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DEVELOPMENT OF CORTICAL GABA CIRCUITRY: IDENTIFYING PERIODS OF 

VULNERABILITY TO SCHIZOPHRENIA 

 

Gil Dov Hoftman, Ph.D. 

University of Pittsburgh, 2013 

 

The development of cognitive functioning is disrupted in many individuals who will later be 

diagnosed with schizophrenia, lagging behind healthy comparison subjects by 1-2 standard 

deviations at clinical onset. Cognitive dysfunction often appears years before clinical onset, is 

the best predictor of functional outcome, and is increasingly recognized as a central feature of 

schizophrenia. The domains of cognitive functioning affected in schizophrenia are mediated, at 

least in part, by prefrontal cortex (PFC) GABA neurons, which show molecular alterations in 

postmortem studies in schizophrenia. One common environmental risk factor for schizophrenia 

is chronic cannabis use, which disrupts cognitive function most prominently during adolescence, 

a time of flux in PFC circuitry that may be a sensitive period for the effects of cannabis use on 

neural circuit maturation. Parvalbumin (PV)-containing GABA neurons may be particularly 

vulnerable to risk factors for schizophrenia since they are altered in the disease, important for 

neural activity associated with cognitive functioning, and have a lengthy period of postnatal 

maturation. However, the nature of PV neuron subtype-specific developmental changes is not 

clear. Therefore, this dissertation focuses on understanding the timing of altered expression 

profiles of GABA-related mRNA levels in schizophrenia, the impact of chronic cannabis 

exposure during adolescence on GABA circuits of the monkey PFC, and the cell type-specific 

nature of postnatal maturation of influential GABAergic connections. Indeed, we find that the 

profile of GABA transmission markers in postmortem PFC tissue in schizophrenia can be 

explained by disrupted development of their mRNA levels; that chronic exposure to the 

psychoactive compound in cannabis during adolescence alters the GABAergic mRNA levels in 

monkey PFC; and that two populations of PV neurons have distinctive modes of maturation in 

monkey PFC.  
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1.0  GENERAL INTRODUCTION 

1.1 OVERVIEW OF SCHIZOPHRENIA 

1.1.1 Human cost 

Schizophrenia is a neuropsychiatric syndrome that affects roughly 26.3 million people 

worldwide (Global Burden of Disease: 2004 Update, 2008) and is recognized as a leading cause 

of all years lived with severe disability, accounting for 3% of the total years of healthy life lost 

due to disability (Global Burden of Disease: 2004 Update, 2008). Features of schizophrenia 

frequently result in profound suffering, often becoming severe for the first time during late 

adolescence or early adulthood (Lewis and Lieberman, 2000). Schizophrenia also causes 

substantial emotional distress in caregivers, who are often closely related family members 

(Gibbons et al., 1984). The schizophrenia burden also includes persistent financial problems for 

affected persons, caregivers and the community (Gibbons et al., 1984). Direct economic costs 

resulting from schizophrenia include treatment provided in inpatient, outpatient and long-term 

care, as well as criminal justice costs and medication costs (Wu et al., 2005). Indirect costs 

mainly arise from lost productivity suffered by individuals with the illness, their caregivers and 

the community. In the United States in 2002, direct and indirect costs of schizophrenia were 

estimated to be $62.7 billion (Wu et al., 2005). 

A diagnosis of schizophrenia is typically accompanied by significant societal stigma 

(Penn et al., 1994). Many individuals experience decreased life opportunities and a loss of 

independent functioning beyond the impairments of schizophrenia itself, as they are the 
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recipients of harsh stigmatization (Penn et al., 1994). Stigma can involve actual episodes of 

physical, verbal or emotional abuse against an individual with schizophrenia solely because 

he/she has the syndrome (reviewed in Jacoby et al., 2005); and can also be experienced as shame 

due to being “schizophrenic” or fear of encountering discrimination (reviewed in Jacoby et al., 

2005). Although there have been recent efforts to eradicate stigma in schizophrenia, it still occurs 

frequently in this disease and places a substantial burden on affected people (Thornicroft et al., 

2009). 

As a result of the above, a person with schizophrenia is more likely to suffer from 

unemployment, poverty, homelessness, incarceration, recurrent hospitalizations, high rates of 

comorbid medical illness and depression, increased suicide attempts with a suicide completion 

rate of 5-10%, and a reduced life expectancy of 1-3 decades (reviewed in Lewis and Sweet, 

2009; Insel and Scolnick, 2006).  

1.1.2 Epidemiology and clinical features 

Today serious mental illness—mostly schizophrenia—has the same prevalence and disability as 

it did a century ago (Insel, 2010). A recent meta-analysis (McGrath et al., 2008) found that the 

median (10, 90 percent quartiles) estimate per 100,000 people for the lifetime morbid risk was 

720 (310, 2710) and the annual incidence of schizophrenia was 15 (8, 43). Interestingly, men 

have a 40% greater lifetime risk of developing schizophrenia than women (McGrath et al., 

2008). Importantly, the many epidemiological studies examined by meta-analysis have collected 

data over several decades across many countries and diverse cultures, suggesting that on average 

the recorded prevalence and incidence of schizophrenia were similar across time and place. 
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Clinically, schizophrenia is recognized as a constellation of signs and symptoms 

classically grouped into three domains that include positive, negative and cognitive symptoms 

[Diagnostic and Statistical Manual for Mental Disorders, Fourth Edition, Text Revision, (DSM-

IV-TR, 2000)]. Positive symptoms are abnormal behaviors that are present in schizophrenia but 

not in healthy individuals. They include disturbances in perception such as delusions, 

hallucinations and thought disorganization, and are also recognized as the “psychotic” features of 

schizophrenia. Delusions are fixed false beliefs that remain unchanged with a high level of 

conviction in the face of contradictory evidence and are present in roughly 80% of individuals 

with schizophrenia (Andreasen and Flaum, 1991). Hallucinations are internal sensory 

perceptions experienced in the absence of an external stimulus and can occur in any modality. 

Auditory hallucinations are most common in people with schizophrenia, with prevalence 

estimates between 40 to 80% (Andreasen and Flaum, 1991; Thomas et al., 2007). A person 

suffering from schizophrenia usually hears a single or multiple voices that may be 

distinguishable, and often does not recognize whether the voices are being generated internally 

or externally.  

Thought disorganization generally refers to incomprehensible thought patterns or form 

and often appears as loose associations, which are ideas and speech that move off track across 

unrelated topics. Other indicators of thought disorganization can include clang associations in 

which words are used together based on their sounds but not their meaning, as well as 

neologisms, which are invented new words. Disorganized behavior is also common and can 

result a variety of actions including poor maintenance of hygiene, childlike behavior and 

unpredictable agitation. Catatonia, a marked decrease in reactivity to the environment, is an 

extreme manifestation of motor abnormalities in schizophrenia. Some examples of catatonic 
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motor behaviors include reaching an extreme degree of unawareness, maintaining a rigid posture 

and resisting efforts to be moved, and the assumption of inappropriate or bizarre postures ( 

DSM-IV-TR, 2000). 

Negative (or deficit) symptoms represent an absence of typical behaviors, including 

poverty of speech (alogia), lack of initiative (avolition), flattened or inappropriate affect 

(affective dysregulation), inability to experience pleasure (anhedonia), and withdrawal from 

friends and family (asociality). Negative symptoms are often primary symptoms of 

schizophrenia, but sometimes may be influenced by positive symptoms. For example, paranoia 

can lead to asociality, while an unchanging facial expression interpreted as flattened affect may 

result from prolonged medication use (DSM-IV-TR, 2000). 

Cognitive symptoms refer to abnormalities in processes that enable coordinated, 

purposeful thoughts and behaviors (Miller and Cohen, 2001). Cognitive dysfunction occurs 

across a number of domains in schizophrenia, including tests of selective attention, working 

memory, episodic memory, processing speed, and language production and comprehension 

(Elvevag and Goldberg, 2000; Green, 1996; Carter and Barch, 2007). While it is possible that 

people with schizophrenia have specific deficits in multiple cognitive systems, a simpler 

interpretation is that these many deficits reflect a disturbance in cognitive control (reviewed in 

(Lesh et al., 2011). These debilitating symptoms can make a simple conversation or calculation 

difficult to handle and consequently have a profound impact on the individual’s social and 

occupational functioning. Given recent efforts to understand cognitive symptoms in 

schizophrenia, I will review evidence for why they are considered to be core features of the 

illness in the next section. 
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1.1.3 Cognitive dysfunction is central to schizophrenia 

Cognitive deficits are present, quite stable, and persistent in the majority of individuals with 

schizophrenia (Lesh et al., 2011; Elvevag and Goldberg, 2000; Green, 1996). For example, 

individuals at their first episode of schizophrenia already perform, on average, 1-2 standard 

deviations below the mean of comparison subjects (Heaton et al., 2001; Wilk et al., 2004). These 

deficits often appear well before the onset of psychosis and persist independently of psychotic 

relapses (Niendam et al., 2003; Reichenberg et al., 2010) (Figure 1). When cognitive 

dysfunction is defined based on premorbid intellectual functioning and parental education, 98% 

of schizophrenia subjects fall below predicted levels and are thus considered to be impaired 

(Keefe et al., 2005). In genetically identical twins discordant for schizophrenia, the twin 

diagnosed with schizophrenia performed worse than the undiagnosed twin in nearly all cases 

(Goldberg et al., 1990; Goldberg et al., 1995). Cognitive symptoms are also present with milder 

severity but similar form in first-degree relatives (Egan et al., 2001; Sitskoorn et al., 2004). 

Importantly, cognitive impairments best predict an individual’s future employment potential and 

social integration (Addington and Addington, 1999; Lysaker et al., 1995; Harvey et al., 1998; 

Bartels et al., 1997), and a recent meta-analysis found that cognitive function, but not severity of 

positive symptoms, was a significant predictor of employment outcome (Tsang et al., 2010). 

Thus, cognitive deficits are considered to be core features of schizophrenia. 

Although positive symptoms are often most prominent in schizophrenia, they are not 

specific to this syndrome. In fact, no individual symptom results in a certain diagnosis of 

schizophrenia, which is only given once other causes of psychosis are excluded, when the time 

course of psychotic and accompanying negative features is recognized, and with the 

establishment of persistent social and occupational dysfunction (DSM-IV-TR, 2000). Despite 
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being extensively described in the DSM-IV-TR, cognitive features are not currently a formal part 

of the diagnostic criteria for schizophrenia. 

1.1.4 Treatment and outcome 

The treatment of psychosis was revolutionized by the astute but serendipitous discovery of 

antipsychotic medications over a half century ago; however, since then progress in developing 

novel treatments for schizophrenia has been limited (Insel and Scolnick, 2006). Positive 

symptoms are most responsive to, although not completely eliminated by, these antipsychotic 

medications. While effective against positive symptoms, a number of serious adverse events are 

associated with pharmacological treatment including irreversible involuntary movements, 

substantial weight gain, diabetes and hypertension (Fischer and Buchanan, 2011). Critically, 

current antipsychotic medications have little to no effect on negative symptoms (Buchanan et al., 

1998) and cognitive dysfunction in schizophrenia (Goldberg et al., 1993; Harvey and Keefe, 

2001). 

Despite relative success in treating positive symptoms, long-term functional outcomes in 

schizophrenia vary remarkably across individuals depending upon how recovery is defined. For 

example, longitudinal follow-up studies have found that around 40% of patients diagnosed with 

schizophrenia achieve partial social or functional recovery (Crumlish et al., 2009; Lambert et al., 

2008; Menezes et al., 2006), meaning they achieve “an adequate level of social and vocational 

functioning that involves appropriate role functioning, capacity for independent living, and social 

interactions at a regular frequency” (Robinson et al., 2004). However, sustained recovery occurs 

only in about 14% of individuals within the first five years following the initial psychotic 
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episode (Robinson et al., 2004), and an additional 16% experience late phase recovery (Harrison 

et al., 2001).  

Although most people with schizophrenia do not experience sustained recovery, the 

majority of clinical evidence suggests that schizophrenia is not a classic early-onset 

neurodegenerative syndrome similar to the late onset neurodegenerative syndrome described by 

Emil Kraeplin’s colleague, Alois Alzheimer (Zipursky et al., 2012; Andreasen, 2010). For 

example, a recent study found no age by diagnosis interactions on a number of cognitive 

measures in schizophrenia and matched comparison subjects, suggesting that performance on 

cognitive tasks does not decline as a consequence of having schizophrenia (Rajji et al., 2012). 

Instead, most clinical evidence suggests that schizophrenia has a strong neurodevelopmental 

component, with changes in behavior beginning during the premorbid stage (Zipursky et al., 

2012; Andreasen, 2010) (Figure 1). 

Given that many individuals with schizophrenia still have poor functional outcomes that 

are associated with more severe cognitive dysfunction, which in turn is mostly unresponsive to 

current antipsychotic medications, there is a critical need for the development of novel therapies 

that target cognitive dysfunction in schizophrenia. To address this need the National Institute of 

Mental Health has recently formed initiatives that include the Measurement and Treatment 

Research to Improve Cognition in Schizophrenia (Marder and Fenton, 2004) and the Cognitive 

Neuroscience Treatment to Improve Cognition in Schizophrenia (Carter and Barch, 2007). 

1.1.5 Etiology 

The 19th century Germ Theory of Disease postulated that acquired diseases are often caused by 

the presence of a single pathogenic factor that unleashes a complex syndrome (reviewed in 
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Whitcomb, 2012). However, multiple lines of evidence suggest that schizophrenia cannot be 

understood within this framework, since it is increasingly recognized as a complex syndrome 

caused by numerous interacting pathogenic factors that alone are neither necessary nor sufficient 

to cause the syndrome (Bayer et al., 1999; Maynard et al., 2001). Adding to its complexity, 

schizophrenia presents with obvious clinical heterogeneity that may result from diversity, 

different disease entities that exist within a population meeting DSM or International 

Classification of Diseases diagnostic criteria, or from variability, the variance of specific 

components of the disease (reviewed in Lewis and Gonzalez-Burgos, 2008).  

Despite the challenges associated with clinical heterogeneity, a combination of genetic 

and environmental factors appears to be necessary for the expression of schizophrenia (Figure 

1). Evidence from twin, family and adoption studies has shown that the etiology of schizophrenia 

has an appreciable genetic component (reviewed in Cardno and Gottesman, 2000). For example, 

monozygotic “identical” twins share 100% of their genes and have a higher rate of 

schizophrenia, while dizygotic “fraternal” twins share 50% of their genes and have a 

substantially lower rate than monozygotic twins (Gottesman, 1991). However, both monozygotic 

twins are diagnosed with schizophrenia only 40-60% of the time, suggesting that environmental 

factors contribute to the disease pathogenesis (Gottesman, 1991). Taken together with first-

degree sibling (Gottesman, 1991) and adoption studies (Rosenthal et al., 1971), these studies 

have led to high heritability estimates of ~0.7 (reviewed in Cardno and Gottesman, 2000). 

However, there is evidence against simple Mendelian inheritance, as around 60% of individuals 

diagnosed with schizophrenia have neither a first- nor second-degree relative with the illness 

(Gottesman, 1991). Genome wide association studies have shown that as many as 37,000 single 

nucleotide polymorphisms (SNPs) could be contributing to schizophrenia (International 
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Schizophrenia et al., 2009), suggesting that a large accumulation of many risk alleles at many 

loci can result in the schizophrenia syndrome. Rare structural variants, including 22q11 deletions 

and 1:11 chromosomal translocations, have also been strongly associated with schizophrenia 

(Karayiorgou et al., 2010; Millar et al., 2000). In addition, microdeletions or microduplications 

(copy number variants or CNVs) have recently been reported to substantially increase the risk for 

schizophrenia (Stefansson et al., 2008; Guilmatre et al., 2009). Despite these recent exciting 

advances in genotyping methods, the combination of the many genetic susceptibility variants still 

leaves the majority of schizophrenia heritability unexplained. 

A number of studies have found that many environmental factors across prenatal 

development confer risk for schizophrenia (Brown and Derkits, 2010) (Figure 1). For example, 

maternal immune activation due to infection and obstetrical complications are associated with an 

increased risk for schizophrenia (Cannon et al., 2002; Cannon et al., 2001). Moreover, a range of 

postnatal environmental factors like minority group position, childhood trauma, urbanicity and 

cannabis use has consistently been associated with a higher risk of developing schizophrenia 

(van Os et al., 2010). The impact of cannabis use on GABA circuit development is an important 

focus of this dissertation because of its public health implications and biological plausibility in 

schizophrenia.
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Figure 1. Summary of proposed lifetime trajectory of schizophrenia 

(A) The four major stages of illness in schizophrenia. (B) Main groups of subclinical/clinical signs and symptoms at each stage of illness. (C) Key adverse genetic and 

environmental events associated with schizophrenia. (D) Age periods from gestation to senescence. (E) Major neurodevelopmental processes that occur from gestation through 

adolescence and are linked to schizophrenia. (F) Curves show gradual improvement of cognitive control in healthy subjects (solid line) and individuals on course to develop 

schizophrenia (dashed line). The dotted area between the lines represents the growing difference in cognitive control performance from childhood to early after clinical onset. 

Figure based on Lewis and Lieberman 2000 and Insel 2010. 
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1.1.5.1 Cannabis use during adolescence is associated with an increased risk of, and earlier 

onset for, schizophrenia 

Epidemiological studies have consistently found an association between marijuana (cannabis) 

use and higher schizophrenia risk (Moore et al., 2007; Henquet et al., 2005b). Repeated cannabis 

use during adolescence has been associated with an elevated risk for schizophrenia relative to 

usage during adulthood (Arseneault et al., 2002). Cannabis use at age 15 was associated with a 

greater likelihood of being diagnosed with schizophreniform disorder a decade later than was 

cannabis use at age 18 (Fergusson et al., 2003), and has also been associated with an earlier age 

of onset for schizophrenia (Veen et al., 2004; Barnes et al., 2006; Large et al., 2011).  

The consistency and dose-dependent nature of these findings after controlling for a 

number of confounding factors suggest that the effects of cannabis use during early adolescence 

may somehow increase the liability for schizophrenia (Moore et al., 2007; Henquet et al., 

2005b). For example, even after adjustment for factors like age, sex, social class, ethnic group, 

family history of psychiatric illness, city living and use of other drugs, the effect of cannabis on 

schizophrenia risk still persisted though the magnitude of the effect sizes was smaller (Henquet 

et al., 2005b). The concept of reverse causality, which refers to the possibility that people who 

show signs of vulnerability to psychosis are more likely to start using cannabis in order to self-

medicate, has also been examined closely in a number of studies. Most epidemiological studies 

have attempted to rule out reverse causality by excluding at baseline all individuals who ever had 

any psychosis-like experience (Henquet et al., 2005b). In addition, cannabis use by individuals 

with schizophrenia is associated with an increased severity of cognitive impairments and more 
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frequent hospitalization, suggesting that these individuals have increased sensitivity to cannabis 

effects (Grech et al., 2005; D'Souza et al., 2005; Pencer et al., 2005).  

1.1.5.2 Cannabis use is associated with cognitive dysfunction  

Cannabis use is correlated with deficits in cognitive control processes (Kanayama et al., 2004; 

Block et al., 2002). These cognitive impairments continue beyond the period of acute 

intoxication and worsen in a dose-dependent fashion (Solowij et al., 2002). In healthy subjects, 

administration of Δ9-tetrahydrocannabinol (THC), the principal psychoactive molecule in 

cannabis, produces deficits in a variety of cognitive processes including working memory, 

attention and executive control (D'Souza et al., 2004). Also, cannabis use during adolescence is 

associated with more severe cognitive deficits compared to first use later in life (Pope et al., 

2003; Ehrenreich et al., 1999). In addition, individuals who started using cannabis prior to age 17 

had smaller whole brain and cortical gray matter volumes than those who started using cannabis 

later in life (Wilson et al., 2000). 

1.1.5.3 THC is bioactive at cannabinoid receptors that are enriched on cholecystokinin-

containing GABA neurons 

Evidence that the psychoactive effects of THC are mediated by the cannabinoid receptor 1 

(CB1R) emerged from studies in healthy human subjects where the acute psychological effects 

of marijuana and the subjective “high experience” were blocked by pretreatment with a CB1R 

antagonist (Huestis et al., 2001). The two most studied endogenous cannabinoids are lipophilic 

molecules that include anandamide, a partial agonist of CB1R, and 2-arachidonoylglycerol (2-
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AG), a full agonist at CB1R that is present at much higher concentrations in the brain relative to 

anandamide [nanomole vs picomole per gram of tissue] (reviewed in Freund et al., 2003). 

Recent studies in the PFC have shown that CB1R are highly enriched at the presynaptic 

terminals of cholecystokinin-containing basket neurons (CCKb) (Eggan et al., 2010; Marsicano 

and Lutz, 1999). The selective depolarization of a postsynaptic neuron induced a short-term 

depression of GABA release from CB1R-containing terminals innervating that same 

postsynaptic cell (Ohno-Shosaku et al., 2001; Pistis et al., 2002; Wilson and Nicoll, 2001), a 

phenomenon termed depolarization induced suppression of inhibition (DSI) (Figure 2). Another 

phenomenon similar to DSI was found at excitatory synapses (depolarization induced 

suppression of excitation, DSE), suggesting that CB1R can also be localized to glutamatergic 

axon terminals and inhibit the release of glutamate (Kreitzer and Regehr, 2001). 

Cannabinoids that are released from depolarized postsynaptic pyramidal neurons bind to 

presynaptic CB1R on CCKb cells, resulting in a reduction of perisomatic inhibitory input onto 

the same pyramidal cell (Wilson and Nicoll, 2002). Thus, CCKb inputs may contribute to the 

precise firing of PFC pyramidal neurons necessary during working memory tasks. Interestingly, 

THC administration to healthy adult subjects produced especially prominent deficits in the 

manipulation of information in working memory (D'Souza et al., 2004), a feature that strongly 

depends on the PFC and is especially deficient in schizophrenia. These findings suggest that a 

potential shared biological mechanism for the effects of cannabis on cognitive function and the 

increased risk of schizophrenia exists via the alteration of PFC GABA circuitry. 
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Figure 2. The endocannabinoid system and DSI 

In synapse-specific DSI, membrane depolarization of the postsynaptic pyramidal neuron induces the opening of 

voltage-gated calcium channels (1). The influx of calcium leads to an elevation of intracellular calcium (2), which 

triggers the production of the endocannabinoid, 2-AG (3). 2-AG then retrogradely activates the presynaptically 

located CB1R (4), which inhibits the opening of presynaptic terminal N-type voltage-gated calcium channels (5). 

