝑊2∗. 

(b) Randomly assign subjects to groups, and calculate the new 𝑊2 for this permuted data. 

(c) Repeat (b) 𝑀 times to get the permutation distribution of 𝑊2 under null hypothesis. 

(d) Calculate the 𝑝-value = number of 𝑊2≥𝑊2∗ 
𝑀

. 

2.3 MULTIVARIATE EFFECT SIZE  

Effect sizes are commonly used for power analysis and experiment designs. In hypothesis 

testing, ES is an index reflecting the degree to which the null hypothesis is false, or the 

discrepancy between the null hypothesis and the alternative hypothesis (Cohen 1992), without 

the influence of sample sizes. One of the widely used effect sizes index in one-way ANOVA 

setting is Cohen’s 𝑓2, the ratio of the variance of the group means to the variance of the values 

within groups (Cohen 1988). Cohen’s 𝑓2 is defined as 

𝑓2 =
𝑅2

1 − 𝑅2
, 

where 𝑅2 is the squared multiple correlation. 

Cohen (1988) suggested a generalization of 𝑓2 based on Wilks’ λ, which can be used in 

multivariate settings: 

𝑓2 = 𝜆−1/𝑟 − 1=
�det(𝐇 + 𝐄)𝑟 − �det(𝐄)𝑟

�det(𝐄)𝑟 , 

where 
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𝑟 = �
𝑝2(𝑔 − 1)2 − 4
𝑝2 + (𝑔 − 1)2 − 5

, 

𝑝 is the number of response variables, 𝑔  is the number of groups, and 𝐄 and 𝐇 refer to the 

population error and hypothesis matrices. 

From the latter form of 𝑓2 we see that it is a signal to noise ratio: the ratio of variance of 

the model to the variance of errors. 𝑓2 is a non-increasing function of 𝑝 and 𝑔, which means that 

large data sizes (more groups and/or more dependent variables) have a negative effect on effect 

sizes. For two-group cases, 𝑟 = 1 and 𝑓2 reduces to 𝜆−1 − 1. For 3-group cases, 𝑟 = 2 and 𝑓2 

reduces to 𝜆−1/2 − 1. If these two cases have the same Wilks’ 𝜆, the latter case will have a 

smaller effect size. Cohen (1988) also suggested “small”, “medium” and “large” 𝑓2 values to be 

0.02, 0.15 and 0.35, respectively. 
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3.0  PERFORMANCE OF MKW TEST  

3.1 COMPARISON BETWEEN MANOVA AND MKW TEST 

An R-based program is written to compute the approximate 𝜒2 distribution and the exact null 

distribution under null hypothesis for the MKW test for multi-group comparisons. Simulation 

studies are done to compare the performance of MKW tests to the MANOVA tests (classical and 

permutation-based). 

Zeng et al. (2011) proposed a permutation-based test with classical MANOVA test 

statistics. They claimed it to be better than classical MANOVA tests, and concluded that the SAS 

GLM procedure with the ‘exact’ option provided best approximation among commonly available 

software. I simulate data for several different scenarios in their paper, and compare their type I 

errors to the type I errors of MKW tests. Zeng provided type I errors of four common statistics, 

and I only compare with Wilks’ 𝜆 since none of the statistics performed superior. 

Simulations were done in the same way as in Zeng et al. (2011). I use Clayton’s family of 

Archimedean copulas with compounding approach (Frees and Valdez, 1998) to simulate 

correlated outcomes. Compound symmetry is assumed for the simulations and used Kendall’s 𝜏 

= 0.8 and 0.5 to indicate highly-correlated and medium-correlated outcomes. I consider 𝑛 = 5 

and 10 to indicate small and medium sample sizes in each group. I use exponential distributions 

to be the marginal distributions of the outcomes. Both likelihood-based p-values and 
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permutation-based p-values are considered. 𝑔 = 5 groups and 𝑝 = 4 outcomes are generated for 

each scenario. The marginals are set as exponential distributions with means = 100, 200, 300 and 

400. Significance level 𝛼=0.05 is used. I use mvdc() function from the copula package (Yan 

2007, Kojadinovic 2010 and Hofert 2011) in R for the data generation. 

Getting permutation distribution from all possible rearrangements is very time-

consuming. For example, in one scenario where 𝑔 = 5,𝑛 = 10 and 𝑝 = 4, the number of all 

possible rearrangements of group labels is 50!/(10!)5 = 4.8 × 1031. It took roughly a half of a 

minute to get one 𝑝-value based on permutation distribution on a personal computer, and several 

days to get the simulated type I errors. To balance the efficiency and the accuracy, the 

permutation distribution is estimated from 300 Monte-Carlo samples in each simulated data set. 

The type I error is estimated from 5000 simulations in each scenario. The simulations are 

supported in part by Computational Resources on PittGrid (www.pittgrid.pitt.edu). 

Table 3.1 represents results for skewed continuous cases. Exponential marginal 

distributions are used. May and Johnson (1997) mentioned that the 𝜒2 approximation performed 

well in MKW tests with as few as 10 subjects per group, which is not consistent with my 

simulation results. When the sample sizes per group are not large (≤10), the type I errors of 

MKW tests based on 𝜒2 approximation are far less than the nominal significance level 0.05, and  

the same problem occurs in classical MANOVA, even with the ‘exact’ option in SAS. These 

results suggest that tests based on large sample approximation are not doing well in medium 

sized samples (≤10). On the other hand, MANOVA and MKW tests performed well when they 

were based on permutation distributions. MKW performed slightly better when sample sizes are 

medium sized. 
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Table 3.1. Type I errors of MANOVA tests and MKW tests in different scenarios 

Kendall’s 𝜏 N/group Wilks’ 𝜆* MKW 

large sample 

approximation 
permutation 

large sample 

approximation 
permutation 

0.5 5 0.038 0.052 0.018 0.045 

10 0.034 0.043 0.036 0.051 

0.8 5 0.027 0.052 0.021 0.053 

10 0.032 0.055 0.034 0.051 

* Type I errors for Wilks’ λ were from Zeng (2011).

The simulated data have 5 groups and 4 outcomes, with exponential marginal distributions of means 100, 200, 300 

and 400. 

3.2 COVERAGE OF MKW TEST 

MKW test can be used when the response variables are ordinal. To examine the coverage of 

MKW test, simulation studies are done with correlated data with Poisson marginal distributions. 

The same setting as section 3.1 is used to generate data and 𝑔 = 2, 3 and 4 are examined. 

