
 

THE ROLE OF INFLAMMASOME AND CASPASE-1 IN REGULATING ADAPTIVE 

RESPONSE TO OXIDATIVE STRESS IN MOUSE HEPATOCYTES 

 
 
 
 
 
 
 
 

by 

Qian Sun 

Bachelor of Medicine, Fudan University, 2008 

 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

the School of Medicine in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2013 

 



 ii 

UNIVERSITY OF PITTSBURGH 

SCHOOL OF MEDICINE 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Qian Sun 
 
 
 

It was defended on 

June 24, 2013 

and approved by 

Chairperson: Tim D. Oury, MD, PhD, Professor, Department of Pathology 

Donna Beer Stolz, PhD, Associate Professor, Department of Cell Biology 

Russell D. Salter, PhD, Professor, Department of Immunology 

Yoram Vodovotz, PhD, Professor, Department of Surgery 

Melanie J. Scott, MD, PhD, Assistant Professor, Department of Surgery 

Dissertation Advisor: Timothy R. Billiar, MD, Professor and Chair, Department of Surgery 

 

 



 iii 

Copyright © by Qian Sun 

2013 



 iv 

 

In myeloid cells, oxidative stress can induce the activation of caspase-1 through 

canonical inflammasome signaling, which leads to the release of proinflammatory cytokines IL-

1β/IL-18 and a potentially damaging inflammatory response. However, little is known about the 

role of caspase-1 in the liver after oxidative stress. This is especially true for the hepatocyte, a 

cell type that expresses and can activate the inflammasome but produces low levels of IL-1β and 

IL-18. Paradoxically, during hemorrhagic shock with resuscitation (HS/R) in an in vivo mouse 

model associated with severe hepatic redox stress, caspase-1 activation is protective against liver 

injury independent of IL-1β and IL-18. We also demonstrate that caspase-1 activation protects 

against cell death after redox stress in hepatocytes induced by hypoxia/reoxygenation in an in 

vitro model of HS/R. Mechanistically, we show that caspase-1 activation leads to reduced 

mitochondrial respiration and reactive oxygen species (ROS) production by increasing 

mitochondrial autophagy and subsequent clearance of mitochondria in hepatocytes after 

hypoxia/reoxygenation. During redox stress, caspase-1 increases autophagic flux through 

upregulation of the autophagy initiator, beclin1. 

Although others have shown that ROS generated by damaged mitochondria activate the 

NACHT, LRR and PYD domains-containing protein 3(NLRP3) inflammasome, caspase-1 

activation in the liver after oxidative stress was independent of NLRP3. We show that while the 

NLRP1 inflammasome is responsible for caspase-1 activation in immune cells that leads to IL-18 
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release after HS/R, the protective effect of caspase-1 in hepatocytes is due to the formation of an 

AIM2-initiated inflammasome. Our in vitro results also suggest that AIM2 is essential for the 

upregulation of beclin1 and mitochondrial clearance during redox stress in hepatocytes. High-

mobility group box 1 (HMGB1) is a universal sentinel for nucleic acid-mediated innate immune 

responses.  We found that HMGB1 associates with AIM2 and it is required for caspase-1 

activation in hepatocytes after redox stress.  

Our findings suggest a novel role for the AIM2 inflammasome and caspase-1 in 

regulating cellular responses to oxidative stress. We provide an important advancement in our 

understanding of how AIM2 and caspase-1 activation is linked with mitochondrial function and 

stress-induced autophagy as protective mechanisms in cells where IL1β/IL18 are not highly 

expressed. 
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1.0  INTRODUCTION 

The liver is a highly metabolically active organ and excessive oxidative stress is a common 

mechanism of various liver diseases, including liver ischemia/reperfusion (I/R)1, acetaminophen-

induced liver failure2, septic-induced liver damage3 and metabolic liver disorders4. In myeloid 

cells oxidative stress can induce the activation of innate immune response, such as that mediated 

by caspase-1 through canonical inflammasome signaling, which leads to the release of 

proinflammatory cytokines IL-1β/IL-18 and a potentially damaging inflammatory response. 

However, little is known about the role of caspase-1 in the liver after oxidative stress. This is 

especially true for hepatocytes, a cell type that expresses and can activate the inflammasome but 

produce low levels of IL-1β and IL-18. In my dissertation, I will focus on exploring the role of 

inflammasome and caspase-1 in regulating cell death and damage after oxidative stress in 

hepatocytes and the liver. 

1.1 INNATE IMMUNITY IN STERILE INJURY 

1.1.1 Pattern recognition receptors 

The activation of innate immune pathways is crucial for host defense in response to invasive 

pathogens. In the setting of microbial infection, pathogen-associated molecular patterns 
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(PAMPs), which are conserved microbial motifs, can be recognized by pattern recognition 

receptors (PRRs) expressed by innate immune cells5, 6. This leads to the eradication of pathogens 

through numerous killing and clearance mechanisms that involve the production of inflammatory 

mediators and cell recruitment and activation. Similarly, the same PRRs can be activated in 

response to sterile injuries, such as tissue trauma and ischemia-reperfusion injury. In this case, 

signaling through PRRs is triggered by the recognition of damage-associated molecular patterns 

(DAMPs) 5.  

In settings such as sterile injuries, DAMPs are released after tissue stress and injury and 

activate innate immune cells. This leads to the production of pro-inflammatory cytokines and 

chemokines in a response very similar to that seen during pathogen-induced inflammation. 

Instead of leading to the clearance of pathogens, the sterile inflammatory response is crucial for 

tissue repair and the initiation of adaptive cell stress responses5, 7. However, an unresolved or 

excessive pro-inflammatory response in response to persistent high levels of DAMPs or lack of 

anti-inflammatory response can be detrimental to the host5.  

1.1.2 Damage associated molecular patterns and sterile injury 

There is accumulating evidence that PRRs of the innate immune system are involved in 

mediating inflammatory responses to sterile injury such as I/R injury. Multiple studies have 

shown the in vivo requirement for Toll-like receptor (TLR) signaling in tissue damage mediation 

after oxidative stress induced by liver I/R or hemorrhagic shock (HS)8-10. For example, 

inflammatory response and heart failure after cardiac I/R have been shown to result from the 

activation of TLR9 by mitochondrial DNA that escapes during autophagic mitochondrial 

degradation11.  Tsung et al. have also demonstrated that high-mobility group box1 (HMGB1) 
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released from ischemic cells activates TLR4 and leads to liver inflammation as well as damage 

after liver I/R12, 13. Most of the studies reported so far have linked the activation of TLR 

signaling with exacerbated tissue damage after I/R due to an excessive inflammatory response.  

Other PRR families can also recognize DAMPs and may be expected to be involved in 

the responses induced by I/R. For example, nucleotide-binding oligomerization domain (NOD)-

like receptors (NLRs) are another recently described family of intracellular PRRs shown to 

respond to DAMPs, including extracellular adenosine triphosphate (ATP)14, amyloid-β peptide15, 

monosodium urate crystals16, uric acid17, elevated extracellular glucose18 and extracellular matrix 

components19.  However, it remains unknown as to whether NLRs can be activated by DAMPs 

and can contribute to the inflammatory response induced by I/R injury. 

 

1.2 ACTIVATION OF INFLAMMASOME IN STERILE INJURIRS 

1.2.1 Inflammasome structure and signaling 

The discovery and characterization of inflammasome as well as pathways leading to caspase-1 

activation by inflammasome scaffolds have been an exciting development in the field of innate 

immunity. As one of the proinflammatory caspases, the activity of caspase-1 is tightly regulated 

by signal-dependent autoactivation within multiprotein complexes called inflammasomes. 

Inflammasomes have been shown to be formed after activation of certain NLRs, including 

NLRP1, NLRP3, AIM2, and ice protease activating factor (IPAF) (or NLRC4), by pathogens 

and host-derived endogenous indicators of cellular stress. Whereas NLRP1 and IPAF have only 
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been shown to be activated by PAMPs such as muramyl dipeptide and flagellin, respectively, 

NLRP3 and AIM2 can be activated by a number of DAMPs, including ROS and endogenous 

DNA in addition to PAMPs20. A typical inflammasome contains an NLR, apoptosis-associated 

speck-like protein containing a caspase-recruitment domain (ASC), and pro-caspase-1. 

Inflammasome activation leads to autocleavage of caspase-1 to form the active caspase-1 

p10/p20 tetramer21. Active caspase-1 is required for the proteolytic maturation and release of 

cytokines known to be involved in the injury response, including IL-1β and IL-18.  

The secretion of IL-1β has been shown to mediate a variety of cellular events, including 

neutrophil infiltration, the regulation of sleep and appetite, and body temperature21. As a member 

of the IL-1 cytokine family, IL-18 is also a potent proinflammatory cytokine that enhances T-cell 

and natural killer cell maturation, as well as the production of other cytokines, chemokines, and 

cell adhesion molecules22. It has been shown to induce hepatic I/R injury by suppressing the 

production of the anti-inflammatory cytokines IL-4 and IL-1023. IL-18 has also, in several 

studies, been associated with obesity, insulin resistance, hypertension, and dyslipidemia24, 25. 

However, a recent study also suggested the anti-inflammatory role of IL-18 in upregulating IL-

10 production to exert protection against lethal acute lung damage after burn injury26. Whereas 

the production of IL-1β requires two signals (synthesis of pro-IL-1β through the activation of 

TLRs and cleavage into its active form by caspase-1), the release of IL-18 is mainly regulated by 

activation of caspase-1, as the pro-form is constitutively present in the cytoplasm27. 

1.2.2 Inflammasome activation induced by ROS 

Reactive oxygen species (ROS) serve as the major mechanism for NLRP3 inflammasome 

activation following sterile injury. ROS-dependent activation of the NLRP3 inflammasome has 
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been implicated in hyperoxia-induced acute lung injury28 after the stimulation of α-synclein 

aggregates in patients with Parkinson's disease29, 30 upon exposure to self double-stranded DNA 

(dsDNA), as in systemic lupus erythematosus  patients31, in a murine model of gout induced by 

monosodium urate monohydrate (MSU) crystal injection32, and in arthritis associated with 

deposition of hydroxyapatite crystals33. However, controversy remains regarding the source of 

inflammasome-activating ROS. Early studies suggested that ROS responsible for inflammasome 

activation are derived from nicotinamide adenine dinucleotide phosphate (NADPH) oxidase34. 

However, this theory is contradicted by the fact that macrophages deficient in NADPH oxidase 

complex components show no defect in inflammasome activation34. More recent evidence from 

multiple groups suggests that mitochondria could be the major source of ROS required for 

inflammasome activation35, 36. Inhibition of mitochondrial autophagy, which removes ROS-

generating mitochondria, leads to increased NLRP3 inflammasome activation and IL-1β release 

in macrophages35, 37, 38. More specifically, mitochondrial-derived ROS induce the association of 

NLRP3 with thioredoxin-interacting protein, thereby inducing activation of the NLRP3 

inflammasome18.  

1.2.3 Inflammasome activation induced by other danger signals released during redox 

stress 

In addition to ROS, other danger signals released during metabolic stress have been shown to 

induce inflammasome activation. These include mitochondrial DNA released from dysfunctional 

mitochondria and ATP from damaged cells or tissues. Mitochondria not only produce ROS, but 

are also the major target of ROS. Elevated ROS levels lead to opening of a mitochondrial 

permeability transition pore, causing the release of mitochondrial DNA (mtDNA) into the 
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cytosol37. Cytosolic mtDNA and more specifically, oxidized mtDNA, contribute to the secretion 

of IL-1β and IL-18 by activating the NLRP3 inflammasome39. Extracellular ATP released from 

necrotic cells can also lead to the formation of NLRP3 inflammasome through activation of the 

P2X7 receptor and decrease in intracellular K+ levels39. The in vivo relevance of extracellular 

ATP was confirmed by recent animal studies with a newly developed bioluminescent ATP 

probe, which showed that the extracellular concentration of ATP in inflamed tissues in vivo was 

sufficient for P2 receptor activation40. Therefore, it would be intriguing to investigate whether 

mitochondrial DNA or ATP could serve as danger signals during redox stress induced by 

hemorrhagic shock with resuscitation (HS/R). 

1.2.4 Non-canonical activation of inflammasome 

In contrast to the well-established pathway discussed above where inflammasome formation is 

required for caspase-1 activation, there is emerging evidence that caspase-11 mediates the non-

canonical activation of caspase-1. The first evidence was produced by Wang et al. when they 

demonstrated an essential role for caspase-11 in caspase-1 activation after septic shock in vivo41. 

More recently, Vishva Dixit’s group showed that commercially available caspase-1 -/- mice 

actually lack both caspase-1 and caspase-11.  These caspase-1 -/- mice were generated using 

strain 129 embryonic stem cells, which attenuated caspase-11 expression genetically42. These 

researchers demonstrated that caspase-11 is critical for the non-canonical activation of caspase-1 

and IL-1β production in macrophages infected with Gram-negative bacteria and certain pore-

forming toxins from organisms such as Escherichia coli, Citrobacter rodentium, or Vibrio 

cholera, but not after the stimulation of ATP or MSU. Caspase-11 was also shown to be involved 

in NLRP3- and caspase-1-independent macrophage cell death, which is required for 
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lipopolysaccharide (LPS)-induced lethality in vivo. The mechanism of caspase-11-mediated cell 

death was further explored by the group of Katherine Fitzgerald and Edward Miao, who showed 

that Gram-negative bacteria enter the cytosol and trigger caspase-11-dependent cell death 

involving Toll/Interleukin-1R domain-containing adapter-inducing interferon-β signaling43, 44. 

However, whether caspase-11 contributes to cell death after sterile injury is still unclear. 

 

1.3 NON-CYTOKINE-MATURATION ROLE OF CASPASE-1 

In addition to the well-established role of caspase-1 in cytokine maturation, recent research has 

begun to implicate caspase-1 as a regulator of the cellular response to stress by regulating cell 

death, tissue repair, and cytoprotective responses7, 45. This aspect of caspase-1 function may be 

especially important in non-immune cells such as the hepatocyte, the dominant cell type in the 

liver and a cell that does not produce IL-1β or IL-18. 

1.3.1 Caspase-1 and pyroptosis 

There are multiple ways in which a cell can die in response to cell stress, including by apoptosis, 

necrosis, and pyroptosis. Cells also employ multiple strategies to help them cope with stress and 

survive. The activation of the inflammasome in immune cells is often associated with pyroptosis, 

a caspase-1 dependent cell death46, 47. Pyroptosis is a form of proinflammatory cell death that 

was first described in macrophages after Salmonella infection48, 49. It is characterized by swelling 

and rapid lysis of the cells with the release of proinflammatory mediators IL-1β and IL-18. 
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However, it is still unknown whether this caspase-1 dependent cell death is mediated through 

caspase-1 itself or by its substrates, IL-1β and IL-18. Recent evidence suggests that pyroptosis 

can be induced by not only PAMPs but also DAMPs and ROS.  Fernandes-Alnemri and 

colleagues have shown that cytoplasmic DNA triggers formation of the AIM2 inflammasome, 

which lead to pyroptotic cell death50. 

1.3.2 Caspase-1 and apoptosis 

The activation of caspase-1 has been associated with cell death in the form of apoptosis in non-

myeloid cells. In the model of neuronal I/R, caspase-1 induces apoptotic cell death through two 

possible mechanisms. First, caspase-1 mediates neuronal cell death through cleaving BH3 

interacting-domain death agonist (BID), a pro-apoptotic protein, and activating the apoptotic 

caspase cascade51. Second, there is evidence that cerebral ischemia induces acute brain injury 

and apoptotic cell death through production of the proinflammatory cytokine IL-1β52, 53.  

Furthermore, caspase-1 induced caspase-6-mediated apoptosis after serum deprivation in human 

neurons54. In models of cardiac I/R, inflammasome formation and caspase-1 activation were 

found in myeloid cells such as leukocytes, as well as in nonmyeloid cells, including 

cardiomyocytes, endothelial cells, and fibroblasts in the peri-infarct region55, 56. Here, the 

inflammasome was activated through the P2X7 receptor and was associated with increased 

cardiomyocyte cell death after acute ischemia, which could be rescued by a noncompetitive 

antagonist of the P2X7 receptor, pyridoxalphosphate-6′-azopheny-2′,4′-disulphonate (PPADS)55. 

Syed et al. also demonstrated in cultured cardiac myocytes that caspase-1 activation after 

hypoxia led to cleavage of caspase-3 and subsequent apoptosis56. Taken together, these studies 

suggest a role for caspase-1 in mediating apoptosis in neurons and cardiomyocytes after hypoxic 



 9 

insult such as that induced by ischemia. But whether caspase-1 activation regulates apoptotic cell 

death in hepatocytes after cell stress remains unclear. 

1.3.3 Caspase-1 and necrosis 

The role of inflammasome and caspase-1 in the induction of necrosis has been investigated in 

several studies, but the mechanism remains largely unclear. Squires et al. have shown that 

caspase-1 activation leads to the impairment of plasma membrane integrity and necrosis in 

macrophages after anthrax lethal toxin treatment57. However, cell death triggered by anthrax 

lethal toxin is characterized by rapid cell lysis, which is also a feature of pyroptosis. It is 

therefore unclear whether caspase-1 mediates cytolysis through a distinct pathway leading to 

necrosis or solely by inducing pyroptosis. Another study by Motani and colleagues demonstrated 

that caspase-1 promoted ASC-mediated necrotic cell death in monocytes independent of the 

catalytic activity of caspase-158. Here, caspase-1 functions as a molecular determinant of cell 

death modes. Activation of ASC induces necrosis in cells that express caspase-1 while in cells, 

where caspase-1 is knocked down in the cells undergoing apoptosis. Moreover, this seems to 

represent a distinct pathway of cell death triggered by caspase-1, since previous studies showed 

that pyroptosis was a process that required catalytic activity of caspase-159. 