The decline in presynaptic intracellular calcium concentration results in a decreased release of presynaptic GABA-

containing vesicles (6) and a subsequent reduction of terminal-specific GABA neurotransmission. This figure was 

modified from Eggan et al. 2007. 
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1.2 PREFRONTAL CORTEX GABA NEURONS: KEY PLAYERS IN COGNITIVE 

IMPAIRMENT IN SCHIZOPHRENIA AND IN PROTRACTED 

NEURODEVELOPMENT 

1.2.1 Cognitive dysfunction and the prefrontal cortex in schizophrenia 

Cognitive control is dependent upon the coordinated activity of neural circuits that are 

distributed across many brain regions; however, dorsolateral PFC activity appears to be 

responsible for the maintenance of rules for action and response selection (Watanabe, 1992; 

Watanabe, 1990; Asaad et al., 1998). Given the highly connected nature of the dorsolateral PFC 

to other brain regions including motor, sensory and associational areas, the PFC appears to be 

critical hub that integrates extrinsic and intrinsic information for top-down control of behavior 

(reviewed in Miller and Cohen, 2001).  

Working memory, the ability to actively maintain and manipulate information for a short 

period of time in a goal directed fashion, is a prototypical example of a set of cognitive control 

processes that have been studied extensively in humans and non-human primates (Baddeley, 

1992). In schizophrenia subjects, a number of regional cerebral blood flow and functional 

magnetic resonance imaging studies have reported dorsolateral PFC hypoactivity (Minzenberg et 

al., 2009; Glahn et al., 2005; Perlstein et al., 2001; Cannon et al., 2005), yet others have shown 

hyperactivity (Callicott et al., 2000; Manoach et al., 2000; Manoach et al., 1999). Further study 

revealed that healthy individuals demonstrate an “inverted U” shape of dorsolateral PFC 

activation between working memory load and behavioral performance, showing low activation at 

low and high loads, and higher activation at intermediate loads (Callicott et al., 1999). In 

schizophrenia, evidence suggests that this inverted U was left shifted such that these individuals 
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have PFC hyperactivity at lower loads and hypoactivity at moderate loads compared to healthy 

individuals (Callicott et al., 2003; Van Snellenberg et al., 2006). These findings show that 

working memory performance and PFC activity are disrupted in individuals with schizophrenia. 

GABA neurons are critical components of coordinated PFC neural activity during 

working memory performance. Cortical GABA neurons comprise a remarkably diverse group of 

cells that can be categorized based upon distinct electrophysiological, molecular and anatomical 

properties (Ascoli et al., 2008) (Figure 3). Based on their electrophysiological properties, GABA 

neurons can be subdivided into fast-spiking and non-fast-spiking cells (Zaitsev et al., 2009; 

Krimer et al., 2005; Kawaguchi and Kubota, 1993). Fast-spiking neurons can produce action 

potentials at a high frequency with constant interspike intervals, and as a general rule, these cells 

contain parvalbumin (PV), do not contain neuropeptides, and target the perisomatic region 

(soma, proximal dendrites and axon initial segments (AIS)) of pyramidal neurons (reviewed in 

(Armstrong and Soltesz, 2012). PV neurons are estimated to make up ~25% of GABA neurons 

in the primate PFC (Conde et al., 1994), and can be further divided into two major classes: 

basket (PVb) and chandelier (PVch) neurons that target the somata/proximal dendrites and AIS 

of pyramidal neurons, respectively.  

Non-fast-spiking cells are more heterogeneous, including one subpopulation that contains 

the neuropeptide cholecystokinin (CCK), CB1R, no calcium-binding proteins, and also 

innervates pyramidal neuronal somata and proximal dendrites (reviewed in Armstrong and 

Soltesz, 2012). Both PVb and CCKb axons tend to form characteristic terminations onto 

pyramidal cell somata that can look like baskets under light microscopy, while PVch axons form 

distinctive vertical terminal arrays at pyramidal cell AIS called cartridges (Lewis and Lund, 

1990). Two other non-fast-spiking GABA neuron subtypes include the population that contains 
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the calcium-binding protein calbindin, the neuropeptide somatostatin (SST), and mainly 

innervates distal dendrites of pyramidal cells; as well as the group that contains the calcium-

binding protein calretinin (CR), the neuropeptide vasoactive intestinal peptide (VIP) and 

predominantly innervates other GABA neurons. 

Fast synaptic GABA neurotransmission occurs via ionotropic GABAA receptors, which 

are heteropentamers most typically composed of 2α, 2β, and 1γ subunits from 7 different 

families (α1-6, β1-3, γ1-3, δ, ε, θ, ρ1-3) (reviewed in Farrant and Nusser, 2005). Importantly, the 

composition of GABAA receptors can determine their functional properties, since GABAA 

receptors containing α1 subunits (GABAA α1) have much faster decay kinetics than currents 

mediated by GABAA receptors containing other α subunits (Lavoie et al., 1997). In rodent 

hippocampus, postsynaptic GABAA receptor clusters that had a high α1/α2 subunit ratio were 

found to preferentially appose PVb inputs, while clusters that had a lower GABAA α1/α2 ratio 

because of enrichment of GABAA α2 subunits were preferentially adjacent to CCKb inputs to 

pyramidal cell somata/proximal dendrites and to PVch inputs to AIS (Nusser et al., 1996). 

Understanding which GABA neuron subtype(s) are affected in schizophrenia has 

important physiological implications, since different classes target specialized domains of 

pyramidal neurons and presumably affect pyramidal neuron activity uniquely. These GABAergic 

connections appear to be crucial for precisely sculpting neuronal activity both spatially and 

temporally (reviewed in Gonzalez-Burgos and Lewis, 2008). Given the unique morphological 

and molecular profile of GABA neuron subtypes, as well as evidence of their functional 

importance in health and disease, these neurons have become prime candidates for studying 

neural circuit dysfunction in schizophrenia. 
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Figure 3. GABA neuron subtypes in the PFC 

GABA neurons make up a remarkably heterogeneous group of neurons. Different types of GABA neurons target 

different subcompartments of pyramidal neurons (A). Perisomatic targeting terminals arise from CCKb, PVb, and 

PVch neurons (B). Adapted from Hoftman and Lewis 2011. 

1.2.2 Alterations in GABA neurotransmission in schizophrenia 

In schizophrenia, working memory dysfunction may be related to alterations in mRNA and 

protein levels of key regulators of GABA transmission in postmortem PFC tissue. Postmortem 

studies have consistently reported lower mRNA levels of the rate limiting GABA synthesizing 

enzyme, glutamic acid decarboxylase 67 (GAD67) (Akbarian et al., 1995b; Volk et al., 2000; 

Duncan et al., 2010; Curley et al., 2011; Hyde et al., 2011). A recent comprehensive study 

showed that GAD67 protein levels were lower in the PFC of schizophrenia subjects and that 

lower GAD67 protein correlated with lower mRNA levels (Curley et al., 2011). In contrast, 

mRNA levels of a second GABA synthesizing enzyme, glutamic acid decarboxylase 65 

(GAD65), were only slightly reduced or unaltered in the PFC in schizophrenia (Hashimoto et al., 

A B 
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2008a; Hashimoto et al., 2008b; Guidotti et al., 2000). In addition, the density of GAD65-

immunoreactive (IR) puncta was also unchanged (Benes et al., 2000).  

Other markers of GABA transmission are also altered in schizophrenia. Transcript levels 

of the GABA plasma membrane transporter (GAT1), which removes GABA from the synapse, 

were reported lower in a subset of neurons in the PFC of subjects with schizophrenia (Volk et 

al., 2001; Volk et al., 2002). Lower mRNA levels of the postsynaptic GABAA α1 (Akbarian et 

al., 1995a; Hashimoto et al., 2008a; Hashimoto et al., 2008b; Beneyto et al., 2011) but see 

(Duncan et al., 2010), β2 (Beneyto et al., 2011), and γ2 (Akbarian et al., 1995a; Hashimoto et 

al., 2008a), which co-assemble together in the majority of GABAA receptors in the cortex 

(Mohler, 2006), have been found in the PFC in schizophrenia. Interestingly, recent findings 

indicate that GABAA α1 mRNA is lower in pyramidal cells but not GABA neurons in 

schizophrenia (Glausier and Lewis, 2011). However, not all markers of GABA transmission are 

lower in schizophrenia. For example, GABAA α2 mRNA levels are higher in schizophrenia 

(Beneyto et al., 2011), while recent studies reported that mRNA and protein levels of the 

vesicular GABA transporter (vGAT), which loads GABA into presynaptic vesicles at axon 

terminals, were not significantly changed in postmortem PFC tissue from schizophrenia subjects 

(Fung et al., 2011a; Fung et al., 2011b). Some key molecular components of a characteristic 

GABAergic synapse are shown in Figure 4. 
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Figure 4. Synaptic GABA transmission 

Typical GABA presynaptic terminal contains a vast interconnected network of machinery involved in regulating 

neurotransmitter release. Some key components I focus on in this dissertation include (1) the GABA synthesizing 

enzymes, GAD67 and GAD65; (2) the protein that loads GABA into presynaptic terminals, vGAT; (3) Ca2+-binding 

proteins and neuropeptides like PV and CCK; (4) the protein that removes GABA from the synapse, GAT1; and (5) 

postsynaptic GABAA receptors. Adapted from Gonzalez-Burgos et al 2011. 
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1.2.3 Alterations in PV- and CCK-containing GABA neurons in schizophrenia 

Cellular and laminar analyses in the PFC have indicated that the density of neurons with 

detectable levels of GAD67 mRNA was lower by 25-35% across layers 1-5 in subjects with 

schizophrenia (Volk et al., 2000). However, the remaining GABA neurons with detectable levels 

of GAD67 mRNA showed no difference in the mRNA expression levels per neuron. In addition, 

the density of neurons expressing GAT1 mRNA was lower by 21-33% across layers 1-5 in 

schizophrenia and the expression level of GAT1 mRNA per neuron did not differ across subject 

groups (Volk et al., 2001). Since the total number of PFC neurons in schizophrenia appears to be 

unchanged (Akbarian et al., 1995b; Thune et al., 2001), these findings suggest that markers of 

GABA transmission are impaired in a subset of GABA neurons of the PFC in schizophrenia. 

In the PFC of schizophrenia subjects, ~50% of PV mRNA-positive neurons were 

reported to have undetectable levels of GAD67 mRNA in a dual label in situ hybridization study 

(Hashimoto et al., 2003). PV expression was also lower in schizophrenia subjects, and this 

difference occurred in layers 3 and 4, where lower GAD67 mRNA levels were also reported in 

the same subjects. However, neither the density of neurons with detectable levels of PV mRNA 

nor the density of PV-IR neurons differed between groups. In addition, PV and GAD67 mRNA 

were lower within the same cells in subjects with schizophrenia (Hashimoto et al., 2003). These 

findings suggest that GAD67 mRNA levels are reduced in PV-containing neurons that have 

lower, but still detectable, levels of PV mRNA. Markers of PVch inputs to pyramidal cell AIS 

are also affected in schizophrenia. For example, the density of cartridges detectable by GAT1-IR 

was 40% lower in schizophrenia (Pierri et al., 1999; Woo et al., 1998). The density of 

postsynaptic GABAA α2 immunoreactivity was higher by more than 100% in the illness (Volk et 
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al., 2002) and ankyrin-G (AnkG)-IR structures, a structural protein that is concentrated at AIS 

and nodes of Ranvier, was lower by 19% in the illness (Cruz et al., 2009b).  

Lower levels of GAD67 mRNA in the PFC are not exclusive to PV neurons in 

schizophrenia, since they were also reported in layers 2 and 5, where PV mRNA expression was 

unchanged (Hashimoto et al., 2003). One class of GABA neurons whose somata are located 

outside of layers 3 and 4, and thus may account for lower GAD67 mRNA is the CCKb. CB1R 

mRNA and protein levels, as well as those for CCK, are also lower in schizophrenia (Eggan et 

al., 2008; Hashimoto et al., 2008a), and changes in GAD67, CB1R and CCK mRNA were 

significantly correlated in the same subject pairs (Eggan et al., 2008). Finally, not all PFC 

GABA neurons appear to be affected in schizophrenia since CR-containing neurons, the largest 

population of PFC GABA neurons in this region (Conde et al., 1994), did not show alterations in 

CR or GAD67 mRNA levels (Hashimoto et al., 2003). Taken together, these findings suggest 

that the GABA neuron subtypes affected in schizophrenia include both PV- and CCK-containing 

neurons (Figure 5).  
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Figure 5. Changes in perisomatic GABA neurotransmission in schizophrenia 

CCKb neurons have lower levels of CCK mRNA and CB1R mRNA and immunoreactivity (purple), PVb neurons 

have lower PV mRNA levels and GAD67 protein in their terminals (magenta), and PVch have lower GAT1-

immunoreactivity in their axons (green) in the PFC from subjects with schizophrenia. The density of GABAA α1-IR 

receptor clusters is lower, and of GABAA α2-containing receptors at the AIS is higher, in schizophrenia (white ovals 

on blue pyramidal (P) cell). 

1.2.4 PFC circuitry and cognitive control continue to develop during adolescence in 

monkeys and humans 

In humans and monkeys, PFC circuitry and working memory performance continue to mature 

through adolescence (Luna et al., 2004; Sowell et al., 1999; Giedd et al., 1999). In humans, adult 

levels of working memory performance are not reached until around age 20, an improvement 

that is associated with increased levels of PFC activity (Luna et al., 2004). In line with these 
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findings, substantial changes in brain function occur during adolescence in parallel with an 

anatomical decrease in frontal cortical synaptic density. 

As in humans, monkeys also continue to improve in working memory performance as 

they age through adolescence. In rhesus monkeys, the ability to perform working memory tasks 

first appears between 2-4 months of age and progressively improves to reach adult levels of 

performance after 3 years of age (Goldman-Rakic, 1987). This improvement in working memory 

performance appears to depend increasingly on PFC activity, since reversible cooling of PFC 

does not impair working memory performance in monkeys 9-16 months of age, produces modest 

impairment in animals between 19-31 months of age, and substantially impairs performance in 

animals over 3 years of age (Alexander, 1982; Alexander and Goldman, 1978). In 

electrophysiology studies some PFC neurons have increased firing during the delay period of 

working memory tasks, and the loss of this delay activity is associated with errors in 

performance. Between 1-3 years of age, there is a doubling in the amount of PFC neurons 

exhibiting delay-related activity (Goldman-Rakic, 1987).  

Since opportunities to directly study the normative postnatal refinements in PFC circuitry 

at the cellular level in humans are limited, rhesus macaque monkeys provide an excellent model 

developmental system. Relative to rodents, macaque monkeys have an expanded PFC that 

develops over a long time period much like the human PFC (Nelson and Winslow, 2009). 

Primates and rodents also show developmental differences in the location of origin (Letinic and 

Rakic, 2001; Xu et al., 2004), physiological properties (Povysheva et al., 2007; Povysheva et al., 

2008) and proportions of GABA neuron subtypes (Gabbott and Bacon, 1996; Gabbott et al., 

1997) in the PFC.  
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The postnatal developmental trajectory of excitatory synapse density, which exhibits four 

distinct phases in both macaque and human PFC, has been best characterized using electron 

microscopy techniques (Bourgeois et al., 1994; Huttenlocher, 1979; Petanjek et al., 2011). In 

monkey PFC, the early postnatal period, between birth and ~3 months, includes a rapid increase 

in excitatory synaptic density; a relatively quiescent childhood period follows, between ~3 and 

15 months, when the density of excitatory synapses is at a plateau; the adolescence period then 

lasts between ~15 to 45 months, including the period of excitatory synapse pruning; and the adult 

stage is reached when the density of excitatory synapses stabilizes. Although inhibitory synaptic 

density appears to be unchanged during adolescence in monkey PFC (Bourgeois et al., 1994), 

dynamic changes in the expression of regulators of GABA transmission have still clearly been 

observed (Cruz et al., 2009a; Cruz et al., 2003; Erickson and Lewis, 2002). Late developmental 

refinements in dendritic spine densities and GABA transmission markers occur in parallel within 

the same cortical layers (Anderson et al., 1995). While the term adolescence can be defined in 

many different ways, for the purposes of this dissertation adolescence is defined as the period of 

excitatory synaptic pruning in the PFC, which lasts between 15 and 45 months in monkeys and 

around 12-20 years in humans.   

In monkey PFC, immunoreactivity of presynaptic cartridge markers and pyramidal cell 

AIS markers follow complex and protracted postnatal trajectories that coincide with the 

excitatory synaptic developmental changes (Figure 6). For example, detectability of PV-IR 

cartridge density increases from around birth to 3 months of age, plateaus until around 18 months 

of age, and substantially declines during adolescence to reach adult levels (Cruz et al., 2003). In 

contrast the density of puncta detectable by PV immunoreactivity progressively increases 

through adolescence to reach adult levels (Erickson and Lewis, 2002). Since the number of 
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synapses per AIS across pyramidal neurons ranges from 0 to >20 (DeFelipe and Farinas, 1992; 

DeFelipe et al., 1985) and the proportion of AIS with detectable cartridges differs by cortical 

layer, age and label used to identify PVch terminals, only a small subset of pyramidal neurons 

has a visible cartridge associated with AIS. As a result, a plausible interpretation of the PV 

immunoreactivity studies is that the number of cartridges or cartridge terminals may decrease 

and the number of PV-IR puncta may increase during postnatal development. While the extended 

maturation of PV-IR puncta and cartridges is necessary for establishing adult circuits, it may also 

provide a window for both genetic and environmental factors to perturb these changing circuits. 

In contrast, CCK-IR profiles reach adult levels of stability before puberty onset in monkey PFC 

(Oeth and Lewis, 1993). Therefore, manipulation of CCKb inputs during adolescence may have 

unique developmental consequences for PVb and PVch neurons that are still in flux.  
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Figure 6. Developmental trajectories of PFC neural circuits and timing of risk factors for schizophrenia 

(A) Excitatory synaptic number changes and maturation continue through adolescence in monkey PFC. (B) Markers 

of perisomatic GABAergic neurotransmission have complex and protracted postnatal developmental trajectories in 

monkey PFC. (C) Genetic and environmental risk factors for schizophrenia occur from conception through late 

adolescence/young adulthood in human PFC, across equivalent periods of primate PFC maturation. Reproduced 

from Hoftman and Lewis 2011. 
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1.2.5 Evidence for a sensitive period of development: The effects of cannabis on PFC 

circuitry during adolescence 

Adolescence represents a period of dynamic change in brain structure and function (Casey et al., 

2010). In humans, neuroimaging studies have revealed that frontal lobe cortical gray matter 

volume decreases while white matter shows a volumetric increase (Sowell et al., 2004; Sowell et 

al., 2002). These late changes, along with a postmortem structural developmental refinements in 

human and monkey PFC (1.2.4), coincide with the ability to perform better on cognitive tasks 

such as working memory. 

Since PV neurons undergo substantial refinement in parallel with improvements in 

working memory function during adolescence, and GABA release from CCKb inputs that target 

PV neurons (Karson et al., 2009) is suppressed by CB1R activation; adolescence may represent 

a sensitive period for the effects of cannabis exposure. By indiscriminately suppressing GABA 

release from CCKb neurons, THC is poised to alter the activity of glutamatergic and GABAergic 

inputs to PV neurons. The resulting alterations in the regulation of PV neurons by pyramidal 

neuron axon collaterals may perturb the developmental refinements that normally occur during 

adolescence. The THC-mediated suppression of GABA release from perisomatic CCKb inputs 

may also affect perisomatic PV neuronal inputs to pyramidal neurons directly. In turn, these 

events could produce alterations in circuit mechanisms that are required for the maturation of 

working memory. These ideas will be tested in 3.0. 
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1.3 GOALS OF THIS DISSERTATION 

Given the large number of risk associations in schizophrenia, it is imperative not only to focus on 

the disease and attempt to treat the pathophysiology, but also to focus on health and preempting 

symptom expression. The classic disease model posits that the etiology “unleashes pathogenic 

processes that give rise to a pathological entity. This pathological entity perturbs normal 

physiology to produce the illness pathophysiology, which disturbs the milieu in a way that 

results in the emergence of the clinical syndrome” (Lewis et al., 2005). Thus, interpreting 

neuropathological findings in schizophrenia requires knowing whether they represent an 

upstream cause of the illness, a consequence of pathogenic processes, a compensation for the 

pathophysiology induced by the pathological entity, or a confound of the illness (Lewis and 

Gonzalez-Burgos, 2008). Understanding their potential contribution to disease pathogenesis 

requires studying the normal developmental trajectories of vulnerable neural circuits. Therefore, 

the normal maturation of neural circuits that subserve working memory function is the focus of 

the particular proposal, since abnormalities in these neural circuits are thought to underlie core 

cognitive disturbances in schizophrenia. 

In the PFC during postnatal development, substantial changes occur in the expression of 

mRNA and protein for key functional components of GABA neurotransmission that are 

implicated in schizophrenia pathology. Therefore, the purpose of this dissertation is to determine 

the timing of GABA neuron changes in the PFC (2.0), the impact of an environmental risk factor 

on adolescent GABA neuron maturation (3.0), and the cell type-specific nature of developmental 

changes in perisomatic targeting GABA terminals (4.0). This dissertation aims to address this 

purpose by asking the following questions: 1) Can altered PFC expression of GABA-related 

genes in schizophrenia be explained by disturbances in their developmental mRNA expression 
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trajectories (2.0)?; 2) What are the consequences of chronic THC exposure during adolescence 

on PFC GABA circuitry (3.0)?; and 3) What is the postnatal developmental profile of two PV-

containing axon terminal populations that target pyramidal neurons in the monkey PFC (4.0)? 
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2.0  ALTERED CORTICAL EXPRESSION OF GABA-RELATED GENES IN 

SCHIZOPHRENIA: EVIDENCE FOR DISRUPTED DEVELOPMENTAL 

TRAJECTORIES 

Hoftman GD, Volk DW, Bazmi HH, Li S, Sampson AR, Lewis DA. Altered cortical expression 

of GABA-related genes in schizophrenia: Evidence for disrupted developmental trajectories. In 

preparation. 

