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ENGINEERING CONTRACTILE MYOCARDIAL TISSUE USING EXTRACELLULAR 
MATRIX SCAFFOLDS  

Nathaniel Thomas Remlinger, PhD 

University of Pittsburgh, 2013 

 

There is currently an overwhelming need for functional replacement of diseased or damaged 

cardiac tissue. Biologic based scaffolds are an attractive tissue engineering approach to cardiac 

repair because they avoid sensitization associated with homograft materials and theoretically 

possess the potential for growth in similar patterns as surrounding native tissue. A strategy that has 

been investigated previously is the use of cardiomyocytes seeded onto collagen based scaffolds in 

order to engineer a contractile tissue. However, in order for this approach to be effective, the 

cardiomyocytes must be aligned and maintain contractility after seeding onto biologic scaffolds. 

UBM collagen fiber organization and cyclic mechanical stretch have each been shown to induce 

cell alignment while maintaining normal cell phenotype. In theory, a combination of these methods 

should yield a contractile tissue that may perform well when used to reconstruct myocardial tissue. 

It was previously shown that a cardiac-derived ECM patch provides beneficial effects when 

compared to synthetic cardiac patch materials. Acellular UBM and C-ECM patches were directly 

compared in the present work as scaffolds to repair a full thickness defect in the RVOT of rats. By 

16 weeks, only the UBM patches had degraded and were replaced with areas of new muscle tissue, 

which was in direct contrast to the integration response observed with C-ECM patches. Next, UBM 

scaffolds were seeded with cardiomyocytes and cyclically stretched in vitro. Cells preferentially 

aligned in the direction of stretch, showed intracellular free calcium transients, expressed 

contractile cardiac markers, and were visibly contractile. Cell-seeded UBM patches possessed the 
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ability to repair the RVOT of rats and support the infiltration of cells. Cardiomyocyte seeded 

patches were also able to develop an endothelial lining and integrate into the surrounding native 

tissue. In addition, stretched scaffolds appeared to show preliminary indications of communication 

with the surrounding native tissue. Future studies are necessary to investigate translation to a 

clinically applicable model, but the methods described herein show that contractile tissue can be 

generated from ECM scaffolds and may also aid in functional restoration to myocardial tissue 

when used as a cardiac patch material.  
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1.0  INTRODUCTION 

 

There is currently an overwhelming need for functional replacement of diseased or damaged 

cardiac tissue. Congenital heart defects (CHDs) are the most prevalent birth defect, while heart 

disease remains the most common cause of death in the United States 1, 2. Treatment options for 

patients suffering from heart disease replace injured or missing tissue with synthetic patches rather 

than restore native function. Biologic based extracellular matrix scaffolds are an alternative tissue 

engineering approach to cardiac tissue repair, and provide distinct advantages to the current 

clinical standards. ECM scaffolds are associated with constructive remodeling into site-

appropriate tissue 3-5. It was recently shown that functional, pulsatile muscle could be generated in 

esophageal tissue repair using an unseeded ECM scaffold derived from the bladder 6. ECM 

scaffolds have served as suitable mechanical patches for cardiac repair, but scaffolds alone have 

shown limited cardiac tissue regeneration 7, 8. 

Traditionally, tissue engineering has utilized a combination of biologic scaffolds and cells 

to direct the host response and generate functional site-appropriate tissue. Therefore, many studies 

have opted for pre-seeded scaffolds or investigated cell therapeutic options for repair of damaged 

or diseased tissue 9-12. However, there has been limited success toward the development of a robust 

engineered tissue that possesses the ability to contract in vitro. Cardiomyocyte cell sheets and 

seeded ECM gels have both exhibited the ability to produce contraction, but do not provide the 

mechanical support necessary to reconstruct a full thickness defect in the myocardial wall 9, 13-16. 

An ECM patch with seeded cells would therefore logically provide a solution to myocardial repair. 
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The alignment of a contractile cell line on ECM scaffolds through means of contact guidance and 

mechanical stretch would theoretically produce a robust engineered tissue with the ability to 

withstand the forces in a cardiac location and contract with the surrounding tissue.  

 

1.1  HISTORY OF CARDIAC ANATOMY AND SURGERY 

 

During the 2nd century, the Greek physician Galen postulated that the heart was responsible for 

delivery of blood and air to the body through separate arterial and venous circuits. It was initially 

believed that the heart did not pump blood, but rather sucked blood from the venous system during 

diastole and that blood moved by the pulsation of arteries. These ideas were widely believed until 

the mid-seventeenth century and were generally reaffirmed during the Renaissance revival of 

anatomy. Early illustrations and conceptualizations of the heart and vascular system were 

perpetuated by Leonardo da Vinci in the 15th and early 16th centuries, and it was not until English 

physician William Harvey published “On the Circulation of Blood” in 1628 that an alternative to 

Galen’s theory became widely accepted. While Harvey supported the notion of the heart as the 

principal organ of the body, he believed that the heart was actively working to expel and fill with 

blood; thus creating the notion of systole and diastole. Understanding of cardiac function continued 

to develop throughout the following centuries, although surgical techniques to repair damages to 

the heart in living patients were widely unsuccessful.   

The earliest successful heart surgery was performed on September 7, 1896 in Germany, 

when a stab wound to the right ventricle was repaired 17, 18.  In its early stages, invasive heart 

surgery was limited to patients in shock, as anesthesia methods were crude. Cardiac surgery was 

primarily utilized to repair critical traumatic injury throughout the early 20th century and even 
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through World War II. It wasn’t until 1952 when the first successful intracardiac open heart surgery 

was performed on a congenital heart defect, that open heart surgery became common practice. 

Since the 1950s, surgeons have developed a number of methods to increase patient survival both 

intra- and post-operatively, such as hypothermia, ECMO, and cardiac bypass. In addition, an 

improved understanding of the developmental processes of the heart and the progression of heart 

diseases has aided in more appropriate care of patients requiring treatment.   

 

1.2  CONGENITAL AND ACQUIRED HEART DISEASE 

 

While the anatomical, functional, and corrective methods of the heart have been well documented, 

the mechanisms behind the development, progression, and resolution of cardiovascular disease 

remain a growing body of literature and are not yet fully understood. Many forms of congenital 

and acquired heart disease exist, and all are presented through varying symptoms. Approximately 

84 million Americans are currently living with one or more forms of cardiovascular disease 

(CVD), accounting for nearly 33% of all deaths in the United States 2, 19. In addition, approximately 

20 in every 1,000 births are reported to express a form of congenital heart defect (CHD) that will 

require cardiologic care 1, 20.   

 

1.2.1 Congenital Heart Defects 

Congenital Heart Defects (CHDs) are the most common form of birth defect, accounting for 

greater than 29% of all birth defect related deaths in the United States annually 21. It is estimated 

that over 1 million Americans are currently suffering from or were born with a form of CHD 19. 

Additionally, over 5 in 1000 infants will require surgical cardiologic intervention within the first 
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year of life 20. Many forms of CHDs exist, ranging from mild to severe, and each is associated with 

specialized care and operative procedures. Many congenital malformations are resolved 

spontaneously or with minimal surgical intervention. However, some CHDs require complex 

surgical procedures or multiple procedures to resolve abnormal heart function. The most common 

complex forms of intracardiac CHD include Tetralogy of Fallot (ToF), transposition of the great 

arteries (TGA), atrioventricular septal defects (AVSD), and Hypoplastic Left Heart Syndrome 

(HLHS) 1, 19, 22.  

 

1.2.2  Cardiovascular Disease and Congestive Heart Failure 

Cardiovascular disease (CVD) continues to be the leading cause of death in adults, accounting for 

more than 33% of all deaths in the United States annually 2. CVD has accounted for more deaths 

than any other major cause of death in nearly every year since 1900, including more than 800,000 

deaths in 2008 alone 2, 23. According to the National Center for Health Statistics, if all forms of 

major CVD were eliminated, the national average life expectancy could rise up to 7 years. Acute 

cardiac events such as myocardial infarction (MI) and stroke are the most lethal results from the 

progression of CVD to congestive heart failure (CHF). Nearly 800,000 people will experience a 

new MI every year and an additional 470,000 will have a recurrent attack. The estimated hospital 

costs associated with treatment and care for patients suffering from CVDs in the United States 

alone are over $155 billion each year; more than any other diagnostic group, including cancer 

($116 billion) 2. The natural progression from CVDs to CHF is marked by a reduction in the 

efficiency of the myocardial tissue, eventually leading to cardiac dilation, hypertension, ischemia, 

or necrosis 24. Following MI, in particular, the region of ischemic myocardium will evade the entire 

thickness, leaving behind necrotic or scar tissue 25. A number of treatment options are available 
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for patients suffering from CHF including pharmacological management, mechanical assist 

devices, surgical correction, and heart transplantation. Nearly 6 million Americans are diagnosed 

with heart failure annually, and the growing number of patients requiring hospitalization is 

increasing the demand for alternative treatments.  

 

1.3  CLINICAL TREATMENTS 

 

Patients suffering from congenital defects, cardiovascular disease, or who have recently 

experienced an adverse cardiac event have a variety of treatment options depending on their age, 

history, current medications, and the urgency and severity of symptom presentation. Intervention 

and treatment of CHDs typically require surgical reconstruction or repair of malformed hearts and 

related defects. Many corrective procedures require surgical mesh, cryopreserved tissue, or 

cadaveric donor material to repair defects, but such products do not restore function. 

Reconstruction of adult myocardium with these materials is more difficult due to size restrictions, 

and often results in an area of the heart that is non-contractile, similar to the fibrotic tissue which 

develops after infarction. Therefore, a material capable of repairing myocardial defects while 

restoring function in a cardiac location is highly desirable. The restoration of function to an area 

of fibrotic or necrosed tissue would theoretically increase surgical success rates and reduce the risk 

for additional patient surgeries. 
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1.3.1  Congenital Heart Defect Treatment 

Treatment for patients suffering from CHDs can range from simple monitoring of conditions to a 

series of complex surgical procedures. Many CHDs spontaneously resolve over time, but some 

CHDs are diagnosed in utero or upon birth and require immediate surgical intervention. Atrial and 

ventricular septal defects are the most common form of intracardiac CHD and are presented in 

nearly half of patients diagnosed, although many do not require surgery. The severity of each type 

of CHD is based on defect size or the degree to which the heart and related vessels are malformed, 

and each CHD is associated with a specialized operation. Patients exhibiting complications from 

initial corrective surgeries will normally require additional surgery to repair or replace the 

implanted material. The use of homograft materials for cardiac repair is also associated with an 

immune sensitization, eliminating a significant percentage of donor tissues and making future 

orthotopic transplantation of heart tissue difficult.  

Tetralogy of Fallot (ToF) is observed in approximately 400 per million patients, and is an 

ultimately fatal disease if left untreated 26. Recent advancements in corrective surgery have 

allowed for over 85% of patients diagnosed with ToF to survive into adulthood. Corrective surgery 

includes the implantation of a Blalock-Taussig shunt to reroute blood, which must be oversized to 

accommodate for patient growth, as well as a cardiac patch material, typically composed of Gore-

Tex or homograft material. However, there are a number of complications that patients encounter 

as they grow and age. As patients progress into adulthood, many suffer from valve incompetence, 

RV outflow tract obstruction, or RV dilation, leading to heart valve replacement or, in severe cases, 

heart transplantation 22.  

Transposition of the Great Arteries (TGA) is presented in patients when the morphological 

right side of the heart, typically connected to the pulmonary trunk, gives rise to the aorta, and vice 
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versa 27. Incidence of TGA is estimated to be 1 per 3,500 to 5,000 live births, or approximately 6% 

of all CHDs, with approximately 50% of TGA patients expressing additional cardiac 

malformations such as ventricular septal defects (VSD) or outflow tract obstructions. Diagnosis of 

TGA can be confirmed in utero and surgical correction typically occurs immediately after birth. 

Preferred treatment of TGA is surgical correction of the malformation by arterial switch, and this 

procedure has been associated with a low mortality rate. However, even after surgical correction, 

patients diagnosed with TGA have severe complications resulting from surgery 22. In many cases, 

patients will develop coronary arterial problems, often leading to myocardial infarction and the 

requirement for further surgical correction or cardiac assist devices. 

Atrioventricular septal defects (AVSD) are a severe form of CHD arising from a deficiency 

in, or the lack of a septal wall to separate the cardiac chambers. However, AVSDs are typically 

presented alongside other cardiac malformations, making treatment more difficult. While not 

immediately fatal in some instances, surgical intervention is typically required upon the first 

indication of lung distress, critically low blood oxygen content, or heart failure. Ultimately, a 

cardiac patch material, typically composed of Gore-Tex or homograft must be implanted to close 

the intracardiac gap 26. As stated previously, currently available patch materials are associated with 

multiple complications and many patients will require additional corrective surgery following 

initial correction of the heart.  

Hypoplastic Left Heart Syndrome (HLHS) is considered to be among the most severe 

forms of congenital heart defects due to a high mortality rate and complex surgical correction of 

the disease. Over the past few decades, improvements and modifications to the three stage 

Norwood procedure have increased the long term outcomes for patients exhibiting HLHS. 

However, conversion of the diseased vascular system to a univentricular physiology is assolciated 
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with a mortality rate of approximately 30% through the first three stages of surgery; a rate that is 

among the highest for any pediatric cardiac surgery 28. Survivors of the surgery are now entering 

their early 30s, and it has been observed that these patients are exhibiting severe or fatal heart, 

lung, and gastrointestinal problems. Therefore, even with successful completion of the Norwood 

procedure, patients can expect lifelong complications, eventually culminating in the requirement 

of orthotopic heart transplantation. 

 

1.3.2  Congestive Heart Failure Management and Treatment 

If diagnosed in the early stages of heart failure, patients can be advised to make lifestyle changes.  

However, if the disease has progressed to the point that intervention is necessary, administration 

of pharmacologic drugs, implantation of mechanical assist devices, and eventually surgical 

reconstruction or heart transplantation may be necessary. Each treatment course has significant 

advantages if successful, although many have drawbacks if relied upon for long term intervention.   

Pharmacological intervention has distinct advantages if heart failure is diagnosed early. 

However, management of pharmaceuticals may be ineffective in prevention of disease progression 

if not prescribed quickly. Naturally, the prescribed treatment plan is highly dependent on patient 

demographics and the extent to which cardiac function is compromised. As a first line of defense, 

patients are frequently given Aspirin, Coumadin, Warfarin, or other anticoagulants to lower the 

risk of acute cardiac events such as myocardial infarction (MI) or stroke 29. Additionally, ACE 

inhibitor therapy is recommended for almost all patients diagnosed with a mild to moderate form 

of heart failure 30, 31. ACE inhibitors are able to slow or reverse the deterioration of cardiac function 

through the reduction of afterload, thereby reducing the amount of work the heart must perform. 
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Other pharmacological agents such as diuretics, β-blockers, and positive inotropic agents are also 

used, albeit less often than both anticoagulants and ACE inhibitors, and on a more specialized 

basis 32-34.  

Beyond pharmacological intervention, mechanical devices such as pacemakers or 

ventricular assist devices (VADs) are able to provide assistance to the heart. Patients exhibiting a 

widened QRS complex of longer than 120ms, with a reduction in ejection fraction of less than 

35% have been shown to benefit greatly from implantable cardioverter defibrillators and 

pacemaker devices, with a significant reduction in mortality at 1 and 3 months after implantation 

35. However, there is debate whether such devices are able to prolong life or if the devices simply 

contribute to an improvement in quality of life. Therefore, if conditions worsen for patients with 

heart failure, ventricular assist devices are the next therapeutic option to prolong life 36.  

Many types of VAD devices exist, and are designed to assist the left ventricle (LVAD), 

right ventricle (RVAD), or both ventricles (BiVAD). VADs provide active support to weakened 

or failing ventricles, reducing the demand placed on the myocardium and allowing the heart to 

recover following heart failure. Originally, all VADs were designed for left ventricular assistance 

and were pulsatile in nature, with a synchronized timing mechanism to mimic the normal filling 

and ejection of blood from the heart. Early devices were very large and required continuous 

monitoring of patient conditions, impacting overall quality of life. In recent years, VADs have 

improved significantly in their design and survival outcomes, often providing continuous flow 

assistance to patients, lowering the risk of thrombogenesis within VAD components 36-39. 

Improvements in VAD design have allowed for much smaller and more portable devices to be 

implanted, improving the quality of life for patients receiving devices and making pediatric 

ventricular assistance possible 40-43.  While the initial reports from pediatric devices are promising, 
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there are still a number of complications associated with VADs, including coagulation, infection, 

and device failure, which prevent extended long-term use 44-47. Significant anticoagulation therapy 

is necessary following implantation in all cases due to the non-biologic nature of VADs. The risk 

of infection is also very high, despite aggressive antibiotic treatments and immunosuppressive 

therapy. Therefore, many VADs are used as a bridge-to-transplantation or destination therapy and 

are not a permanent solution to heart failure. 

The final option for patients suffering from CHF who are unable to benefit from 

pharmocologics or mechanical assist devices is corrective surgery and orthotopic heart 

transplantation. Approximately 35% of patients are placed on a VAD as a bridge to heart 

transplantation 48. However, the number of patients requiring heart transplantation far outnumbers 

the quantity of organs available for transplant. Approximately 4,000 heart transplants are 

performed annually worldwide, while nearly 57,000 patients die from heart failure 2. Donor-

recipient matching requires extensive immune typing, size and age matching, patient history 

analysis, and the minimization of donor tissue ischemic time prior to transplantation 49. In addition, 

many of the complications associated with VAD implantation are more prevalent in heart 

transplantation, reducing the quality of life in patients receiving heart transplants and limiting the 

post-operative survival of patients to approximately 11 years 50. Ventricular reconstruction is a 

growing alternative to transplantation due to the lack of available donor tissue. However, similar 

to the observations within pediatric patients, the currently used cryopreserved and synthetic grafts 

do not restore function to the damaged heart, and are often associated with a number of 

complications requiring additional surgeries. Therefore, a patch material or therapy that is capable 

of reconstructing myocardial tissue, while restoring function to weakened or damaged areas is 

highly desirable and would provide benefits to currently used materials.  
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1.4  INVESTIGATIONAL TREATMENTS 

 

It is widely believed that tissue engineering and regenerative medicine strategies may be able to 

improve surgical outcomes for patients suffering from CHDs or CHF. Regenerative medicine takes 

a multidisciplinary approach to the generation of new therapies through the combination of cellular 

therapies, tissue engineering and biomaterials, as well as medical devices and artificial organs. The 

ultimate goal of tissue engineering is to develop clinically translatable devices to improve surgical 

outcomes and patient quality of life. Tissue engineering is a rapidly developing field of research 

and many groups have shown success in preclinical studies using a wide array of techniques. The 

prevalence and severity of heart disease and cardiac defects has led to a large division of the tissue 

engineering community dedicated to developing strategies for cardiac related injuries. However, 

the wide array of cardiac injuries and procedures have resulted in an enormous variety of theories 

and approaches regarding the repair and regeneration of diseased or damaged cardiac tissue.  

 

1.4.1 In Vitro Techniques and Cell Therapy 

Many groups have tried to identify key design characteristics for functional cardiac tissue 

engineering through in vitro studies. While the results are not directly translatable to in vivo 

performance, these studies are able to isolate variables and determine individual effects in order to 

optimize an implantable material. The maintenance of cell contraction within isolated heart tissue 

in culture has been a topic of interest for decades 51-53.  Until recently, research conducted on 

beating cardiac tissue has been limited to 2-dimensional culture, which has further limited the 
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applicability in an in vivo environment and the ability to control culture conditions. Even with 

successful experiments that are able to maintain normal contractile function, a significant 

drawback of 2D culture is the detachment of tissue from culture plates. Recently, Shimizu et al. 

have developed a technique to coat culture plates with a temperature responsive polymer, poly-n 

isopropylacrylamide (PIPAAm) 13. At physiologic temperatures, the polymer is hydrophobic, 

allowing cells to attach, proliferate, generate cell-cell connections, and secrete ECM products. 

When the temperature is lowered to approximately 20°C, the polymer becomes hydrophilic, and 

the cells are displaced from the surface in a single cell sheet due to the maintenance of intercellular 

junctions and the newly formed ECM network. However, it was observed that after release from 

the surface, cardiac cells stopped beating and quickly retracted to a small sheet. These techniques 

have been improved upon in recent years and have been expanded to include multiple cell types 

and tissues, but the first experiments stressed the importance of mechanical loading and cell 

alignment on the generation of engineered cardiac tissue 11, 12, 54-56.    

Since the beginning of three dimensional cell culture techniques, significant improvements 

toward in vitro cardiac tissue engineering have been made. Many experiments have stressed the 

requirement of mechanical loading and cell alignment individually, with varying means of 

investigating each variable. In 2005, Eschenhagen and Zimmermann discussed the state of cardiac 

tissue engineering with a particular emphasis on the importance of substrate alignment and 

mechanical strain on cell health and alignment 57. In recent years, these ideas have gained traction 

in experimental design, although the first true experiment to examine both of these effects together 

on a contractile cell line was performed in the late 1980s, when Vanenburgh et al. were able to 

generate contractile aligned skeletal myotubes. The cells were coated with a layer of type I collagen 

to impose a load on the cells, improving the differentiation state of the myotubes 58. Motorized and 
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computer controlled devices were then designed to impose cycles of stretch and relaxation on 

cardiac myocytes and skeletal myotubes. The results had a favorable effect on cell orientation and 

myotubes were able to perform work, resulting in what some consider to be the first engineered 

3D skeletal muscle 58-60. As stated previously, an established method of aligning cells is through 

the use of substrate alignment and contact guidance. Multiple substrates have proven to be 

effective when used in culture with cardiac cells including type I collagen, polyurethane film, small 

intestinal submucosa (SIS), and urinary bladder matrix (UBM) 61-64. While many studies have been 

able to define preferred characteristics of engineered myocardial tissue with moderate success, 

these studies have been largely limited to in vitro investigation.  