1.3.4 Caspase-1 and protein secretion 

There is emerging evidence that links caspase-1 activation with the unconventional secretion of 

proteins, which includes the substrates of caspase-1 IL-1β and IL-18, components of 

inflammasome such as caspase-1 itself, as well as many other proteins involved in inflammation, 
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cytoprotection, or tissue repair60-62. As the substrates of caspase-1, pro-IL1β and pro-IL18 lack 

signal peptide required for the conventional, endoplasmic reticulum /Golgi-dependent secretion 

pathway63, 64. Instead, their secretion has been shown to be mediated by caspase-160, which 

suggests the essential role of caspase-1 in IL-1β and IL-18 maturation and release. Interestingly, 

caspase-1 itself can be released from activated macrophages or UV-irradiated keratinocytes 

through this non-classical  secretion pathway that requires the enzymatic activity of caspase-160. 

However, the extracellular function of caspase-1 still remains largely unknown. It was speculated 

that this could serve as negative feedback mechanism to limit the concentration of caspase-1 in 

cells60.  

Caspase-1 also regulates the secretion of other proteins involved in inflammation and 

tissue repair, which help to restore tissue homeostasis after major stress. Among those proteins, 

the most well-studied are IL-1α and retinoic acid-inducible gene-I (RIG-I)61, 62, 65. Whether the 

enzymatic activity of caspase-1 is required for this unconventional secretion pathway for IL-1α 

remains controversial. Two studies have suggested the role of caspase-1 in mediating IL-1α 

secretion60, 62. The function of IL-1α is mostly unknown, except that it can trigger a sterile 

inflammatory response through the activation of Interleukin-1 receptor 1 (IL-1R1)66. Calpain-

like proteases have also been suggested to cleave IL-1α, and both full-length and cleaved IL-1α 

are able to activate IL-1R167. Nonetheless, it is likely that caspase-1 serves as the central 

regulator of IL-1α signaling, given that caspase-1-dependent IL-1α release is essential for the 

downstream signaling mediated by IL-1R1 after the simulation of inflammasome activators62. 

Indeed, NLRP3 inflammasome assembly and caspase-1 activation have been shown to induce 

IL-1α secretion, leading to increased basal keratinocyte proliferation through activation of the 

IL-1R1 and NF-κB pathway65.  
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The secretion of RIG-I was thought to be another process mediated by caspase-1 

activation. As a PRR, RIG-I recognizes non-self dsRNA68 and initiates an antiviral response 

through activating mitochondrial antiviral-signaling protein (MAVS) and the production of type 

1 interferon (IFN)69. Caspase-1 has been demonstrated to physically interact with full length 

RIG-I, and its activation results in reduced cellular level of RIG-I and inhibition of RIG-I-

mediated signaling activity through enhanced secretion61. Therefore, caspase-1 activation was 

thought to be a checkpoint to prevent the overproduction of IFN and function to limit 

inflammation after viral and microbial infection61. However, in vivo experiments need to be 

performed to confirm the relevance of the finding in the settings of viral infection. 

1.3.5 Caspase-1 cleaves proteins other than IL-1β and IL-18 

Caspase-1 is an aspartate-specific cysteine protease and would be expected to cleave many 

proteins.  Shao et al. utilized a diagonal gel proteomic approach to identify 41 proteins as 

potential targets of caspase-170. This study and others have identified multiple caspase-1 direct 

targets, including proteins involved in different processes essential for energy metabolism and 

inflammation71-73. As the first study to investigate the relationship between caspase-1 activation 

and energy metabolism, Shao et al. identified proteins essential for mitochondrial respiration and 

glycolysis as targets of caspase-1 in their diagonal gel screen. These included beta subunit 

precursor of ATP synthase and a number of glycolysis enzymes which were further verified by 

in vitro caspase cleavage assays70. Their experiments using wild type (WT) and caspase-1 

deficient cells also confirmed that caspase-1 activation after Salmonella infection results in the 

processing of the glycolysis enzymes and reduction of the cellular glycolytic rate in the 
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macrophage, a cell type  that is highly dependent on glycolysis for energy demand74. This 

regulation of metabolism was suggested to contribute to caspase-1-dependent cell death70.  

In addition, after a high-fat diet, caspase-1 was shown to cleave SIRT172, a histone 

deacetylase that promotes insulin secretion by β cells75 and increases insulin sensitivity in 

peripheral tissues76 . The cleavage of SIRT1 by NLRP3 inflammasome-mediated caspase-1 

activation results in a reduction of SIRT1 function in cells72, providing one explanation for why 

mice lacking NLRP3 or caspase-1 are protected from high-fat diet-induced insulin resistance, 

metabolic dysfunction, and obesity77.  

Catalytic cleavage by caspase-1 also leads to the loss-of-function or gain-of-function of 

proteins involved in inflammatory responses, such as MAVS and pyrin71, 73. A study by Yu et al. 

demonstrated that caspase-1 cleaves MAVS at residue D429 after Dengue virus infection, 

abolishing its function in IFN production and induction of apoptosis through disruption of the 

mitochondrial membrane potential and activation of apoptotic caspases73. Another study by Chae 

and colleagues suggested pyrin, a familial Mediterranean fever (FMF) protein, can be cleaved be 

caspase-1 at D330. In contrast to MAVS, the cleavage of pyrin by caspase-1 produced a 330-

residue N-terminal fragment that enhances ASC-independent NF-κB activation71. Moreover, 

their study suggested that pyrin variants with FMF-associated mutants are more susceptible to 

catalytic cleavage by caspase-1 than WT pyrin, suggesting a role for caspase-1 in inducing 

inflammation through the NF-κB pathway in the autoinflammatory disease FMF. 

1.3.6 Caspase-1 and lysosomal function 

Lysosomes are organelles that are responsible for the degradation of proteins, engulfed virus, and 

bacteria, as well as dysfunctional organelles such as mitochondria78. Caspase-1 has been shown 
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to promote lysosomal degradation in macrophages after Legionella79 and Salmonella infection80. 

IPAF-mediated activation of caspase-1 restricts bacterial growth after Legionella infection by 

promoting the maturation of Legionella-containing phagolysosome and intracellular degradation 

of Legionella, thereby restricting the intracellular replication of the bacterium79. However, the 

exact mechanism by which caspase-1 promotes the fusion of Legionella-containing phagosome 

and lysosome is still not clear. Caspase-1 activation has also been shown to activate another step 

of the lysosomal degradation process, lysosome exocytosis, through increasing intracellular 

calcium levels during pyroptosis80. Since lysosomal degradation of mitochondria (or 

mitochondrial autophagy) is crucial for mitochondrial quality control after stress conditions36, it 

would be of great interest to investigate the relationship between caspase-1 activation and 

lysosomal function after sterile injury. 

1.4 CELL STRESS RESPONSES INDUCED AFTER REDOX STRESS 

Adaptive cell stress responses are induced in tissues and organs such as the liver after major local 

or systemic perturbations. These responses are thought to be essential to protect the organ from 

further damage and to return the tissue back to state of metabolic homeostasis. Autophagy is one 

of the important adaptive cell stress responses that can protect the liver.  Mitochondrial 

permeability transition (MPT), an indicator of mitochondrial dysfunction, has been demonstrated 

to be essential for hepatocellular cell death after I/R and can be prevented by autophagy81. My 

research has focused on the response of the liver to a hypoxic insult as seen in shock.  Because 

autophagy is one of the well characterized cell stress responses in the liver after I/R injury, my 

thesis work has centered on autophagy and regulation of mitochondrial function. 
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1.4.1 Autophagy 

Autophagy is one of the major adaptive responses used to cope with major stresses in the liver. It 

is a protective process by which the cell sequesters damaged proteins, organelles, or pathogens in 

a double-membrane compartment, the autophagosome, where the sequestered material is 

degraded and recycled82. Autophagy is induced by cellular stress such as nutrient deprivation, 

hypoxia83, redox stress84, and by the inflammatory mediator IFNγ85, 86. In recent studies using 

macrophages, autophagy has been shown to be cytoprotective through the inhibition of 

inflammasome activation. In these immune cells, this subsequently leads to reduced production 

of the inflammatory mediators IL-1β and IL-1838. More specifically, the effect has been shown to 

be mediated by autophagy and especially mitochondrial autophagy through reducing 

mitochondrial ROS production and eliminating DAMPs such as mitochondrial DNA35, 37. Thus, 

in cells that produce IL1β or IL18, this may serve as a protective mechanism to suppress the 

proinflammatory response in order to limit tissue damage.  However, at the organ level it is 

likely that the protective effects of autophagy extend beyond just regulating the magnitude of the 

inflammatory response and may be cell-type specific.  This is seen at the whole organ level after 

stresses such as HS/R and I/R where autophagy is upregulated in the brain87, liver88, and heart89. 

Under such conditions, autophagy is cytoprotective by clearing dysfunctional mitochondria35, 

maintaining cellular ATP levels90 and eliminating misfolded protein. 

1.4.1.1 Autophagy process and beclin1 

Autophagy is a dynamic, multi-step process that is characterized by nucleation of the initial 

phagophore, elongation of the phagophore to form the autophagosome, and fusion of the 

autophagosome and lysosome for degradation and recycling. Beclin1, which is essential for both 
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nucleation and elongation of phagophore, was shown to be upregulated in rat hepatocytes and 

confer protection after hypoxia/reoxygenation81, 91. In response to the induction of autophagy, the 

cytosolic LC3 is conjugated to phosphatidylethanolamine, which forms the outer and inner 

membranes of the autophagosome. 

As a major component of class III phosphatidylinositol 3-kinase (PI3K-III) complex, 

beclin1 modulates the activity of vacuolar sorting protein 34 (VPS34), which is crucial for 

vesicle nucleation in autophagy92. Beclin1 is known to be regulated at the transcriptional and 

post-translational levels, as well as via protein-protein interaction. Transforming growth factor-β 

(TGF-β) and hepatitis C virus infection have been shown to increase beclin1 expression at the 

transcriptional level through the Smad4 pathway and by enhancing beclin1 promoter activity, 

respectively93, 94. Another study has demonstrated that Heat Shock Protein 90 (HSP90) inhibits 

beclin1 expression transcriptionally through the inactivation of NF-κB95. However, unbiased and 

more rigorous studies still need to be conducted to determine what transcription factors are 

responsible for messenger RNA (mRNA) synthesis of beclin1.  

Aside from transcriptional regulation, the function of beclin1 in promoting autophagy is 

also regulated through protein-protein interaction. The best established interaction is with anti-

apoptotic protein B-cell lymphoma 2 (Bcl-2). Beclin1 has been shown to associate directly with 

Bcl-2 and this interaction prevents beclin1 oligomerization and its association with VPS34, 

which results in the inhibition of VPS34 complex and decreased autophagy96. Moreover, the 

ability of beclin1 to modulate VPS34 kinase activity also depends on a network of beclin1 

interacting proteins, namely UV radiation resistance-associated gene (UVRAG)97, an activating 

molecule in beclin1-regulated autophagy (AMBRA1)98 and autophagy-related protein 14-like 
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protein (ATG14L)99. Among these positive regulatory proteins, UVRAG and ATG14L serve as 

binding partners of beclin1 and are involved in the activation of VPS34 containing complexes92.  

Previous studies suggest that beclin1 can be degraded after its ubiquitination, and 

therefore affect VPS34 activity. Firstly, the steady-state concentration of beclin1 has been shown 

to be altered by developmentally down-regulated protein 4 (NEDD4)-mediated ubiquitination of 

beclin1 after its direct binding with beclin1 at the PY motif100. Secondly, a recent study based on 

screening for chemical inhibitors of autophagy discovered that ubiquitination of beclin1 and the 

stability of PI3K-III complex are affected by the peptidase activity of ubiquitin carboxyl-terminal 

hydrolase 10 (USP10) and USP13101. Thirdly, beclin1 was shown to undergo ubiquitination in a 

K48-dependent manner and this pathway can be inhibited by the molecular chaperone HSP90; 

therefore, HSP90 was responsible for the increase in beclin1 expression and VPS34 activity in 

monocytes102. 

1.4.1.2 Inflammasome activation and autophagy 

Although extensive studies suggesting that autophagy inhibition leads to the activation of the 

NLRP3 inflammasome35, 37 have been conducted, very few have focused on investigating the 

role of inflammasome formation in regulating autophagy. Suzuki et al. provided the first 

evidence suggesting an effect of inflammasome activation on the regulation of autophagy. These 

authors showed that caspase-1 activation mediated by the IPAF inflammasome after Shigella 

infection lead to inhibition of autophagy, which protects infected macrophages from 

pyroptosis103. However, conflicting evidence also suggests that inflammasome activation is 

responsible for the upregulation of autophagy. A study by Shi et al. showed that the AIM2 

inflammasome induces autophagosome formation by activating the G protein RalB, which forms 

part of the protein platform required for the formation and maturation of autophagosome104, 105. 



 17 

Therefore, it seems likely that the activation of different inflammasomes has specific regulatory 

effects on autophagy under varying stresses. 

1.4.2 Regulation of mitochondrial function 

As the major source of ATP and ROS generation in the cell, mitochondria are believed to be 

adaptive organelles. Mitochondrial mass and oxidative phenotype are elaborately controlled to 

match the needs of various tissues in response to changes in the physiological environment and 

cellular adaptive responses after major stress106.  It is generally considered that the production of 

mitochondrial ROS occurs as a consequence of aerobic metabolism. However, evidence is 

emerging that ROS can also serve as signaling molecules that lead to either cell death or a 

cytoprotective response. It has been suggested that low ROS levels may be critical in metabolic 

adaptation and pre-conditioning responses107 while moderate to high levels of ROS production 

could result in enhanced inflammatory responses or cell death induced by MPT108.  

1.4.2.1  Mitochondrial danger signals and inflammasome activation 

Several recent studies have demonstrated that danger signals derived from mitochondria, 

especially mitochondrial ROS, can induce inflammation through activation of the NLRP3 

inflammasome35, 37. As the most well-studied NLR, NLRP3 can be activated by a plethora of 

diverse stimuli, including extracellular ATP14, amyloid-β peptide109, MSU16, elevated 

extracellular glucose,110 and extracellular matrix such as hyaluronan 111. Given that many of the 

known activators of NLRP3 inflammasome also generate ROS, it seems likely ROS form a 

common pathway by which various NLRP3 agonists activate the NLRP3-inflammasome. Many 

studies have shown that ROS scavengers suppress NLRP3 inflammasome activation112, 113. 
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Moreover, recent studies provide substantial evidence suggesting that ROS derived from 

mitochondrial complex I and complex III stimulate activation of the NLRP3 inflammasome and 

release of IL-1β in monocytes35, 37. The release of mitochondrial DNA into the cytosol, 

especially in its oxidized form, also induces NLRP3 inflammasome formation37, 39.  However, 

the precise mechanism by which ROS production leads to NLRP3 activation is still largely 

unknown. Other than the NLRP3 inflammasome, AIM2 has also been shown to be activated by 

host derived dsDNA114. Work presented in this dissertation will show that mtDNA can act as a 

DAMP to activate AIM2 inflammasome. 

1.4.2.2 Mitochondrial ROS and other inflammatory pathways 

In addition to the role of mitochondrial ROS in mediating the production of IL-1β and IL-18 

through inflammasome activation, ROS generated by mitochondria have also been shown to 

increase mRNA synthesis of pro-inflammatory cytokines through NF-κB and c-Jun N-terminal 

kinase pathways in various settings115, 116. Unlike IL-1β and IL-18, which require cleavage to be 

activated, pro-inflammatory cytokines such as tumor necrosis factor (TNF) and IL-6 are induced 

primarily at the transcriptional level117. As a major transcription factor in the innate immune 

response, NF-κB can be the target of ROS in various ways. In most studies, exogenous hydrogen 

peroxide (H2O2) and endogenous ROS generated after hypoxia-reoxygenation upregulates NF-

κB activation, and it does so in part through alternative phosphorylation of IκBα116. Whereas 

IκBα is usually phosphorylated at serines 32 and 36, which leads to its ubiquitination and 

degradation, redox stress affects the phosphorylation of IκBα on Tyr42 or other tyrosine 

residues, resulting in its dissociation with NF-κB and subsequent activation of NF-κB118, 119. 

However, ROS can also lead to an inhibitory effect of NF-κB activation116, suggesting complex 

interactions between ROS and  NF-κB. 
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1.4.2.3 Mitochondrial ROS and cell death 

Increased mitochondrial ROS could also induce direct hepatocellular cell death in the form of 

apoptosis or necrosis after I/R through MPT81, 120. Furthermore, MPT is the essential event in 

necroptosis induction, a specialized pathway of programmed necrosis characterized by the 

activation of receptor-interacting protein 1 (RIP1) after cardiac and cerebral ischemic injury120. 

MPT is associated with mitochondrial depolarization, uncoupling of oxidative phosphorylation, 

mitochondrial swelling, and subsequent necrotic and apoptotic cell death121, 122. However, cell 

death can be prevented over the short term if there is an alternative source of ATP produced 

through glycolysis1. Caspase-1 has been shown to cleave and inactivate enzymes involved in 

glycolysis and therefore inhibit glycolysis in macrophages after Salmonella infection70. But the 

role of inflammasomes and capase-1 in regulating mitochondria-derived cell death remains 

largely uninvestigated. 

1.4.2.4 Mitochondrial biogenesis and mitophagy in mitochondrial quality control 

Under stress conditions such as inflammation, calorie restriction, and oxidative stress, 

mitochondria are organelles that are particularly susceptible to oxidative damage and 

mitochondrial dysfunction, resulting in impaired ATP generation, excessive ROS production, 

and cell death106, 123. In response to these conditions, cells avoid major mitochondrial-mediated 

damage and preserve the quality of mitochondria through mitophagy, a process that identifies 

and targets dysfunctional mitochondria for degradation while concomitantly activating 

mitochondrial biogenesis.106.  