Marginal distributions of the 4 outcomes are set as Poisson distribution with means = 10, 20, 30 

and 40. 

Table 3.2 shows the results of type I errors of the simulations. The p-values of MKW 

tests from 𝜒2 approximation are far from 0.05, while the permutation-based p-values are very 

close to 0.05. However, the MKW tests are not always applicable when the total sample size is 

very small (< 10). 
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Table 3.2 Type I errors of MKW tests in different scenarios 

# of groups Kendall’s 𝜏 N/group MKW 

approximation permutation 

2 

0.5 5 NA NA 

10 0.029 0.051 

0.8 5 NA NA 

10 0.022 0.048 

3 

0.5 5 0.015 0.051 

10 0.026 0.045 

0.8 5 0.011 0.050 

10 0.026 0.046 

4 

0.5 5 0.017 0.050 

10 0.038 0.053 

0.8 5 0.017 0.052 

10 0.032 0.050 

The simulated data have 4 outcomes, with Poisson marginal distributions with means 10, 20, 30 and 40. 

3.3 POWER OF MKW TEST 

Simulations are performed to examine the power of MKW test under different scenarios. Data 

are simulated similarly as in section 3.1. I use Clayton’s family of Archimedean copulas with 

compounding approach (Frees and Valdez, 1998) to simulate 𝑝 = 4 and 8 correlated outcomes 

for 𝑔 = 2 groups. I assume compound symmetry for the simulations and use Kendall’s 𝜏 = 0.8 
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and 0.5 to indicate highly-correlated and medium-correlated outcomes. I consider 𝑛 = 10 and 15 

subjects in each group. To simulate data with 4 outcomes, the marginal distributions are set as 

Poisson distributions with means = 10, 20, 30 and 40 for the first group, and with means=10, 20, 

30 and 40 − Δ for the second group, where different Δ’s are set to get varying effect sizes. 

Similarly, to simulate data with 8 outcomes, the marginal distributions are set as Poisson 

distributions with means = 10, 20, 30, 40, 50, 60, 70 and 80 for the first group, and with 

means=10, 20, 30, 40, 50, 60, 70 and 80 − Δ for the second group. 

Five thousand data sets are generated for each scenario. The power is estimated by the 

proportion of rejections of null hypothesis out of the 5000 simulations with significance level 

0.05. 

Tables 3.3 and 3.4 represent the results of the simulations. As expected, power is higher 

with larger sample size per group, lager Δ and higher Kendall’s 𝜏. When there are four outcomes, 

medium samples (10 subjects per group with 2 groups) have very high power (>99%) when Δ is 

large (10 or 15). Medium sample sizes also result in high power (>90%) when Kendall’s 𝜏 is 

high (0.8). When there are eight outcomes, medium sized samples have <80% power when Δ is 

medium (5 or 7). It suggests that with more response variables, we need larger sample size to 

obtain a specified power level. Since there is a positive relationship between effect size and 

power, this also agrees with the statement that large data sizes (more groups and/or more 

dependent variables) have a negative effect on effect sizes. 
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Table 3.3 Power simulations of MKW tests in different scenarios (p=4) 

n/group Δ Kendall’s 𝜏 power 

10 5 0.5 0.45 

  0.8 0.92 

 7 0.5 0.75 

  0.8 0.99 

 10 0.5 0.97 

  0.8 0.9995 

 15 0.5 0.9998 

  0.8 1 

15 10 0.5 0.999 

  0.8 1 

 15 0.5 1 

  0.8 1 

The simulated data have 2 groups and 4 outcomes, with Poisson marginal distributions with means 10, 20, 

30 and 40 for the first group, and with means 10, 20, 30 and 40-Δ for the second group. 
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Table 3.4 Power simulations of MKW tests in different scenarios (p=8) 

n/group Δ Kendall’s 𝜏 power 

10 5 0.5 0.15 

  0.8 0.53 

 7 0.5 0.28 

  0.8 0.77 

The simulated data have 2 groups and 8 outcomes, with Poisson distributions with means = 10, 20, 30, 40, 

50, 60, 70 and 80 for the first group, and with means=10, 20, 30, 40, 50, 60, 70 and 80-Δ for the second group. 
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4.0  MISSING DATA ISSUE 

Missing data often exist in clinical trials. However, MKW test assumes that data is fully 

observed. All incomplete cases are deleted before the MKW test is performed, which means that 

the information in partially observed cases is lost. To retrieve this part of information, we 

propose a method that extends MKW test to data with missingness. The proposed method is 

more powerful than the standard MKW test in simulated data. 

4.1 MISSINGNESS MECHANISMS 

There are three mechanisms of missing data. If missingness does not depend on the observed 

values or the missing values, the missing data are called missing completely at random (MCAR). 

If missingness depends only on the observed data and not on the missing values of the data, the 

missing data are called missing at random (MAR). The missing data are called not missing at 

random (NMAR) if missingness depends on the missing values of the data. MCAR is the most 

restrictive assumption among these three. In this section, we always assume MCAR. 
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4.2 FORMULATION OF THE TEST 

Let 𝐘𝑛×𝑝 denote the data. Let 𝑌𝑖𝑗𝑘 be the original observation of kth variate for jth subject from 

ith group, where = 1, … ,𝑝; 𝑗 = 1, … ,𝑛𝑖; 𝑖 = 1, … ,𝑔. 𝑛 = Σ𝑛𝑖 . The data has 𝑛 subjects in total 

with 𝑔 groups and 𝑝 outcomes. 

For the jth subject in ith group, its observation vector 𝐘𝑖𝑗 = (𝑌𝑖𝑗1, … ,𝑌𝑖𝑗𝑝)  has a 

corresponding missing indicator vector 𝐫𝑖𝑗 = (𝑅𝑖𝑗1, … ,𝑅𝑖𝑗𝑝), where 𝑅𝑖𝑗𝑘 = 1 if the kth variate is 

missing, and 0 if it is observed. 𝐫𝑖𝑗 is called the missing pattern of the jth subject in ith group. 𝐫𝑖𝑗 

is a vector of length 𝑝, with each element valued at 0 or 1. For example, if 𝑝 = 4, and if a subject  

is observed on the first and second outcomes, and is missing on the third and fourth outcomes, its 

missing pattern is (0, 0, 1, 1). In a dataset with 𝑝 variables, there are in total 2𝑝 possible distinct 

missing patterns. MCAR is assumed at this stage. 