Numerous studies have sought to isolate and use skeletal myoblasts, bone marrow-derived 

cells, and cardiac progenitor cells for direct injection in vivo to treat a number of cardiac conditions, 

including heart failure 65. There are currently a number of preclinical and clinical trials in progress 

in order to investigate cardiac cell therapies, although the cell preparation and delivery techniques 

of these trials vary greatly 66-70. However, the exact benefits of cardiac cell therapy have been 

debated and the mechanisms behind cardiac improvement and cell interactions following injection 

are still unclear. Injection-based cardiac cell therapies have had variable results, with cited 

limitations of low cell retention at the injection site, poor cell survival, and poor cell incorporation 

with the surrounding native tissue 71.  While cell therapy studies are the first “tissue engineering” 

approaches to appear in a clinical setting to treat cardiac injury, significant drawbacks still persist. 

The most prevalent complications currently include patient immune typing, cell isolation, culture, 

and injection, variations in the type, number, and site of injection for cells, and, ultimately, the 

heterogeneity between different treatments and studies 72.   
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1.4.2  Implantable Scaffolds for Myocardial Repair 

It is believed that cell function and retention can be improved through an improvement in the 

means of cell delivery and the development of a robust, implantable material for implantation. 

Preliminary studies have since focused on the development of a material capable of repairing a 

significant defect in the myocardium. Tissue engineering studies have further attempted to 

encourage remodeling or regeneration of functional tissue through directing the chemical or 

structural composition of fabricated scaffolds. In addition, naturally derived extracellular matrix 

(ECM) scaffolds have gained significant attention recently due to their inherent biocompatibility 

and ability to degrade and remodel towards site-appropriate tissue in a variety of organ systems.  

 

1.4.3 Synthetic Scaffolds  

Artificial and synthetic scaffolds have been in clinical practice for years due to low 

biocompatibility issues and the ability to control the microstructural environment of the materials. 

Widely used materials such as Dacron™ and Teflon™ (PTFE) have been used for decades for 

vascular reconstruction in both pediatric and adult patients. However, common complications such 

as stenosis, aneurysm, and thrombosis exist with such devices 73-79. Significant advancements in 

the fabrication of synthetic scaffolds have recently improved surgical outcomes. In particular, 

electrospun, degradable scaffolds such as polyglycolic acid (PGA) and polylactic acid (PLA) have 

been used in cardiac and vascular reconstruction with improved outcomes 80-82. Polymer-based 

scaffolds have allowed for an increased control of the chemical, structural, and degradation 

properties, making it easier to tailor a material for individual surgeries. Groups have also shown 

the ability to design scaffolds to release drugs and growth factors upon degradation 83, 84. However, 

recent evidence has suggested that PGA and PLA scaffolds are not appropriate for vascular and 
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cardiac reconstruction due to their stiffness, and that these materials may be more appropriate for 

bone and cartilage tissue engineering 85-87. A softer degradable polymer scaffold such as polyester 

urethane urea (PEUU) has shown promising results in preliminary studies when repairing a defect 

in the right ventricle outflow tract 88-90. PEUU scaffolds have shown the ability to repair a cardiac 

defect, rapidly degrade, and aid in the formation of fibrous tissue. In 2009, Fujimoto et al. were 

able to synthesize an injectable copolymer blend for delivery directly to an area of infracted 

myocardium 91. No evidence of cytotoxicity or ventricular dilation was observed with small 

improvements in local contractility. Ultimately, the implantation of many polymer based scaffolds 

in a cardiac location has resulted in the formation of fibrotic tissue. Results have shown that 

currently available artificial scaffolds are unable to mimic the chemical and mechanical 

environment of biologic tissues in the same capacity as biologic based scaffolds.   

 

1.4.4 Cryopreserved Tissues and Scaffolds 

Cryopreserved homograft tissue is commonly used in pediatric and adult patients to augment and 

reconstruct vascular structures. Cryopreservation of human tissue is a common clinical practice in 

order to make surgical material more readily available to surgeons, eliminating the need to harvest 

and use tissue within a short timeframe. However, the preservation process alters the fiber structure 

of the materials, thereby changing the host cellular response. Following implantation, homograft 

tissue expresses a number of failure modes, including rejection, stenosis, aneurysm, or excessive 

calcification 92-96.  Patients suffering from such conditions may require additional surgical 

intervention or complete removal of the homograft. In pediatric patients, the use of cryopreserved 

material is not an ideal solution due to concerns of the surrounding tissue growing 

disproportionately. The inability of the implanted tissue to grow with the patient requires surgeons 
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to implant a patch that is oversized in order to accommodate blood flow as the patient grows. Upon 

implantation, patients will also express an elevated immune response involving HLA antibodies, 

despite extensive immunotyping and aggressive immunosuppresion 97-99. Pediatric patients 

receiving homograft material will nearly always have heart problems later in life, often requiring 

whole orthotopic heart transplantation. HLA sensitization observed from implanting homograft 

material eliminates a large majority of potential donor hearts, and options are primarily limited to 

VAD devices.  

Decellularization of cryopreserved tissues has been met with limited success in a clinical 

setting 100-103. Decellularization techniques typically eliminate HLA antigens responsible for 

immune rejection, eliminating a patient’s need for immune suppressive drug therapy and 

maintaining the availability of tissues for future transplantation. The risk of calcification and other 

failure modes is also significantly lowered due to the complete removal of cellular materials. 

Further, an underlying extracellular matrix with a fiber structure similar to native tissue can be 

preserved through the decellularization of homografts. It has been shown that implantation of 

decellularized homografts have the ability to support small numbers of repopulating host cells, as 

well as minor tissue remodeling in a cardiac location. However, the limited availability and variety 

within the tissue source of homograft material is preventative to the development and production 

of a widely used clinical material. 

 

1.4.5  Extracellular Matrix Scaffolds 

Biologic based extracellular matrix (ECM) scaffolds are an attractive tissue engineering approach 

to cardiac repair because they avoid sensitization associated with homograft materials, are 

inherently biocompatible and bioactive, and theoretically possess the potential for growth in 
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similar patterns as surrounding native tissue. Naturally occurring extracellular matrix (ECM) 

scaffolds have been able to successfully repair or replace tissue in a variety of body systems, 

including cardiovascular tissues, arteries, veins, and myocardium 104-113.  Additionally, ECM 

scaffolds completely and rapidly degrade upon implantation while being replaced by site 

appropriate tissue as opposed to scar tissue, an essential characteristic in cardiac tissue engineering 

114-116. The degradation process of ECM scaffolds yields a number of biologic responses within 

the host that are critical to the regenerative and wound healing processes as well. ECM scaffolds 

and their degradation products have also been shown to possess natural antibacterial properties 104, 

117-121.  Perhaps more importantly, ECM degradation products also change the cell population that 

participate in wound healing through the recruitment of bone marrow derived cells to the site of 

ECM remodeling 122-124. The inherent biochemical and mechanical properties of ECM scaffolds 

therefore provide numerous potential benefits for both pediatric and adult myocardial 

reconstructive applications.  

Over the past decade, numerous ECM scaffolds have been investigated in a preclinical 

setting, however the most widely clinically used products are currently derived from porcine small 

intestinal submucosa (SIS) and urinary bladder (UBM), bovine pericardium, and human dermis 

125. Each scaffold has shown the ability to successfully repair tissue, although studies have tended 

to prefer SIS and UBM scaffolds due to the availability of tissue and a simpler decellularization 

protocol.  Minimally processed ECM scaffolds can promote one of three distinct host remodeling 

responses, specifically encapsulation, integration, or remodeling 4. The encapsulation and 

integration groups tend to include dermal products that are denser and require more aggressive 

decellularization protocols.  The remodeling group includes SIS and UBM, which undergo a much 

simpler decellularization process and are derived from organs that experience more rapid turnover.  
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In addition to the commercially available products, recent efforts have sought to develop site 

specific scaffolds, including cardiac ECM (C-ECM), which are hypothesized to be preferred 

scaffold sources since the ECM was deposited by organ specific cells and the morphology matches 

that of the repair site. However, the process to produce these scaffolds tends to be more similar to 

the processes used for commercial scaffolds that promote encapsulation or integration responses 

rather than a constructive remodeling response.  

 

1.4.5.1  Organ Specific Scaffolds 

Perfusion-based whole organ decellularization has gained interest in the field of tissue engineering 

as a means to create organ-specific extracellular matrix scaffolds while largely preserving the 

native architecture of the scaffold. To date, this approach has been utilized in a variety of organ 

systems, including the heart, lung, and liver 126-130. Previous decellularization methods for tissues 

without an easily accessible vascular network have relied upon prolonged exposure of tissue to 

solutions of detergents, acids, or enzymatic treatments as a means to remove the cellular and 

nuclear components from the surrounding extracellular environment 131-133. However, the 

effectiveness of these methods hinged upon the ability of the solutions to permeate the tissue via 

diffusion. In contrast, perfusion of organs through the vascular system effectively reduced the 

diffusion distance and facilitated transport of decellularization agents into the tissue and cellular 

components out of the tissue.   

Organ specific scaffolds generated through perfusion based decellularization methods have 

recently shown promise in a variety of tissue engineering applications 134-145, including the heart 

146, 147.  Thus, an extracellular matrix scaffold derived from cardiac tissue may be an ideal material 
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for myocardial reconstruction applications. The inherent architecture of the cardiac tissue may 

present advantages over an ECM scaffold derived from another organ or an artificial biomaterial. 

A site-specific scaffold may support host cell infiltration and promote a constructive remodeling 

response, as opposed to scar tissue formation. To date, cardiac ECM patches have been 

investigated in vivo to reconstruct a defect created in the myocardial wall 148. C-ECM, UBM, and 

SIS scaffolds have each been investigated individually as potential materials for myocardial repair, 

but all have shown limited success 107, 110, 111, 149-151. In addition, a direct comparison of ECM 

scaffolds has not been performed in a cardiac location. 

 

1.4.5.2  Cell and Scaffold Engineering 

Thus far, the choice of implanted material alone has been ineffective at repairing and replacing 

myocardium with functional tissue, although ECM scaffolds have provided the most promising 

results in preclinical studies to date. While scaffold choice is paramount to success in vivo, the 

well-documented requirements of generating contractile tissue in vitro, such as mechanical 

conditioning and cell alignment cannot be ignored. It is believed that cell function and retention 

can be increased through an improvement in the means of cell delivery. As such, studies have 

investigated the addition of a cellular component to various ECM scaffolds prior to implantation 

in studies in an effort to elicit a favorable in vivo response 10, 152-154. The utilization of cell alignment 

techniques and mechanical conditioning are two guidelines prevalent in studies developing a cell-

seeded scaffold for implantation.  

The beneficial effects of mechanical conditioning on ECM composition, fiber and cell 

alignment, and cell behavior have been well documented 63, 64, 155-157. Cyclic stretch has been shown 

19 
 



to align the collagen fibers of UBM and SIS scaffolds in the direction of stretch in vitro. In addition, 

the introduction of cyclic strain to cells attached to ECM scaffolds has had significant effects on 

gene expression and cell alignment 157. The addition of cyclic mechanical strain to cardiac cells 

seeded onto ECM scaffolds would therefore theoretically maintain a contractile cell phenotype and 

align cells in the direction of stretch.  

Substrate alignment and contact guidance are also well-established and widely accepted 

means of aligning cells in culture. Turner et al. recently showed the ability to maintain 

cardiomyocyte phenotype on hyaluronan acid (HA) gel-coated UBM scaffolds 153. Microchannels 

were created on the surface of UBM scaffolds to aid in the maintenance of cell-cell contacts and 

align cells in an effort to generate a contractile, implantable material. Groups have also attempted 

various fabrication techniques to mimic an aligned ECM fiber network with seeded endothelial 

and smooth muscle cells 153, 158, 159. Alignment of the topographic collagen fiber network of 

naturally occurring ECM scaffolds prior to seeding cells may provide additional assistance in 

generating an aligned network of contractile cells.  

Extensive research has been conducted to investigate contractile tissue development in 

vitro. Previous studies have shown the ability to develop contractile constructs from cells 

embedded within ECM gels 9, 14, 15, 160. However, an engineered contractile tissue constructed from 

contractile cells and a robust, biologic scaffold capable of repairing a critical myocardial defect 

has remained elusive. Therefore, the goal of the present study is to generate an implantable, 

contractile tissue from extraceulluar matrix (ECM) scaffolds. This goal will be accomplished 

through the successful completion of three specific aims. 
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1.5  APPROACH AND RESEARCH AIMS  

 

SPECIFIC AIM 1: To determine whether an organ-specific extracellular matrix scaffold 

(C-ECM) or a heterotopically derived scaffold (UBM) better contributes to the formation of new 

host cardiac tissue. 

Subaim 1: Determine whether bone marrow derived cells play a role in the long-term 

remodeling response of either ECM scaffold.   

Rationale: The differences in host response to two ECM scaffolds, C-ECM and UBM, will 

be compared in vivo. To date, each scaffold has been investigated individually and in various 

surgical models. The generation of a GFP(+) chimera rat population will allow for a detailed 

investigation of the host cellular response and origins of repopulating cells. A well-established 

surgical model also allows for a direct comparison of the ability for each material to repair a full 

thickness myocardial defect.  

Hypothesis: The UBM repair group will contain the largest cellular infiltration into the 

patched area, as well as express a more complete endothelialization. Remodeling of the C-ECM 

patch will be slow, with limited cell infiltration and matrix turnover; however, the UBM patch will 

show faster penetration of bone marrow derived cells to the area as well as the ability to support 

cardiac cells and contract with the surrounding tissue, as evidenced through MRI examination. 

SPECIFIC AIM 2: Determine the role of contact guidance and mechanical stretch in the 

development of contractile tissue with cardiomyocytes seeded onto an ECM scaffold.   

Rationale: The scaffold for investigation will be selected based upon results obtained after 

completion of Aim 1. Substrate alignment, contact guidance, and mechanical stretch have all been 
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well documented means of aligning cells and promoting cell health. A combination of these 

techniques would therefore be a logical approach toward generating a contractile tissue from cells 

and ECM scaffolds. The development of a bioreactor will allow for culture and mechanical 

conditioning of constructs, and contractility will be verified through the measurement of calcium 

transients, measurement of force generation, and immunofluorescent examinationof contractile 

markers. 

Hypothesis:  Cardiomyocytes will retain a contractile phenotype and align on uniaxially 

scraped UBM scaffolds and subjected to cyclic stretch. By utilizing a combination of these 

techniques, an actively contractile tissue with highly aligned cells in one direction will be 

generated.  

SPECIFIC AIM 3: Evaluate the efficacy of an engineered cardiac tissue construct for 

myocardial reconstruction.    

Rationale: Survival of implanted cells and maintenance of appropriate phenotype are 

significant hurdles in cardiac tissue engineering. Various means of cell delivery have been 

previously investigated, but none have shown the ability to repair a full thickness defect in a 

cardiac location. A healthy, robust, and contractile engineered tissue may be a viable option to 

deliver contractile cells to the heart and repair a full thickness defect.  

Hypothesis:  Cardiomyocytes cultured on ECM sheets will spontaneously contract and 

will lead to improved regeneration of the RVOT in rats with a more uniformly distributed cell 

population within the remodeled area, as well as increased expression of contractile markers. The 

presence of aligned cells within the engineered tissue patch will also enhance the functional 

restoration of cardiac tissue beyond the scaffold alone.  
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2.0  URINARY BLADDER MATRIX PROMOTES SITE APPROPRIATE TISSUE 

FORMATION FOLLOWING RIGHT VENTRICLE OUTFLOW TRACT REPAIR 

 

2.1 INTRODUCTION 

 

In recent years, there has been an increasing demand for functional replacement of diseased or 

damaged cardiac tissue. Congenital Heart Defects (CHDs) are the most common form of birth 

defect, accounting for greater than 29% of all birth defect related deaths in the United States 

annually 21. It is estimated that over 1 million Americans are currently suffering from or were born 

with a form of CHD 19. Additionally, over 5 in 1000 infants will require surgical cardiologic 

intervention within the first year of life 20. Many congenital malformations are resolved 

spontaneously or with minimal surgical intervention. However, some CHDs require complex 

surgical procedures and the implantation of reconstructive materials to resolve abnormal heart 

function. There are currently a number of commercially available products that have the ability to 

patch defects without offering the capability of restoring function to the damaged myocardium 7, 8 

Traditionally used cardiac patch materials include cryopreserved homograft tissue, bovine 

pericardium, and synthetic materials- all of which are commonly associated with multiple failure 

modes, including rejection, stenosis, aneurysm, thrombosis, and calcificiation 92-95. An “off the 

shelf” material capable of repairing damaged myocardial tissue and restoring native function 

would therefore be ideal in a clinical setting and would provide benefits to currently used materials.   
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Naturally derived extracellular matrix (ECM) scaffolds have been shown to serve as 

adequate patch materials in a variety of body systems in both preclinical and clinical trials 161-165. 

ECM scaffolds have gained significant attention recently due to their inherent biocompatibility 

and ability to degrade and remodel towards site-appropriate tissue in a variety of organ systems. 

Among the most widely investigated ECM patch materials for myocardial repair include small 

intestinal submucosa (SIS), urinary bladder matrix (UBM), decellularized pulmonary artery, and 

cardiac-derived ECM products. Currently, CorMatrix SIS is one of the only clinically available 

products for myocardial repair, having been successfully used in dozens of pediatric patients to 

correct a variety of CHD malformations 166. The material has been able to repair both cardiac and 

vascular related defects with no evidence of calcification at 2 years after implantation. Urinary 

bladder matrix (UBM) scaffolds have not yet become available in a clinical setting, but have been 

investigated as a cardiac patch material in several preclinical applications 107, 111, 149, 150, 167. UBM 

scaffolds have shown the ability to rapidly and completely degrade in a cardiac environment. 

Preliminary studies have also shown the ability of UBM scaffolds to support the deposition of 

small areas of cardiac specific cells as well as minor indications of mechanical support and 

electrical communication with surrounding native cardiac tissue.  

In recent efforts to preserve and mimic the natural biochemical and mechanical 

environment of organs requiring repair, organ-specific scaffolds have recently shown promise in 

a variety of tissue engineering applications 135-145, including the heart 146, 147, 168. Repair of many 

CHDs requires the reconstruction or augmentation of malformed or underdeveloped vessels. 

Decellularization of the aorta and pulmonary artery is thought to provide the most appropriate 

material to facilitate host tissue integration and growth with pediatric patients. However, this 

approach has been met with limited success in preclinical and clinical studies with primary failure 
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modes of calcification and occlusion 169 170, 171. In the case of myocardial tissue repair, an organ-

specific cardiac ECM is thought to provide the most appropriate platform for a cardiac patch 

material. Singelyn et al. have recently developed an injectable form of C-ECM with the ability to 

support cardiac specific cells within the matrix after injection 168, 172. The matrix is able to self-

assemble and support neovascularization in highly localized areas within the myocardial tissue. 

However, a significant drawback of this approach is the inability to repair a full-thickness defect 

in the myocardium. It has recently been shown that an intact porcine heart can be fully 

decellularized to generate C-ECM patches 173, 174. C-ECM patches generated in this manner have 

shown the ability to support cardiac function as well as the infiltration of small areas of cardiac 

specific cells 146.  

Urinary bladder matrix (UBM) and cardiac ECM (C-ECM) have each been investigated 

individually as scaffolds for myocardial repair, but have shown limited success 107, 110, 111, 149, 150. 

To date, a direct comparison of the scaffolds has not been performed in a cardiac location, due to 

variations in the animal and surgical models used to investigate each scaffold. However, recent 

studies have developed an effective surgical model to evaluate materials for repair of full-thickness 

defects in rat hearts 89, 146. Previous studies have been able to evaluate functional and histological 

outcomes within repaired hearts, but did not investigate the origin of repopulating cells at the site 

of repair. In the present study, UBM and C-ECM patches were directly compared for repair of a 

full thickness defect created in the right ventricle outflow tract (RVOT) of rats.  As a secondary 

objective, the role that bone marrow derived cells play in the remodeling of an ECM scaffold in a 

cardiac location will be investigated through the use of a chimera rat model in which the bone 

marrow cells express green-fluorescent protein (GFP). 
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2.2 MATERIALS AND METHODS 

 

2.2.1  Study Design   

Animals with confirmed chimerism (GFP+ bone marrow) were anesthetized and intubated for right 

ventricle outflow tract reconstruction surgery as previously described  89, 146. A small (2-5 mm) 

defect was created in the RVOT of chimera rats and subsequently patched with one of the test 

materials (C-ECM, UBM, n=5 for each material at each time point). The animals were monitored 

for 4, 8 and 16 weeks. MRI examination of the reconstructed area took place at 4, 8, and 16 weeks 

in all available animals for functional analysis. At the predetermined time points, animals were 

euthanized by injection of 1M KCl directly into the heart. The hearts were then removed and 

prepared for frozen histologic processing for staining with cardiac, endothelial, and macrophage 

specific cell markers.  

 

2.2.2 Bone Marrow Transplantation  

 Female Sprague Dawley rats were placed in a small box for whole body irradiation. An X-Ray 

Irradiator (XRad 320, Rangos Research Facility, Pittsburgh, PA) was set to maximum amperage 

(12.5 amp) and voltage (320 kV) and recipient animals were lethally irradiated (10Gy at 1Gy/min). 

Following irradiation, animals were transferred to an immune compromised animal room for the 

remainder of the study. A GFP + transgenic Sprague Dawley male donor rat was then euthanized, 

and the tibias and femurs from both legs were removed and placed in DMEM/F12 media 

containing 10% FBS, 1% PS, and 10,000 units of Heparin. Bone marrow was isolated by flushing 

the bones with media using a 23 gauge needle. Marrow and media isolate was centrifuged at 

1500rpm for 7 minutes and resuspended in 10mL of RBC lysis buffer for 10 minutes. The cell 
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suspension was centrifuged again and resuspended in media, filtered through a 70μm cell strainer, 

and a cell count was performed. A cell population of greater than 6 x107 was confirmed and cells 

were then resuspended in 1mL of media. The cell suspension was divided into two 1mL syringes 

and placed on ice until ready for injection.  