Mitochondrial biogenesis is controlled to a large extent by transcriptional mechanisms106, 

124. Most of the genes involved in mitochondrial biogenesis are under the control of a nuclear 

network of transcription factors and coregulators that are responsible for fine-tuning gene 
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expression in response to changes in the physiological environment. Among these, peroxisome 

proliferator-activated receptor γ coactivator 1α (PGC-1α) has been demonstrated as the master 

regulator of mitochondrial biogenesis. It has been shown to co-activate nuclear respiratory factor 

2 (NRF2) and nuclear respiratory factor 1 (NRF1), which leads to increased expression of 

mitochondrial transcription factor A as well as other nuclear-encoded mitochondria subunits of 

the electron transport chain complex, including β-ATP synthase and cytochrome c oxidase IV125. 

Although PGC-1α has been shown to be upregulated and mediate mitochondrial biogenesis after 

chronic hypoxia126, 127, not much is known about its role in models of acute hypoxic stress such 

as that induced by I/R. In addition to its role in mitochondrial biogenesis, PGC-1α also induces 

the upregulation of antioxidant mechanisms and thereby protects cells from redox stress128. 

Therefore, it would be of great interest to assess whether PGC-1α is involved in cytoprotection 

after redox stress induced by HS with resuscitation. 

1.5 HEMORRHAGIC SHOCK (HS) 

Trauma is the third leading cause of death and morbidity worldwide. Much of the mortality and 

morbidity is caused by multiple organ dysfunction syndrome (MODS) resulting from systemic 

and end-organ inflammation secondary to HS/R, which is associated with global I/R injury129. 

The liver is one of the major organs that is affected by HS/R and liver damage is often associated 

with MODS130. It was estimated that approximately 20% of trauma patients admitted to hospitals 

with HS show liver dysfunction and develop hyperbilirubinemia131. Since the liver plays a key 

role in metabolism, HS also leads to alterations in synthesis of proteins such as acute phase 

protein and albumin131.    



 21 

1.5.1 HS and liver injury 

 

Figure 1. The time course of HS/R-induced liver injury 

 

HS causes systemic hypoxia and low blood flow to the liver, resulting in insufficient local 

oxygen supply132. Mitochondrial respiration is suppressed during hypoxia due to lack of oxygen. 

This leads to the inhibition of oxidative phosphorylation with a subsequent reduction in ATP 

production133. Reduction of ATP causes cell swelling, rounding of mitochondria, lysosomal 

disruption, formation of plasma membrane blebs, and necrotic cell death, eventually resulting 

from disturbances in membrane ion translocation driven by ATP-dependent channels134 (Figure 

1).  

Although HS itself primes cells for damage and will eventually cause cell death when the 

process is prolonged, the injury is more severe after the liver is reperfused/reoxygenated133. 
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Production of ROS and reactive nitrogen species (RNS) has long been implicated in reperfusion 

injury. Even though low levels of ROS may be critical to signaling in cell stress and pre-

conditioning responses107, high levels of ROS contribute to hepatocellular cell death during liver 

I/R. During reperfusion/reoxygenation, the reestablishment of mitochondrial aerobic respiration 

results in excessive ROS production, which can trigger necrotic and apoptotic cell death through 

MPT and oxidation of essential molecules132, 135. After the onset of MPT, mitochondria 

depolarize and undergo large-amplitude swelling, which then leads to the rupture of the 

mitochondrial outer membrane and cytochrome c release132. Either apoptosis or necrosis can 

occur following MPT, depending on the level of intracellular ATP133, 136. Cyclosporin A, an 

inhibitor of MPT, has been reported to protect the liver from I/R injury by preventing 

mitochondrial depolarization and ATP depletion137.  

Tissue toxicity from excessive free radical generation can also result from its reactivity 

with various biological molecules, including inducing lipid peroxidation138, mitochondrial DNA 

breaks,139 and thiol oxidation in proteins140. Thiol oxidation of caspase-9, for example, promotes 

activation of caspase-9 and onset of apoptosis through the formation of disulfide bond linking 

caspase-9 with apoptotic protease-activating factor 1 (Apaf-1)141. Clinically, a few antioxidant 

agents have been shown to have a beneficial effect in the treatment of liver I/R injury, including 

thiol compound N-acetylcysteine5 and a vitamin diet containing α-Tocopherol and ascorbate136.  

Compared to other cell types, hepatocytes express high levels of antioxidants such as 

glutathione, superoxide dismutase, and catalase, which make them relatively more resistant to 

injury induced by ROS and RNS under normal conditions132. However, hepatocytes show high 

levels of mitochondrial respiration with limited glycolysis during warm ischemia, which is 
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associated with excessive ROS production by mitochondria and imbalance of ROS production 

and endogenous antioxidant systems132, 133. 

1.5.2   HS and the innate immune response 

 

Figure 2: The role of the innate immune response after HS/R in macrophages 

 

HS/R represents a global I/R phenomenon that contributes to end-organ dysfunction and 

damage142.Other than cell death induced by prolonged hypoxia during ischemia and excessive 

ROS produced during reperfusion, I/R injury induces tissue damage through an excessive innate 

immune response. It has been well established that TLR signaling is involved in the profound 

systemic inflammatory response and the induction of tissue damage after HS/R. We have 

previously shown that TLR4-deficient mice were protected from liver injury following HS/R 
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with decreased production of pro-inflammatory cytokines associated with decreased NF-κB 

activation143.  TLR4 -/- mice also demonstrated attenuated myocardial contractile depression and 

TNF-α expression in the heart after HS/R144.  A study by Liu et al. showed that HMGB1 released 

during HS/R activated TLR4 and led to secretion of IL-23 and IL-17 by macrophages, which 

resulted in increased neutrophil infiltration145. We have shown that hypoxia alone triggers 

HMGB1 release via a TLR4-dependent mechanism in hepatocytes13.  Therefore, as shown in 

Figure 2, danger signals such as ROS and DAMPs can activate TLR4 and lead to the mRNA 

synthesis of pro-inflammatory cytokines such as pro-IL1β and TNF-α through the activation of 

NF-κB. On the other hand, the release of mature IL-1β also requires the formation of 

inflammasome and activation of caspase-1. But it is still unknown whether NLRs can be 

activated after HS/R.  

Moreover, although most studies have focused on the role of PRRs in immune cells 

during HS/R, parenchymal cells also seem to contribute to the inflammatory response following 

HS/R, as indicated by a study using bone marrow-chimeric mice146. However, the role of PRRs 

in nonmyeloid cells still remains largely unexplored.  
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2.0  CENTRAL HYPOTHESIS AND SPECIFIC AIMS 

2.1 RATIONALE AND CENTRAL HYPOTHESIS 

Emerging evidence suggests that caspase-1 activation can be induced by oxidative stress or the 

release of DAMPs after increased redox stress35, 37. Caspase-1 mediates the maturation of the 

pro-inflammatory cytokines IL1β/IL18 in immune cells and endothelial cells after oxidative 

stress. This is known to contribute to renal and myocardial I/R injury147, 148. However, our 

previous work demonstrated a protective effect of caspase-1 against liver injury during HS with 

bilateral femur fracture149. Moreover, recent research also implicates caspase-1 as a regulator of 

cellular responses to stress through the regulation of tissue repair and cytoprotective responses7, 

150. This aspect of caspase-1 function is poorly characterized, but may be especially important in 

non-immune cells such as hepatocytes, which express and can activate inflammasome 

components151, but are not known to produce significant amount of IL1β/IL18. 

On a subcellular level, mitochondria are organelles central to the regulation of cell death 

and metabolic adaptation. Mitochondrial respiration is suppressed during hypoxia due to low 

oxygen tension. The reestablishment of mitochondrial aerobic respiration after reoxygenation 

results in excessive ROS production, which can trigger the release of pro-apoptotic proteins such 

as cytochrome c and can lead to cell death135, 136. Both general and mitochondrial autophagy are 

responsible for mitochondrial turnover and quality control 36 and have been shown to eliminate 
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dysfunctional mitochondria to reduce mitochondrial ROS production and therefore downregulate 

inflammasome and caspase-1 activation 35, 37.  

Due to the important role of autophagy and mitochondrial function in regulating adaptive 

responses to prevent cell death after stresses, we hypothesize that there is a significant role for 

the inflammasome and caspase-1 in regulating adaptive responses to oxidative stresses 

through either the release of inflammatory mediators or through regulating autophagy and 

mitochondrial function in the liver. 

2.2 SPECIFIC AIMS 

Specific Aim 1: To investigate the mechanism by which caspase-1 is activated in hepatocytes in 

vitro and in vivo. 

 

Specific Aim 2: To determine the role of inflammasome and caspase-1 activation in regulating 

apoptosis, autophagy, and mitochondrial function in hepatocytes. 
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3.0  METHODS 

3.1 ANIMAL STUDIES 

3.1.1 Mouse strains 

Male C57BL/6 (WT), AIM2 -/-, Interleukin-1 receptor -/- (IL-1R -/-) and Interleukin-18 receptor -/- 

(IL-18R -/-) mice were purchased from Jackson Laboratory (Bar Harbor, ME) and maintained at 

the University of Pittsburgh until eight weeks of age. NLRP3-/- mice were rederived from 

Millennium Pharmaceuticals (Boston, MA). Caspase-1-/- mice were obtained from Dr. Richard 

Flavell (Howard Hughes Medical Institute, Yale University) and were bred in our facility. 

Hepatocyte-specific HMGB1 -/- (HC-HMGB1-/-) mice were obtained from Dr. Allan Tsung 

(University of Pittsburgh). Eight 12-week old mice weighing 21–30 g were used in the 

experiments.  

3.1.2 Genotyping of caspase-1-/- and HC-HMGB1-/- Mice  

Caspase-1 -/- mice were genotyped by reverse transcriptase–polymerase chain reaction (PCR) of 

digested tail tissue using the following primers: caspase-1 forward: 

GAGACATATAAGGGAGAAGGG; caspase-1 reverse: ATGGCACACCACAGATATCGG; 

and caspase-1 neo: TGCTA AAGCGCATGCTCCAGACTG. PCR conditions used were as 
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follows: 94°C for three minutes; then 35 cycles of 94°C for 30 seconds, 62°C for 30 seconds and 

72°C for 30 seconds; and then held at 72°C for five minutes before cooling to 4°C until run on 

2% agarose gel. Bands were visualized using ethidium bromide. WT mice were identified by a 

single band at 500 bp. Caspase-1-/- mice were identified by a single band at 300 bp. Both bands 

were visible for heterozygous mice.  

HC-HMGB1-/- mice were confirmed by genotyping both Albumin-Cre and HMGB1 

using the primers: HMGB1 forward: TGATGCGAACACGGCGTGCTCTA; HMGB1 reverse: 

GCACAAAGAATGCATATGAGGAC; Albumin-Cre forward: GTTCGCAAGAACCTGATGG 

AACA; Albumin-Cre reverse: CTAGAGCCTGTTTTGCACGTTC. PCR conditions used were 

as follows: 94°C for two minutes; then 30 cycles of 94°C for 15 seconds, 62°C for 30 seconds 

and 72°C for 30 seconds; and then held at 72°C for five minutes before cooling to 4°C. WT mice 

for HMGB1-floxed strain were identified by a single band at 635 bp. HMGB1floxed mice were 

identified by a single band at 700 bp. Cre band is the only band that will show up at 342bp in 

size. 

3.1.3 HS model 

HS surgery was performed as previously described152. Mice were anesthetized intraperitoneally 

with sodium pentobarbital (50 mg/kg) and inhaled isofluorane (Abbott Laboratories). Unilateral 

groin dissections were performed, and femoral arteries were cannulated and flushed with heparin 

sulfate (Pharmacia, Uppsala, Sweden, and Upjohn, Kalamazoo, MI, USA), for a total of ∼2 U 

heparin per animal. The groin catheter was connected to a blood pressure transducer (Micro-

Med) for continuous mean arterial pressure (MAP) readings. Mice were allowed to recover from 

the inhaled anesthesia for 10 minutes before initiation of hemorrhage. After baseline blood-
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pressure readings were repeated three times, mice were hemorrhaged to a MAP of 25 mmHg 

over 10 minutes. Total withdrawn blood was recorded every 10 minutes, and mice were 

maintained at a MAP of 25 mmHg for 90 minutes. The mice were then resuscitated over 10 

minutes with three times the maximal shed blood amount in Lactated Ringer’s solution through 

the arterial catheter. After post-resuscitation blood pressure readings, catheters were removed, 

vessels were ligated, and groin incisions were closed with 4-0 nylon sutures.  Mice were 

sacrificed 1.5, 4.5, or 24 hours after resuscitation. Sham group mice underwent initial 

cannulation procedures and anesthesia only. Control mice were sacrificed without any 

procedures performed to obtain physiological baseline levels. All experimental protocols were 

approved by the University of Pittsburgh Institutional Animal Use and Care Committee. 

Experimental procedures were carried out in accordance with all regulations regarding the care 

and use of experimental animals published by the National Institutes of Health. 

3.1.4 In vivo knockdown of NLRP1 

NLRP1a was inhibited in vivo through the injection of NLRP1a-specific siRNA (50 µM/kg) 

(Invitrogen) as previously described, with modification153. The NLRP1a siRNA-Invivofectamine 

complex was prepared according to the protocol from Invitrogen and subjected to dialysis with a 

Float-A-Lyzer dialysis device (Spectrum labs). The complex was administered via tail vein 

injection two days before HS. Scrambled siRNA (50 µM/kg) was used as a control via tail vein 

injection.  



 30 

3.1.5 Generation of bone marrow (BM) - chimeric mice 

Chimeric mice were generated by adoptive transfer of donor bone marrow (BM) cells into 

irradiated recipient animals using combinations of WT (C57Bl/6) and knockout (KO) (Caspase-1 

-/-) mice. The following recipient/donor combinations were produced: WT/WT, WT/KO, 

KO/WT, and KO/KO. Recipient mice were exposed to an otherwise lethal 1000 cGy from a 

Cesium source (Nordion International) six hours before receiving 2.5 × 106 BM cells by tail vein 

injection. The BM cells were prepared in a sterile manner from the tibia and femur bones of the 

donor mice. All animals were monitored two to three times weekly for the first two weeks to 

ensure successful BM engraftment. Chimeric animals were maintained under the same 

conditions as described above and underwent HS 10–12 weeks after the adoptive transfer to 

ensure stable engraftment.  

3.2 HEPATOCYTE ISOLATION AND BIOCHEMICAL ANALYSIS 

3.2.1 Hepatocyte isolation and cell culture 

Hepatocytes were isolated from mice by an in situ collagenase (type VI; Worthington) perfusion 

technique. Basically, mice were anesthetized intraperitonelly with 0.3ml of 14% Nembutal 

diluted in sodium chloride. A catheter was inserted into the vena cava and the liver was perfused 

with perfusion medium I (1.42M NaCl, 67mM KCl, 100mM Hepes, pH was adjusted to 7.5 with 

NaOH) for 10-15 minutes. The liver was then perfused with collagenase (the concentration was 

determined by optimization experiments for each batch) dissolved in perfusion medium II 
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(67mM NaCl, 6.7mM KCk, 100mM Hepes, 4.8mM CaCl2, and 1% Albumin, pH was adjusted 

to 7.6 with NaOH) for another 15 minutes. Liver cells were isolated with cell scraper and the 

crude cell preparation was filtered through a gauze funnel. The resulting cell suspension was 

centrifuged at 400rpm for two-three minutes to get rid of the non-parenchymal cells. The cell 

pellet was re-suspended in 30% percoll (GE Life Sciences) before the suspension was 

centrifuged at 400rpm for 10 minutes to remove the dead cells. Hepatocyte purity exceeded 99% 

as determined by flow cytometric assay, and viability was typically over 95% as determined by 

trypan blue exclusion. Hepatocytes (4 105 cells/ml for six-well plates) were plated on gelatin-

coated culture plates in Williams medium E with 10% calf serum, 15 mM HEPES, 10−6 M 

insulin, 2 mM L-glutamine, 100 U/ml penicillin, 100 U/ml streptomycin. Hepatocytes were 

allowed to attach to plates for at least two hours before treatment. Hypoxia/reoxygenation 

treatment was performed as previously described154. Described briefly, hepatocytes were 

incubated in Krebs-Ringer–hydroxyethylpiperazine-N-2 ethanesulfonic acid (HEPES) buffer 

(KRH) containing 115 mM NaCl, 5 mM KCl, 2 mMCaCl2, 1 mM KH2PO4, 1.2 mM MgSO4, and 

25 mM HEPES (all reagents were obtained from Sigma) at pH 6.2 in a hypoxia chamber. To 

simulate reoxygenation and return to the physiological pH of reperfusion, anaerobic KRH at pH 

6.2 was replaced with hepatocyte culture media at pH 7.4. 

3.2.2 Analysis of cell death 

Hepatocytes (4 105 cells/ml of six-well plate) were cultured under hypoxia (1% oxygen) and 

then reoxygenated for one hour or kept for the same duration under normoxic condition with or 

without caspase-1 inhibitor pretreatment for one hour (15µM, Calbiochem). Cell death was 

measured using the Annexin V–FITC apoptosis detection kit (BD Biosciences) according to the 
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manufacturer’s instructions. Described briefly, cells were collected after treatment, washed with 

phosphate buffered saline (PBS), stained with Annexin V–FITC and propidium iodide (PI) for 15 

minutes in 1× binding buffer (10 mM HEPES, pH 7.4, 140 mM NaCl, 2.5 mM CaCl2), and 

analyzed by flow cytometry using Guava EasyCyte 8HT flow cytometer (Millipore).  

 

3.2.3 Measurement of intracellular ROS 

Intracellular ROS generation was assessed with CM-H2DCFDA (10 µM). Microscopy or flow 

cytometry was performed. Images were acquired with a Zeiss 510 inverted confocal microscope. 

Dichlorofluorescein (DCF) fluorescence was measured in 15-20 randomly selected fields per 

group; fluorescence intensity was measured using Metamorph, and values are expressed with 

respect to the WT control cultured under normoxia. To normalize cell number, Hoeschst (Life 

Technologies) was used as a fluorescent marker for the nucleus and PI was used to exclude the 

dead cells. The experiments were repeated at least three times per treatment. Flow cytometry was 

performed using Guava EasyCyte 8HT flow cytometer. 