2.1 INTRODUCTION 

Deficits in certain cognitive processes, such as working memory, are common in individuals 

with schizophrenia and have been attributed to dysfunction of the PFC (Barch and Ceaser, 2012). 

This dysfunction appears to reflect, at least in part, alterations in molecular markers of GABA 

neurotransmission (Benes and Berretta, 2001; Lewis et al., 2005; Mirnics et al., 2000). For 

example, multiple postmortem studies of schizophrenia subjects have documented lower mRNA 

levels for the principal enzyme responsible for cortical GABA synthesis, GAD67 (Akbarian et 

al., 1995b; Volk et al., 2000; Guidotti et al., 2000; Duncan et al., 2010; Hyde et al., 2011; 

Vawter et al., 2002; Straub et al., 2007). Although less well-studied, mRNA levels of the 

presynaptic GAT1, which is responsible for the reuptake of extracellular GABA, have also been 

reported to be lower (Volk et al., 2001), whereas mRNA levels of vGAT, which loads GABA 
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into presynaptic vesicles, have been reported to be unchanged (Fung et al., 2011b) in the PFC of 

schizophrenia subjects. On the postsynaptic side, mRNA levels of two of the most common 

GABA ionotropic receptor subunits, GABAA α1 and GABAA α2, appear to be lower and higher, 

respectively, in some (Akbarian et al., 1995a; Beneyto et al., 2011; Volk et al., 2002) but not all 

(Duncan et al., 2010) studies of schizophrenia. 

These alterations may be more common in particular subsets of cortical GABA neurons. 

For example, mRNA levels of the calcium-binding protein PV, which is expressed in a subset of 

GABA neurons, are lower in the PFC in schizophrenia (Mellios et al., 2009; Fung et al., 2010; 

Hashimoto et al., 2003; Volk et al., 2012a) and PV-containing neurons also exhibit lower 

expression of GAD67 mRNA (Hashimoto et al., 2003) and contain lower levels of GAD67 

protein in their axon terminals (Curley et al., 2011). Importantly, these differences appear to 

reflect disease-related reductions in gene expression and not a deficit in the number of PV-

containing neurons (Akbarian et al., 1995b; Hashimoto et al., 2003). In addition, mRNA levels 

of the neuropeptide SST, which is expressed in a separate subpopulation of GABA neurons, have 

also consistently been reported to be lower in the PFC of subjects with schizophrenia (Morris et 

al., 2008; Mellios et al., 2009; Fung et al., 2010; Volk et al., 2012a; Hashimoto et al., 2008a). In 

contrast, mRNA levels for the calcium-binding protein CR, which is expressed in >40% of PFC 

GABA neurons that contain neither PV nor SST, are not lower in the PFC of individuals with 

schizophrenia (Hashimoto et al., 2008a; Fung et al., 2010; Hashimoto et al., 2003; Volk et al., 

2012a). 

Understanding the potential contributions of alterations in markers of GABA 

neurotransmission to working memory impairments in schizophrenia requires knowledge of 

whether they represent causes, consequences or confounds of the underlying disease process 
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(Lewis and Gonzalez-Burgos, 2008). The reported findings do not appear to be confounds due to 

either a non-specific down-regulation or general degradation of cortical mRNAs, since different 

GABA-related transcripts are lower, higher or unchanged in the illness (Duncan et al., 2010; 

Fung et al., 2010; Hashimoto et al., 2008a; Hashimoto et al., 2003; Benes and Berretta, 2001; 

Volk et al., 2002). Other findings suggest that the observed transcript alterations are not 

attributable to confounding factors such as medications, substance use or other comorbid factors 

(Volk et al., 2002; Curley et al., 2011; Morris et al., 2008; Hashimoto et al., 2003). 

Given that altered levels of GABA-related transcripts were observed in postmortem 

studies of schizophrenia subjects with varying illness duration, they could reflect the 

consequences of being chronically ill. If so, then the magnitude of the GABA-related transcript 

alterations would be expected to co-vary with illness duration. Alternatively, these alterations 

could be part of a causal developmental pathway leading to PFC dysfunction and working 

memory impairments in schizophrenia. For example, working memory performance and the 

associated activation of the PFC undergo a protracted maturation with adult levels of 

performance not achieved until late adolescence (Luna et al., 2004). Interestingly, a recent 

longitudinal prospective cohort study reported that in individuals who were later diagnosed with 

schizophrenia working memory function did not differ from comparison subjects at age 7, but 

then failed to improve with age at the normal rate (Reichenberg et al., 2010). Thus, disturbances 

in the developmental trajectories of GABA-related transcripts that occurred prior to the clinical 

onset of schizophrenia could be causal factors contributing to working memory impairments in 

the illness (Hoftman and Lewis, 2011). 

In order to discriminate between the “chronic illness consequence” versus 

“developmental cause” explanations of altered GABA-related gene expression in schizophrenia, 
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we undertook two studies. First, we quantified levels of transcripts that either mediate GABA 

neurotransmission or are selectively expressed in specific subpopulations of cortical GABA 

neurons in the PFC from 42 matched pairs of schizophrenia and comparison subjects, and 

evaluated these data as a function of illness duration. Second, because it is not possible to assess 

the developmental trajectories of GABA-related transcripts in subjects with schizophrenia, we 

quantified the expression of these same transcripts in the PFC from 49 rhesus monkeys ranging 

in age from one week postnatal to adulthood. We then compared the developmental trajectory of 

each transcript with its expression status in schizophrenia to determine if a disturbance during 

development could account for the pattern of GABA-related transcript alterations seen in the 

illness. 

2.2 METHODS 

2.2.1 Human Studies 

Brain specimens (n=84) were obtained during routine autopsies conducted at the Allegheny 

County Medical Examiner’s Office (Pittsburgh, PA) after consent was obtained from the next-of-

kin. Consensus DSM-IV-TR diagnoses for each subject were made using structured interviews 

with family members and review of medical records (Volk et al., 2012a); the absence of a 

psychiatric diagnosis was confirmed in healthy comparison subjects using the same approach. To 

control for experimental variance, subjects with schizophrenia or schizoaffective disorder (n=42) 

were matched individually to one healthy comparison subject for gender, and as closely as 

possible for age, and samples from both subjects in a pair were processed together throughout all 
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stages of the study. The mean age, postmortem interval (PMI), brain pH, RNA integrity number 

(RIN) (Agilent Bioanalyzer, Walbronn, Germany), and tissue storage time (TST) did not differ 

between subject groups (Table 1; Appendix A1, Table 6). The University of Pittsburgh’s 

Committee for the Oversight of Research Involving the Dead and Institutional Review Board for 

Biomedical Research approved all procedures. 

 

    Table 1. Summary of demographic and postmortem characteristics of human subjects 

 

Frozen tissue blocks from each subject were confirmed to contain PFC area 9 using 

Nissl-stained tissue sections cut on a cryostat at 40 μm thickness (Volk et al., 2000). Gray matter 

from adjacent sections was separately collected into a tube containing TRIzol reagent using a 

method that ensured minimal white matter contamination and excellent RNA preservation (Volk 

et al., 2012a). 

Levels of vGAT, GAT1, and GABAA α1 mRNAs were quantified by real-time 

quantitative PCR (qPCR) using previously described methods (Volk et al., 2012a). The results of 

similar studies for GAD67, PV, CR, and SST mRNAs in the same cohort of subjects have been 

previously reported (Volk et al., 2012a; Curley et al., 2011). Briefly, qPCR was performed using 
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Power SYBR Green fluorescence and the StepOnePlus Real-Time PCR system (Applied 

Biosystems). Based on their stable relative expression levels between schizophrenia and 

comparison subjects (Hashimoto et al., 2008a), three reference genes (β-actin, cyclophilin-A, 

and glyceraldehyde-3-phosphate dehydrogenase [GAPDH]) were used to normalize the target 

gene expression levels. The amplification efficiency for each primer pair across a range of cDNA 

dilutions was greater than 96% for each of the target and reference genes, and dissociation curve 

analyses confirmed a single and specific amplification product. cDNA samples from both 

subjects in each pair were processed together in quadruplicate on the same PCR plate. The mean 

coefficient of variance (SD) of the replicate measures was less than 0.04 (0.02) for all transcripts. 

The delta CT (dCT) for each target transcript was calculated by subtracting the geometric mean 

of the reference genes from the CT of the target transcript. Since this dCT represents the log2-

transformed expression ratio of each target transcript to the geometric mean of the reference 

genes, the relative expression level of the target transcript was calculated as 2-dCt (Vandesompele 

et al., 2002). 

2.2.2 Monkey Studies 

Forty-nine rhesus monkeys (Macaca mulatta) ranging in age from postnatal 1 week to 11.5 years 

were used. Animals were housed according to age as previously described (Erickson and Lewis, 

2002). All housing and experimental procedures were conducted in accordance with the 

guidelines of the USDA and the NIH Guide for the Care of Animals, and with approval from the 

University of Pittsburgh’s IACUC. 

Twenty-one animals were perfused transcardially with ice-cold modified artificial 

cerebrospinal fluid following deep anesthesia induced with ketamine and pentobarbital; in 5 of 
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these animals, a small tissue block from the left principal sulcus had been surgically excised for 

in vitro electrophysiology studies 2-4 weeks prior to perfusion (Table 2; Appendix A2, Table 

7). The remaining 28 animals were experimentally naïve. After deep anesthesia with ketamine 

and pentobarbital was induced, the brains were removed. For all animals, the right hemisphere of 

each brain was blocked coronally and each block was frozen and stored at -80oC. 

Table 2. Summary of rhesus monkeys used in this study 

 

 

Frontal pole sections (40 µm) composed entirely of gray matter were collected into tubes 

containing TRIzol reagent in a manner that ensured excellent RNA preservation (Hashimoto et 

al., 2008b). Area 10 was used due to the availability of tissue from that cortical region for each 

animal. qPCR was conducted as described for the human study with the following differences. 

Primer sets were designed against the macaque sequences of the same seven target genes used in 

the human studies, as well as two reference genes, β-actin and cyclophilin-A, which exhibited 

stable relative expression levels across the postnatal developmental ages studied (F7,41=1.594 

p=0.164 in the present study, and as previously reported (Volk et al., 2012b)). GAPDH was not 

used as a reference gene since its mRNA levels appeared to be unstable across early postnatal 

development (Volk et al., 2012b). 
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2.2.3 Statistical Analyses 

Two ANCOVA models were used to examine the effect of diagnosis on vGAT, GABAA α1 and 

GAT1 mRNA levels. The unpaired ANCOVA model included mRNA level as the dependent 

variable, diagnostic group as the main effect, and any relevant covariates that were significantly 

related to mRNA level. Since subjects were also paired to account for the parallel processing of 

tissue samples from a pair and to balance diagnostic groups for sex and age, a second paired 

ANCOVA model including subject pair as a blocking factor was also employed. Both models 

produced similar results for all transcripts, and results from the unpaired ANCOVA model are 

reported. There were no subject outliers and the differences in the reported degrees of freedom 

represent differences in the number of covariates used in a given analysis. 

To explore whether the alterations in GABA-related transcript levels in schizophrenia 

subjects were a consequence of the disease process, the correlations between illness duration (the 

difference between a schizophrenia subject’s age at death and age at clinical onset) and the age-

adjusted percent difference (within-pair schizophrenia subject minus comparison subject) in 

expression of each mRNA transcript were computed. In addition, the age by diagnosis 

interactions were assessed using the unpaired ANCOVA model. If the age by diagnosis 

interaction was not significant, then the age effect was considered to be the same for both subject 

groups. If the age by diagnosis interaction was significant, the effects of age across the lifespan 

were examined using regression models to obtain computational estimates of age effects on 

GABA-related transcript expression before and after illness onset in the schizophrenia subjects. 

For the schizophrenia subjects, these models included the age at clinical onset, the illness 

duration, and relevant covariates, whereas for the comparison subjects the age effect was 

predicted to be constant over time. The model for schizophrenia subjects predicted the intercept 
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and slopes of the age effect before and after clinical onset where mRNA expression level at the 

age at death for schizophrenia subjects equaled the sum of the intercept β0
s (i.e., transcript level 

at birth) and β1
s*age at clinical onset and β2

s*illness duration terms. The model for comparison 

subjects predicted the intercept and slope of the overall age effect, and mRNA levels for these 

subjects at death equaled the sum of the intercept β0
c and βc*age at death (Appendix B, Figure 

22). Hypothesis testing was conducted to determine whether the rate of transcript level decline 

before clinical onset was different from the rate of decline after clinical onset: H0: β1
s=β2

s; HA: 

β1
s≠β2

s. 

The relationship of the within-subject pair differences for transcript levels to each of the 

following potential confounds were examined by two sample t-tests: gender, diagnosis of 

schizoaffective disorder, death by suicide, substance use diagnosis at time of death, or 

antidepressant, antipsychotic, or benzodiazepine use at time of death. Medication use at time of 

death was determined from the results of toxicology testing and and/or records of prescriptions 

active at the time of death. Subjects with a documented history of medication non-adherence and 

negative toxicology screen were assumed to not be taking medications at time of death. 

All analyses were implemented in SAS PROC GLM (Version 9.2, SAS Institute, Inc., 

Cary, NC), and all tests were conducted at 0.05 level. 

For the monkey studies, the correlations between age and each mRNA level were 

determined using Pearson’s correlation coefficient. A second analysis used an ANCOVA model 

in which animals were placed into one of four age groups based on existing data regarding 

probable inflection points in the maturation of primate PFC circuitry. Such inflection points have 

been best studied for the postnatal development trajectory of excitatory synapse density, which 

exhibits four distinct phases in both macaque and human PFC (Bourgeois et al., 1994; 
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Huttenlocher, 1979; Petanjek et al., 2011). Therefore, each animal in the present study was 

assigned to one of the following four age groups: 1) perinatal, 0.25-1 mo of age, within the 

period of a rapid increase in excitatory synaptic density; 2) childhood, 3-9 mo, within the period 

when the density of excitatory synapses is at a plateau; 3) adolescence, 15-37 mo, within the 

period of excitatory synapse pruning; and 4) adult, 42-138 mo, during the period when the 

density of excitatory synapses is at stable adult levels. Thus, for the purposes of this manuscript, 

a developmental trajectory refers to the pattern of change in the level of a transcript over 

postnatal development from 1 week of age to mid-life, the approximate age range of the 

available monkey cohort. The ANCOVA model for gene expression used age group as a factor 

and TST as a covariate. Tukey tests with α=0.05 were conducted for post hoc comparisons 

between age groups. 
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2.3 RESULTS 

2.3.1 GABA-related transcript expression in schizophrenia 

In PFC area 9, levels of vGAT (-7%, F1,78=4.13, p=0.046) and GABAA α1 mRNAs (-6%, 

F1,78=8.29, p<0.01) were significantly lower in the subjects with schizophrenia, but GAT1 

mRNA levels did not differ (F1,78=0.39, p=0.53) between groups (Figure 7A-C). We found that 

vGAT (F1,78=5.96, p=0.02) and GAT1 (F1,78=5.72, p=0.02) mRNA levels were negatively 

associated with TST. No other covariates were related to mRNA levels or significantly differed 

between diagnostic groups (Table 1), and thus were not included in the reported statistical 

models. Some of these subject pairs were included in previous studies of GABAA α1 and GAT1 

mRNA levels (Volk et al., 2001; Beneyto et al., 2011) using in situ hybridization (Appendix A1, 

Table 6). In the newly studied schizophrenia subject cohort (n=19 pairs) alone, GABAA α1 

mRNA levels were still significantly lower (-4.4%, F1,32=5.38; p=0.03), and GAT1 mRNA 

expression still did not differ in schizophrenia subjects (F1,32=0.04; p=0.85) from comparison 

subjects. Levels of vGAT, GABAA α1 and GAT1 mRNAs did not differ as a function of gender, 

diagnosis of schizoaffective disorder, death by suicide, substance use diagnosis at time of death, 

or antidepressant, antipsychotic, or benzodiazepine use at time of death (all |t|<1.96, p>0.05). In 

this same cohort of 42 subject pairs using the same qPCR method, mRNA levels for GAD67, 

PV, and SST were lower, and mRNA levels for CR were higher, in the subjects with 

schizophrenia (Curley et al., 2011; Volk et al., 2012a). 
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Figure 7. GABA-related mRNA levels in PFC from schizophrenia and comparison subjects.  

vGAT (A), GABRA1 (B), and GAT1 (C) mRNA levels in PFC from schizophrenia and comparison subjects. Scatter plots show the transcript levels for each 

matched pair of a comparison and either a schizophrenia (circles) or schizoaffective disorder subject (triangles). X- and Y-axes indicate the transcript expression 

ratio (2-dCT) for the comparison and schizophrenia (or schizoaffective) matched subject pairs. Pairs below the dashed unity line have lower transcript levels in the 

schizophrenia (or schizoaffective) subject relative to the comparison subject. 
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We next determined whether levels of GABA-related transcripts altered in schizophrenia 

were correlated with illness duration. The age-adjusted, within-pair, percent difference in 

transcript expression was plotted against illness duration for each schizophrenia subject. The 

age-adjusted percent differences of the expression levels of all transcripts—GAT1 excluded 

since it did not differ between schizophrenia and comparison subjects—did not significantly 

correlate with illness duration (all |r|< 0.270; p>0.08) (Figure 8). In addition, the age-adjusted 

percent differences of the expression levels for these same transcripts did not significantly 

correlate with age at illness onset (all |r|< 0.250; p>0.12). 

We further examined if any GABA-related transcripts altered in schizophrenia exhibited 

an age-related effect that differed between diagnostic groups. There was no significant age by 

diagnosis interaction on mRNA levels for all GABA-related markers studied (all F1,77<1.60, 

p>0.21), with the exception of GAD67 (F1,77=4.27; p=0.04) (Figure 9). 
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Figure 8. Within-pair percent difference (schizophrenia - comparison subject) in PFC transcript levels versus 

illness duration in schizophrenia subjects.  

Pearson’s correlation coefficient (r) was not statistically significant for any of the GABA-related mRNA levels 

examined that were altered in schizophrenia (A-F). For each panel, each matched pair of schizophrenia and 

comparison subjects is shown as an open black circle. 
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Figure 9. Interaction of age by diagnosis on GABA-related mRNA levels in the PFC of schizophrenia 

subjects.  

Aside from GAD67 (B), the age by diagnosis interactions were not statistically significant for any of the GABA-

related mRNA levels examined that were altered in schizophrenia (A, C-F). For each panel, comparison subjects are 

shown in open black circles and schizophrenia subjects in filled black circles. Gray solid and black dashed lines 

indicate lines of best fit for comparison and schizophrenia subjects, respectively. F- and p-values represent the age 

by diagnosis interaction statistics. 
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In schizophrenia subjects, the potential age by diagnosis interaction on GAD67 mRNA 

levels could reflect an additive effect of illness duration in the schizophrenia subjects. Thus, the 

effects of age on GAD67 mRNA expression were evaluated in schizophrenia subjects using a 

regression model to estimate the age effect on GAD67 mRNA expression before and after 

clinical onset (2.2.3). In schizophrenia subjects, the estimated values of the slopes of the change 

in GAD67 mRNA with age did not differ before (β�1
s=-0.000026) and after (β�2

s=-0.00025) 

clinical onset (p=0.44), suggesting that age has a constant effect on GAD67 mRNA levels in 

schizophrenia subjects.  

Together, our findings suggest that changes in GABA-related transcripts in schizophrenia 

are not a consequence of illness chronicity. 

 

2.3.2 Postnatal trajectories of GABA-related transcripts in monkey PFC 

To investigate the alternative possibility that altered cortical GABA-related mRNA levels reflect 

abnormalities in development that occurred before clinical illness onset, we determined the 

normative postnatal developmental trajectories of these GABA-related transcripts in monkey 

PFC. For markers of GABA neurotransmission, mRNA levels were positively correlated with 

age during postnatal development for vGAT (r=0.308, p=0.031), GAD67 (r=0.285, p=0.047), 

and GABAA α1 (r=0.592, p<0.001) mRNAs, and did not change with age for GAT1 mRNA 

(r=0.111, p=0.449) (Figure 10A-D). The mean mRNA levels in the adult group were 

significantly higher than in the perinatal group for vGAT (+24%), GAD67 (+46%), GABAA α1 

(+78%), but not for GAT1 (Figure 10E-H). For markers of GABA neuronal populations, mRNA 

levels were positively correlated with age for PV (r=0.378, p=0.007), negatively correlated with 



  47 

age for SST (r=-0.416, p=0.003), and did not differ with age for CR (r=-0.165, p=0.256) (Figure 

11A-C). The mean levels in the adult group were significantly higher than in the perinatal group 

for PV (+790%), lower for SST (-33%) and did not differ for CR (Figure 11D-F). 
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Figure 10. Postnatal developmental trajectories of transcripts regulating GABA neurotransmission in rhesus 

monkey PFC.  

For panels A-D, the black line indicates least squares line of best fit; and Pearson’s correlation coefficient (r) and 

corresponding p-value are indicated for each panel on the left. For panels E-H, the black bars indicate group means. 

Age groups that do not share the same letters are significantly different (p<0.05). 
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Figure 11. Postnatal developmental trajectories of GABA neuronal populations in rhesus monkey PFC.  

For panels A-C, the black line indicates least squares line of best fit; and Pearson’s correlation coefficient (r) and 

corresponding p-value are indicated for each panel on the left. For panels D-F, the black bars indicate group means. 

Age groups that do not share the same letters are significantly different (p<0.05). 
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Given that a number of environmental exposures from birth through adolescence are 

associated with increased risk for schizophrenia (van Os et al., 2010), and may have a 

particularly strong influence on neural circuits during sensitive periods of cortical development 

(Hensch, 2005), we determined when during postnatal development transitions in the expression 

levels of GABA-related mRNAs might occur. From the perinatal to childhood period, vGAT 

(+32%), PV (+580%), and GABAA α1 (+54%) mRNA levels increased significantly (Table 3). 