Irradiated rats were then rescued by injection of a minimum of 6 x107 bone marrow cells 

after primary isolation. Animals were anesthetized and maintained at 2-3% Isoflurane at 1L/min 

of O2 and a 25 gauge needle was inserted into the tail vein. Each rat received 0.5mL of bone 

marrow cell suspension directly into the tail vein, and 0.2g of Cefazolin was injected 

intramuscularly into the hind leg. Antibiotics were injected every other day for the ten days after 

bone marrow transfer, alternating injection sites between hind legs. At 30-60 days post-irradiation, 

a small sample of blood was taken from the tail vein and a blood smear was performed on a slide 

and less than 0.5mL of blood was mixed with culture medium. The slide was observed under 

fluorescence for presence of GFP(+) cells, and the tube containing blood was centrifuged at 

1500rpm for 7 minutes. The supernatant was aspirated and the cells were resuspended in RBC 

lysis buffer for ten minutes. The cells were centrifuged a second time and resuspended in a small 

volume of media for flow cytometry analysis. Cell suspensions were analyzed for both GFP 

presence and front and side scatter plots to identify GFP(+) WBC percentages. Chimera creation 

was verified by a GFP(+) WBC percentage above 93%. 

 

2.2.3 Preparation of ECM Patches 

Whole pig hearts were obtained and subjected to a previously described method for 

decellularization 173, 175. Following decellularization, the ventricular walls were separated and a 
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small portion of the right ventricle near the apex was removed. This portion of the ventricle is 

much thinner than the surrounding myocardium and is most suitable for rat heart reconstruction. 

The ventricular wall was lyophilized overnight and 6mm diameter circular patches were cut from 

the tissue. The patches were packaged individually and sterilized using ethylene oxide gas prior to 

implantation. UBM sheets (Matristem™ Wound Sheets) were obtained from ACell, Inc. 

(Columbia, MD) and were removed from sterile packaging, cut to 6mm diameter patches, and re-

sterilized in a similar manner as the C-ECM patches. 

 

2.2.4 Surgical repair of RVOT  

After verification of chimerism, animals were prepared for RVOT reconstruction surgery as 

previously described 89, 146. Anesthesia was induced by placing the rats in a small container with 

3% Isoflurane in 2 L/minute of O2. A 16G x 2” angiocatheter sheath was inserted in the trachea. 

Proper insertion of the intubation catheter was ensured through inflation of lungs with a small 

ambubag. A rodent ventilation system (SAR-830/P) was set at approximately 75 breaths per 

minute and approximately 700 cc air/minute. Hair was removed from the chest of the rat and the 

site was sterilized with Iodine. An initial injection of 10mg/kg lidocaine was delivered locally, and 

the Isoflurane was reduced to 1.5%-2%. A 5cm incision was made in the chest with a #10 scalpel, 

and a thoracotomy was performed to expose the heart. The ribs were held open with an Alm 

retractor. A purse-string suture (with diameter of 5.0 – 6.0 mm) was placed in the free wall of the 

right ventricular outflow tract (RVOT) with 7-0 polypropylene sutures. Both ends of the stitch 

were passed through a 22-gauge plastic vascular cannula, which was used as a tourniquet. The 

tourniquet was tightened and the bulging part of the RVOT wall inside the purse-string stitch was 

resected. The tourniquet was then briefly released to verify a transmural defect was created in the 
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RVOT as indicated by severe bleeding. One of the proposed patches was then sutured along the 

margin of the purse-string suture with over-and-over sutures with 7-0 polypropylene to cover the 

hole in the RVOT. After completion of suturing, the tourniquet was released and the purse-string 

stitch removed.  The muscle layer was then closed with approximately 8 interrupted sutures (5-0 

Surgipro). Prior to closure of the chest, the lungs were inflated to full capacity using a pediatric 

ambubag attached to the ventilator. Approximately 8 interrupted sutures were placed to close the 

skin and a local injection of 10mg/kg lidocaine was delivered. Additionally, a dose of 

200mg/kg/day cefazolin was delivered to the thigh muscle, as well as 0.1mg/kg buprenorphine 

(buprenex), subcutaneously. Doses of cefazolin were delivered once daily for 3 days post-

operative and buprenorphine was delivered twice daily for the same time period.  

 

2.2.5 Cardiac MRI  

Cardiac MRI (Horizontal bore 7-T MRI system, Bruker Biospin 70/30) was performed for detailed 

assessment of cardiac function of all hearts treated with ECM. Animals were anesthetized with 1.5 

to 2% Isoflurane in oxygen gas via nose cone during MRI imaging. Animal body temperature, 

heart rate, respiratory rate, and arterial oxygen saturation were continuously monitored using a 

vital monitoring system. The total scanning time for each animal was approximately 45 to 60 

minutes. Under electrocardiogram and respiratory gating, right (left lateral image plane) and left 

ventricular (long and short axis image planes) wall motions were recorded by a FLASH cine image 

sequence.  Cardiac MRI was performed at 4, 8 and 16 weeks after ECM patch implantation and 

images were compared to those taken from a native heart. All videos detailed a minimum of one 

full cardiac cycle so that distinct measurements could be taken from the left and right ventricles 

throughout systole and diastole. Cardiac function was assessed by calculation of ejection fraction 
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and end diastolic volume from the LV, as well as shortening fraction from RV outflow tract where 

graft was implanted using OsiriX software. A repeated measures, two-way analysis of variance 

(ANOVA) was performed on all samples to determine significant differences (p<0.05) from native 

values for ejection fraction, RV shortening fraction, and LV end diastolic volume.  

 

2.2.6 Specimen Processing   

At time points of 4, 8 and 16 weeks, animals were euthanized by injection of 5mL of 1M KCl 

directly into the heart. The hearts were then removed and fixed in 4% paraformaldehyde for 24 

hours. Hearts were then moved to 30% sucrose for another 24 hours. The hearts were then cut in 

half through the patched area, frozen in OCT solution at -80°C, and sections were cut at 8µm 

thickness and placed onto slides for future staining. Masson’s Trichrome staining was performed 

to analyze the collagen and cell presence within each specimen prior to immunofluorescent 

staining.  

 

2.2.7 Immunofluorescent Staining    

All specimens were permeabilized with 0.1M glycine, 0.5% Triton X-100 in PBS for 15 minutes. 

The specimens were then washed five times in 1X PBS and then incubated with 1% goat serum 

for 1 hour. After the hour, the specimens were again washed three times in 1% BSA. The primary 

antibodies (α-actinin (Sigma Aldrich, A7811), connexin 43 (Abcam, ab11370), von Willebrand 

factor (Abcam, ab6994), α-smooth muscle actin (Abcam, ab7817), and GFP (Invitrogen, G10362)) 

were then added and incubated for two hours at room temperature and then washed five times in 

1% BSA. After these washes, the secondary antibodies (AlexaFluor A21125-594 and AlexaFluor 
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A11008-488, respectively) and Draq5 for nuclear staining were added and incubated for another 

two hours. Hoechst (1mg/100mL) solution was then added for 30 seconds and then washed five 

times in 1% BSA. Slides were covered in mounting medium, coverslipped, and sealed until 

imaging.  

 

2.2.8 Macrophage Phenotype Analysis  

Macrophage staining was performed on samples in order to describe the immune response of the 

ECM patches as recently described 4, 176. Antibodies for CD68 (pan-macrophage), CD86 (M1), 

and CD206 (M2) were used for an investigation of the M1 and M2 macrophage phenotypes. Prior 

to staining, samples were submerged in a solution of methanol to quench the GFP signal. After the 

elimination of GFP signal was verified, slides were washed in PBS and then incubated in a 

blocking serum consisting of horse serum, BSA, Triton X-100, and Tween 20.  Blocking solution 

was removed and a 1:150 dilution of mouse anti-rat CD68, rabbit anti-CD86, and goat anti-CD206 

antibodies in blocking solution was added to the slides at 4°C overnight. The following day, the 

slides were washed in PBS three times to remove primary antibodies. Secondary antibodies were 

added to blocking solution at the following concentrations; donkey anti-goat AlexaFluor 488 and 

donkey anti-mouse AlexaFluor 594 (1:200), donkey anti-rabbit Perp Cy5.5 (1:300). Secondary 

antibodies were added to the slides and allowed to incubate at room temperature for 1 hour. Slides 

were washed three times in PBS to remove the secondary antibody. Mounting media with DAPI 

and coverslips were then added to each slide prior to imaging. 

 

31 
 



2.3 RESULTS 

 

2.3.1 Bone Marrow Transplantation and Surgical Outcomes   

Prior to RVOT surgeries, a chimera population was created from wild type recipient rats and GFP+ 

marrow donors. The observed survival rate of bone marrow transplantation was approximately 

66%, with complete engraftment achieved between 30-60 days after transplant. Currently accepted 

rates of chimerism are approximately 95% of the white blood cell population expressing the GFP 

protein. Blood smear analysis revealed a large GFP+ cell population within peripheral blood 

samples, and this was verified through flow cytometry analysis. The animals used in this study 

expressed an average GFP + white blood cell population of 94.9%, confirming the creation of the 

chimera rats. Both UBM and C-ECM patches measured 6mm in diameter and were implanted with 

the luminal side of the scaffold on the blood contacting surface.  
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Figure 1. Macroscopic photo of UBM and C-ECM patches prior to implantation. 

 

UBM patches measured approximately 0.25mm in thickness and C-ECM patches 

measured approximately 0.25-0.4mm in thickness.  Intra-operative and post-operative mortality 

associated with the surgical procedure in both UBM and C-ECM groups was approximately 25%. 

The patches replaced approximately 25% of the RV wall in both groups and suture lines indicated 

the original placement of the scaffold up to the 16 week time point.  
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Figure 2. Macroscopic images of the patched area of rat hearts at 4, 8, and 16 weeks after implantation. UBM 

patches were incorporated into the native tissue by 4 weeks after surgery. (A) The original white color of the 

patches were not evident at any time point. (A-C) C-ECM patches retained a whitish appearance and preserved 

the native thickness of the ventricle wall through the end point of the study. (D-F) 

 

2.3.2 C-ECM scaffolds  

The C-ECM patches were incorporated into the native tissue by 4 weeks and the patches retained 

a whitish appearance through the 16 week time point. (Figure 2) The thickness of scaffolds was 

not statistically different than native RV wall thickness (0.93 ± 0.07 mm) at all time points with 

wall thickness values of 1.26 ± 0.14, 0.98 ± 0.1 , and 1.07 ± 0.11 mm at 4, 8, and 16 weeks, 

respectively. The C-ECM patches were incorporated into the native tissue by 4 weeks. The patches 

34 
 



retained a whitish appearance through the 16 week time point, and the thickness of the scaffold 

was similar to the thickness at implantation. Cardiac LV ejection fraction of hearts were 

significantly reduced at 4 weeks after reconstruction (p < 0.05), however, a return toward normal 

ventricular ejection and RV shortening values by 16 weeks was observed.  

 

Table 1. Left ventricular ejection fraction, right ventricle shortening fraction, and LV end diastolic volume of 

reconstructed hearts (n=5 for each material at each time point). 

 

 

No significant differences of LV end diastolic volume were observed following 

reconstruction. There was no RV outflow tract obstruction observed due to either patch material.  
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Figure 3. C-ECM patched hearts showed no geometric changes in the RV and LV when compared with native 

hearts that had not undergone surgery. The LV cross section of reconstructed hearts maintains its native 

circular shape, indicating minimal pressure changes within the RV after patch implantation. Scale indicates 

6mm. 

 

Histological examination of C-ECM reconstructed hearts showed that the patches had been 

incorporated into the native tissue by 4 weeks with cellular presence evident within the scaffold. 

Masson’s Trichrome staining showed that the presence of collagen remained at the site of patch 

implantation throughout the study. 
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Figure 4. Histological examination of C-ECM patches using Masson’s Trichrome. The patches are incorporated 

into the native tissue by 4 weeks (A). The scaffold was also easily observed at 8 weeks (B) and 16 weeks (C) with 

a similar thickness as the surrounding ventricular wall and little evidence of remodeling. Scale indicates 100 

µm. 

 

The scaffold was easily observed at all time points and the reconstructed area of the RVOT 

remained highly collagenous.  The section of the ventricular wall repaired by the C-ECM scaffolds 

appeared to have a similar thickness as the surrounding native wall at all time points with minimal 

dilation evident, although a thickening of the surrounding native myocardial wall was observed.  

Immunofluorescent examination of cardiac specific markers within the C-ECM patched 

hearts showed cellular presence in patches by 8 weeks after reconstruction, with a large population 

of GFP + cells evident in the patch. However, the cells had not completely penetrated the thickness 

of the scaffold and were localized to the luminal half of the patches. C-ECM patches expressed 

small areas of α-actinin, commonly evident in the sarcomere structure of cardiomyocytes. 

However, staining was intermittent and did not show normal striated cells, suggesting that cells 

within the patch were immature and possessed little contractility. Positive staining within the red 

channel of Figure 5 was primarily autofluorescence from the C-ECM patch, and was included to 

illustrate the boundaries of the remaining material with respect to cell infiltration. 
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Figure 5. Immunofluorescent examination of C-ECM patches for α-actinin at 8 weeks after reconstruction. A 

distinct presence of GFP (+) cells (green) was observed within the C-ECM patches with minimal staining for 

α-actinin (red, draq 5-blue). Scale indicates 100 µm. 

 

The C-ECM patches showed positive staining for α-smooth muscle actin (α-SMA) in 

intermittent areas of the tissue and were not associated with GFP expressing cells.  
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Figure 6. Positive staining was confirmed for α-smooth muscle actin (red) in C-ECM scaffolds (GFP-green, 

draq5-blue) Scale indicates 100 µm. 

 

Cells that had accumulated along the endocardial surface were confirmed as endothelial 

cells through von Willebrand factor staining.  
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Figure 7. A continuous endothelial lining along the endocardial surface was observed in C-ECM scaffolds as 

evidenced by von Willebrand factor (green, draq5-blue). Scale indicates 100 µm. 

 

Connexin 43 staining was also performed to identify gap junctions and electrical 

connections between cardiomyocytes, however, there was no observable staining within the 

patched area, suggesting that the cardiomyocytes present within the scaffolds were immature. 

(Data not shown) There was also little indication of fibrotic tissue development of the patches at 

all time points. Few differences were observed in cell staining within C-ECM patches between 8 

week and 16 week time points.  
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C-ECM scaffolds were analyzed for macrophage response at the 4 week time point to 

determine the acute response to the patches. Macrophages had penetrated the inner half of the 

patches and expressed a mix of M1 and M2 cells.  There were distinct spatial differences in the 

macrophage response at the interface with native tissue, which consisted of primarily an M1 type 

macrophage response, and the endocardial surface of the material, which consisted of a 

predominantly M2 type macrophage response. 
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Figure 8. Macrophage phenotype analysis of C-ECM patches at 4 weeks after surgery. Macrophages had 

completely penetrated the patches and expressed a mix of M1 and M2 cells. (A) M1 macrophages (CD86-yellow, 

draq5-blue), (B) M2 macrophages (CD206-green, draq5-blue), (D) combined image. Scale indicates 100 µm. 

 

2.3.3 UBM scaffolds  

The UBM patches were completely incorporated into the native tissue by 4 weeks after RVOT 

repair surgery and the original white color of the patch was not evident upon explant at any of the 

time points of the study, which was a preliminary indication that the patch supported host cell 

infiltration and revascularization. The thickness of UBM scaffolds was not statistically different 

than native RV wall thickness (0.93 ± 0.07 mm) at 4 and 16 weeks after surgery with wall thickness 
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values of 1.02 ± 0.13 and 1.06 ± 0.16 mm, respectively.  However, at 8 weeks after surgery, the 

RV wall thickness (0.35 ± 0.12 mm) was significantly thinner than native values.  Cardiac LV 

ejection fraction was reduced at 4 weeks after implantation, however, by 16 weeks a complete 

return toward native ventricular ejection values was observed. (Table 1) The RV shortening 

fraction was minimally compromised, although not significantly, at 4 weeks, and by the end of the 

study it had also returned to native values. No geometric changes were observed in the LV, as 

observed from end diastolic volume, or RV of hearts through 16 weeks, suggesting that no RV 

outflow tract obstruction was seen by patches implantation. 

 

 

Figure 9. UBM patched hearts showed no geometric changes in the RV and LV when compared with native 

hearts that had not undergone surgery. The LV of reconstructed hearts maintains its native circular shape 

through the end of the study, indicating minimal pressure changes within the RV after patch implantation. 

Scale indicates 6mm. 

 

Histological examination of UBM patches showed that by 4 weeks after implantation, there 

was complete penetration of infiltrating cells. Cellular presence was observed within UBM patches 
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at all time points. In Masson’s Trichrome staining of the hearts, the morphologic presence of the 

scaffold was observed at 4 weeks after reconstruction.  

 

 

Figure 10. Histological examination of UBM patches using Masson’s Trichrome at 4 (A), 8 (B), and 16 (C) 

weeks after implantation. Cell presence is evident at all time points. (A-C) The patches had decreased in 

thickness at 8 weeks, but were similar to surrounding native tissue at 4 and 16 weeks.  By 16 weeks, the UBM 

patches appeared to be completely degraded and replaced with native tissue. (C) Scale indicates 100 µm. 

 

By 8 weeks, the section of the ventricular wall repaired by the UBM scaffolds appeared to 

be thinner than the surrounding native wall and there was scattered evidence that the scaffold was 

still present. There also appeared to be some replacement of the scaffold with small quantities of 

muscular tissue. However, by 16 weeks after reconstruction there was an observable return to 

native ventricular wall thickness and the scaffold could not be observed morphologically.  

Immunofluorescent examination of the UBM patched hearts showed a uniform cellular 

distribution throughout the thickness of the patch material by 8 weeks after reconstruction, with a 

large population of GFP+ cells evident in the patch.  
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Figure 11. Immunofluorescent examination of UBM patches for α-actinin at 8 weeks after reconstruction. A 

distinct presence of GFP (+) cells (green) as well as GFP (-) cells (blue) was observed throughout the thickness 

of the UBM patches with intermittent staining for α-actinin. Scale indicates 100 µm. 

 

Cells within the UBM patches also expressed α-smooth muscle actin (α-SMA) in small 

areas of tissue throughout the patch thickness.  
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Figure 12. Positive staining was confirmed for α-smooth muscle actin (red) in UBM scaffolds (GFP-green, 

draq5-blue) Scale indicates 100 µm. 

 

There was no indication of fibrotic tissue development on the patches. Cells within the 

remodeling UBM scaffolds had developed a continuous monolayer along the endocardial surface 

of the RV by 8 weeks, and no changes were observed at 16 weeks after surgery. Cells accumulating 

along the endocardial surface were confirmed as endothelial cells through von Willebrand factor 

staining.  
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Figure 13. A continuous endothelial lining along the endocardial surface was observed in UBM scaffolds as 

evidenced by von Willebrand factor (green, draq5-blue). Scale indicates 100 µm. 

 

Connexin 43 staining showed no observable gap junctions within the patched area, 

suggesting that cardiomyocytes present within the UBM patches were immature at this time point. 

(Data not shown) However, further analysis of α-actinin staining at 16 weeks within UBM 

reconstructed hearts showed the presence of cardiomyocytes expressing organized striated 

sarcomere structure. GFP+ cells were present within UBM patches at 16 weeks after surgery, and 

were located in close proximity to cardiomyocytes, although no co-staining was evident.   
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Figure 14. α-actinin staining of UBM patches at 16 weeks after surgery. (A) The patched area shows evidence 

of organized sarcomere structure (red) within cardiomyocytes. (B) GFP + cells (green) can be observed within 

the patch, but are not associated with actinin staining. (C,D) Insets from multiple areas throughout the patch 

show striated actinin structure within cardiomyocytes.  (draq5-blue) Scale indicates 500 µm and 25 μm within 

insets. 

 

At the 4 week time point, UBM patches elicited a mixed M1/M2 acute macrophage 

response. CD206+ (M2) macrophages were primarily localized to the area of the ventricular wall 

nearest the endocardial wall, while CD86+ (M1) cells were located within the inner portion of the 

patches, although both populations of cells were observed throughout the thickness of the patches. 
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Figure 15. Macrophage phenotype analysis of UBM patches at 4 weeks after surgery. A mixed M1/M2 response 

was observed in the patches. Macrophages were primarily localized to the inner half of the patches, with a 

concentration near the interface with native tissue. (A) M1 macrophages (CD86-yellow, draq5-blue), (B) M2 

macrophages (CD206-green, draq5-blue), (C) pan-macrophage (CD68-red, draq5-blue), (D) combined image. 

Scale indicates 100 µm. 

 

2.4 DISCUSSION 

 

The present study directly compared the ability of UBM and C-ECM patches to repair a critically 

sized, full thickness defect created in the right ventricular outflow tract of chimera rats. Both 

scaffolds were able to preserve cardiac performance throughout the study, and both patches were 

able to support cell infiltration for up to 16 weeks after reconstruction. Neither scaffold showed 

signs of fibrotic encapsulation, and both scaffolds expressed a continuous endothelial lining along 

49 
 



the endocardial wall of the RV at the site of repair. However, UBM patches were rapidly degraded 

and remodeled, with the formation of new host tissue in the reconstructed area by 16 weeks. 

Additionally, cells were able to rapidly infiltrate and fully penetrate the thickness of the UBM 

scaffolds by 8 weeks, with a significant number originating in the bone marrow. Cardiomyocytes 

with healthy sarcomere patterns were observed throughout UBM, but not C-ECM, patches by the 

end of the study. The results from the present study suggest that UBM may be a more viable option 

than organ-specific ECM as a patch for myocardial repair.  