3.2.4 Measurement of autophagic flux 

Autophagic flux was assessed by increase in green fluorescent protein (GFP)–LC3 puncta or 

LC3II levels determined by Western blot after bafilomycin (50 nM, Sigma) treatment for one 

hour. In addition, autophagic flux was determined in hepatocytes transfected with red fluorescent 

protein-green fluorescent protein (GFP-RFP)-LC3 plasmid. Twenty-four hours after transfection, 

cells were imaged with Zeiss LSM 510 laser scanning confocal microscope using a 63× oil lens. 
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The numbers of GFP and RFP double positive (early autophagic vacuoles) and RFP only (late 

autophagic vacuoles) puncta were counted for each cell.  

3.2.5 Liver homogenization 

Snap-frozen liver tissue was homogenized in radioimmunoprecipitation assay buffer (RIPA) 

buffer (50 mM Tris-HCl, 150 mM NaCl, pH 7.4) containing protease inhibitors (1 mM 

phenylmethylsulfonyl fluoride, 0.1 µM aprotinin, 1 μg/ml leupeptin and 1 µM pepstatin) with 

glass/Teflon homogenizer (15 up-and-downs) to obtain all soluble proteins. The whole liver 

lysate was then pelleted by centrifugation at 10,000 x g for 15 minutes at 4 oC and the 

supernatant was saved and stored at -80 oC until use. 

3.2.6 Western blot analysis 

Treated hepatocytes were washed twice in PBS and lysed with 1× cell lysis buffer (Cell 

Signaling Technologies) containing 20 mM Tris-HCl (pH 7.5), 150 mM NaCl, 1 mM Na2EDTA, 

1 mM EGTA, 1% Triton, 2.5 mM sodium pyrophosphate, 1 mM β-glycerolphosphate, 1 mM 

Na3VO4, 1 μg/ml leupeptin, and 1 μg/ml phenylmethylsulfonyl fluoride on ice for 30 minutes. 

Protein content of cell lysates was determined by bicinchoninic acid (BCA) protein assay 

(Pierce). For Western blot, equal protein amounts (30µg) were separated by sodium dodecyl 

sulfate polyacrylamide gel electrophoresis (SDS-PAGE) and transferred onto a polyvinylidene 

fluoride membrane followed by probing with optimized dilutions of primary antibody overnight 

at 4°C (see Table 1). Horseradish peroxidase-conjugated secondary antibodies were then used at 
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1:20,000 in a standard enhanced chemiluminescence reaction according to the manufacturer's 

instructions (Pierce). 

Table 1. Primary Antibodies and Conditions for Immunoblotting 
 

Protein Company Catalog # Dilution (in 1% milk) 

Caspase-1 Millipore or Cell signaling 06-503 or 2225 1:1000 

Beclin1 abcam Ab55878 1:2000 

Cleaved caspase-3 Cell signaling 9664 1:1000 

Cleaved poly 
(ADP-ribose) 
polymerase 

(PARP) 

Cell signaling 9544 1:1000 

PARP Cell signaling 9542 1:1000 

Caspase-3 Cell signaling 9662 1:1000 

Atg3 Cell signaling 3415 1:1000 

Atg12-5 Cell signaling 2630 1:1000 

Atg7 Cell signaling 2631 1:1000 

Cytochrome c BD Biosciences 556432 1:1000 

AIM2 Santa cruz sc-137967 1:500 

PGC-1α Cell signaling 2178 1:1000 

HMGB1 Abcam Ab18256 1:1000 

Nlrp1 Cell signaling Ab3683 1:1000 

ASC Santa cruz Sc-33958 1:500 

GAPDH Abcam Ab9484 1:10000 
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3.2.7 Immunofluorescence and confocal microscopy 

Liver tissue from mice was removed after perfusion with cold PBS and 2% paraformaldehyde. 

Tissue was fixed in 2% paraformaldehyde for two hours followed by cryopreservation with 30% 

sucrose overnight before freezing in liquid nitrogen–cooled isopentane and stored at −80 °C until 

use. Liver sections (6 μm) were permeabilized with 0.3% Triton X-100 for 20 min and stained as 

previously described155. Immunofluorescence staining began by rehydrating slides with PBS. 

Nonspecific binding was blocked using 2% bovine serum albumin (BSA) for 45 minutes 

followed by rinses with 0.5% BSA. The level of lipid peroxidation was determined by 4-

hydroxyl-2-nonenal (HNE) staining using HNE antibody for 60 minutes at room temperature 

followed by incubation for 60 minutes with fluorescently labeled secondary antibodies (1:1000; 

Invitrogen). After nuclear staining for 40 seconds with 4',6-diamidino-2-phenylindole (DAPI), 

slides were covered using gelvatol, a water-soluble mounting medium (21 g polyvinyl alcohol, 

52 ml water, sodium azide, and 106 ml 0.2 M Tris buffer). Images were taken from six random 

fields per section with a Fluoview 500 confocal microscope (Olympus) at the Center for Biologic 

Imaging. Imaging conditions were maintained at identical settings with original gating performed 

using the negative control (no primary antibody). The relative HNE adducts per cell were 

quantitated using a Metamorph image acquisition system (Universal Imaging) and normalized to 

fluorescence intensity of β-actin.  

Table 2: Primary antibodies and conditions for immunofluorescence 

Protein Company Catalog # Dilution (in 1% milk) 

HNE Calbiochem 393204 1:200 

AIM2 Santa cruz sc-137967 1:200 
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HMGB1 Abcam Ab18256 1:250 

 

3.2.8 Transfection with siRNA 

Cells were transfected using Lipofectamine 2000 (Invitrogen) according to the manufacturer's 

instructions. A non-silencing siRNA pool (siCtrl, Dharmacon) was used as a control. To knock 

down beclin1 or caspase-1 expression in hepatocytes with Dharmacon smartpool siRNA (20 nM, 

Dharmacon) targeting mouse beclin1 or caspase-1 (sibeclin1 or siCasp-1), cells were transfected 

with 10nM of either control siRNA or targeting siRNA for 24 hours. Efficiency of gene silencing 

was determined by Western blot. 

3.2.9 ATP measurement 

Steady-state ATP levels in hepatocytes was measured as previously published156. Described 

briefly, hepatocytes were lysed with 1X cell lysis buffer (Cell Signaling Technology) 

supplemented with 1.5% trichloroacetic acid (TCA) for 10 minutes at 4°C. Cell lysates were 

diluted 1:50 in Tris buffer (0.1mM) and ATP levels were measured by luciferin-luciferase assay 

with ATP determination kit according to the manufacturer’s instructions (Invitrogen). The results 

were normalized to the protein content in each sample. 
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3.2.10 Real-time PCR 

Total RNA was extracted from hepatocytes using RNeasy mini extraction kits from Qiagen 

(Valencia) according to the manufacturer's protocol. Comparative DNA (cDNA) was synthesized 

using 1μg RNA and oligo dT primers (Qiagen) and Omniscript™ reverse transcriptase (Qiagen). 

PCR reaction mixtures were prepared using SYBR Green PCR master mix (PE Applied 

Biosystem). SYBR Green two-step real-time RT-PCR was performed using forward and reverse 

primer pairs prevalidated and specific for beclin1 (Qiagen). The default program was performed 

on a CFX Connect RT system (Bio-rad) and consisted of 95 °C for 10 minutes, and 35 cycles of 

95 °C for 10 seconds, 60 °C for 30 seconds, and 72°C for 30 seconds. All samples were run in 

triplicate. The level of gene expression for each sample was normalized to β-actin mRNA 

expression using the comparative Ct method.  

3.2.11 Immunoprecipitation 

Whole cell lysates were incubated overnight with goat anti-ASC antibody, and immune 

complexes were then precipitated with protein A/G-agarose beads(Santa cruz) for four hours and 

then washed several times with immunoprecipitation buffer (20 mM Tris-HCl (pH 7.5), 150 mM 

NaCl, 1 mM Na2EDTA, 1 mM EGTA, 1% Nonidet P-40, 1% sodium deoxycholate, 2.5 mM 

sodium pyrophosphate, 1 mM β-glycerophosphate, 1 mM Na3V04, 1 μg/ml leupeptin, and 1 mM 

PMSF). Immunoprecipitated proteins were eluted with 2× sodium dodecyl sulfate (SDS) loading 

buffer (0.5 M Tris-HCl (pH 6.8), 2 ml of glycerol, 10% (w/v) SDS, 0.1% (w/v) bromphenol blue, 

and 5% β-mercaptoethanol in water) and then analyzed by Western blot as described above. 
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3.2.12 Mouse caspase-1 plasmid 

To generate mouse caspase-1 plasmid, mouse caspase-1 was cloned by PCR from cDNA 

prepared by reverse transcription of normal mouse hepatocyte mRNA. The primers (Integrated 

DNA Technologies) used for PCR were as follows: forward 5’-CAT GGC TGA CAA GAT CCT 

GAG GGC-3’ and reverse 5’-GTT TAA TGT CCC GGG AAG AGG TAG-3’. The amplimer 

was subcloned into pAdlox. 

3.2.13 Mouse beclin1 adenoviral vector 

To generate adenoviral vectors expressing mouse beclin1, the Open Reading Frames of murine 

beclin1 were inserted into a shuttle plasmid pAdlox at HindIII and BamHI sites and the 

sequences were confirmed. E1/E3-deleted adenoviral vector was then constructed using Cre-lox 

recombination system in the adenovirus-packaging cell line CRE8. The recombinant 

adenoviruses were propagated in 293 cells, purified by cesium chloride density gradient 

centrifugation and dialysis. Adenovirus particle concentration was determined by 

spectrophotometric analysis. Ad-beclin1 or ad-GFP was injected through the tail vein at 4×1010 

viral particles for each mouse. Two days after injection, mice were subjected to HS and 4.5 hours 

of resuscitation. 

3.2.14 Electron microscopy 

For electron microscopy, mice were perfused with cold PBS, then with 2% paraformaldehyde 

and 2% glutaraldehyde in 0.1 mol/L phosphate buffer (pH 7.4) and processed for transmission 
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electron microscopy as described157. After dehydration, sections were stained with uranyl acetate 

and lead citrate for observation under a JEM 1011CX electron microscope (JEOL). Images were 

acquired from a randomly selected pool of 10-15 fields under each condition. 

3.2.15 Reagents 

Caspase-1 inhibitor (Ac-YVAD-CMK) came from Millipore. Pan caspase-1 inhibitor (Z-VAD-

FMK) came from R&D Systems. Manganese (III) tetrakis (1-methyl-4-pyridyl) porphyrin 

(MnTMPyP) came from Enzo Life Sciences. Caspase-1 activity was determined using caspase-1 

activity colorimetric kit (R&D Systems). Caspase-3 activity was determined by caspase-3 

activity fluorometric kit (R&D Systems).  

3.3 MITOCHONDRIAL ASSAYS  

3.3.1 Measurement of mitochondrial and cytosolic ROS in hepatocytes 

To assess mitochondrial and cytosolic-specific ROS production at the single cell level, 

hepatocytes were transfected with mitochondrial-targeted HyPer-Mito or cytoplasm-targeted 

HyPer-Cyto (Evrogen), which is a genetically encoded fluorescent sensor capable of highly 

specific detection of mitochondrial or cytosolic H2O2 in live cells. At 36 hours after transfection, 

hepatocytes were subjected to hypoxia (1% O2) for six hours and reoxygenated or kept under 

normoxia for the same duration. The green fluorescent signal was observed by fluorescent 

microscopy in 30 random cells per treatment using an EVOS® fluorescence microscope (AMG). 
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Fluorescence intensity was assessed by Image J software and expressed as fold increase to WT 

control. The experiments were repeated at least three times per treatment. 

3.3.2 Mitochondrial volume and mitochondrial DNA copy number 

Mitochondrial volume was determined by MitoTracker Red staining (Life Technologies) and 

divided by cell volume marked by calcein (BD Biosciences) as previously described with 

modifications158. Hepatocytes were loaded with 1µM of calcein and 100µM of MitoTracker Red 

for 30 minutes before imaged in Zeiss LSM 510 laser-scanning confocal microscope using a 63× 

oil lens. Z-stacks acquired individual hepatocytes at 5µm intervals. The mitochondrial volume of 

a random portion of cytoplasm was determined as a fraction of cytoplasm using ImageJ's 3D 

Object Counter macro (Fabrice Cordelires & Jonathan Jackson). 

mtDNA copy number was measured by quantitative PCR as previously described 159. 

Primers (Integrated DNA Technologies) were as follows: forward 5’-CCC AGC TAC TAC CAT 

CAT TCA AGT-3’ and reverse 5’-GAT GGT TTG GGA GAT TGG TTG ATG-3’. The primers 

used were against part of the mitochondrially-encoded nicotinamide adenine dinucleotide 

hydride dehydrogenase subunit 6 (mt-Nd6), and the results shown are normalized to nuclear 

DNA copy number. 

3.3.3 Citrate synthase activity assay 

Citrate synthase activity was measured in the liver using citrate synthase assay kit (Sigma). 

Described briefly, livers were collected from control mice or mice that underwent HS/R and 

immediately homogenized in RIPA buffer (Sigma) with 50 µg of liver protein loaded per well of 
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a 96-well plate; citrate synthase activity was measured according to the manufacturer’s 

instructions. 

3.3.4 Measurement of cytochrome c release 

Cytosolic fractions of liver tissue from WT and capsase-1-/- mice were prepared as previously 

described160. Described briefly, livers from control mice or mice subjected to HS/R were excised, 

homogenized, and centrifuged to pellet the mitochondria. The supernatant was collected and 

protein concentration was determined by BCA assay (Thermo Scientific). 

3.3.5 Measurement of mitochondrial respiration 

Mouse primary hepatocytes were seeded at 1 × 104 cells per well in hepatocyte growth media 

(Williams medium E containing 10% calf serum) on XF-24 cell culture plates (Seahorse) coated 

with gelatin. WT and caspase-1 -/- (or AIM2 -/-) hepatocytes were treated with hypoxia (1% 

oxygen) for six hours before the growth media was changed to unbuffered running Dulbecco’s 

modified Eagle's medium (DMEM) (40μM GlutaMax-1, 20μM Sodium Pyruvate, 25mM 

glucose, 60mM NaCl, pH=7.4). The plates were kept in non-CO2 incubator at 37C for 1 hour 

before running on XF-24 Analyzer to measure cellular oxygen consumption rate. The 

concentrations of oligomycin, trifluorocarbonylcyanide phenylhydrazone, and rotenone were 

1μM, 0.3μM, and 1μM, respectively. The results shown are presented as cellular oxygen 

consumption rate normalized to protein content in each well as determined by BCA assay. 
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3.3.6 Measurement of mitochondrial potential 

Mitochondrial potential was determined as previously described161. Primary hepatocytes plated 

on four-well chamber slides (Thermo Scientific) were incubated with 50nM 

tetramethylrhodamine (TMRM, Invitrogen) for 30 minutes at 37°C. Cells were washed with 

Krebs-Ringer Bicarbonate buffer with 10 mM glucose and the images were taken in buffer 

containing 12.5 nM TMRM to maintain the equilibrium distribution of TMRM162. Images were 

collected using a Nikon A1 inverted laser scanning confocal microscope with a 60x oil 

immersion objective. Cells were kept at 37°C for the duration of imaging with a stage adaptor. 

Mitochondrial membrane potential was measured by calculating the fluorescence of eight-10 

mitochondrial regions of interest (ROIs) and the results were normalized with one ROI in the 

nucleus in the same optical plane as a measure of loading.  

3.4 STATISTICAL ANALYSIS 

Results are displayed as mean ± standard deviation (SD) or mean ± standard error of the mean 

(SEM) from at least three independent experiments. Two-tailed Student's t-test was used to 

calculate statistical significance of two experimental groups. P values of less than 0.05 were 

considered significant. 
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4.0  RESULTS-CASPASE-1 REGULATES AUTOPHAGY AND BECLIN1 AFTER 

REDOX STRESS 

4.1 CASPASE-1 IS ACTIVATED AND HEPATOPROTECTIVE AFTER HS 

To investigate the role of the inflammasome and caspase-1 in regulating liver injury after 

oxidative stress, we utilized a HS/R model known to induce oxidative stress in the liver163, 164. 

We subjected WT and caspase-1-/- mice to HS for 1.5 hours as described in the Methods section, 

and sacrificed mice without resuscitation (HS alone), or after 1.5 hours, 4.5 hours, or 24 hours of 

fluid resuscitation. As shown in Figure 3A, IL-18 levels were significantly increased at all the 

time points after HS in the WT mice, indicating activation of inflammasome and caspase-1. As 

expected, caspase-1-/- mice did not express any detectable IL-18, even after HS/R. Moreover, we 

used Western blotting to assess the activation of caspase-1 in WT livers. The results show that 

caspase-1 was activated (cleaved) in the liver in a time-dependent manner after HS (Figure 3B).  
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Figure 3: Caspase-1 is activated in the liver after HS/R  

(A) IL-18 levels in the plasma of control (Ctrl) WT and caspase-1 -/- mice and mice subjected to HS only or HS and 

different time points of resuscitation. (n=3 for control groups; n=7-8 for experimental groups; mean±SEM; ND=not 

detected). (B) Representative Western blot and quantification of cleaved caspase-1 normalized to GAPDH 

expression. (mean±SD) 

 

Consistent with the results we previously reported in an HS model with bilateral femur 

fracture149, caspase-1-/-  mice had significantly increased levels of plasma ALT and aspartate 

transaminase (AST) (Figure 4A), compared with WT mice after 4.5 hours of resuscitation, 

indicating increased liver damage. Similarly, hematoxylin and eosin (H&E) staining of liver 

sections demonstrated more extensive centrilobular necrosis in caspase-1-/- mice in comparison 

with WT mice (Figure 4B). Caspase-1-/- mice also had more neutrophil infiltration in the liver 

compared with WT 4.5 hours after resuscitation, which persisted even after 24 hours of 

resuscitation and suggests increased inflammatory responses and tissues damage in caspase-1-/- 

mice (Figure 4C). Inflammatory cytokines, such as IL-6 and MCP-1, were significantly elevated 
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after HS/R in the plasma of WT mice as expected, with significantly increased IL-6 and MCP-1 

levels in caspase-1-/- mice after HS/R (Figure 4D). Increased inflammatory cytokine levels 

corresponded well with increased liver damage. Taken together, these data suggest that caspase-1 

is activated in the liver during HS/R, and plays a hepatoprotective role in this model of global I/R 

and oxidative stress. 

