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ABSTRACT

Human meiotic recombination is critical to successful human reproduction and to maintain-
ing genetic diversity. Recombination anomalies are associated with aberrant meiotic out-
comes with significant consequences. One important method for studying recombination is
genome-wide association studies (GWAS) of recombination phenotypes. Because such stud-
ies require nuclear or three-generation family samples that have been genotyped on GWAS
chips, the number of suitable datasets is limited. The goal of this dissertation is to develop
methods for increasing the available sample sizes for GWAS of recombination phenotypes.

We developed two different approaches for increasing sample size. First, we made it
possible to include additional family types in the analysis. We developed methods for scoring
recombination for half-sibling pedigrees and three generation pedigrees with ungenotyped
individuals. Second, we developed a regionally smoothed meta-analysis method for GWAS
data, which will allow the combination datasets that have been genotyped on different chips.
This method will help increase available sample sizes for recombination studies, but is also
applicable to all GWAS studies.

The public health significance of this work is that our developments will allow us to find
new genes that control recombination and more information about already-known genes.
This information can be used for improved treatment and prevention of the consequences of
aberrant recombination, including infertility and births with significant chromosomal anoma-
lies.

Keywords: Meiotic Recombination, Crossover, Recombination Scoring, GWAS meta-

analysis, Methods of GWAS meta-analysis, Regionally smoothed meta-analysis.
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1.0 INTRODUCTION

1.1 HUMAN MEIOTIC RECOMBINATION

Meiotic recombination plays a crucial role in human reproduction. Meiotic recombination
is embedded in the process of meiosis, which starts with DNA replication followed by two
cycles of cell division to ensure that the gametes (sex cells) contain half of the chromosomes
as compared to the diploid cells [1, 2, 3]. Meiosis takes place in both female and male and
is known as oogenesis and spermatogenesis in females and males respectively [4]. Meiosis is
a two-stage process with several sub-stages in each stage. In meiosis I, there are four main
sub-stages: prophase I, metaphase I, anaphase I and telophase I. Meiotic recombination,
the exchange of genetic material between homologous chromosomes, takes place at the end
of a prolonged sub-stage, prophase I [4]. It is a highly regulated process, which starts with
controlled fragmentation of chromosomes by DNA double strand breaks (DSB) [5, 6]. DSBs
repair happen in their homologs on another chromatid. DSBs are not uniformly distributed
across the genome but instead have site preferences. Following DSBs, a synaptonemal com-
plex (SC) develops and the stability of the SC increases as the double Holliday junction

forms. A few of the junctions end up as recombination sites [2].

Meiotic recombination serves a number of important functions, including increased ge-
nomic diversity and ensures proper chromosomal segregation. One of the reasons that re-
combination is of interest is because abnormal recombination has been linked to adverse
health outcomes. A decreased or increased rate of recombination is associated with im-

proper chromosomal segregation [7, 8, 9, 10, 11]. Many studies in model organisms have also



shown this link between abnormal recombination patterns and chromosomal nondisjunction,
in which chromosomes do not separate properly during different stages of meiosis [12, 13, 14].
Chromosomal nondisjunction results in chromosomal aneuploidy, or aberrant chromosome
number, a common event that presents in approximately one fourth of all pregnancies[15, 16].
One third of spontaneous miscarriages are related to chromosomal aneuploidy, which makes
aneuploidy one of the leading causes of pregnancy loss [15, 16]. Among live births with ane-
uploidy, most face profound clinical consequences including birth defects and various forms
cognitive disability. Among live births with aneuploidy, the majority are trisomies, since
most of the monosomies are not viable because of disruptive embryonic development [15].
Trisomies account for .3%-.5% of live births [15, 17]. Reduced recombination and trisomies
are also strongly associated in humans [18, 19, 20, 21, 22|. In addition, chromosomal non-
disjunction afflicts women increasingly as age advances. A significant association between
maternal age and location of recombination events across the genome was reported by Lamb
et. al. (2005) in mothers of children with trisomy 21 [23]. But it is not obvious how advanced

age is potentially associated with altered recombination patterns in general.

Recently several studies have used both genetic epidemiological and molecular methods
to start to uncover the genetic determinants of human meiotic recombination. Several genes
have been convincingly identified (reviewed in Chapter 2), and others have been suggested.
Further investigation may lead to discovery of additional genes and to better understanding
of the effects of those that have already been identified [24, 25]. Finding the genetic basis of
different recombination phenotypes may identify markers associated with age-related or non-
age-related aneuploidy risk, which may lead to possible interventions to lengthen womens
reproductive life spans. In this dissertation I use a variety of different approaches to expand
the sample sizes available for genetic epidemiological studies of meiotic recombination. I use
traditional GWAS meta-analysis to combine different recombination GWAS. In addition to
that I develop a recombination-scoring method using a SNP streak approach for new complex
pedigree structures that will increase sample size in recombination GWAS. I also develop
new method for GWAS meta-analysis that will increase sample size by incorporating more

studies.



1.2 RECOMBINATION SCORING

Identifying the locations of the recombination events across the genome can be done ei-
ther by direct laboratory approaches or by computational approaches. There are currently
two available computational approaches to scoring recombination. The older method uses
sparsely-placed genetic markers (no linkage disequilibrium) and applies a linkage-analysis
type model to infer recombination events in three-generation families. This method is imple-
mented in the CRI-MAP [26]. The newer method exploits the technological advance of denser
SNP chips to score recombination in nuclear families with two or more children. Coop et.
al. [25] and Chowdhury et. al. [27] independently implemented similar methods of scoring
recombination for two-generation nuclear families with two or more children. These meth-
ods use dense SNP chips to call recombination events also known as a SNP-streak method.
These methods identify informative SNPs - the SNPs for which one parent is homozygous
and other parent is heterozygous - in a first step. For a pair of children, a switch from
sharing the same allele to not sharing alleles inherited from a particular parent is scored as
a recombination event for that parent.

Different studies have estimated different recombination phenotypes covering different
aspects of recombination, such as the average number of recombinations for a parent or
for a particular meiotic event (child), location of the recombination on the genome, or re-
combination on particular chromosomes. These studies are reviewed in detail in chapter

2.

1.3 GENOME-WIDE ASSOCIATION STUDIES (GWAS)

To identify the genetic basis for variation in different recombination phenotypes, several
studies have performed genome-wide association studies (GWAS). Over the last decade,
GWAS have become the standard tool for gene discovery in human disease research. A

genome-wide association study is a hypothesis-free method for testing association between a



series of hundreds of thousands to millions of single nucleotide polymorphisms (SNPs) and
a trait of interest genome-wide. For over a decade, GWAS have been successfully used to
detect genetic variants for many complex diseases. GWAS are particularly successful for
relatively common variants, common complex diseases, and moderate to larger effect sizes.
GWAS analyses can be based on single or multiple SNPs or other functional units such
as genes, haplotype blocks and pathways. Single-SNP GWAS analyses are most common. In
GWAS analysis unrelated individuals from a population are used as the data set. The trait of
interest can be either discrete or continuous in nature. Usually logistic regression models or
contingency tables are used for identifying association between discrete phenotypes or traits
and the variants. Different types of linear regression models are used for continuous type
of phenotypes. Depending on the data, genetic model choice for the SNPs can be different
too. Most of the GWAS software has the option for adjusting for other co-variates and their

interactions in the model.

1.4 GWAS META-ANALYSIS

Sample size in a GWAS plays an important role in detecting relatively smaller effects. Larger
sample size is necessary to detect relatively smaller effect sizes with an acceptable power.
But if the sample size is not sufficiently large, one might think of increasing sample size by
using meta-analysis to integrate several GWAS results. Such approaches have the potential
to increase the power to find the associated variants of moderate effect size.

If raw data from different GWAS studies are available, one can combine those and do
mega-analysis. When genotyping of different studies has been done on different chips, then
one can do meta-analysis, which is statistically equivalent to mega-analysis [28]. Standard
GWAS meta-analysis methods can be divided in two major groups: combining p-values with
or without weights, or combining effect sizes using a fixed effect or random effect method.

Among all methods, the fixed effect method is the most widely used method in GWAS meta-



analysis. Chapter 4 is a review paper that discusses and compares GWAS meta-analysis
methods in depth.

Although GWAS meta-analyses have been applied for various diseases and traits, not
much methodological work has been done in this area. Some of the better methods pub-
lished are not in use. Even when standard meta-analysis methods are applied carefully
and optimally, there remain some unresolved statistical issues. These include handling of
imputation uncertainty and inaccuracy, heterogeneity in the study cohorts, improper data

cleaning, improper choice of genetic and meta-analysis models etc.

1.5 SPECIFIC AIMS

The objective of this dissertation is to develop methodology that can be used to increase
sample sizes in GWAS studies of meiotic recombination. Project 1 is an applied project
that used current methods to perform GWAS and GWAS meta-analysis for recombination.
Project 2 developed methods that can be used to score recombination in additional family
types. Project 3 reviewed and compared GWAS meta-analysis methods, and project 4
developed a new regionally-smoothed meta-analysis method that can be used for GWAS

studies of recombination.

1.5.1 Project 1: Genetics of Meiotic Recombination: Genome Wide Association

Studies for Recombination Phenotypes. (Chapter Two)

(a) Score recombination in the Geneva Dental Caries Study (GDCS) data set and calculate

new phenotypes.
(b) Perform GWAS for all phenotypes for males, females, and both sexes combined.

(c) Perform GWAS-meta analysis combining GDCS with results from the Autism Genetic
Research studies (AGRE) data set.



(d) Perform gene-based qualitative replication using the Framingham Heart Study (FHS)
data set.

1.5.2 Project 2: Scoring Recombination using Complex Pedigree Structures

including Half-Siblings. (Chapter Three)

(a) Develop methods for scoring recombination phenotypes in three-generation families with
varying numbers of people with missing genotypes using a SNP streak method.
(b) Develop methods for scoring recombination phenotypes for two and three-generation

families with half-siblings.

1.5.3 Project 3: Comprehensive Literature Review and Statistical Considera-

tions for GWAS Meta-Analysis. (Chapter Four)

(a) Review literature of current GWAS meta-analysis methods.
(b) Conduct a case study to compare existing methods.

(c) Discuss pitfalls and current challenges of GWAS meta-analysis.

1.5.4 Project 4: Regionally Smoothed Meta-Analysis for GWAS. (Chapter
Five)

(a) Develop a regionally smoothed meta-analysis method for GWAS data sets genotyped on
different chips or data sets with SNP sets with minimal overlap.
(b) Apply new method to three GWAS data sets.

(¢) Compare performance of different methods.
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2.0 GENETICS OF MEIOTIC RECOMBINATION: GENOME WIDE
ASSOCTATION STUDIES FOR RECOMBINATION PHENOTYPES

2.1 ABSTRACT

GWAS and molecular studies have identified two genes that clearly play a role in human mei-
otic recombination. RNF212 is associated with total or average recombination, and PRDM9
is associated with recombination in historically defined hotspots. Other genes have been
suggestively identified by GWAS, but not replicated. In this study we calculate new recom-
bination phenotypes and use new datasets to attempt to identify additional recombination
genes and to further study the effects of PRDM9 and RNF212.

We used three data sets totaling of 3108 two-generation families, and estimated five
different recombination phenotypes using dense SNP array genotype data. We then per-
formed gender-specific and gender-pooled GWAS analyses. We replicated previous results
for RNF212 and PRDMY, and by looking specifically at recombination outside of hotspots
we also showed that PRDM9 appears to have somewhat different actions in males and fe-
males. We suggested several new potential candidate SNPs/genes, including rs12186491 (chr
5), rs10937651 (chr 4).

2.2 INTRODUCTION

Meiotic recombination is critical to successful human reproduction. It is a highly regulated

stable segregation process to create gametes. It is also an important mechanism for ensuring
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genetic diversity. Unlike somatic recombination, meiotic recombination involves homologous
DNA sequences. Meiotic recombination initiates with double-strand breaks (DSB) of DNA
and repairs on the homologous DNA sequence of the homologous chromosome [1]. Too little
recombination, absence of recombination, and recombination in certain high-risk locations
are all associated with aberrant meiotic outcomes including chromosomal aneuploidies. Most
human embryonic aneuploidies originate from maternal gametes [2, 3, 4, 5, 6, 7|. Long term
meiotic arrest in the female is considered as the cause [2]. Chromosomal aneuploidies include
trisomy and monosomy and can result in pregnancy loss, mental retardation and different

forms of disability.

Recombination is a highly variable phenomenon. There is gender specific variability and
individual level variability at every scale [8]. Recently several studies have started to uncover
the genetic determinants of meiotic recombination in humans using either direct laboratory
approaches or computational approaches for scoring recombination events. Different studies
have focused on different aspects of recombination, such as average number of recombinants,
location and frequency of the recombination in different areas on the genome and different

roles in males and females.

The most commonly studied recombination phenotype is average recombination count
(ARC) over multiple gametes in a single proband (parent). One gene, RNF212, has been
conclusively shown to affect overall recombination and inter-individual variation in ARC
8, 9, 10, 11]. Kong et. al. first reported the RNF212 gene in a GWAS study conducted
in an Icelandic population and showed that it has opposite effects on male and female
recombination rate. This result was later replicated by other studies [9, 10, 11, 12, 13] .
Other genes that have been putatively associated with ARC are KIAA1462 in females and
UGCG and NUBI1 in males [8, 9]. Beside genes, an inversion on chromosome 17q21.31 is
also associated with female recombination rate [8, 9, 11].

Several studies have showed that in addition to the recombination rate, the location of
recombination events is also important. Abnormal recombination location has been asso-
ciated with improper chromosomal segregation [14, 15]. Based on historical information as

represented in patterns of linkage disequilibrium, the frequency of recombination events is
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higher in some locations of the genome. These 1-2 kb areas of the genome are known as
hotspots [16, 17]. Usage of hotspot areas is determined by multiple factors such as presence
of a particular motif in the hotspot regions, presence of epigenetic factors and trans-acting
loci [18].

PRDM9 has been shown in several recent studies to affect recombination in hotspots.
Activity of PRDMY9 varies because of allelic variation, and the genotype may affect the
genome wide hotspot usage [19, 20, 21, 22, 23|. The role of PRDM9 is not limited to hu-
man recombination hotspot usage. A recent study showed that PRDMY is also involved
with non-exchange gene conversion [24]. All of these findings suggest that there are other
determinants still to explore to understand the whole mechanism of PRDM9 and its role in
human recombination and hotspot usage. The Zinc-finger region in PRDMY9 gene tends to
bind to 13-bp or 17-bp motifs. Percent of recombination near the motif is another phenotype

of interest for recombination study.

In summary, two genes RNF212 and PRDMY9 and an inversion of 17q21.31 show clear
evidence of effects on human recombination, and there are some additional suggested loci.
More questions remain. For example, little is known about the effects of RNF212 and
PRDM9 on other recombination phenotypes. Interaction between them has not been tested
to our knowledge. And there are probably more genes associated with other recombination

phenotypes yet to be discovered.

One of the major goals of our study is to find additional recombination genes by consid-
ering phenotypes that have not previously been used in GWAS studies, and by combining
additional datasets. Another goal is to further investigate the roles of the already established
recombination genes. To achieve these goals, we estimated several new phenotypes such as
amount of recombination in the hotspot areas and non-hotspot areas and proportion of re-
combination with motif overlap along with previously-studied phenotypes such as average
recombination rate and percent of hotspot usage using three data sets. It is of particular
interest to characterize the genetic influence on recombination in the non-hotspot areas of
the genome. Such studies may help explain the effects of PRDMY9 and the preference for

using hotspot areas of the genome over non-hotspot areas. In addition, given that in 40%
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of human hotspots a degenerate 13-bp motif was found [25] and the PRDMY9 gene tends
to bind with this motif, we were interested to explore this phenotype as well, although the

motif issue is controversial.

2.3 METHODS

2.3.1 Study Population and Samples

This study included three populations: the Geneva Dental Caries Study (GDCS) [26], the
Autism Genetic Resource Exchange (AGRE) [27] and the Framingham Heart Study (FHS)
[28]. The GDCS and AGRE samples were genotyped on the [llumina Human610-Quad Bead-
chip and FHS samples were genotyped on the Affymetrix 5.0 chip. GDCS genotype data are
available at the National Center for Biotechnology Information database of Genotype and
Phenotype (dbGaP). So are FHS. And AGRE is available at the science program of autism

speaks database (https://research.agre.org/).

2.3.2 Pedigrees

Two-generation nuclear pedigrees with two or more children were used for this study: 171
from GDCS, 737 from AGRE, and 654 from FHS. Genotype data on each family were used
to score recombination for the parents. The parents were then used as the subjects for the

GWAS analyses.