It has been previously hypothesized that organ-specific ECM scaffolds are a more 

attractive option than heterotopically derived scaffolds in many tissue repair applications. The 

ECM from site specific origins is deposited by cells that are desired to repopulate the scaffold, 

and, for more geometrically complex organs, the structure of the scaffold can be preserved through 

perfusion decellularization 147, 175. This hypothesis is supported by studies that have shown that 

liver ECM preserves the phenotype of liver specific cells better than heterotopic ECM, and studies 

with decellularized lung that show the ECM can promote site-appropriate differentiation of mouse 

embryonic stem cells 142, 177. However, there are other examples that show that heterotopic ECM 

from the urinary bladder and small intestine can promote the formation of site appropriate tissue, 

sometimes with greater efficacy than the organ-specific ECM.  For example, vacuum pressed 

UBM was equivalent to hydrated decellularized tracheal matrix for patch tracheoplasty, and was 

superior to a lyophilized form of the same 178.  UBM has also been shown to promote site-

appropriate remodeling in the esophagus, thoracic wall, and body wall 3, 4, 6.  Both UBM and C-

ECM have been evaluated independently for myocardial repair, but variations in the model have 

made comparisons difficult.   
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Following implantation, minimally processed ECM scaffolds can promote one of three 

distinct host remodeling responses, specifically encapsulation, integration, or remodeling 4. The 

encapsulation and integration groups tend to include dermal products that are denser and require 

more aggressive decellularization protocols.  The remodeling group includes small intestinal 

submucosa (SIS) and urinary bladder matrix (UBM), which undergo a much simpler 

decellularization process and are derived from organs that experience more rapid turnover.  In 

addition to the commercially available products, recent efforts have sought to develop organ-

specific scaffolds, including cardiac ECM (C-ECM), which are hypothesized to be preferred 

scaffold sources since the ECM was deposited by organ specific cells and the morphology matches 

that of the repair site. However, the process to produce these scaffolds tends to be more similar to 

the processes used for commercial scaffolds that promote encapsulation or integration responses 

rather than a constructive remodeling response. In the present study, UBM patches could be 

observed throughout the remodeling process at 4 and 8 weeks after implantation, but had been 

degraded and replaced by host tissue by 16 weeks. In contrast, C-ECM patches showed little 

evidence of remodeling. After implantation, C-ECM patches were integrated into the host 

myocardium were visible through the end of the study.  

In recent years, there has been an increasing clinical demand for a biomaterial that has the 

ability to restore function to damaged myocardium. The emergence of the regenerative medicine 

field has provided a number of biologic based materials that have shown the ability to repair and 

integrate into native tissue, as well as materials that are able to remodel and restore function to 

damaged tissue. In a cardiac location, previous studies have investigated heterotopically derived 

ECM scaffolds for repair and have been met with moderate success 107, 111, 150. These studies were 

able to show local contractility of patches and the presence of small areas of site specific cardiac 
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cells. However, the primary result of these studies was ultimately the integration of ECM patches 

into the native tissue with collagenous tissue present at the endpoint of the study. The results of 

the present study suggest that C-ECM becomes integrated into the adjacent myocardium, while 

UBM promotes remodeling of cardiac tissue.  

Through MRI examination, differences could be observed between groups in the functional 

analysis of reconstructed hearts throughout the study. Ejection fraction, an indicator of ventricular 

health, decreased at 4 weeks, but returned toward normal values by the end of the study. A 4% 

drop in ejection fraction was the largest difference observed between reconstructed hearts and 

native values, measured in C-ECM hearts at 4 weeks after reconstruction. This value was the only 

measurement in the study that was significantly different from native values. Maintenance of 

cardiac performance may be attributed to the cellular presence within both scaffolds, as there was 

uniform cell distribution throughout each scaffold by 8 weeks after reconstruction. Additionally, 

UBM scaffolds had been largely replaced with native tissue by 16 weeks, as evidenced through 

Masson’s Trichrome and α-actinin staining.  

The present study expanded on previous work by Wainwright et al., where a C-ECM 

scaffold was directly compared to a currently used surgical patch material in the clinic, Dacron™ 

146. Using a RVOT reconstruction model, Wainwright et al. showed that C-ECM supported 

localized site-specific cardiac cells and aided in normal cardiac function, while the implantation 

of Dacron™ patches resulted in fibrous encapsulation through the end point of the study. The 

results of the present study, however, showed that C-ECM patches were unable to support the 

infiltration of site-specific cells and a significant decrease in ejection fraction was observed at 4 

weeks after surgery. By the end of the study, C-ECM patches had been incorporated into the 

surrounding myocardium. The major difference between the C-ECM in the two studies was that 
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the C-ECM in the present study was subjected to a longer decellularization process to more 

effectively remove cellular debris. This potentially adds support to the idea that processing may 

be a stronger predictor of outcome than tissue origin 179. The present study also sought to compare 

UBM and C-ECM scaffolds as they are currently produced, and did not account for differences in 

processing techniques between the scaffolds to ensure that each material is fully decellularized 

through previously optimized protocols. Obvious changes to the mechanical and chemical 

constituents of the scaffolds are expected if the production methods are altered, and future studies 

are necessary to examine the effects of controlling for such differences. 

The exact cell populations involved in the host response to ECM patch implantation in a 

cardiac location has not previously been investigated, but it is hypothesized that bone marrow 

derived cells play a role. Previous mouse studies have suggested that bone marrow cells are 

recruited to the site of ECM implantation and participate in the remodeling response, although the 

specific role is not fully understood 122, 123, 180-182. However, the surgical complexity of cardiac 

repair in mouse models prohibits their use, and larger animal models do not offer the capability to 

label bone marrow cells and track the origin of resident cells.  

In the present study, bone marrow derived cells were among the first to infiltrate both 

scaffolds through observation of GFP expression. As the scaffolds were repopulated, an increasing 

number of non-GFP expressing cells could be observed up to 8 weeks after reconstruction. Non-

GFP cells appeared to be primarily localized near the periphery of the scaffolds and near the 

interface with native tissue. By 16 weeks, there was little indication that cells were still migrating 

from the bone marrow to the site of implantation and a large reduction of GFP expressing cells 

was observed in both scaffolds. Although the present study did not quantify the exact number of 

GFP expressing cells, similar expression levels were observed at each time point. In UBM 
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reconstructed hearts, cardiomyocytes could be easily observed throughout the area and were not 

associated with GFP staining. However, in C-ECM reconstructed hearts, cardiomyocyte presence 

was absent and GFP expressing cells did not associate with site-specific cell markers.  

GFP expression tended to be associated with the presence of macrophages within the 

scaffold. Recently, macrophage phenotype at early time points (<1 month) have been shown to be 

predictive of downstream encapsulation or site-appropriate tissue remodeling 4, 183.  Briefly, the 

persistence of increased pro-inflammatory, M1 type, macrophage populations within implanted 

ECM scaffold materials has been associated with encapsulation of the material or degradation 

without downstream formation of site-appropriate tissues.  Conversely, increased M2 populations 

have been associated with a more rapid resolution of the inflammatory response and improved 

site-appropriate tissue formation.  In the present study, a qualitative assessment of macrophage 

phenotype was performed, showing that both samples elicited a mixed M1/M2 macrophage 

population.  However, the spatial location of these cells within the implanted samples was 

observed to differ.  C-ECM implants were characterized by a predominance of the M1 phenotype 

at the interface with native tissue and M2 cells towards the endocardial surface of the remodeling 

samples.  UBM implants were characterized by a mixed M1/M2 population which was located 

within the area closest to the native tissue.  The superficial portion of the remodeling implant was 

populated with cells at the 4 week time point, however these cells did not stain positive for 

macrophage markers.  This may indicate that bone marrow derived cells may influence remodeling 

through the differentiation of macrophages with respect to the ECM.  It should be noted that 

macrophage phenotype occurs along a spectrum between M1 and M2 phenotypes and cells may 

express markers of both M1 and M2 phenotypes concurrently 184, 185.  Cells expressing both CD86 

and CD206 concurrently were observed in both C-ECM and UBM implants. The exact 
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implications of these cells in the process of cardiac tissue remodeling are largely unknown and a 

subject of significant interest. 

An important question remains regarding the origin of the cells found in the remodeled 

UBM after 16 weeks.  It has long been believed that resident cardiac cells are non-migratory and 

that there is little turnover within adult myocardium. However, there has been recent evidence that 

cardiac cells can migrate to areas of injury 186, 187. In the present study, cardiomyocytes observed 

within remodeled UBM patches did not express GFP, indicating that the cells did not originate in 

the bone marrow. Preliminary hypotheses for the origin of these cells include cardiac progenitor 

cells or pre-existing cardiomyocytes within the surrounding tissue; however, future studies are 

required to determine the exact origin.  

The primary limitations of this study stem from the use of a small animal model for cardiac 

tissue repair. The smaller size and lower pressures observed in the rat model do not provide an 

adequate prediction to the potential performance in a human setting. The current models for 

investigation of myocardial reconstruction and vascular treatments are juvenile sheep or piglets 

due to the similarities in the size, growth rates, and calcification issues as humans. However, the 

primary focus of this study was the differences in the cellular infiltration, distribution, and overall 

remodeling responses of the scaffolds as they are currently produced. The use of rat-derived ECM 

may have provided a more appropriate control for material performance, however, rat ECM 

scaffolds would not be feasible as a clinical material and the means of generating these scaffolds 

would not be applicable. Obvious differences exist between the mechanical structure and 

environment of the porcine organs of origin and the ultimate site of repair as well. However, the 

development of a chimera population allowed for more complete analysis of cell origin. 

Additionally, the use of a well-established RVOT surgical model for rats allowed for direct 
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comparison to previous studies. Future experiments are necessary to investigate the performance 

of ECM patches in larger animals to more closely mimic the native environment of human hearts.  

 

2.5  CONCLUSION 

 

ECM scaffolds provide distinct advantages to currently used biomaterials for myocardial 

reconstruction. The ability to restore function in a cardiac location, however, is paramount to the 

long term success of the scaffold. Previous studies have shown that artificial materials are 

completely encapsulated with fibrotic tissue and do not develop an endothelium. Wainwright et al. 

showed that C-ECM avoided fibrotic encapsulation, was integrated into the native tissue, and was 

able to support small areas of contractile cells with the development of an endothelial lining 146. In 

contrast with previously held hypotheses, the results of the present study showed that UBM 

scaffolds may provide a more viable option for myocardial reconstruction than a scaffold derived 

from a cardiac location. The ability for the UBM patches to completely and rapidly degrade, while 

being replaced with newly formed site-appropriate tissue is a significant finding. These results are 

in direct contrast with results from the C-ECM patches, which showed integration into the cardiac 

tissue with little evidence of remodeling or presence of cardiomyocytes at the end of the study. 

Additional studies are needed to investigate both scaffolds on a more physiologically relevant 

scale, but this study provides evidence that the use of an organ-specific patch material in a cardiac 

location may not be the most appropriate approach in future studies.  
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3.0  IN VITRO EVALUATION OF ENGINEERED CONTRACTILE CELL- 

SCAFFOLD CONSTRUCTS 

 

3.1 INTRODUCTION 

 

As observed in the previous chapter, the microstructural environment of ECM scaffolds is a 

primary determinant of the overall cellular response. As such, UBM scaffolds may provide more 

appropriate mechanical and chemical cues than C-ECM scaffolds when used for myocardial 

reconstruction. The ultimate goal of cardiac tissue engineering is the development of an engineered 

patch through a combination of cardiac specific cells embedded within a scaffold material. While 

scaffold choice is paramount to success in vivo, well-documented requirements of generating 

contractile tissue in vitro, such as mechanical conditioning and cell alignment cannot be ignored. 

It is believed that cell function and retention can be increased through an improvement in the 

means of cell delivery. Previous studies have investigated the addition of a cellular component to 

various ECM scaffolds prior to implantation in studies in an effort to elicit a favorable in vivo 

response 10, 152-154. However, many studies have ignored important characteristics of healthy 

myocardial tissue such as uniform cellular distribution and alignment.  

The utilization of cell alignment techniques and mechanical conditioning are two 

guidelines prevalent in studies developing a cell-seeded scaffold in vitro. However, the application 

of these techniques has been largely implemented individually thus far, and studies have had 

limited success in engineering a robust contractile tissue with the capability of repairing 

myocardial tissue. It has been previously shown that UBM scaffolds can be processed in such a 

way to align the collagen fiber architecture in a preferential direction 64. An aligned collagen 

57 
 



structure within a potential scaffold material would theoretically provide a means of contact 

guidance to align seeded cells. The beneficial effects of mechanical conditioning on ECM 

composition, fiber and cell alignment, and cell behavior have also been well documented 63, 64, 155-

157. Uniaxial cyclic stretch is able to align the collagen fibers of UBM and SIS scaffolds in the 

direction of stretch in vitro, and the introduction of cyclic strain to cells attached to ECM scaffolds 

has had significant effects on gene expression and cell alignment 157. Therefore, the goal of the 

present study is to engineer a robust contractile tissue from UBM scaffolds and cardiomyocytes in 

vitro.  

 

3.2  MATERIALS AND METHODS 

 

3.2.1 UBM Scaffold Processing 

Urinary bladder matrices were prepared in a similar manner as previously described 64, 188. The 

urinary bladder from market weight pigs was harvested immediately upon euthanasia. External 

connective tissues were removed, and the bladder was rinsed with tap water to remove residual 

urine and frozen at -80°C until ready for processing. Bladders were thawed by submersion in Type 

I water at room temperature for up to two hours. Once thawed, the apex of the bladder was removed 

and a longitudinal incision was made to expose the luminal surface of the bladder in a flat sheet. 

The luminal side of the bladder was placed face down and the external muscle layers (tunica serosa, 

tunica muscularis externa, tunica submucosa, and most of the muscularis mucosa) were removed 

through mechanical delamination. Physical delamination of the muscle layers was performed in a 

single direction along the longitudinal axis of the bladder to align the collagen fibers of the 

resulting UBM 64. The UBM was thoroughly rinsed in Type I water to lyse any remaining cells 
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and clean the surface of the scaffold. UBM sheets were disinfected using 0.1% peracetic acid in 

4% ethanol (v/v) and thoroughly rinsed in phosphate buffered saline (pH = 7.4) and Type I water. 

 

3.2.2 Isolation of Cardiomyocytes 

Day 0-4 neonatal rat pups were first sterilized by cleaning off excess bedding and debris from skin 

and soaking in 70% ethanol. Hearts were removed from the pups using sterile forceps and scissors 

and transferred to chilled RCGM (Lonza media/bullet kit) supplemented with 1% Penicillin-

Streptomycin and 1% Fungizone immediately. Aortas and atria of the hearts were removed to limit 

the population of fibroblasts in culture. The remaining heart was squeezed to remove excess blood, 

and tissue was minced under sterile conditions. Cardiac tissue was then washed in 1x KG solution 

containing 51.8g Glutamic Acid/Potassium salt (Sigma G1149), 35.6 mL Sodium Bicarbonate 

solution (7.5%w/v Gibco 25080-094), 0.12g Sodium Phosphate (Sigma S3264), 50mL HEPES 

Buffer, 1M (Sigma H0887), 5.94g D-Glucose (G7021), and pH tested to 7.4. Tissue was placed in 

a 50mL tube containing approximately 10mL of Collagenase Type II (3mg/mL) and a small stir 

bar was rotated at 1 rev/sec. The 50mL tube was then placed in a 37°C water bath on a heated stir 

plate for 20-30 minutes. Collagenase solution was then removed and tissue was rinsed with 1x KG 

solution. 15mL Trypsin solution (4mL Trypsin (10x, 2.5%) in 96mL 1x KG) was then added to 

cardiac tissue and incubated in the water bath for approximately 7 minutes, stirring at 1 rev/sec. 

Supernatant was removed and filtered through a 100μm strainer into a 50 mL tube filled with 20mL 

of RCGM chilled in an ice bath. Fresh Trypsin solution was added to the remaining tissue in the 

heated bath and triturated at 3mL/sec 4-5 times. The Trypsin solution was then harvested and 

replaced 5-6 times. Trypsin harvests 1, 2, 3-4, and 5-6 were all collected in each of four separate 

50mL tubes containing DMEM. Each tube had a final volume of approximately 40mL. The cell 

59 
 



and media mixtures were removed from the ice baths and centrifuged at 200G for 5 minutes. Media 

was replaced with fresh RCGM complete and cell suspensions were added to plasma treated petri 

dishes and incubated for one hour to allow for fibroblast attachment. Preplating of cell suspensions 

was performed a second time for Trypsin collections 1 and 2, due to the higher fibroblast 

population. Suspensions were removed from dishes and cell counts were performed using a 

Coulter Counter. Cells were centrifuged at 200G for 5 minutes and resuspended in fresh RCGM 

(Lonza CC-4515) complete.  

 

3.2.3  Cardiomyocyte Cell Sheets 

Cardiomyocytes cultured on temperature responsive poly-n-isopropylacrylamide (PIPAAm) 

surfaces have been shown to maintain cell contractility while producing an extracellular matrix 

and establishing cell-cell connections 13. Upon release from the surface, cell sheets have a uniform 

distribution of contractile cells, and have been investigated for cardiac implantation. 

Cardiomyocytes were plated on temperature-responsive dishes at a density of approximately 5 

x105 cells/cm2 and placed at 37°C, 5% CO2 for 24-48 hours for attachment. After a total of 96 

hours in culture on temperature responsive dishes, cell sheets were harvested by placing on ice for 

25-35 minutes until release from polymer surface. Sheets were transferred to UBM pieces in a 

separate 6-well dish, secured under a culture ring, and submerged in media. Media was changed 

as needed for the following 6 days in culture, at which time cell-scaffold constructs were cut in 

half. One half was fixed in formalin and submitted for histologic staining and the other was fixed 

in 4% Paraformaldehyde for 30 minutes and washed in PBS.  
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3.2.3 Mechanical Conditioning of Cardiomyocytes on UBM Scaffolds 

A second group of cells were also seeded directly onto Urinary Bladder Matrix (UBM) scaffolds 

that had been scraped in the longitudinal direction as a single cell suspension (5 x105 cells/cm2). 

UBM scaffolds were cut into dogbone shaped pieces and placed in a silicone mold prior to cell 

seeding. Cells were cultured for 5 days on UBM scaffolds and cell-scaffold constructs were then 

transferred to a custom built cyclic stretching system.  
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Figure 16. A) Photograph of (A) a scraped UBM scaffold prior to cell seeding and a silicone culture dish, (B) a 

single stretch chamber with associated clamps, and (C) the stretch bioreactor system. Each stretch chamber 

consists of tissue clamps, which are attached to the UBM scaffold on either side, as well as stainless steel rods. 

The rods are attached to an enclosed load cell on one side and pass through a frictionless bearing and attach to 

a linear actuator outside the chamber on the other. Self-aligning connectors attach the linear actuator to the 

stretch chamber and allow for cyclic stretch to be applied to the UBM scaffolds. 
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One group was held static at a small (0.05N) tension for the duration of the test, and another 

group was cyclically stretched (7%, 0.5Hz) for 7 days. Cyclically stretched cells were subjected to 

preloading conditions (0N- 0.05N) for 5 cycles, held at a small tension for 1 minute, and the full 

stretch regimen was started. Media was removed after 24-48h and replaced with RCGM 

supplemented with 200μM BrdU to limit fibroblast proliferation. Media was removed after an 

additional 24h in culture and fresh RCGM was again added. Media was replaced each 24h period, 

until cardiomyocyte cells reached a total of 7 days in culture under mechanical loading conditions. 

Following removal from stretch chambers, cell-scaffold constructs were either fixed and prepared 

for immunofluorescent staining or prepared for contractility measurements.   

 

3.2.4 Cell Contractility Measurements 

Cardiomyocyte seeded scaffolds (n=10) and cells in culture (n=10) were analyzed to observe the 

contractility of cells within UBM scaffolds and determine the ability of cells to produce 

measurable contractile forces. Constructs were first stained using rhodamine dye to observe the 

calcium transients within contracting cells. DMEM supplemented with 10% FBS and 1% 

Penicillin-Streptomycin was warmed to 37°C in a water bath. A stock solution of 1mg Rhod2-AM 

dye dissolved in 1mL dimexylsulfoxide (DMSO) and 10% Pluronic was previously prepared and 

frozen. 3mL of warmed DMEM was supplemented with 30μL dye solution and added to constructs 

within a 30mm culture dish. Cells were incubated for approximately 45 minutes in dye. The media 

was then removed and replaced with fresh DMEM. After an additional 30 minutes in a humidified 

incubator, samples were placed on a heated microscope stage for imaging. Small electrical pulses 

(15-20V, 15ms) were cycled through electrodes placed at opposite ends of the scaffolds. 

Fluorescent imaging was used to examine the calcium transients within cells through the cycles of 
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relative light intensity of the fluorescent dye during contraction. Videos were captured over 

multiple cycles of contraction and were analyzed through a custom designed Matlab program. 

Brightfield video imaging of cells attached to UBM scaffolds was also used to further examine 

cell contraction. In addition, a small number (n=2) of scaffolds were selected for contractile force 

measurements and were tested as previously described 189. A small segment (~5mm x 2mm) of 

cell-seeded UBM scaffolds were cut and attached to a custom built force measurement device. 

Specimens were attached to the device on each end in the direction of stretch through 7-0 Prolene 

sutures. Small electrical pulses (15-20V, 15ms) were cycled through electrodes placed at opposite 

ends of the scaffolds, and measurements were recorded. 

 

3.2.5 Immunofluorescent Staining 

Samples were first permeabilized with 0.1M glycine, 0.5% Triton X-100 in PBS for 30 minutes. 

Samples were then washed five times in 1X PBS and incubated with 1% goat serum for 1 hour. 

After the hour, samples were again washed three times in 1% BSA. The primary antibodies [Alpha 

Actinin (abcam mouse IgG1) and Connexin 43 (abcam rabbit IgG)] were then added and incubated 

for two hours at room temperature. Samples were then washed five times in 1% BSA, and the 

secondary antibodies [alexa 21127-555 and alexa 11008-488, respectively] and Draq5 were added 

and incubated for another two hours. Hoechst (1mg/100mL) solution was then added for 30 

seconds and then washed five times in 1% BSA. Samples were stored at 4°C until being imaged.   
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3.2.6 Cell Alignment Analysis 

To quantify the cell alignment from the immunofluorescent images, custom image analysis 

software was applied separately to the actinin (red) channel. The image analysis software was 

written in Matlab by Courtney, using an algorithm developed by Chaudhuri and modified by 

Karlon 190, 191. This algorithm applies a variation of a Sobel operator to obtain the pixel intensity 

gradient to determine the preferred cell direction for each sub-region. The cell angle from each 

sub-region was then placed into a histogram to determine the preferred cell direction of the 

network. In addition, the normalized orientation index (NOI) was calculated from the orientation 

index (OI) of samples 64. The OI has been previously defined as an angle about the preferred fiber 

direction containing 50% of the fibers 192. In the present study, NOI was defined as (90° – OI)/90° 

x 100% 156. NOI ranges from 0-100%, with an NOI of 100% correlating to a perfectly aligned 

network of cells and an NOI of 0% indicating random alignment. A one-way independent ANOVA 

was performed to examine the statistical difference (p < 0.05) between the alignment of cells in 

culture and static and stretched cell-scaffold constructs as well as the differences between static 

and cyclic stretched groups. 