 

Figure 4: Caspase-1 is liver protective after HS/R  
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(A) ALT and AST levels in mice subjected to HS only and HS/R (n=3 for control groups; n=7-8 for experimental 

groups; mean±SEM; *P<0.05, WT vs. caspase-1 -/-). (B) H&E staining of liver sections of control mice and mice 

treated with HS and 4.5 hours of resuscitation. Caspase-1 -/- mice demonstrated extensive centrilobular necrosis 

(black arrows). Representative images for every group (n=7-8) are shown (original magnification, X100).  (C) 

Myeloperoxidase (MPO) levels were compared in the liver between WT and caspase-1 -/- mice (n=3 for control 

groups; n=7-8 for experimental groups; mean±SEM ; *P<0.05, WT vs. caspase-1 -/-). (D) MCP-1 and (E) IL6 levels 

in the plasma of control (Ctrl) WT and caspase-1 -/- mice and mice subjected to HS only or HS and different time 

points of resuscitation. (n=3 for control groups and n=7-8 for experimental groups; mean±SEM; ND=not detected). 

4.2 CASPASE-1 PROTECTS HEPATOCYTES AGAINST CELL DEATH AFTER 

HYPOXIA-REOXYGENATION 

Since the major role of caspase-1 is to produce IL-1β and IL-18, we next assessed whether the 

protective effect of caspase-1 in the liver is dependent on IL-1 or IL-18, which are produced 

mostly by immune cells such as macrophages. IL-18R-/- and IL-1R-/- mice showed similar levels 

of plasma ALT after HS/R, suggesting the hepatoprotective effect of caspase-1 is not dependent 

on its downstream cytokines (Figure 5).  

 

Figure 5: The protective effect of caspase-1 is not dependent on IL-1 or IL-18 
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 (A) and (B) ALT levels in  mice subjected to HS/R (n=2 for control groups; n=7-8 for experimental groups; 

mean±

 

A recent study also demonstrated that caspase-1 and inflammasome can be activated in 

response to endotoxin and fatty acids in hepatocytes, the major cell type in the liver151.  To assess 

whether the protective effect of caspase-1 during HS/R and oxidative stress is driven by caspase-

1 activation in hepatocytes, we subjected primary hepatocytes isolated from WT and caspase-1-/- 

mice to hypoxia/reoxygenation as previously described154. Hepatocytes were cultured under 

hypoxic conditions (1% hypoxia) for six hours and reoxygenated for one hour to mimic I/R 

induced by HS/R. Caspase-1 activity was measured in WT hepatocytes by determining the 

cleavage of a colorimetric peptide substrate. Both hypoxia alone and hypoxia/reoxygenation 

induced the activation of caspase-1 in WT hepatocytes (Figure 6A). To further confirm the role 

of caspase-1 in hepatocytes after oxidative stress, caspase-1 was knocked down by 

approximately 51% in WT hepatocytes treated with caspase-1 siRNA as assessed by Western 

blotting at 24 hours (Figure 6B). Acute knockdown of caspase-1 significantly decreased caspase-

1 activity after hypoxia/reoxygenation as expected (Figure 6A). Moreover, reversal studies 

confirm that transfection with mouse caspase-1 is able to significantly restore caspase-1 activity 

in caspase-1 -/- hepatocytes (Figure 6A and 6B).  

Consistent with our previous in vivo results showing increased liver cell death after HS/R 

and peripheral tissue injury, caspase-1-deficiency and acute knockdown resulted in higher levels 

of hepatocyte apoptosis and necrosis as determined by increased caspase-3 activity (Fig 6C and 

6D) and Annexin V/PI staining after hypoxia/reoxygenation (Fig.6E).  To confirm that altered 

levels of cell death were dependent on caspase-1 activation, we repeated the experiment 

comparing Annexin V/PI staining in WT hepatocytes with WT hepatocytes pretreated for one 
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hour with caspase-1 inhibitor Ac-YVAD-CMK (15µM)  and obtained similar results, with 

increased levels of hepatocyte apoptosis/necrosis in caspase-1 inhibitor treated cells (Figure 6F). 

Moreover, pan caspase inhibitor Z-VAD-FMK (15μM) was able to rescue excessive cell death in 

caspase-1 -/- hepatocytes to levels similar as those seen in WT cells after hypoxia-reoxygenation, 

indicating that caspase-1 protects hepatocytes through the inhibition of apoptosis after redox 

stress (Figure 7). 
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Figure 6: Caspase-1 is protective in hepatocytes after hypoxia/reoxygenation 
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(A) Relative caspase-1 activity in WT hepatocytes, WT hepatocytes treated with caspase-1 siRNA and caspase-1 -/- 

cells transfected with mouse caspase-1plasmid after normoxia, six hours hypoxia or six hours hypoxia/one hour 

reoxygenation. Data are shown as percentage of normoxic levels (mean±SD n=3; #P<0.05, normoxia vs. hypoxia-

reoxygenation; ns=not significant). (B) Relative caspase-3 activity in WT and caspase-1-/- hepatocytes, WT 

hepatocytes treated with caspase-1 siRNA and caspase-1 -/- cells expressing mouse caspase-1 after six hours 

hypoxia/one hour reoxygenation. Data are shown as percentage of normoxic levels (mean±SD; n=3; *P<0.05). (C) 

Representative Western blot (left) and quantification (right) of caspase-1, cleaved caspase-3, and PARP in WT 

hepatocytes treated with control siRNA (siCtrl) or caspase-1 siRNA (siC1) 24 hours before six hours hypoxia/one 

hour reoxygenation (H/R) treatment (mean±SEM; n=3; **P<0.01). (D) Representative Western blot (left) and 

quantification (right) of caspase-1, cleaved caspase-3, and PARP in caspase-1 -/- hepatocytes and caspase-1 

reconstituted cells subjected to hypoxia/reoxygenation (H/R) (mean±SEM; n=3; *P<0.05). (E) Representative 

Annexin V/PI flow cytometry dot plots for hepatocytes cultured under normoxia or after six hours hypoxia/one hour 

reoxygenation. (F) Representative Annexin V/PI analysis of WT hepatocytes pretreated with dimethyl sulfoxide 

(DMSO) or caspase-1 inhibitor (15µM), then six hours hypoxia/one hour reoxygenation. Data shown are 

representative of three independent experiments. 

 

Figure 7: Caspase-1 protects hepatocytes through the inhibition of apoptosis after 

hypoxia/reoxygenation 
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Representative Annexin V/PI analysis of WT and caspase-1 -/- hepatocytes pretreated with pan caspase-1 inhibitor 

(Z-VAD-FMK,15µM), then six hours hypoxia/one hour reoxygenation. Data shown are representative of three 

independent experiments. 

 

4.3 CASPASE-1 DEFICIENCY INCREASES MITOCHONDRIAL ROS 

PRODUCTION DURING OXIDATIVE STRESS 

Excessive oxidative stress is one cause of hepatocellular cell death after hypoxia/reoxygenation 

and HS/R163, 165. We hypothesized that caspase-1 may regulate oxidative stress after 

hypoxia/reoxygenation and therefore we assessed intracellular ROS production by DCF staining. 

As expected, hypoxia/reoxygenation leads to oxidative stress as measured by increased 

intracellular ROS production (Figure 8A). We found that ROS production was greater in 

hepatocytes isolated from caspase-1 -/- mice or WT hepatocytes treated with caspase-1 inhibitor 

than WT hepatocytes alone following hypoxia/reoxygenation (Figure 8A and B). The central role 

of caspase-1 in regulating intracellular ROS production was further confirmed by the acute 

knockdown and reconstitution studies (Fig. 8C). 

Since ROS can originate from mitochondria or from cytosolic NADPH oxidase/xanthine 

oxidase, we used fluorescent sensors capable of specifically detecting mitochondrial or cytosolic 

H2O2
166 to determine the source of excessive ROS in caspase-1-/- cells. Hypoxia/reoxygenation 

significantly increased both mitochondrial and cytosolic H2O2 as expected (Figure 8D). Levels of 

mitochondrial-derived ROS were significantly higher in caspase-1-/- hepatocytes compared with 

WT, with no difference in cytosolic ROS levels, suggesting that caspase-1 regulates 
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mitochondrial ROS production after hypoxia/reoxygenation. The results were further confirmed 

by caspase-1 knockdown with siRNA (Figure 8D).  

 

Figure 8: Caspase-1 deficiency increases mitochondrial ROS production during 

hypoxia/reoxygenation. 

(A) Intracellular ROS estimated by DCF staining in hepatocytes after normoxia or hypoxia for six or 12 hours and 

one hour of reoxygenation. Fluorescence intensity was quantified and normalized to normoxic WT levels 

(mean±SEM; *P<0.05, **P<0.01). (B) DCF fluorescence measured by flow cytometry in WT hepatocytes 

pretreated with vehicle DMSO or caspase-1 inhibitor (CI) and then six hours hypoxia/one hour reoxygenation (H-

R). Data shown are representative histograms from two independent experiments. (C) Relative intracellular ROS 

estimated by DCF staining in WT hepatocytes treated with caspase-1 siRNA and caspase-1 -/- cells expressing 

mouse caspase-1 after normoxia or six hours hypoxia/one hour reoxygenation. Data are shown as percentage of 

normoxic levels (mean±SD; n=3; *P<0.05). (D) Mitochondrial (left) and cytoplasmic H2O2 (right) in hepatocytes 

treated with six hours hypoxia/one hour reoxygenation (mean±SEM; #P<0.05, hypoxia-reoxygenation vs. normoxia; 

**P<0.01, WT vs. caspase-1 -/- or siCtrl vs. siCasp-1). 
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To confirm that excessive mitochondrial ROS contributed to increased cell death in 

caspase-1-/- hepatocytes, we treated cells with MnTMPyP, a mitochondrial-specific ROS 

scavenger167, prior to hypoxia/reoxygenation treatment. MnTMPyP treatment decreased cell 

death of caspase-1 -/- hepatocytes to levels similar to those seen in WT hepatocytes after 

hypoxia/reoxygenation (Figure 9). Altogether, these findings show a role for caspase-1 in 

mediating protection against mitochondrial-derived oxidative stress in hepatocytes.  

 

Figure 9: Caspase-1 -/- cells were rescued by mitochondrial ROS scavenger 

Annexin V/PI staining in WT and caspase-1 -/- hepatocytes pretreated with zero, 10, or 50µM MnTMPyP for one 

hour and subjected to six hours hypoxia/one hour reoxygenation or normoxia. Data are representative of two 

independent experiments. 

4.4 CASPASE-1 DEFICIENCY RESULTS IN IMPAIRED MITOCHONDRIAL 

CLEARANCE AFTER HYPOXIA-REOXYGENATION 

One adaptive mechanism employed to protect cells from harmful ROS is through regulation of 

mitochondrial oxidative phosphorylation that generates ROS as a byproduct168. We analyzed 
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mitochondrial oxygen consumption rate (OCR) using the Seahorse Extracellular Flux Analyzer 

and confirmed that OCR in WT cells was reduced after hypoxia/reoxygenation as expected 

(Figure 10). In contrast, basal OCR in caspase-1-/- hepatocytes was significantly lower than WT 

hepatocytes, and remained unchanged after hypoxia/reoxygenation (Figure 10), suggesting an 

important role for caspase-1 in regulating mitochondrial respiration in both basal and hypoxic 

states.  

 

Figure 10: Activation of caspase-1 decreases oxygen consumption after hypoxia/reoxygenation 

OCR in hepatocytes cultured under normoxia or treated with six hours hypoxia/one hour reoxygenation. OCR was 

normalized to protein content and shown as percentage of normoxic control (mean±SD; n=3; #P<0.05, hypoxia-

reoxygenation vs. normoxia; ***P<0.001, WT vs. caspase-1 -/-). 
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Mitochondrial respiration is a main source of ATP energy in cells, so we also determined 

steady-state levels of ATP in WT and caspase-1-/- hepatocytes. ATP levels decreased 

significantly in WT hepatocytes after hypoxia as expected, but interestingly remained unchanged 

in caspase-1-/- hepatocytes, correlating with similarly unchanged mitochondrial respiration in 

these cells (Figure 11A). However, no significant difference was seen in mitochondrial 

membrane potential between WT and Caspase-1 -/- hepatocytes after hypoxia-reoxygenation 

(Figure 11B). 

 

Figure 11: Mitochondrial function in WT and caspase-1 -/- hepatocytes after hypoxia-reoxygenation 

(A) Steady-state ATP levels were measured by luciferin-luciferase reaction and normalized to protein content. 

(mean±SD; n=3. **P<0.01, hypoxia six hours vs. normoxia. #P<0.05, WT vs. caspase-1 -/-). (B) Mitochondrial 

membrane potential was measured by TMRM staining in hepatocytes cultured under normoxic conditions or treated 

with hypoxia for six hours followed by reoxygenation (mean±SD; n=3). 

 

One explanation for the reduced mitochondrial respiration and ROS production during 

hypoxia/reoxygenation could be initiation of a rapid decrease in mitochondrial content169, 170. We 

found significantly decreased mitochondrial volume in WT hepatocytes after 

hypoxia/reoxygenation, measured by quantitation of 3D-confocal microscopy images. In 
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contrast, mitochondrial volume in caspase-1-/- and caspase-1 knocked down cells remained 

unchanged (Figure 12A), and was consistent with observed mitochondrial respiration. Our 

results showing a role for caspase-1 in the reduction in mitochondrial volume after hypoxia were 

further confirmed in caspase-1 reconstituted cells and WT hepatocytes pretreated with caspase-1 

inhibitor (Figure 12A and 12B). To ensure that changes in mitochondrial volume were not 

secondary to mitochondrial swelling, mitochondrial content was also determined by measuring 

mtDNA copy number. Like before,  mtDNA was significantly decreased in WT hepatocytes after 

hypoxia or hypoxia/reoxygenation compared with normoxia, whereas caspase-1-/- cells had 

significantly increased mtDNA content in comparison with normoxic level (Figure 12C), further 

suggesting an important role of caspase-1 in regulating mitochondrial mass. The effect of 

caspase-1 on regulating mitochondrial content was further confirmed by 1.65 fold increase in the 

levels of translocase of outer membrane 20 (TOM 20) in caspase-1 knockdown cells (Figure 

12D). Given the critical role of PGC-1α in regulating mitochondrial biogenesis, we next assessed 

whether caspase-1 activation regulates the levels of PGC-1α. As shown in Figure 13, both WT 

and caspase-1 -/- hepatocytes had increased PGC-1α expression early after hypoxia, suggesting 

an upregulation in mitochondrial biogenesis after acute hypoxia. However, we did not observe a 

significant difference in PGC-1α levels between WT and caspase-1-/- cells. Altogether, caspase-1 

appears to play a vital role in reducing mitochondrial content during hypoxia/reoxygenation, 

which may form part of the protective mechanism of caspase-1.  
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Figure 12: Defective mitochondrial clearance in caspase-1-deficient cells during oxidative stress 

(A) Mitochondrial volume in hepatocytes cultured under normoxia or treated with six hours hypoxia/one hour 

reoxygenation. Data are shown as percentage of normoxic levels (mean±SEM; #P<0.05, normoxia vs. hypoxia-

reoxygenation. **P<0.01, WT vs. caspase-1 -/- or siCtrl vs. siCasp-1; *P<0.05, vector vs. caspase-1).  (B) 

Mitochondrial content in WT hepatocytes pretreated with DMSO or caspase-1 inhibitor before normoxic culture or 

treated with hypoxia/reoxygenation. Data are shown as percentage of normoxic levels (mean±SEM; #P<0.05, 

normoxia vs. hypoxia-reoxygenation. **P<0.01, WT vs. caspase-1 inhibitor). (C) Mitochondrial DNA copy number 
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was shown as percentage of normoxic levels (mean±SEM; n=3; #P<0.05, normoxia vs. hypoxia or hypoxia-

reoxygenation. *P<0.05, WT vs. caspase-1 -/-). (D) The expression (left) and quantification (right) of TOM 20 was 

assessed in WT hepatocytes transfected with control siRNA (siCtrl) or caspase-1 siRNA (siC1) 24 hours before they 

were treated with hypoxia (mean±SEM; n=3;*P<0.05). 

 

 

Figure 13: caspase-1 deficiency does not have an effect on PGC-1alpha expression after hypoxia 

The expression (left) and quantification (right) of PGC-1α was assessed in WT and caspase-1 -/- hepatocytes treated 

with zero, six, or 12 hours of hypoxia. 

4.5 DEFICIENCY IN CASPASE-1 DECREASES AUTOPHAGIC FLUX IN 

HEPATOCYTES AFTER HYPOXIA-REOXYGENATION 

 
Mitochondrial autophagy is responsible for mitochondrial turnover and clearance of 

dysfunctional or damaged mitochondria36, 171. We observed mitochondria-containing 

autophagosomes in WT hepatocytes after hypoxia-reoxygenation (Figure 14, left), and this 

number was increased by blocking degradation of autolysosomes with bafilomycin A1 (Figure 

14, right). Given our findings above, we hypothesized that caspase-1 would regulate autophagic 
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flux during hypoxia/reoxygenation. Autophagic flux is controlled by both induction and 

maturation/degradation of autophagosomes. To quantify autophagy we inhibited lysosomal 

degradation (with bafilomycin) and analyzed the accumulation of GFP-LC3 puncta (autophagic 

vacuoles) by microscopy or LC3II by Western blot. This, together with assessment of steady-

state autophagy, allowed us to monitor changes in autophagic flux172. WT and caspase-1-/- 

hepatocytes showed similar levels of autophagic flux under normoxic conditions as well as after 

starvation (Figure 15A and 15B). However, after hypoxia/reoxygenation, caspase-1-/- and 

caspase-1 knocked down hepatocytes had fewer autophagosomes compared with control groups, 

and this number did not increase with bafilomycin treatment, suggesting that caspase-1 is 

important for autophagy induction (Figure 15A and 15B). Reversal studies confirm that 

transfection with mouse caspase-1 is able to significantly restore autophagic flux in caspase-1 -/- 

hepatocytes.   