Suppose there are 𝐿 distinct missing patterns in 𝐘 (𝐿 ≤ 2𝑝). Let 𝑆𝑙 denote the set of cases 

with missing pattern 𝑙,𝑙 = 1, … , 𝐿, and let 𝑚𝑙 denote the number of observations in 𝑆𝑙, and let 

𝑛 = ∑ 𝑚𝑙
𝐿
𝑙=1 . Let 𝑝𝑙 denote the number of observed variables in missing pattern 𝑙, 𝑙 = 1, … , 𝐿. 

Let 𝑚𝑖𝑙 denote the number of observations in group 𝑖, pattern 𝑙, 𝑖 = 1, … ,𝑔; 𝑙 = 1, … , 𝐿. 

I assume that 𝑚𝑙 > 𝑝𝑙 , 𝑙 = 1, … , 𝐿. If the number of observations with missing pattern 𝑙 is 

too small (𝑚𝑙 ≤ 𝑝𝑙), we delete the cases in 𝑆𝑙  from the total sample before performing the 

method. The assumption is to avoid the situation that the estimated variance-covariance matrix 

within missing pattern is singular and the statistic cannot be calculated. 

The statistic 𝑊𝑙
2  in each 𝑆𝑙  with regard to observed variables can be calculated from 

standard MKW test. Then the proposed test statistic would be 

𝑊2 = ∑ 𝑡𝑙𝑊𝑙
2𝐿

𝑙=1 , 
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where the 𝑡𝑙s are weights and ∑ 𝑡𝑙 = 1. 

The standard MKW test is a special case of the proposed test, when 𝑡𝑙 is assigned to 1 if 

𝑆𝑙 is the set of complete cases, and 0 otherwise. Two weighting schemes are proposed:  

(1) Unweighted: tl = 1 L⁄ , l = 1, … , L. Then W2 is the arithmetic mean of Wl
2s. 

(2) Weighted: tl = ml n⁄ , l = 1, … , L . Then each Wl
2  would contribute to W2 

proportional to the number of cases in its missing pattern. 

In large samples, 𝑊𝑙
2  is approximately 𝜒2  distributed with degrees of freedom 𝜈𝑙 =

𝑝𝑙(𝑔 − 1), 𝑙 = 1, … , 𝐿 . And 𝑊2  is a linear combination of the 𝐿  independent 𝜒2  distributed 

statistics. Two ways are considered to get the approximate distribution of 𝑊2 in large samples. 

One is that based on Welch-Satterthwaite equation (Satterthwaite, 1946 and Welch, 1947), 𝑊2 is 

also approximately 𝜒2 distributed, with degrees of freedom 

𝜈 ≈
(𝑊2)2

∑ (𝑡𝑙𝑊𝑙
2)2

𝑝𝑙(𝑔 − 1)
𝐿
𝑙=1

. 

The other is based on empirical distribution. Generate 𝑊𝑙1
2 , … ,𝑊𝑙𝑀

2  as random samples from 𝜒2 

distribution with 𝜈𝑙 degrees of freedom, where 𝑙 = 1, … , 𝐿 and 𝑀 is a large integer. Set 

𝑋𝑚 = �𝑡𝑙𝑊𝑙𝑚
2

𝐿

𝑙=1

,𝑚 = 1, … ,𝑀. 

An empirical distribution of 𝑊2  can be calculated from 𝑋1, … ,𝑋𝑀 . And the p-value can be 

obtained based on the empirical distribution. In small samples, permutation distribution of 𝑊2 

can be obtained by permuting the group labels among the whole data set under MCAR. 
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4.3 SIMULATION STUDY 

To examine the coverage and power level of the proposed method, simulations in different 

scenarios are performed. Data with 𝑔 = 2 groups and 𝑝 = 2 outcome variables are simulated. To 

generate correlated outcomes, I use a latent variable 𝑋. Two scenarios are examined. One is 

based on normal distributed 𝑋, and the other is based on binomial distributed 𝑋. 

For the first scenario, set 𝑋 ~ 𝑁(0,1).  

For group 1, generate 𝑋1, … ,𝑋𝑛1 as a random sample of 𝑋. 

Set 𝑌11|𝑋  ~ 𝑁(1 + 𝑋, 2),𝑌12|𝑋  ~ 𝑁(𝑋, 1).  

Generate ��𝑌1𝑗1,𝑌1𝑗2�|𝑋𝑗� as a random sample of �(𝑌11,𝑌12)|𝑋𝑗�, 𝑗 = 1, … ,𝑛1. 

For group 2, generate 𝑋1, … ,𝑋𝑛2 as another random sample of 𝑋. 

Set 𝑌21|𝑋  ~ 𝑁(1 + 𝑋, 2),𝑌22|𝑋  ~ 𝑁(Δ + 𝑋, 1). 

Generate ��𝑌2𝑗1,𝑌2𝑗2�|𝑋𝑗� as a random sample of �(𝑌21,𝑌22)|𝑋𝑗�, 𝑗 = 1, … ,𝑛2. 

For the second scenario, set 𝑋 ~ 𝐵𝐼𝑁(5,0.5).  

For group 1, generate 𝑋1, … ,𝑋𝑛1 as a random sample of 𝑋. 

Set 𝑌11|𝑋  ~ 𝑃𝑂𝐼(1 + 𝑋), 𝑌12|𝑋  ~ 𝑃𝑂𝐼(2 + 𝑋).  

Generate ��𝑌1𝑗1,𝑌1𝑗2�|𝑋𝑗� as a random sample of �(𝑌11,𝑌12)|𝑋𝑗�, 𝑗 = 1, … ,𝑛1. 

For group 2, generate 𝑋1, … ,𝑋𝑛2 as another random sample of 𝑋. 

Set 𝑌21|𝑋  ~ 𝑃𝑂𝐼(1 + 𝑋), 𝑌22|𝑋  ~ 𝑃𝑂𝐼(2 + Δ + 𝑋). 

