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SOME ANALYTICAL ISSUES FOR THE SELECTED COMPLEX FLUIDS
MODELS

Cheng Yu, PhD

University of Pittsburgh, 2013

In this dissertation, we study the selected models from complex fluids: compressible flow of
liquid crystals and the incompressible fluid-particles flow. On the compressible flow of liquid
crystals, we establish the global existence of renormalized weak solutions when v > % through a
three-level approximation, energy estimates, and weak convergence methods in the spirit of the
so-called Lions-Feireisl method. On the incompressible fluid-particles flow, we establish the global
existence of Leray weak solutions which was constructed by the Galerkin methods, fixed point
arguments, and convergence analysis with the large initial data. The uniqueness was established
by the classical theory of Stokes equations and a bootstrap argument in the two dimensional

space.

Keywords: Global weak solutions, existence, uniqueness, liquid crystal, Navier-Stokes equa-

tions, Vlasov equation.
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1.0 INTRODUCTION

In this dissertation, our interests include the rigorous mathematical study of fluid models derived
from the Navier-Stokes theory. In particular, we have been working on the compressible flow
of nematic liquid crystals and the incompressible fluid-particles flow. Understanding these is a
fundamental challenge in both mathematics and science. Our principal goal is to develop new
analytic methods to tackle the mathematical issues and to gain new physical insights into the

above flows and related applications. More precisely, the focus of this dissertation includes:

e Renormalized weak solutions to the compressible flow of nematic liquid crystals.
e Leray weak solutions to the incompressible fluid-particles flow, including global existence in

three dimensions, and uniqueness in two dimensions.

1.1 COMPRESSIBLE FLOW OF LIQUID CRYSTALS

The various applications of liquid crystals motivate us to investigate the related mathemati-
cal problems. The motion of nematic liquid crystals is governed by the forced Navier-Stokes
equations and a parabolic type equation.

The hydrodynamic equations for the three-dimensional flow of nematic liquid crystals ([10,

27, 34])has the following form:
pr + div(pu) =0, (1.1.1a)
1
(pu); + div(pu ® u) + VP(p) = pAu — Adiv (Vd ®Vvd - (§|Vd|2 + F(d))]g) . (L.1.1b)

d; +u-Vd = 0(Ad — f(d)). (1.1.1c)



The system (1.1.1) is subject to the following initial-boundary conditions:

(p7 pua, d)|t:0 - (pO(w)7m0(x)7d0(x))7 YIS Qa (112>

and

ulpn =0, dloo = do(), (1.1.3)
where

po € L(Q), po>0; doe L=(Q) N H(Q);

|mo|2

my € L'(Q), my =0 if py = 0; c L'(Q).

Po

Here Q2 C R3 is a smooth boundary domain, p > 0 is the density of fluid, u € R? is the velocity
of fluid, d € R3 is the direction field for the averaged macroscopic molecular orientations, and
P = ap” is the pressure with constants a > 0 and v > 1. The constants ¢ > 0, A > 0,60 > 0 denote
the viscosity, the competition between kinetic energy and potential energy, and the microscopic
elastic relation time for the molecular orientation field, respectively. The notation ® denotes the
Kronecker tensor product, I3 is the 3 x 3 identity matrix, and Vd ® Vd denotes the 3 x 3 matrix
whose ij-th entry is < 9,,d,0,;,d >. The penalty function f(d) is the vector-valued smooth

function and has the following form:

where the scalar function F'(d) denotes the bulk part of the elastic energy. Typically, we choose
F(d) as the Ginzburg-Landau penalization thus yielding the penalty function f(d) as:

F(d) = —(ld* -1 f(d) = 55(ld* - 1)d,

1 1
_408 2

- 204
where gy > 0 is a constant. We refer the readers to [7, 10, 16, 27, 33, 34] for more mathematical
models and physical background of liquid crystals.