 

Figure 14: Mitochondrial autophagy in WT hepatocytes after hypoxia-reoxygenation 

Mitochondria (MitoTracker-Red) contained autophagosomes (GFP-LC3) in WT hepatocytes after six hours 

hypoxia/one hour reoxygenation +/- bafilomycin (50nM). Images are representative of at least three separate 

experiments. Scale bar=10µm. 
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The maturation of autophagosomes after caspase-1 activation was further analyzed using 

a tandem RFP-GFP-LC3 construct173. GFP fluorescence is quenched in acidic lysosomes while 

RFP is relatively more resistant to acidic conditions. Therefore, co-localization of green and red 

puncta indicates early autophagic vacuoles, while red puncta alone indicate late autophagic 

vacuoles. Caspase-1-/- hepatocytes had a significantly reduced number of early autophagic 

vacuoles after hypoxia/reoxygenation compared with WT hepatocytes (Figure 16), further 

confirming a role for caspase-1 in promoting autophagy induction. 
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Figure 15: Caspase-1 regulates autophagic flux in hepatocytes after oxidative stress 

 (A) Autophagosomes (GFP-LC3 puncta) in hepatocytes after six hours hypoxia/one hour reoxygenation +/- 

bafilomycin (50nM). Scale bar=100µm. (B) Quantification of autophagosomes (GFP-LC3 puncta) in hepatocytes 

after six hours hypoxia/one hour reoxygenation +/- bafilomycin (50nM) (mean±SEM; **P<0.01, ***P<0.001, 

steady state vs. bafilomycin treatment; #P<0.05, WT vs. caspase-1 -/-, siCtrl vs. siCasp-1 or vector vs. caspase-1; 

ns=not significant). 
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Figure 16: Caspase-1 upregulates induction of autophagy in hepatocytes after oxidative stress 

WT and caspase-1 -/- hepatocytes were transfected with GFP-RFP-LC3 for 24 hours before they were subjected to 

six hours of hypoxia and reoxygenation. Cells were fixed and imaged using confocal microscopy. Early (GFP and 

RFP positive puncta) and late (RFP positive only puncta) autophagic vacuoles were quantified (mean±SEM; 

**P<0.01, WT vs. caspase-1 -/-). Scale bar=20μm. 

 

To determine whether protection against oxidative stress-induced cell death conferred by 

caspase-1 activation correlates with upregulation of autophagic flux, we blocked autophagic flux 
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using a lower concentration of bafilomycin (20nM) that doesn’t cause significant cell death 

under basal level, and subjected cells to hypoxia/reoxygenation with subsequent analysis of cell 

death. As shown in Figure 17, the low concentration of bafilomycin treatment did not 

significantly increase cell death in either WT or caspase-1-/- hepatocytes under normoxic 

conditions.  As previously shown, hypoxia/reoxygenation increased WT cell death compared 

with normoxic levels and this was further increased with bafilomycin treatment (Figure 17). Cell 

death in caspase-1-/- hepatocytes was higher than in WT cells as previously noted, but was not 

altered by blocking autophagic flux with bafilomycin. Collectively, these data suggest that 

caspase-1 is protective in hepatocytes after hypoxia/reoxygenation by upregulating autophagic 

flux, and that autophagic flux is hepatoprotective during oxidative stress. 

 

Figure 17: Caspase-1 protects hepatocytes by upregulating autophagy after hypoxia-reoxygenation 

WT and caspase-1 -/- hepatocytes were subjected to hypoxia-reoxygenation with or without bafilomycin (20nM). 

Cell death was analyzed by Annexin V/PI and representative result of three experiments was shown. 
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4.6 DEFICIENCY IN CASPASE-1 IMPAIRS BECLIN1 UPREGULATION AFTER 

HYPOXIA-REOXYGENATION 

 

Next, we determined the mechanism by which caspase-1 regulates autophagy induction. There 

was no difference in levels of Atg3, Atg12-Atg5 conjugate, or Atg7, which are key proteins 

involved in regulating the initiation of autophagy induction, between WT and caspase-1-/- 

hepatocytes during oxidative stress (Figure 18A, left) and after LPS treatment (Figure 18A, 

right). However, expression of beclin1, a key autophagy initiator, was induced in WT but was 

significantly lower in caspase-1-/- hepatocytes after hypoxia (Fig.18B), suggesting a previously 

unidentified role for caspase-1 in regulating beclin1 expression. Similarly, beclin1 expression 

was significantly lower in caspase-1 knocked down hepatocytes after hypoxia/reoxygenation 

(Figure 18C). Moreover, WT hepatocytes showed increased levels of beclin1 mRNA after 

hypoxia, whereas the levels remained unchanged in caspase-1 -/- and caspase-1 knocked down 

cells (Figure 18D).  

Beclin1 has been previously shown to be cleaved by caspase-8174. To determine if 

caspase-1 induces beclin1 levels through regulation of caspase-8, we assessed the activity of 

caspase-8 by Western blot. WT and caspase-1 -/- hepatocytes showed increased caspase-8 after 

hypoxia, but no difference in caspase-8 cleavage was observed between WT and caspase-1 -/- 

cells (Figure 19). To confirm a role for beclin1-mediated autophagy in reducing mitochondrial 

content and subsequent ROS production during hypoxia/reoxygenation in hepatocytes, we 

knocked down beclin1 in WT hepatocytes (Figure 20A). Mitochondrial ROS but not cytosolic 

ROS production was significantly higher in sibeclin1-treated cells compared with controls 

(Figure 20B), similar to the results observed in caspase-1-/- cells.  
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Figure 18: Caspase-1 is required for beclin1 upregulation after HS/R and hypoxia/reoxygenation 

(A) Atg7, Atg12-Atg5 conjugates, and Atg3 expression in WT and caspase-1 -/- hepatocytes cultured under normoxia 

or hypoxia for two, six, and 18 hours was assessed by Western blot (left). The expression of Atg12-Atg5 in WT and 

caspase-1 -/- hepatocytes treated with LPS for six hours is shown in the right as positive control. Images are 

representative of at least three independent experiments. (B) Representative Western blot of beclin1 in WT and 

caspase-1 -/- hepatocytes cultured under normoxia or hypoxia for two, six, and 18 hours. (C) Representative Western 

blot of beclin1 in WT hepatocytes treated with control siRNA or caspase-1 siRNA after normoxia or hypoxia for 
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two and six hours. (D) Beclin1 mRNA levels in hepatocytes after normoxia or six hours hypoxia (mean±SEM; n=3; 

*P<0.05; ns=not significant). 

 

 

Figure 19: Representative caspase-8 expression in WT and caspase-1 -/- hepatocytes cultured under 

normoxia or treated with hypoxia for six or 18 hours 

 

Figure 20: Beclin1 knockdown results in increased mitochondrial ROS production in mouse 

hepatocytes after hypoxia-reoxygenation 

(A) Beclin1 expression in WT hepatocytes transfected with siControl (C) or sibeclin1 (b) for 24 hours before they 

were subjected to six hours of hypoxia (B) mitochondrial (left) and cytosolic H2O2 (right) production in WT 
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hepatocytes transfected with control siRNA (siCtrl) or siRNA targeting beclin1 (sibeclin1) and six hours 

hypoxia/one hour reoxygenation (mean±SEM; #P<0.05, hypoxia-reoxygenation vs. normoxia; **P<0.01; siCtrl vs. 

sibeclin1). 

4.7 CASPASE-1 ACTIVATION IS PROTECTIVE IN THE LIVER AFTER HS/R 

THROUGH UPREGULATING BECLIN1 AND SUBSEQUENT CLEARANCE OF 

MITOCHONDRIA 

To determine if it is by a similar mechanism that caspase-1 exerts protection in vivo after HS/R, 

we assessed oxidative stress in the liver by measuring a major aldehyde product of lipid 

oxidation, HNE Michael adducts175. Increased liver injury in caspase-1 -/- mice after HS/R was 

associated with greater liver lipid peroxidation (Figure 21), suggesting increased oxidative stress 

in the livers of these mice. We also found higher cytosolic cytochrome c levels in caspase-1 

deficient livers after HS/R compared with WT (Figure 22A). The results are consistent with 

increased mitochondrial ROS in caspase-1-/- hepatocytes and suggest increased mitochondria-

triggered cell death due to caspase-1 deficiency.  
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Figure 21: Caspase-1 activation reduced liver injury and oxidative stress after HS/R 

Representative staining (scale bar=100µm) and quantification of 4-HNE adducts in livers of control mice (Ctrl) and 

mice subjected to HS and 4.5 hours of resuscitation (HS+4.5R) (mean±SEM; n=3 for Ctrl, n=5 for HS+4.5R; 

**P<0.01). Quantification is shown as fold increase to Ctrl groups. (D) Cytochrome c release was determined by 

Western blot of liver cytosolic fraction. 

 

To assess mitochondrial content in vivo, we measured activity of citrate synthase, a 

mitochondrial enzyme relatively resistant to oxidative modification, which can therefore be used 

as an indicator of mitochondrial content176. We found that mitochondrial content was 

significantly decreased in WT livers but remained unchanged in caspase-1 -/- livers following 

HS/R (Figure 22B). Mitochondrial autophagy in WT liver after HS/R was confirmed by electron 

microscopy analysis (Figure 22C). Moreover, beclin1 levels increased in WT and caspase-1 -/- 
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livers following HS/R. But consistent with our findings in vitro, beclin1 expression was 

significantly lower in caspase-1 -/- livers compared with WT livers (Figure 22D). 

 

 

Figure 22: Caspase-1 deficiency results in increased mitochondrial content and decreased beclin1 in 

the liver after HS/R 
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(A) Liver mitochondrial content was determined by citrate synthase activity and normalized to controls 

(mean±SEM; n=4; #P<0.05, HS+1.5R vs. Ctrl. *P<0.05, WT vs. caspase-1 -/-). (B) Electron microscopy images of 

WT liver treated with HS and 4.5 hours of resuscitation. Mitochondria-containing autophagosomes are indicated as 

m (scale bar=2µm). (C) Western blot and quantification of beclin1 levels in livers of control mice or mice subjected 

to HS+4.5R (mean±SD; n=3 for control groups, n=6 for HS+4.5R groups; *P<0.05). 

 

Taken together, our results suggest that caspase-1 deficiency in vivo leads to increased 

oxidative stress and suppressed mitochondrial clearance in the liver after HS/R. To determine if 

this can be rescued by beclin1 overexpression, we constructed an adenovirus encoding full-

length mouse beclin1 (ad-beclin1) and injected it or ad-GFP as control intravenously into mice 

48 hours prior to HS/R. Liver ad-GFP expression was confirmed in control mice (Fig.23A), and 

liver beclin1-overexpression was confirmed by immunoblotting (Fig.23B). Beclin1 

overexpression in caspase-1 -/- livers led to significantly increased autophagy indicated by the 

levels of LC3II (Figure 23C).  
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Figure 23: Beclin1 overexpression leads to increased autophagy in caspase-1 -/- mice after HS/R 

(A) Effectiveness of adenoviral gene expression in liver after tail vein injection with adenovirus encoding GFP as 

control (ad-Ctrl) (left; scale bar=50μm) or mouse beclin1 (ad-beclin1) (right). (B) Western blot and quantification of 

LC3II in livers of caspase-1 -/- mice given control adenovirus (ad-Ctrl) or mouse beclin1 adenovirus (ad-beclin1) 48 

hours prior to no surgery (Ctrl) or HS and 4.5 hours of resuscitation (HS+4.5R) (mean±SD; n=5, **P<0.01). 

 

Moreover, overexpression of beclin1 was hepatoprotective in caspase-1-/- mice, but did 

not confer further protection in WT mice where beclin1 can be upregulated normally (Figure 

24A). We also confirmed that beclin1-overexpression reduced oxidative stress in caspase-1-/- 

livers as assessed by HNE adducts (Figure 24B). Decreased cytosolic cytochrome c levels 

(Figure 24C) in caspase-1-/- livers with beclin1-overexpression further suggests prevention of 

mitochondria-triggered cell death by beclin1. Taken together, our results indicate a previously 

unrecognized role for caspase-1 in the upregulation of beclin1 to initiate mitochondrial 
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autophagy in hepatocytes and to reduce excessive mitochondrial ROS production. This is 

consistent with a known protective role of beclin1 during hypoxia/reoxygenation 177.  

 

 

Figure 24: Beclin1 overexpression rescues caspase-1 -/- mice from excessive liver injury 

(A) Plasma ALT (n=6; mean±SEM; *P<0.05), (B) liver HNE adducts (mean±SEM; n=5, *P<0.05), and (C) liver 

cytoplasmic cytochrome c (n=5; mean±SD; #P<0.05, WT vs. caspase-1 -/-. *P<0.05, ad-Ctrl vs. ad-beclin1) in mice 

given ad-GFP or ad-beclin1 (ad-b1) 48 hours prior to HS+4.5R. 
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4.8 GENERATION OF BONE MARROW (BM) CHIMERIC MICE TO DETERMINE 

THE CELL TYPE RESPONSIBLE FOR ACTIVATION OF CASPASE-1 IN THE LIVER 

To confirm the role of parenchymal cells in mediating the activation and protective effect of 

caspase-1, we generated BM chimeric mice by adoptive BM transfer into irradiated hosts using 

WT and caspase-1-/- (KO) mice. Combinations included WT/WT (recipient/donor), WT/KO, 

KO/WT, and KO/KO. WT/WT and KO/KO mice served as positive and negative controls, 

respectively. Following HS/R, circulating IL-18 levels were measured to assess the activation of 

caspase-1. As expected, the KO/KO combination resulted in a near-complete absence of cytokine 

release after HS/R (Figure 25A). The test combinations of WT/KO and KO/WT led to similar 

IL-18 levels as WT/WT mice following HS/R, suggesting that both parenchymal cells and BM-

derived immune cells contribute to caspase-1 activation. However, KO/KO mice did not show 

higher levels of liver injury compared with WT/WT mice, as we have shown in caspase-1 -/- mice 

(Figures 25B and 25C). Moreover, basal beclin1 levels were high in all of the chimeric strains, 

which did not have increased beclin1 expression after HS/R as shown in WT and caspase-1 -/- 

mice (Figure 25D). Since beclin1 increases during cell stress178, the relatively unchanged beclin1 

expression indicates increased stress at basal levels in chimeric livers, probably due to 

irradiation. Interestingly, WT/KO mice showed higher levels of liver injury compared to 

WT/WT and KO/WT mice (Figure 25B and 25C), suggesting that caspase-1 activation in 

parenchymal cells contributes to liver protection after HS/R. 
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Figure 25: Generation of BM chimeric mice to determine the cell type responsible for the activation 

and protective effect of caspase-1 after HS/R 

(A) Plasma IL18 in BM chimeric mice after control (Ctrl), HS + 4.5 hours of resuscitation (R) (n=1/ Ctrl group; 

n=5/experimental group; mean±SEM; **P<0.01). (B) Plasma ALT and (C) AST levels in chimeric mice after HS/R 
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(n=1 in control groups; n=5 in HS/R groups; mean±SEM*P<0.05). (D) Western blot of beclin1 levels in livers of 

control chimeric mice or mice subjected to HS+4.5R. 

 

4.9 ACTIVATION AND PROTECTIVE EFFECT OF CASPASE-1 IS CASPASE-11 

INDEPENDENT 

Recent evidence has shown that caspase-1 -/- mice generated using strain 129 embryonic stem 

cells, which attenuate caspase-11 expression genetically, lack both caspase-1 and caspase-1142. 

Indeed, by Western blotting, we confirmed that peritoneal macrophages isolated from caspase-1 -

/- mice were also caspase-11 deficient, whereas macrophages from strain 129 mice lack caspase-

11 as expected (Figure 26A). Given that caspase-11 also mediates non-canonical inflammasome 

activation induced by cholera toxin B, E. coli, C. rodentium, and V. cholerae42, we next 

determined whether the activation of caspase-1 in the liver after HS was mediated by caspase-11. 

As shown in Figure 26B, HS only, as well as HS/R, induced the activation of caspase-11. 

However, caspase-1 -/- liver also showed noticeably increased caspase-11 expression after HS 

(Figure 26B).  

Since macrophages from strain 129 mice lack detectable caspase-11 protein, we utilized 

strain 129 mice to investigate the role of caspase-11 in mediating caspase-1 activation and liver 

protection, together with caspase-1 -/- and WT mice as controls. Caspase-1 -/- mice showed 

minimal levels of circulating IL-18 and a tendency towards increased liver injury as 

demonstrated previously (Figure 27). However, similar levels of liver injury and IL-18 release 
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were observed between strain 129 mice and WT (C57BL/6) mice, suggesting that the activation 

and protective effect of caspase-1 in the liver is not dependent on caspase-11 after HS. 