Generate ��𝑌2𝑗1,𝑌2𝑗2�|𝑋𝑗� as a random sample of �(𝑌21,𝑌22)|𝑋𝑗�, 𝑗 = 1, … ,𝑛2. 
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Table 4.1 Data generation summary 

Scenario Group Variable 1 Variable 2 

𝑋 ~ 𝑁(0,1) Group 1 𝑌11|𝑋  ~ 𝑁(1 + 𝑋, 2) 𝑌12|𝑋  ~ 𝑁(𝑋, 1) 

 Group 2 𝑌21|𝑋  ~ 𝑁(1 + 𝑋, 2) 𝑌22|𝑋  ~ 𝑁(Δ + 𝑋, 1) 

X ~ BIN(5,0.5) Group 1 𝑌11|𝑋  ~ 𝑃𝑂𝐼(1 + 𝑋) 𝑌12|𝑋  ~ 𝑃𝑂𝐼(2 + 𝑋) 

 Group 2 𝑌21|𝑋  ~ 𝑃𝑂𝐼(1 + 𝑋) 𝑌22|𝑋  ~ 𝑃𝑂𝐼(2 + 𝑋 + Δ) 

 

The summary of data generation is shown in Table 4.1. Letting 𝑛1 = 𝑛2 = 50 , the 

simulated data is given as 

𝐘 =

⎣
⎢
⎢
⎢
⎢
⎡
𝑌111 𝑌112
⋮ ⋮

𝑌1,50,1
𝑌211
⋮

𝑌2,50,1

𝑌1,50,2
𝑌212
⋮

𝑌2,50,2⎦
⎥
⎥
⎥
⎥
⎤

= (𝐘𝟏,𝐘𝟐). 

When Δ is assigned to zero, the underlying distributions of the two outcomes are the 

same in the two groups. Hence, type I error rates can be examined. 

Δ can be assigned a spectrum of non-zero numbers to get different effect sizes. The 

underlying distributions of the first outcome variable are the same in the two groups, and the 

underlying distributions of the second outcome variable are differing across the two groups. 

Power levels can be examined. 

There are 𝐿 = 4 possible missing patterns in bivariate data. They are listed in Table 4.2. 

Since observations with missing pattern M4 do not contain any information, I only consider the 

first three missing patterns in our simulations. Two rates of missingness, also shown in Table 

4.2, are randomly assigned to data to examine the coverage and power of the proposed method. 

Figure 4.1 shows the structure of the simulated bivariate data with missingness. 
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Table 4.2 Missing patterns of bivariate data 

missing pattern description percentages out of all data (%) 

  medium rates of missingness high rates of missingness 

M1 𝐘𝟏 and 𝐘𝟐 both observed 40% 20% 

M2 𝐘𝟏observed, 𝐘𝟐 missing 30% 40% 

M3 𝐘𝟏 missing, 𝐘𝟐 observed 30% 40% 

M4 𝐘𝟏 and 𝐘𝟐both missing 0% 0% 

 

 

Figure 4.1 Missing patterns of bivaraite data with medium rates of missingness 
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For each scenario, I perform the proposed method in 𝑛𝑠𝑖𝑚 = 1000 simulated incomplete 

data, and get the p-values. I estimate the power level of the method as number of 𝑝−values<0.05
𝑛𝑠𝑖𝑚

 when 

Δ > 0, and estimate the type I error of the method as number of 𝑝−values<0.05
𝑛𝑠𝑖𝑚

 when Δ = 0. 

The simulation results of type I errors are shown in Table 4.3. Permutation-based p-

values are close to the nominal significance level 0.05, and are slightly more accurate compared 

with p-values based on large sample approximation. Higher missing rates imply less information. 

Therefore it can be seen that type I errors are closer to 0.05 in “medium” missing rates scenarios 

compared with “high” missing rates ones, either in normal data or in non-normal data. 

The simulation results of power levels are shown in Table 4.4 through Table 4.7. As 

expected, the power levels of the proposed method are always higher than the power levels of 

standard MKW test applied only on complete cases, and the difference is larger with higher 

missing rates. Comparing adjacent columns, the permutation-based tests provide higher power 

levels than tests based on large sample approximation. Neither of the two weighting schemes 

shows great superiority to the other. The weighted test statistic and the unweighted one provide 

very similar powers. And both increase when effect size increases. In three of the four simulation 

sets, the power levels of extended MKW test reach 80% when effect size is “medium” (<0.3). 

When percentage of missing values increases, the power level decreases. The performance of the 

extended test in non-normal data is as powerful as in normal data. 
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Table 4.3 Simulation results of type I errors 

distribution missing rates unweighted † statistic weighted ǂ statistic 

  permutation-based large sample approximation** permutation-based large sample approximation** 

normal medium* 0.056 0.058 0.05 0.056 

 high* 0.062 0.066 0.054 0.054 

Poisson medium* 0.044 0.038 0.046 0.044 

 high* 0.062 0.070 0.062 0.066 

 

* medium: M1=40%, M2=M3=30%. high: M1=20%, M2=M3=40%. 𝑛1 = 𝑛2 = 50. 

† 𝑡𝑙 = 1 3⁄ , 𝑙 = 1,2,3.   

ǂ 𝑡1 = 0.4, 𝑡2 = 𝑡3 = 0.3.    

** Approximated from empirical distribution. 

 

  



26 

Table 4.4 Power simulations with normal outcomes, medium rate of missingness* and varying effect sizes 

Effect 

size 

standard MKW test 

(Deleting all missing data) 

extended MKW test 

(Partially observed data) 

standard MKW test in original data 

(Assuming no missing) 

  unweighted † weighted ǂ  

 permutation-

based 

large sample 

approximation 

permutation-

based 

large sample 

approximation ** 

permutation-

based 

large sample 

approximation ** 

permutation-

based 

large sample 

approximation 

0.08 0.21 0.19 0.24 0.24 0.24 0.23 0.49 0.48 

0.12 0.34 0.34 0.40 0.39 0.43 0.42 0.73 0.73 

0.18 0.51 0.50 0.61 0.62 0.64 0.62 0.93 0.93 

0.24 0.67 0.66 0.81 0.80 0.82 0.81 0.99 0.99 

 

* M1=40%, M2=M3=30%. 𝑛1 = 𝑛2 = 50. 

† 𝑡𝑙 = 1 3⁄ , 𝑙 = 1,2,3.   

ǂ 𝑡1 = 0.4, 𝑡2 = 𝑡3 = 0.3.    

** Approximated from empirical distribution. 
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Table 4.5 Power simulations with normal outcomes and high rate of missingness* and varying effect sizes 

Effect 

size 

standard MKW test 

(Deleting all missing data) 

extended MKW test 

(Partially observed data) 

standard MKW test in original data 

(Assuming no missing) 

  unweighted † weighted ǂ  

 permutation-

based 

large sample 

approximation 

permutation-

based 

large sample 

approximation ** 

permutation-

based 

large sample 

approximation ** 

permutation-

based 

large sample 

approximation 

0.12 0.16 0.15 0.34 0.32 0.32 0.31 0.73 0.74 

0.18 0.26 0.24 0.54 0.51 0.55 0.54 0.93 0.92 

0.25 0.33 0.31 0.72 0.67 0.71 0.67 0.98 0.98 

0.33 0.40 0.38 0.84 0.83 0.82 0.83 0.998 0.998 

 

* M1=20%, M2=M3=40%. 𝑛1 = 𝑛2 = 50. 