GABAA α1 mRNA expression also increased significantly from adolescence to adulthood 

(+12%), albeit more modestly than the earlier rise. GAD67 mRNA increased progressively from 

the perinatal to adult periods, although most of the rise occurred during the perinatal to 

adolescence periods (+12%). SST mRNA decreased significantly from the perinatal to childhood 

and childhood to adolescence periods (-17% and -18%, respectively). Taken together, the 

majority of GABA-related transcript expression changes were most prominent during the 

perinatal to childhood age periods in monkey PFC. 

Table 3. Timing of the largest changes in PFC GABA mRNA levels 
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2.4 DISCUSSION 

We report modest but significantly lower tissue levels of vGAT and GABAA α1 mRNAs in the 

PFC of schizophrenia subjects. Given these and other recently reported GABA-related transcript 

abnormalities from the same subject cohort (Curley et al., 2011; Volk et al., 2012a), we sought 

to determine whether altered expression of GABA-related mRNAs in schizophrenia could reflect 

the consequences of a chronic illness. Our analyses suggest that neither factors frequently 

comorbid with a diagnosis of schizophrenia nor duration of clinical illness accounted for the 

observed alterations in GABA-related gene expression.  

To explore an alternative possibility that alterations in cortical GABA-related transcripts 

in schizophrenia might reflect developmental disturbances, we determined the postnatal 

developmental trajectories of GABA-related transcripts in the PFC from healthy rhesus 

monkeys. From birth through adulthood the levels of vGAT, GAD67, GABAA α1 and PV 

mRNAs significantly increased, SST mRNA significantly decreased, and GAT1 and CR mRNAs 

remained unchanged. These developmental patterns generally matched those previously reported 

in human PFC (Huang et al., 2007; Duncan et al., 2010; Fung et al., 2010). 

Interestingly, for most transcripts the change in levels with development was in the 

opposite direction of the difference observed between schizophrenia and comparison subjects. 

For example, levels of vGAT, GAD67, GABAA α1 and PV mRNAs all significantly increased 

during postnatal development, and subjects with schizophrenia showed lower expression of these 

transcripts. In contrast, CR mRNA levels decrease significantly during postnatal development in 

human PFC (Fung et al., 2010) and were recently reported to be higher in subjects with 

schizophrenia (Volk et al., 2012a). Finally, transcripts, such as GAT1, that did not change in 

expression level across postnatal development were not altered in schizophrenia. Together, these 
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comparisons suggest the hypothesis that expression patterns of GABA-related transcripts in 

schizophrenia reflect blunted or incomplete developmental trajectories, resulting in a failure to 

achieve normal, mature mRNA levels.  

This idea of an incomplete maturation of cortical GABA-related transcripts in 

schizophrenia is supported by previous findings in the literature. For example, the GABAA α2 

subunit declines across postnatal development in monkey PFC (Hashimoto et al., 2009) and is 

higher in the PFC of schizophrenia subjects (Beneyto et al., 2011), whereas the GABAA δ 

subunit shows exactly the opposite pattern in development and in schizophrenia (Maldonado-

Aviles et al., 2009). In addition, the µ-opioid receptor, which is selectively expressed by 

parvalbumin neurons (Drake and Milner, 1999; Drake and Milner, 2002; Stumm et al., 2004) and 

suppresses GABA release when activated (Drasbek et al., 2007; Drasbek and Jensen, 2006), 

declines with postnatal development and is higher in schizophrenia (Volk et al., 2012b). 

Furthermore, expression patterns of alternatively-spliced transcripts of the GAD1 gene are also 

consistent with this hypothesis; GAD67 mRNA increases and GAD25 mRNA decreases 

normally during early postnatal development of human PFC, but in schizophrenia subjects, the 

relative levels of GAD67 and GAD25 mRNAs were lower and higher, respectively, than in 

matched comparison subjects (Hyde et al., 2011).  

However, not all GABA-related transcripts with altered expression in schizophrenia fit 

the pattern predicted by the incomplete maturation hypothesis. For example, SST mRNA levels 

are lower in the PFC of subjects with schizophrenia (Hashimoto et al., 2008a; Fung et al., 2010) 

but this transcript undergoes a pronounced decline with age that begins during early postnatal 

development and persists throughout adulthood both in macaques and humans (Fung et al., 

2010). The fact that cortical SST mRNA levels are also lower in other psychiatric disorders 
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(Sibille et al., 2011) suggests that the altered expression of this transcript in schizophrenia may 

be driven by factors that are common to these disease processes and thus does not reflect early 

developmental events. 

In the present study, four of the five cortical GABA transcripts that changed during 

postnatal development showed the most notable changes in expression levels during the perinatal 

to childhood transition (Table 3). A number of perinatal and childhood environmental exposures 

such as birth complications and urbanicity have been associated with an increased risk for 

developing psychosis (van Os et al., 2010; Lewis and Levitt, 2002). We also observed increases 

in GAD67 and GABAA α1 mRNA levels during adolescence in monkeys, and a potential 

sensitive period in PFC development when factors such as cannabis use might contribute to an 

increased liability to schizophrenia (Moore et al., 2007). Interestingly, GABA neurons are 

involved in shaping the maturation of cortical circuits during these same developmental periods 

(Le Magueresse and Monyer, 2013). In concert, these data suggest that PFC development 

encompasses multiple sensitive periods during which adverse environmental factors could 

pathologically alter the developmental trajectories of GABA neurons in individuals later 

diagnosed with schizophrenia. 

The idea that GABA-related transcripts might be particularly vulnerable is consistent 

with findings that GABA neurotransmission can powerfully affect critical or sensitive periods in 

cortical development (Hensch, 2005; Le Magueresse and Monyer, 2013). For example, the 

timing of the critical period for the development of binocular vision can be manipulated by the 

enhancement or reduction of GABA transmission in visual cortex (Hensch, 2005), especially via 

GABAA α1-containing neurons (Fagiolini et al., 2004) postsynaptic to PV-containing GABA 

neurons (Nusser et al., 1996). These findings, along with our results that show substantial 
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increases in GABAA α1 and PV mRNA levels during postnatal development, suggest that PV-

containing inputs to GABAA α1-containing postsynaptic structures may be especially susceptible 

to environmental exposures during development. Therefore, our results of lower GABAA α1 and 

PV (Volk et al., 2012a) mRNA levels in schizophrenia may reflect earlier disturbances in 

specific neural circuits during sensitive periods of postnatal development. 

It is important to note that not all of the findings of the present study are in agreement 

with some reports in the literature. For example, recent postmortem studies (Duncan et al., 2010; 

Fung et al., 2011a) using a different subject cohort failed to find the significantly lower levels of 

vGAT and GABAA α1 mRNAs observed in the present study. This discrepancy could reflect 

differences in subject composition of the cohorts since we recently reported that altered 

expression of GABA-related transcripts is particularly marked in a subset of individuals with 

schizophrenia (Volk et al., 2012a). In addition, the absence of a change during postnatal 

development in calretinin mRNA in monkey PFC is not consistent with the reported trajectories 

of calretinin mRNA and protein in human PFC (Fung et al., 2010). Since CR is expressed in 

~40% of GABA neurons in the macaque and human PFC, and these GABA neurons constitute a 

morphologically heterogeneous population of neurons, species-specific differences in the 

development and adult distribution of calretinin levels are possible (Hof et al., 1999).  

In concert, our findings, and those of other published studies, suggest that the altered 

expression of certain GABA-related transcripts in the PFC of subjects with schizophrenia are not 

the consequence of cumulative illness effects and may be due to blunted or incomplete 

developmental trajectories of these transcripts. Together, these findings provide another line of 

evidence supporting the idea that schizophrenia is a disorder of cognitive development, and they 
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provide clues as to what molecular systems might be targeted for preemptive interventions in at 

risk individuals, and when such interventions might be most effective.   
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3.0  REPEATED THC EXPOSURE DURING ADOLESCENCE INDUCES 

ALTERATIONS IN MARKERS OF GABA TRANSMISSION IN MONKEY 

PREFRONTAL CORTEX 

Hoftman GD, Bazmi HH, Lewis DA. Alterations in markers of GABA transmission in the 

prefrontal cortex from THC-treated monkeys. In Preparation.  

3.1 INTRODUCTION 

Marijuana (and other forms cannabis) is, by far, the most commonly used illicit drug in America. 

In 2012, 15% of 8th graders (13-14 year olds), 34% of 10th graders (15-16 year olds), and 45% of 

12th graders (17-18 year olds) reported lifetime use of marijuana (Johnston L. D., 2013). In 

addition, the perception that cannabis can be harmful has decreased, the accessibility increased, 

and use has increased among adolescents (Johnston L. D., 2013). Interestingly, the 

administration of Δ9-tetrahydrocannibinol (THC), the principal psychoactive component in 

cannabis (Freund et al., 2003), impairs working memory performance in adults (Volkow et al., 

1996; D'Souza et al., 2004). Since performance of spatial working memory tasks becomes 

substantially more accurate and faster in humans during adolescence (Luna et al., 2004), this 

growing population of cannabis users (Johnston L. D., 2013) may be particularly sensitive to the 

effects of THC on working memory development. Findings from epidemiological studies support 
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this idea showing repeatedly that cannabis use during early adolescence is associated with a 

dose-dependent increased risk for schizophrenia (Henquet et al., 2005a; Stefanis et al., 2004; 

Arseneault et al., 2002; van Os et al., 2002; Zammit et al., 2002). In addition, chronic exposure 

of immature animals to cannabinoids results in long-lasting alterations in working memory 

(Schneider, 2003 #1218; O'Shea et al., 2004), which is partly mediated by the PFC (Goldman-

Rakic, 1995). Thus, understanding the biological mechanisms of this relationship is an important 

public health issue.  

Adolescence is a period of development that is associated with refinements in PFC neural 

circuits that are correlated with improvements in the manipulation of information during working 

memory tasks (Luna, 2009). The neural basis for the protracted maturation of working memory 

performance has been attributed, at least in part, to age-related increases in dorsolateral PFC 

activity (Goldman-Rakic, 1995). The development of spatial working memory and PFC activity 

temporally parallels the structural maturation of PFC circuitry during childhood and adolescence, 

with dynamic changes occurring at GABA neuron connections (Cruz et al., 2003; Cruz et al., 

2009a; Erickson and Lewis, 2002). For example, mRNA levels of GAD67 and GAD65 have 

been reported to increase throughout childhood and adolescence in primate PFC (Huang et al., 

2007; Hyde et al., 2011). Levels of PV mRNA also increased during the infancy-childhood 

transition (Figure 11). In the monkey PFC, CB1R are enriched at CCKb axon terminals (Eggan 

et al., 2010; Freund et al., 2003), which make direct synaptic connections with PVb (Karson et 

al., 2009). In concert, these findings suggest that adolescence may be a sensitive period for the 

effects of chronic cannabis exposure on maturing PFC GABA circuitry. 

Recently, our group reported adverse residual effects (from 7 hours to 20 days; versus 

acute effects within 6 hours of exposure) of repeated THC exposure on spatial working memory 
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in adolescent monkey PFC. Importantly, these effects occurred at doses that mimic human 

recreational use of cannabis (Verrico et al., 2012). Therefore, we tested the hypothesis that 

chronic THC exposure during adolescence results in the disruption of GABA-related gene 

expression. Using quantitative real-time PCR from adolescent monkey PFC tissue, we report that 

GAD65 mRNA expression was higher by 15% in THC-treated animals relative to vehicle-treated 

matched comparisons, and PV mRNA was lower by 19%. In contrast, levels of GAD67, CB1R 

and CCK mRNAs did not differ between groups. 

3.2 METHODS 

3.2.1 Animals 

Fourteen experimentally naïve, male rhesus macaque (Macaca mulatta) monkeys were acquired 

as a single cohort. Since spatial working memory performance increasingly becomes dependent 

upon PFC activity beginning at 12 months of age and continuing through ~36 months of age, 

animals were trained to achieve comprehension on two working memory tasks by 28 months of 

age (Verrico et al., 2011). These animals were housed as previously described in accordance 

with the USDA and NIH Guidelines for Animal Care and with the approval of the University of 

Pittsburgh’s IACUC. 

 Behavioral tasks and intravenous administration of THC have been described in detail 

elsewhere (Verrico et al., 2012; Verrico et al., 2011). Briefly, animals were trained to respond to 

computerized touchscreens and to perform a spatial delay response task and an object recall 

working memory task. These two tasks were chosen since spatial working memory performance 
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depends upon the dorsolateral PFC, which matures later than the ventrolateral PFC (Conklin et 

al., 2007; Paus, 2005), while object recall performance depends upon the ventrolateral PFC, 

(Wilson et al., 1994; Funahashi et al., 1989; Goldman et al., 1971; Goldman and Rosvold, 1970). 

The fourteen trained male adolescent monkeys were matched for baseline cognitive performance 

and assigned to a THC- or vehicle-treatment group. THC was suspended in a vehicle containing 

1% Tween-80 and 0.9% saline (Verrico et al., 2012). THC/vehicle administration was initiated at 

~28 months of age and doses of either 120 (n=3) or 240 (n=4) μg/kg were administered daily for 

5 days each week and continued until one month before the animals were sacrificed.  

3.2.2 Tissue 

Postpubertal animals ranging in age from 40-44 months of age (Table 4) were perfused 

transcardially with ice-cold modified artificial cerebrospinal fluid following deep anesthesia 

induced with ketamine and pentobarbital and the brains were removed. For all animals, the right 

hemisphere of each brain was blocked coronally and each block was frozen and stored at -80oC. 

         Table 4. Adolescent male rhesus monkeys used in the THC study 

 

Pair Subject ID Sex Age at Sacrifice 
(Months) Treatment

MJ219 M 41 Vehicle
MJ315 M 40 THC
MJ401 M 41 Vehicle
MJ320 M 41 THC
MJ324 M 42 Vehicle
MJ327 M 41.5 THC
MJ508 M 41 Vehicle
MJ421 M 41 THC
MJ407 M 42.5 Vehicle
MJ522 M 41 THC
MJ607 M 42 Vehicle
MJ512 M 42 THC
MJ523 M 43.5 Vehicle
MJ505 M 44 THC

7

1

2

3

4

5

6
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Gray matter from adjacent sections containing the principal sulcus from PFC area 46 was 

separately collected into a tube containing TRIzol reagent using a method that ensured minimal 

white matter contamination and excellent RNA preservation (Volk et al., 2012a). Primer sets 

were designed against the macaque sequences of GAD65, PV, GAD67, CB1R and CCK, as well 

as three reference genes, β-actin, cyclophilin-A, GAPDH, which exhibited stable relative 

expression levels across in both subject groups. qPCR reactions were carried out using the SYBR 

1 Green reporter as described in (2.2.1 and 2.2.2). 

3.2.3 Statistics 

Paired t-tests were used to analyze the experimental group mean differences of the target 

transcript expression ratio. Pearson’s correlation coefficients were calculated to determine 

whether a linear relationship existed between changes in GAD65 and PV mRNA levels. 

3.3 RESULTS 

In PFC area 46 from postpubertal animals, we found that levels of GAD65 mRNA were higher 

by 16% (t6 = -3.971; p = 0.007) in experimentally matched pairs of THC-treated animals 

(reported as expression ratio mean ± SD; 0.0028 ± 0.0003) relative to vehicle-treated 

comparisons (0.0024 ± 0.0002). Levels of PV mRNA were lower by 18%, but did not reach 

statistical significance (t6 = 1.12; p = 0.31) in THC-treated (0.054 ± 0.011) versus vehicle-treated 

(0.045 ± 0.016) subjects. However, closer examination revealed that in Pair 3, PV mRNA levels 
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were much higher in the THC-treated animal than its matched comparison. Furthermore in Pair 

3, GAD65 mRNA levels did not differ between the THC-treated and comparison animals. An 

additional paired t-test analysis performed excluding pair 3 showed that GAD65 mRNA levels 

were higher by 19% (t5 = -6.03; p = 0.002) and PV mRNA levels were lower by 30% (t5 = 2.46; 

p = 0.058) in THC-treated animals (GAD65: THC-treated = 0.0028 ± 0.0002; vehicle-treated = 

0.0023 ± 0.0003; PV: THC-treated = 0.040 ± 0.012; vehicle-treated = 0.056 ± 0.011) (Figure 

12). In contrast, levels of GAD67, CB1R and CCK mRNAs did not significantly differ (All t6 < 

0.53; p > 0.61) between experimental groups, with or without Pair 3 included in the analysis. 

 In order to determine whether a relationship existed between GAD65 and PV mRNA 

expression, we examined Pearson’s correlations between them. The within-pair percent 

differences of GAD65 and PV mRNA levels were significantly negatively correlated (r=-0.768; 

p=0.044) (Figure 13). 

 In chapter 2, we reported the postnatal developmental trajectories of PV and GAD67 

mRNA in monkey PFC. Here in the same PFC region from the same animals, we report that 

GAD65 mRNA levels increase across postnatal development, while CCK mRNA levels did not 

differ across the ages studied (Figure 14).  
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Figure 12. Higher GAD65 and lower PV mRNA levels in the PFC in THC-treated animals 

Panels (A) and (B) GAD65 mRNA levels with 7 and 6 pairs, respectively. Panels (C) and (D) PV mRNA levels with 

7 and 6 pairs, respectively. Paired t-tests were used to determine statistical significance. Asterisk (*) indicates the 

animal pair (pair 3) in which the THC-treated subject had higher PV mRNA levels by 70% and was thus excluded 

from the statistical analysis in panels (B) and (D). 

 

D 

A 

C 

B 



  63 

 

Figure 13. Within-pair percent differences in GAD65 and PV mRNA levels is significantly correlated 

Pearson’s correlation coefficient was used to determine the correlation. For analysis not including pair 3, r = -0.567 

and p = 0.055. P1 represents an abbreviation for Pair 1 of cannabis-treated and vehicle-treated animals. Same goes 

for P2-P7. 
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Figure 14. GAD65 mRNA levels increase and CCK mRNA levels do not significantly change during postnatal 

development in monkey PFC 

In (A) and (B), the black line indicates least squares line of best fit; and Pearson’s correlation coefficient (r) and 

corresponding p-value are indicated for each panel on the left. In (C) and (D), the black bars indicate group means. 

Age groups that do not share the same letters are significantly different (p<0.05). 

 

3.4 DISCUSSION 

In the dorsolateral PFC area 46 in post-pubertal monkeys, we found that the residual effects of 

repeated THC administration to adolescent monkeys resulted in a 15% increase in GAD65 

mRNA levels, and a 19% decrease in PV mRNA levels. In contrast, mRNA levels of GAD67, 
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CB1R and CCK did not differ between THC-treated animals and their matched vehicle-treated 

comparison subject pairs. The within-pair percent differences in GAD65 and PV mRNA levels 

were correlated such that cases where the THC-treated animal had higher GAD65 mRNA levels 

also tended to have lower PV mRNA levels relative to the vehicle-treated animal. 

 These same animal pairs had performed spatial delay response and object recognition 

working memory tasks throughout the course of THC/vehicle-treatment (Verrico et al., 2012; 

Verrico et al., 2011). THC-treated animals were less accurate with their responses on the spatial 

delay response task relative to their matched comparison animals, and their developmental 

improvement in performance was also delayed (Verrico et al., American Journal of Psychiatry, 

In Revision). In contrast, both animal groups performed similarly on the object recognition 

working memory task. Our findings of a change in GABA-related gene expression that 

accompanied a delay in accuracy on the spatial working memory task suggest that dorsolateral 

PFC GABA neuron alterations in response to chronic THC administration may underlie the 

poorer performance in these animals. However, given the large variability in behavioral 

performance across sessions and between monkey pairs, a direct correlational assessment of the 

behavioral measures with GAD65 and PV mRNA levels was not possible.  

 The functional consequences of increased GAD65 mRNA levels and decreased PV 

mRNAs in the PFC depend upon the cell type-specific effects of THC administration. The 

inverse correlations of GAD65 and PV mRNA levels suggest that these alterations may be 

occurring within the same cell type. Since CCKb are the only GABA neurons in the monkey 

PFC that are enriched with terminal CB1R (Eggan et al., 2010), THC administration would be 

expected to reduce GABA release from these terminals (Freund et al., 2003). Less GABA 

release could either reduce inhibition onto PVb receiving direct connections from CCKb, or 
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reduce inhibition to the perisomatic region of target pyramidal neurons. Since cortical PV 

neurons receive a substantial amount of excitatory input onto their dendrites (Melchitzky and 

Lewis, 2003), the combined reduction of inhibition directly from CCKb inputs and indirectly 

from excitatory inputs could result in PVb neuron hyperactivity. Given the importance of the 

normal development and timing of PV neuron activity for the production of gamma oscillations 

(Freund and Katona, 2007; Uhlhaas et al., 2009), disruptions in the adolescent refinement of PFC 

circuits could underlie cognitive dysfunction in schizophrenia (Uhlhaas and Singer, 2010).  

Interestingly, GAD65 protein is enriched in the axon terminals of both CCKb and PVb, 

while CB1R and PV proteins are localized to terminals of separate GABA neuron 

subpopulations (Fish et al., 2011). In contrast, GAD67 protein is detectable by 

immunofluorescence in PVb but not in CCKb axon terminals. While GAD67 and GAD65 both 

synthesize GABA, their functions appear to be quite nuanced. Aside from their cell type-specific 

distributions, GAD67 and GAD65 have distinct intracellular distributions. GAD67 is a cytosolic 

enzyme that is found throughout the cell including at axon terminals, while GAD65 is primarily 

enriched at axon terminals. Both GAD isoforms are regulated by the pyridoxal 5’-phosphate 

cofactor that activates the enzyme when bound, although GAD67 is normally saturated with 

cofactor and as a result is constitutively active (Kaufman et al., 1991). In contrast, GAD65 is 

highly regulated by this cofactor switch since it exists largely in the low bound inactive form 

(Kaufman et al., 1991). Instead of a cofactor switch regulation, GAD67 appears to be 

dynamically regulated by transcription based on neural activity (Lau and Murthy, 2012; Pinal 

and Tobin, 1998). Germline deletion of GAD67 in mice resulted in a lethal phenotype due to 

severe cleft palate along with a dramatic reduction in GAD enzymatic activity and GABA levels 

at birth (Asada et al., 1997). In contrast, deletion of the GAD65 gene altered GABA levels much 
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more subtly (Asada et al., 1996). However, germline deletion of GAD65 results in an increased 

susceptibility to seizures, and GAD65 appears to be crucial for synthesizing appropriate levels of 

GABA during conditions of high synaptic demand, like gamma oscillations (Battaglioli et al., 

2003; Patel et al., 2006; Tian et al., 1999). Thus, if the THC-mediated reduction of GABA 

release occurs at CCKb terminals, then a subsequent increase in the intracellular concentration of 

presynaptic GABA and reduction of GAD65 protein levels could underlie the observed increase 

in GAD65 mRNA levels. Such a potential reduction in GAD65 protein could affect the timing of 

CCKb inhibition onto PVb and pyramidal neurons, thus disrupting network oscillations that 

require the temporally coordinated activity of these neuron populations. 