 

3.3  RESULTS 

 

3.3.1  Cardiomyocyte Cell Sheets 

Neonatal rat cardiomyocytes were isolated and successfully cultured on temperature responsive 

surfaces for up to 10 days in culture. Cells showed the ability to form small “clusters” that were 

able to spontaneously and synchronously contract at physiologically similar rates. Cardiomyocytes 

were able to attach to culture surfaces, develop intercellular gap junctions, and secrete their own 
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extracellular matrix. Upon release from temperature responsive dishes, cells remained attached in 

a sheet form, although the loss of strain resulted in a reduction in surface area to only 

approximately 25% of the original size. Following release from the culture dish, electrical 

stimulation of cell sheets produced visible contraction of the edges. However, the contraction 

occurred along the complete circumference of the cell sheets and was not in a preferred direction. 

Immunofluorescent examination of cell sheets showed a healthy, striated sarcomere pattern of 

cardiomyocytes, as well as abundant gap junctions to facilitate intercellular communication and 

conduction of electrical signals. Following attachment and culture of cell sheets on UBM scaffolds, 

cardiomyocytes did not appear to maintain a healthy phenotype. Cells did not express striated 

sarcomere pattern and did not show gap junction staining.  
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Figure 17. Immunofluorescent image of cardiomyocyte cell sheets (A) after release from PIPAAm surface and 

(B) after 4 days in culture on UBM scaffolds. (Red- α-actinin, Green-connexin43, Blue-draq5) Image: 63x. 

Scale: 50μm.  

 

3.3.2 Cardiomyocytes on UBM Scaffolds 

The inability to transfer and culture healthy cell sheets on UBM scaffolds facilitated an alternative 

approach to attach cells directly to scaffolds following isolation. UBM scaffolds were placed in 

silicone culture wells, and single cell suspensions were seeded directly onto scaffolds. Following 

an attachment period, cell-scaffold constructs were placed inside a tissue stretching system and 

either held under static conditions or cyclically stretched.  
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Figure 18. Immunofluorescent image of cardiomyocytes seeded directly onto UBM scaffolds. Cells were 

cultured on UBM scaffolds for 4 days and transferred to a uniaxial stretching system, where cells were (A) held 

under static conditions or (B) cyclically stretched for up to one week. (0.5 Hz, 7%) (Red- α-actinin, Green-

connexin43, Blue-draq5) Image: 63x. Scale: 50μm. 

 

Multiple stretch regimens were tested to optimize culture conditions. (0.1, 0.25, 0.5, 1 Hz; 

5, 7, 10, 15% stretch) Cells cultured under static conditions were able to maintain a small degree 

of contractile characteristics, with small areas of striated sarcomeres and gap junctions. Static cell-

scaffold constructs showed random alignment and intermittent staining; indicating that the “tissue” 

may have contractile cells, but would not produce any functional contraction. However, cells 

subjected to cyclic stretch (0.5Hz, 7% stretch) showed a large increase in the number of cells 

expressing a striated sarcomere pattern, as well as uniform expression of gap junctions throughout 

the tissue. In addition, cells subjected to stretch patterns appeared to preferentially align in the 

direction of stretch. The expression of contractile markers coupled with the appearance of 
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alignment within UBM scaffolds indicated that a stretched tissue may have the ability to contract 

and produce measurable forces. 

 

3.3.3  Cell Alignment 

A quantitative measurement of the alignment of cellular networks within each group was 

performed using a MATLAB algorithm to analyze immunofluorescent images (n ≥ 8). The actinin 

channel of each image was separated and used to dictate the overall alignment of individual cells.  

 

 

Figure 19. Representative image of MATLAB analysis within actinin channel of stretched scaffolds. 
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A histogram of the individual cell alignments was then plotted for each group of images 

over a range of 180°.  

 

 

Figure 20. Histogram plots of the number of (A) cardiomyocytes in culture, (B) cells attached to UBM scaffolds 

and held under static conditions, and (C) cells attached to UBM scaffolds and cyclically stretched over a range 

of 180°. The x-axis indicates the major axis angle of cell alignment and the y-axis indicates the number of cells 

at a particular angle. Cells in culture and held under static conditions appear to be randomly aligned and cells 

subjected to cyclic stretch are preferentially aligned in the direction of stretch. An angle of 90° signifies perfect 

alignment in the direction of stretch. 

 

Additionally, a normalized orientation index was calculated to further quantify the overall 

degree of alignment within each group.  
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Figure 21. Graph of normalized orientation index (NOI) for each culture group. Cells in culture had a NOI of 

3.7% and statically held cells expressed a NOI of 11.9%, indicating that both populations of cells expressed a 

fairly random distribution. Cells subjected to cyclic stretch had a NOI of 61.1%, a five-fold increase in 

alignment when compared to cells under static conditions. *indicates a statistically significant difference when 

compared to cultured conditions and #indicates statistical difference from static conditions. 

 

Cells in culture expressed the lowest degree of alignment with a random distribution of 

cells and a NOI of 3.7 ± 0.7. Cells attached to UBM scaffolds and held under static conditions 

showed mild improvement in alignment with a NOI of 11.9 ± 3.0. A dramatic increase in alignment 

was observed within cells attached to UBM scaffolds and subjected to cyclic stretch, with a NOI 

of 61.1 ± 3.8. A statistically significant increase in alignment was observed in both groups cultured 

on UBM when compared to cells in culture, as well as a significant increase in alignment of cells 

subjected to cyclic stretch as opposed to static conditions. 
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3.3.4 Cell Contractility 

Further analysis of cell-scaffold constructs was performed to investigate the ability to produce 

contraction and measureable forces. With limited ability to microscopically view cells attached to 

a robust scaffold material, fluorescent calcium analysis has been shown previously as a means to 

verify cell contraction. Cells in culture were easily visible, and showed spontaneous and 

synchronous beating patterns, albeit in no particular direction. Calcium transients analysis showed 

a pulsatile nature of light intensity, consistent with visible contraction patterns when stimulated 

with electrical pulses.  

 

 

Figure 22. Relative intensity of calcium fluorescence within cardiomyocytes in culture. Cells exhibited pulsatile 

calcium transients in culture, an indicator of cell health. 

 

Cells held under static patterns showed no visible signs of contraction or calcium transients. 

However, cells subjected to cyclic stretch expressed a similar pulsatile contraction pattern as cells 
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in static culture without attachment to UBM scaffolds. Calcium transients occurred at a slightly 

slower rate, and a degree of noise in the fluorescent signal was observed.  

 

 

Figure 23. Relative intensity of Calcium fluorescence within cardiomyocytes attached to UBM scaffolds 

following cyclic stretch. Cells exhibited pulsatile calcium transients for up to 24 hours following removal from 

cyclic stretch conditions. 

 

The level of noise could be attributed to the inability to maintain a constant focus on cells 

embedded within the UBM scaffolds during contraction. Brightfield microscopy was able to 

capture videos of cells and UBM scaffolds contracting in the direction of stretch when pulsed 

electrically. Cell-scaffold constructs were attached to a force measurement system to investigate 

the ability to produce forces. However, no measurable forces could be observed within any group.  
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3.4 DISCUSSION 

 

The results from the present study show that a healthy, contractile tissue can be engineered using 

cardiomyocytes seeded onto UBM scaffolds and subjected to cyclic stretch. The resulting tissue 

expresses a highly aligned network of contractile cells with the ability to contract in a cyclic 

pattern, as evidenced through calcium transiets examination and brightfield imaging. Engineered 

tissues generated through the current methods lack the ability to generate measurable forces in 

vitro, although the contractions observed may occur on a scale that was not detectable with the 

available measurement system. The methods described in this study utilize a robust ECM material 

that has performed well in myocardial reconstructive applications previously without a cellular 

component. The addition of an appropriate cell population with an established communication 

network and the ability to contract may provide an appropriate platform for an engineered cardiac 

patch material in future studies.  

The first approach of the present study investigated the ability to develop cell sheets for 

uniform surface coverage and easy attachment to UBM scaffolds. It was observed that the culture 

of cardiomyocytes on a temperature responsive surface supported visible cell contraction and 

intercellular communication through immunofluorescent staining. However, an effective means to 

successfully harvest the cell sheets and effectively attach and culture on UBM scaffolds could not 

be achieved. Upon release from the temperature responsive surface, cell sheets contracted 

significantly and did not allow for coverage of large surfaces. However, attachment of single cell 

suspensions directly onto UBM scaffolds yielded a healthier cell population, and the addition of 

mechanical strain to scaffolds increased the expression of contractile cell markers drastically.  
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Cells seeded directly onto scaffolds showed the ability to migrate and attach to the scaffold 

more effectively than in the sheet form. In addition, the cells establish intercellular junctions 

necessary for proper communication more effectively when attached as single cells. It is believed 

that cells first attach to the given substrate and subsequently establish intercellular connections. 

After cell sheets are released from their primary culture substrate and attachment to UBM scaffolds 

is attempted, cells will become uncoupled in order to attach to the introduced substrate. Further, 

because UBM scaffolds are comprised of a diverse fiber network that is not arranged in a single 

plane, cell will migrate to different locations throughout the thickness of the scaffolds. If the cells 

are introduced to this environment individually, it is thought that the cells are able to migrate as 

necessary and establish intercellular connections following the natural response to the matrix 

environment.  

Cell alignment is extremely important toward the development of engineered contractile 

heart tissue. An engineered cardiac patch would be ineffective unless cells are able to align in a 

single direction and pulse simultaneously to generate force in a single direction. While the latter 

has shown promising results, methods to consistently produce the former have been ineffective to 

date. In the present study, a strategy was developed using contact guidance and mechanical strain 

to induce cellular alignment. Prior to isolation, UBM scaffolds were processed as previously 

described in order to align the collagen fiber topography and encourage cell alignment. Seeded 

scaffolds were also placed in a uniaxial stretch bioreactor to introduce mechanical strain, a 

mechanism that has shown the ability to maintain healthy cell phenotype and align cells 

unidirectionally. Immunofluorescent examination of cells in culture, cells attached to statically 

held UBM scaffolds, and cyclically stretched scaffolds showed an incremental increase in the 

health and alignment of cells.  
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The results generated in the present study to date suggest that cardiomyocytes are able to 

attach, align, and produce contraction within UBM scaffolds subjected to cyclic stretch. The 

present study was limited to in vitro culture and only included a primary cell population of 

cardiomyocytes. The maintenance of contractile nature of cells must be assessed in an in vivo 

setting to determine the efficacy of the current methods to produce an engineered cardiac patch 

material. Engineered contractile tissues were also unable to produce measurable forces. This 

observation may be attributed to the inherent stiffness of the UBM scaffolds and the inability of 

cells to produce contractile forces to overcome the stiffness of the scaffold. In another sense, the 

cells may have produced isometric contractions, but could not be measured within the UBM 

matrix. Translation of the described methods to a clinical setting would necessitate an alternative 

cell source. The present study utilized a well-established contractile cell line as proof of concept, 

but this cell line would not be available clinically. Future experiments using this technology would 

ideally utilize a stem cell source with the ability to differentiate toward a cardiomyocyte or smooth 

muscle cell lineage. This would allow for autologous cell isolation and culture prior to 

implantation, and would avoid concerns of immune rejection or future complications.  

Future experiments are necessary to evaluate the in vivo host response and the ability for 

engineered contractile tissues to reconstruct myocardial tissue. An acellular UBM patch was 

shown in the previous chapter to support cardiomyocytes and contribute to the formation of newly 

formed muscle tissue in the right ventricle by 16 weeks after repair. However, it was not clear if 

function to the area of damaged tissue had been restored by this point. This study was also 

performed in a small animal model with a small (6mm) defect size. Translation of the results 

observed in this study to a larger animal model or a clinical application would be difficult, as patch 

size would play a large role towards the overall success of the study. The introduction of cellular 
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patches to a cardiac location has also historically resulted in a rapid clearance of implanted cells. 

Implantation of electrically coupled and contractile cells embedded within a robust patch may 

avoid this response; however, future work is necessary to determine cell survival within implanted 

patches.  
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4.0  EVALUATION OF ENGINEERED CONTRACTILE PATCHES IN RIGHT 

VENTRICLE OUTFLOW TRACT REPAIR 

 

4.1 INTRODUCTION 

 

The results observed in the first aim of this study expressed the ability for UBM to repair a full 

thickness defect in the myocardial wall and remodel into new host tissue by 16 weeks. However, 

in many preclinical and clinical studies, the choice of implanted material alone has been ineffective 

at repairing and replacing myocardium with functional tissue. Acellular cardiac patches have been 

largely unsuccessful due to the large demand placed on the surrounding native tissue to support 

cardiac function during repair. The success observed in the first aim was performed in a small 

animal model with a patch size of 6mm. Translation to a clinically applicable material would 

necessitate a much larger patch, and a cellular component may be necessary to ensure positive host 

response.  

Currently, cell delivery options are crude and lead to low survival, retention, and 

incorporation into the surrounding native tissue. The ultimate success of an engineered patch 

material is largely based on the ability to electrically and mechanically couple with the native 

tissue in order to aid in heart tissue contraction. It has been previously shown that an engineered 

heart muscle (EHM) can be generated in vitro using cardiomyocytes embedded within ECM gels 

that show the ability to produce measurable contraction and preferential alignment of 
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cardiomyocytes 9. EHM grafts were recently generated using the same methods using stem cells 

differentiated toward a cardiomyocyte lineage 16. EHM grafts showed the ability to survive 

implantation and maintain healthy cell phenotype, but the study used a myocardial infarct model 

and did not show the ability to repair the myocardium.  

A healthy, engineered tissue has been developed in vitro using a combination of methods 

to align cells and ensure proper cell health within a robust delivery system in the previous chapter. 

The previous aim was able to show that engineered tissues expressed the ability to align and 

contract in physiologically similar patterns. The addition of a healthy cellular component to a 

biologic scaffold material that has previously shown the ability to repair myocardial tissue may 

encourage cell survival and electrical coupling following implantation and ultimately allow for 

larger cardiac patches to be generated in future studies.  

The goal of the current aim is to generate cell seeded cardiac patch materials using methods 

outlined in the previous chapter and evaluate their ability to repair a full thickness myocardial 

defect. An aligned, contractile tissue was previously developed using cells seeded onto aligned 

UBM scaffolds and cyclically stretched. Circular patches will be cut from these tissues and 

implanted to the right ventricle outflow tract (RVOT) of rats. Cardiac patches will also be 

generated from cardiomyocytes seeded onto UBM scaffolds and held under static conditions to 

determine the benefits of mechanical conditioning prior to implantation. In addition, a GFP(+) 

dermal fibroblast cell population will be isolated, seeded onto UBM scaffolds, and held under 

static conditions to generate a third group of cardiac patches. GFP control cells will be used to 

evaluate cell survival within the patch, as well as determine the paracrine effects of a non-cardiac 

cell population in myocardial repair.  
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4.2 MATERIALS AND METHODS 

 

4.2.1  Study Design   

Animals were anesthetized and intubated for right ventricle outflow tract reconstruction surgery 

as previously described 89, 146. A small (2-5 mm) defect was created in the RVOT of chimera rats 

and subsequently patched with either a statically cultured (SC) or cyclically stretched (CC),  

cardiomyocyte seeded patch from aim 2, with a GFP+ fibroblast seeded UBM patch (SF) used as 

a control material (n=4 for cardiomyocyte seeded patches, n=2 for fibroblast seeded). The animals 

were monitored for 8 weeks following implantation. MRI examination of the reconstructed area 

took place at 4 and 8 weeks in all available animals for functional analysis. At the predetermined 

time point, animals were euthanized by injection of 1M KCl directly into the heart. The hearts 

were then removed and prepared for frozen histologic processing for staining with cardiac, 

endothelial, and macrophage specific cell markers.  

 

4.2.2 Preparation of ECM Patches 

Cardiomyocytes were isolated and cultured on UBM scaffolds as described in the previous chapter. 

UBM scaffolds had been scraped in a single direction prior to seeding and cells were cultured in 

silicone molds for an attachment period of 5 days. Constructs were inserted into a custom built 

uniaxial tissue stretching system and either held static or cyclically stretched for an additional 7 

days. Following culture of cells, 6mm circular patches were cut from the center of stretched tissue 

(n=4 for each group), with consideration to the direction of stretch, and prepared for surgical 

implantation.  
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As a control group, dermal fibroblasts were isolated from GFP(+) rats as previously 

described using a primary explant technique 193, 194. Cells were attached directly onto UBM 

scaffolds, allowed to attach for 5 days, inserted to a tissue stretch system, and cultured under static 

conditions for an additional 7 days. GFP(+) fibroblast seeded patches (n=2) were then cut and 

prepared for surgical implantation in a similar manner as cardiomyocyte seeded scaffolds.  

 

4.2.3 Surgical repair of RVOT  

Animals were prepared for RVOT reconstruction surgery as previously described 89, 146. Anesthesia 

was induced by placing the rats in a small container with 3% Isoflurane in 2 L/minute of O2. A 

16G x 2” angiocatheter sheath was inserted in the trachea. Proper insertion of the intubation 

catheter was ensured through inflation of lungs with a small ambubag. A rodent ventilation system 

(SAR-830/P) was set at approximately 75 breaths per minute and approximately 700 cc air/minute. 

Hair was removed from the chest of the rat and the site was sterilized with Iodine. An initial 

injection of 10mg/kg lidocaine was delivered locally, and the Isoflurane was reduced to 1.5%-2%. 

A 5cm incision was made in the chest with a #10 scalpel, and a thoracotomy was performed to 

expose the heart. The ribs were held open with an Alm retractor. A purse-string suture (with 

diameter of 5.0 – 6.0 mm) was placed in the free wall of the right ventricular outflow tract (RVOT) 

with 7-0 polypropylene sutures. Both ends of the stitch were passed through a 22-gauge plastic 

vascular cannula, which was used as a tourniquet. The tourniquet was tightened and the bulging 

part of the RVOT wall inside the purse-string stitch was resected. The tourniquet was then briefly 

released to verify a transmural defect was created in the RVOT as indicated by severe bleeding. 

One of the proposed patches was then sutured along the margin of the purse-string suture with 

over-and-over sutures with 7-0 polypropylene to cover the hole in the RVOT. An attempt to align 
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the original direction of stretch of patches with the muscle fiber architecture in the RVOT was also 

made during implantation. After completion of suturing, the tourniquet was released and the purse-

string stitch removed. The muscle layer was then closed with approximately 8 interrupted sutures 

(5-0 Surgipro). Prior to closure of the chest, the lungs were inflated to full capacity using a pediatric 

ambubag attached to the ventilator. Approximately 8 interrupted sutures were placed to close the 

skin and a local injection of 10mg/kg lidocaine was delivered. Additionally, a dose of 

200mg/kg/day cefazolin was delivered to the thigh muscle, as well as 0.1mg/kg buprenorphine 

(buprenex), subcutaneously. Doses of cefazolin were delivered once daily for 3 days post-

operative and buprenorphine was delivered twice daily for the same time period.  

 

4.2.4 Cardiac MRI  

Cardiac MRI (Horizontal bore 7-T MRI system, Bruker Biospin 70/30) was performed for detailed 

assessment of cardiac function of all hearts treated with UBM seeded patches. Animals were 

anesthetized with 1.5 to 2% Isoflurane in oxygen gas via nose cone during MRI imaging. Animal 

body temperature, heart rate, respiratory rate, and arterial oxygen saturation were continuously 

monitored using a vital monitoring system. The total scanning time for each animal was 

approximately 45 to 60 minutes. Under electrocardiogram and respiratory gating, right (left lateral 

image plane) and left ventricular (long and short axis image planes) wall motions were recorded 

by a FLASH cine image sequence.  Cardiac MRI was performed at 4 and 8 weeks after UBM patch 

implantation and images were compared to those taken from a native heart. All videos detailed a 

minimum of one full cardiac cycle so that distinct measurements could be taken from the left and 

right ventricles throughout systole and diastole. Cardiac function was assessed by calculation of 

ejection fraction and end diastolic volume from the LV, as well as shortening fraction from RV 
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outflow tract where graft was implanted using OsiriX software. A repeated measures, two-way 

analysis of variance (ANOVA) was performed on all samples to determine significant differences 

(p<0.05) from native values for ejection fraction, RV shortening fraction, and LV end diastolic 

volume.  

 

4.2.5 Specimen Processing   

At 8 weeks after surgery, all animals were euthanized by injection of 5mL of 1M KCl directly into 

the heart. The hearts were then removed and fixed in 4% paraformaldehyde for 24 hours. Hearts 

were then moved to 30% sucrose for another 24 hours. The hearts were then cut in half through 

the patched area, frozen in OCT solution at -80°C, and sections were cut at 8µm thickness and 

placed onto slides for future staining. Masson’s Trichrome staining was performed to analyze the 

collagen and cell presence within each specimen prior to immunofluorescent staining. 

 

4.2.6 Immunofluorescent Staining    

All specimens were permeabilized with 0.1M glycine, 0.5% Triton X-100 in PBS for 15 minutes. 

The specimens were then washed five times in 1X PBS and then incubated with 1% goat serum 

for 1 hour. After the hour, the specimens were again washed three times in 1% BSA. The primary 

antibodies (α-actinin (Sigma Aldrich, A7811), connexin 43 (Abcam, ab11370), von Willebrand 

factor (Abcam, ab6994), and GFP (Invitrogen, G10362)) were then added and incubated for two 

hours at room temperature and then washed five times in 1% BSA. After these washes, the 

secondary antibodies (AlexaFluor A21125-594 and AlexaFluor A11008-488, respectively) and 

Draq5 for nuclear staining were added and incubated for another two hours. Hoechst (1mg/100mL) 
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solution was then added for 30 seconds and then washed five times in 1% BSA. Slides were 

covered in mounting medium, coverslipped, and sealed until imaging.  