† 𝑡𝑙 = 1 3⁄ , 𝑙 = 1,2,3.   

ǂ 𝑡1 = 0.2, 𝑡2 = 𝑡3 = 0.4.    

** Approximated from empirical distribution. 
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Table 4.6 Power simulations with non-normal outcomes and medium rate of missingness* and varying effect sizes 

Effect 

size 

standard MKW test 

(Deleting all missing data) 

extended MKW test 

(Partially observed data) 

standard MKW test in original data 

(Assuming no missing) 

  unweighted † weighted ǂ  

 permutation-

based 

large sample 

approximation 

permutation-

based 

large sample 

approximation ** 

permutation-

based 

large sample 

approximation ** 

permutation-

based 

large sample 

approximation 

0.08 0.26 0.25 0.28 0.28 0.28 0.30 0.57 0.57 

0.10 0.32 0.31 0.41 0.39 0.40 0.41 0.67 0.69 

0.12 0.38 0.36 0.45 0.42 0.47 0.46 0.78 0.79 

0.16 0.43 0.44 0.58 0.58 0.58 0.56 0.89 0.88 

0.19 0.55 0.56 0.73 0.70 0.71 0.71 0.96 0.96 

0.26 0.73 0.71 0.87 0.85 0.89 0.88 0.99 0.99 

0.36 0.85 0.84 0.96 0.96 0.97 0.96 0.998 0.998 

* M1=40%, M2=M3=30%. 𝑛1 = 𝑛2 = 50. 

† 𝑡𝑙 = 1 3⁄ , 𝑙 = 1,2,3.   

ǂ 𝑡1 = 0.4, 𝑡2 = 𝑡3 = 0.3.    

** Approximated from empirical distribution. 
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Table 4.7 Power simulations with non-normal outcomes and high rate of missingness* and varying effect sizes 

Effect 

size 

standard MKW test 

(Deleting all missing data) 

extended MKW test 

(Partially observed data) 

standard MKW test in original data 

(Assuming no missing) 

  unweighted † weighted ǂ  

 permutation-

based 

large sample 

approximation 

permutation-

based 

large sample 

approximation ** 

permutation-

based 

large sample 

approximation ** 

permutation-

based 

large sample 

approximation 

0.08 0.15 0.13 0.23 0.22 0.23 0.22 0.55 0.54 

0.11 0.16 0.15 0.33 0.31 0.34 0.32 0.72 0.71 

0.13 0.19 0.17 0.40 0.38 0.41 0.38 0.76 0.77 

0.16 0.24 0.22 0.52 0.50 0.54 0.52 0.89 0.89 

0.19 0.26 0.24 0.60 0.58 0.61 0.61 0.95 0.95 

0.27 0.38 0.35 0.81 0.77 0.79 0.78 0.99 0.99 

0.37 0.52 0.50 0.93 0.93 0.93 0.92 1 1 

* M1=20%, M2=M3=40%. 𝑛1 = 𝑛2 = 50. 

† 𝑡𝑙 = 1 3⁄ , 𝑙 = 1,2,3.   

ǂ 𝑡1 = 0.2, 𝑡2 = 𝑡3 = 0.4.    

** Approximated from empirical distribution. 
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5.0  APPLICATION 

5.1 YOGA DATA 

Data from an open, non-randomized clinical trial for the treatment of persons with schizophrenia 

(SZ) for improvement in cognitive functions are used in this dissertation as an example (Bhatia 

et al., 2012) in order to illustrate empirically the statistical approaches that are described in 

earlier sections. The original study was supported partly by grants from the Central Council for 

Research in Yoga and Naturopathy, AYUSH, MoHFW, India (12-1/CCRYN/2005-2006/Res.P-

III) and NIH (MH56242, MH66263, MH 63480 and Indo-US Project Agreement # N-443-645). 

The objective of this clinical trial was to evaluate adjunctive Yoga Therapy (YT) for cognitive 

domains impaired in patients with SZ. The participants were outpatients at Dr Ram Manohar 

Lohia Hospital (RMLH), Delhi, India. All participants were older than 18 years and resided in 

Delhi. Persons dependent on alcohol/illicit substances or individuals with neurological disorders 

that interfered with diagnosis or cognitive evaluations were excluded. At the psychiatric 

outpatient clinics of RMLH, all patients clinically diagnosed with psychoses who fulfilled these 

criteria were invited to participate in the Yoga therapy. 

A total of 396 patients with SZ had suitable clinical diagnoses assigned by their 

physicians, on the basis of unstructured interviews. 207 of them were included in the trial after 

some exclusion criteria. This was a non-randomized clinical trial. Some SZ patients refused to 
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receive yoga therapy and they were assigned to treatment as usual group (TAU) and received 

conventional pharmacological treatment (without changing for yoga) from their psychiatrists 

throughout the study. And SZ patients agreed to receive yoga therapy were assigned to yoga 

therapy group (YT) and received conventional treatment plus yoga therapy as an adjunctive 

treatment prescribed protocol daily for approximately one hour for 21 consecutive days 

(excluding Sundays). 

Cognitive functions were assessed with a Hindi version of the Penn computerized 

neuropsychological battery (CNB) (Gur et al. 2001 a, b). The CNB included neurocognitive 

domains known to be impaired among individuals with SZ. The verbal domains were available 

only in English. As many Indian participants did not speak English, the verbal domains were 

excluded. Accuracy which reflects the number of correct responses and speed which reflects the 

median reaction time for eight cognitive domains were assessed. The domains are: abstraction 

and mental flexibility, attention, working memory, face memory, spatial memory, spatial ability, 

sensorimotor dexterity and emotion processing. The CNB was assessed at baseline, 21 days post 

treatment and 2 months post treatment. 63 subjects in YT group and 24 subjects in TAU group 

completed the intervention period. The trial primarily compares YT (N=63) patients and TAU 

(N=24) patients to evaluate the adjunctive YT for cognitive domains impaired in SZ. Changes of 

the CNB in cognitive domains at 2-month assessment point in the TAU group were compared 

with the YT group. The assessments are illustrated in the flow chart (Figure 5.1). 