 

 

Figure 26: Caspase-1 -/- mice were caspase-1 -/- caspase-11 -/- 

(A) Peritoneal macrophages were isolated from WT (C57BL/6), caspase-1 -/-, and strain 129 mice and the levels of 

pro-caspase1 and pro-caspase11 in macrophages left unstimulated or stimulated with LPS were detected by Western 

blot. (B) Levels of pro-caspase11 were detected by Western blot in liver lysates from control (Ctrl) mice or mice 

treated with HS only or HS with 4.5 hours of resuscitation (HS+4.5R). Peritoneal macrophages treated with or 

without LPS were used as controls (last two lanes). 
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Figure 27: Strain 129 mice showed similar levels of liver injury and caspase-1 activation after HS 

(A) ALT and (B) AST levels in WT (C56BL/6), casp-1 -/- and strain 129 mice treated with HS and 4.5 hours of 

resuscitation (mean±SEM; n=5 for HS+4.5R). (C) Circulating IL-18 levels in WT, casp-1 -/-, and strain 129 mice 

after HS and 4.5 hours of resuscitation.  
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5.0  RESULTS-THE AIM2 INFLAMMASOME MEDIATES ACTIVATION AND 

PROTECTIVE EFFECT OF CASPASE-1 IN HEPATOCYTES AFTER REDOX STRESS 

5.1 THE PROTECTIVE EFFECT OF CASPASE-1 IN THE LIVER IS DEPENDENT 

ON AIM2 AFTER HS 

In order to investigate the mechanism by which caspase-1 is activated and exerts protection after 

redox stress in the liver, we first assessed whether the activation of caspase-1 is mediated by the 

NLRP3 inflammasome. We subjected WT and NLRP3 -/- mice to HS with 4.5 hours of 

resuscitation, the time point associated with severe liver injury and excessive oxidative stress 

shown by our previous results179. As shown in Figure 28A, circulating IL-18 levels were similar 

in WT and NLRP3 -/- mice after HS/R, indicating that caspase-1 activation in immune cells is not 

NLRP3-dependent after redox stress induced by HS/R. Moreover, in contrast to caspase-1 -/- 

mice, NLRP3-/- mice did not have a marked increase in liver damage compared with WT mice 

(Figure 28B). Taken together, the results suggest that the protective effect of caspase-1 in the 

liver is not mediated by the NLRP3 inflammasome. 
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Figure 28: Activation and protective effect of caspase-1 is not dependent on NLRP3 after HS/R 

(A) Circulating IL-18 and (B) plasma ALT in WT and NLRP3 -/- mice after HS/R (n=2 in control groups; n=7-8 in 

HS/R groups; mean±SEM)  

 

The NLRP1 inflammasome has been shown to mediate caspase-1 activation in a mouse 

model of cerebral ischemia180. Next, we determined whether the activation and protective effect 

of caspase-1 is dependent on the NLRP1 inflammasome after oxidative stress by in vivo 

knockdown of NLRP1a. Injection of siRNA against NLRP1a through tail vein significantly 

decreased the levels of NLRP1 in the liver at day 3, as determined by Western blot (Figure 29A). 

Knockdown of NLRP1a significantly suppressed the levels of circulating IL-18 after HS/R, 

suggesting the essential role of NLRP1a in mediating caspase-1activation in immune cells after 

HS/R (Figure 29B). However, mice treated with siNLRP1a showed similar levels of liver injury 

after HS/R compared with control siRNA treated mice as determined by ALT levels (Figure 

29C), indicating that the protective effect of caspase-1 activation after oxidative stress in the 

liver is not mediated by the NLRP1 inflammasome. 
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Figure 29: NLRP1 inflammasome mediates caspase-1 activation in immune cells, but not the 

protective effect of caspase-1 

(A) Representative Western blot (left) and quantification (right) of NLRP1 expression in the liver in mice injected 

with control siRNA or NLRP1a siRNA two days before HS and 4.5 hours of resuscitation (HS+4.5R) treatment. (B) 

Circulating IL-18 and (C) plasma ALT in WT and NLRP1 siRNA treated mice after HS/R (n=1 in control groups; 

n=6-7 in HS/R groups; mean±SEM**P<0.01). 

 

Since the AIM2 inflammasome can be activated by endogenous dsDNA50, and 

mitochondrial DNA  has been shown to be released after oxidative stress37, we next hypothesized 

that the activation and protective effect of caspase-1 is mediated by the AIM2 inflammasome. 

AIM2 -/- mice had similar levels of plasma IL-18 as control mice, which ruled out the role of 

AIM2 in mediating caspase-1 activation in immune cells after HS/R (Figure 30A). AIM2 

deficiency led to significantly elevated liver injury after HS/R, similar to that seen in caspase-1 -/- 

mice (Figure 30B). Altogether, these findings suggest a role for the NLRP1 inflammasome in 
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activating caspase-1 in immune cells, but the AIM2 inflammasome in mediating the protective 

effect of caspase-1 in the liver after redox stress. 

 

 

Figure 30: The protective effect of caspase-1 in the liver is dependent on AIM2 inflammasome after 

HS/R 

(A) Circulating IL-18 and (B) plasma ALT in Control and AIM2 -/- mice after HS/R (n=2 in control groups; n=7 in 

HS/R groups; mean±SEM **P<0.01). 

5.2 ACTIVATION AND THE PROTECTIVE EFFECT OF CASPASE-1 AFTER 

REDOX STRESS IS DEPENDENT ON AIM2 IN HEPATOCYTES. 

To confirm the role of AIM2 in regulating caspase-1 activation and hepatocyte cell death after 

redox stress, we subjected hepatocytes isolated from WT and AIM2 -/- mice to 

hypoxia/reoxygenation in an in vitro model of HS/R181. Hypoxia-reoxygenation treatment 

induced the activation of caspase-1 in WT hepatocytes as expected, whereas caspase-1 activity 

stayed unchanged in AIM2 -/- hepatocytes (Figure 31A), suggesting a role for AIM2 in activating 

caspase-1. To further confirm the activation of the AIM2 inflammasome in hepatocytes after 
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hypoxia-reoxygenation, we performed immunoprecipitation to assess the association of AIM2 

and ASC, the adaptor protein required for the assembly of AIM2 inflammasome50, 182. AIM2 

formed a complex with ASC in WT hepatocytes after hypoxia-reoxygenation as well as the 

treatment of poly(dA-dT):poly(dA-dT) [poly(dA:dT)], a synthetic form of dsDNA known to 

activate the AIM2 inflammasome182 (Figure 31B). To determine if similar observations took 

place in vivo, we examined caspase-1 cleavage in the liver by Western blot. Similar to the in 

vitro results, caspase-1 was activated after HS/R in the WT liver, but the activity was not 

elevated in the AIM2 -/- liver after redox stress induced by HS/R (Figure 31C).  

To investigate whether AIM2 is protective after redox stress in hepatocytes, we assessed 

hepatocyte apoptosis and necrosis by Annexin V/PI analysis. Consistent with the in vivo results 

showing increased liver cell death after HS/R, AIM2-deficiency resulted in higher levels of 

hepatocyte cell death after hypoxia-reoxygenation, which phenocopied caspase-1-deficient 

hepatocytes179 (Figure 31D).  
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Figure 31: Activation and the protective effect of caspase-1 after redox stress is dependent on AIM2 

in hepatocytes 

(A) Relative caspase-1 activity in WT and AIM2 -/- hepatocytes after normoxia or six hours hypoxia and one hour 

reoxygenation. Data are shown as percentage of normoxic levels (mean±SD n=3; #P<0.05, normoxia vs. hypoxia-

reoxygenation; *P<0.01, WT vs. AIM2 -/-). (B) WT hepatocytes were treated with six hours hypoxia and one hour 
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reoxygenation or poly (dA:dT) followed by immunoprecipitation with ASC and immunoblotting with AIM2. (C) 

Representative Western blot and quantification of pro- and cleaved caspase-1 in the livers of WT and AIM2 -/- mice 

after HS only or HS+4.5 hours resuscitation (HS+4.5R) (mean±SEM n=3; #P<0.05, HS+4.5R vs. Ctrl; *P<0.01, WT 

vs. AIM2 -/-)..  (D) Representative Annexin V/PI flow cytometry dot plots for WT and AIM2 -/- hepatocytes cultured 

under normoxia or after six hours hypoxia/one hour reoxygenation. 

5.3 DEFICIENCY IN AIM2 IMPAIRS BECLIN1 UPREGULATION AND 

MITOCHONDRIAL CLEARANCE AFTER HYPOXIA/REOXYGENATION. 

We have shown that caspase-1 activation protects against cell death through upregulation of the 

autophagy initiator beclin1 and through the clearance of mitochondria through mitochondrial 

autophagy after oxidative stress179. Therefore, here we investigated whether AIM2 exerts 

protection in hepatocytes through the same mechanism. As shown in Figure 32A, beclin1 

expression was induced in WT hepatocytes, but significantly lower in AIM2-/- hepatocytes after 

hypoxia as well as poly(dA:dT) simulation, consistent with the results observed in caspase-1 -/- 

hepatocytes. AIM2 -/- cells had significantly increased mitochondrial content after hypoxia-

reoxygenation compared with normoxia, whereas the levels remained unchanged in WT 

hepatocytes, as determined by measuring mtDNA copy number (Figure 32B). These results were 

also in line with what we have shown in caspase-1 -/- cells after redox stress. We also found that 

ROS production was greater in AIM2 -/- hepatocytes compared with WT cells after hypoxia-

reoxygenation (Figure 32C), consistent with the central role of caspase-1 in regulating 

intracellular ROS production. Moreover, the role of AIM2 in regulating beclin1 expression was 

further confirmed by the decreased beclin1 levels in AIM2 -/- liver after HS/R compared with 

WT liver (Figure 32D). Taken together, AIM2 appears to protect hepatocytes from cell death 
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through the same mechanism as caspase-1, which is by upregulating mitochondrial clearance and 

thereby reducing intracellular ROS production after redox stress. 

 

Figure 32: Beclin1 upregulation and mitochondrial clearance after redox stress is dependent on 

AIM2 in hepatocytes 

(A) Representative Western blot of beclin1 in WT and AIM2 -/- hepatocytes treated with poly (dA:dT) or cultured 

under normoxia or hypoxia for two or six hours. (B) Mitochondrial DNA copy number was shown as percentage of 

normoxic levels (mean±SEM; n=3; #P<0.05, normoxia vs. hypoxia-reoxygenation. *P<0.05, WT vs. AIM2 -/-). (C) 

DCF fluorescence measured by flow cytometry in WT and AIM2 -/- (KO) hepatocytes treated with six hours 
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hypoxia/one hour reoxygenation (H-R). Data shown are representative histograms from two independent 

experiments. (D) Western blot and quantification of beclin1 levels in control mice livers or mice subjected to HS 

alone or HS+4.5R (mean±SD; n=2 for control groups, n=5 for HS+4.5R groups; *P<0.05). 

5.4 HMGB1 ASSOCIATES WITH AIM2 AFTER OXIDATIVE STRESS IN 

HEPATOCYTES 

HMGB proteins have been shown to bind to all immunogenic nucleic acids and can function as 

universal sentinels for nucleic-acid-mediated innate immune responses, including the activation 

of TLR3, TLR7, and TLR9 by their cognate nucleic acids183. Therefore, we hypothesized that 

HMGB1 facilitates the sensing of dsDNA by AIM2, thereby enhancing the activation of the 

AIM2 inflammasome after redox stress.  First, by immunoprecipitation, we showed an increased 

association of endogenous HMGB1 and AIM2 in WT hepatocytes after hypoxia-reoxygenation 

as well as poly(dA:dT) treatment.  As expected, the association was not detectable in Aim -/- 

cells (Figure 33). 

 

Figure 33: The association of HMGB1 and AIM2 after oxidative stress in hepatocytes 
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WT and AIM2 -/- hepatocytes were treated with six hours hypoxia and one hour reoxygenation or poly (dA:dT) 

followed by immunoprecipitation with AIM2 and immunoblotting with ASC or HMGB1. Cell lysate from LPS 

treated macrophages serve as control (last lane). 

 

We next examined the possible interaction of HMGB1 and AIM2 in the liver after HS/R. 

Whereas HMGB1 is mainly localized in the nucleus, in the WT liver the released cytosolic 

HMGB1 co-localized with punctated cytoplasmic AIM2 after HS/R (Figure 34). Taken together, 

immunoprecipitation and immunofluorescence experiments indicate that HMGB1 associates 

with AIM2 in hepatocytes after redox stress. 

 

 

Figure 34: The association of HMGB1 and AIM2 after HS/R in the liver 

The co-localization of AIM2 and HMGB1 (indicated by arrows) was determined by staining of AIM2 (green), 

HMGB1 (red), and nucleus (DAPI) in livers of mice subjected to HS and 4.5 hours of resuscitation. 
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5.5 HMGB1 IS PROTECTIVE AFTER OXIDATIVE STRESS IN HEPATOCYTES 

To determine whether HMGB1-/- hepatocytes recapitulate the phenotype of caspase-1-/- and 

AIM2-/- cells, we analyzed HMGB1 -/- cell death after hypoxia-reoxygenation. Consistent with 

our previous results showing increased cell death in caspase-1-deficient and AIM2-deficient 

hepatocytes, HMGB1-deficiency resulted in higher levels of hepatocyte apoptosis and necrosis 

after hypoxia/reoxygenation (Figure 35A). Moreover, HC-HMGB1-/- mice had significantly 

higher levels of liver damage compared with WT mice after HS/R, suggesting an essential role of 

HMGB1 in protecting hepatocytes from cell death after redox stress (Figure 35B). 

 

 

Figure 35: HMGB1 is protective after oxidative stress in hepatocytes 

(A) Representative Annexin V/PI flow cytometry dot plots for WT and HMGB1 -/- hepatocytes cultured under 

normoxia or treated with six hours hypoxia/one hour reoxygenation. (B) Plasma ALT in mice after HS/R (n=2 in 

control groups; n=7 in HS+4.5R groups; mean±SEM; *P<0.05). 
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5.6 HMGB1 IS REQUIRED FOR CASPASE-1 ACTIVATION AND BECLIN1 

UPREGULATION AFTER REDOX STRESS IN THE LIVER 

To determine if AIM2 inflammasome activation is dependent on HMGB1 in vivo, we carried out 

experiments in liver I/R and HS/R models, both of which induce severe liver oxidative stress136. 

Caspase-1 was activated after one hour of liver ischemia, followed by one hour of reperfusion in 

WT mice, as shown by increased cleaved caspase-1 in the liver, but not in the HC-HMGB1-/- 

liver (Figure 36A). Similar results were also observed in the HS/R model, where WT but not 

HC-HMGB1-/- mice showed increased caspase-1 activation in the liver (Figure 36B), confirming 

a role for HMGB1 in regulating caspase-1 in hepatocytes after redox stress.  Beclin1 levels were 

increased in WT livers following HS/R as shown before, but not in HC-HMGB1-/- livers, 

consistent with our findings in caspase-1-deficient and AIM2-deficient mice (Figure 36C). Our 

in vitro experiments also confirmed that HMGB1 in hepatocytes is required for the upregulation 

of beclin1 after hypoxia as well as synthetic dsDNA poly(dA:dT) (Figure 36D). 
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Figure 36: HMGB1 is required for caspase-1 activation and beclin1 upregulation after redox stress in 

the liver 

(A) Representative Western blot of caspase-1 in liver of floxed and hepatocyte-specific HMGB1-/- (HC-HMGB1-/-) 

mice after ischemia with one hour of reperfusion (I+1hR) or ischemia with six hours of reperfusion (I+6hR). (B) 

Representative Western blot of caspase-1 in liver of floxed and HC-HMGB1-/- mice after HS with 4.5 hours of 

resuscitation (HS+4.5R). (C) Western blot of beclin1 levels in livers of control mice or mice subjected to HS+4.5R. 

(D) Representative Western blot of beclin1 in WT and AIM2 -/- hepatocytes cultured under normoxia or treated with 

hypoxia for two and six hours or poly(dA:dT) for three hours. 
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6.0  DISCUSSION AND FUTURE DIRECTIONS 

6.1 DISCUSSION: CASPASE-1 AND ADAPTIVE RESPONSES 

This study was undertaken to determine the protective mechanisms of caspase-1 in the setting of 

redox stress in hepatocytes. Here, we show that caspase-1 deficiency or inhibition leads to 

enhanced mitochondrial ROS production and a failure to reduce mitochondrial content in 

hepatocytes subjected to hypoxia/reoxygenation. This was associated with a failure to upregulate 

beclin1 expression and subsequent mitochondrial autophagy, suggesting a previously 

unrecognized role of caspase-1 in the regulation of mitochondrial autophagy in hepatocytes. 

Using a model that induces oxidative stress in the liver136, 184, HS/R, we show that similar events 

occur in vivo. Our results provide evidence that caspase-1 activation after HS/R leads to a 

reduction in oxidative stress, which in turn directly reduces hepatocellular cell death induced by 

I/R injury after HS/R.  

 Our findings in this study establish a mechanism to explain the paradoxical protective 

role of caspase-1 during HS/R. Our previous results and the results published here are in clear 

contrast to the detrimental effects of caspase-1 in more severe  heart and kidney I/R injury 

models, which leave many cells anoxic rather than hypoxic and severely limit the initiation of 

adaptive survival responses. In these cases, caspase-1-mediated inflammation is detrimental51, 55. 

Our findings, although initially surprising, are consistent with our understanding of caspase-1-
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mediated regulation of adaptive responses in non-myeloid cell types. Caspase-1 has been 

previously shown to regulate adaptive responses to stress, and is known to be important in 

preservation of epithelial integrity by increasing the proliferation of mucosal epithelial cells150, 

mediating protein secretion in keratinocytes60, and promoting membrane repair7. It now seems 

likely that caspase-1 activation promotes different effects in different cell types under varying 

stresses, including a protective role in the liver under conditions of oxidative stress. Indeed, 

recent studies provide evidence that caspase-1 can reduce the progression of hepatic steatosis185, 

in which redox stress is one of the central mediators of the disease process186, 187. Our data could 

provide one of the mechanisms behind these effects. 

6.2 DISCUSSION: DUAL ROLES OF CASPASE-1 IN IMMUNE CELLS VS. 

EPITHELIAL CELLS  

Our work here demonstrates a novel role of caspase-1 and inflammasome in mediating protective 

responses in epithelial cells, in contrast to their well-established detrimental role in immune 

cells. We initially tried to investigate the role of caspase-1 in immune cells by luminex assay 

(data not shown). However we found that among the 20 cytokines and chemokines we measured, 

most of them were not significantly up-regulated in the circulation after HS/R. Some of those 

inflammatory mediators that stayed at low levels after HS/R include IL-1β and TNFα, which are 

associated with increased liver damage induced after oxidative stress188, 189. This together with 

the results from IL-18R -/- and IL-1R -/- mice (Figure 5) suggest that the protective effect of 

caspase-1 is most likely not mediated by its activation in immune cells. However, we still cannot 
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exclude the effect of cell-cell interaction. This effect can be further explored using cell-specific 

knockout mice. 