The first objective of this dissertation is to establish the existence of global weak solutions
to (1.1.1)-(1.1.3). There have been extensive mathematical results on the incompressible flows
of liquid crystals, for example, the existence of global weak solutions with large data, the global

existence of strong solutions, and the partial regularity of the weak solutions similar to the



classical theorem of Caffarelli-Kohn-Nirenberg [5], see [30, 34, 35, 36, 37, 51] and the references
cited therein. The existence of weak solutions to the density-dependent incompressible flow of
liquid crystals was proved in [32]. The three dimensional compressible flow (1.1.1)-(1.1.3) of liquid
crystals is much more complicated and difficult to establish the global existence due to strong
nonlinearity. In the one-dimensional case the global existence of smooth and weak solutions to
the compressible flow of liquid crystals was obtained in [11].

When the direction field d is absent in the system (1.1.1), the system reduces to the compress-
ible Navier-Stokes equations. For the multidimensional compressible Navier-Stokes equations,
Lions in [39] proved the global existence of finite energy weak solutions for v > 9/5 by pioneering
the concept of renormalized solutions to overcome the difficulties of large oscillations, and then
Feireisl, et al, in [21, 18, 19] developed this method and extended the existence results to v > 3/2.
We shall study the initial-boundary value problem (1.1.1)-(1.1.3) for liquid crystals with large
initial data in certain functional spaces with v > 3/2. To achieve our goal, We shall employ a
three-level approximation scheme similar to that in [21, 18] to prove the global existence, which
consists of Faedo-Galerkin approximation, artificial viscosity, and artificial pressure. Then, in
sprite of the work of [18], we prove that the uniform estimate of the density p?™® in L! for some
a > 0 guarantees the vanishing of artificial pressure and the strong compactness of the density.
We adopt the methods of Lions and Feireisl in [21, 18, 36] to build the weak continuity of the
effective viscous flux for the compressible flow of liquid crystals similar to that for compressible
Navier-Stokes equations to remove the difficulty of possible large oscillation of the density. To
obtain the related estimates on effective viscous flux, we need to establish some estimates to deal

with the direction field and its coupling and interaction with the fluid variables.

1.2 INCOMPRESSIBLE FLUID-PARTICLES FLOW

On physical grounds, the motivation of our study of the incompressible fluid-particle flow is of
primary importance in the modeling of sprays. There are many relevant applications, such as
combustion theory, pollutant transport, and many more. The flow of the continuous phase is

modeled by the forced Navier-Stokes equations, and the flow of the particles is governed by the



kinetic equation. The fluid-particle interactions are described by a friction force exerted from
the fluid onto the particles.

The second objective of this dissertation is to establish the global existence of weak solutions
for the following partial differential equations, namely Navier-Stokes-Vlasov equations:

ut—l—(u-V)u—i-Vp—,uAu:—/ (u—v)fdv,

Ra

divu = 0, (1.2.1)

ft +v- v:cf + divv((u - V)f) = 07

in Q x R? x (0,7), where Q C R? is a bounded domain, d = 2,3, u is the velocity of the fluid,
and p is the pressure. Without loss of generality, we take kinematic viscosity of fluid pu = 1
throughout the paper. The distribution function f(¢,z,v) depends on the time ¢t € [0,7], the
physical position z € €, and the velocity of particle v.€ R The notation f(¢,z,v)dv is the
number of particles enclosed at ¢ > 0 and location x € 2 in the volume element dv.

The system is completed by the initial data

u(0,z) =up(z), f(0,z,v)= fo(x,Vv), (1.2.2)

and with the following boundary conditions:

u=0 on 09, and f(t,x,v)= f(t,z,v") forz € 0Q, v-v(z) <0 (1.2.3)

where v* = v — 2(v - v(x))r(z) is the specular velocity, v(x) is the outward normal to €.