Except for those with significantly more education and significantly poorer global 

assessment of worst point functioning scores during recent SZ episode, SZ patients who 

participated in Yoga and those who refused Yoga were found to be similar in standard 
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demographic and clinical characteristics with regard to age, sex, marital status and occupation 

(Table 1 of Bhatia 2012).  

 

 

Figure 5.1 Flow chart of Yoga data 

 

Subjects with 
Schizophrenia 

(n=207) 

Yoga therapy  group 
(YT, n=90) 

CNB in 8 cognitive 
domains at baseline 

CNB improvement in 8 
cognitive domains at 2 

months 

Yoga therapy 21 
days (n=63) 

Treatment as usual 
group (TAU, n=117) 

CNB in 8 cognitive domains 
at baseline 

CNB improvement in 8 
cognitive domains at 2 

months 

Treatment as usual 
21 days (n=24) 
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5.2 APPLICATION 

5.2.1 Univariate Kruskal-Wallis Test 

In the original study, the changes in CNB in the cognitive domains were compared between YT 

and TAU groups. A large amount of missing values existed in the data. Only 10 subjects in the 

YT group and 9 subjects in the TAU group completed CNB in all domains at all assessment 

points. Moreover, the CNB was skewed distributed. Therefore, the researchers selected a 

univariate and non-parametric test — Kruskal-Wallis test — to do the comparisons, followed by 

corrections for multiple comparisons. Univariate Kruskal-Wallis tests use complete cases only. 

 

Table 5.1 Univariate Kruskal-Wallis tests on Yoga example 

Domains Variables Number Of Complete Cases p-value Adjusted 

p-value 

  YT 

(N=63) 

TAU 

(N=24) 

All   

Abstraction And Mental Flexibility 𝑌1 23 21 44 0.028 0.084 

Attention 𝑌2 18 16 34 0.014 0.056 

Face Memory 𝑌3 26 22 48 0.069 0.138 

Spatial Memory 𝑌4 24 19 43 0.66 0.66 

 

I reproduce the tests in the speed summary functions in four domains: abstraction and 

mental flexibility, attention, face memory and spatial memory. The results are shown in Table 

5.1. The speed functions in abstraction and mental flexibility and in attention are shown to 
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improve more in SZ/YT group than in SZ/TAU group (p-values 0.028 and 0.014, respectively). 

However, after Hochberg adjustment for multiple comparisons, neither of them remains 

significantly different between the two groups. 

5.2.2 Multivariate Tests 

MANOVA, standard MKW test and extended MKW tests (likelihood-based and permutation-

based) were applied on the improvement of cognitive functions in the four domains to test group 

differences. The missing pattern of the data is shown in Table 5.2, and the results are shown in 

Table 5.3.  

Table 5.2 Missing pattern of improvement of cognitive functions in the four domains in Yoga example 

O=Observed, M=Missing 

Missing 

pattern 

𝑌1 𝑌2 𝑌3 𝑌4 𝑚𝑙 Used in MANOVA and 

standard MKW test 

Used in extended 

MKW test 

1 O  O O O 32 Yes Yes 

2 O  M O O   9 No Yes 

3 M  M O O   2 No No 

4 O  O O M   1 No No 

5  M   O O   M   1 No No 

6  M   M O  M    3 No Yes 

7  O   M  M   M   2 No Yes 

8 M  M   M M  37 No No 

 



35 

The classical MANOVA did not detect any significant difference between the two 

groups. The p-value was borderline (p=0.054). And the permutation-based MANOVA proposed 

by Zeng (2011) did not detect any difference either (p=0.081). On the other hand, the standard 

MKW test (p=0.0295) and extended MKW tests (p=0.0311 and 0.0343 for two weighting 

schemes, respectively) gave significant p-values based on permutation distribution, implying that 

the improvement functions in at least one of the four domains were different between the two 

groups. The standard MKW test with 𝜒2  approximation also provides significant p-values 

(p=0.0381). However, when performing extended MKW test and calculating the p-values based 

on linear combination of 𝜒2 distributions, the results are not significant (p=0.5942 and 0.3204 for 

two weighting schemes, respectively). 

 

Table 5.3 p-values of MANOVA and MKW tests on Yoga example 

method  large sample 

approximation 

permutation-based 

MANOVA, Wilks’ 𝜆  0.0541 0.081 

standard MKW tests  0.0381* 0.0295 

extended MKW tests unweighted 0.5942† 0.0311 

weighted 0.3204† 0.0343 

* Approximated by 𝜒42 distribution 

† Approximated from empirical distribution 
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6.0  DISCUSSIONS 

6.1 SAMPLE SIZE CALCULATION 

Simulation studies of the MKW test are performed under different scenarios to find out the effect 

sizes required to detect a difference between groups with 80% power in pre-specified sample 

sizes. 

As in section 4, data with 𝑔 = 2 groups and 𝑝 = 2 outcome variables are simulated. To 

generate correlated outcomes, I use a latent variable 𝑋. 

Set 𝑋 ~ 𝐵𝐼𝑁(5,0.5).  

For group 1, generate 𝑋1, … ,𝑋𝑛1 as a random sample of 𝑋. 

Set 𝑌11|𝑋  ~ 𝑃𝑂𝐼(1 + 𝑋), 𝑌12|𝑋  ~ 𝑃𝑂𝐼(2 + 𝑋).  

Generate ��𝑌1𝑗1,𝑌1𝑗2�|𝑋𝑗� as a random sample of �(𝑌11,𝑌12)|𝑋𝑗�, 𝑗 = 1, … ,𝑛1. 

For group 2, generate 𝑋1, … ,𝑋𝑛2 as another random sample of 𝑋. 

Set 𝑌21|𝑋  ~ 𝑃𝑂𝐼(1 + 𝑋), 𝑌22|𝑋  ~ 𝑃𝑂𝐼(2 + Δ + 𝑋). 

Generate ��𝑌2𝑗1,𝑌2𝑗2�|𝑋𝑗� as a random sample of �(𝑌21,𝑌22)|𝑋𝑗�, 𝑗 = 1, … ,𝑛2. 

For each pre-specified sample size, various Δ’s are selected for differing effect sizes. The 

cut-off effect sizes for corresponding sample sizes are summarized in Table 6.1. Practitioners can 

use this type of table as a guide when designing the experiment. Additional tables can be 

generated with the help of the computer program developed in this thesis. 
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Table 6.1 Effect sizes required to detect a difference between two groups with 80% power in pre-specified 

sample sizes 

Sample Size / Group Effect Size 

20 0.67 

30 0.25 

50 0.14 

 

6.2 SINGULARITY ISSUE 

One drawback of MKW test is the singularity issue of the estimate of covariance matrix 𝐕. For 

example, in a 2-group, 2-outcome case, suppose two observations are (0.5, 2) and (1, 1.5). The 

rank variables are (1,2) and (2,1).  