 

4.2.7 Macrophage Phenotype Analysis  

Macrophage staining was performed on samples in order to describe the immune response of the 

ECM patches as recently described 4, 176. Antibodies for CD68 (pan-macrophage), CD86 (M1), 

and CD206 (M2) were used for an investigation of the M1 and M2 macrophage phenotypes. Prior 

to staining, UBM patched hearts that had been seeded with GFP+ fibroblasts were submerged in a 

solution of methanol to quench the GFP signal. After the elimination of GFP signal was verified, 

slides were washed in PBS and then incubated in a blocking serum consisting of horse serum, 

BSA, Triton X-100, and Tween 20.  Blocking solution was removed and a 1:150 dilution of mouse 

anti-rat CD68, rabbit anti-CD86, and goat anti-CD206 antibodies in blocking solution was added 

to the slides at 4°C overnight. The following day, the slides were washed in PBS three times to 

remove primary antibodies. Secondary antibodies were added to blocking solution at the following 

concentrations; donkey anti-goat AlexaFluor 488 and donkey anti-mouse AlexaFluor 594 (1:200), 

donkey anti-rabbit Perp Cy5.5 (1:300). Secondary antibodies were added to the slides and allowed 

to incubate at room temperature for 1 hour. Slides were washed three times in PBS to remove the 

secondary antibody. Mounting media with DAPI and coverslips were then added to each slide 

prior to imaging. 

 

 

84 
 



4.3 RESULTS 

 

4.3.1 Surgical Outcomes and Gross Examination 

Prior to implantation, UBM patches measured approximately 0.25mm in thickness.  Intra-

operative and post-operative mortality associated with the surgical procedure in all groups was 

16.7%. The patches replaced approximately 25% of the RV wall in both groups and suture lines 

indicated the original placement of the scaffold up to the 8 week time point.  

 

 

Figure 24. Macroscopic images of the patched area of rat hearts at 8 weeks after implantation. (A) Statically 

cultured CM-seeded patches and (C) statically cultured fibroblast seeded UBM patches retained a whitish 

appearance and preserved the native thickness of the ventricle wall through the end point of the study. (B) 

Cyclically stretched CM-seeded patches appeared to be incorporated into the native tissue and the original 

white color of the patches was not evident.  Scale: 6mm. 
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Statically cultured (SC) cardiomyocyte seeded patches were incorporated into the native 

tissue by 8 weeks. The patches retained a whitish appearance through the 8 week time point, with 

minor indications of revascularization based on gross examination. Stretched UBM patches (CC) 

were completely incorporated into the native tissue by 8 weeks after RVOT repair surgery. The 

original white color of the patch was not evident upon explant, which was a preliminary indication 

that the patch supported host cell infiltration and revascularization. Fibroblast seeded patches (SF) 

retained much of the original white color through the end of the study. The patched area, as 

indicated by suture lines and tissue color, was larger than the original 6mm size of the patch, 

indicating that there may be dilation of the RV.   

 

4.3.2 MRI and Cardiac Function  

Cardiac left ventricular ejection fraction of statically held UBM patched hearts were slightly 

reduced at 4 weeks after reconstruction, however, LV function was largely maintained throughout 

the study. RV shortening fraction was significantly different from native values at 4 weeks, 

however, a return toward normal left ventricular ejection and RV shortening values was observed 

by 8 weeks.  
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Table 2. Left ventricle ejection fraction, right ventricle shortening fraction, and LV end diastolic volume of 

reconstructed hearts.  

 

 

A significant increase in LV end diastolic volume was observed following reconstruction 

at 4 weeks as well. There was no RV outflow tract obstruction observed due to patch implantation, 

however, minor dilation of the LV and RV could be observed at 4 weeks.  
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Figure 25. SC UBM patched hearts showed minimal geometric changes in the RV and LV when compared with 

native hearts that had not undergone surgery. The LV of reconstructed hearts maintains its native circular 

shape, indicating minimal pressure changes within the ventricle after repair, and minor dilation of the LV and 

RV could be observed at 4 weeks.  

 

Cardiac ejection fraction of CC UBM patched hearts was slightly lower at 4 weeks after 

implantation. By 8 weeks after repair, a complete return toward native ventricular ejection values 

was observed. Likewise, the RV shortening fraction was minimally compromised at 4 weeks, and 

by the end of the study it had also returned to native values. No geometric changes were observed 

in the LV of hearts, as observed from MRI images and calculated end diastolic volume, as well as 

the RV, suggesting that no RV outflow tract obstruction or dilation was seen by patch implantation.  

88 
 



 

Figure 26. CC UBM patched hearts showed no geometric changes in the RV and LV when compared with 

native hearts that had not undergone surgery. The LV of reconstructed hearts maintains its native circular 

shape, indicating minimal pressure changes within the ventricle after repair.  

 

A different trend was observed in the functional analysis of the SF patches. LV ejection 

fraction was lower at 4 weeks after implantation, however, by 8 weeks it had decreased 

significantly (p<0.05) from native values. Likewise, the RV shortening fraction and LV end 

diastolic volume of hearts were significantly compromised at 4 weeks, although by 8 weeks, the 

values had slightly returned toward native values. In addition, observation of MRI images 

indicated a dilation of the RV at both 4 and 8 weeks after implantation.   
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Figure 27. SF UBM patched hearts showed dilation of the RV and LV at both 4 and 8 weeks when compared 

with native hearts that had not undergone surgery. The LV of reconstructed hearts dilated to a lesser degree 

than the RV at both time points, and no RV obstruction could be observed.  

 

4.3.3 Histologic Analysis 

Histologic examination of reconstructed hearts was performed using Masson’s Trichrome at 8 

weeks after repair for all patches. By the end of the study, all patches had been incorporated into 

the native tissue and the presence of collagen remained at the site of patch implantation throughout 

the study.  
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Figure 28. Histological examination of seeded UBM patches using Masson’s Trichrome at 8 weeks. All patches 

are incorporated into the native tissue by 8 weeks. (A) SC patches, (B) CC patches, and (C) SF patches remained 

visible at 8 weeks. Scale indicates 500μm. 
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The scaffolds were easily observed at and the reconstructed area of the RVOT remained 

highly collagenous in all groups. The section of the ventricular wall repaired by the scaffolds 

appeared to be slightly thinner than the surrounding native wall. Minimal dilation was evident in 

the RV of both cardiomyocyte seeded patches, while fibroblast seeded patches appeared to dilate 

the RV. In addition, fibroblast seeded patches appeared to contribute to the formation of 

granulation tissue in the patched area.  

Immunofluorescent examination of cardiac specific markers within all hearts was 

performed to identify the presence of cardiomyocytes and gap junction connections between cells, 

as well as determine the presence of an endothelial lining along the repaired wall of the RV. In 

addition, staining was performed to identify the presence of GFP+ cells within fibroblast seeded 

patches and determine if cells were able to survive implantation. In all patches, cellular presence 

could be observed by 8 weeks after RVOT repair, although cells within cardiomyocyte seeded 

patches greatly outnumbered those within fibroblast seeded patches. 

 

 

Figure 29. Immunofluorescent examination of C-ECM patches for cardiac specific markers at 8 weeks after 

reconstruction. (A) SC and (B) CC patches showed cellular presence (draq5, blue) with intermittent staining 

for α-actinin (red) and connexin 43 (green). (C) Cells could be observed within SF patches, but no positive 

staining for cardiac markers was observed. 10x, Scale: 100um.    

92 
 



SC patches showed minimal staining for α-actinin, as well as no positive staining for 

connexin 43. CC patches expressed similar levels of cellular presence and minimal staining for 

both α-actinin and connexin 43. Fibroblast seeded patches did not express either marker and there 

was a significantly lower presence of cells. In addition, the surrounding native tissue appeared to 

be affected negatively by patch implantation, with areas of interrupted α-actinin and connexin 43 

expression. Cells that had accumulated along the endocardial surface were confirmed as 

endothelial cells through von Willebrand factor (VWF) staining in both statically cultured and 

stretched patches.  
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Figure 30. A continuous endothelial lining along the endocardial surface was observed in statically held UBM 

patches (A,B) and stretched UBM patches (C,D), as evidenced by von Willebrand factor staining (green).  (Blue- 

draq5, Red- α-actinin) Images A and C: 10x, Images B and D: 20x, Scale indicates 100μm. 

 

No evidence of an endothelial lining was observable within SF patches. GFP examination 

of fibroblast seeded patches showed the complete absence of GFP signal at 8 weeks after 

implantation, suggesting a clearance of implanted cells.  

All scaffolds were analyzed for macrophage response at the 8 week time point to determine 

the host immune response to the patches.  
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Figure 31. Macrophage phenotype analysis of seeded ECM patches at 8 weeks after surgery. Macrophages had 

completely penetrated the patches and expressed a mix of M1 and M2 cells. M1 macrophages (CD86-yellow, 

draq5-blue), M2 macrophages (CD206-green), pan-macrophage (CD68-red), and combined image. Scale 

indicates 25 µm. 

 

Macrophages had penetrated the thickness of all patches and expressed a mix of M1 and 

M2 cells. Cardiomyocyte seeded patches expressed a uniform distribution of macrophages 

throughout the thickness of the patches. There were distinct spatial differences in the macrophage 

response at the interface with native tissue, which consisted of primarily an M1 type macrophage 

response, and the endocardial surface of the material, which consisted of a predominantly M2 type 

macrophage response, although both were observed throughout the patches. Fibroblast seeded 

patches expressed a primarily M1 macrophage response, with a large number of cells localized 

near the interface with native tissue. However, within the center of patches a mixed M1/M2 

response was observed, similar to cardiomyocyte seeded patches. 
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4.4 DISCUSSION 

 

The results from the present study show that cardiomyocyte seeded UBM patches possess the 

ability to repair a full thickness defect in the RVOT and support the infiltration and presence of 

cells. Using a primary endpoint of 8 weeks, cardiomyocyte seeded patches were able to develop 

an endothelial lining and withstand the mechanical environment of the RV. Both groups showed 

indications of integration into the surrounding native tissue and the restoration of native cardiac 

function by the end of the study. In addition, stretched scaffolds were able to maintain normal 

cardiac function throughout the study and appeared to show preliminary indications of 

communication with the surrounding native tissue. Fibroblast seeded patches did not produce 

similar results in the present study, exhibiting a deterioration of cardiac function, dilation of the 

RV, and the formation of granulation tissue. No GFP+ cellular presence could be observed, 

indicating a rapid cellular clearance from the implanted patch and an inflammatory acute immune 

response. While fibroblast seeded scaffolds expressed cellular presence by the end of the study, no 

cardiac markers could be observed and it was likely that the area was fibrotic.  

As stated previously, the current methods of cell delivery to an area of damaged myocardial 

tissue are ineffective and typically result in low cell survival, retention, or incorporation into the 

surrounding native tissue. Many approaches are focused on direct injection of cells to the area, 

allowing for a highly localized and accurate distribution of cells. Cellular injection also allows for 

a large number of cells to be implanted simultaneously. However, in many cases, very few cells 

are retained within the myocardium after injection, and this approach is unable to repair a critical 

defect in the tissue itself. Other approaches have attempted to engineer heart tissue for implantation 

using a more robust delivery system with a cellular component. Many of these studies have been 
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unsuccessful due to the inability of the scaffold material to degrade and remodel towards functional 

host tissue following implantation. Another significant challenge has been the development of an 

appropriate model to investigate the efficacy of engineered tissues. While many studies opt for a 

myocardial infarct (MI) model, the implantation techniques for tissue tend to be superficial. In 

many clinical instances, this method may be sufficient, but will not describe the applicability to 

repair and replace myocardial tissue and respond appropriately to the pressures of the cardiac 

cycle.  

Acellular urinary bladder matrix scaffolds have shown the ability to repair a full thickness 

defect in the RVOT of rats. By 16 weeks after implantation, UBM patches had been completely 

degraded and replaced with site-appropriate tissue. However, this was performed with a small 

(6mm) patch size, and the need to repair larger defects in a clinically applicable model may not 

produce similar results using an acellular patch. A cellular component may therefore be necessary 

to speed cardiac recovery time and restore function to the area of repair. However, as previously 

stated, maintaining adequate cell survival upon implantation has been difficult to date. A healthy, 

engineered tissue has been developed in vitro to ensure proper cell health within a robust delivery 

system prior to implantation. The present study sought to determine whether cardiomyocytes could 

survive implantation when embedded within UBM scaffolds, and if there were potential benefits 

to the implantation of a healthy, contractile tissue.    

In order to provide myocardial support after implantation, it is essential that a cardiac patch 

material is able to maintain contractile structures within cells, as well as exhibit the capacity to 

couple electrically to the native tissue.  The present study used a primary endpoint of 8 

weeks, and by the end of the study, cardiomyocyte seeded UBM patches showed results that were 

similar to acellular patches. While there were few areas of cardiomyocyte presence, scaffolds were 
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highly cellular with a uniform distribution. In addition, a continuous endothelial lining had 

developed along the interface with the RV. Following repair with acellular patches, the interface 

between UBM patches and native tissue was fairly pronounced by 8 weeks. Within the native 

tissue at the interface with acellular patches, a slight interruption of connexin 43 could be observed, 

although sarcomere structure was unaffected. In the present study, the native tissue surrounding 

statically cultured patches showed healthy cardiomyocyte presence, although the connexin 43 

expression appeared to be slightly interrupted. Similar to acellular patches, the interface between 

the native and patched areas was also very distinguished. In contrast, the native tissue surrounding 

stretched UBM patches maintained healthy sarcomere structure and high levels of polarized 

connexin 43 staining, with small areas of cells extending into the interface area, making the 

boundary of the patches unclear and suggesting preliminary patch remodeling. GFP+ fibroblasts 

were used as a control group to investigate cell retention within implanted patches and determine 

any potential paracrine effects of a non-cardiac cell line. Fibroblast seeded patches did not express 

any cardiac markers and resulted in the formation of granulation tissue, which is an indication that 

cell choice is a strong predictor of the fate of the implanted tissue.  

The observations generated in the present study may be attributed to the results from 

previously performed in vitro studies, as well as the mechanical environment of the heart. Based 

upon the results obtained in Aim 2, cardiomyocytes maintained a normal phenotype to a higher 

degree when subjected to cyclic mechanical stretch in patterns that mimic normal cardiac 

contraction. It is logical that a tissue produced by these means would therefore respond to cardiac 

implantation more appropriately than a scaffold seeded with fibroblasts. If a patch material was 

desired to repair an organ with a less dynamic mechanical environment, the same results would 

not have been observed. However, because cardiomyocytes are contractile by nature, they may 
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have preferentially responded to the cardiac environment over fibroblasts. Conversely, fibroblasts 

may have performed better in a body wall or a more fibrous tissue repair setting.  

While the results observed are promising, the present study was performed as a pilot study 

with acknowledged limitations and necessitating future experiments. A primary limitation to the 

present study was the use of a single time point that was unable to observe the acute (4 weeks) and 

long term (16 weeks) cellular presence within patches. Therefore, a direct comparison to acellular 

UBM patches could only be made at a single time point. Preliminary indications suggest that 

stretched cardiomyocyte seeded UBM patches may provide advantages to acellular patches based 

on MRI data and mild differences in histologic results. However, future studies are necessary to 

observe differences at 4 and 16 weeks. Another limitation of the present study was the use of GFP 

labeled cells and the limitation to a single experimental group. While no GFP presence could be 

observed in fibroblast seeded patches, this observation could be attributed to the cell type and 

would not necessarily translate to cardiomyocyte seeded patches. It is unclear whether the cells 

within cardiomyocyte seeded patches were implanted or originated from the host tissue. Future 

studies are necessary to determine the fate of implanted GFP+ cardiomyocytes within static and 

stretched UBM patches.  

As stated previously, translation of the described methods to a clinical setting would 

necessitate an alternative cell source, as autologous cardiomyocytes are not easily acquired or 

cultured. Previous studies have shown the ability to differentiate stem cells toward a 

cardiomyocyte or smooth muscle cell lineage 16. The use of an autologous stem cell source would 

avoid concerns of an adverse immune response when used in a clinical setting. However, future 

studies are necessary to investigate the ability to isolate, differentiate, and culture stem cells under 

similar conditions as cardiomyocytes in the present study.  
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 The results generated in the present study to date suggest that cardiomyocyte seeded UBM 

patches are able to repair a full thickness defect in the RVOT for up to 8 weeks. Stretched patches 

were observed to provide mild benefits over statically held patches, although both groups showed 

functional and histologic advantages over fibroblast seeded patches. Cardiomyocyte seeded 

patches were able to incorporate into the surrounding tissue by 8 weeks, with the restoration of 

cardiac function and the presence of an endothelial lining. The ability of a seeded UBM patch to 

maintain normal cardiac function and avoid a fibrotic response is not a trivial observation. 

Following implantation, ECM scaffolds are either encapsulated, become incorporated into the 

surrounding tissue, or follow a remodeling response. The fate of implanted ECM materials is 

primarily dictated by the host acute immune response. Cell-seeded scaffolds traditionally elicit an 

inflammatory response, directing the scaffolds toward a fibrotic response or initiating foreign body 

encapsulation. In the present study, fibroblast seeded UBM patches expressed the formation of 

granulated fibrotic tissue by the end of the study. However, cardiomyocyte seeded patches 

appeared to be incorporated into the surrounding native tissue, with preliminary indications of 

remodeling in stretched scaffolds. Further studies are necessary to investigate the long term host 

response to seeded patches, but the present study was able to show that the previously anticipated 

adverse host response could be avoided in a cardiac location.  
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5.0  DISSERTATION SYNOPSIS 

 

5.1  MAJOR FINDINGS 

 

The present work described efforts towards engineering contractile tissue from extracellular matrix 

scaffolds for use as a cardiac patch material. The approach taken in the current study began through 

choosing an appropriate acellular platform with the ability to repair cardiac tissue as a basis for a 

contractile tissue. Previously held beliefs that organ specific C-ECM patches provided the most 

appropriate scaffold for cardiac tissue repair were tested against a commonly used, clinically 

available, and heterotopically derived UBM patch. C-ECM and UBM patches were used to repair 

a full thickness defect in the right ventricle outflow tract of GFP chimera rats to identify the role 

of the bone marrow and the source of repopulating cells. The culture of a cardiac-specific 

contractile cell line was tested on UBM scaffolds in vitro, and the effects of contact guidance and 

mechanical stretch were investigated as a means to align cells and promote cell health. 

Contractility markers were identified and cell-scaffold constructs were characterized in vitro. 

Finally, engineered contractile tissues were tested in vivo for their ability to enhance the functional 

restoration of repaired cardiac tissue as well as promote mechanical and electrical coupling with 

surrounding native tissue.  
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The following are the major findings of the present work: 

Specific Aim 1 

• GFP chimera rat population was generated through bone marrow transplantation. 

• UBM and C-ECM patches able to support mechanical function up to 16 weeks. 

a. Minor impact was observed on LV and RV geometry. 

b. Few differences observed in functional assessment of hearts. 

• Repopulating cells are derived from bone marrow, but are not only cells to 

infiltrate both patches. 

• UBM patches exhibit remodeling response. 

a. Replacement with muscle tissue and striated cardiomyocytes by 16 weeks 

after repair. 

b. Cardiomyocytes within patched area not associated with GFP cells. 

• C-ECM patches are integrated into surrounding tissue but do not remodel. 

 

Specific Aim 2 

• Cyclic mechanical stretch and contact guidance can promote a robust engineered 

contractile tissue in vitro. 

• Cyclic stretch of cells attached to UBM scaffolds promotes cell alignment. 

• Direct seeding of single cell suspensions onto UBM scaffolds maintains healthy 

cell phenotype better than cell sheets. 
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Specific Aim 3 

• Cardiomyocyte seeded patches can maintain normal ejection fraction, ventricular 

geometry, and heart function after implantation. 

• Cardiomyocyte seeded patches express a continuous endothelial lining within the 

right ventricle by 8 weeks after repair. 

• UBM patches are evident at 8 weeks and minimal positive staining was observed 

for cardiac specific cells. 

• Fibroblast seeded patches are able to repair a defect in the RVOT, but result in the 

formation of granulation tissue and compromise overall cardiac function. 

 

5.2  OVERALL CONCLUSIONS 

 

A full thickness defect was created in the RVOT of GFP chimera rats and repaired using UBM 

and C-ECM patches. Both UBM and C-ECM patches each were able to support rapid cell 

infiltration with a large GFP(+) cell presence. By 16 weeks, UBM patches had degraded and were 

replaced with areas of new muscle tissue. In contrast, C-ECM scaffolds did not show indications 

of newly formed muscle tissue and was incorporated into the surrounding native myocardium. 

Cardiomyocyte seeded UBM constructs were cyclically stretched for up to 8 days in culture 

and cells preferentially aligned in the direction of stretch, showed calcium transients pulsations in 

similar patterns to cells in culture, and expressed striated actinin phenotype and healthy cell-cell 

connections. Cell seeded UBM patches possessed the ability to repair a full thickness defect in the 

RVOT and support the presence and infiltration of cells. Cardiomyocyte seeded patches were able 
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to develop an endothelial lining and withstand the mechanical environment of the RV, as well as 

integrate into the surrounding native tissue. In addition, stretched scaffolds appeared to show 

preliminary indications of communication with the surrounding native tissue.  

Future studies must be performed in order to provide sufficient evidence that the methods 

described herein can be translated to a clinically applicable model, such as ovine or porcine, but 

the current research provides preliminary indications that both acellular and cell-seeded 

extracellular matrix scaffolds may allow for structural and functional restoration to the surrounding 

myocardium when used as a cardiac patch material. 
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APPENDIX A 

 

PROCEDURE FOR DECELLULARIZATION OF PORCINE HEART BY 

RETROGRADE CORONARY PERFUSION 

 

ABSTRACT 

 

A method to rapidly and completely remove cellular components from an intact porcine heart 

through retrograde perfusion is described. This method yields a site specific cardiac extracellular 

matrix scaffold which has the potential for use in multiple clinical applications.  

 

INTRODUCTION 

 

Herein, we describe a method to fully decellularize an intact porcine heart through coronary 

retrograde perfusion. The protocol yielded a fully decellularized cardiac extracellular matrix (c-

ECM) scaffold with the three-dimensional structure of the heart intact. Our method used a series 

of enzymes, detergents, and acids coupled with hypertonic and hypotonic rinses to aid in the lysis 

and removal of cells. The protocol used a Trypsin solution to detach cells from the matrix followed 

by Triton X-100 and sodium deoxycholate solutions to aid in removal of cellular material. The 
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described protocol also uses perfusion speeds of greater than 2L/min for extended periods of time. 