Alternatively, systemic administration of THC could result in a non-specific blanket 

suppression of neurotransmitter release from CB1R containing axon terminals, whether these 

terminals produce GABA or glutamate for neurotransmission. This network level suppression of 

transmitter release may then alter the levels and patterns of activity necessary for the proper 

maturation of PVb. Since molecular markers of PV neurons, but not CCK neurons, undergo 

substantial changes during adolescence, PVb may be particularly vulnerable to the effects of 

THC on neural network refinement. Thus, the alterations in GAD65 and PV mRNA levels may 

actually occur in PVb cells that are actively being refined during the time period of THC 

administration. Alterations in GAD65 activity in PVb axon terminals would likely have an 

impact on gamma oscillations since GAD65 activity is thought to be important for periods of 

high synaptic GABA demand (Patel et al., 2006; Tian et al., 1999) and PV neurons are critical in 

determining the power of gamma oscillations (Sohal et al., 2009; Cardin et al., 2009). Cell type-

specific protein studies will be needed to address these possibilities. 
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One possibility for the lack of detectable changes in GAD67 mRNA is that levels 

normalized during the one-month recovery period between final THC administration and 

sacrifice. Since GAD67 mRNA expression is particularly sensitive to neuronal activity and it is 

found in numerous GABA synthesizing cell types like the calretinin-containing neurons, another 

possibility is that a residual effect of chronic THC administration on GAD67 mRNA levels in 

PVb neurons may not have been large enough to detect. In addition, our observation that CB1R 

mRNA expression was not altered after chronic THC administration could reflect the possibility 

that this receptor was altered functionally by decoupling with its G-protein rather than a 

reduction in protein levels. Alternatively, since CB1R are located in CCKb cells, perhaps these 

particular neurons are not chronically altered in the face of repeated THC administration since 

these cells already appear to have reached functional maturity prior to adolescence (Oeth and 

Lewis, 1993). 
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4.0  PARVALBUMIN-CONTAINING CHANDELIER AND BASKET CELL 

BOUTONS HAVE DISTINCTIVE MODES OF MATURATION IN MONKEY 

PREFRONTAL CORTEX 

Adapted from: *Co-first authors: Fish KN*, Hoftman GD*, Sheikh W, Kitchens M, Lewis DA 

(2013). Parvalbumin-containing chandelier and basket cell boutons have distinctive modes of 

maturation in monkey prefrontal cortex. Journal of Neuroscience. 33: 8352-8358. 

4.1 INTRODUCTION 

The postnatal development of GABAergic circuitry in the monkey prefrontal cortex (PFC) is a 

protracted process that extends into early adulthood (Hoftman and Lewis, 2011). This process 

includes the establishment and maturation of precise connections among neuronal populations. 

For example, the axons of chandelier (axoaxonic) cells (PVch) exclusively target the axon initial 

segment (AIS) of pyramidal neurons (Szentagothai and Arbib, 1974); the convergence of axons 

from multiple PVch onto a single pyramidal neuron AIS forms a distinctive, vertically-oriented 

array of boutons termed a cartridge (Lewis and Lund, 1990). Many cortical PVch contain the 

calcium binding protein parvalbumin (PV) (DeFelipe et al., 1989), and the density of cartridges 

detectable by PV immunoreactivity decreases between 3 mo and adulthood in monkey PFC 

(Cruz et al., 2003). In contrast, the density of PV-immunoreactive (IR) boutons that do not 
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belong to cartridges, and which presumably arise from PV-containing basket cells (PVb), 

significantly increases between these same ages (Erickson and Lewis, 2002). Both of these 

findings appear to conflict with the results of other studies indicating that the overall densities of 

GABAergic synapses in monkey PFC do not undergo postnatal developmental refinements. 

Specifically, the density of all symmetric (putatively inhibitory) synapses does not change 

between 3 months and adulthood (Bourgeois et al., 1994), and the density of GABA membrane 

transporter 1 (GAT1)-IR puncta appears to remain constant (Erickson and Lewis, 2002). 

This apparent conflict might be resolved by opposite but equivalent changes in the 

densities of PVch and PVb boutons across postnatal development such that the overall density of 

inhibitory boutons and synapses does not change. Alternatively, the apparent changes with age in 

the densities of PVch cartridges and PVb boutons could reflect inverse developmental shifts in 

bouton levels of PV protein such that PVch and PVb boutons become less and more detectable 

with age, respectively. In order to discriminate among these alternatives, we used quantitative, 

multi-label, fluorescence confocal microscopy to assess the density of, and relative PV protein 

levels in, the boutons of PVch and PVb in the PFC of 3 month old (3 mo) and adult monkeys. 
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4.2 MATERIALS AND METHODS 

4.2.1 Animals 

Macaque (Macaca fascicularis), monkeys (3 mo (3 females) and adult (156-192 mo; 2 female 

and 1 male)) were anesthetized and then perfused transcardially as previously described (Cruz et 

al., 2003). Brains were immediately removed, and coronal blocks (5 to 6 mm thick) were cut and 

stored in a cryoprotectant solution at –30oC (Cruz et al., 2003). Sections (40 µm) were 

exhaustively cut from left hemisphere blocks containing the entire rostral-caudal extent of the 

principal sulcus (area 46). All experimental procedures were conducted in accordance with the 

NIH Guide for the Care of Animals and with the approval from the University of Pittsburgh’s 

IACUC. 

4.2.2 Antibodies and immunocytochemistry 

Two sections per monkey, 1 mm apart, were taken from the middle 1/3 of the principal sulcus 

(Figure 15) and processed as follows. Sections were permeabilized with 0.3% Triton X-100 in 

phosphate buffered saline (PBS) for 30 min at room temperature (RT), rinsed, and blocked with 

20% donkey serum for 2 hr at RT. Sections were then incubated for ~72 hr at 4ºC in PBS 

containing 3% donkey serum and the following antibodies: PV [sheep, R&D Systems; 1:100; 

(Kagi et al., 1987)] and the vesicular GABA transporter [vGAT; guinea pig, Synaptic Systems; 

1:500; (Guo et al., 2009)], which concentrates in GABAergic boutons (Chaudhry et al., 1998), to 

identify boutons; the GABAA receptor subunit γ2 [γ2; rabbit, Synaptic Systems; 1:400; (Fritschy 

and Mohler, 1995)] to identify postsynaptic sites of GABA boutons; and ankyrin-G [AnkG; 
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mouse, Santa Cruz; 1:100; (Wang and Sun, 2012)] and neuronal nuclei [NeuN; mouse, 

Millipore; 1:500; (Mullen et al., 1992)] to identify the AIS and soma, respectively, of pyramidal 

neurons. Sections were then rinsed for 2 hr in PBS, incubated with secondary antibodies 

(Donkey; 1:500) conjugated to Alexa 405, 488, 568, 647 (Invitrogen), or biotin (Fitzgerald) for 

24 hrs in PBS at 4ºC. Sections were then rinsed and a tertiary incubation (24 hr at 4ºC) with 

streptavidin 405 was performed to label the biotinylated secondary antibody. The final 

fluorescence detection channel assignment (excitation) was: vGAT (405nm), AnkG and NeuN 

(488nm), PV (568nm), and GABAA γ2 (647nm). Note that AnkG and NeuN, which were both 

detected using mouse primary antibodies, were visualized in the same channel. 

4.2.3 Microscopy 

Image stacks (512x512 pixels; 0.25 μm z-step) were collected on an Olympus IX71 microscope 

(Center Valley, PA) controlled by SlideBook 5.0 (3I, Denver, CO) and equipped with an 

Olympus spinning disk confocal, Hamamatsu C9100 EM-CCD (Bridgewater, NJ), and LEP 

BioPrecision2 XYZ motorized stage (Hawthorne, NY) using a 60X 1.42 N.A. objective. 

Sampling was confined to layers 2-4 [defined as 10-60% of the distance from pial surface to 

white matter (Pierri et al., 1999)] of PFC area 46 (Figure 15) because the density of PV-IR 

cartridges is highest at 3 mo and lowest in adult monkeys within these layers (Cruz et al., 2003); 

in contrast, the density of detectable PV-IR boutons was previously reported to be low in 3 mo 

and highest in adult monkeys in these same layers (Erickson and Lewis, 2002). Sites were 

systematic randomly sampled using a grid of 190 x 190 µm2 with stacks collected from 20 

randomly selected sites per section. 



  73 

4.2.4 Image processing 

Image stacks were taken using optimal exposures (greatest dynamic range/no saturated pixels), 

exposure corrected, deconvolved using the AutoQuant adaptive blind deconvolution algorithm, 

and segmented. Within each field, AIS were manually traced only if they were considered to be 

completely visualized as indicated by 1) continuity across z planes; 2) a proximal end adjacent to 

a clearly defined NeuN-IR soma; 3) a distal end, defined by tapering of the AnkG signal to the 

width of an axon; and 4) the entire AIS was contained within a virtual sampling box. The virtual 

sampling box started and ended 1 z-plane from the top and bottom of the image stack, 

respectively, and had x-y start/end coordinates that were located 20 pixels from any edge. AIS 

length was calculated by measuring the distance between unique points at the soma-hillock 

boundary, the centroid, and distal end of the AnkG-IR AIS profile. 

4.2.5 Definitions of synaptic structures 

Intensity/morphological segmentation was used to make object masks for each IR puncta, 

identified as small (0.03 to 1 µm3), distinct fluorescing objects (Fish et al., 2011). A GABAergic 

bouton was defined as a vGAT-IR puncta adjacent to a GABAA receptor γ2-IR cluster. Mask 

operations were then used to classify the different bouton populations. Specifically, a PV bouton 

was defined as a PV object mask that contained the center of a vGAT object mask (PV/vGAT-

IR), which overlapped a GABAA receptor γ2 object mask. Importantly, the presence of vGAT 

excludes the possibility that it is a thalamic bouton. PV boutons adjacent to γ2-IR puncta not 

associated with an AnkG-labeled AIS were classified as PVb, while those adjacent to γ2-IR 

puncta within AnkG-labeled AIS were classified as PVch. ChCPVneg boutons were defined as 
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those GABAergic boutons adjacent to γ2-IR puncta within AnkG-labeled AIS that could not be 

represented by a PV object mask. Importantly, all GABAergic boutons that overlapped with γ2-

IR puncta within AnkG-labeled AIS were classified as being either a PVch or a ChCPVneg bouton. 

4.2.6 Statistics 

Diagnostic statistics were used to confirm that the data were normally distributed. Independent t-

tests were used to compare dependent measures between age groups. In all analyses, the statistics 

were performed on the mean values for individual monkeys (N=3 per age group) determined by 

first averaging data within stack, then averaging stack means within section, and finally 

averaging means across sections.  
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4.3 RESULTS 

4.3.1 The density of GABAergic boutons does not differ between 3 mo and adult 

monkeys. 

The mean (±SD) density of GABAergic boutons in layers 2-4 of the PFC neuropil did not differ 

(t [4]=0.731, P=0.505) between 3 mo (0.045±0.006 boutons/µm3) and adult (0.041±0.004 

boutons/µm3) animals. Because density measures may be confounded by age-related changes in 

PFC volume (Erickson and Lewis, 2002), we also determined the number of GABAergic 

boutons per NeuN-IR neuron, which did not differ (t [4]=0.939, P=0.401) between age groups. 

4.3.2 The mean number of PVch boutons per AIS, but not of PVb boutons per neuron, is 

lower in adult compared to 3 mo monkeys. 

The mean number of PVch boutons per AIS was 32% lower (t [4]=2.853, P=0.046) in adult 

(10.5±1.7) relative to 3 mo (15.5±2.5) monkeys (Figure 15). Additionally, the magnitude of the 

difference between age groups was similar for chandelier cell boutons that did not appear to 

contain PV (ChCPVneg) (Figure 16). Given that the densities of GAT1- and PV-IR cartridges 

were previously reported to show different patterns of change both within the same layers and 

across layers during postnatal development (Cruz et al., 2003), we performed an additional 

analysis that took layer into account. Specifically, we separated sampling sites based on their 

laminar position into two groups: layers 2-superficial 3 and layers deep 3-4. Although the 

magnitude of the reduction in PVch boutons was similar across layers, there was a two-fold 

greater magnitude of reduction in ChCPVneg boutons in layers 2-superficial 3 compared to layers 

deep 3-4 (Figure 16B). In contrast to PVch boutons, neither the number of PVb boutons per 
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NeuN-IR pyramidal neuron (t [4]=-0.201, P=0.851), nor the density of PVb boutons in the 

neuropil (t [4]=-1.758, P=0.154), differed between 3 mo (244±84 boutons/pyramidal neuron and 

0.0101±0.0013 boutons/µm3, respectively) and adult (254±31 boutons/pyramidal neuron and 

0.0117±0.0008 boutons/µm3, respectively) monkeys. 

To determine if biased sampling could have contributed to the age-related decline in the 

mean number of PVch boutons per AIS, the robustness of our sampling was assessed. Although 

the coefficient of variation for the number of PVch boutons per AIS within adult animals ranged 

from 75% to 129%, the coefficient of error ranged from 5% to 10%, indicating that the obtained 

means are robust estimates of the true population means. In addition, the difference in mean 

number of PVch boutons per AIS between age groups was not accompanied by any change (t 

[4]=-1.289, P=0.267) in PV-IR cell body density, consistent with a prior report (Conde et al., 

1996). These latter findings suggest that the lower number of PVch boutons per AIS in the adult 

animals did not result from a postnatal loss of PVch (Southwell et al., 2012). 

A highly stringent criterion was used to define a PVch bouton, raising the possibility that 

some PVch to pyramidal AIS connections were excluded from the analysis. To ensure that the 

age-related reduction in mean number of PVch boutons per AIS was not confounded by this 

possibility, the mean numbers of PV-IR, vGAT-IR, and γ2-IR puncta that overlapped AIS were 

compared between age groups. The mean numbers of PV-IR and vGAT-IR puncta per AIS 

declined (t [4]=6.028, P=0.004 and t [4]=5.327, P=0.006, respectively) between 3 mo (19.2±2.0 

and 21.8±2.4, respectively) and adult (11.8±0.6 and 14.2±0.7, respectively) animals (Figure 16). 

Likewise, the mean number of γ2-IR puncta per AIS significantly declined (t [4]=3.577, 

P=0.023) between 3 mo (26.7±4.8) and adult (15.3±2.7) animals. The percent declines in γ2-IR, 
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vGAT-IR, and PV-IR puncta per AIS, which ranged from 35%-43%, were similar to the 32% 

age related decline in mean number of PVch boutons per AIS. 
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Figure 15. The mean number of PVch boutons per AIS is decreased in adult compared to 3 mo monkeys 

(A) Lateral view of monkey cortex showing the approximate location (black vertical bar) of the PFC where tissue sections for this 

study were taken. (B) Schematic of a typical coronal section containing the principal sulcus (PS; area 46) at the position along the 

rostral-caudal axis designated by the dotted line in A. The black rectangle designates the laminar location in the ventral bank of the PS 

where analyses were performed. (C) Adult monkey section multi-labeled for NeuN/AnkG, γ2, PV, and vGAT. Single channel and 

merged projection images of a deconvolved image stack (5 z-planes). Arrows–PVch boutons; Arrowheads–PVb boutons. Bar=10 µm. 

(D) Histogram of PVch boutons per AIS in 3 mo (black; mean 15.5) and adult (grey; mean 10.5) monkeys. Arrowheads point to 

respective means. A randomly selected 500 AIS from each age group is displayed. 
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Figure 16. The mean number of puncta immunoreactive for PV, vGAT, or γ2 overlapping AIS is decreased in adult compared 

to 3 mo monkeys 

(A) Single channel images of a deconvolved image stack (5 z-planes) of an adult monkey section multi-labeled for NeuN/AnkG, PV, 

vGAT, and γ2. Solid arrowhead—PVch bouton; open PVch bouton with no visually detectable PV. A 3X zoom of the boxed region is 

shown below each channel. Bar=10 µm. (B) Table showing the mean number of chandelier cell (ChC) boutons per AIS (all ChC), 

ChC boutons classified as containing PV (PVch), and ChC boutons classified as being PV immuno-negative (ChCPVneg). (C) Single 

channel images of a deconvolved image stack (5 z-planes) of an adult monkey section multi-labeled for NeuN/AnkG, PV, vGAT, and 

γ2. Arrows, solid arrowheads, and the open arrowhead point to AIS differentially innervated by PVch. Bar=10 µm. (D) Histograms of 

PV- (mean 3 mo=19.2, adult=11.8), vGAT- (mean 3 mo=21.8, adult=14.2), and γ2- (mean 3 mo=26.7, adult=15.3) IR puncta per AIS 

in 3 mo (black) and adult monkeys (grey). Arrowheads point to respective means. A randomly selected 500 AIS from each age group 

is displayed. 
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AIS innervation by PVch was found to be highly variable in both 3 mo (0 to 42 PVch 

boutons per AIS) and adult (0 to 39 PVch boutons per AIS) monkeys. Considering that the mean 

numbers of PVch boutons per AIS in 3 mo and adult animals were 15.5 and 10.5, respectively, 

these findings suggest that a large number of AIS might not be associated with a 

morphologically detectable cartridge and that the density of detectable PVch cartridges might be 

significantly reduced between 3 mo and adulthood. To assess cartridge density, PV-IR cartridges 

were identified qualitatively by their characteristic morphology and the number of PV-IR 

boutons per AIS was quantified. The PV channel was used to select PV-IR cartridges, and then 

the other channels (vGAT, γ2, and AnkG/NeuN) were used to determine how many boutons 

were present in each cartridge. This approach revealed that PV-IR morphologically-distinct 

cartridges were composed of 12 or more PVch boutons. Of 500 randomly selected pyramidal 

cells from 3 mo monkeys, the AIS of 320 (64%) was innervated by ≥ 12 boutons, while in adult 

monkeys the AIS of only 163/500 (32.6%) pyramidal cells was innervated by ≥ 12 boutons. This 

49% decrease in the number of recognizable cartridges between 3 mo and adult monkeys is 

similar to the previously reported 55% decline using a different method (Cruz et al., 2003; Cruz 

et al., 2009a; Anderson et al., 1995). 

4.3.3 The number of PVch boutons per AIS is positively correlated with AIS size. 

The mean length (t [4]=6.213, P=0.003) of AIS, as determined by AnkG immunoreactivity, was 

~33% shorter in adult (19.7±1.4 µm) than in 3 mo (29.1±2.3 µm) monkeys (Figure 17A). In 

addition, the average AIS surface area determined by AnkG immunoreactivity was significantly 

less (t [4]=4.839, P=0.008) in adult (132±8 µm2) than 3 mo (202±24 µm2) monkeys (Figure 

17B). Furthermore, the number of PVch boutons was positively correlated (3 mo R=0.764, P < 
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0.001; adult R=0.735, P < 0.001) with AIS surface area within monkeys (Figure 17C). 

Importantly, mean AnkG fluorescence intensity in AIS did not differ (t [4]=0.436, P=0.685) 

between adult (2494±231) and 3 mo (2554±67) monkeys, suggesting that group differences in 

AIS length and surface area were not confounded by changes in AnkG fluorescence. 
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Figure 17. The number of PVch boutons per AIS is positively correlated with AIS size 

(A) NeuN and AnkG labeled soma and AIS, respectively, from 3 mo and adult monkeys. The selected neurons are representative of the length differences 

between age groups (see main text). Asterisks designate the axon hillock. Bar=10 µm. (B) Histogram showing the surface area of 500 randomly selected AIS 

from each age group (3 mo black, mean 202; adult grey, mean 132). Arrowheads point to respective means. (C) Scatter plot of 150 randomly selected AIS from 

each age group (3 monkeys/group, 50 AIS/monkey) showing the relationship between AIS surface area and the number of PVch boutons. 
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4.3.4 Relative PV protein levels in PVb boutons, but not in PVch boutons, are 

significantly greater in adult compared to 3 mo monkeys. 

The relative mean protein level of PV per PVb bouton increased significantly by 69% between 3 

mo and adulthood. This increase was accompanied by an increase in the relative mean protein 

level of vGAT (25%) per PVb bouton and in γ2 (35%) relative protein levels in the 

corresponding postsynaptic clusters between 3 mo and adulthood, although neither of these 

changes achieved statistical significance (Table 5). In contrast, relative mean protein levels of 

PV and vGAT per PVch bouton, and γ2 per postsynaptic cluster adjacent to a PVch bouton were 

similar between the two age groups (Table 5). 

 

Table 5. Relative protein levels in PVb and PVch boutons (PV and vGAT) adjacent to postsynaptic clusters 

(γ2) in 3 mo and adult monkeys 
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4.4 DISCUSSION 

Prior reports of a decreased density of PVch axon cartridges (Anderson et al., 1995; Cruz et al., 

2009a; Cruz et al., 2003) and increased density of PV-IR boutons (Erickson and Lewis, 2002) 

over postnatal development in monkey PFC could represent inverse changes in bouton number 

and/or in PV protein levels per bouton. As reported here, the mean number of PVch boutons per 

pyramidal neuron AIS was significantly 32% lower in adult compared to 3 mo monkeys, with no 

group differences in relative mean PV protein levels per PVch bouton. In contrast, the density of 

PVb boutons did not differ between age groups, but the relative mean PV protein levels in PVb 

boutons were nearly 2-fold higher in adults than in 3 mo monkeys. Thus, PVch and PVb appear 

to utilize fundamentally different mechanisms to achieve adult levels of innervation of their 

pyramidal cell targets. 