2.3.3 Phenotypes

Recombination events in each nuclear family were called according to the method described
in Chowdhury R et.al [9]. Briefly, the method is as follows. First, a set of informative
markers was identified in each family. A locus is informative if one parent is homozygous

and another is heterozygous. Among two or more children, one is considered as reference
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child, and in a sibling pair a switch from one allele to another allele in a particular parental
haplotype as we move along the chromosome indicates a recombination in that parent with
heterozygous allele. For more accurate estimation, we used 5 or more consecutive markers

to call a recombination event.

From the recombination data, we calculated five different recombination phenotypes: av-
erage recombination count (ARC), percent of recombination occurring in hotspots (HS_PCT),
count of recombination in hotspots (HS_CNT), count of recombination in non-hotspot re-
gions (NHS_CNT) and percent of recombination occurring near the motif (MOTIF). A set
of predefined historic hotspot regions was used to calculate the three phenotypes related to
hotspots: HS_PCT, HS_.CNT and NHS_CNT. Precise definitions of these phenotypes are as

follows:

I Average Recombination Count (ARC)
ARC=(total recombination in all children of the proband/ number of children)

II Percent of Recombination occurring in Hotspots (HS_PCT)
HS_PCT = (total number of recombination overlapping hotspots in all children of the
proband)/(total recombination in all children of the proband)

IIT Absolute Count of Recombination occurring in Hotspots (HS_CNT)
HS_CNT = (total number of recombination overlapping hotspots in all children of the
proband )/(Number of children)

IV Absolute Count of Recombination occurring in Non-Hotspots (NHS_CNT)
NHS_CNT = (total number of recombination overlapping non-hotspots in all children of

the proband)/(Number of children)

V MOTIF
MOTIF = (total number of recombination with motif in all children of the proband) /(Total

recombination events in all children)
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2.3.4 Genotypes, Error Checking and Data Handling

For GDCS, 589, 735 SNPs were released by Center for Inherited Disease Research (CIDR).
Our data sets also included 520,018 SNPs for AGRE and 388,060 SNPs for FHS. To en-
sure the quality, an extensive data cleaning was performed for the data sets. Full de-
tails of data cleaning steps for GDCS can be found in Geneva consortium website (http:
//www . genevastudy.org/). Briefly, measures of identity-by-descent were used to verify rela-
tionships, SNP intensities of X and Y-chromosomes were used to verify gender, and principal
component analysis (PCA) was used to examine genetic ancestry. Two thresholds used in
the analysis are a Hardy-Weinberg disequilibrium cut-off of 0.0001 and minimum minor allele

frequency cut-off of 0.02 for all SNPs.

2.3.5 Genome-wide Association Studies

To identify genes or SNPs associated with different aspects of recombination, we conducted
three genome-wide association studies for each phenotype; we conducted separate male and
female analyses as well as performing a combined analysis. We used PLINK (29) to conduct
all GWAS using an additive genetic model. All of our phenotypes are continuous; so we used
the linear regression option in PLINK for the association tests. As per significance level

08

of association studies, we used the threshold with p-values less then e™° as significant and

08

p-value between e=% to e as suggestive regions or SNPs.

We combined the AGRE and GDCS GWAS using GWAS meta-analysis instead of com-
bining all three data sets. The AGRE and GDCS data sets were genotyped on the same
platform (Illumina 610 chip) and the FHS data set was genotyped on the Affymetrix 5.0 chip.
Because of this platform difference, the SNP sets are very different with minimal overlap. We
used fixed effects meta-analysis to combine the GDCS and AGRE data sets. We performed
GWAS meta-analysis for each sex separately and also performed gender-pooled GWAS meta-
analysis. The software METAL [29] was used to do the GWAS meta-analysis. We then used

the FHS dataset for qualitative replication in regions nominated by the meta-analyses.

15


http://www.genevastudy.org/
http://www.genevastudy.org/

2.4 RESULTS

2.4.1 Recombination Phenotypes

We estimated five different phenotypes based on these recombination scores. Our finding for

each phenotypes are presented below.

2.4.1.1 Average Recombination Count (ARC) The Manhattan plot of the com-
bined meta-analysis is presented in figure 2.1 and the QQ plot of the same analysis is
presented in figure 2.2. Manhattan plots of the sex-specific meta-analysis results are pre-
sented in supplementary documents in appendix A. Results of the sex-specific and combined

meta-analysis of GDCS and AGRE data sets are presented in table 2.1.

Manhattan plot of phenotype ARC (male & female combined)

CO—>rNF212
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Figure 2.1: Manhattan plot of phenotype ARC (combined analysis)
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The top ten most highly associated SNPs are listed in table 2.1, which also includes
nearby flanking genes in each region. The RNF212 gene barely meets the GWAS threshold
in the combined analysis. In the male only analysis, RNF212 is the most significant gene
(p = 1.695¢7%) associated with average recombination count. Reviewing the effect size of
RNF212, male and female have effect in opposite directions, which is consistent with the

previous literature.
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Figure 2.2: QQ plot of phenotype ARC (combined analysis)

Other than RNF212, none of the previously reported candidate genes by Chowdhury et
al and Fledel-Alon et. al. meet the genome-wide association test threshold in our study.
Previously reported genes for male average recombination counts are NUB1 and UGCG and
for female average recombination counts are PDZK1, KIAA1462, CRHR1, LRRC37A. Locus
zoom plots for these gene regions are presented in appendix A. We also looked at the previ-
ously reported signals in our male and female combined analysis for this phenotype. None
of the SNPs ( rs17011067, rs1864309, rs16972342, rs7284619) were significantly associated

with pooled-gender analysis too.
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Table 2.1: SNPs with lowest P-values for ARC

Type SNP Chr BP P.value Direction  Gene.list

Combined 154974601 4 1085409 2.76E-07  --+ - RNF212

Combined 715444996 8 40298364  3.34E-06 ++++  CSorf{, ZMATY

Combined  rs724055 22 29005922  3.60E-06 - +++  LIF, OSM, GATSLS, TBC1D10A,
SF3A1, CCDC157, SEC14L2,
MTP18, HORMAD2

Combined 751996483 3 167607627 6.31E-06 - +4+4+  chr3:167107628, 168107628

Combined 759381359 6 45098602  7.28E-06 ++++  SUPT3H, MIR586

Combined  rs9311748 3 60064633  9.58E-06 ++++  FHIT

Combined  7$4134943 6 20591385  9.85E-06  ++++  E2F3, CDKALI

Combined rs11982615 4 139748182 1.25E-05 ---- SLC7A11, CCRN/L, ELF2

Combined 1510493753 1 83209124  1.42E-05 4+4++  chrl:82709125, 83709125

Combined 751033758 14 59463128  1.81E-05 +--- RTN1, C140rf135, DHRS7

Female 75497793 3 154948531  3.47E-07 ++ C3orf79, SGEF

Female rs12903708 15 58380596  1.13E-06 ++ FOXB1, ANXA2, NARG2

Female 1297475/ 19 12922982  2.43E-06 ++ FARSA, DANDS, CALR,
RAD23A

Female 754879584 9 32402621  3.26E-06 ++ ACO1, DDX58

Female rs9572559 13 70310774  3.79E-06 - - chr13:69810775, 70810775

Female rs11721955 4 160266014 4.53E-06 - - Chorf45, RAPGEF2

Female rs3791956 2 218476666 6.40E-06 ++ TNS1

Female 78235987 16 69806846  7.58E-06 ++ HYDIN, FTSJD1, CALB2

Male rs12645644 4 1044158 7.56E-07 - - IDUA, RNF212, DGKQ,
TMEM175

Male rs1951371 14 59425467  4.69E-06 - - RTN1

Male rs1996483 3 167607627 4.84E-06 ++ chr8:167107628, 168107628

Male rs1418433 6 44860545  8.68E-06 ++ SUPTS8H, SPATS1, AARS2

Male rs1035699 11 19713338  9.80E-06 - - NAV2, LOC100126784

Male rs10493733 1 83209125  1.08E-05 ++ chr1:85009125, 83409125

Male rs2061037 11 8223204 2.08E-05 ++ LMO1, RICS

Male 78724055 22 29005922  2.09E-05 ++ LIF, OSM, GATSL3, SF3Al,

CCDC157, SEC14L2

Column 6 of the table represents the direction of the effect size of each SNP presented in column 2 in each
study. In combined analysis, studies were included in the following order (GDCS female, GDCS male, AGRE
female and AGRE male). In female only analysis, first position in the direction column is for GDCS female
and the 2nd position is for AGRE female and same ordering is used in male only analysis and for rest of the
phenotypes.
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2.4.1.2 Hotspot analysis: Percent of recombination occurring in hotspots (HS_PCT)
Meta-analysis for males and females can be found in appendix A. Figure 2.3 presents the
Manhattan plot of meta-analysis of male and female combined along with the QQ plot in fig-

ure 2.4. The QQ plot shows no departure from the expected uniform distribution of p-values.

Manhattan plot of phenotype HS_PCT (male & female combined)
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Figure 2.3: Manhattan plot of phenotype HS_PCT (combined analysis)

For the HS_PCT phenotype, the top signals for male only, female only and pooled-gender
analysis are presented in Table 2.2. The strongest association (p.value: 1.20e-13) is with
multiple SNPs in and near the PRDM9 gene in the pooled-gender analysis. In the male and
female separate analyses, PRDMY has a stronger association with female HS_PCT than with
male in terms of p-values. In the female only analysis, the strongest association is in PRDM9
and it meets the genome-wide association threshold. But in male only analysis, significance
of the SNP on PRDM9 does not meet the genome-wide threshold. Other than PRDMOY,
none of the other top hits meet genome-wide association threshold. But we suggested some

of the regions with significance level of in order of e-6 to e-7.
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Figure 2.4: QQ plot of phenotype HS_PCT (male and female combined analysis)

2.4.1.3 Hotspot analysis: Average count of recombinants in hotspots (HS_CNT)
Our third phenotype was the count of recombination events in hotspot areas. Manhattan
plots for the phenotype HS_CNT for pooled-gender analysis and sex-specific analysis are
presented in supplementary documents. Table 2.3 shows the top 10 hits for sex-specific
and combined meta-analysis. Unlike HS_PCT, males have stronger effect of PRDMY9 on
HS_CNT than females. But in combined pooled-gender analysis, PRDMY is the strongest
hit. Other suggestive SNPs for HS_CNT have very minimal overlap with the suggested SNPs
for HS_.PCT. Among the top hits for the male only analysis of HS_CNT is RNF212.

2.4.1.4 Non-Hotspot analysis: Average count of recombinants in non-hotspot
areas (NHS_CNT) In the non-hotspot analysis we looked at the average count of re-
combinants in non-hotspot areas of the genome. The Manhattan plots of the pooled-gender

analysis and sex-specific analyses are presented in Appendix A. An unresolved concern is
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Table 2.2: SNPs with lowest P-values for HS_PCT

Type SNP Chr BP P.value Direction  Gene.list

Combined 151603084 5 23567950  1.20E-13 - PRDM9

Combined rs12445855 16 68068843  4.16E-07 ---- CYB5B, MIR1538, TERF?2,
NFATS5

Combined  rs972847 2 50227778  1.00E-06 +++4+  NRXN

Combined rs18232367 7 43342734  4.20E-06 ++++  HECWI

Combined  7s2716140 1 59244984  7.29E-06 ++++  LOC729467, JUN

Combined 79614870 22 43448073  7.79E-06 ---- NCRNA00207, PRRS5,
ARHGAPS, PRR5, ARHGAPS

Combined rs16971454 15 39148429  8.32E-06 +++4+  INOSO

Combined rs11710141 3 132632955 1.32E-05 -4 -- NUDT16P1, MRPLS3, NUDTI6,
SNORA58

Combined 71512581285 12 38795607  1.60E-05 ---- SLC2A18, LRRK?2

Female rs1603084 5 23567950  2.54E-09 - - PRDM9

Female rs12445855 16 68068843  4.64E-07 - - CYB5B, MIR1538, NFATS

Female 75949029 18 50885623  1.32E-05 ++ CCDC68, RAB27B, TCF/,

Female rs355926 16 65270601  1.36E-05 - - CMTM/, DYNC1LI2, CCDC79

Female r$2292305 15 37668113  1.58E-05 - - THBS1, FSIP1

Female rs6744522 2 29302926  1.68E-05 - - ALK, CLIPj, C2orf71

Female rs7107498 11 66476056 2.08E-05 ++ RCFE1, PC, Cllorf86, SYT12,
RHOD

Female rs10906526 10 13319832  2.39E-05 ++ OPTN, MCM10, UCMA, , PHYH,
SEPHS1

Female rs972847 2 50227778  2.55E-05 ++ NRXN1

Female rs760954 6 143767362 3.58E-05 - - AIG1, ADAT2, PEXS3, FUCA2

Female rs4812661 20 41008536  3.69E-05 - - PTPRT

Male rs10996809 10 67413658  2.91E-06 ++ CTNNAS

Male rs12958111 18 71979757  6.88E-06 ++ ZNF516

Male rs1874165 5 23559104  7.59E-06 - - PRDM9

Male rs13878448 13 92254975  8.22E-06 ++ GPC5, GPC6

Male rs160308/ 5 23567950  9.79E-06 - - PRDM9

Male rs7581691 2 13953004  1.44E-05 - - chr2:18453005, 14453005

Male rs10514277 5 85666780  1.76E-05 - - NBPF22P, COX7C

Male rs2380707 2 15930080  1.81E-05 ++ DDX1, MYCNOS, MYCN

Male 154876993 9 91471222  2.36E-05 ++ GADD/5G, LOC100129066

Male rs175858 6 151287006 2.53E-05 ++ PLEKHG1, MTHFDI1L

Male 784461048 15 36835522  3.08E-05 ++ C1borf53, Cl50rf54
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Table 2.3: SNPs with lowest P-values for HS_.CNT

Type SNP Chr BP P.value Direction  Gene.list

Combined rs1874165 5 23559104  3.80E-08 ---- PRDMY

Combined 752764928 1 59195376  3.69E-07 ++4+-++  JUN, LOC729467

Combined 757650855 3 73602421  147E-06 +++4++  PDZRNS

Combined 1516863103 2 15918176  1.77E-06  ++4+++  DDX1, MYCNOS, MYCN

Combined 1513253524 8 119294947 1.88E-06 - - EXT1, SAMD12

Combined 7s2715252  NA 107802544 4.01E-06 ---- chr3:107302545, 108302545

Combined 75932770 1 59256193  8.69E-06 ++4+-++  JUN, LOC729467

Combined rs7169146 15 62088436  9.21E-06 - DAPK?2 , FAMY6A, SNX1

Female rs1242541 14 82275789  2.87E-06 ++ chr14:81775790, 82775790

Female rs2959776 8 6415275 5.40E-06 ++ MCPH1, ANGPT2, AGPAT5

Female rs2569491 19 56276727  8.57E-06 ++ KLK12, KLK13, KLK14, CTUI,
SIGLECY, SIGLEC7, SIGLECPS

Female rs6720182 2 68848001  1.24E-05 - - PROKR1, ARHGAP25, BMP10

Female 184797343 18 8964854 1.47E-05 ++ KIAA0802, NDUFV?2

Female 154881291 10 4141050 1.50E-05 ++ KLF6

Female rs749052 2 232504853 2.09E-05 ++ MIR1471, NPPC, DIS3L2

Female rs13263626 8 135446671 2.16E-05 ++ ZFAT, ZFATAS

Female rs2764928 1 59195376  2.42E-05 ++ JUN, LOC729467

Female rs6018718 20 45880733  2.68E-05 - - NCOA3, SULF2

Female 156985596 8 135471297 2.82E-05 ++ ZFAT, ZFATAS

Male rs10958702 8 41865459  2.06E-06 - - NKX6, 8, ANKI1, MIR486,
MYSTS

Male rs13878443 13 92254975  3.51E-06 ++ GPC5, GPC6

Male rs169266 1 167090734 4.47E-06 ++ DPT, MGC4478, ATP1B1

Male rs1874165 5 23559104  4.62E-06 - - PRDMY

Male rs325702 11 6216076 4.87E-06 ++ OR56B4, OR52B2, OR52W1,
FAM160A2, PRKCDBP

Male rs1558658 7 158571551 5.15E-06 ++ LOC154822, VIPR2

Male rs1347322 8 103617737  5.98E-06 ++ UBR5, ODF'1, KLF10

Male rs1502800 12 85000385  1.34E-05 ++ MGAT4C

Male rs16863103 2 15918176  1.35E-05 ++ DDX1, MYCNOS, MYCN

Male rs7650855 3 73602421  1.46E-05 ++ PDZRNS3

Male rs2045065 4 1042487 1.73E-05 - - IDUA, FGFRL1, RNF212
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a striking deviation in QQ plot from the expected distribution. The top 10 hits of each

analysis are presented in Table 2.4.