The high flow rate, coupled with solution changes allowed transport of agents to the tissue without 

contamination of cellular debris and ensured effective rinsing of the tissue. The described method 

removed all nuclear material from native porcine cardiac tissue, creating a site-specific cardiac 

ECM scaffold that can be used for a variety of applications. 

 

METHODS 

 

1.  Tissue Preparation and Experiment Setup 

1.1  Harvest porcine organ immediately after euthanasia from an abattoir or research facility 

and rinse off excess blood.  Trim the heart of excess fat and tissue, keeping the atria and aorta 

intact.  Trim away fat to separate the pulmonary artery from the aorta. If there are any cuts in the 

tissue, discard appropriately.   

1.2  Wrap each heart individually in freezer paper and store all tissue in a -80ºC freezer for at 

least 24 hours to ensure complete freezing.  

1.3  When ready for use (usually less than 3months), thaw one intact frozen porcine heart in 

Type 1 water overnight submerged in a 4L beaker at 4°C.  

1.4  After the heart is completely thawed, pat the heart dry, weigh the heart, and record the 

weight. The heart of a market weight pig should weigh between 375-450 grams.   

1.5  Connect size 18 Masterflex tubing to the ¼” end of a barbed reducer. Insert the barbed 

reducer and tubing inside the aorta. Place 2 hose clamps or secure zip ties around the aorta, just 

below the brachiocephalic trunk. The reducer and tubing must remain above the aortic valve, so 

the coronary arteries can be perfused.  
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Figure 32. The barbed end of the tubing is inserted into the aorta of the native heart. The tubing must be 

secured with hose clamps or zip ties above the aortic valve to ensure perfusion through the coronary arteries.  

 

 

1.6  Use a 30 or 60 mL syringe to fill the tubing with Type I water. Insert the tubing within the 

cartridge of a Masterflex roller pump at its approximate midpoint.  Submerge the inflow end of 

the tubing in the bottom of a 4L beaker filled with 2.5L of water and secure the tubing. 

1.7  Place the heart in the beaker filled with water, and prime the pump to remove air bubbles. 

If bubbles are observed coming from the aorta where the tubing is inserted, the aorta may need to 
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be repositioned or secured with additional ties. An airtight seal is important to maintain adequate 

pressure during the decellularization process.  

 

 

Figure 33. The heart is submerged in water in a 4L beaker and air bubbles must be removed from the tubing. 

If bubbles are observed emerging from the aorta near the tubing, additional ties must be used to secure the 

tubing to the aorta in order to maintain adequate pressure in the tissue. 
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1.8  Place the 4L beaker containing 3L of a 0.2% Trypsin/0.05% EDTA/0.05% NaN3 solution 

on stir plate and warm it to 37°C in preparation of the decellularization process.  

 

2.  Tissue Rinses 

2.1  Set the pump to a flow rate of 400 mL/min, ensuring that the correct tubing size is selected. 

Flush the heart with Type I water for 15-25 minutes. As the pump is started, the heart should swell 

and effuse blood from the ventricles. Fresh solution should be substituted every 5-10 minutes, or 

as needed based on the amount of blood removed from the heart. If blood is not effused from the 

heart, adjust the tubing and clamps as necessary.  

2.2  Stop the pump and transfer the heart to a separate beaker filled with 2X Phosphate Buffered 

Saline (PBS). After the tubing is submerged in solution, start the pump and increase the flow rate 

to 700 mL/min. The heart should remain in solution for 15 minutes, changing the solution every 5 

minutes. Each solution change requires the pump to be stopped temporarily while the tissue and 

tubing is moved to the new beaker.  

2.3  Transfer the heart to Type I water for 10 minutes and increase the flow rate to 750 mL/min.  

 

3.  Decellularization and Solution Perfusion 

3.1  Transfer the heart to the beaker containing 0.2% Trypsin/0.05% EDTA/0.05% NaN3 at 

37°C. Increase the pump speed to 1200 mL/min and start the pump. Use a stir bar placed at the 

bottom of the beaker to circulate solution in the beaker. The heart should remain in the 0.2% 

Trypsin/0.05% EDTA/0.05% NaN3 solution at 37°C for a total of three hours. After 1 hour, 
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increase the pump speed to 1500 mL/min. After an additional hour, increase the pump speed to 

1800 mL/min.  The tissue is slowly subjected to increased perfusion speeds to condition the tissue 

and prevent rupture of the vessels. The heart will swell and nearly double in size during this step 

of the protocol. The tissue will lose its natural color, progressing from the atria to the apex 

throughout the protocol.  
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Figure 34. As solutions are perfused through the coronary arteries, the heart will lose its native color, 

progressing from the atria to the apex of the heart and localized around the coronaries. 

 

3.2  After each solution perfusion, a two step rinse is performed to remove cellular debris, 

chemical residue, and aid cell lysis. Each rinse consists of a ten minute rinse in Type I water 

followed by a ten minute rinse with 2X PBS solution at room temperature. Each wash consists of 

removal of solution from the original beaker, adding rinse solutions, and circulating the perfusate 
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within the beaker containing the submerged heart.  After the 0.2% Trypsin/0.05% EDTA/0.05% 

NaN3 solution, perfuse water at 1900 mL/min and then perfuse 2X PBS at 1950 mL/min.  

3.3  Transfer the heart to a solution of 3% Triton X-100/0.05% EDTA/0.05% NaN3 at room 

temperature. Increase the pump speed to 2000 mL/min and perfuse solution for one hour. Remove 

the solution from the beaker and replace with fresh solution, increase the pump speed to 2100 

mL/min, and perfuse the fresh solution for an additional hour and a half, bringing the total time in 

3% Triton X-100/0.05% EDTA/0.05% NaN3 to 2.5 hours.  

3.4  Rinse the tissue in Type I water at 2150 mL/min and 2X PBS at 2180 mL/min for ten 

minutes each. 

3.5  Transfer the heart to a 4% Sodium Deoxycholate solution at room temperature. Increase 

the pump speed to 2200 mL/min and perfuse solution for three hours.  

3.6  Rinse the tissue in Type I water at and 2X PBS at 2200 mL/min for 15 minutes each, 

changing the solutions after 5-10 minutes for each solution. The described perfusion steps may be 

split over multiple days by performing the rinse step twice and storing the heart with attached 

tubing overnight at 4°C and submerged in Type I water.  

3.7  The following day, perform a 5 minute rinse with Type I water at 750 mL/min, followed 

by a 5 minute rinse in 1X PBS at 1500mL/min. The protocol may then be continued at the 

described flow rate in the proper solution.    
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4.  Disinfection and Final Processing 

4.1  Transfer the heart to a 0.1% peracetic acid/4% ethanol solution and perfuse solution for 1.5 

hours at 2200 mL/min. 

4.2  The final rinses for the tissue are all performed at 2200 mL/min. Perfuse the tissue with 1X 

PBS for 15 minutes, followed by two 5 minute washes in Type I water. This series of rinses is 

repeated once more in order to complete the solution perfusion procedure.  

4.3  Turn the pump off and remove the heart from solution to drain the heart. Cut the ties from 

the aorta, remove all tubing, and place the heart in an empty beaker to drain for 1 hour. Excess 

liquid will need to be drained periodically. Lay the heart on an absorbent pad to fully drain the 

heart.  
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Figure 35. After completion of the disinfection and rinse steps of the protocol, the tubing is removed and the 

heart is placed on an absorbent pad to allow the excess water to drain out of the heart. This ensures an accurate 

measurement when weighing the tissue and also allows the tissue to relax before sectioning. 
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4.4 After most of the water is removed, record the weight of the cardiac extracellular matrix (C-

ECM). The heart can be expected to lose approximately 20-25% of its initial weight during the 

decellularization process.  

4.5 Dissect the right and left ventricles, as well as the ventricular septum for DNA quantification 

and histological processing in order to confirm complete decellularization of the tissue.  

 

 

Figure 36. The left ventricle (LV), right ventricle (RV), and ventricular septum are all removed from the 

decellularized heart for histologic processing, freezing and lyophilization, and DNA quantification. 

 

4.6 Freeze the C-ECM at -80°C for at least 2 hours before lyophilization. 
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RESULTS 

 

The effects of the decellularization process on whole porcine hearts naturally varies due to 

differences in size, pressures, and vessel arrangement. Therefore, the exact composition of the 

derived extracellular matrix scaffolds will not be the same from heart to heart. The completion of 

the described protocol will yield a heart that appears white or translucent, indicating the loss of 

cellular material. However, it is widely accepted that a tissue can be considered “decellularized” 

based on the combination of a few more quantitative parameters 8. A successful decellularization 

protocol will produce a matrix with less than 50 ng of double stranded DNA per mg of tissue.  

 

116 
 



 

Figure 37. Quantitative analysis of DNA content using a Pico Green assay. The ventricles from cECM hearts 

show a significant decrease in DNA content when compared to native ventricles. The DNA values observed 

from this protocol are observed at or below the 50 ng/mg standard for decellularized tissues. 

 

In order to avoid a host immune response upon implantation of the matrix, the remaining 

DNA should also contain less than 200 base pairs.  
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Figure 38. DNA fragment size, as determined by ethidium bromide gel, showed little residual DNA in the 

decellularized ventricles when compared to a urinary bladder matrix (UBM) standard. 

 

To confirm these findings, Hematoxylin and Eosin staining should reveal the absence of 

nuclear staining in representative sections of the ventricles and ventricular septum.  
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Figure 39. Hematoxylin and Eosin staining showed complete removal of nuclear material from the ventricles 

following completion of the decellularization protocol. 

 

DISCUSSION 

 

The current study described methodology for consistent and efficient decellularization of a porcine 

heart.  The protocol was a modification to a previously published report 1, and included longer 

exposure to flow and increased pressure, which provided more repeatable results.  The resulting 

decellularized tissue met all of the published criteria for successful decellularization of tissue 2.  
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Frequent solution changes were performed to limit the reintroduction of cellular material to the 

tissue, and the duration of exposure to each decellularization agent was minimized to reduce 

adverse effects on the ECM. During the beginning stages of the protocol, the perfusion rate was 

gradually increased to condition the tissue and allow for higher flow rates during the later stages 

of the protocol. Without conditioning the tissue in the early stages, the vasculature of the heart can 

rupture, making perfusion of the heart impossible.  The protocol was used due to its efficiency, 

and no claims are made to its superiority over other protocols. The precise composition of 

decellularization agents and rates of perfusion may conceivably be varied to yield a protocol with 

better mechanical or biologic characteristics, but the general principles for delivery of the agents 

to the heart are applicable. 

The preservation of the native three-dimensional structure of the heart was attributed to 

several procedures performed throughout the decellularization protocol. First, the tissue was 

trimmed and frozen upon arrival. Freezing promoted cell lysis and was important for pre-

conditioning the tissue for the perfusion cycles. The tissue was thoroughly inspected for cuts and 

2 cm intact intact aorta superior to the aortic valve. If any pericardium or epicardium was cut, the 

organ was discarded because the perfusate did not reach downstream regions of the heart, and the 

heart was not fully decellularized. Next, the tissue was fully thawed in type I water before use. The 

water allowed the tissue to relax as it thawed and also aided the removal of residual blood clots 

within the heart. Finally, as the tubing was inserted, care was taken to ensure that the aortic valve 

remained intact so that it formed a water-tight seal around the tubing, so that a proper pressure was 

maintained and that the solution entered the coronary arteries. 

After each decellularization protocol was completed, a series of quality control measures 

were completed to ensure complete removal of cellular material. The current study verified that 
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the protocol eliminated histologic staining for cell nuclei, showed that less than 50 ng of DNA was 

present per mg of dry weight of the tissue, and that any DNA was less than 200 bp in size 131. 

Previously published methods for cardiac decellularization showed similar levels of 

decellularization in DNA staining and quantification 127, 130, 195, 196. Complete decellularization was 

accomplished in these studies using similar treatments of enzymes and detergents. However, in the 

present study, the length of exposure to each chemical was increased, there were more solution 

changes, and the flow rates were increased. The present protocol also increased the length of 

chemical rinses, potentially leading to more efficient removal of chemical residues from the 

extracellular matrix.  

In conclusion, porcine heart decellularization is possible and the methods are straight-

forward.  Continued investigation of this material will provide insight into its potential for clinical 

use and future studies will be performed in vitro to examine the ability of the scaffold to support 

cardiac cells seeded and cultured on the matrix. The methods described herein may also be 

applicable to decellularization of human hearts. 
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APPENDIX B 

 

HYDRATED XENOGENEIC DECELLULARIZED TRACHEAL MATRIX AS A 

SCAFFOLD FOR TRACHEAL RECONSTRUCTION 

 

ABSTRACT 

 

Tracheal injury is a rare but complex problem. Primary tracheal reconstructions are commonly 

performed, but complications such as tension and inadequate vascular supply limit the length of 

surgical resection. The objective of the present study was to determine whether a hydrated, 

decellularized porcine tracheal extracellular matrix showed the potential to serve as a functional 

tracheal replacement graft. Porcine tracheas were decellularized and evaluated to characterize their 

biochemical composition and biomechanical behavior.  Hydrated decellularized tracheal matrix 

(HDTM) grafts (>5cm) were implanted heterotopically beneath the strap muscle and wrapped in 

the omentum in a canine model for 2 and 8 weeks followed by histologic and mechanical analysis.  

HDTM patches (2x3cm) were also used in a patch tracheoplasty model.  The repair site was 

evaluated bronchoscopically and radiographically, and the grafts were analyzed by histologic 

methods to evaluate epithelialization and persistence of the cartilage rings.  The present study 

showed that HDTM maintains mechanical characteristics necessary for function under physiologic 

loading conditions even after 8 weeks of heterotopic implantation.  After orthotopic implantation, 

the grafts were shown to support development of a columnar, pseudostratified, ciliated epithelium, 
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but the cartilage structures showed histologic evidence of degradation and limited new cartilage 

formation.  The results of the study showed tracheal ECM scaffolds support the formation of site-

specific epithelium and provide sufficient mechanical integrity withstand physiologic pressures in 

the short-term.  However, for long-term success, it appears that pre-implantation to allow 

vascularization or preseeding of the graft with chondrocytes will be necessary. 

 

INTRODUCTION 

 

 Tracheal lesions and injury, including post-intubation stenosis, tumor, and iatrogenic, may require 

tracheal resection with primary reconstruction 197.  Although reconstruction can be performed in 

most cases with successful outcome, anastomotic complications are associated with morbidity and 

mortality 197, 198.  Reoperation, long resections (>4 cm), and poor wound healing (e.g., diabetes) 

are among the risk factors that predict for anastomotic complications, and are all typically 

associated with increased anastomotic tension and poor vascular supply 198.  The generally 

accepted limit for tracheal resection is a length of approximately 6 cm in adults, or approximately 

50% of the original tracheal length, with a smaller percentage available for resection in the 

pediatric population 199, 200.  When primary reconstruction is not possible after tracheal resection, 

patients receive palliative treatment such as irradiation, stents, and T tubes 197. An effective 

tracheal replacement could mitigate the risk of anastomotic complications associated with long 

resections, and could provide an alternative for patients for which resection is not an option. 

 Biologic scaffolds derived from tracheal tissue have been investigated for use in tracheal 

replacement due to their mechanical and biochemical similarity to the native trachea.  Macchiarini 

et al. recently used a decellularized allogeneic trachea that was recellularized with autologous 
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epithelial and bone marrow cells to show the first successful reconstruction of a bronchus using a 

tissue engineered construct 139.  A recent preclinical study showed that scaffolds derived from 

porcine urinary bladder matrix (UBM) were able to reconstitute a pseudostratified, columnar, 

ciliated epithelium in a patch tracheoplasty in a canine model 201.  In contrast, a lyophilized form 

of porcine decellularized tracheal matrix (DTM) showed mostly squamous epithelium with 

scattered ciliated cells.  Neither UBM nor DTM showed regeneration of cartilaginous tissue.  The 

results for DTM were surprising in light of previous studies that showed successful reconstruction 

of intrathoracic trachea with a decellularized allogeneic tracheal graft in a canine model 202, 203.  

Aside from the tissue source, the primary difference between the two tracheal scaffolds was the 

state of hydration as the DTM was lyophilized prior to implantation.  Therefore, the objective of 

the present study was to determine whether hydrated DTM (HDTM) from a porcine source has the 

potential to serve as a functional scaffold for tracheal reconstruction in a canine model.  Since full-

circumferential orthotopic tracheal reconstruction carries with it substantial morbidity and 

mortality for animals if implanted grafts lose functionality, three feasibility studies posing less 

severe complications were performed.  First, HDTM was evaluated for effectiveness of 

decellularization and changes in biochemical composition and mechanical behavior as compared 

to the native trachea.  Second, the host response and mechanical behavior of the HDTM were 

assessed after heterotopic implantation in the neck and abdomen of dogs for periods of 2 and 8 

weeks.  Finally, HDTM scaffolds were used for repair in an orthotopic patch tracheoplasty model 

and evaluated 8 weeks after repair to determine whether the scaffold promoted formation of 

mechanically functional cartilage and site-specific epithelium. 
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METHODS 

 

Study Design 

Twelve mongrel dogs weighing 19.5 ± 0.3 kg were subjected to heterotopic surgical 

implantation of two 5 cm long HDTM scaffolds, one inserted beneath the strap muscle adjacent to 

the native trachea and one wrapped in the omentum within the abdominal cavity.  Two sites were 

evaluated to determine whether the remodeling was site dependent.  Six animals were euthanized 

at 2 or 8 weeks and the HDTM scaffolds from the neck and abdominal cavity were resected along 

with the native canine tracheas (≥5cm).   A portion of each specimen was prepared for histology, 

and the remainder was wrapped in saline-soaked gauze and stored at -80°C until mechanical 

testing. 

 A second group of 6 dogs underwent surgical resection of a 1-cm-wide x 2-cm-long defect 

(about 30% of circumference and 3 rings long) of the ventral cervical trachea.  The HDTM patches 

were examined bronchoscopically and radiographically at 4 weeks after surgery and just prior to 

sacrifice.  All dogs were euthanized 8 weeks after surgery, at which time explanted tissue was 

evaluated for gross morphology, standard histology, and immunohistochemistry.  

 All animal procedures were performed in compliance with the Guide for the Care and Use 

of Laboratory Animals (National Institutes of Health Publication No. 88-23, revised 1996) and 

approved by the Institutional Animal Care and Use Committee at the University of Pittsburgh. 

 

HDTM Scaffold Preparation 

 Whole tracheas (>6cm) were harvested from market-weight pigs (approximately 110 to 

130 kg) after slaughter from an abattoir and transported on ice to laboratory facilities. Tracheas 

125 
 



were cleaned by repeated rinses in deionized water. Larynx, bronchi, and residual external 

connective tissues were then discarded. Tissue was frozen at -80°C until time for decellularization.  

For decellularization, each trachea was thawed at room temperature in diH20 and subjected to 48 

hours immersion in 3% Triton X-100 solution at 4°C on a rocker plate, changing solution after 24 

hours. After 48 hours, a 0.1% (v/v) peracetic acid, 4% (v/v) ethanol, 96% (v/v) deionized water 

(diH20) wash was administered for 2 hours at 300 rpm on a mechanical shaker to decellularize and 

disinfect tissue. The tissues were then rinsed 15-min in 0.9% NaCl and diH20 on a mechanical 

shaker to remove residual solutions. Each trachea was trimmed to 5cm length, packaged to retain 

hydrated state in 0.9% NaCl, and subjected to terminal sterilization via gamma irradiation (2 

MRad). Hydrated, sterilized grafts were stored at 4oC until use (usually less than two weeks.)  

 

Analysis of HDTM Grafts 

 HDTM grafts were fixed in 10% neutral buffered formalin and prepared for paraffin 

processing.  Five micron sections were stained with Hematoxylin and Eosin to evaluate removal 

of cellular material and Alcian Blue to evaluate the presence of glycosaminoglycans (GAGs) in 

the cartilage rings.   

 The amount of GAGs within the HDTM was quantified and compared to native trachea 

using a Blyscan Sulfated Glycosaminoglycan assay kit (Biocolor, B1000) per the manufacturer’s 

instructions.  Briefly, 0.05g hydrated samples of intact porcine trachea, isolated tracheal mucosa, 

and isolated tracheal cartilage from both native and decellularized tracheas were obtained. Samples 

were incubated at 37oC on rocker in 2.5mL of Pronase buffer (1.5mg/mL Type XIV Protease, 

0.1M Tris (pH 7.5), and 10mM CaCl2) for 48 hours with vortexing after 12 hours. Digested 

samples were centrifuged at 1000rpm for 10min. 25µL of supernatant from each sample was 
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aliquotted to a 1.5mL Eppendorf, to which 75µL deionized water was added. 1mL Blyscan dye 

reagent was added to each tube and the tubes were stirred at 300rpm for 30min at room 

temperature. Tubes were then centrifuged at 20,000rpm at room temperature for 10min, the 

supernatant was removed, and 1mL dissociation reagent was added to each tube.  After vortexing, 

tubes were left at room temperature to react for 15minutes, then vortexed and left to react for an 

additional 15min. Three sets of 200µL aliquots were placed into a transparent 96-well plate, the 

absorbance was measured at 656nm, and the results were compared to the standard curve (R2 > 

0.99). 

 The presence of the basement membrane within the HDTM grafts was investigated 

immunohistochemically using ABC elite (Vector Labs, PK-6100) and DAB detection kits (Vector 

Labs, SK-4100) for Collagen VII (Chemicon, MAB1345) and Laminin (Sigma, L-9393). Frozen 

sections were fixed in acetone and incubated with 1.5% normal horse serum (Vector Labs, S-2000) 

for 30 minutes.  Samples were then incubated with the aforementioned primary antibodies (1:500, 

1:100 dilutions respectively) for 30-60 minutes, then secondary antibodies (Vector, BA-2001 at 

1:200; and Vector, BA-1000 at 1:200 respectively) for 30 minutes. ABC was applied for 30 

minutes, then DAB for 3-10 minutes before serial alcohol and xylene dehydration and 

coverslipping.  