The result that GABAergic bouton density in the PFC does not differ between 3 mo and 

adult monkeys, along with previous reports that neither the density of symmetric synapses 

(Bourgeois et al., 1994) nor the density of GAT1-IR puncta (Erickson and Lewis, 2002) differed 

between these age groups suggest that GABAergic boutons are not pruned during postnatal 

development. In this context, our finding of an age-related reduction in PVch boutons strongly 

suggests that the pruning of these boutons is cell type-specific, and not detectable when all 

GABAergic boutons are assessed without regard to cell type. 

In this study, AIS mean length and average surface area were ~33% less in adult than in 3 

mo monkeys, consistent with previous reports (Cruz et al., 2009a). Recent studies have shown 

that AIS length/location depend, at least in part, upon network activity (Grubb et al., 2011). 

Interestingly, we found that the number of PVch boutons was positively correlated with AIS 
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surface area. In concert, these findings suggest that the number of PVch inputs onto a given 

pyramidal neuron is also regulated by network activity. 

The distinctiveness of a developmental reduction in the number of PVch boutons may be 

related to their unique role in innervating the AIS of pyramidal neurons where they are 

positioned to regulate action potentials. Interestingly, we found that the number of PVch boutons 

associated with an AIS is highly variable across AIS in both 3 mo (0 to 42 PVch boutons per 

AIS) and adult (0 to 39 PVch boutons per AIS; Figure 15D) monkeys, similar to prior electron 

microscopy studies in adult primates (DeFelipe et al., 1985; Inda et al., 2007). These findings 

raise the possibility that the degree of action potential regulation by PVch differs across subtypes 

of pyramidal neurons. Consistent with this idea, the mean number of inputs to the AIS is greatest 

in callosal-projecting pyramidal cells, intermediate in pyramidal cells providing ipsilateral 

cortical projections, and lowest in corticothalamic pyramidal neurons in monkey neocortex 

(Farinas and DeFelipe, 1991). However, even among pyramidal neurons that share the same 

projection target, the number of PVch inputs to the AIS shows considerable variability (Farinas 

and DeFelipe, 1991). These findings, and those of the present study, reveal a marked 

heterogeneity in the need for PVch regulation of pyramidal neurons, across and within subclasses 

of pyramidal cells, and apparently across development for the same pyramidal cells. Given the 

reported roles of PVch inputs of either hyperpolarizing or depolarizing pyramidal cells based on 

levels of network activity (Woodruff et al., 2011) or of blocking retrograde action currents 

(Dugladze et al., 2012), why some pyramidal cells need a high level of these types of regulation 

and others do not is an important question for future studies. 

In contrast to PVch, relative PV protein levels in PVb boutons were two-fold higher in 

adult compared to 3 mo monkeys. In concert with our finding that PVb bouton density did not 
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differ between age groups, these results suggest that the previously reported increase in PV-IR 

puncta density across postnatal development in monkey PFC results from an age-related rise in 

PV protein levels per PVb bouton and thus an increase in their detectability by standard light 

microscopy. Although the physiological role of Ca2+ buffering by PV is still unclear, an increase 

in bouton PV levels decreases the duration of Ca2+ transients that influence GABA release 

(Collin et al., 2005). Thus, an increase in PVb bouton PV levels could result in greater bouton-

specific regulation over GABA release with age. 

The distinct differences in the maturation of PVb and PVch boutons may provide insight 

into the nature or timing of the reported alterations in these types of boutons in schizophrenia. 

For example, the density of PVch cartridges detectable by GAT1 immunoreactivity is 40% lower 

in the PFC of schizophrenia subjects relative to matched comparison subjects (Woo et al., 1998; 

Pierri et al., 1999). This difference could represent an excessive developmental elimination of 

PVch boutons. In addition, lower levels of PV protein in putative PVb boutons in schizophrenia 

(Glausier et al., 2012) might represent a disease-related impairment in the normal developmental 

rise of PV levels in these boutons observed in the present study. Together, these alterations in 

perisomatic inhibitory regulation of pyramidal cell function might contribute to the emergence of 

PFC-mediated cognitive disturbances well before the clinical onset of schizophrenia during late 

adolescence or early adulthood (Reichenberg et al., 2010). 
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5.0  GENERAL DISCUSSION 

This dissertation provides evidence for understanding the timing of GABA neuron alterations 

that occur in postmortem PFC of subjects with schizophrenia, the impact of chronic cannabis use 

during adolescence on PFC GABA circuitry, and the cell type-specific nature of postnatal 

developmental changes in PV neurons. To understand timing, we investigated whether changes 

in cortical GABA-related mRNA levels in schizophrenia reflect developmental disturbances or 

chronic illness consequences; to understand impact, we explored how repeated THC exposure 

during adolescence alters GABA-related mRNA expression levels in monkey PFC; and to 

understand cell type-specific nature, we examined the maturation of PVch and PVb boutons in 

the monkey PFC. GABA-related mRNA levels did not change as a function of age or illness 

duration in subjects with schizophrenia, suggesting that chronic illness processes may not have 

substantially contributed to their expression profiles in schizophrenia (2.0). We reported changes 

in some, but not all, GABA-related mRNAs in response to repeated THC exposure during 

adolescent development (3.0). Finally, we examined cell type-specific axon terminal 

development in the PFC and found that PVch and PVb boutons have distinctive modes of 

maturation, with a decrease in number of PVch boutons per AIS and an increase in terminal 

protein levels within PVb boutons between infancy and adulthood (4.0). In the following 

discussion, I will consider these three main topics to better clarify whether schizophrenia is 

better conceptualized as a neurodevelopmental or neurodegenerative disorder (5.1), to establish 
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the impact of cannabis use during adolescence on PFC GABA neuron maturation (5.2), and to 

investigate the differences between PVch and PVb maturation in monkey PFC (5.3). I will then 

weigh the implications of this work for preemptive potential in schizophrenia (5.4). 

5.1 SCHIZOPHRENIA DISEASE COURSE: TIMING 

5.1.1 Clinical evidence for abnormal neurodevelopmental processes in schizophrenia 

Much of the evidence supporting neurodegenerative progression in schizophrenia comes from 

systematic studies of brain structure using computed tomography (CT) and magnetic resonance 

imaging (MRI) scans. CT scans showed that on average individuals with schizophrenia had 

larger lateral ventricles and cerebral sulci (Johnstone et al., 1976; Pfefferbaum et al., 1988; 

Reveley et al., 1982; Weinberger et al., 1979), and MRI scans showed widespread deficits in 

gray and white matter volumes (Shenton et al., 2001; Harvey et al., 1993; Zipursky et al., 1992). 

However, associations between illness duration and the magnitude of ventricular and gray matter 

volumes changes have not been significant (Zipursky et al., 1992; Gur et al., 1999).  

Deficits in gray and white matter and increased ventricular size in individuals with first 

episode schizophrenia are modest when compared to changes seen in different individuals with 

chronic schizophrenia (Zipursky et al., 1998; Cahn et al., 2002; Lim et al., 1996). This finding 

has been interpreted to support progressive neurodegeneration resulting from the disease; 

however, secondary factors including prolonged use of antipsychotic medications could be the 

root contributors to these cortical and ventricular alterations. In fact, recent studies have 

demonstrated a positive association between use of antipsychotics and brain volume reductions 
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using longitudinal scanning in individuals with schizophrenia beginning at their first episode of 

psychosis, with higher doses of antipsychotic medications being associated with greater 

decreases in gray and white matter volumes (Ho et al., 2011; Lieberman et al., 2005). 

Importantly, haloperidol and olanzapine led to decreases in gray and white matter volume when 

administered in monkeys and rats (Dorph-Petersen et al., 2005; Vernon et al., 2011). 

Interestingly, the withdrawal of antipsychotic administration in rats was followed by 

normalization of brain volumes on MRI scans, demonstrating a direct effect of brain volume loss 

with antipsychotic exposure (Vernon et al., 2012). Additional secondary factors associated with 

this profile of brain volume abnormalities include cannabis use, smoking cigarettes, and alcohol 

use, as well as sedentary lifestyle and high levels of stress, which are particularly relevant since 

individuals with schizophrenia have higher rates of these factors than the healthy population 

(Sapolsky, 2000; Rais et al., 2008; Mathalon et al., 2003; Stone et al., 2012; Pajonk et al., 2010). 

Together, these many factors confound the interpretation that progressive ventricular 

enlargement and cortical gray matter volume loss are due to disease-specific neurodegenerative 

processes in schizophrenia.  

One strong finding against neurodegenerative hypotheses of schizophrenia is the absence 

of classic neuropathological hallmarks such as neuronal loss, senile plaques, neurofibrillary 

tangles, and gliosis; which are all observed in neurodegenerative disorders such as Alzheimer’s 

disease, Parkinson’s disease and Huntington’s disease (Arnold et al., 1998). However, the 

absence of obvious neuropathological hallmarks does not rule out the possibility of more subtle 

disease progression and selective cell death. For example, apoptosis is responsible for neuropil 

turnover, maintenance and elimination and is not accompanied by gliosis (Bredesen et al., 2006); 

and therefore, subtle losses of neuronal subtypes due to apoptosis may have gone undetected. 
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This exception leaves open the possibility of subtle disease-related degenerative brain changes in 

schizophrenia. 

Not only have there been studies showing evidence against neurodegenerative processes 

in schizophrenia, but also observational studies have found associations between abnormal 

development and schizophrenia. For example, minor physical anomalies, such as low set ears, 

furrowed tongue, and adherent earlobes, are observed with a higher frequency in individuals 

diagnosed with schizophrenia (Green et al., 1994) and are considered to be the consequence of 

disturbed prenatal development of the ectoderm (reviewed in (Lewis and Levitt, 2002). In 

addition, clinicians were able to separately identify children who later developed schizophrenia 

from unaffected siblings, children who later developed mood disorders, and children with no 

family history of mental illness based solely on abnormal movements before 2 years of age 

(Walker et al., 1994). 

In light of these and many clinical reports, recent attempts to unify the concept of the 

etiology of schizophrenia have focused on neurodevelopmental processes. Since substantial 

refinement in human PFC circuitry was demonstrated during adolescence (Huttenlocher, 1979) 

and the age of peak clinical onset occurs during late adolescence/early adulthood (2000), one 

hypothesis put forth is that schizophrenia results from a disturbance in late developmental 

processes, such as cortical synaptic pruning during adolescence (Feinberg, 1982). Alternatively, 

the association of prenatal environmental factors with schizophrenia risk supports the hypothesis 

that schizophrenia results from a fixed brain lesion early in life that remains silent until normal 

developmental processes unmask the affected neural circuits during adolescence (Murray and 

Lewis, 1987; Weinberger, 1987). An integrated view of schizophrenia as a disorder of 

neurodevelopment states that schizophrenia results from a progressive, cumulative pathogenic 



  91 

process that operates through adolescent development and extends through the initial phases of 

clinical illness (Keshavan et al., 1994). This integrated view is furthered by the concept of 

allostatic load, which states that the expression of diagnostic features in schizophrenia appear 

when the homeostatic system is disrupted and can longer compensate for the cumulative effects 

of genetic and environmental ‘hits’ throughout development (Thompson and Levitt, 2010; 

McEwen and Wingfield, 2003). In fact, the most recent re-conceptualization of schizophrenia 

views psychosis onset as the end stage of a protracted pathogenic process of neurodevelopment 

(Insel, 2010) (Figure 1). 

Despite recent movement towards a neurodevelopmental model of schizophrenia 

evidence exists that this may not be the only explanation, as cases exist with individuals 

experiencing clinical onset in middle or late adult life and a more rapidly deteriorating course 

(reviewed in (Church et al., 2002). However, these conflicting observations may be reconciled 

by examining subgroups of individuals diagnosed with schizophrenia or by considering that the 

breadth of the current diagnostic definition of schizophrenia may actually be a combination of 

different biological diseases. Regardless, the pathogenesis of schizophrenia appears to result in 

progressive, but initially subtle, alterations in brain circuitry without gliosis, raising the 

possibility that this progression continues throughout the lifetime course of the illness. 

(Andreasen, 2010). 

5.1.2 Molecular evidence against illness duration related changes in GABA 

neurotransmission 

In dorsolateral PFC area 9, we provide molecular evidence showing that changes in GABA-

related mRNA levels in schizophrenia are not related to illness duration and are thus unlikely to 
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result from cumulative effects of illness (Figures 8 and 9). In line with our findings, a recent 

study using a different cohort reported that declines in GAD67, GABAA α1 and GABAA α4 

mRNA levels were parallel between individuals with schizophrenia and healthy comparison 

subjects and related to age and illness duration (Duncan et al., 2010). Since age and illness 

duration were highly correlated with each other, the lack of an apparent interaction between age 

and diagnosis suggests that the parallel decline in mRNA levels across subject groups was more 

likely driven by age than illness duration. Importantly, medication status at the time of death did 

not alter the effect of age on mRNA transcript levels in the schizophrenia subject group in both 

studies. 

5.1.3 Molecular evidence for protracted development of GABA neurotransmission 

Many studies have shown that GABA neurons undergo a lengthy period of postnatal maturation 

in mammalian cortex, a period that is particularly prolonged in the monkey and human PFC 

(Erickson and Lewis, 2002; Cruz et al., 2003; Hashimoto et al., 2009; Hyde et al., 2011; Fung et 

al., 2010). Recent studies in the developing human PFC have shown that GAD67, vGAT, 

GABAA α1 and PV mRNAs all increase from birth to adolescence (Huang et al., 2007; Duncan 

et al., 2010; Fung et al., 2011b; Hyde et al., 2011; Fung et al., 2010). These findings strengthen 

our approach of using rhesus monkey PFC as a developmental model of GABA-related marker 

expression since all four markers show a similar temporal pattern as those observed in human 

PFC (Figures 10 and 11). 

In our studies, the largest changes in mRNA levels occurred between the perinatal and 

childhood periods. However, GAD65 and GABAA α1 mRNA levels increased through 

adolescence, suggesting that multiple sensitive periods of GABA neuron development may exist. 
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These multiple sensitive periods can arise since diverse aspects of cortical GABA circuitry have 

different inflection points during development, and as a consequence may be vulnerable to 

unique environmental exposures (Le Magueresse and Monyer, 2013). These findings support the 

Keshavan integrated hypothesis and the concept of allostatic load in schizophrenia, where a 

series of pathogenic processes during development culminate in the clinical onset of 

schizophrenia during late adolescence when neural circuits can no longer compensate (Keshavan 

et al., 1994; Thompson and Levitt, 2010; McEwen and Wingfield, 2003). 

5.1.4 GABA neuron mRNA expression profile in schizophrenia may reflect disruptions 

earlier in development 

Although it is not feasible to directly study postnatal developmental mRNA levels in 

schizophrenia, studies of postmortem human and monkey tissue have suggested that alterations 

in PFC GABA-related mRNA levels may result from an earlier disruption in the expression 

trajectories of these markers. For example, lower GAD67 mRNA levels were found in PFC 

tissue from schizophrenia subjects (Akbarian et al., 1995b; Guidotti et al., 2000; Curley et al., 

2011; Hashimoto et al., 2008a; Volk et al., 2000; Duncan et al., 2010), along with a parallel age-

related decline in GAD67 mRNA levels between schizophrenia and comparison subject groups 

(Duncan et al., 2010) and with no significant effect of illness duration on these levels (Figures 8 

and 9), suggesting that alterations in GAD67 mRNA levels occurred during development before 

clinical onset. In addition, two independent studies have shown that GAD67 mRNA levels 

increase substantially from birth into late childhood/early adolescence in human PFC tissue 

(Huang et al., 2007; Hyde et al., 2011), a finding paralleled in our studies in monkey PFC 

(Figure 10). Together these findings provide support for the idea that lower GAD67 mRNA 
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levels in the PFC of subjects with schizophrenia may reflect disturbances in their dynamic 

developmental expression trajectories. 

We also found similar patterns of lowered mRNA levels in other GABA-related profiles, 

such as vGAT, GABAA α1 and PV in schizophrenia, which all have increasing postnatal mRNA 

levels (Figures 10 and 11), supporting the hypothesis that these disturbances in schizophrenia 

may result from disrupted postnatal development. Additional support comes from investigating 

GABAA α2, the GABAA δ subunit, which is involved in tonic inhibition (Drake and Milner, 

2002; Stumm et al., 2004; Farrant and Nusser, 2005), and the µ-opioid receptor (MOR), which 

suppresses GABA release when activated (Drasbek et al., 2007; Drasbek and Jensen, 2006). In 

PFC tissue from schizophrenia subjects, levels of GABAA α2 and MOR mRNAs were higher and 

GABAA δ mRNAs were lower, and each transcript had an inverse developmental expression 

trajectory (Maldonado-Aviles et al., 2009; Beneyto et al., 2011; Hashimoto et al., 2009; Volk et 

al., 2012b). 

Cortical transcripts other than GABA-related mRNAs may also be developmentally 

disrupted. For example, mRNA levels of the metabotropic glutamate receptor subunit 1α 

(mGluR1α) and the regulator of G-protein signaling (RGS4) were higher and lower, respectively, 

in schizophrenia (Volk et al., 2010), while their postnatal developmental trajectories were 

opposite in direction with mGluR1α decreasing and RGS4 increasing in monkey PFC (Volk 

DW, Personal Communication). In mice, a postnatal developmental increase in the NMDA 

receptor subunits GluN1 and GluN2A occurs, and this finding for GluN1 has been replicated in 

human PFC. Interestingly, GluN1 and GluN2A mRNA levels were recently reported lower in 

subjects with schizophrenia (Beneyto and Meador-Woodruff, 2006). Thus, in postmortem PFC 

tissue from schizophrenia subjects, multiple transcripts that regulate neuronal excitability appear 
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to have patterns of altered expression that may reflect an underlying disruption in postnatal 

development. 

The combination of findings discussed above supports the hypothesis that the normal 

development of PFC GABA neurons is disrupted in schizophrenia and may, at least in part, 

underlie cognitive dysfunction in the illness. Recently, a longitudinal, prospective cohort study 

examined the development of cognitive function in children who later developed schizophrenia 

compared to those who remained healthy (Reichenberg et al., 2010), advancing three hypotheses 

(Figure 18): 1) Developmental lag, which predicts growth of cognitive function but at a slower 

rate than the growth seen in healthy individuals; 2) Developmental deficit, which predicts static 

cognitive impairment early in development; and 3) Developmental deterioration, which predicts 

a premorbid decline in cognitive functioning. In that study, the developmental lag model best 

predicted differences in working memory performance between the two subject groups. These 

findings support the possibility that the PFC neural circuits underlying working memory ability, 

which includes GABA neurons, undergo pathological alterations during childhood well before 

the onset of psychosis. Indeed, a variety of environmental insults that accumulate during 

childhood and adolescence may mitigate both developmental disruptions in cognitive 

development and in underlying GABA circuitry. Interestingly, a number of recent 

epidemiological studies suggest that cognitive deficits in schizophrenia subjects do not decline in 

excess of normal aging and there is no evidence of obvious neurodegeneration in excess of what 

is seen during normal aging (Rajji et al., 2012; Harvey et al., 2006). These findings together with 

the absence of cell density changes in the PFC of schizophrenia subjects (reviewed in (Lewis and 

Gonzalez-Burgos, 2008) suggest that alterations may occur earlier in development. The 

implications of understanding timing in schizophrenia will be discussed in (5.4). 
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Figure 18. Hypotheses of premorbid cognitive development in schizophrenia 

Left panel shows a developmental lag, where the rate of improvement in cognitive function is slower in 

schizophrenia subjects; center panel shows a static deficit from an early age in schizophrenia subjects; and right 

panel shows a deterioration of cognitive function in schizophrenia subjects. Adapted from Reichenberg et al., 2010. 

5.1.5 Future direction 

In sections 5.1.1-5.1.4, I have argued that schizophrenia can be viewed as a neurodevelopmental 

disorder and that the timing of neural circuit changes during development is critical to study in 

detail. One mechanistic approach for examining the effects of a developmental disruption on the 

maturation of GABA neurons is to manipulate interneuron specific transcription factors during 

different developmental time periods. For example, Lhx6, which is a LIM homeodomain 

transcription factor, regulates the development of PV and SST neurons during prenatal migration 

to the cerebral cortex (Xu et al., 2004; Butt et al., 2005; Cobos et al., 2006) and throughout 

adulthood in a cell type-specific manner (Jakovcevski et al., 2011). In Lhx6 germline allelic 

deletion mice (Lhx6—), both the tangential migration to the cortex and radial migration within 

the cortical plate appeared to be disturbed (Zhao et al., 2008; Liodis et al., 2007), resulting in the 

abnormal distribution of GABA neurons. Lhx6— animals also had a reduction in the density of 
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PV and SST neurons (Zhao et al., 2008; Liodis et al., 2007), indicating the importance of Lhx6 

for their differentiation. In PFC tissue from subjects with schizophrenia, Lhx6 mRNA levels 

were lower (Volk et al., 2012a), and in a subset of these individuals, lower Lhx6 mRNA levels 

were accompanied by lower GAD67, PV and SST mRNA levels (Volk et al., 2012a). These 

findings suggest that alterations in Lhx6 expression may affect the development or maintenance 

of the PV and SST phenotype in this subset of individuals with schizophrenia.  

To determine the effects of a cell type-specific perturbation on PFC cortical circuit 

maturation, a conditional Lhx6 disruption using a cre-lox reporter system in rodent organotypic 

slice cultures during different stages of development can be used (Liodis et al., 2007; Neves et 

al., 2012; Chattopadhyaya et al., 2007). A recent study used homologous recombination in 

embryonic stem cells to generate a mutant allele of Lhx6, where exons encoding the functional 

domain were deleted and replaced with an IRES-GFP reporter cassette. Animals heterozygous 

for the Lhx6— mutation were generated and characterized, but Lhx6— homozygous mutants died 

during the first two weeks after birth. To create the conditional knockout, mice that have a floxed 

Lhx6 mutant allele can be generated and organotypic slice cultures from these animals can be 

transfected with a cre-recombinase and GFP-cassette under the GAD67 promoter 

(Chattopadhyaya et al., 2004; Chattopadhyaya et al., 2007). Transfection of the GAD67 

promoter cassette during different stages of slice development can be used to study its effects on 

markers of cortical GABA transmission, and a number of predictions can be made based on the 

timing of this manipulation. For example, perinatal disruption of Lhx6 may result in abnormal 

neural migration lower densities of PFC GABA neurons, as observed in other brain regions 

(Liodis et al., 2007; Zhao et al., 2008). However, disruption during the equivalent postnatal 

adolescent period in rodent organotypic culture might alter GABA-related mRNA levels without 
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a change in cell density, since postnatal Lhx6 levels are important for the expression of PV and 

SST phenotypes. Importantly, this manipulation allows us to measure the developmental 

trajectories of pre and postsynaptic GABA-related markers. 