2.4.1.5 Percent of recombination occurring near the motif (MOTIF) As our last
phenotype we looked at the percent of recombination occurring near the 13 base-pair motif.
Table 2.5 listed top hits in each analysis. None of the SNPs met genome-wide threshold.

But there are some suggestive SNPs in each category of analysis.

2.4.2 In-depth Analysis of RNF212, PRDM9 and MATP

To gain insight into the roles of the two well-established recombination genes; PRDM9 and
RNF212, we looked at the association results across different phenotypes and also investi-

gated the possible interaction between two genes.

2.4.2.1 PRDM9 gene across phenotypes The PRDMY gene association results for
different are presented in the following Table 2.6. For pooled-sex analysis, PRDMY has the
smallest p-values for association with HS_PCT followed by HS_CNT. Both male and female
effect sizes have the same direction. In NHS_CNT, PRDM9 has borderline genome-wide sig-
nificance. PRDMY9 shows no evidence of association with the average recombination count

and MOTIF phenotypes.
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Table 2.4: SNPs with lowest P-values for NHS_CNT

Type SNP Chr BP P.value Direction  Gene.list

Combined 1512186491 ) 147573689  6.36E-08  ++4++4++  SPINK5L2, SPINKG6, SPINKSLS,
SPINK'7, SPINK9

Combined 752914265 5 23488680  1.16E-07 +++4++4+  PRDM9

Combined 1510957651 4 5596712 1.65E-07  ++++  STKS32B, Cjorf6, EVC2

Combined 757405622 15 31977777 2.16E-07 ++++  RYR3, AVEN

Combined rs11966986 6 56628268  3.19E-07  ++++  DST

Combined 152289682 4 82251226  5.05E-07  ++++  BMPS3, PRKG2

Combined  1s9572544 13 70230937  5.58E-07  ++++  chrl3:69750938, 70730938

Combined 15497083 5 163073219  5.68E-07 ---- CCNG1, NUDCD2, HMMR

Combined 159510171 13 21858129  8.76E-07  ++++  chri3:21358130, 22558130

Combined 159582126 13 96778958  1.12E-06  ++++  MBNL2 [96278959, 97278959]

Combined 151801449 15 40468490  1.27E-06  ++++ GANC, CAPNS3, ZFP106

Combined 155998881 22 32060574  1.55E-06 ++++ LARGE

Female r$s3129595 13 21458281 2.28E-06 ++ FGF9

Female rs7873463 9 4211297 3.23E-06 ++ GLIS3

Female rs2065079 14 50320526  4.22E-06 ++ SAV1, NIN, ABHD12B, PYGL
Female rs1861509 2 205885994  4.65E-06 ++ PARD3B

Female rs1571463 20 54859767  5.88E-06 ++ TFAP2C, BMP7

Female rs1605084 5 23567950  6.29E-06 ++ PRDM9

Female 17594732 2 205879950 6.54E-06 ++ PARDS3B

Female r$2539978 2 63048682  7.79E-06 ++ EHBP1

Female 189372446 6 116118619 1.10E-05 + - FRK, LOC728402

Male rs109537651 4 5596712 5.16E-08 ++ STK32B, Clorf6, EVC2
Male rs11966986 6 56628268  7.41E-07 ++ DST

Male 156994475 8 1260832 1.67E-06 ++ DLGAP2

Male rs7900873 10 14903869  2.30E-06 ++ CDNF, HSPA14, SUV39H2
Male rs1795514 12 79856997  2.56E-06 ++ LIN7A, MIR617, MIR618
Male rs10514277 5 85666780  2.62E-06 ++ NBPF22P

Male 754489957 1 92002931  3.47E-06 ++ chr15:91502932, 92502952
Male rs1473500 6 168253864 7.93E-06 ++ HGC6.3, KIF25, FRMD1
Male rs9845811 3 35945886  9.67E-06 ++ ARPP21, MIR128, 2
Male rs6975631 7 8349419 1.08E-05 ++ ICA1, NXPH1
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Table 2.5: SNPs with lowest P-values for MOTIF

Type SNP Chr BP P.value Direction  Gene.list

Combined 154331859 5 179026713 7.49E-07 ---- RUFY1, HNRNPHI1, Cborf60,
CBY3, MAML1

Combined rs10872388 6 132417711 5.58E-06 ---- CTGF, MOXD1

Combined 151112898 7 1784522 7.02E-06  ++++  ELFNI, MADILI

Combined  7s17746897 4 54930941  8.73E-06 ---- PDGFRA, KIT

Combined 151854226 13 97036242  9.01E-06 ---- RAP2A, IPOS5

Combined 75104384879 6 121716035 9.66E-06 ++++  CGorf170, GJA1

Combined 751494651 5 32976595  9.68E-06  ++++  NPRS3, Coorf23

Female rs6886928 5 166916702 4.38E-06 ++ ODZ2

Female rs6728479 2 644471 8.25E-06 ++ TMEM18

Female rs7193684 16 8046983 8.38E-06 ++ A2BP1

Female 756055249 20 7602896 9.11E-06 - - HAO1

Female 756487429 12 24885298  1.09E-05 ++ BCAT1, DADIL

Male rs1336628 13 18836533  2.95E-07 + - TUBAS3C, LOC100101938,
TPTE?

Male 75136809 22 38350821  5.88E-06 - - CACNA1I

Male rs10882205 10 95022650  8.11E-06 ++ CYP26C1, CYP26A1, MYOF

Male rs11049351 12 9234852 1.05E-05 - - PZP, LOC642846

Male rs11645438 16 47051221  1.18E-05 - - LONP2, SIAH1, N4BP1

Male rs1705665 14 83448121  1.27E-05 ++ chr14:82948122, 83948122
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Table 2.6: PRDMY gene association across phenotypes

Phenotype Type SNP Chr BP Effect StdErr  P.value Direction
HS_PCT Male 72914263 5 23488680 -0.0271 0.0084 0.001355 - -
rs1874165 5 23559104 -0.0431 0.0096 7.59E-06 - -
rs1603084 5 23567950 -0.0427 0.0097  9.794e-06 - -
HS_PCT Female rs2914263 5 23488680 -0.0266 0.0065  4.594e-05 - -
rs1874165 5 23559104 -0.044  0.0076  5.915e-09 - -
rs160308/ 5 23567950 -0.0454 0.0076  2.54E-09 - -
HS_PCT Combined 72914263 5 23488680 -0.0268 0.0052  2.174e-07 ----
rs1874165 5 23559104 -0.0436 0.0059 2.115e-13 ----
rs1603084 5 23567950 -0.0443 0.006 1.20E-13 ----
HS_CNT Male 72914263 5 23488680 -0.1363 0.1057  0.1969 - -
rs1874165 5 23559104 -0.5473 0.1195 4.62E-06 - -
rs160308/ 5 23567950 -0.5419 0.1202  6.559e-06 - -
HS_CNT Female r$2914263 5 23488680 -0.1197 0.1357 0.3775 - -
rs1874165 5 23559104 -0.4826 0.1577 0.00221 - -
rs160308/ 5 23567950 -0.4849 0.1590 0.002288 - -
HS_CNT Combined 72914263 5 23488680 -0.1301 0.0834 0.1187 ----
rs1874165 5 23559104 -0.5237 0.0952 3.80E-08 ----
rs1603084 5 23567950 -0.5211 0.0959  5.48e-08 ----
NHS_.CNT Male rs2914263 5 23488680 0.4110 0.1180  0.000498 ++
rs1874165 5 23559104 0.2264 0.1354  0.09446 ++
rs160308/ 5 23567950 0.2269 0.1352  0.09336 ++
NHS_CNT Female r$2914263 5 23488680 0.6277  0.1511  3.284e-05 ++
rs1874165 5 23559104 0.7679  0.1768  1.406e-05 ++
rs160308/ 5 23567950 0.8056 0.1784  6.29E-06 ++
NHS_CNT  Combined 72914263 5 23488680 0.4931  0.093 1.16E-07 ++++
rs1874165 5 23559104 0.4265 0.1075  7.247e-05  ++++
rs1603084 5 23567950 0.4381  0.1078  4.792e-05  ++++
ARC Male r$2914263 5 23488680 0.4802 0.2495 0.05422 ++
rs1874165 5 23559104 -0.1448 0.2870 0.6139 - -
rs160308/ 5 23567950 -0.1253 0.2829 0.6579 - -
ARC Female 182914263 5 23488680 0.5318  0.4582  0.2458 ++
rs1874165 5 23559104 0.2609 0.5365 0.6268 -+
rs1603084 5 23567950 0.3037  0.5412  0.5746 -+
ARC Combined rs2914263 5 23488680 0.4920 0.2191  0.02472 ++++
rs1874165 5 23559104 -0.0545 0.2531 0.8294 -4 -
rs160308/ 5 23567950 -0.0332 0.2507  0.8947 --+-
MOTIF Male r$2914263 5 23488680 -0.0108 0.0077 0.16 - -
rs1874165 5 23559104 -0.0027 0.0087 0.7561 + -
rs160308/ 5 23567950 -0.0027 0.0088  0.7596 + -
MOTIF Female 72914263 5 23488680 0.0018 0.0064 0.7736 ++
rs1874165 5 23559104 -0.0126 0.0075 0.09211 - -
rs1603084 5 23567950 -0.0138 0.0076 0.06883 - -
MOTIF Combined r$2914263 5 23488680 -0.0033 0.0049  0.4967 +-4-
rs1874165 5 23559104 -0.0084 0.0057 0.1387 -4 --
rs160308/ 5 23567950 -0.0091 0.0057 0.1141 -4 --
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2.4.2.2 RNF212 gene across phenotypes Table 2.7 presents the RNF212 associa-
tion p-values across. RNF212 has the strongest association with male average recombination
rate. Interestingly the RNF212 gene also shows association with male HS_CNT in the order

of e-5. None of the other association p-values with other phenotypes are smaller than e-5.

2.4.2.3 Chromosome 17 inversion region across phenotypes The MAPT gene is
on chromosome 17 in the center of the inversion region, and we looked at the association
results for all the phenotypes for both sexes using that gene as the locus in LocusZoom plots.
SNPs in the region appear to be associated with all phenotypes in females but not in males.
Different SNPs in the region are associated with different phenotypes, though. All of the

locus zoom plots for the MAPT gene across phenotypes are presented in appendix A.

2.4.2.4 Gene X Gene interaction models Looking at the detail analysis of two genes
RNF212 and PRDMY, we were motivated to investigate the possible interaction between
these two genes. We used only GDCS data set for that purpose, since we have the genotype
data available for GDCS only. We selected 2 SNPs; rs1603084( PRDM9) and rs/974601 (
RNF212), which showed association across phenotypes and performed regression analysis
using additive and dominant model with and without interaction effects. Because of the
small sample size some of the categories had very few data or no data at all. So we were

unable to effectively test for interaction.

2.4.3 FHS Replication

To support our findings of new genes and suggested genes for each of the phenotypes, we
examined approximately 140 regions of interest in the FHS data set. We compared male only
analysis with FHS male GWAS results and female only analysis with FHS female GWAS
results. To compare pooled-gender analysis we combined FHS male and female using fixed
effect meta-analysis and then compared. Since the FHS data set and the two other data sets

have limited SNP overlap, we performed this replication analysis at the gene level.
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Table 2.7: RNF212 gene association across phenotypes

Phenotype Type SNP Chr BP Effect StdErr  P.value Direction
ARC Male rs12645644 4 1044158 -0.9774 0.1976  7.56E-07 - -
154974601 4 1085409 -0.9625 0.1706 1.695e-08 - -
ARC female r$12645644 4 1044158 0.5112  0.3652 0.1616 ++
154974601 4 1085409 -0.1028 0.3243 0.7512 -+
ARC Combined 154974601 4 1085409 -0.7761 0.151 2.76E-07 --+-
r$12645644 4 1044158 -0.6403 0.1738 0.0002292  + - + -
HS_PCT Male r$12645644 4 1044158 -0.0183 0.0068  0.006948 - -
154974601 4 1085409 -0.0126 0.0059  0.03188 - -
HS_PCT female r$12645644 4 1044158 0.0024  0.0052  0.6452 -+
rs4974601 4 1085409 0.0047  0.0046 0.314 ++
HS_PCT Combined rs12645644 4 1044158 -0.0053 0.0041 0.1974 - - -
r$4974601 4 1085409 -0.002  0.0036  0.5894 +-+-
HS_CNT Male 1512645644 4 1044158 -0.3564 0.0837  2.044e-05 - -
rs4974601 4 1085409 -0.2234 0.0730  0.002205 - -
HS_CNT female rs12645644 4 1044158 0.0253  0.1085 0.8159 -+
154974601 4 1085409 0.0905  0.0959  0.3453 -+
HS_CNT Combined r$12645644 4 1044158 -0.2141 0.0662 0.001233 - - -
154974601 4 1085409 -0.1083 0.0581  0.0622 - -+ -
NHS_.CNT Male rs12645644 4 1044158 -0.0208 0.0951  0.827 + -
rs4974601 4 1085409 -0.0046 0.0827  0.9555 -+
NHS_CNT female r$12645644 4 1044158 -0.0244 0.1206  0.8395 + -
154974601 4 1085409 0.0341  0.1081 0.7524 ++
NHS_CNT  Combined r$12645644 4 1044158 -0.0222 0.0747  0.7665 ++ - -
rs4974601 4 1085409 0.0097  0.0657  0.8829 + - ++
MOTIF Male r$12645644 4 1044158 0.0078  0.0061  0.2055 ++
154974601 4 1085409 0.0051  0.0053  0.3428 -+
MOTIF female r$12645644 4 1044158 0.0070  0.0051 0.1667 ++
rs4974601 4 1085409 0.0077  0.0045  0.09058 -+
MOTIF Combined rs12645644 4 1044158 0.0073  0.0039 0.0611 ++++
rs4974601 4 1085409 0.0066  0.0035  0.05689 - - ++
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This figure displays 1000kb regions around RNF212 gene. In FHS data set RNF212 gene is
well covered. The SNPs are color-coded according to correlation (HapMap Phase II CEU)
with the most significant SNP to non significant SNP, from red to dark blue presented in
rectangular box in upper right corner. Known genes, with their exon, introns and orientation
notes are plotted below the SNPs. HapMap recombination rates has been shown with a blue
line behind the SNPs. SNP coverage in FHS data sets and Illumina one million chip is noted
by tick marks above the plot.

Figure 2.5: RNF212 (male) in FHS data set
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We selected the top 11 SNPs from the top hit list of the fixed effect meta-analysis of
GDCS and AGRE for each phenotype and made Locus Zoom plots in the FHS female data
set totaling around 150 locus zoom plots. Among the top 11 SNPs in ARC phenotype,
only two SNPs are genotyped in the FHS data set. Two of the SNPs are not genotyped in
FHS, but there are SNPs (2) with strong (.8-1) LD and 4 with medium to high LD that are
genotyped in FHS data set. But none of them showed association with significance level less
than 10(-2) order. Figure 2.5 shows the locus-zoom plot of the RNF212 gene for ARC male
only analysis in FHS data set.
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This figure displays the 1000kb area around PRDMY gene. In FHS data set there is no SNP
genotyped on PRDMY gene.

Figure 2.6: PRDMY (gender-pooled) in FHS data set

In our HS_PCT, HS_.CNT and NHS_CNT phenotype, PRDM9 gene is in the center of
our interest. But in FHS data set, there is no SNP genotyped on PRDMY9 and showed in
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Figure 2.6 (B). Similarly, in male only and gender-pooled analysis, there is no evidence of
low p-values for our associated SNPs. Similarly; we also looked at other phenotypes. Except

few of the SNPs, most of them did not show any evidence of association.

2.5 DISCUSSION

GDCS and AGRE meta-analysis results show that average recombination rate (ARC) has
the strongest association with the RNF212 gene. In separate male and female analyses,
RNF212 is the most significantly associated gene with the phenotype ARC among males
(P.value = 7.56E-07). In females it has less effect on the phenotype and in female the effect
is in opposite direction but not significant (P.value = 0.1616). Among the males of the
FHS data set, RNF212 is associated with ARC with p-value on the e(-5)th order. In depth
analysis of the gene RNF212 across phenotypes shows that along with strongest association
with male average recombination count, RNF212 is also associated with male HS_CNT
phenotype (P.value = 2.044e-05) and the direction of the effect sizes has the same direction
irrespective of sex for HS_CNT and ARC. For example SNP rs12645644 has negative effect on
ARC in male only analysis and positive effect on female only analysis and negative effect on
combined analysis. Similarly in HS_CNT analysis, this SNP has negative effect on male only
analysis and positive effect on female only analysis and negative effect on combined analysis.
RNF212 might not only control the total recombination, it also regulate the recombination

count in the hotspot areas in the same fashion. Further study may confirm the broader role

of RNF212.