The estimate of the covariance matrix is 

𝐕 = 2�
1 −

3
2

2 −
3
2

��1 −
3
2

, 2 −
3
2
�
′

= � 1/2 −1/2
−1/2 1/2 �, 

which is singular. 

When singularity issue arises, the inverse of 𝐕 cannot be obtained and thus MKW test 

cannot be performed. 

When sample sizes increase, the possibility of singularity issue will decrease. In real data 

when there are more than 10 subjects per group, singularity issue will rarely happen. Future work 

with generalized inverses is warranted. 



38 

7.0  CONCLUSIONS 

Comparisons between groups play a central role in clinical research. In trials with multivariate 

outcomes, the classical parametric methods such as MANOVA model have two major 

drawbacks. They require distributional assumptions such as multivariate normality. When 

sample size is small, or response variables are ordinal outcomes, the violation of normality 

prevents clinical researchers from group comparisons using parametric multivariate methods. 

And when performing the tests by standard software, incomplete cases are deleted. Non-

parametric multivariate methods are available in the statistical literature. They circumvent the 

former issue. However, they do not resolve the latter one, the missing data issue. The non-

parametric multivariate methods are not commonly used in clinical research.  

In this dissertation, I examine the performance of the non-parametric multivariate 

Kruskal-Wallis (MKW) test with a simulation study in a variety of scenarios, and conclude that 

this test can be applied in multivariate non-normal data, with good coverage and power.  

Further, I propose an extension of the MKW test for multivariate data with missingness. 

The proposed method retrieves information in partially observed cases. A simulation study 

shows that the proposed extended method provides higher power level than the standard MKW 

test, encompassing a broad spectrum of multivariate effect sizes. MKW test with the proposed 

extension is a powerful alternative to test group difference on non-normal multivariate data with 

missing values. 
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An R-based program is written to implement the standard MKW test and the extended 

MKW test. The program is user-friendly and ready to use for researchers. It is provided in 

Appendix A. The parameters need to be reassigned before performing the test.  

The public health relevance of this work lies in the development of a new powerful 

methodology with user-friendly computer software for group comparisons in non-normal 

multivariate data with or without missingness. 



40 

APPENDIX 

R CODE FOR MKW TEST 

library(lattice) 
library(Matrix) 
 
################################ 
###### 1. mult-KW funtion ###### 
################################ 
 
multkw<- function(group,y,simplify=FALSE){ 
 
### sort data by group ### 
 o<-order(group) 
 group<-group[o] 
 y<-as.matrix(y[o,]) 
 
 n<-length(group) 
 p<-dim(y)[2] 
 if (dim(y)[1] != n)  
  return("number of oberservations not equal to length of group") 
 groupls<-unique(group) 
 g<-length(groupls)     #number of groups# 
 groupind<-sapply(groupls,"==",group)  #group indicator# 
 ni<-colSums(groupind)   #num of subj of each group# 
 r<-apply(y,2,rank) #corresponding rank variable# 
 
### calculation of statistic   ### 
 r.ik<-t(groupind)%*%r*(1/ni) #gxp, mean rank of kth variate in ith 
group# 
 m<- (n+1)/2          #expected value of rik# 
 u.ik<-t(r.ik-m) 
 U<-as.vector(u.ik) 
 V<-1/(n-1)*t(r-m)%*%(r-m) #pooled within-group cov matrix 
 Vstar<-bdiag(lapply(1/ni,"*",V)) 
 W2<-as.numeric(t(U)%*%solve(Vstar)%*%U) 
 
### return stat and p-value ### 
 returnlist<-list(statistic=W2,d.f.=p*(g-1), 
  p.value=pchisq(W2,p*(g-1),lower.tail=F)) 
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 if (simplify==TRUE) return (W2) 
 else return (returnlist) 
} 
 
 
########################################## 
######## 2 MKW with missing values ####### 
########################################## 
 
mkw.m<-function(group,y,r,weight){ 
### count missng patterns ### 
 p<-dim(y)[2] 
 r.order<-r 
 y.order<-y 
 g.order<-group 
 for (i in 1:p){ 
  oo<-order(r.order[,i]) 
  y.order<-y.order[oo,] 
  g.order<-g.order[oo] 
  r.order<-r.order[oo,] 
 } 
 J<-nrow(unique(r.order,MARGIN=1)) #number of missing patterns  
 D<-data.frame(r.order)  
 n<-length(group) 
 ones<-rep(1,n) 
 mc<-aggregate(ones,by=as.list(D),FUN=sum) #counts of each missing 
pattern 
 mi<-mc$x 
 pi<-p-rowSums(mc[,1:p]) 
 
### get W^2_j ### 
 W2<-rep(0,J) 
 W2.c<-0 
 i.st<-1 
 for (j in 1:J){ 
  i.end<-i.st+mi[j]-1 
  gg<-g.order[i.st:i.end] 
  yy<-y.order[i.st:i.end,] 
  ii<-mc[j,1:p]==F 
  if (sum(as.numeric(ii))>0){ 
   yy1<-as.matrix(yy[,ii]) 
   if (mi[j]>pi[j]) W2[j]<-multkw(gg,yy1,simplify=T)  ##### if 
mi[j]>p needs to dig more 
  } 
  if (prod(as.numeric(ii))==1) W2.c<-W2[j] 
  i.st<-i.end+1 
 } 
 if (weight=="prop") tj<-mi/sum(mi) else tj<-1/J 
 W2<-sum(tj*W2) 
 nu<-(W2)^2/sum((tj*W2)^2/pi/(g-1)) 
 return(list(W2.m=W2,nu=nu,W2.c=W2.c)) 
} 
 
 
######################################## 
###### 3. monte carlo permutation ###### 
######################################## 
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multkw.perm<-function(nmc,group,y,r,weight){ 
### count missng patterns ### 
 p<-dim(y)[2] 
 r.order<-r 
 y.order<-y 
 g.order<-group 
 for (i in 1:p){ 
  oo<-order(r.order[,i]) 
  y.order<-y.order[oo,] 
  g.order<-g.order[oo] 
  r.order<-r.order[oo,] 
 } 
 J<-nrow(unique(r.order,MARGIN=1)) #number of missing patterns  
 D<-data.frame(r.order)  
 n<-length(group) 
 ones<-rep(1,n) 
 mc<-aggregate(ones,by=as.list(D),FUN=sum) #counts of each missing 
pattern 
 mi<-mc$x 
  