 

Surgical Procedure 

 All animals were sedated with acepromazine (0.1 mg/kg intramuscular), followed by 

intravenous administration of thiopental (12 to 25 mg/kg), intubation and isoflurane (1.5–3%) 

maintenance of surgical place anesthesia. Cefazolin (15 mg/kg intravenous) was administered 

before surgical preparation and skin incision.  
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 For heterotopic implantation of HDTM, aseptic technique was used to make an incision 

between the strap muscles in the neck, approximately 2-3 cm in length. A sterilized, 5cm long 

PTFE rod was inserted through the lumen of the graft and sutured in place using non-resorbable 

Prolene suture (Ethicon) to  prevent collapse of the graft after implantation. The constructs (graft 

and PTFE rod) were then placed beneath the strap muscle, adjacent to the native trachea. A second 

incision was made in the abdominal cavity and another HDTM/PTFE construct was wrapped in 

the omentum. At 2 and 8 week time points, animals were sacrificed and native tracheas were 

harvested along with remodeled HDTM grafts from the neck and abdominal cavity.  

 

 

Figure 40. Full circumferential scaffolds of HDTM were implanted heteropically in both the neck beneath strap 

muscles adjacent to the native trachea (A) and wrapped with omentum in the abdominal cavity (B). Patches of 

HDTM (2 cm x 3 cm) were used for patch tracheoplasty of a ventral tracheal defect (1 cm x 2 cm) (C). 

 

 For orthotopic patch tracheoplasty, aseptic technique was used to expose the proximal 

cervical trachea through a midline neck incision. A 1-cm-wide x 2-cm-long portion of the ventral 

tracheal wall was surgically removed. The defect was then repaired with a HDTM device with at 

least 5mm overlap around the edges of the defect (~ 2cm x 3cm).  All grafts were secured using 

absorbable 4–0 polydioxanone suture (PDS; Ethicon, Somerville, NJ). Non-resorbable Prolene 

suture (Ethicon) were used to mark the corners of the repair site. The scaffold placement site was 
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tested for air leaks by submerging in saline while applying a Valsalva maneuver. The repair was 

examined by bronchoscopy to verify graft placement and airway patency 201. 

 

Postoperative Care 

 Dogs were recovered from anesthesia, extubated, and monitored until resting comfortably 

in a sternal position. The dogs were housed in cages overnight and returned to their larger run 

housing (3.05 x 4.27 m) on postoperative day 1. Oral prophylactic antibiotics were administered 

(cephalothin/cephalexin, 35 mg/kg, twice daily) for 7 to 9 days. The dogs received intravenous 

acepromazine (0.1 mg/kg) and butorphanol (0.05 mg/kg) for 2 days, followed by subcutaneous or 

intramuscular buprenorphine (0.01 to 0.02 mg/kg) every 12 hours thereafter for analgesia as 

needed. 

 

Clinical, Bronchoscopic, and Radiographic Assessment 

 Animals that were subjected to heterotopic implantation of HDTM grafts had a 

predetermined follow-up period of 2 or 8 weeks, at which time the dog was euthanized. Likewise, 

animals that were subjected to patch tracheoplasty had predetermined follow-up periods of 8 

weeks, at which time the dogs were also euthanized. Bronchoscopic examinations and radiographs 

of patch reconstructions were conducted at 4 and 8 weeks after the procedure to evaluate scaffold 

remodeling. Airway stenosis was evaluated using a flexible bronchoscope, and visually quantified 

as a percentage decrease in the ventrodorsal diameter of the trachea. Strictures were classified as 

mild (< 25%), moderate (25% to 50%) or severe (> 50%). Documented bronchoscopic data 

included appearance of the graft surface and its relationship to the native trachea, signs of 

inflammation (eg, exudate, granulation tissue), presence or absence of tracheomalacia, and 
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stricture formation.  Radiographs (Vetel Diagnostics, San Luis Obispo, CA) were obtained of the 

sagittal plane to determine whether cartilage rings from the graft were present.  

 

Histologic Evaluation 

 Cross-sectional tissue specimens were cut from the ends of the heterotopic implants, and 

the specimen was fixed in 10% NBF for histologic analysis and stained with Masson’s Trichrome 

and Alcian Blue.  For the patch tracheoplasty implants, approximately six cross-sectional tissue 

specimens were cut along the longitudinal length of the graft.  Two of the specimens were fixed 

in 10% NBF for histologic analysis and stained with Masson’s Trichrome, Alcian Blue, or Periodic 

Acid-Schiff.  Two additional specimens were fixed in 2% paraformaldehyde for 1 hour and frozen 

in OCT.  Frozen sections were analyzed by fluorescent staining for β-tubulin for cilia (Santa Cruz 

Biotech, sc-12462-R, 1:1000 dilution), F-actin for microvilli (Invitrogen, A22287, 1:250 dilution), 

and DAPI for nuclear staining.  The final two specimens were fixed in 2.5% glutaraldehyde, treated 

with 1% (w/v) osmium tetroxide, and dehydrated via a gradient of alcohol washes for use in 

scanning electron microscopy to determine the extent of cilia coverage on the epithelium. 

 

Pressure Diameter Assessment 

 The effects of decellularization on the mechanical behavior of the HDTM graft was 

determined by performing pressure-diameter response testing of 5 porcine tracheas both before 

and after decellularization.  In a separate experiment, the passive pressure-diameter response of 

remodeled HDTM grafts implanted heterotopically in a canine model was compared to that of 

native canine trachea. In both experiments, a custom built system that was modified based on 

previously published methodology was used to evaluate the pressure-diameter response 204-206.  
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Each trachea was first secured inside a modified in vitro pressure-diameter testing system 

controlled via a custom designed LabVIEW program (National Instruments v8.6.1, Austin, TX).  

 

 

Figure 41. A custom built mechanical testing device was used to test the pressure diameter response of tracheas. 

 

Communication of a pressure sensor (Honeywell Sensotec Model FPA, Columbus, OH) 

located downstream of the sample was initiated through a DAQ card (National Instruments USB 

6009, Austin, TX). A hydrostatic pressure head was created by pumping saline into or out of the 

trachea using a 60cc syringe connected to a pump (Harvard Apparatus, Model 11 Plus, 

Philadelphia, PA). The mounted trachea was enclosed within a 3L bathing chamber and submerged 

in saline.  An optical LED micrometer (Keyence Model LS 7070MT, Wood Dale, IL) positioned 
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orthogonal to the sample was used to measure the outer diameter (OD) of the trachea continuously 

as the pressure was varied.  Diameter measurements were made in the center region of the tracheal 

tissue in two orthogonal directions (ventral-dorsal and transverse) due to the anisotropic behavior 

of the trachea in the membranous portion. Upon mounting, a small tension was placed on the tissue 

along the length of the graft to simulate physiologic tension. Pressure-diameter response was 

determined by cycling the intraluminal pressure between -10 and 60 mm Hg to simulate 

physiologic breathing patterns. The grafts were pre-cycled for approximately ten cycles to ensure 

uniform hysteresis before the final response curve was saved for analysis.  The two OD 

measurements for each 5 mmHg pressure increment were converted to a cross sectional area, 

assuming an elliptical tracheal cross-section shape.  

 

Statistical Analysis 

 A two-way independent ANOVA was run at each 10 mmHg pressure increment to analyze 

differences between cross sectional areas of heterotopically implanted tracheas within and between 

groups of the pressure diameter tests. A repeated measures ANOVA was also performed on 

porcine tracheas that were tested in the pressure diameter system before and after decellularization. 

All analyses were performed using the SPSS package (version 16.0; SPSS, Inc, Chicago, Ill). 

Statistical significance was set at p < 0.05. 
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RESULTS 

 

Characterization of Decellularized Tracheal Matrix 

 Hematoxylin and Eosin (H&E) staining confirmed the removal of cellular and nuclear 

material in the mucosal layers of the HDTM.  However, nuclear staining persisted within the 

cartilage rings of the grafts. In addition, Alcian Blue staining of HDTM scaffolds showed positive 

staining for glycosaminoglycans within the cartilage.  HDTM showed positive staining for 

collagen VII and laminin (data not shown) localized on the luminal surface of the material, 

confirming maintenance of the basement membrane of the HDTM grafts after the decellularization 

process. Pressure-diameter testing of the tracheas before and after decellularization showed that 

decellularization had little effect on the biomechanical behavior.  The decellularization process 

tended to show increased tissue compliance, but significant differences in the pressure-diameter 

response were only shown at 50 mmHg and 60 mmHg. At negative pressure, the tracheas behaved 

very similarly to the native trachea with no statistical difference detected in the cross-sectional 

area. 
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Figure 42. (A) Hematoxylin and eosin staining of the HDTM shows no cellular material in the mucosal layers 

of the tissue, however nuclear staining persists within the cartilaginous tissue.  (B)  Alcian Blue staining of 

HDTM shows that the process does not remove glycosaminoglycans from the cartilage that are necessary for 

maintenance of biomechanical behavior.  (C)  The decellularization process also preserves the basement 

membrane as shown by positive staining for collagen VII on the luminal surface of the HDTM. (D) Graph of 

pressure vs. the change in cross sectional area for native porcine tracheas and HDTM of the same samples after 

decellularization. There is little difference in the mechanical properties of the grafts at the time of implantation. 

(* denotes statistical significance, p ≤ 0.05) 

  

The glycosaminoglycan content was further quantified showing that the concentration of 

glycosaminoglycans decreased by about 50% in the intact HDTM, predominantly due to a loss of 

glycosaminoglycans in the cartilage tissue.   
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Table 3. Glycosaminoglycan content with percent change due to the decellularization process. 

 

 

Evaluation of Heterotopic Implants 

 All treated dogs recovered without complications from the surgical procedure and had an 

uneventful early postoperative course.  Seroma formation occurred in the heterotopic neck position 

within the first three days after implantation in two animals and was associated with rapid 

degradation of the implanted scaffolds and loss of mechanical integrity.  These animals were 

replaced in the study.  All other animals had uneventful postsurgical courses until planned 

euthanasia at either 2 or 8 weeks after the procedure. 

 Remodeled grafts were recovered from dogs immediately after euthanasia. Grafts generally 

retained the original size and shape, and showed evidence of vascularization, and qualitatively 

showed mechanical resistance in response to external load.  The abluminal surface of the grafts 

isolated from the omentum showed coverage with adipose tissue that could not be easily removed.    
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Figure 43. (A) Comparison of native canine trachea with remodeled HDTM grafts (t = 8 weeks) from neck and 

abdomen. (B) Cellular presence is abundant in the epithelial layers of remodeled grafts at 8 weeks after 

implantation in the neck. Little nuclear staining is shown in the cartilage tissue. (10x, Scale = 100μm) (C) Graph 

of pressure vs. the change in cross sectional area for remodeled HDTM and native canine trachea. Grafts 

implanted in the neck and abdomen had smaller changes in area over physiologic pressure range than native 

canine trachea. (* denotes statistical significance, p ≤ 0.05) 

 

 Histologic analysis of the explanted grafts showed abundant cellular infiltration of rounded 

and spindle shaped mononuclear cells throughout the connective tissue surrounding, but not 

including, the cartilage rings at both 2 and 8 weeks after implantation. There was evidence of 

vascularization throughout the graft, but particularly near the abluminal surface.  Cells lining the 

basement membrane in some areas formed a monolayer, but there was no morphologic evidence 

of ciliated cells present on the luminal surface in any heterotopic grafts.   

 The general shape of the pressure-diameter response curves for the heterotopically 

implanted grafts from both the neck and the abdomen were similar to that of native canine trachea 

from the recipients. The compliance of the grafts tended to be lower than for the native canine 

trachea, with the grafts implanted in the abdomen showing lowest compliance.  However, the only 

statistically significant differences in the pressure diameter response were detected at -10 mmHg 

and 60 mmHg (p < 0.05). 
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Evaluation of Patch Tracheoplasty Implants 

 All animals recovered from surgery without complication and survived until scheduled 

euthanasia.  One animal showed signs of seroma below the incision by day 3, but it resolved 

spontaneously by day 7.  Bronchoscopic evaluation of the grafts showed the formation of whitish, 

connective tissue replacing the implant. The grafts were generally smooth and shiny, suggesting 

epithelial coverage. In two dogs, the surface was interrupted by a protrusion into the lumen, which 

appeared to be a cartilage ring present with graft.  Radiographic analysis showed the persistence 

of cartilage rings in 4 of the 6 animals. 

 

 

Figure 44. (A) Bronchoscopic view of the remodeled HDTM scaffold 8 weeks after patch tracheoplasty.  The 

remodeled HDTM appears whitish in appearance with limited reduction in the luminal diameter of the trachea. 

(B) Gross view of remodeled HDTM patch after tracheoplasty. The shiny surface suggests development of an 

epithelial layer and blood vessel formation is evident within the patch.   

 

 Morphologic analysis of the remodeled graft showed deposition of new host tissue that was 

well vascularized.  There was limited contracture of the graft that led to a reduction in luminal 

diameter of less than 10%.  Cartilage rings from within the graft protruded into the lumen by 

approximately 2-3 mm in two animals.  When the rings were present they largely retained their 
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circumferential geometry and there was no evidence of tracheomalacia.  In the two cases in which 

cartilage rings were not observed, the resulting remodeling response led to the replacement of the 

graft with a thin layer of connective tissue with no inherent rigidity.  In all cases, the remodeled 

lumen was shiny, suggesting epithelial coverage.  

 Histologic examination of HDTM patches showed persistence of cartilage rings that were 

surrounded by new host connective tissue in 4 of 6 animals.  The cartilage rings showed the 

presence of GAGs in sections stained with Alcian Blue, but there was no evidence of cellular 

infiltration into the cartilage.   

 

 

Figure 45. The cartilaginous rings within the HDTM persist for at least 2 months as shown by (A) X-Ray, (B) 

Alcian Blue staining , and (C) Periodic Acid-Schiff staining (4x, Scale = 100μm). The arrows point to cartilage 

that was part of the HDTM patch and the asterisks denote newly formed cartilage. 

 

There was histologic evidence of degradation of the cartilage rings in two of the animals, 

with only one animal showing evidence of new cartilage formation that was localized and did not 

bridge the gap of cartilage formed by the defect.  The new host connective tissue showed increased 

cellular density compared to normal tracheal mucosa.   Histologic analysis showed the presence 

of a columnar, pseudostratified, ciliated epithelium with secretory cells in all animals. 
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Figure 46. (A) Scanning electron microscopy shows mature cilia covering the middle region of the remodeled 

HDTM, although the density of the cilia appear to be slighly less than for the normal trachea.  There are also 

regions of microvilli observed (box).  (B) Immunofluorescent staining confirms the presence of cilia and 

microvilli with positive staining of alpha tubulin (red) in the cilia and F-actin (green) in the microvilli. (C) 

Periodic Acid-Schiff staining (40x, Scale = 100μm) shows the organization of the epithelial layer containing 

abundant secretory cells and complete coverage with cilia. 

 

Cilia were observed morphologically in Masson’s trichrome stained sections and in SEM 

images.  Immunofluorsecent staining confirmed the presence of acetylated tubulin, which is 

indicative of cilia, and F-actin, which is indicative of microvillus.   PAS staining confirmed the 

presence of scattered secretory cells near the apical surface of the epithelium that appeared in 

greater numbers near the edges of the defect and more sparsely in the middle.  In the two animals 

that lacked cartilage rings, there was no apparent difference in the morphology of the mucosal 

tissue or the epithelium. 

 

DISCUSSION 

 

The present study showed that tracheal ECM supports the formation of site-specific epithelium 

and provide sufficient mechanical integrity withstand physiologic pressures in the short-term.  

Heterotopic implantation of full circumferential grafts showed cellular infiltration and vascular 
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development within the graft.  The cartilage structures within the heterotopic implants persisted 

for up to 8 weeks and showed comparable mechanical integrity to the native trachea.  Orthotopic 

implantation in a patch tracheoplasty model showed that the HDTM also promoted re-

epithelialization with a columnar, pseudostratified, ciliated epithelium with scattered secretory 

cells.  In the majority of the animals, cartilage rings from the graft persisted within the repair site.   

 The present study described a decellularization protocol for tracheal tissue with duration 

of three days as opposed to recently published protocols that take 45 days or longer 139, 207, 208.  The 

protocol is effective at decellularizing the connective tissue surrounding the cartilage rings, but 

does not fully decellularize the cartilage, which is also similar to previous reports 139, 207, 208.  

Previous studies have shown that chondrocytes lack MHC complexes 209, but the biologic 

significance of these remnant host cells in a xenogeneic recipient is unknown.  The present 

decellularization method showed retention of GAGs within the cartilage comparable with native 

cartilage 210, and preserved a basement membrane structure on the lumen of the graft 211.  The 

present study also showed that the HDTM grafts have a pressure-diameter response that is similar 

to native tracheas at the time of implantation.  Although previous reports have shown similar 

mechanical strength of native tracheas and decellularized tracheal grafts 208, the tests were 

performed in uniaxial tension, so the results only verify that the grafts did not experience detectable 

collagen damage due to the decellularization process, while the present results confirm that the 

HDTM graft will tolerate physiologic loading. 

 The orthotopic remodeling results of the present study are in contrast to the results of a 

previous study that showed that lyophilized decellularized tracheal matrix resulted in the formation 

of fibrous connective tissue with squamous epithelial formation and no persistence of cartilage in 

the same patch tracheoplasty model after 8 weeks of remodeling 201.  The epithelial formation in 
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the present study was similar to that observed on urinary bladder matrix, a different form of 

xenogeneic ECM, which showed complete coverage with ciliated cells and scattered secretory 

cells.  The presence of these differentiated cells is thought to be due to the proliferation of basal 

cells on the scaffold that have been shown to be the progenitor cells of the tracheal epithelium 212-

215.  Several studies have shown that the presence of a basement membrane promotes proliferation 

and differentiation of basal cells in vitro 216, 217.      

 The persistence of cartilage in the present study as compared to our previous study appears 

to be directly dependent on the hydration of the cartilage within the scaffold.  Cartilage is rich in 

GAGs that retain water, thereby giving cartilage its ability to resist compressive stress 218-220.  It is 

possible that dehydration of the matrix alters the conformation of the GAGs such that they no 

longer maintain a strong affinity for water.   Previous studies of ECM scaffolds derived from 

porcine small intestine showed that after lyophilization, tissues were only able to take up 

approximately 70% of their original water content 221.   

 The in vivo remodeling results of the present study are similar to those that describe the 

use of a decellularized canine tracheal allograft that was used to reconstruct the intrathoracic 

trachea 203, 222.  The previous study utilized a similar decellularization protocol to the one used in 

the present study, but the grafts were not sterilized.  The previous study claimed that the protocol 

yielded a hybrid scaffold with decellularized mucosal tissue and viable chondrocytes that 

participated in the remodeling response 222.  The protocol used in the present study was unlikely 

to preserve viable chondrocytes within the cartilage due to prolonged freezing time and terminal 

sterilization.  The present study showed that HDTM can provide mechanical support necessary for 

respiration for a period approaching 8 weeks.  However, implantation at the orthotopic site showed 

that 8 weeks is likely the limit for persistence of functional cartilage since two of the orthotopic 
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grafts showed histologic evidence of cartilage degradation and two other showed complete loss of 

the cartilaginous structures.  Only one of the grafts showed histologic evidence of newly formed 

cartilage within the graft, however the cartilage formation was very localized and did not bridge 

the gap created by the defect.   It is possible that the lack of vascularization at the time of orthotopic 

implantation led to the more rapid remodeling response, and that a period of pre-implantation at a 

heterotopic site may provide the vascular supply necessary for the cartilage grafts to eventually be 

remodeled into viable tissue 223-226.  Another option would be to seed the scaffold with 

mesenchymal cells that would form cartilage either 139, 227-229.  Recent studies have shown that 

cartilage tubes formed after heterotopic implantation do not adequately support epithelialization 

230, so a combination of combination of seeded chondrocytes on an ECM scaffold may address the 

limitations of both approaches. 

 Degradation is an important aspect of the remodeling of extracellular matrix scaffolds.  

Several reports have shown that non-crosslinked scaffolds derived from mucosal tissues (e.g., 

porcine small intestinal submucosa) are completely degraded within 90 days after implantation 114, 

115, while scaffolds derived from dermis may take longer to degrade.  Chemical crosslinking is 

known to delay or prevent ECM scaffold degradation 182, 231, and cellular remnants within the 

scaffold have been shown to delay the degradation process 176.  In the present study, the tracheal 

scaffold appears to follow a two phase degradation profile, with the mucosal connective tissue 

degrading quickly and being replaced by new host tissue, and the cartilage degrading more slowly.  

This unique degradation profile has important implications for the host remodeling response since 

delayed degradation is associated with a pro-inflammatory response that can lead to either scar 

tissue formation or a foreign body response 232.  Conversely, rapid degradation of ECM scaffolds 

is associated with the release of matricryptic peptides that have innate bioactivity, including 
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chemotaxis for progenitor cells and bacteriostasis 118, 124, 180, and replacement of the scaffold with 

site-appropriate tissue.  The constructive tracheal remodeling observed in the present study is more 

typical of the response to a degrading scaffold.   

 There are several limitations to the present study.  First, the study utilized a heterotopic 

implant model and an orthotopic patch tracheoplasty model to assess the potential for HDTM to 

serve as a full circumferential tracheal replacement.  Given the possibility of respiratory distress if 

the approach failed, we deemed it appropriate to take a conservative approach by avoiding full 

circumferential replacement.  Based on the present results, future studies will evaluate HDTM in 

a model of full circumferential tracheal reconstruction with and without pre-implantation in the 

neck.  In addition, the study is limited in that the source of cells that populated the remodeled tissue 

is unknown, particularly for the epithelial formation.  Future studies including sacrifice at earlier 

time points will be required to determine if local cells migrate onto the ECM scaffold, and if so, 

which populations of cells are involved.  As a third limitation, the present study specifically 

excluded any investigation of cell seeding so that the role of the HDTM alone might be better 

understood.  However, it is likely that appropriate seeding of epithelial cells and chondrocytes in 

an appropriate bioreactor system may improve the remodeling outcome.  Despite these limitations, 

the present study supports further investigation of decellularized tracheal matrix.  Although the 

findings suggest that a mesenchymal cell population is probably necessary to promote 

cartilaginous formation, the HDTM should provide sufficient mechanical strength to sustain 

physiologic loading immediately after implantation and supports the development of mature 

airway epithelium. 
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