In summary, our finding from the three different phenotypes and from male and female
separate and combined analysis about PRDM9 gene suggesting that the females might have
stronger overall regulation than the males. That is, in males who have the "high” version of
PRDM9, both hotspot and overall combination increase. But in females, non-hotspot goes

down to compensate (at least more than in males).
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In male and female combined meta-analysis of GDCS and AGRE, the PRDM9 gene
showed up in top ten hit list with all three of the phenotypes. Association is strongest
with phenotype HS_PCT (1.20E-13) followed by HS_.CNT (3.80E-08) and then NHS_CNT
(1.16E-07) for male and female combined analysis. In male and female separate analysis,
the association is stronger in females compared to males in HS_PCT and NHS_CNT. The
direction of the effect is opposite between these two phenotypes in female analysis, indicating
that the effect of PRDMY is broader than the previously suggested in regulating usage of

hotspots.
Irrespective of gender, one of the SNPs rs1874165 in PRDMY significantly decreases

the number of recombinations in the hotspot areas and increases the number in the non-
hotspot areas, which implies that this SNP has a significant effect on even distribution of
recombination events in the whole genome (balancing out or a force to use both hotspot and

non-hotspot areas).
In male only analysis, same SNP rs1874165 in PRDM9 has the effect size -0.55 with

HS_CNT and 0.23 with NHS_CNT. Where as in females the effect sizes are -0.48 and .77
respectively indicating that there is more regulatory force on females to use non-hotspot

areas.

We also identified new suggestive associations for different phenotypes, and two of the
regions reached the genome-wide significance and both the regions are associated with
phenotype NHS_CNT. Male and female combined analysis for NHS_CNT phenotype SNP
rs12186491 (chr 5) in SPINK6 gene has p.value 6.36E-08 and for male only analysis SNP
rs10937651 (chr 4, bp 5596713, left genes STK32B, Cjorf6 and right gene EVC2 and EV()
has p.value 5.16E-08. Qualitative gene based replication with the FHS data set replicated
few of our top hits which is also previously reported in the literature. But the lack of coverage

of the PRDM9 region on the Affymetrix 5.0 chip was a serious limitation.

2.6 SUPPORTING INFORMATION

Additional tables, figures and discussions are presented in appendix A.
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3.0 SCORING RECOMBINATION IN COMPLEX PEDIGREE
STRUCTURES INCLUDING HALF-SIBLINGS

3.1 INTRODUCTION

Recombination scoring methods for different family types are different. The CRIMAP [1]
software scores recombination for three-generation families using likelihood methods and
microsatellite markers. Coop et. al. [2] and Chowdhury et. al. [3] score recombination
for two-generation nuclear families with two or more children using non-parametric SNP-
streak methods with dense markers. These two pedigree structures are presented in Figure
3.1. The main objective of project 2 is to bring a broader range of pedigree types under

consideration so that we can increase the sample size for recombination GWAS.

a). Three-generation family b). Two-generation family

T n
T |

Figure 3.1: (A) Pedigree structure of three-generation family; (B) Pedigree structure of two-
generation nuclear family
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In any family type, recombination scoring starts by evaluating all SNPs, one at a time,
to determine informativeness. An informative marker is defined as a marker that provides
information about the grandparental source of the allele. Informativeness varies by the pedi-
gree structure and the people genotyped in it. As we scan through the genome, depending
on the pedigree structure and number of people genotyped, we find the grandparental source
of the allele for a single SNP at a time. As scanning progresses and if a switch in the sources
of allele (say from grandmother to grandfather) occurs, then we define this event as a recom-
bination event. For example, Figure 3.2 is a plot of grandchild’s chromosome 1, where all 1s
and 2s are presenting the source of allele from grandparent 1 and grandparent 2 respectively
and all dots (middle row of plot) represent the uninformative SNPs. From this plot we can

infer that there were five recombinations on this chromosome in this individual.

Pedigree 4710248:471024800

0.10

228 222 222 22 22 222
I I I I

0.0e+00 5.0e+07 1.0e+08 1.5e+08 2.0e+08 2.5e+08

0
111111

-0.15

positions(BP)

Figure 3.2: Recombination plot of chromosome 1 (Mukhopadhyay N.)

3.2 THREE-GENERATION FAMILIES WITH VARYING NUMBER OF
MISSING GENOTYPES

The three-generation family structure shown in Figure 3.1 can be used to score recombina-
tion phenotypes in the mother as long as we have genotypes for at least one grandparent and
the grandchild. We developed recombination-scoring methods for all possible informative
versions of this family structure. One example is shown in Figure 3.3 where both grand-
parents and the grandchild genotyped, but not the parents. The other cases are shown in

appendix B.
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GF: Grandfather, GM: Grandmother, GC: Grandchild

Figure 3.3: Three people Genotyped (grandfather, grandmother and grandchild)
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Figure 3.3 shows all possible combinations of genotypes for the three genotyped in-
dividuals in this pedigree and the grandparental allele scoring for each. For example, if
grandfather is homozygous AA and grandmother is heterozygous AB, and if the grandchild
is BB, then we can say that the source of the childs maternal B allele is the grandmother.
By contrast, if the grandmother and grandfather are both AA, then no grandchild genotype
will be informative. The last column of Figure 3.3 gives the information about the source of
the grandparental alleles. If the allele is from grandfather, then it is denoted by 1 and if the
allele is from grandmother, then it is denoted by 0 and if the source of the allele is unknown
(the marker is uninformative), then it is denoted by a question mark. A switch from 0 to 1

or 1 to 0, as we move along the chromosome, is scored as a recombination event.

3.3 RECOMBINATION SCORING IN TWO-GENERATION FAMILIES
WITH HALF-SIBLINGS

Currently, two-generation families with two or more full siblings are used to score recombina-
tion. We develop method to score recombination considering half-siblings in two generation
families. A simple pedigree structure of a two-generation family with half-siblings is pre-

sented in Figure 3.4.

2
\V

Figure 3.4: Pedigree structure of two-generation family with half-siblings

We worked out the scoring of grandparental alleles on all possible versions of this pedigree

as listed below:
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(a) Mother, two fathers, and a pair of half-siblings are genotyped

(b) Mother, one of the fathers, and pair of half-siblings are genotyped

(¢) Mother and pair of half-siblings are genotyped

(d) One or two fathers and a pair of half-siblings are genotyped. (Note that, in these cases
we can score recombination for the mother, but we cannot run GWAS for the mother,

since her genotype is missing).

(e) One or two people genotyped pedigrees are uninformative.

For the sake of simplicity, we show the scoring for the example of a two-generation family
with three people genotyped; mother and two half-siblings in Table 3.1. The pedigree
structure of this example is shown in Figure 3.5. Unlike the three-generation pedigree,
in this case, each SNP does not give us information about which grandparental allele each
child has. Rather, the information is whether the two children share the same grandparental
alleles or have different grandparental alleles. As we move along the chromosome, a switch
from same to different or vice versa indicates a recombination. (Note that, we do not know
in which child the recombination occurred, but we do not need that information since it is
the mother’s phenotype we are trying to calculate. This is similar to the methods used in

two-generation full-sibling families.)

M
N

Figure 3.5: Pedigree structure of two-generation family with half-siblings and missing genotypes
of fathers.
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Table 3.1: Three people Genotyped (mother and half-siblings pair)

Mom Half-sibl | Half-sib2 | Grandparental alleles
AB AA AA same
AB ?
BB different
AB AA 7
AB ?
BB 7
BB AA different
AB ?
BB same
AA or BB ?

3.4 RECOMBINATION SCORING IN THREE-GENERATION FAMILIES
WITH HALF-SIBLINGS

We also worked out the scoring of recombinations in three generation families with half-
siblings and the pedigree structure is presented in Figure 3.6. All possible combinations

allowing missing genotype in three-generation family with half-siblings are listed below:

(a) Two grandparents, mother, and a pair of half-siblings are genotyped

(b) One grandparent, mother, and a pair of half-siblings are genotyped.

VY
éUé
Figure 3.6: Pedigree structure of three-generation family with half-siblings.
It may be possible to score recombination more efficiently by considering two half-siblings
together in a three-generation family though it does not add further information about

the allele switch compare to scoring two separate three-generation families with one child

(grandparents, mother, and grandchild).
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4.1 ABSTRACT

Over the last decade, genome-wide association studies (GWAS) have become the standard
tool for gene discovery in human disease research. While debate continues about how to get
the most out of these studies and on occasion about how much value these studies really
provide, it is clear that many of the strongest results have come from large-scale mega-
consortia and/or meta-analyses that combine data from up to dozens of studies and tens of
thousands of subjects. While such analyses are becoming more and more common, statistical
methods have lagged somewhat behind. There are good meta-analysis methods available, but
even when they are carefully and optimally applied there remain some unresolved statistical
issues. This paper systematically reviews the GWAS meta-analysis literature, highlighting
methodology and software options and reviewing methods that have been used in real studies.
We illustrate differences among methods using a case study. We also discuss some of the

unresolved issues and potential future directions.

4.2 INTRODUCTION

Genome-wide Association Studies (GWAS) test for statistical association between genotype
and phenotype on hundreds of thousands to millions of single nucleotide polymorphisms
(SNPs) at a time in order to find genes that contribute to human diseases or non-disease
traits. Early in the GWAS era, costs were high and sample sizes were small, but with
technological advances prices have come down significantly and typical sample sizes are now
in the thousands. Even with those large sample sizes, discoveries have been modest for many
or most phenotypes studied because typical effect sizes are quite small, and many results
do not appear to replicate in subsequent studies. As a result, most GWAS publications
now involve multiple datasets in order to both reduce false positives and increase statistical
power to find true positives. Often these multiple datasets are analyzed individually, or

some of them are only used for in-silico replication (i.e. only top markers from one dataset

44



are examined in the remaining datasets). There is growing recognition, however, that the
most statistically robust and efficient analysis is a full-genome meta-analysis combining all
studies and using all data at every marker. Meta-analysis provides optimum power to find
effects that are homogeneous across cohorts, and at the same time can shed light on between-
study heterogeneity [1, 2, 3, 4, 5]. Going even further, many investigators are now forming
mega-consortia of a dozen or more studies for increased statistical power. Meta-analysis
thus has become a routine part of GWAS, and yet there remain unresolved issues about the
most powerful and robust ways to use it. This paper attempts to provide a comprehensive
review of GWAS meta-analysis methods, practices, and problems, with the goal of helping
both applied and methodological researchers take the necessary next steps forward. In the
next section we provide an overview of GWAS meta-analysis methods, and in Section 3 we
review databases and software. Section 4 summarizes the methods used in the literature, and

Section 5 presents our case study. Finally, in Section 6 we discuss important open questions.

4.3 GWAS META-ANALYSIS DATA AND METHODS

It is fairly common for an individual investigator to perform GWAS on several different
study populations and combine the results into a single report. If the genotyping is done for
all studies together, data from the different populations can be directly combined (termed
mega-analysis), and meta-analysis is not necessary. GWAS investigators generally turn to
meta-analysis when scans are performed on different chips and/or when results from different
investigators need to be combined and raw data cannot be exchanged for reasons of either
confidentiality or proprietorship.

There has historically been some concern about the appropriateness of mega-analysis
and even meta-analysis given the high level of heterogeneity among GWAS of the same
trait. Sources of heterogeneity between studies can include different trait measurements and
study designs, different ethnic groups, different environmental exposures, different genotyp-

ing chips, etc. For example, if two study populations have significantly different environmen-
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tal backgrounds (say different diets in an obesity study), different genes may be relevant to
the trait in the two populations (i.e. there may be gene x environment interaction). Another
important source of heterogeneity is differing linkage disequilibrium patterns in different
ethnic groups, so that even if the same variant is causal in both groups, the SNPs that are
associated (in linkage disequilibrium) with it may differ from group to group. Recently, Lin
et al. allayed some of these concerns. They showed both theoretically and by simulation
that meta-analysis and mega-analysis have essentially equal statistical efficiency, and also
that the efficiency of both approaches is fairly robust to between-study heterogeneity [6].
Heterogeneity remains a concern, however, and we will discuss it further throughout the
paper (e.g. in the random effects model, case study and open questions).

Most GWAS meta-analysis uses relatively straightforward methods. P-values can be
combined either with or without weights, or effect sizes can be combined in either fixed or
random effects models. (See the companion paper on microarray meta-analysis for a more
detailed exposition of the differences among these methods). Any of those methods can
be applied either across all studies at once, or cumulatively as each study is added. Most
GWAS meta-analysis takes a frequentist approach, but Bayesian hierarchical models can
also be used, and are very well-suited to a cumulative approach [7]. Table 4.1 lists the
commonly-used GWAS meta-analysis methods and the source information that is required
for each. The methods are described in a bit more detail below.

The simplest GWAS meta-analysis approach is to combine p-values using Fisher’s method.
The formula for the statistic is

X? = 2300, log (p:)

where p; is the p-value for the ith study. Under the null hypothesis, X? follows a chi-
squared distribution with 2k degrees of freedom, where k is the number of studies. A ma-
jor limitation of this method is that all studies are weighted equally, which is likely to be
highly suboptimal when combining GWAS studies with different sample sizes. An additional
problem is that the direction of effect of each SNP is not considered, so that studies with
associations in opposite directions appear to strengthen each other rather than contradicting

each other.
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A major improvement over Fishers method is a weighted Z-score method, in which p-
values are transformed to Z-scores in a one-to-one transformation. The weighted Z-score
method is more powerful and efficient than Fishers method, and allows different weights for
different studies [8]. It also takes into account the direction of the effect at each SNP. The

software METAL [9] implements the weighted Z-score method using the following formula:

Z = (X, Zawi) [/ (3, wd),

where the weight wi = square root of sample size of the ith study, Z; = ¢~ '(1 —
pi/2)*(effect direction for study i), and p; is the p-value for the ith study. Note that the
METAL paper has a typo in this formula, but we have confirmed by testing the software
that the formula shown above is in fact correctly implemented in the software.

The major alternative to combining p-values and/or Z-scores is to combine effect sizes
(estimates). This can be done with either a fixed effects or a random effects model. Com-
bining effect sizes is statistically more powerful than combining Z-scores, but it requires
that the trait be measured on exactly the same scale in each study, with the same units,
same transformations, etc. This may be achievable in a meta-analysis of a trait with highly
standardized measurements, but there are many traits for which it is unlikely to be possible,
for example alcohol or tobacco use. The difference between the fixed effects and random
effects models is that fixed effects meta-analysis assumes that the genetic effects are the
same across the different studies. Fixed effects models provide narrower confidence intervals
and significantly lower p-values for the variants than random effects models [1, 10, 2, 11, 12,
13, 14]. Both fixed effects and random effects models are briefly discussed below; details can
be found in Nakaoka et. al (2009)[15].

For the fixed effects model, inverse-variance weighting is widely used, although other
methods are also available. The weighted average of the effect sizes can be calculated as Op =
> w;b;)/ (>, w;) and the variance of the weighted average of the effect size is var(fp) =
1/(>; w;), where 0; is the logarithm of the ith case-control study effect, w; is the reciprocal
of the estimated variance of the effect size for the ith case-control study.

The random effects model assumes that the mean effect (of each SNP) in each study is
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Table 4.1: Sources of information for different methods of meta-analysis

Fishers p | Weighted Z | Fixed effect | Random effect
p-value X X
Effect size X X
Direction of the effect size X
Sample size X
Heterogeneity estimate X
SE of effect size X X

different, with those means usually assumed to be chosen from a Gaussian distribution. The
variance of that Gaussian distribution, and thus the amount of between-study heterogeneity,
is estimated by the model. Thus the random effects model not only does not assume homo-
geneity of effect but is able to give an estimate of the degree of heterogeneity. The weight
of each study incorporates the between-study variance of heterogeneity, which is expressed

as 72, where

= (Q = (k= )/ (Tws = Xy wl/ ¥y wy).

The weight for the random effects model is calculated as wf = 1/(1/w; + 72) and Q =
S, wi(6; — Op)?, Cochrans test statistic [16] follows a chi-squared distribution with k - 1
degrees of freedom under the assumption of genetic homogeneity. Q is most widely used to
check the between-study heterogeneity. But Q is underpowered when the number of studies
is small. To overcome this problem, there are some other statistics available, such as H, R and
I?, defined as H = \/Q/(k—1), R = \/var(éR)/var(éF) and I? = 100 % (Q — (k — 1))/Q,

where éR is the genetic effect under the random effects model. H, R and I? have some

desirable characteristics such as being scale and size invariant [10, 15]. These statistics are
calculated separately for each SNP, which leads to the interesting and unsolved question of

whether or how one should make a genome-wide determination of heterogeneity.