 W2.m.perm<-rep(0,nmc) 
 W2.c.perm<-rep(0,nmc) 
 stats0<-mkw.m(group,y,r,weight) 
 W2.m<-stats0$W2.m 
 W2.c<-stats0$W2.c 
 nu<-stats0$nu 
 for (i in 1:nmc){ 
  i.st<-1 
  group.perm<-rep(0,n) 
  group.perm<-sample(group,size=n)  
  stats<-mkw.m(group.perm,y,r,weight) 
  W2.m.perm[i]<-stats$W2.m 
  W2.c.perm[i]<-stats$W2.c 
 } 
 p.mkw.m.perm<-sum(W2.m<W2.m.perm)/nmc 
 p.mkw.m.chi2<-pchisq(W2.m,nu,lower.tail=FALSE) 
 p.mkw.c.perm<-sum(W2.c<W2.c.perm)/nmc 
 p.mkw.c.chi2<-pchisq(W2.c,p*(g-1),lower.tail=FALSE) 
 return(list(W2.m=W2.m,p.mkw.m.perm=p.mkw.m.perm,p.mkw.m.chi2=p.mkw.m.ch
i2, 
   p.mkw.c.perm=p.mkw.c.perm,p.mkw.c.chi2=p.mkw.c.chi2)) 
} 
 
 
######################################### 
######### 4. data generation ############ 
######################################### 
 
data.gen<-function(p,g=2,ni,delta,mpcnt){ 
 n<-ni*g 
 X1<-rnorm(ni) 
 Y11<-sapply(X1+1,rnorm,n=1,sd=sqrt(2)) 
 Y12<-sapply(X1,rnorm,n=1,sd=1) 
 X2<-rnorm(ni) 
 Y21<-sapply(X2+1,rnorm,n=1,sd=sqrt(2)) 
 Y22<-sapply(X2+delta,rnorm,n=1,sd=1) 
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 Y1<-matrix(c(Y11,Y12),nrow=ni,ncol=p) 
 Y2<-matrix(c(Y21,Y22),nrow=ni,ncol=p) 
 y<-rbind(Y1,Y2) 
 group<-rep(1:g,each=ni) 
 m1<-matrix(rep(c(0,0),times=n*mpcnt[1]),ncol=p,byrow=T) 
 m2<-matrix(rep(c(0,1),times=n*mpcnt[2]),ncol=p,byrow=T) 
 m3<-matrix(rep(c(1,0),times=n*mpcnt[3]),ncol=p,byrow=T) 
 m<-rbind(m1,m2,m3) 
 perm<-sample(n) 
 r<-m[perm,] 
 return(list(group=group,y=y,r=r)) 
} 
 
data.gen2<-function(p,g=2,ni,delta,mpcnt){ 
 n<-ni*g 
 X1<-rbinom(ni,5,0.5) 
 W1<-rbinom(ni,2,0.5) 
 Y11<-sapply(X1+1,rpois,n=1) 
 Y12<-sapply(X1+2,rpois,n=1) 
 X2<-rbinom(ni,5,0.5) 
 Y21<-sapply(X2+1,rpois,n=1) 
 Y22<-sapply(X2+2+delta,rpois,n=1) 
 Y1<-matrix(c(Y11,Y12),nrow=ni,ncol=p) 
 Y2<-matrix(c(Y21,Y22),nrow=ni,ncol=p) 
 y<-rbind(Y1,Y2) 
 group<-rep(1:g,each=ni) 
 m1<-matrix(rep(c(0,0),times=n*mpcnt[1]),ncol=p,byrow=T) 
 m2<-matrix(rep(c(0,1),times=n*mpcnt[2]),ncol=p,byrow=T) 
 m3<-matrix(rep(c(1,0),times=n*mpcnt[3]),ncol=p,byrow=T) 
 m<-rbind(m1,m2,m3) 
 perm<-sample(n) 
 r<-m[perm,] 
 return(list(group=group,y=y,r=r)) 
} 
 
 
######################################### 
############ 5. simulation ############## 
######################################### 
p<-2 
g<-2 
ni<-50 
delta<-2.5 
mpcnt<-c(0.2,0.4,0.4) 
 
nsim<-1000 
psim<-matrix(0,nrow=nsim,ncol=8) 
wilks<-rep(0,nsim) 
tau<-rep(0,nsim) 
 
nmc<-1000 
r.comp<-matrix(0,nrow=ni*g,ncol=p) 
 
chi2<-matrix(0,nrow=10000,ncol=3) 
chi2[,1]<-rchisq(10000,df=2) 
chi2[,2]<-rchisq(10000,df=1) 
chi2[,3]<-rchisq(10000,df=1) 
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ptable1<-rowMeans(chi2) 
ptable2<-chi2%*%as.matrix(mpcnt) 
 
Sys.time() 
for(i in 1:nsim){ 
 data1<-data.gen2(p,g,ni,delta,mpcnt) 
 group<-data1$group 
 y<-data1$y 
 r<-data1$r 
 fit<-manova(y ~ group) 
 wilks[i]<-(summary(fit,test="Wilks"))$stats[1,2] #value of wilks' 
lambda 
 ps1<-multkw.perm(nmc,group,y,r,weight="plain") 
 ps2<-multkw.perm(nmc,group,y,r,weight="prop") 
 ps.comp<-multkw.perm(nmc,group,y,r.comp,weight="prop") 
 psim[i,1]<-ps1$p.mkw.m.perm 
 psim[i,2]<-mean(ps1$W2.m<ptable1) 
 psim[i,3]<-ps1$p.mkw.c.perm 
 psim[i,4]<-ps1$p.mkw.c.chi2 
 psim[i,5]<-ps2$p.mkw.m.perm 
 psim[i,6]<-mean(ps2$W2.m<ptable2) 
 psim[i,7]<-ps.comp$p.mkw.m.perm 
 psim[i,8]<-ps.comp$p.mkw.m.chi2 
} 
Sys.time() 
 
pw<-colMeans(psim<0.05) 
f2<-mean(1/wilks-1) 
 
fname<-paste("power est n",ni, "delta",delta,"-poi-h",".txt") 
write.table(c(f2,pw),file=fname,row.names=T,append=T) 
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