6.3 DISCUSSION: MITOCHONDRIAL TURNOVER AND LIVER PROTECTION 

We found that caspase-1 protects hepatocytes from hypoxia/reoxygenation-induced cell death by 

reducing ROS production, specifically in the mitochondria. During hypoxia, mitochondrial 

respiration is dramatically reduced because of oxygen deprivation. After reperfusion, 

reestablishment of mitochondrial aerobic respiration results in a burst of ROS production, which 

triggers the release of pro-apoptotic proteins such as cytochrome c and can subsequently result in 

cell death135, 136, 190. The inhibition of mitochondrial respiration during I/R and the removal of 

mitochondria to reduce ROS production upon reperfusion may confer protection against 

mitochondrial dysfunction and subsequent cell death135, 168, 191, 192, and is a major cellular 

adaptive response to hypoxia193. Even though low ROS levels may be critical to signaling in cell 

stress and pre-conditioning responses107, our study suggests high levels of mitochondrial ROS 

contribute directly to hepatocyte cell death during hypoxia/reoxygenation.  

Importantly, our results suggest that caspase-1 induces mitochondrial autophagy in 

response to oxidative stress to promote mitochondrial turnover and maintain a healthy population 

of mitochondria, which in turn regulates ROS production and cell death. Our data also suggest 

that caspase-1 has no effect on regulating the expression of PGC-1α, which has been shown to 

contribute to increased mitochondrial biogenesis after hypoxia194. Autophagy has been shown to 

be essential for mitochondrial clearance, which leads to decreased ROS production by 

mitochondria171, 195 and serves as a pro-survival mechanism196, 197. This autophagy-mediated 
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turnover of mitochondria may be particularly beneficial in the liver, where the half-life of 

mitochondria is only 1.83 days - much shorter than in organs such as heart and brain198. Given 

that lysosomal degradation is the major pathway for mitochondrial turnover 199, the shorter half-

life of liver mitochondria suggests mitochondrial autophagy plays a significant role in 

mitochondrial quality control in the liver.  

6.4 DISCUSSION: CASPASE-1 AND AUTOPHAGY  

Our findings establish a previously unrecognized role for caspase-1 in the regulation of this cell-

survival response through the regulation of autophagy and beclin1 expression. Autophagic flux is 

controlled by both induction and maturation/degradation of autophagosomes. To quantify 

autophagy, we inhibited lysosomal degradation and analyzed the accumulation of GFP-LC3 

puncta by microscopy. This, together with assessment of steady-state autophagic vacuoles, 

allowed us to monitor changes in autophagic induction and degradation172. We show in this study 

that caspase-1-/- hepatocytes had a significantly reduced number of autophagic vacuoles after 

hypoxia/reoxygenation compared with WT cells, and no further accumulation was observed 

when lysosomal degradation was blocked, suggesting impaired induction of autophagy in 

caspase-1-/- hepatocytes.  

These results are consistent with our subsequent findings that beclin1, a key protein 

involved in induction of autophagy, was expressed at significantly lower levels in caspase-1-/- 

hepatocytes compared with WT hepatocytes in response to oxidative stress from either HS/R or 

hypoxia/reoxygenation. Our results suggest that caspase-1 regulates mRNA levels of beclin1 as 

one mechanism for increasing its expression. Previous studies suggest that beclin1 can be 
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degraded after its ubiquitination and the process is regulated by ubiquitin-specific peptidases101.  

Beclin1 has been shown to confer protection during hypoxia/reoxygenation177, 200, but here we 

demonstrate for the first time how beclin1 expression was regulated during hypoxia and in a 

clinically relevant model of HS/R. It was previously shown that beclin1 can be degraded by 

calpain during anoxia/reoxygenation and liver I/R81, in contrast to being upregulated in our 

model of hypoxia/reoxygenation and HS/R. This discrepancy may relate to differences in the 

model, and further suggests that adaptive responses during HS/R are essential to protect the liver 

from further damage, whereas these adaptive responses may be absent during liver I/R. Beclin1 

was previously shown to be cleaved and inactivated by caspase-8174, but our study shows that 

during oxidative stress, beclin1 levels are upregulated by caspase-1, an inflammatory caspase, 

independent of caspase-8.  

6.5 DISCUSSION: CASPASE-11-DEPENDENT NON-CANONICAL 

INFLAMMASOME ACTIVATION 

Our previous microarray data showed that caspase-11 (also known as caspase-4) is among the 

most highly upregulated genes after HS (data not shown).  Indeed, we found that caspase-11 

protein expression was significantly increased after HS as well as after resuscitation, which 

suggests that caspase-11 might play a role during HS. Caspase-11 has been shown to mediate 

macrophage cell death after the infection of gram-negative bacteria44, 201, but the upregulation of 

its expression does not seem to affect liver cell death after HS, indicated by our results from 

strain 129 mice which lack caspase-1142, 202. However, due to the strain difference, these results 

should be further confirmed with caspase-11 -/- mice generated on a C57BL/6 background. 
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Moreover, caspase-11 appears to be dispensable for the maturation of IL-18 after HS, which 

ruled out its role in caspase-1 activation in immune cells. 

Consistent with the results demonstrated by the group of Vishva Dixit42, we showed that 

peritoneal macrophages isolated from caspase-1 -/- mice lack both caspase-1 and caspase-11. 

However, our data also suggest that caspase-1 -/- mice still express caspase-11 in the liver, 

although at lower levels compared with WT mice. This discrepancy could be due to different 

expression levels in different cell types. However, the results need to be further confirmed using 

liver lysates from strain 129 mice as negative controls. 
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6.6 DISCUSSION: ACTIVATION OF AIM2 AFTER STERILE INJURY AND ITS 

ROLE IN REGULATING ADAPTIVE RESPONSE 

 

Figure 37: The role of AIM2 activation in regulating cellular adaptive response and cell death. 

 

Here, we demonstrate for the first time that the assembly of AIM2 inflammasome is required for 

the activation of caspase-1 in hepatocytes after hypoxia-reoxygenation. The role of the AIM2 

inflammasome in mediating the maturation of IL-18 and IL-1β has been extensively studied in 

immune cells after the infection of DNA virus and bacteria such as Francisella tularensis203, 204, 

205, Legionella pneumophila206 and Listeria monocytogenes207. Moreover, evidence is emerging 

that AIM2 can be activated in the setting of sterile injury. AIM2 inflammasome was shown to 

mediate IL-1β and IL-18 release triggered by melittin, a component of honey bee venom, and 
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this may contribute to allergic responses induced by bee stings208. Mechanistically, melittin 

mediates the leakage of mitochondrial DNA into the cytosolic compartment, which can be 

sensed by AIM2 in keratinocytes.  Furthermore, since autoimmune diseases, such as systemic 

lupus erythematosus, are characterized by increased antibody-DNA complexes derived from the 

host209, several groups are actively investigating whether AIM2 is involved in the activation of 

inflammatory responses in lupus patients210. A study by Zhang et al. demonstrates that AIM2 

facilitates macrophage activation induced by lymphocyte-derived apoptotic DNA211. However, 

much remains unknown about its physiological role in non-immune cells.  

We show that AIM2 is hepatoprotective and this is associated with upregulation of 

beclin1 and mitochondrial clearance, leading to reduced ROS production after redox stress in 

hepatocytes. Our results shown here are in clear contrast to the detrimental effects of AIM2 in 

mediating macrophage cell death as suggested by previous studies182, 212. However, there is also 

emerging evidence that AIM2 can also play a protective role by regulating adaptive responses to 

stress. Panchanathan et al. showed that that AIM2 deficiency within immune cells contributes to 

increased susceptibility to lupus through upregulation of p202, a protein that inhibits AIM2 and 

caspase-1 activation210, 213.  A study by Shi et al. has shown that the AIM2 inflammasome 

induces autophagy, which is consistent with what we have shown here104. It now seems likely 

that the formation of the AIM2 inflammasome leads to different effects in different cell types 

under varying stresses, including cellular protection in the liver under conditions of oxidative 

stress.  

Although AIM2 has only been shown to be activated by dsDNA, it still remains unclear 

where the cytosolic dsDNA comes from to activate AIM2 in hepatocytes after hypoxia-

reoxygenation. It has been well-established that during MPT, the release of mitochondrial 
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content including mtDNA is considered to be the irreversible point for cells to undergo cell 

death214. Similarly, the release of nuclear DNA into the cytosol has been shown to be associated 

with apoptotic cell death215. Provided that the cytosolic DNA in hepatocytes after hypoxia-

reoxygenation is derived from mitochondria or nucleus of the same cells, our study here provides 

the first evidence that AIM2 activation by cytosolic DNA could initiate an adaptive and 

protective mechanism against cell death after redox stress. It seems like that the release of a 

sublethal amount of DNA into the cytosol can lead to the activation of AIM2 and subsequent 

clearance of mitochondria through mitochondrial autophagy, which can in turn limit the damage 

of mitochondria and further mtDNA release (Figure 37). Therefore, the pathway here seems to 

represent the tipping point for hepatocellular cell death. Whereas regulated release of DNA into 

the cytosol activates adaptive and protective responses after redox stress, high levels of cytosolic 

DNA that are passively released from mitochondria or nucleus are often associated with cell 

death. 

6.7 DISCUSSION: THE ROLE OF HMGB1 IN MEDIATING INNATE IMMUNE 

RESPONSE AND AUTOPHAGY 

HMGB proteins have been shown to bind to all immunogenic nucleic acids and can function as 

universal sentinels for nucleic-acid-mediated innate immune responses, including the activation 

of TLR3, TLR7, and TLR9 by their cognate nucleic acids183. Here, our findings establish a 

previously unrecognized role for HMGB1 in the regulation of AIM2 inflammasome assembly. 

HMGB1 has been demonstrated to co-localize and associate with TLR9 to mediate the CpG-

DNA-induced inflammatory response216. Similarly, we show that HMGB1 interacts with AIM2 
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in hepatocytes after hypoxia-reoxygenation in vitro as well as HS in vivo. Mice lacking HMGB1 

in hepatocytes show reduced activation of caspase-1 after HS, suggesting HMGB1 plays an 

important role in regulating inflammasome activation following redox stress. 

In addition to the well-established role of HMGB1 as a cytokine to mediate the pro-

inflammatory response217, it was first known as an essential non-histone nuclear factor important 

for gene transcription and preserving chromosomal architecture218. Recent studies also implicate 

HMGB1 as a regulator of protective responses such as mitochondrial autophagy. Tang et al. have 

shown that in response to oxidative stress, increased cytosolic HMGB1 expression activates 

autophagy by binding to beclin1 and disrupting its association of Bcl-2219, 220.  This HMGB1-

mediated upregulation of autophagy serves as a protective mechanism against mitochondrial 

abnormality through increasing mitochondrial clearance in the settings of cellular stress221. Here, 

our preliminary data suggests that HMGB1 is required for the caspase-1-mediated upregulation 

of autophagy, which could provide an alternative mechanism for these previous observed effects 

of HMGB1. 
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6.8 FUTURE DIRECTIONS 

 

Figure 38: The role of caspase-1 in hepatocytes and immune cells after HS 

HS/R induces caspase-1 activation through the formation of AIM2 inflammasome in hepatocytes, which further 

leads to induction of autophagy through upregulating beclin1 expression. Increased autophagic flux in these cells 

then clears dysfunctional mitochondria and leads to cell survival. On the other hand, caspase-1 activation was 

mediated by NLRP1 inflammasome in non-parenchymal cells after HS/R, which is responsible for IL-18 release by 

these cells. However, questions remain unanswered regarding these pathways: First, what is the mechanism by 

which caspase-1 regulates beclin1 expression in hepatocytes after redox stress? Second, where does the dsDNA that 

stimulates AIM2 activation come from? Third, is AIM2 activation in hepatocytes after HS/R mediated by HMGB1? 
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6.8.1 Regulation of beclin1 expression by caspase-1 

Our findings establish a previously unrecognized role for caspase-1 in the regulation of this cell-

survival response through the regulation of beclin1 expression. Our results also suggest that 

caspase-1 regulates mRNA levels of beclin1 as one mechanism for increasing its expression. 

However, since the changes of beclin1 protein expression after hypoxia are a lot greater than its 

upregulation at the mRNA level, we hypothesize that caspase-1 also regulates beclin1 expression 

at the post-transcriptional or post-translational level. Previous studies suggest that beclin1 can be 

degraded after its ubiquitination and the process is regulated by ubiquitin-specific peptidases101.  

Therefore, we will further explore whether caspase-1 activation affects beclin1 stability. 

Furthermore, given that caspase-1 is an aspartate-specific cysteine protease, it is reasonable to 

hypothesize that its substrate might inhibit the degradation of beclin1. To test this hypothesis, we 

will perform a diagonal gel method to identify the substrates of caspase-1 in hepatocytes after 

oxidative stress as previously characterized70. Although we can recapitulate the results from 

caspase-1 -/- hepatocytes with caspase-1 inhibitor, more definitive evidence needs to be provided 

to prove that caspase-1 activity rather than the expression itself is required for its downstream 

protective effect. To test that hypothesis, we will generate mutant caspase-1 with cysteine-to-

serine mutation to abolish the activation of caspase-1. 

6.8.2 Characterization of the hepatocyte-specific effect of caspase-1 activation 

Our preliminary results using BM chimeric mice suggest that caspase-1 activation in 

parenchymal cells contributes to liver protection after HS/R. However, an increased stress 

response was found in the control chimeric mice without HS treatment, indicating that this 
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chimeric mice model is likely not ideal for studying cell-specific effects in the liver. Therefore, 

we will perform definitive experiments to investigate the role of individual liver cell types by 

generating hepatocyte-specific caspase-1-/- mice. To do this, we will make a caspase-1 LoxP 

construct that can be inserted into C57BL/6 mouse embryos. The resulting caspase-1 LoxP mice 

will then be further cross-bred with mice expressing cre-recombinase under a hepatocyte-specific 

promoter, albumin, to produce hepatocyte-specific caspase-1 -/- mice as described before222. 

6.8.3 The source of dsDNA that activates AIM2 inflammasome after redox stress: 

mitochondria or nuclei? 

In this study, we demonstrate for the first time that the AIM2 inflammasome mediates the 

activation of caspase-1 in vivo and in vitro after oxidative stress. Since AIM2 has only been 

shown to be activated by dsDNA derived from either pathogen or host after sterile injury induced 

by HS, it is to be expected that the dsDNA responsible for AIM2 activation is from mitochondria 

or nuclei. Although we detected increased dsDNA in the cytosolic fraction of the liver after HS 

(data not shown), we cannot determine whether it is mitochondrial- or nuclear-derived using 

quantitative PCR. The reason could be that the method is not sensitive enough. As an alternative, 

we can transfect hepatocytes with mitochondrial or nuclear DNA to assess whether they can 

activate AIM2 inflammasome and caspase-1 to similar levels as seen after hypoxia-

reoxygenation treatment. Furthermore, we can perform immuno-electron microscopy to 

investigate the exact cellular location of AIM2. 
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6.8.4 Interaction between AIM2 and HMGB1 

We showed that HMGB1 co-localizes and associates with AIM2 to mediate caspase-1 activation 

in hepatocytes after redox stress. However, more definitive evidence needs to be provided to 

prove this novel interaction between AIM2 and HMGB1. One way is to overexpress epitope-

tagged AIM2 and HMGB1 plasmid in Human Embryonic Kidney 293 cells. We will perform co-

immunoprecipitation to assess the formation of AIM2-HMGB1 complex. We will also utilize 

Octet platform (Fortebio) to investigate kinetic characterization of AIM2-HMGB1 binding 

interaction. 

6.8.5 The mechanism of HMGB1 release 

We have previously shown that HMGB1 can be actively released and act as an early mediator of 

inflammation and organ damage after liver I/R, in contrast to being passively released from 

necrotic cells during sepsis12. It has been shown that the active release of HMGB1 after moderate 

oxidative stress is dependent on MAPK and chromosome region maintenance in macrophages223, 

and its release potentially plays a protective role in these cells through the initiation of 

mitochondrial autophagy219, 221. Similarly, Evankovich et al. showed that HMGB1 can be 

actively released from the nucleus after oxidative stress in hepatocytes, which is mediated by 

decreased histone deacetylase activity224. In this study our work demonstrated that HMGB1 

plays a protective role in hepatocytes by mediating the activation of AIM2 inflammasome and 

promoting mitochondrial autophagy through up-regulating beclin1, which is consistent with its 

protective role in macrophages when actively released219, 221. It would be of great interest to 
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assess whether HMGB1 is actively released in hepatocytes after hypoxia-reoxygenation and 

whether the process is mediated by a decrease in histone deacetylase activity as shown before. 

6.8.6 Summary 

Previous studies showed that in cells where autophagy was impaired, enhanced mitochondrial 

ROS promoted the activation of caspase-135, 37. Our study provides an alternative mechanism of 

cellular protection in cells that produce little or no IL-1β/IL-18 cytokines, such as hepatocytes. In 

this scenario, caspase-1 is a central driver of mitochondrial autophagy, and the initiating factors 

leading to caspase-1 activation likely include DAMPs and ROS. Also, we further extended the 

story by showing that this activation and protective effect of caspase-1 is triggered by AIM2 

inflammasome and this process in mediated by the nuclear protein HMGB1. In our investigations 

to better understand the function of inflammasome and caspase-1, we were most successful at 

generating more intriguing questions. Further studies are required to identify the mechanism of 

how caspase-1 activation upregulates beclin1, as well as provide definitive evidence to show the 

direct interaction between HMGB1 and AIM2. 
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