In addition to these basic methods, almost any meta-analysis method in the statistical
literature can be applied to GWAS, and some of the software packages discussed below do

SO.
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4.4 DATABASES AND SOFTWARE

Most GWAS meta-analyses are assembled from consortia of investigators working on similar
traits, but public databases are also used. The most important GWAS database is the NIH
Database of Genotype and Phenotype (dbGaP), which is the repository for both raw data
and results from most NIH-funded GWAS. There are also a number of databases that contain
selected results from GWAS studies, some of which are suitable for inclusion in meta-analyses
of targeted regions. GWAS Central is one of the oldest such databases, which started in
1998 under a different name. On 4/27/11, it contained 708 studies. The Human Genome
Epidemiology Network (HuGE Net) (http://www.hugenet.ca) also has a GWAS integrator
webpage and contains a list of publications, hits, variants, disease and trait information etc.
Like HuGE Net, The National Human Genome Research Institute (NHGRI) (https://www.
genome . gov/) maintains a catalog of published GWAS studies [17]. Other available databases
include the HKSC database with both bone mineral density (BMD) and fracture data [18]
and the Millennium Genome Project (MGP) (https://gemdbj.nibio.go.jp/dgdb/), which
has a repository of Japanese SNP(JSNP) data [19].

The statistical methods used for GWAS meta-analysis are very straightforward, and it is
not difficult to implement them, but there are several software packages available that can
make this easier and that integrate useful bioinformatics or visualization functions. The most
widely used software is METAL (http://genome.sph.umich.edu/wiki/METAL/Program)
[9]. METAL implements two strategies, a weighted Z-score method based on sample size,
p-value and direction of effect in each study, and an effect-size based method weighted by the
study-specific standard error. The other most commonly used package is Met ABEL, which
is a component of the GenABEL suite in R. MetABEL implements a fixed effects model
like METAL, and results can be shown with a visualization tool. A number of other pack-
ages are also in use, including META (http://www.stats.ox.ac.uk/~jsliu/meta.html).
GWAMA [20] has useful auxiliary features that METAL, MetABEL, and META lack.
PLINK (http://pngu.mgh.harvard.edu/~purcell/plink/metaanal.shtml) [21] is a free,

open-source software for GWAS analysis, which also has some meta-analysis tools to do fixed

49


http://www.hugenet.ca
https://www.genome.gov/
https://www.genome.gov/
https://gemdbj.nibio.go.jp/dgdb/
http://genome.sph.umich.edu/wiki/METAL/Program
http://www.stats.ox.ac.uk/~jsliu/meta.html
http://pngu.mgh.harvard.edu/~purcell/plink/metaanal.shtml

effects and random effects meta-analysis. MAGENTA (http://www.broadinstitute.org/
mpg/magenta/) [22] can be used to test a specific hypothesis or to generate hypotheses, and
it provides gene set enrichment analysis p-values and false discovery rate. Comprehensive
Meta-analysis (CMA) (www.Meta-Analysis.com) Software [23] is a commercial package to do
meta-analysis which works in a spreadsheet interface and also provides forest plots, which
are useful for visualizing between-study heterogeneity (see case study). Review Manager
(RevMan) (http://ims.cochrane.org/revman/about-revman-5) [24] is another package
that does meta-analysis and provides results in tabular format and graphically. It also
provides different kinds of reviews including intervention reviews, diagnostic test accuracy
reviews, methodology reviews and overviews of the reviews. There are several STATA mod-
ules to perform meta-analysis, such as METAN [25], HETEROGI [25] and more specifically
METAGEN [26] (http://bioinformatics.biol.uoa.gr/~pbagos/metagen/) for genetic
association studies. In R, a few other available packages for meta-analysis are Metafor
(http://www.metafor-project.org/) [27], rmeta, and CATMAP. The Metafor package
has different functions to calculate fixed, random and mixed effects along with moderator
and meta-regression analysis and provides different kinds of graphical displays of results
and data. Synthesis-view (https://chgr.mc.vanderbilt.edu/synthesisview) [28] is a
visualization tool which can integrate multiple pieces of information across studies, such as
p-values, effect sizes, allele frequencies etc. IGG3 [29] can integrate raw GWAS data from
multiple chips and provide the input files for different imputation software, which can be
used in meta-analysis later. Magi and Morris (2010) made a nice comparison of different

features among a number of meta-analysis software packages [20].

One issue that is unique to GWAS meta-analysis is that SNPs may not be coded the same
way in different datasets the so-called strand issue. Opposite coding of SNPs in different
studies can cause what should be similar effects to look precisely opposite. This often occurs
for only a small subset of SNPs (those with minor allele frequencies near 50%) and so can
be very difficult to detect. Most of the meta-analysis software packages discussed above
have varying bioinformatics features to resolve this problem, including METAL, MetABEL,
META, and GWAMA [20].
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4.5 LITERATURE REVIEW

This review started with a search of GWAS meta-analysis using PubMed on 12/29/2010,
which yielded 299 papers. After removing duplicates and irrelevant papers there were 249
GWAS meta-analysis papers (see complete searching and paper collection criteria in the
companion paper). Figure 4.1 summarizes the number of papers by year of publication, il-
lustrating the exponential increase between 2005 and 2010. Figure 2 summarizes the contents
of the papers. One hundred and eighty-seven papers (75%) are full GWAS meta-analyses,
while 58 papers (23%) are replication analyses on targeted loci (Figure 2A). Figure 2B shows
that the majority of reports are biological applications (226 papers; 91%) while 10 papers
(4%) are for novel methodology, 4 papers (1%) are databases and software, and 9 papers

(4%) are review papers.

Number of papers published in each year

100
80 /,/
60 /
40 7
B .__./—I/
0 -
2005 2006 2007 2008 2009 2010
Year added in PubMed

No. of papers

Figure 4.1: Number of GWAS studies by year of publication.

Figures 2C and 2D show the methods and software used. One hundred and sixty-four
papers (80%) use fixed or random effects models, 28 (14%) combine weighted z-scores from
p-values, six (3%) use Fishers method, and seven (3%) use direct data merging. For software
packages, METAL (41 papers; 45%) and R packages (23 papers; 25%) are the most popular.
Other software choices include PLINK (6 papers; 7%); GWAMA (3 papers; 3%); and Gen-
ABEL/MetABEL (5 papers; 5%). Detailed information of the paper list and categorization

to generate Figure 2 is available in the online Supplementary Data.
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Figure 4.2: Summary of GWAS meta-analysis review: (A) type of meta-analysis; (B) type of
paper; (C) type of meta-analysis method; (D) software used.
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4.6 CASE STUDY

In this section, we present a simple case study that demonstrates some of the differences
among GWAS meta-analysis methods. Two datasets are included in this meta-analysis,
which we label here as dataset 1 and dataset 2. The datasets are from different studies and
different populations, but both were genotyped on the Illumina Human610-Quad Beadchip.
The phenotype is total meiotic recombination across the genome, which has been of great
interest in the genetics literature lately, with many new discoveries especially about the
recombination hotspot gene PRDMY9. Meiotic recombination events for both parents in
nuclear families were scored according to Chowdhury et al [30]. The gene RNF212 is well-
known to be associated with recombination [30, 31, 32|, so we report results for four SNPs
within this gene. Because the reported associations between RNF212 and recombination
differ in males and females, we consider males and females both separately and combined
in our case study, which provides an illustration of how the different meta-analysis methods
behave in the presence of heterogeneity. All the methods of meta-analysis for our case study
were implemented by us in R.

Table 4.2 shows the results of our case study. The first two rows give the single-study
p-values for each SNP in the four datasets (dataset 1 male, dataset 1 female, dataset 2 male,
dataset 2 female). These are based on standard GWAS methods using linear regression for
each SNP under an additive genetic model. No multiple comparisons correction was applied.
The notable result is that all p-values are highly significant in the dataset 1 males, but not
in either set of females. In the dataset 2 males, two of the SNPs have p-values of .01 and
two are on the order of .20. Note that the sample size in dataset 2 is much smaller than
in dataset 1, so even if the effects are the same in the two datasets we would expect larger
p-values in dataset 2.

When the four meta-analysis methods are used to combine the two male datasets for
the first two SNPs, they all perform reasonably well, but there are clear differences. Fishers
method has the lowest power (highest p-values), as would be expected because it is using

equal weights for these two very different-sized datasets. The highest power is found with
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Table 4.2: Case study results

SNPs in RNF212

rs3796619  rsf974601 12045065 rs12645647

STUDY ANALYSIS
Dataset 1, P-value

Male (n = 736) 1.4E-6 1.4E-6 1.7E-6 1.8E-6
Female (n=736) 0.76 0.76 0.19 0.25
Dataset 2, P-value

Male (n = 174) 0.01 0.01 0.23 0.21
Female (n=174) 0.15 0.14 0.82 0.82

META-ANALYSIS
Fishers, P-value

Male 2.7TE-7 2.7TE-7 6.2E-6 5.9E-6
Female 0.36 0.35 0.45 0.52
Combined 2.6E-6 2.5E-6 5.7E-5 6.7E-5
Weighted Z, P-value

Male 2.35E-8 2.35E-8 6.87E-7 6.34E-7
Female 0.36 0.36 0.10 0.13
Combined 1.97E-5 1.91E-5 5.96E-3 4.46E-3
Fixed Effect , P-value

Male 1.7E-8 1.7E-8 7.0E-7 6.3E-7
Female 0.35 0.35 0.10 0.12
Combined 2.3E-7 2.2E-7 1.6E-4 1.1E-4
Random Effect, P-value

Male 1.7E-8 1.7E-8 1.7E-1 1.5E-1
Female 0.34 0.34 0.10 0.12
Combined 3.0E-1 3.0E-1 4.5E-1 4.4E-1
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both the fixed and random effects models; the similarity of these two methods for these two
SNPs indicates that the fixed effects model fits well. For the third and fourth SNPs, the
weighted Z-score method and the fixed effects model have better power than Fishers method.
The random effects model estimates a very large random component and gives a very high
p-value for the SNP. This is probably an artifact caused by fitting a random effects model
to just two datasets. Based on the biology, a fixed effects model is likely to be more or less

correct for this phenotype, as long as only a single sex is included in the analysis.

In combining the female datasets, all four meta-analysis methods also behave similarly,

reflecting the lack of significant association.

When all four datasets (males and females) are combined, we can clearly see the effect of
the heterogeneity on the different meta-analysis methods. In general the fixed effects model
retains good power to detect association despite our inclusion of some studies (the females)
that have little or no effect, while the random effects model completely loses power because
it is fitting an incorrect model of a Gaussian random effect. That is, our male and female
effects are not the same, but they are not random either what we actually have is a mixture
of two fixed-effects models. We suggest that the typical situation in a GWAS meta-analysis
is likely to be similar to this - a mixture of fixed effects rather than a true random effect
- and thus that the random effects model may not be the most appropriate way to deal
with heterogeneity in GWAS meta-analysis. This proposition clearly deserves further study,

however.

One important way to visualize heterogeneity is with a forest plot, which shows the sepa-
rate estimates and their confidence intervals for each study, and also shows the combination.
Figure 3 is a forest plot for all four SNPs and all four populations in the case study; the
overall effect shown in the forest plots is from the fixed-effects model. The R package rmeta
was used to generate the forest plots. These plots make it very easy to visualize some of
the important features that the p-values only hint at, such as the fact that the two male
populations are in fact quite consistent with each other despite the differing p-values, and
the fact that the female effect is actually in the opposite direction (which is consistent with

the recombination literature).
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Figure 4.3: Forest plot of the selected SNPs.
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4.7 COMPLICATIONS AND OPEN QUESTIONS

GWAS meta-analysis is now widely used and in general has worked well to discover genetic
effects that were not uncovered in individual studies. There are, however, some remaining

barriers and open methodological issues.

Genotype data cleaning: Prior to meta-analysis, it is clearly important that all datasets

undergo thorough standard GWAS data cleaning, such as filtering out bad SNPs and samples
using genotype call rates, tests of Hardy-Weinberg equilibrium (HWE) etc [33]. What is not
entirely clear is how important it is that the data cleaning steps and standards be the same
across datasets. For example, can it cause problems if different genotype call rate cutoffs
are used in different datasets? This has not been systematically studied to our knowledge.
In genetic association studies for targeted SNPs, there have been three ways to deal with
HWE: including all studies irrespective of the HWE tests [34], doing sensitivity analysis to
verify differential genetic effects in subgroups [15, 35, 36, 37], and excluding studies with
statistically significant deviation from HWE [15, 38]. More recently, most large consortium
meta-analyses have attempted to use consistent HWE cutoffs across studies, which is clearly

the safest approach.

It is also not clear whether it is necessary or desirable to implement data cleaning steps
that compare datasets to each other. The same SNP assay can behave differently on different
chips, or even on the same chip in different batches, and thus it is common to scan datasets
for SNPs with widely differing allele frequencies and eliminate them before combining. But if
the datasets are from different ethnic groups, there will also be SNPs for which there are true
differences in allele frequency. It is not clear whether there is a way to distinguish the artifacts
from the real differences, and thus it is difficult to recommend an ideal cleaning strategy.
Similarly, HWE testing poses issues when datasets are combined (as discussed above), but it
is probably clear that HWE tests on combined datasets would be unacceptably conservative.
These issues are particularly important in the situation where different studies have different

phenotype distributions (or, equivalently, different case:control ratios).
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Imputation: When studies are genotyped on different chips, there may be very little
overlap in the SNP sets, and thus direct SNP-by-SNP meta-analysis is impossible. For
example, the overlap between the Illumina 550K SNP set and the Affymetrix 500K SNP set
is only about 100K or 20% of SNPs. The standard solution to this problem is to impute the
genotypes of all SNPs in all samples, and a variety of good methods is available for doing
so [39]. The problem this creates, which has not been carefully addressed in the literature,
is that imputed genotypes have slightly higher error rates and variances than non-imputed
genotypes. In general, if imputation is done carefully, the error rates are very low. Error rates
can be higher, however, for areas of the genome with sparse SNP coverage or for ethnic groups
that are not well represented in the dataset that is used for imputation reference (usually
HapMap or 1000 genomes). As with data cleaning above, this issue can be critical if different
studies have different phenotype distributions. If two studies have different case:control ratios
and one is genotyped and one imputed for a particular SNP, then there is a resulting difference
between case and control variances, which can cause false positive results. Conversely, if one
chip has very poor coverage of a region, then imputation will create genotypes that actually
convey very little information, in which case the meta-analysis can give false negative results
because it is averaging in non-informative datasets. Some kind of regionally-smoothed meta-
analysis may be the solution to this problem, but such methods have not been developed to
our knowledge. In general, it is always advisable to check data quality or replicate results

that are based predominantly on imputed data.

Choice of genetic models: In GWAS analysis, the basic association test can be based on

an allele frequency comparison or on various statistical contrasts of genotype frequencies,
for example an additive model, a dominant model, etc. The same model is used for each
SNP, so usually something relatively robust such as the additive model is used [40]. It is most
desirable in meta-analysis to use the same model in each study, but in post hoc combinations
of analyses that might not always be possible. To our knowledge, no one has studied the effect
of such variation in association model on meta-analysis. Clearly it causes some level of effect

heterogeneity that would, at least formally, violate a fixed effects model, though it would
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not fit a Gaussian random effects model either. Similar issues arise if different covariates or

different methods for controlling for population stratification are used in different studies.

Between-study heterogeneity: As discussed above, between-study heterogeneity should

probably be considered the norm in GWAS meta-analysis. Such heterogeneity is important to
discover and report, since it can lead to important biological insights, for example differences
in the genetic control of male and female recombination. The conventional wisdom in the
statistical literature is that when heterogeneity is present or even likely, the random effects
model is more appropriate than the fixed effects model. We suggest that this might not be the
right approach for GWAS, because 1) the number of studies being combined is often not very
large (leading to an imprecise heterogeneity estimate) and 2) the form of the heterogeneity
typically does not fit a Gaussian random effects model. We do suggest that forest plots
are an important heuristic method for discovering and understanding heterogeneity, but we
also propose that further work on random or mixed-effects models that are a better fit to
GWAS data might improve analyses. For example, in our recombination example we know
that males and females are likely to be different, so we could fit a model that explicitly has

different fixed male and female effects.