5.2 IMPACT OF ADOLESCENT CANNABIS USE ON PFC GABA NEURONS 

As shown in Figure 12, GAD65 mRNA levels were higher and PV mRNA levels were lower in 

the PFC from THC-treated postpubertal monkeys relative to behaviorally matched, vehicle-

treated comparison subjects. However GAD67, CB1R and CCK mRNA levels did not differ 

between groups. These findings suggest that selective alterations in markers of cortical GABA 

neurotransmission occur in response to chronic THC administration during adolescence. 

5.2.1 THC-mediated endocannabinoid signaling alterations 

Phasic endocannabinoid signaling acts “on-demand” in a synapse-specific fashion such 

that endocannabinoids are released when they are needed (Marsicano et al., 2003) and their 

effect of suppressing neurotransmitter release is restricted to the associated presynaptic site 

(Brown et al., 2003) (Figure 19). Since CB1R are much more highly concentrated at 

GABAergic CCKb terminals than at glutamatergic terminals (Kawamura et al., 2006; 

Uchigashima et al., 2007), they are assumed to be more influential at CCKb terminals. However, 

a recent study in mouse hippocampus found that the minority of glutamatergic CB1R are 

paradoxically several fold more strongly coupled to G-protein signaling than GABAergic CB1R 

(Steindel et al., 2013). Interestingly, the enzyme that synthesizes 2-AG, which is a critical 
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mediator of DSI and DSE, was present at higher amounts in neocortical glutamate synapses 

relative to GABA synapses (Katona and Freund, 2012). GABAergic CB1R were also not 

involved in seizure susceptibility (Monory et al., 2006); however, they did appear to be critical 

for mediating THC-induced long-term memory deficits (Puighermanal et al., 2009) and for 

protecting against age-related cognitive decline (Albayram et al., 2011). Together, these 

properties have led to the hypotheses that the endocannabinoid system acts as a glutamatergic 

and GABAergic circuit breaker (Katona and Freund, 2012). However, THC exposure abolishes 

the “on-demand” synapse-specific nature of endocannabinoid signaling, and may alter the 

delicate balance between excitation and inhibition due to its “blanket of CB1R activation” at 

glutamate and GABA synapses.  

Two cellular mechanisms by which THC administration may disrupt PV neuron 

maturation could involve phasic and/or tonic endocannabinoid signaling alterations in different 

inputs to PV neurons (Figure 20). In one example, THC induces DSI at CCKb inputs to PVb and 

pyramidal neurons. An acute break in inhibition may serve to increase excitability in PVb and 

pyramidal neurons. In this scenario, the perisomatic GABAergic network may be imbalanced 

such that the contribution of PVb inputs becomes too large and the contribution of CCKb too 

small. Given that PV neurons appear to be critical time keepers and CCKb neurons appear to be 

integrators of information from different cortical and subcortical areas, one possibility is that  
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Figure 19. Synapse specific effect of endocannabinoid signaling 

(A) Precise “on-demand” nature of endocannabinoid signaling. Upper pyramidal (P) cell is depolarized as indicated 

by (+), leading to the production and release of 2-AG which suppresses GABA release form a CCKb (purple 

neuron) terminal via CB1R activation. Lower pyramidal cell is quiescent resulting in normal levels of GABA release 

from the same CCKb neuron. (B) Proposed effect of THC, which abolishes the synapse-specific nature of 

endocannabinoid signaling by activating CB1R at all synapses regardless of the membrane polarization state of the 

postsynaptic neuron. 
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Figure 20. Potential effects of THC on PFC neural activity 

THC-induced alterations of inputs to PVb neurons may disrupt adolescent PV neuron maturation. (1) DSI is 

depicted as occurring at GABA terminals from CCKb apposed to PVb and pyramidal (P) neurons. However, 

whether the same CCKb targets both PVb and pyramidal neurons is unknown. (2) DSE is shown to occur either 

directly at inputs to PVb neurons, or indirectly at glutamate inputs to other pyramidal neurons that also innervate 

PVb. Question marks indicate that the CB1R localization on glutamate inputs is unknown, especially in the primate 

PFC, and it is unclear what the functional impact of chronic CB1R activation on PFC neural circuit activity may be 

in response to THC.  
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excessive amounts of THC during adolescence upsets the balance between “rhythm” and “mood” 

(Freund, 2003; Freund and Katona, 2007). Alterations in DSE can potentially affect excitatory 

inputs to PVb neurons. For example, competition between direct (pyramidal inputs to PVb) and 

indirect (pyramidal to pyramidal to PVb) reductions in glutamate release from pyramidal cell 

axon terminals to PVb could also influence network excitability and potentially alter the 

normally precisely sculpted modulation of glutamate release from these axon terminals (Figure 

20). If CB1R become functionally uncoupled from their G-protein signaling pathways (Katona 

and Freund, 2012), then the mechanisms of protection from excitotoxicity or excessive inhibition 

may no longer properly function when needed. Thus, a reduction in excitatory drive of PVb 

neurons may lead to a reduction of PV expression, since it is linked with cell activity (Heizmann, 

1984). In contrast, a decline in GABA release from CCKb may result in a reduction of GAD65 

protein levels and subsequent compensatory response that increases GAD65 mRNA levels. 

The consequences of chronic THC exposure on tonic endocannabinoid signaling must 

also be considered as a possible mechanism, since the ambient amount of extracellular 

cannabinoid concentration has been recently shown to affect the release of neurotransmission 

(Katona and Freund, 2012). For example, paired recordings in rodent hippocampus showed that 

tonic endocannabinoid signaling can suppress GABA release in a CB1R-dependent manner 

(Losonczy et al., 2004). The persistence of elevated THC levels may alter the tone of 

endocannabinoid signaling by reducing terminal CB1R density or uncoupling CB1R from their 

G-protein signaling pathways (Katona and Freund, 2012). These changes raise the possibility 

that CCKb terminals (and possibly glutamate terminals) would no longer be sensitive to 

endocannabinoids released from the depolarized postsynaptic cell. Therefore, the precise “break 

in inhibition” mechanism would be lost and output from the postsynaptic cell would likely be 
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altered. Consequently, alterations in CCKb and pyramidal cell inputs to PVb during sensitive 

periods of postnatal development could disrupt the normal maturation of PVb neurons. 

5.2.2 Implications for schizophrenia 

Recent behavioral studies in the same monkeys used in 3.0 showed that repeated THC exposure 

during adolescence led to residual impairments in spatial working memory processes that 

persisted during the period of exposure and did not produce tolerance to the acute impairing 

cognitive effects of THC (Verrico et al., American Journal of Psychiatry, In Revision). We 

reported evidence of molecular changes in dorsolateral PFC GABA circuitry from these 

monkeys. Together, these findings raise concerns that cannabis use during adolescence may 

result in poorer academic performance (Fergusson and Boden, 2008; Lynskey and Hall, 2000; 

Harvey et al., 2007) by potentially interfering with normal maturation of PFC neural circuits. 

Moreover, cannabis use in individuals with a predisposition for developing schizophrenia may 

impact PFC circuitry in such a way that increases the likelihood, and accelerates the onset, of 

psychosis (Henquet et al., 2005a; Large et al., 2011; Moore et al., 2007; Veen et al., 2004). 

5.2.3 Future Direction 

The impacts of these many changes in response to chronic THC are currently unclear; however, 

one plausible approach to disentangling the effects of THC on glutamatergic and GABAergic 

inputs is to conduct a dose-response study in conditional glutamatergic and GABAergic CB1R 

knockout mice (Monory et al., 2006) using THC and measure its effect on DSI, DSE, and tonic 

endocannabinoid signaling. A study in these conditional knockout animals that would measure 
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the trajectories of GABA-related mRNA level expression in the mouse medial PFC, which is 

thought to be the mouse homologue of the primate dorsolateral PFC, is also of great interest in 

order to better understand the effects of THC at glutamate or GABA terminals on GABA neuron 

maturation. Whether these molecular findings in rodents apply to the primate PFC is currently 

unclear and warrants further study. 

The long period of maturation of PV neural inputs to pyramidal cells provides many 

opportunities, as well as cell type-specific targets, for the effects of perturbations to be amplified 

as they alter the trajectories of the developmental events that follow. Indeed during the same 

period, monkeys and humans undergo substantial improvements in emotion regulation and 

cognitive control. The temporal overlap of the opposing developmental changes in PVch and 

PVb boutons may provide the opportunity for a single environmental risk factor for 

schizophrenia (i.e. cannabis use during adolescence) to disrupt the maturation of both PV 

terminal subtypes. In a future study, we plan to measure both the density of PVb, PVch, and 

CCKb boutons and relative levels of GAD67, GAD65, PV and CB1R protein within these 

bouton populations in the same adolescent, THC-treated animals (3.0) using a multiple label, 

confocal immunofluorescence microscopy and image segmentation approach (4.0). Given the 

terminal specific expression of GAD67, GAD65, PV and CB1R protein, we can discriminate 

among the three terminal populations described above as follows: PVb boutons would consist of 

GAD65/PV fluorescence overlap; PVch boutons would consist of GAD67/PV overlap; and 

CB1R would have GAD65/CB1R overlap. Therefore, in this study, we will be able to measure 

bouton-specific levels of GAD, PV and CB1R in response to chronic adolescent THC exposure. 

We will also be able to measure the comparative densities of these three bouton populations 
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across experimental and control groups. This future study could provide evidence that chronic 

THC exposure during adolescence affects PVch and PVb bouton maturation. 

5.3 PV-CONTAINING CHANDELIER AND BASKET CELL BOUTONS IN THE 

PFC: CELL TYPE-SPECIFIC POSTNATAL DEVELOPMENT  

In 4.0, we reported that the number of PVch boutons per AIS declined between 3 months and 

adulthood in monkey PFC, but that relative vGAT and PV protein levels per PVch bouton and 

levels of adjacent γ2 receptor clusters at AIS did not differ between these two age groups. Since 

the detectability of two proteins involved in GABA transmission per PVch bouton and the 

adjacent postsynaptic receptor clusters did not change, these findings suggest that PVch boutons 

were pruned between infancy and adulthood in monkey PFC. 

5.3.1 PVch structural plasticity – More than loss, possible rearrangement 

The substantial loss of PVch boutons per AIS was accompanied by a similar magnitude decrease 

in AIS length, resulting in a stable density of PVch boutons per AIS in both 3 mo and adult 

animals. In order to determine if the reduction in AIS length altered the distribution of PVch 

boutons in adult animals despite no change in PVch bouton density, the data were binned into 3 

groups representing the proximal, middle, and distal thirds of the total AIS length relative to the 

axon hillock. The distribution of boutons differed across age groups (Χ2 [2] = 30.5, P < 0.001) 

(Figure 21). In the 3 mo monkeys, the proportions of PVch boutons significantly differed (F2,6 = 

8.49, P = 0.018) between the proximal (31.5%) middle (36.8%), and distal (31.7%) portions of 
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the AIS. Post-hoc tests found a significant difference in the middle region compared to both the 

proximal and distal regions (P = 0.025 and 0.03, respectively). In adult monkeys, the proportions 

of PVch boutons significantly differed (F2,6 = 48.6, P < 0.001) between the proximal (35.4%) 

middle (34.8%), and distal (29.8%) portions of the AIS. Post-hoc tests found a significant 

difference in the distal region compared to both the middle and proximal regions (P < 0.001, for 

both). The difference in PVch distribution between 3 mo and adult monkeys suggests that these 

connections are significantly rearranged between these time points. 

 

 

Figure 21. PVch distribution along the AIS differs between 3 mo and adult animals 

Representative images of NeuN-IR somata and AnkG-IR AIS from 3 mo (left) and adult (right) animals. Values 

represent the mean percentage of PVch boutons per third along the AIS for each age group. Asterisks denote the 

axon hillock. Scale bar, 10 μm. 

 

Previous studies have indicated that PVch boutons can be differentially distributed along 

AIS (DeFelipe and Farinas, 1992), and that AIS are highly plastic structures (reviewed in (Grubb 
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et al., 2011). These reports were made in regions and in species other than the adult monkey 

(DeFelipe et al., 1985; Farinas and DeFelipe, 1991; Jones and Powell, 1969; Freund et al., 1983). 

In addition, recent studies have found that the distribution of the AnkG compartment within AIS 

varies as a function of neuronal activity (reviewed in (Grubb et al., 2011). Interestingly, 

removing input by unilateral cochlear ablation increased the AnkG AIS length by 1.7-fold and 

increased voltage gated sodium channel clustering (Kuba et al., 2010). In contrast, increasing the 

excitatory drive in rodent dissociated hippocampal neuronal cultures using extracellular KCl or 

by evoking AP burst firing using optogenetics did not alter AIS length as measured by AnkG 

immunoreactivity, but shifted the entire structure 17 μm away from the soma (Grubb and 

Burrone, 2010). At the molecular level, AnkG is critical for concentrating a number of structural 

components at the AIS including the cell adhesion molecule, neurofascin 186 (Hedstrom et al., 

2007). Recent evidence suggests that the neurofascin 186 gradient is critical for the proper 

targeting of GABA synapses to the AIS (Ango et al., 2004). Recent studies indicate that 

alterations in AIS length may occur in vivo (Baalman et al., 2013; Hinman et al., 2013). For 

example, cortical and hippocampal AIS were significantly shorter in rats exposed to a single 

blast wave that induced mild traumatic brain injury and behavior phenotypes (Baalman et al., 

2013). In concert, an activity-dependent shift in AnkG may alter the distribution of neurofascin 

186 such that PVch boutons redistribute between 3 months and adulthood. 

5.3.2 PFC activity as a driving force for PVch and PVb bouton maturation 

The mechanisms by which these distinctive modes of maturation in PVch and PVb boutons 

occur may ultimately depend upon PFC neural activity. For example, as discussed in the 

previous section, a loss of PVch boutons may occur in response to AIS reorganization. Longer 
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AnkG-labeled AIS during early postnatal development could provide an initial large target for 

stochastic innervations by pathfinding PVch axons. Once innervated and in response to changes 

in PFC network activity during postnatal development, AIS would be refined, potentially along 

with the PVch terminals that innervate them. Shortening of AIS both in response to increase 

neural activity and during postnatal development has been shown in slice preparations in vitro 

(Kuba et al., 2010). However, the developmental dynamics of PVch boutons and AnkG-

immunoreactivity at the same AIS have not been studied. 

 The functional impact of changes in PVch innervation of pyramidal cell AIS will depend 

upon a number of factors, including understanding the effect of GABA release on AIS 

membrane polarization. Recent studies have found that PVch are depolarizing and can even be 

excitatory under certain conditions in certain brain regions (Woodruff et al., 2009; Woodruff et 

al., 2011; Szabadics et al., 2006). Another study reported that PVch tonically inhibited the AIS 

and blocked back-propagating action currents during induced rhythmic activity in vitro 

(Dugladze et al., 2012). Thus, detailed studies on the state- and region-dependent effects of PVch 

GABA transmission on pyramidal neuron activity are critical for understanding the dynamic 

structural changes observed in our studies. 

While PVb boutons do not appear to be pruned like PVch, they undergo functional 

maturation between 3 months and adulthood in monkey PFC. We observed increases in the 

relative protein levels of vGAT and PV in PVb boutons (Table 1) without a corresponding 

change in the density of these boutons in the neuropil. Increases in these proteins may indicate an 

altered capacity for the regulation of GABA neurotransmission, since vGAT loads GABA into 

presynaptic vesicles (Chaudhry et al., 1998) and PV regulates intracellular Ca2+ dynamics 

(Eggermann and Jonas, 2012). Increases in PV neural activity during postnatal development may 
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drive the increases in PV protein levels within PVb boutons, since changes in PV content have 

been reported to be associated with corresponding increases or decreases in neuronal activity 

(Heizmann, 1984). The lack of change in PV and vGAT protein levels within PVch between 3 

months and adulthood may indicate that PVch boutons have already undergone increases in these 

proteins before 3 months of age. 

5.3.3 Implications for schizophrenia 

PVch cells currently represent the only known pathological entity in schizophrenia to have 

alterations in both pre and postsynaptic protein components. In light of our findings, the robust 

40% reduction in the detectability of GAT1-IR cartridges in the PFC of schizophrenia subjects 

(Pierri et al, 1999) may reflect a structural loss of PVch boutons. Whether a structural loss of 

PVch boutons or a reduction of GAT1 protein levels per intact PVch bouton occurs in 

schizophrenia has potential implications for therapeutic intervention. For example, if presynaptic 

PVch can no longer release enough GABA when required, then allosteric modulators of GABAA 

α2 may help boost the effect of the limited amount of GABA released by keeping the 

postsynaptic receptors open for a longer period of time, but only when GABA is bound to the 

receptor. In contrast, if the presynaptic PVch structure is no longer present, then such an 

allosteric modulator would be ineffective, assuming that no tangible amounts of GABA would be 

synaptically present when needed. Recent studies found that a novel compound that enhances 

GABA transmission at GABAA α2-containing receptors was associated with working memory 

functional improvement in subjects with schizophrenia (Lewis et al., 2008) and in an animal 

model of cognitive deficits of schizophrenia (Castner et al., 2010). In contrast, a larger clinical 

study in chronically ill subjects with schizophrenia showed little benefit (Buchanan et al., 2011). 
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Still, the possibility that this kind of intervention could be beneficial earlier in the illness, and 

possibly before psychosis onset, remains to be determined (Lewis, 2012). 

Similar to the contrast between PVch and PVb during postnatal development, PVb 

boutons appear to have reduced levels of PV protein, without a change in bouton density in the 

PFC of subjects with schizophrenia (Glausier et al, Molecular Psychiatry, In Revision). These 

findings may reflect reduction in PFC network activity in schizophrenia, and ultimately may 

require interventions that alter network excitability either by boosting excitation or dampening 

inhibition. 

5.3.4 Future direction 

Studying the cell type-specific maturation of PV neurons is of special interest in the context of 

understanding how these findings may inform on the pathogenesis of schizophrenia. In this 

regard, it would be interesting to pursue a multiple label, confocal immunofluorescence 

microscopy study in postmortem human PFC from subjects with schizophrenia. Given our 

developmental findings, testing whether PVch bouton number per AIS is lower without a change 

in PVb bouton density in the same subjects with schizophrenia would provide valuable 

information at the terminal specific level. We have been able to robustly image GAD67, GAD65, 

PV, GAT1, βIV spectrin, an AIS marker similar to AnkG; and GABAA α1 and γ2 in postmortem 

human tissue (Fish KN, Personal Communication). Therefore, multiple label confocal 

immunofluorescence microscopy studies examining PVch and PVb are feasible in schizophrenia 

and comparison subjects.  

Given the time-limited nature of sensitive periods during development, studying more 

time points during postnatal development is important for determining more precisely when 
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these changes in PVch and PVb occur. Thus, the more precise timing of PVch bouton loss and 

PV protein level increases in PVb are the foci of ongoing investigations. We are currently 

examining the same measures as presented in 4.0 during the perinatal period (1 week and 1 

month of age) and during adolescence (18 and 45 months of age). 

5.4 PREEMPTIVE POTENTIAL IN SCHIZOPHRENIA 

The studies presented in this dissertation ultimately aim to provide information that could be 

critical for advancing preemptive and preventive strategies during preclinical illness progression 

or for reducing preclinical risk for schizophrenia. 

5.4.1 Timing of intervention 

Since the appearance of the diagnostic clinical features of schizophrenia is believed to represent 

a late, and potentially preventable, outcome of the illness, the development of effective 

preemptive treatments requires knowledge of neural circuit abnormalities that underlie the 

central features of the illness, when during the course of development these abnormalities arise, 

and how to detect these abnormalities before their functional impact becomes clinical (Insel, 

2010; Lewis, 2012 ). 

Whether key pathological events in schizophrenia occur during the perinatal period, 

adolescence, or some other period depending on the individual will determine when to intervene. 

These interventions may require pharmacological approaches to target and rescue molecular 

pathways that may be upstream of the inhibitory deficit in schizophrenia or that may modulate 
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GABA neurotransmission. For example, PFC GABA inhibition may be reduced in schizophrenia 

as a compensation for an upstream reduction in excitation (Lewis et al., 2012). In this case, 

interventions might need to be delivered early in life and target molecular pathways that regulate 

spine formation. Alternatively, in some cases, a primary deficit in specific GABA neurons may 

underlie the pathogenesis of schizophrenia. In line with this possibility, allelic variation in GAD1 

has been associated with schizophrenia (Straub et al., 2007). Given that Lhx6 expression deficits 

are associated with deficits in GAD67 and PV in some individuals with schizophrenia, 

intervening by boosting Lhx6 levels during early development may rescue some of the 

phenotypic alterations in PV neurons in schizophrenia. It is possible that targeting both 

excitatory pathways and boosting GABA neurotransmission could have synergistic effects on 

restoring circuit function in schizophrenia. Importantly, understanding the normal maturation of 

PFC circuitry may also provide information about when interventions should be held for safety. 