4.8 CONCLUSION

As the GWAS literature moves away from artificial replication and toward the more statisti-
cally optimal direct combination of all available data in a meta-analysis framework, it will be
critical for investigators to understand the best methods for performing that meta-analysis.
While good methods are already in use in most studies, there is room for improvement in
many of the details discussed above. Many of the potential improvements are ideally ad-
dressed by planning studies in a coordinated manner from the beginning, but that is not
always feasible. We still need improved methods for post hoc combinations of studies that

may have significant heterogeneity in chip, study population, environmental exposures, as-
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sociation tests, etc. Looking even further ahead, all of the issues addressed above will need
to be re-examined for meta-analyses of SNP data derived from sequencing studies, which

will undoubtedly be appearing soon in journals throughout the field.
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5.0 REGIONALLY SMOOTHED META-ANALYSIS (RSM) METHODS
FOR GWAS DATASETS

5.1 ABSTRACT

Genome-wide association studies (GWAS) are proven tools for finding disease genes. Because
effect sizes are often small, many of the most successful GWAS studies have been meta-
analyses that combine results from as many as 20 or more different cohorts. Often the
component studies are performed on different chips with minimal SNP overlap. In some
cases, raw data is not available for imputation so that only the genotyped SNP results can
be used in meta-analysis. To our knowledge, there is no available method to overcome
this situation. In this study we propose new methods for GWAS meta-analysis combining
different GWAS with minimum SNP overlap when imputation is not an option.

This new regionally smoothed meta-analysis (RSM) method is a two-stage method. In
the first stage, we divide the genome into windows and derive window-based p-values for each
study. In the second stage we combine results for each window across studies. We compared
several different procedures for both the first and second stages, as well as different window

sizes, using test datasets from our human meiotic recombination GWAS.

5.2 INTRODUCTION

Genome-wide association studies have popularly been used to map disease genes for human

complex diseases. Large sample size is required to identify SNPs with moderate effect size.
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Though the number of GWAS has increased exponentially over the last decade, sample
sizes of most of the individual studies are not large enough to identify SNPs with small to
moderate effects. GWAS investigators have addressed this problem by integrating different
studies using meta-analysis to get better power. But our comprehensive review of GWAS
meta-analysis papers showed that most of the studies are using a few simple meta-analysis
methods and that there are a number of unresolved methodological issues in the proper

application of these methods [1].

One of the methodological challenges we identified in our review was method for meta-
analysis of studies that have been performed on different chips. It is very common to en-
counter this situation in combining GWAS studies. Because of different genotyping platforms
there is often a large number of non-overlapping single nucleotide polymorphisms (SNPs)
in different data sets. Even if different data sets are genotyped on the same chip but in
different laboratories, differing quality control processes can also lead to non-matching SNP
sets. The standard practice for GWAS meta-analysis is to impute the non-overlapping and
missing SNPs in each study and perform single locus GWAS and then combine studies using
any of the available standard meta-analysis methods. In some cases, however, raw data are
unavailable, so that imputation cannot be performed. Moreover, if imputation is performed
in regions where one or more datasets is uninformative due to few SNPs, imputation can
give false negative results because meta-analysis treats the imputed data identically to the
genotyped data. Thus imputation can actually be misleading if SNP sets do not match. In
this study we propose a method to perform meta-analysis of GWAS with non-overlapping

SNPs by doing regional smoothing.

Many previous methodological studies have proposed methods for combining results of a
single GWAS across windows or groups of SNPs. The usual motivation for these methods is
to increase biological significance and/or decrease the multiple testing burden. Many stud-
ies proposed different methods based on multiple SNPs or genomic regions for individual
GWAS. With the technological advancement, now a day the denser SNP chips are available
for analysis. Additional SNPs are adding new information and at the same time making the

multiple comparison issue more critical. Availability of the denser SNP chips such as few
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millions SNP chip, it is more and more imminent that single locus GWAS are not providing
desirable efficiency considering power, false positives or true negatives. Too stringent cut-off
points controlling the false positive rates, but at the same time it is increasing the proba-
bility of missing true positives. Multi-locus GWAS analysis often performed to examine the
interactions though it is more challenging statistically, computationally and logistically [2,
3]. To trade-off between controlling false positives and missing true positives, many GWAS

methods were proposed based on genomic regions instead of single SNP analysis.

The main objective of the genomic region based GWAS methods is to reduce the di-
mension and to incorporating information from the nearby SNPs, including LD structure
information and detecting disease associated SNPs with more power. Different types of
genomic region based GWAS has been proposed such as gene based methods [4, 5, 6, 7],
haplotype based methods [8, 9, 10], pathway based methods [11, 12, 13, 14| and genomic
region based methods [15, 16, 17]. Window based genome-wide association studies moti-
vated us to propose regionally smoothed meta-analysis method for GWAS. In window based
GWAS, different window types and sizes have been considered, such as non-overlapping fixed
windows, overlapping sliding windows and overlapping variable sized sliding windows. Most
of the studies aimed to capture the LD structure in the windows in finding associated disease
SNPs. Depending on the principal components some studies tried to find an optimal window
size. Window based GWAS methods are in used application, without an optimal solution

for the window size question.

In our study, we considered varying window sizes and types as well as various methods for
combining the results for the SNPs within the window. We then added an additional layer of
meta-analysis to combine results for each window across studies, and we considered various
methods for that combination as well. We refer to this as regionally-smoothed meta-analysis

(RSM).
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5.3 METHODOLOGY

Our proposed regionally smoothed meta-analysis (RSM) methods work on genomic intervals
genome-wide and provides the ranks of the genomic intervals depending on the significance
level of the association as an output. RSM methods are two-stage methods. In first stage,
the whole genome is divided into fixed or sliding windows and we compute a summary of the
window effect in each study individually. In the second stage, we merge the window effects

across studies.

5.3.1 First Stage

In the first stage we divide each chromosome into windows of a pre-decided base-pair length.
The proposed statistics to use in the first stage to summarize the window effect in each study

are as follows:

(I) Fishers statistic (FS): Fishers statistic combines p-values by summing up the log scaled
p-values and multiplying the sum by —2, assuming that all the p-values are independent.
Under the null hypothesis, this statistic follows a chi-square distribution with two times
the number of studies as the degrees of freedom. The equation of Fishers statistic is

given below:

X? =237 log (pi) ~ X3
where £ is the number of studies to combine. In using this statistic to combine p-values
for SNPs in a window, we know that the tests are not independent, so the asymptotic
chi-square distribution does not hold. We use this statistic only as a scoring function,

and do not assess statistical significance.

(IT) Minimum p (MP): Tippetts Minimum p-value [18] is defined as

X = min py.
1<k<K
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(III) Derived Minimum p (DMP): Tippets minimum p-value follows Beta(1;K) distribution
under the null hypothesis. We used both the minimum p-value and the p-value obtained
from the Beta distribution as our summary statistic.

(IV) Mean of log of p (MLP): Arithmetic mean of the logarithm of the p-values in each window

is used as a summary statistic which is given below:

X =130 log (po).

5.3.2 Second Stage

After calculating the summary statistics for each window for each study, we combine different
GWAS studies summary statistics for each window. In this study we used two statistics
for combining studies in the second stage: Fishers statistic (FS) and Adaptively Weighted
statistic (AWS). Due to limited time we did not experiment on the other statistics. FS is
already described before and Adaptively Weighted statistic (AWS) is described below:

(V) Adaptively Weighted Statistic (AWS): Adaptively Weighted Statistic [19] uses optimal
weight for each study and is defined by X = min,ew pU(u(w)) , where w is the weight
and u(w) is the observed statistic for the weight function U(w) = — Zle wy log (px) and
W = {w|w; € {0,1}}. Compare to the FS, AWS provides better power for a range of

alternative hypothesis.

5.3.3 Window Type and Size

In the first stage of the RSM method we proposed two different types of windows. (1). Fixed
Window Meta-analysis (FWM) and (2). Sliding window Meta-analysis (SWM). Statistic
choice of first stage has an effect on choosing window type. Some of the statistics make none
to very little change in the results for different window type. For example, if we choose MP
or DMP in first stage, the change in the results should be very minimal whether we perform
FWM or SWM unlike choosing F'S or MLP statistic in first stage. As we already mentioned

that we divide the whole genome, each chromosome at a time into some windows depending
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on the base pair location. A fixed size window will slide by a smaller increment depending on
the window size, which is constant throughout the genome. We experimented with different

window sizes such as 50k, 75k, 100k, 300k, and 500k.

5.3.4 Performance Measure of RSM Methods

In this proposed method we are not calculating the correct p-values for any statistics. Instead
we use the statistics only for ranking and focus on the ranks of the regions. This approach
is tailored to the most common goal of genomic analysis, which is to get the most correct
ranked list of results for follow-up analysis.

Type I error: We are applying these methods as ranking procedures for prioritizing
genomic regions for follow-up. As we have implemented them, they do not have correct type
I error. We use the p-values only as ranking statistics, not as real p-values [20]. If one wanted
to use these methods for hypothesis testing, permutation analysis would allow calculation of
correct p-values.

Performance (power): Since we are applying these methods for ranking rather than for
hypothesis testing, the performance needs to be judged based on the ranks each method
produces. We consider a good procedure to be one that is able to put true-positive regions
within the top 10 on a ranked list of regions (and the higher the better). It would also possible

to calculate a positive prediction fraction [21] or other measure of ranking correctness.

5.4 EXPERIMENTAL DESIGNS AND TESTING IN REAL DATA

5.4.1 Introduction

In Chapter 2, we aimed to find the genetic determinants of human meiotic recombination.
We used three data sets from different populations. Two of the data sets were genotyped
on the Illumina Human610-Quad Beadchip and the other one was genotyped on the 5.0

Affymetrix chip. The sample sizes of the three studies are presented in Figure 5.1. Because
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of the different SNP sets on the two chips, in Chapter 2 we used two of the data sets for
meta-analysis and then used the third to replicate the results. Here we include all three of
the data sets in order to test our meta-analysis methods. The advantage of these datasets
for testing our methods is that they contain known true positives. As described in Chapter
2, there are several well-established recombination genes, and we can use this dataset to test
for our ability to find (highly-rank) those gene regions for various phenotypes. Moreover, a
known problem with these datasets is that the FHS dataset, genotyped on the Affymetrix
5.0 chip, does not have any SNPs in the PRDMY9 gene, the gene that is highly associated
with recombination in hotspots.

For the current experiments, we chose three of the phenotypes discussed in Chapter
2: average recombination count (ARC), hotspot percent (HS_PCT), and non-hotspot count
(NHS_CNT). Average recombination count (ARC) of a parent is calculated as the total
number of recombination events in all children divided by the number of children. Hotspot
percent (HS_PCT) is the percent of recombination events in the hotspot areas. Non-hotspot
count (NHS_CNT) is the average of the recombination event counts in non-hotspot areas.

Phenotypes are described in detail in Chapter two.

Total Sample Size

[ 4
DATASET: GDCS DATASET: AGRE DATASET: FHS

[ ] [ ] [ |
Male Female Male Female Male Female
- - T L ] L L wa

Figure 5.1: Sample size distribution of different studies.

There are several known recombination genes associated with two of the phenotypes.
We used those genes to test and compare our methods. SNPs in RNF212 are known to

be associated with total recombination, with those associations being somewhat different
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in males and females. SNPs in PRDM9 are known to be associated with recombination in
historical hotspots in both males and females. That association is strongest for the phenotype
percent of recombination in hotspots but can also be observed in count of recombination in
hotspots and count of recombination outside of hotspots. There are also SNPs inside a
chromosome 17 inversion region that are associated average recombination in females. We
tested the ability of all of our methods (including variations on methods such as window

size) to highly rank (and thus detect) these region/phenotype combinations.

5.4.2 Results

Our first tested phenotype was HS_PCT and we looked at the rank of the PRDMY9 gene.
Performance of different methods is listed in Table 5.1. When we considered a smaller
window size such as 50k, the gene was split in two windows. Ranks of the two intervals
are then listed in table. Sometimes due to the positioning of the window on the gene, it
may split in two or more windows even if the windows are longer. The results show that
use of MP and DMP statistics in first stage and F'S in the second stage performed very well
irrespective of the window size. The MLP statistic performed worse with increasing window

size. F'S in both stages is also poorer with a bigger window size.

Table 5.1: Ranks of PRDM9 gene for HS_PCT phenotype

Stages Window Size
First stage Second stage | 50k 75k | 100k | 300k | 500k
Fishers statistics (F'S) FS 1,74 | 20,6 1 6 20
Minimum p (MP) FS 1 1 1 1 1
Derived minimum p (DMP) FS 1,7 | 1,6 | 1,58 1 1
Mean of log of p (MLP) FS 1 3 2 8 16

Our second phenotype of interest was NHS_CNT and we again looked at the ranks for
the PRDM9 gene. This is a more challenging test for the methods than HS_PCT, because
the effect size of the gene on this phenotype is smaller. Table 5.2 shows the ranks of the
PRDMY gene for different window sizes and for different statistics in different stages. The
result shows that DMP statistics gave lowest rank for the PRDMY9 gene. In fact, only DMP
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performed well enough that the gene would be likely to be detected in a GWAS, although
min P is close. Considering window size, different statistics provided lowest rank for different

window sizes.

Table 5.2: Ranks of PRDM9 gene for NHS_CNT phenotype

Stages Window Size
First stage Second stage | 50k | 75k | 100k | 300k | 500k
Fishers statistics (F'S) FS 217 | 85 90 115 | 259
Minimum p (MP) FS 20 | 13 10 4 139
Derived minimum p (DMP) FS 8 7 1 2 56
Mean of log of P (MLP) FS 62 | 89 19 104 | 243

Table 5.3 shows the results for the RNF212 gene for the ARC phenotype. Again here
the effect size is quite large, so all methods perform well. FS in both stages was the best-
performing method, followed by MP in the first stage and FS in the second stage. Among

the window sizes, 100k performed best.

Table 5.3: Ranks of RNF212 gene for ARC phenotype

Stages Window Size
First stage Second stage | 50k | 75k | 100k | 300k | 500k
Fishers statistics (F'S) FS 1 2 1 3 3
Minimum p (MP) FS 2 2 2 3 3
Derived minimum p (DMP) FS 4,6 | 4,6 3 3,4 | 3,7
Mean of log of P (MLP) FS 2,4 13,4 2 2 3

5.4.3 Discussion

In this study, we considered three phonotypes and five different window sizes. Results show
that MP worked best across phenotypes even when the effect size was relatively smaller such
as the association between NHS_CNT and PRDMY9 gene. For PRDM9 and RNF212, window
size 100k worked best. But in general which window size will perform best will also depend
on the linkage disequilibrium (LD) blocks or gene size. A window size that can capture the

whole gene or LD block may yield lowest rank.
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The choice of fixed window and sliding window and the choice of statistics in different
stages are linked. If we choose MP or DMP in the first stage, it may not necessary to choose
sliding window. Instead window size choice will be critical.

Program run time for fixed windows is faster than for sliding windows. Running fixed
windows for multiple window sizes may help us to choose the optimum window size for sliding
windows to refine the location on the genome.

We tested four different statistics in first stage. Among the four statistics, MP and DMP
will identify the SNPs with significant p-values in few of the studies. Fisher’s statistics
and MLP statistic is also affected by small p-values in a subset of studies. If we want to
identify SNPs with moderate effect size across studies, we need to think critically in choosing
statistics in first stage.

In the second stage we show results for F'S only. We investigated the scope of AWS too,
but due to computational difficulty, we could not estimate p-value less than on the order
of 107, So it became difficult to apply the ranking approach in this method. With some

modification this method might be useful in second stage.

5.5 RSM SOFTWARE

To implement the RSM methods discussed in the previous sections, we are developing an R
package named rsmGWAS. This section describes how different methods were implemented

in R with the program algorithm and example.

5.5.1 Program Description

5.5.1.1 Program input files This program uses GWAS result files as input files. Cur-
rently this program is designed for PLINK [22] GWAS output files. But the program will
work for any output file in the following format. Each of the GWAS result files should have
the following information and all of the GWAS results files should be in the same format.
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1. Chromosome Number

SNP names

Base pair location

Effect size of each SNP

SE of the effect size of each SNP
P-value of each SNP

A

Effect size and the standard error of the effect sizes of each SNP are necessary if the user

wants to implement the fixed effect or random effect GWAS meta-analysis.

5.5.1.2 Choice of Window type Two types of windows were considered, such as fixed
window and sliding window. If fixed window method is preferred, then the program needs
one parameter of the window size. In the case of the sliding window method, the program

requires two parameters (window size and the increment size).

5.5.1.3 Methods choice In this package we provide several statistic choices in both
stages. The implemented methods are shown in figure 4.1 except fixed effect method and
random effect method. In the first stage there are four methods; such as FS, MP, DMP
or MLP and in the second stage there are two methods available (F'S or AWS) to combine
different studies. Fixed effect method and random effect method can also be used in first

stage.

5.5.1.4 Program Workflow 1. Copy all the GWAS results file in one directory 2. Write
a tab delimited text file listing the names of the GWAS results files 3. Source the Function
4. Call the function using different parameters

5.5.2 Example

Making the list file

Example 1: List file example
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STUDY LIST

STUDY 1 STUDY2 | -+ | STUDYK

Method: Fixed/

Sliding Window -»| Stage 1
wie | [ rs [ e | ove [[aae || Fs [ e | owe || e
Method: Fisher’s Statistic
Adaptively Weighted Statistics | Stage 2

Meta F§ Meta MP Meta DMP Meta MLP -

Figure 5.2: Program algorithm of RSMgwas package.
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studyl _GWAS result.qassoc

study2_GWAS _result.qassoc

studyk_GWAS _result.qassoc

Example 2: Output file after first stage

Table 5.4: Example output file after stage one.
CHR | BP_range winStart | winEnd Fisher_P_1 Fisher_P_6
1 0-50000 0 50000 NA 0.288187997
1 1.01e+08-101050000 | 1.01E408 | 101050000 | 0.038226405 0.974085409
1 1.02e+08-102050000 | 1.02E+08 | 102050000 | 0.951274052 0.703104411
1 1.03e4-08-103050000 | 1.03E+08 | 103050000 | 0.246770384 0.65105545
1 1.04e+08_.104050000 | 1.04E+08 | 104050000 | NA NA
Example 3: Output file after second stage
Table 5.5: Example output file after stage two.
CHR | BP_range Fisher_P_6 FM_stat df | P.value
1 0-50000 0.288187997 | 4.694759133 | 4 0.320074421
1 1.01e+08-101050000 0.974085409 | 16.17494896 | 12 | 0.183353853
1 1.02e+4-08-102050000 0.703104411 | 6.782033145 | 12 | 0.87167512
1 1.03e+08-103050000 0.65105545 8.011705054 | 12 | 0.784215008
1 1.04e+08-104050000 NA 0 0 NA

5.5.3 Discussion

rsmGWAS package implemented a two-stage meta analysis method using different statistics.
Any number of GWAS studies can be combined with this package. Only a few of the standard
statistics are implemented in this program. Many extensions such as sliding window option,

fixed effect meta-analysis etc. are planned.
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6.0 CONCLUSIONS

6.1 DISSERTATION CONCLUSIONS

This integrated dissertation is comprised of four projects. All four projects contributed in
different ways to fulfill the main objective of methods development to increase sample size
of recombination studies. Projects one and two focused on meiotic recombination. Projects
three and four is partly motivated by the first project but subsequently branche out into a

more general methodological issue of meta-analysis for genomic data.

In this dissertation, we addressed five specific questions: (1)(a). What are the roles of
known genes and genomic regions beyond known phenotypes? (1)(b). Are there additional
genes associated with meiotic recombination? (2). Can we score recombination for complex
pedigree structures to increase the sample size of recombination of GWAS? (3). Can existing
methods of GWAS meta-analysis handle missing data without imputation? (4) How can
GWAS meta-analysis be done when studies are genotyped on different chips and imputation

is not an option?

In Chapter two, to assess the additional role of already known recombination genes such
as RNF212 and PRDMY9 genes and to identify additional genes associated with meiotic
recombination, we scored recombination using existing methods and estimated some new
recombination phenotypes (HS_CNT, NHS_CNT, MOTIF) and performed GWAS in two
new data sets. We performed sex specific and gender pooled analysis for each phenotype
and combined them using GWAS fixed effect meta-analysis. We performed a qualitative

gene-based replication in a third data set. Our results showed that RNF212 and PRDM9
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have broader roles beyond our previous knowledge. We found that PRDM9 has gender
specific effects on recombination events in non-hotspot areas. We suggested several new

candidate genes/regions for different phenotypes (Tables 2.1-2.5 in Chapter two).

In Chapter three, we developed methods for scoring recombination for three-generation
families and two-generation families with half-siblings using a SNP-streak method. Our

methods allow different numbers of missing persons in the pedigree.

Chapter four is a published comprehensive literature review of GWAS meta-analysis. We
considered 249 papers for this review most of which are application paper (91%) and 4% novel
methodology papers. In this paper we presented an overview of the most widely used GWAS
meta-analysis methods. We also listed GWAS databases and available software for GWAS
meta-analysis. We performed a case study in which we compared and contrasted different
meta-analysis methods. To account for heterogeneous genetic effects, random effects models
are popularly used. In our case, where the number of studies was not large, we showed that
the choice of fixed effects is better than the random effects model. We suggested a mixture
of different fixed effect models instead of the random effect models. We also discussed
different unresolved issues such as data cleaning, imputation, genetic model choices, study

heterogeneity etc. related to GWAS meta-analysis.

In Chapter five, we proposed a novel method for GWAS meta-analysis when data sets
are genotyped on different chips with minimal overlap. Instead of single SNP meta-analysis,
this method works on genome segment to overcome the missing data issue with an advantage
of reduced multiple testing burden. This method is a two-stage method. In first stage we
divide each chromosome into windows with a pre-decided window size, and used a summary
statistic to summarize the window effect. We repeat this step for each study. In second stage,
studies are combined across windows using Fishers statistic or adaptively weighted statistics.
We applied these methods to meiotic recombination data and the result is promising. Among
different statistics, minimum p provided best result in detecting the true positive for first
stage. Our results showed that window size 100k works best for our two chosen genes. We

are developing a R-package rsmGWAS.
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6.2 STRENGTHS AND SHORTCOMINGS

The main strength of this dissertation is in achieving the goal in terms of methodology and
also in terms of genetics. In terms of genetics of human meiotic recombination this disserta-
tion provided deeper insight of some of the known genes, such as RNF212 and PRDMY9, and
their gender-specific effects. In methodological development, the main strength of this dis-
sertation is that we developed new methods for scoring recombination for complex pedigrees
and also developed a new method for GWAS meta-analysis when samples are genotyped
on different chips. Both will contribute to increasing sample size for future recombination

studies. This is a well balanced research of application and method development.

Project one presented in chapter two has several strengths. We explored new aspects of
recombination and considered new phenotypes. Gender-specific and gender-pooled analysis
of each phenotype provided deeper insight into each phenotype. A limitation is that the
different SNP set in the FHS data set, replication of our study finding was limited to gene-
based qualitative analysis. Due to small sample size and non-availability of raw genetic data

of two studies, the analysis of gene gene interaction was limited.

The main strength of project two on recombination scoring method for complex pedigrees
is that it will increase the use of publicly available family data sets of different structures
for recombination study. This newly developed method is based on a SNP-streak method
and denser SNP chip data will be a plus for this method. With a denser SNP chip, the
recombination scoring will be more accurate. Different complex pedigrees with varying
numbers of missing persons will allow use of a wide range of family data sets including

three-generation and two-generation families with half-siblings or a mixture of both.

Comprehensive literature review of GWAS meta-analysis presented in chapter four is
based on a large number of GWAS meta-analysis papers. One of the important strengths
of this project is that it discussed thoroughly some of the unsolved open questions in the
area of GWAS meta-analysis and presented a case-study comparing different methods and

showed their shortcomings.
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Regionally smoothed meta-analysis (RSM), a new method for GWAS meta-analysis,
has multiple strengths. We can use RSM without imputation and it reduces the burden
of multiple testing issues considerably. We are still improving the method. Currently this
method uses medium window sizes which may not perform well for a bigger size LD blocks or
for a large gene. Choice of window type (fixed window or sliding window) is also subjective

and sliding window method is computationally slow.

6.3 FUTURE DIRECTION

Four different projects in this dissertation can be extended along several avenues, including
methodology, application and software development.

In project one, we looked at the genes regulating/controlling the hotspot usage of the
recombination events. In the near future, I want to investigate the possible relationship
between recombination hotspot areas and copy-number-variation hotspot areas and their ge-
netic basis. I believe this study might answer some unanswered questions such as differential
hotspot usage by sex and in parents and children.

Project two is a collaborative work in which I developed methods for scoring recombi-
nation and the collaborator did software implementation. In the future we can extend our
method for next-generation sequencing data. With the use of newly developed recombination
scoring methods in a three-generation family we might look at the genetic material transfer
variation between male and female.

Regionally smoothed meta-analysis is a new method, which can be improved in different
directions. I would like to extend my methodological work on meta-analysis to a broad
range of data types such as next generation sequencing data. I would also like to investigate
adapting methods to summarize rare and common variants together in first stage of the
method and also would like to incorporate other sophisticated models (fixed effect, random

effects, mixed models etc.) in different stages of the proposed meta-analysis method.
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APPENDIX A

GENETICS OF MEIOTIC RECOMBINATION: GENOME WIDE
ASSOCTATION STUDIES FOR RECOMBINATION PHENOTYPES
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A.1.1 Phenotype: ARC

OUR STUDY

Clorf69 CRHR1
e N AR R R T O 1A S I e R T M AL
TN T A A R A R T T I L e i (. i |
04 g 1s12563568 ¢ 151635291 [ 00
0.8 0.8
8 0.6 0.6 ~ 80 §
0.4 =}
- 04 o 2
[} 0.2 =3
2 6 60 3
z 2
s S
s 3
2 44 — 40 @
T o
. £
[ ° E
27 . : " 4 m e o . Foo E
. .
. . o . .'- A . - . ° ° o ¥ : = ‘
o0 .h.g,.g.‘ﬂ'd:' R AR PO L SR TR | 3. | ~ * ] PPN j \ ,‘,.70
LOC100130093— <-WNT9A WNT3A—=> Clorf69— <—HIST3H2A DUSP5P— < LOC644172 CRHR1—> MAPT—
X INTOA  WNTSA] o ! N £ BB
<JMID4 ARF1—> <TRIM11 MGC57346 > <LOC100128977 STH—> 1gene
. = - e ! omitted
SNAP47— <-Clorf35 <TRIM17 C170rf69— IMP5— <KIAA1267
VARST 0 i o f A
T T T T T T T T T
226 226.2 226.4 226.6 226.8 41.1 41.2 41.3 41.4
Position on chrl (Mb) Position on chrl7 (Mb)
. .
Figure A.27: ARC(female) Figure A.28: ARC(female)
KIAA1462 LRRC37A
i 00O 0O 00O 00 OO O OO 0O 00 100000 NN OO RO O 00O OO0 OO i | I I U 0 1
TN T A A T A I A T R TR RTTRT
107 159988732 2 #  igo78967 100
08
0.6 — 80 §
0.4 =]
o 0.2 g
§ e 3
1 =}
s S
> >
o 2
= 40 @
T o
=<
. . s
Y or e s . o m F20 &
o
BBl oS A BN : 1o
<SVIL <KIAA1462 <MTPAP MAP3K8— CRHR1—> STH—> LRRC37A—> LRRC37A2—> <-WNT3
Al I o3 R " R el BN
~MIR604 <-LOC729668 <L0C100128977 < KIAA1267 <ARL17B NSF—> 1gene
! " " omitted
<—MI893B IMPI5~> MAPT—> <-ARL17A
T T T T T T T T T T
30 30.2 30.4 30.6 30.8 41.4 41.6 41.8 42 422

Position on chr10 (Mb)

Figure A.29: ARC(female)

93

Position on chrl17 (Mb)

Figure A.30: ARC(female)



PDZK1

Position on chr9 (Mb)

Figure A.35: ARC(female)

94

Position on chr7 (Mb)

OBSCN
[T 1010 U RO N RO OO OO 1 I (11
LLCes Y T L W (T A LI (RN R e TN 1
oursNes (1 HIE FIE T IET | RN AN I (R N |
10— 1510910845 ¢[00
Ik rs12563568
0.8
o 0.8 os |80 B
06 04 8
0.4 3
_ 0.2 g
R 0.2 60 3
E S
: ES
& 3
E] 40 @
g 4 3
w 2
=
=
2 ° -
.
.
0 — =20 ° .o. ° A 4 ) L)
NOTCH2NL—>  HFE2—> RBMBA—> RNF115—> <GPR8JA  <PDZKIP1 <NBPF1l  <-LOC728989
WNT3A—  ARF1—> GUK1-> OBSCN—> ~TRIM17 RNF187— e . . s i e s —
= S - - va 7 genes
NBPF10-> TXNIP->  ANKRD35—> <CD160 GPR8IC—>  <-LOC200030
<Clorf3s  GJC2—> <TRIM11 = e . - e e = omitted
<POLR3GL  PIAS3—> PDZK1—>
<MRPLS5  Clorf69—> < HIST3H3 = - )
T - — T T — T ‘ ‘ ‘ ‘ ‘
144 144.2 144.4 144, 144,
226.3 226.4 226.5 226.6 226.7 226.8 Position on chrl (Mb 6 8
Position on chrl (Mb) osition on chr1. (Mb)
.
Figure A.31: ARC(female) .
8 Figure A.32: ARC(female)
MTPAP NDUFAS8
1t D AR OO O 0O A0 OONA T 0 A OO0 0000 D 1 MO 0000 0 0000 OO OO0 00 O WO O OO OO 0O 00O O A 0O 0O 1 O OO O ORI
ottt N N T R X Y A LT R TR R T AT YU T
ol 2 159988732 r rs104915] 100
8 2
153
=]
3
=3
ER B
g ]
S 3
E} @
g 4 6
T S
H
S
2
0
DAB2IP— <TTLL1L <NDUFA8 MRRF—> <ORLJL OR1Q1—>
e A ) b
<KIAA1462 <MTPAP  MAP3K8—> <LlyzL2 <ZNF438 < MIR548D1 MORN5—> PTGS1—> OR1J2—> <oORiB1| 4genes
b " i " . ! ' omitted
<L0OC729668 <LHX6 OR1J4—>
i Vi )
T T T T T T T T T
30.2 30.4 30.6 30.8 31 123.6 123.8 124 124.2 124.4
Position on chr10 (Mb) Position on chr9 (Mb)
. .
Figure A.33: ARC(female) Figure A.34: ARC(female)
TTLL11 NUB1
ik O 000000 OO0 00 O 00O 0 00 0 0000 00 NONERNN A OO0 00 W FEROT LW T I RERERERUT WO 0T ORI AR T Fi e o i
Sur SNPs [T I TEE T 0 (0TI R O 00 OO OO 00O L L 1 YL T O T O e A T Tl
109 rs3793616 r rs2487150 2 | 100
0.8
06 [~ 80 §
0.4 8
v 0.2 S
= 60 3
] 2
1 o
= E}
z 3
g 40 @
! °
=
<
20 &
=0
GSN—> < GGTAL DAB2IP— <TTLL1L MORN5—> PTGS1—> OR112—> AGAP3—> < ABCF2 NUB1—> <CRYGN <RHEB <PRKAG2
- padi il v ; W Lavi [ g e
<STOM <MIR548D1 <NDUFA8  MRRF— <ORLJ1 ~GBX1 CHPF2—> < WDRS86 1gene
i " ! - omitted
<LHX6 ORLJ4—> <-ASB10 MIR671->
Vs i e ‘
T T T T T T T T T T T
123.2 123.4 123.6 123.8 124 124.2 1505 150.6 150.7 150.8 150.9

Figure A.36: ARC(male)



e OO RN A AR 110 O TR AR 0O ORI 0 0 A IO
L1 AT N YN

Jur SNPs | I 11
10 2
0.8
8 0.6
0.4
v 0.2
E}
s 6
7
=
>
o
I

rs7863596

rs11764733
11 R AN 000 00 O OO 00 00O O 0O 00 0O RO
LA 1 YT TR T
2 r 100
08
0.6 ~ 80 §
0.4 =}
3
02 =
~ 60 i
o
El
=l
@
)
S
<
E

<—KIAA0368 ZNF483—> GNG10—> UGCG— <-SUSD1 <-ROD1 <-KCNH2 <-CDK5 <GBX1 NUB1— <RHEB <-PRKAG2
e IAR0368 | ZNRABS; 7 cCS R0, KN ; GE; ey W RHED
<PTGRL <Coorfgd NOS3—~  AGAP3— <ABCF2 <WDR86 8 genes
FISR SaSerse, 233 pEalim B VoR
omitted
DNA}J_%ZS* <*AT_GQB FAEBIO FCISWYGN
T T T T T T T T T T
113.2 113.4 113.6 113.8 114 150.4 150.6 150.8 151 151.2
Position on chr9 (Mb) Position on chr7 (Mb)
. .
Figure A.37: ARC(male) Figure A.38: ARC(male)
rs17542943 UGCG
e T R e e e e e T e T | VMO 0O OO GO 0O OO RO O OO OO0 OO
Sur SNPs IO 0000000 OO ORI OO0 00 O RN O B L 1 TR T R T T T O T AR RN T
10+ 2 157854170 ¢[00
0.8 0.8
8 - 06 o6 |80 D
2
0.4 =]
0.4 3
. 02 0.2 =3
5 64 60 g
© o
g S
& 3
35 40 @
] 2
g g
=
20 &

10

—log;e(p-value)