As previously discussed, cannabis use before the age of 16 years has been reported to 

increase the risk for, and decrease the age of onset of, schizophrenia in a dose-dependent manner 

(Moore et al., 2007). In fact, a recent meta-analysis estimated that about 14% of schizophrenia 

cases would not occur without cannabis consumption (Moore et al., 2007). Interestingly, a recent 

questionnaire that measured subclinical psychotic experiences found that individuals without any 

evidence of a predisposition for schizophrenia responded to cannabis by feeling more at ease 

with the world, while those who had reported previous subclinical psychotic experiences has 

increased feelings of suspicion and hostility as well as marked perceptual changes (Verdoux et 

al., 2003; Konings and Maharajh, 2006). Therefore, public health measures aimed at individuals 

at risk for psychosis and designed to reduce or delay the use of cannabis during the early teenage 

years may help substantially reduce the appearance of psychosis in schizophrenia. 
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In those individuals who are at risk and consistently use cannabis during adolescence, 

interventions during adolescence or in early adulthood may ameliorate some of the circuit 

alterations. For example, allosteric modulators of different types of g-protein coupled receptors 

whose signaling cascade results in the release of endocannabinoids can be used to alter levels of 

these cannabinoids (Porter and Felder, 2001). In addition, a number of cannabinoids that can 

modulate the effect of THC exist, and detailed studies of these compounds and their effects on 

cannabinoid signaling, the appropriate dosage, route of administration, and timing of intervention 

need to be studied (Croxford, 2003) prior to understanding whether manipulation of this system 

will be therapeutic in schizophrenia. 

5.4.2 Harnessing neural plasticity 

The association of multiple genetic and environmental risk factors for schizophrenia well before 

the clinical onset of diagnostic features may lead to the grim conclusion that individuals who 

begin with high risk are on an irreversible path to developing the illness. In this view, 

development is an especially vulnerable period to insults that can result in the emergence of 

significant pathology later in life. For example, metabolic disorders like phenylketonuria can 

lead to profound and irreversible cognitive disability when left uncorrected during development, 

but in adults they seem to have milder effects (Hanley, 2004). However, there are examples of 

other pathologies like trauma or infection that have milder effects during development than in 

adults (Kolb et al., 2000). One remarkable example of the human brain’s ability to adapt occurs 

in young children who undergo functional hemispherectomy as a result of intractable seizures, a 

damaged hemicortex and hemiplegia. In many of these individuals, not only do they recover 

from seizures, but also they can improve in cognitive and motor functioning (Wiebe and Berg, 
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2013). These examples support the alternative view that individuals with neurodevelopmental 

disorders like schizophrenia are not necessarily “doomed from the womb.” 

Harnessing adult neural plasticity to compensate for or possibly correct specific 

pathologies may be a viable way to conceptualize future treatment strategies for schizophrenia. 

Certain genes known to be critical for normal pre and postnatal neurodevelopment and possibly 

disrupted during those periods [i.e. DISC1, NRG1 (Jaaro-Peled et al., 2009)], and notably Lhx6, 

are also expressed in the adult brain. Ongoing disruptions in the expression of these genes during 

adulthood may contribute to cognitive dysfunction in schizophrenia. Thus, adult rescue of 

molecules that are critical during development but also function in adulthood may help alleviate 

or correct disruptions that begin during development. Recent studies suggest that the adult rodent 

cortex remains plastic, with the ability to produce structural changes in dendritic spines 

(Trachtenberg et al., 2002), axons (Florence et al., 1998) and dendrites (Tailby et al., 2005). In 

rodents, substantial plasticity can occur beyond the developmental critical period in the 

somatosensory and visual cortices (Buonomano and Merzenich, 1998; Sawtell et al., 2003). 

Again, whether these findings in rodents apply to the primate PFC is an open question that 

remains to be studied. 

A more promising option may be to alter pathological plasticity as it occurs during 

sensitive periods of development. This approach may have a higher impact since the mechanisms 

of plasticity during sensitive periods appear to differ from those in adulthood. For example, 

dendritic spine motility decreases beyond the critical period (Holtmaat et al., 2005) and 

thalamocortical axon plasticity and long term potentiation are reduced or eliminated (Crair and 

Malenka, 1995; Hubel and Freeman, 1977). In rodents, the critical period window for ocular 

dominance plasticity can be manipulated by altering levels of cortical inhibition (Fagiolini and 
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Hensch, 2000; Hensch, 2005; Hensch et al., 1998; Huang et al., 1999). Recent findings suggest 

that PV inputs to GABAA α1 containing receptor clusters are crucial for setting the timing of this 

critical period window (Fagiolini et al., 2004) and thus may represent both a locus of cellular 

vulnerability and a potential therapeutic target. Another recent study showed that GABAA α1 

number decreased in the soma-proximal dendrite compartment, but not on the AIS with age and 

sensory deprivation. Interestingly, the number of soma-proximal dendrite GABAA α1 in 

immature or dark-reared mice were adjusted to critical period levels by in vivo benzodiazepine 

treatment, triggering ocular dominance plasticity in these animals (Katagiri et al., 2007). Using a 

GAD65 knockout animal model and subsequent rescue the critical period onset with dark-rearing 

in these animals, they found that an intermediate number of PV to GABAA α1 connections is 

required to trigger the critical period. These findings raise implications that in schizophrenia, the 

appropriate trigger for sensitive periods of development may be delayed or accelerated, since 

perisomatic PV inputs to GABAA α1 clusters appear to be altered in the disorder. The potential 

for manipulating the onset of sensitive periods in PFC circuits holds promise as a novel 

therapeutic intervention; however, determining the precise timing and nature of the onset of PFC 

sensitive periods is required first. 

5.5 CONCLUDING REMARKS 

This dissertation explored the postnatal development of PFC GABA neurons with the goals of 

identifying periods of vulnerability to schizophrenia, the impact of an environmental insult on 

developing PFC GABA neurons, and the cell type-specific maturation of PFC GABA neuron 

axon terminals. We found gene expression changes in key functional markers of GABA 



  116 

neurotransmission during the perinatal and adolescent periods of development (2.0), periods of 

development that are associated with a variety of risk factors for schizophrenia. The mRNA 

levels for these same markers did not change as a function of age or illness duration in subjects 

with schizophrenia, suggesting that chronic illness processes may not have substantially 

contributed to their expression profiles in schizophrenia. Since environmental factors are known 

to affect developing neural systems and contribute to the etiology of schizophrenia, we studied 

the impact of chronic THC administration on markers of PFC GABA neurotransmission during 

adolescence in monkeys. We reported changes in some, but not all, GABA-related mRNAs 

suggesting that repeated THC exposure selectively alters PFC GABA neurons during adolescent 

development (3.0). Finally, we examined cell type-specific axon terminal development in the 

PFC and found that PVch and PVb boutons have distinctive modes of maturation, with a 

decrease in number of PVch boutons per AIS and an increase in terminal protein levels within 

PVb boutons between infancy and adulthood (4.0). Each of these findings highlights the 

dynamic, “double-edged sword” of postnatal PFC development, which may not only open 

windows of susceptibility to pathological insults, but also windows of adaptability to 

pathological alterations in schizophrenia. 
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APPENDIX A 

A.1 DEMOGRAPHIC, POSTMORTEM, AND CLINICAL CHARACTERISTICS OF HUMAN SUBJECTS USED IN THIS 

DISSERTATION 

Table 6. Human subjects used in this dissertation. 

Healthy Comparison Subjects 

Pair Case Sex/ 
Race Age PMIa Storage 

Timeb RIN pH Cause of Death 

1 592 M/B 41 22.1 174 9.0 6.7 ASCVD 

2 567 F/W 46 15.0 178 8.9 6.7 Mitral valve prolapse 

3 516 M/B 20 14.0 185 8.4 6.9 Homicide by gun shot 

4 630 M/W 65 21.2 168 9.0 7.0 ASCVD 

5 604 M/W 39 19.3 172 8.6 7.1 Hypoplastic coronary artery 

6 546 F/W 37 23.5 182 8.6 6.7 ASCVD 

7 551 M/W 61 16.4 181 8.3 6.6 Cardiac tamponade 

8 685 M/W 56 14.5 161 8.1 6.6 Hypoplastic coronary artery 
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9 681 M/W 51 11.6 162 8.9 7.2 Hypertrophic cardio-
myopathy 

10 806 M/W 57 24.0 141 7.8 6.9 Pulmonary embolism 

11 822 M/B 28 25.3 138 8.5 7.0 ASCVD 

12 727 M/B 19 7.0 155 9.2 7.2 Trauma 

13 871 M/W 28 16.5 128 8.5 7.1 Trauma 

14 575 F/B 55 11.3 177 9.6 6.8 ASCVD 

15 700 M/W 42 26.1 160 8.7 7.0 ASCVD 

16 988 M/W 82 22.5 106 8.4 6.2 Trauma 

17 686 F/W 52 22.6 162 8.5 7.0 ASCVD 

18 634 M/W 52 16.2 168 8.5 7.0 ASCVD 

19 852 M/W 54 8.0 131 9.1 6.8 Cardiac tamponade 

20 987 F/W 65 21.5 107 9.1 6.8 ASCVD 

21 818 F/W 67 24.0 140 8.4 7.1 Anaphylactic reaction 

22 857 M/W 48 16.6 130 8.9 6.7 ASCVD 

23 739 M/W 40 15.8 155 8.4 6.9 ASCVD 

24 1047 M/W 43 13.8 98 9.0 6.6 ASCVD 

25 1086 M/W 51 24.2 92 8.1 6.8 ASCVD 

26 1092 F/B 40 16.6 91 8.0 6.8 Mitral Valve Prolapse 

27 10005 M/W 42 23.5 79 7.4 6.7 Trauma 

28 1336 M/W 65 18.4 56 8.0 6.8 Cardiac Tamponade 

29 1122 M/W 55 15.4 88 7.9 6.7 Cardiac Tamponade 



  119 

30 1284 M/W 55 6.4 67 8.7 6.8 ASCVD 

31 1191 M/B 59 19.4 80 8.4 6.2 ASCVD 

32 970 M/W 42 25.9 109 7.2 6.4 ASCVD 

33 10003 M/W 49 21.2 80 8.4 6.5 Trauma 

34 1247 F/W 58 22.7 73 8.4 6.4 ASCVD 

35 1324 M/W 43 22.3 59 7.3 7 Aortic Dissection 

36 1099 F/W 24 9.1 91 8.6 6.5 Cardiomyopathy  

37 1307 M/B 32 4.8 62 7.6 6.7 ASCVD 

38 1391 F/W 51 7.8 48 7.1 6.6 ASCVD 

39 1282 F/W 39 24.5 67 7.5 6.8 ASCVD 

40 1159 M/W 51 16.7 85 7.6 6.5 ASCVD 

41 1326 M/W 58 16.4 59 8.0 6.7 ASCVD 
42 902 M/W 60 23.6 124 7.7 6.7 ASCVD 

  Mean 48.1 17.8 120.7 8.3 6.8  
  SD 13.3 5.9 43.6 0.6 0.2   

 

Subjects with Schizophrenia 

Pair Case DSM IV diagnosis Sex/  
Race Age PMIa Storage 

Timeb RIN pH Cause of 
Death 

Previously 
Studied for 

vGAT, GAT1, 
or GABRA1 

mRNA 

1 533 
Chronic 
undifferentiated 
schizophrenia 

M/W 40 29.1 184 8.4 6.8 Accidental 
Asphyxiation 

GABRA1, 
GAT1 
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2 537 Schizoaffective 
disorder F/W 37 14.5 183 8.6 6.7 Suicide by 

hanging 
GABRA1, 

GAT1 

3 547 Schizoaffective 
disorder M/B 27 16.5 182 7.4 7.0 Heat Stroke GABRA1, 

GAT1 

4 566 
Chronic 
undifferentiated 
schizophrenia; AAR 

M/W 63 18.3 179 8.0 6.8 ASCVD GABRA1, 
GAT1 

5 581 
Chronic paranoid 
schizophrenia; ADC; 
OAC 

M/W 46 28.1 176 7.9 7.2 
Accidental 
combined 
drug overdose 

GABRA1, 
GAT1 

6 587 
Chronic 
undifferentiated 
schizophrenia; AAR 

F/B 38 17.8 175 9.0 7.0 Myocardial 
hypertrophy 

GABRA1, 
GAT1 

7 625 Chronic disorganized 
schizophrenia; AAC M/B 49 23.5 169 7.6 7.3 ASCVD GABRA1, 

GAT1 

8 622 
Chronic 
undifferentiated 
schizophrenia 

M/W 58 18.9 169 7.4 6.8 Right MCA 
infarction 

GABRA1, 
GAT1 

9 640 Chronic paranoid 
schizophrenia M/W 49 5.2 167 8.4 6.9 Pulmonary 

embolism 
GABRA1, 

GAT1 

10 665 Chronic paranoid 
schizophrenia; ADC M/B 59 28.1 165 9.2 6.9 Intestinal 

hemorrhage 
GABRA1, 

GAT1 

11 787 Schizoaffective 
disorder; ODC M/B 27 19.2 144 8.4 6.7 Suicide by 

gun shot 
GABRA1, 

GAT1 

12 829 Schizoaffective 
disorder; ADC; OAR  M/W 25 5.0 136 9.3 6.8 

Suicide by 
salicylate 
overdose 

GABRA1, 
GAT1 

13 878 Disorganized 
schizophrenia; ADC M/W 33 10.8 127 8.9 6.7 Myocardial 

fibrosis 
GABRA1, 

GAT1 

14 517 Disorganized 
schizophrenia; ADC F/W 48 3.7 186 9.3 6.7 Intracerebral 

hemorrhage GABRA1 

15 539 Schizoaffective 
disorder; ADR M/W 50 40.5 184 8.1 7.1 

Suicide by 
combined 
drug overdose 

GABRA1 
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16 621 
Chronic 
undifferentiated 
schizophrenia 

M/W 83 16.0 170 8.7 7.3 Accidental 
asphyxiation GABRA1 

17 656 Schizoaffective 
disorder; ADC F/B 47 20.1 166 9.2 7.3 Suicide by 

gun shot GABRA1 

18 722 

Chronic 
undifferentiated 
schizophrenia; ODR; 
OAR 

M/B 45 9.1 156 9.2 6.7 Upper GI 
bleeding GABRA1 

19 781 Schizoaffective 
disorder; ADR M/B 52 8.0 146 7.7 6.7 Peritonitis GABRA1 

20 802 Schizoaffective 
disorder; ADC; ODR F/W 63 29.0 142 9.2 6.4 

Right 
ventricular 
dysplasia 

GABRA1 

21 917 
Chronic 
undifferentiated 
schizophrenia 

F/W 71 23.8 120 7.0 6.8 ASCVD GABRA1 

22 930 
Disorganized 
schizophrenia; ADR; 
OAR 

M/W 47 15.3 116 8.2 6.2 ASCVD GABRA1 

23 933 Disorganized 
schizophrenia M/W 44 8.3 116 8.1 5.9 Myocarditis GABRA1 

24 1209 Schizoaffective 
disorder M/W 35 9.1 78 8.7 6.5 

Suicide by 
diphenhydram
ine overdose 

No 

25 10025 Disorganized 
schizophrenia; OAR  M/B 52 27.1 71 7.8 6.7 ASCVD No 

26 1178 Schizoaffective 
disorder F/B 37 18.9 83 8.4 6.1 Pulmonary 

embolism No 

27 1256 Undifferentiated 
schizophrenia M/W 34 27.4 71 7.9 6.4 Suicide by 

hanging No 

28 1173 Disorganized 
schizophrenia; ADR  M/W 62 22.9 83 7.7 6.4 ASCVD No 
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29 1105 Schizoaffective 
disorder M/W 53 7.9 90 8.9 6.2 ASCVD No 

30 1188 
Undifferentiated 
schizophrenia; AAR; 
OAR 

M/W 58 7.7 81 8.4 6.2 ASCVD No 

31 1263 Undifferentiated 
schizophrenia; ADR  M/W 62 22.7 70 8.5 7.1 Accidental 

asphyxiation No 

32 1222 Undifferentiated 
schizophrenia; AAC  M/W 32 30.8 76 7.5 6.4 

Suicide by 
combined 
drug overdose 

No 

33 1088 
Undifferentiated 
schizophrenia; ADC; 
OAC  

M/W 49 21.5 91 8.1 6.5 
Accidental 
combined 
drug overdose 

No 

34 1240 Undifferentiated 
schizophrenia; ADR  F/B 50 22.9 73 7.7 6.3 ASCVD No 

35 10020 
Paranoid 
schizophrenia; AAC; 
OAC 

M/W 38 28.8 73 7.4 6.6 
Suicide by 
salicylate 
overdose 

No 

36 10023 Disorganized 
schizophrenia F/B 25 20.1 72 7.4 6.7 Suicide by 

drowning No 

37 10024 Paranoid schizophrenia M/B 37 6.0 72 7.5 6.1 ASCVD No 

38 1189 Schizoaffective 
disorder; AAR F/W 47 14.4 81 8.3 6.4 

Suicide by 
combined 
drug overdose 

No 

39 1211 Schizoaffective 
disorder F/W 41 20.1 79 7.8 6.3 

Sudden 
unexplained 
death 

No 

40 1296 Undifferentiated 
schizophrenia M/W 48 7.8 65 7.3 6.5 Pneumonia No 

41 1314 Undifferentiated 
schizophrenia M/W 50 11.0 62 7.2 6.2 ASCVD No 

42 1361 Schizoaffective 
disorder; ODC M/W 63 23.2 54 7.7 6.4 Cardiomyopat

hy No 
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  Mean 47.0 18.1 121.0 8.2 6.6   

   SD 12.8 8.7 46.1 0.7 0.4    

Pair Case Antipsychotic 
ATOD  

Antidepressant 
ATOD 

Benzodiazepine/ 
VPA ATOD 

1 533 Y N N 
2 537 N N N 
3 547 Y Y Y 
4 566 Y Y Y 
5 581 Y N Y 

6 587 Y N Y 

7 625 Y Y N 

8 622 N N N 

9 640 Y Y N 

10 665 Y Y N 

11 787 Y N N 

12 829 N N Y 

13 878 Y Y Y 

14 517 Y N N 

15 539 Y Y Y 

16 621 N N N 

17 656 Y N N 

18 722 Y N N 
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19 781 Y Y N 

20 802 Y N Y 

21 917 Y N N 

22 930 Y N Y 

23 933 Y Y Y 

24 1209 Y N N 

25 10025 N N N 

26 1178 Y N Y 

27 1256 Y N N 

28 1173 Y N N 

29 1105 Y N N 

30 1188 Y N N 

31 1263 Y Y N 

32 1222 Y Y N 

33 1088 Y Y N 

34 1240 Y N N 

35 10020 Y Y Y 

36 10023 Y N Y 

37 10024 N N N 

38 1189 Y Y Y 
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39 1211 Y Y N 

40 1296 Y Y N 

41 1314 Y Y N 

42 1361 Y N Y 
  36Y/6N 17Y/25N 15Y/27N 
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A.2 RHESUS MACAQUE MONKEYS USED IN THIS DISSERTATION                                        

(ALL FEMALE EXCEPT FOR SUBJECT 282) 

Table 7. Rhesus macaque monkeys used in this dissertation. 

Age Group 
(Mos.) Subject 

Age 
(Mos.) Sex 

Weight 
(kg) 

Perfusion 
Status 

Prior 
Biopsy 
Status 

Storage 
Time 

Perinatal 
(0.25 to 1) 

193 0.25 Female NA - - 120 

 
194 0.25 Female NA - - 119 

 
199 0.25 Female 0.5 - - 106 

 
201 0.25 Female 0.4 - - 106 

 
285 0.25 Female 0.6 - - 23 

 
196 1 Female NA - - 115 

 
197 1 Female NA - - 114 

 
200 1 Female 0.6 - - 106 

 
209 1 Female 0.6 - - 97 

Childhood  
(3 to 9) 

192 3 Female 0.8 - - 120 

 
198 3 Female 0.8 - - 112 

 
203 3 Female 0.9 - - 103 

 

212 3 Female 1.1 - - 94 

 
234 3 Female 0.9 + - 70 

 
241 3 Female 1.0 + - 63 

 
245 3 Female 1.2 + - 55 

 
277 3 Female 1.0 + - 31 

 294 8 Female 1.8 - - 11 

 261 9 Female 1.6 - - 42 

 262 9 Female 1.8 - - 42 

 273 9 Female 2.0 + - 36 

 278 9 Female 1.6 - - 31 

Adolescence 
(15 to 37) 

240 15 Female 2.3 + - 63 
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264 15 Female 2.5 + - 42 

 

265 15 Female 2.4 + - 44 

 
275 15 Female 2.4 + + 33 

 255 16 Female 2.6 + - 44 

 
287 18 Female 2.4 - - 15 

 
286 19 Female 2.4 - - 15 

 
293 23 Female 3.2 - - 12 

 
297 30 Female 4.9 - - 7 

 
298 30 Female 4.2 - - 7 

 
280 32 Female 3.8 + - 27 

 
281 32 Female 3.7 + - 27 

 
291 32 Female 3.9 - - 13 

 
279 33 Female 4.5 + - 28 

 
295 35 Female 4.3 + + 10 

 
296 35 Female 4.4 + + 9 

 

292 37 Female 5.0 - - 12 

Adulthood 
(42 to 138) 

249 42 Female 6.2 + - 53 

 239 42 Female 5.5 + - 63 

 
289 45 Female 5.7 - - 15 

 
258 46 Female 6.3 + - 43 

 
267 46 Female 5.7 + + 40 

 
269 46 Female 4 + + 38 

 
288 47 Female 5 - - 15 

 
259 104 Female 6.4 + - 43 

 
282 108 Male 11.7 - - 26 

 
260 138 Female 9.5 - - 43 
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APPENDIX B 

COMPUTATIONAL ESTIMATES OF AGE EFFECTS ON GAD67 MRNA LEVELS 

PRIOR TO AND AFTER ILLNESS ONSET IN THE SCHIZOPHRENIA SUBJECTS 

 

 

 

 

 

 

 

 

 

 

 

Figure 22. Computational estimate of age effects on GAD67 mRNA levels prior to and after illness onset in 

the schizophrenia subjects 

Regression model is used for schizophrenia subjects to estimate the slopes of GAD67 mRNA expression changes 

before and after illness onset (solid line), where β0
s represents intercept (i.e. transcript level at birth), β1

s and β2
s 

represent the slopes of GAD67 mRNA levels decline before and after illness onset, respectively. Rejecting the 

hypothesis H0: β1
s=β2

s versus HA: β1
s≠β2

s implies that the effect of age for schizophrenia subjects is fit by a 

segmented line with differing slope before and after illness of onset. The slope of GAD67 mRNA expression 

decline over age for comparison subjects can also be obtained from a linear regression model (dashed line). 
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