0
<KIAA0368 <—PTGR1 < C9orf84 U(?_CF(‘;‘:% <SUSD1 <-ROD1 HSDL2—>
< FAM134B <LOC285696 ZNF483—>  GNG10—> 1gene
" omitted
<MYO10 BASP1—> DNA:]_(E‘ZS»
T T T T T T T T T T
16.8 17 17.2 17.4 176 3.2 113.4 113.6 113.8 114 114.2
Position on chr5 (Mb) Position on chr9 (Mb)
. .
Figure A.39: ARC(male) Figure A.40: ARC(male)
KIAA1462 PDZK1
V0 00O OO0 A 0 O 0 O O A0 000 0O 00000 0O oo 100000 00O RO RO IR W I 1
Sur SNPs (11 10T OO OB 00 MO0 O 0N 00 0T DO L L A1) A U [
P 152487930 156670084 2 |r 100
0.8 08
0.6 06 |[- 80 §
0.4 =]
3
0.2 =2
~ 60 i
z
S
=
40 @
o
S
=
=4
<SVIL =KIAA1462 <-MTPAP MAP3K8—> NOTCH2NL— HFE2— RBM8A—> RNF115—> <-GPR89A <-PDZK1P1 <-NBPF11 <-LOC728989
Ak ikl RaK |NoTQ i § LIy Ll 2 ) 2
< MIR604 <LOC729668 NBPF10—> TXNIP->  ANKRD35—> <CD160 GPR8IC—>  <-LOC200030 7 genes
Y " pEial ' il it fic 35 omitted
<MIR938 <-POLR3GL PIAS3—> PDZK1—>
i G . e
T T T T T T T T T
30.2 30.4 30.6 30.8 144 144.2 144.4 144.6 144.8

Position on chr10 (Mb)

Figure A.41: ARC(combined)

95

Position on chrl (Mb)

Figure A.42: ARC(combined)



NUB1 UGCG
it VIV 0 O O O A 00 1 0 0 0000 OO OO O 00 00O OO0 0 )OO 0 OO SO0 OO0 A0 ORI TGO 100 0O OO OGO OO OO MO OO
Dur SNPs I AT WU 0 UNN0 D O OO ONOWO O OO SO BT RO O 0 DO T OO0 0
157854170 I
090 P 152487150
0.8 §
s |
0.6 g
04 =
o 3
() 0.2 =
g -
<
S S
8 g
[ =
g

<-KIAA0368 <-PTGR1 <C9orfg84 UGCG— <-SUSD1 <-ROD1 HSDL2—>
[ A [Aeh A i i e
ABP1—> NOS3— AGAP3—> <-ABCF2 NUB1— <-RHEB <PRKAG2 ZNF483—  GNG10—>
- - i . ey i —— T
<-KCNH2 <-CDK5 <-GBX1 <-WDR86 DNAJC25—>
- g — 3 e
eALGQB eAiBlU eCFSﬂYGN DNAJC25-GNG10—>
T T T T T T T T T T T
150.2 150.4 150.6 150.8 151 151 32 113.4 113.6 113.8 114 114.2

Position on chr7 (Mb)

Figure A.43: ARC(combined)
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rs12645644 rs19513871
1M 1A TTBEE A TORTA T O 0 O 0 O OO 10O O 0O 00N 0O A R 1 L e T N (e 1 1
Jur SNPs (I [ R L T 1 | Il [ (] [ A A (| [ (NI [
10 4 1512645644 2 8
0.8 0.8
8 - 0.6 0.6
o
04 0.4
° 0.2 0.2
2
= 6 —
g o
3 . ‘%
g 44
I
2
0
o . o
) LI . . s LI . .
PDE6B—> <CPLX1 TME»I_/I}]S*) <RNF212 eEIEJPl KIAA1530—> o ® 9 ] X .“ 3 3 foe ° * o
<ATPSI <GAK IDUA— <SPON2 MAEA—
! ="+ SR A el
MYL5—= <-DGKQ <-L0OC100130872-SPON2 CRIPAK— <—RTN1
v < 1308] H ‘
T T T T T T T T T
06 08 1 12 1.4 50.3 59.4 59.5 59.6
Position on chr4 (Mb) Position on chr14 (Mb)
. .
Figure A.197: ARC(male) Figure A.198: ARC(male)
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Figure A.199: ARC(male)
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Figure A.200: ARC(male)
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Figure A.204: ARC(male)



A.3.2 Phenotype: HS_PCT
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Figure A.211: HS_PCT(combined)
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Figure A.213: HS PCT(combined)
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Figure A.233: HS_PCT(male)
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Figure A.237: HS_PCT(male)
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A.3.3 Phenotype: HS_ CNT
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Figure A.241: HS_CNT(combined)
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A.3.5 Phenotype: MOTIF
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APPENDIX B

SCORING RECOMBINATION IN COMPLEX PEDIGREE STRUCTURES
INCLUDING HALF-SIBLINGS
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Scoring recombination in different new pedigree structures is presented below. In section one,
we present the informative SNP tables for three-generation families allowing varying missing
genotypes. In section two, we present the informative SNP tables for two and three-generation
families including half-siblings. In section three, we present informative SNP tables for the
mixed half and full-siblings in two and three generation families.

Section One

Three-generation Pedigrees and tables:

Source of Allele: Grandfather = 1 and Grandmother =0

Solid color square or circle in the figure represents genotyped male or female and empty Square
or circles represents missing genotyped male or female.

List of uninformative pedigrees:

a) Six pedigrees with none or one person genotyped is not informative for recombination.
b) Among 10 combinations, eight pedigrees with two people genotyped are uninformative
¢) Among 10 combinations, five pedigrees with three people genotyped are uninformative
d) Among 5 combinations, one pedigree with four people genotyped is uninformative.

List of informative pedigrees:

Two people genotyped:

a). Grandmother and grandchild
b). Grandfather and grandchild

Three people genotyped:

a). Grandfather, grandmother and grandchild
b). Grandfather, mother and grandchild

¢). Grandmother, mother and grandchild

d). Grandfather, father and grandchild

e) Grandmother, father and grandchild

Four people genotyped

a). Grandfather, grandmother, mother and grandchild

b). Grandfather, mother, father and grandchild
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¢). Grandmother, mother, father and grandchild

d). Grandfather, grandmother, father and grandchild

Five persons genotyped:

a). Grandfather, grandmother, mother, father and grandchild

Two persons genotyped:

1. Two persons genotyped: Grandfather, grandchild

A Grandfather | Grandchild | Source of
. Allele
AA AA ?
88 AB ?
BB 0
AB AA ?
AB ?
“A BB ?
AB BB AA 0
AB ?
= BB ?
2. Two persons genotyped: Grandmother, grandchild
Grandmother | Grandchild | Source of
M Allele
AB AA AA ?
BB AB ?
BB 1
AB AA ?
AB ?
AA BB ?
BB AA 1
AB
AB ?
— BB ?
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Three people Genotyped:

1.

Grandfather, grandmother and grandchild genotyped

AA

AB

BB

AA

AB

BB

Grandfather

Grandmother

4

AA

AB

BB

AA

AA

BB

Grandchild

Source

Allele

AB

AA

AB

BB

SIEEIEEEEEERES

BB

BB
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2. Grandfather, Mother, and grandchild are genotyped:

Grandfather | Mother

AA

AB

BB

154

Grandchil
d

Source of
Allele




3. Grandmother, Mother, and grandchild are genotyped:

Grand Mother Grandchil | Source
mother d of

AA

Allele

AB

BB

@

AA

AB

BB

AA

ol

AB

BB
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4. Maternal Grandfather, Father, and grandchild are genotyped:

Grandchild

Source
of

Father

Grandfather

AA

BB

Allele

AA

AB

-~

AB
BB

AB
BB

AB
BB

BB
AB
BB

AB
BB

AB
BB

. Z|.o - Z . o 0 Lo o 0| Z -
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5.

Maternal Grandmother, Father, and grandchild are genotyped:

AB

BB

Grandmother

Grandchild

Source
of
Allele

Father

AA

AB

.Q.—A.Q.Q%.Q.Q.Q%.Q.Q

BB NP
AA 1
AB ?
BB ?
AA NP
AB 1
BB ?
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Four people Genotyped:

1.

Grandfather, grandmother, mother and grandchild

AA

AB

BB

AA

AB

BB

AA

AB

BB

ole

AB

BB

158

AA or AB or
BB

(Nine poss
cases, all
uninformativ)

Grandfather | Grandmother | Mother Father Grandchild | Source
(Poss of
genotype) Allele
AA AA AA AA or AB or AA ?
BB AB ?
BB NP
AB AA AA or AB or AA ?
BB AB ?
BB NP
AB AA or AB or AA 1
BB AB ?
BB 0
BB AB AA or AB or AA 1
BB AB ?
BB 0




AA or AB or
BB

2. Grandfather, mother, father and grandchild

Grandfather | Grandmother | Mother | Father | Grandchild | Source

(poss of
AA genotype) Allele
AA AA of AB AA AA AA ?

A8 . AB NP
BB BB NP
AA AA AB AA ?
. AB ?
./ .‘ h8 BB NP

BB N BB AA NP

AB ?

’ BB NP

\_/le AB or BB AB AA AA 1

AB

A8 BB NP

BB AB ‘:ﬁ 1

BB 0

BB AA NP

AB 1

BB 0

AA or AB

AA or AB or
BB
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AB or BB

AA or AB

AB or BB
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3. Grandmother, mother, father and grandchild

AA

AB

BB

AA

AB

BB

AA

AB

BB

AA

AB

BB

Grandmother | Grandfather Mother | Father | Grandchild | Source
(Poss of
genotype) Allele
AA AA of AB AA AA AA ?
AB NP
BB NP
AB AA ?
AB ?
BB NP
BB AA NP
AB ?
BB NP
AB or BB AB AA AA
AB 1
BB NP
AB AA 0
AB ?
BB 1
BB AA NP
AB 0
BB 1
BB
NP
AB AA or AB AA AA AA ?
AB NP
BB NP
AB AA ?
AB ?
BB NP
BB AA NP
AB ?
BB NP
AA or AB or AB AA AA ?
BB AB ?
BB NP
AB AA ?
AB ?
BB ?
BB AA NP
AB ?
BB ?
AB or BB BB AA AA NP
AB ?
BB NP
AB AA NP
AB ?
BB ?
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AB or BB
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4. Four people genotyped: Grandfather, grandmother, father and grandchild

AA

AB

BB

AA

AB

BB

AA

AB

BB

AA

AB

BB

Grandfather | Grandmother Mother Father | Grandchild | Source
(Poss of
genotype) Allele
AA AA AA AA AA ?
AB NP
BB NP
AB AA ?
AB ?
BB NP
BB AA NP
AB ?
BB NP
AB AA or AB AA AA ?
AB 0
BB NP
AB AA ?
AB ?
BB 0
BB AA NP
AB ?
BB 0
BB AB AA AA 1
AB 0
BB NP
AB AA 1
AB ?
BB 0
BB AA NP
AB 1
BB 0
AB AA AA or AB AA AA ?
AB 1
BB NP
AB AA ?
AB ?
BB 1
BB AA NP
AB ?
BB 1
AB AA or AB AA AA ?
or BB AB ?
BB NP
AB AA ?
AB ?
BB ?
BB AA NP
AB ?
BB ?
BB AB or BB AA AA 1
AB ?
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as]
[as]
: 2
as]
<
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Five people genotyped

AA

AB

BB

AA

AB

BB

-

AA

AB

BB

-

AA

AB

BB

AA

AB

BB

Grandfather | Grandmother | Mother | Father | Grandchild | Source of
Allele
AA AA AA AA AA ?
AB NP
BB NP
AB AA ?
AB ?
BB NP
BB AA NP
AB ?
BB NP
AB AA AA AA ?
AB NP
BB NP
AB AA ?
AB ?
BB NP
BB AA NP
AB ?
BB NP
AB AA AA 1
AB
BB NP
AB AA 1
AB ?
BB 0
BB AA NP
AB 1
BB
BB AB AA AA 1
AB
BB NP
AB AA 1
AB ?
BB 0
BB AA NP
AB 1
BB 0
AB AA AA AA AA ?
AB NP
BB NP
AB AA ?
AB ?
BB NP
BB AA NP
AB ?
BB NP
AB AA AA (0)
AB 1
BB NP
AB AA (0)
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AB

BB 1
BB AA NP
AB (0]
BB 1
AB AA AA AA ?
AB ?
BB NP
AB AA ?
AB ?
BB NP
BB AA NP
AB ?
BB NP
AA AA ?
AB AB ?
BB NP
AB AA ?
AB ?
BB ?
BB AA NP
AB ?
BB ?
AA AA NP
BB AB ?
BB NP
AB AA NP
AB ?
BB ?
BB AA NP
AB NP
BB ?
BB AB AA AA 1
AB (0]
BB NP
AB AA 1
AB ?
BB O
BB AA NP
AB 1
BB (0]
BB AA AA NP
AB ?
BB NP
AB AA NP
AB ?
BB ?
BB AA NP
AB NP
BB ?
BB AA AB AA AA 0
AB 1
BB NP
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Pedigree tables for half-siblings:

S: same, D: Different

Solid color square or circle in the figure represents genotyped male or female and empty Square

Section 2

or circles represents missing genotyped male or female.

Five people genotyped:

DADI1 Childl Dad2 Child2 Grandparental
Mom allele
AB AA AA AA AA S

AB D
AB AA S
AB ?
BB D
BB AB S
BB D
AB AA AA D
AB S
AB AA D
AB ?
BB S
BB AB D
BB S
AB AA AA AA S
AB D
AB AA S
AB ?
BB D
BB AB S
BB D
AB AA AA ?
AB ?
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A wn

©n A

AA
AB
BB
AB
BB
AA
AB
AA
AB
BB

AB
BB

AA
AB

AB
BB
AA
AB

BB

AA

BB

AB

BB

AA
AB
BB
AB
BB
AA
AB
AA
AB
BB
AB
BB
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BB
AA
AB
BB

BB

or

AA
BB




Four people genotyped:

DADI1 Child1 | Dad2 Child2 | Grandparental
Mom Prob genotpe allele
AB AA AA AA or AB or | AA S
BB AB ?
BB D
AB AA or AB or | AA D
BB AB ?
BB S
AB AA AA or AB or | AA S
BB AB ?
BB D
AB AA or AB or | AA ?
BB AB ?
BB ?
BB AA or AB or | AA D
BB AB ?
BB S
BB AB AA or AB or | AA S
BB AB ?
BB D
BB AA or AB or | AA D
BB AB ?
BB S
AA or ?
BB

170




Three people genotyped:

DADI Childl | Dad2 Child2 | Grandparental allele
Mom Prob genotype Prob genotype
AB AA or AB or | AA AA or AB or | AA S
BB BB AB ?
BB D
AB AA or AB or | AA ?
BB AB ?
BB ?
BB AA or AB or | AA D
BB AB ?
BB S
AA  or ?
BB
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Five people genotyped:

Grand Dad

Grand Mom

Mom

DADI

Childl

DAD?2

Child2

Allele status

AA

BB

AB

AA

AB

BB

AA
AB
BB

AA
AB
BB

AA
AB
BB

AB

AB

AA

AA
AB
BB

AB

AA
AB
BB

BB

AA
AB
BB

U)'\DU'\D'\D'Q U'\DC/) UJ\)U -\D'\D'\DU'QU)

AB

AA

AB

BB

AB

BB

AA

AB

AB

AB
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Four people genotyped:

Grand Dad | Mom DAD1 | Childl | DAD2 | Child2 | Grandparental
Allele status
AA AB AA AA S
AB ?
BB D
AB AA ?
AB ?
BB ?
BB AA D
AB ?
BB S
BB AB AA AA S
AB ?
BB D
AB AA ?
AB ?
BB ?
BB AA D
AB ?
BB S
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Section Three

Pedigree tables for mixed two-generation families with half-siblings:

S: same, D: Different

Solid colored squares or circles in the figure represent genotyped male or female and empty
squares or circles represent missing genotyped male or female.

Six people genotyped:

a ¢ B
|
v

Mom | D1 C1 C2 D2 C3 C1&C2 HS C1&C3 | HS C2&C3

AB AA AA AA AA AA S S S
AB S D D

AB AA S S S

AB S ? ?
BB S D D

BB AB S S S
BB S D D

AB AA AA D D S

AB D D S
AB AA D S D

AB D ? ?

BB D D S
BB AB D S D

BB D D S

AB AA AA AA D D S
AB D S D

AB AA D D S

AB D ? ?

BB D S D

BB AB D D S

BB D S D
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FIVE people genotyped:
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FIVE people genotyped:
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FOUR people genotyped:

Mom

Cl

C2

Cl&C2

HS C1&C3

HS C2&C3

AB

AA
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