In general, the mathematical analysis of fluid-particle flow is challenging because the distribu-
tion function f depends on more variables than the fluid density p and velocity u. The rigorous
mathematical study to such coupled systems is far from being complete but recently has received
much attention. The global existence of weak solutions to Stokes-Vlasov system with boundary
was established in 1990s, see [26]. The existence theorem for weak solutions has been extended to
Navier-Stokes-Vlasov equations within a periodic domain in [4]. The global existence of smooth
solutions for Navier-Stokes-Vlasov-Fokker-Planck equations with small data was proved in [23].
More Recently, the existence of global weak solutions of Navier-Stokes-Vlasov-Poisson system

with corresponding boundary value problem was established in [1]. Meanwhile, there are many



works in the direction of hydrodynamic limits, we refer the reader to [6, 24, 25, 46]. In works
6, 24, 25, 46], the authors used some scaling issues and convergence methods to investigate the
hydrodynamic limits. A key idea in [24, 25] is to control the dissipation rate of a certain free
energy associated with the whole space. For the compressible version, local strong solutions of
Euler-Vlasov equations was established in [2]. Global existence of weak solutions for compressible
Navier-Stokes equations coupled to Vlasov-Fokker-Planck equations was established in [45].

In Section 3, we shall establish the global existence of weak solutions to the initial-boundary
value problem (1.2.1)-(1.2.3) for Navier-Stokes-Vlasov equations with large data in three dimen-
sional space. To this end, we construct a new approximation scheme motivated by the works of
[13, 44, 45]. The key idea of this approximation is to control the modified force term of regular-
ized Navier-Stokes equations. The existence and uniqueness of the modified Vlasov equation is
classically obtained, for example, see [3, 12, 26]. The controls of fRd fdv and fRd v f dv ensure
that the modified Navier-Stokes equations could be solved. The compactness properties of the
system will allow us to pass the limit to recover the original system. We shall also establish the

uniqueness of the weak solutions in the two dimensional space.

1.3 DENSITY-DEPENDENT INCOMPRESSIBLE FLUID-PARTICLE FLOW

Now, let us move to the Navier-Stokes-Vlasov equations for particles dispersed in a density-

dependent incompressible viscous fluid:

pt + div(pu) = 0, (1.3.1)

(pu); +div(pu®@u) + Vp — pAu=— [ m,F fdv, (1.3.2)
R3

diva = 0, (1.3.3)



for (z,v,t) in Q x R? x (0, 00), where  C R? is a bounded domain, p is the density of the fluid,
u is the velocity of the fluid, p is the pressure, p is kinematic viscosity of fluid. The density
distribution function f(¢,x,v) of particles depends on the time ¢ € [0, 7], the physical position
z € Q and the velocity of particle v € R3. In (1.3.2), m, is the mass of the particle and F is the
drag force. The interaction of the fluid and particles is through the drag force exerted by the
fluid onto the particles. Typically, the drag force F' depends on the relative velocity u — v and
on the density of fluid p (e.g. [46]), such as

F = Fyp(u—v), (1.3.5)

where Fj is a positive constant. Without loss of generality we take = Fyy = m,, = 1 throughout
the paper.
The final objective is to establish the global existence of weak solutions to the initial-boundary

value problem for the system (1.3.1)-(1.3.5) subject to the following initial data:

Pli=o = po(x) > 0, x € €, (1.3.6)
(pa)]i=o = mo(x), x €, (1.3.7)
flizo = folz,v), x€Q, veRY, (1.3.8)

and the following boundary conditions:

u(t,z) =0 on 09,
(1.3.9)

ft,z,v) = f(t,z,v*) for z € 9Q, v-v(z) <0,

where
vi=v—=2(v-v(x))r(x)

is the specular velocity, and v(z) is the outward normal vector to 2. When the drag force is
assumed independent on density in (1.3.5), hydrodynamic limits and the global existence of weak
solutions to the Navier-Stokes and Vlasov-Fokker-Planck equations were studied in [24, 25, 45,
46]. When the drag force depends on the density as in (1.3.5), a relaxation of the kinetic regime
toward a hydrodynamic regime with velocity u on the vacuum {p = 0} can not be excepted. It

is difficult to establish a priori lower estimates on the density from the mathematics view point.



2.0 COMPRESSIBLE FLOW OF LIQUID CRYSTALS

The global existence of weak solutions with large initial data to the compressible flows is always a
basic and interesting problem of the mathematical study. The goal of this chapter is to study the
global existence of weak solutions to the three dimensional compressible flow of liquid crystals
with bounded domain.

The remaining part of this chapter is organized as follows. In Section 2.1, after deduce the
basic energy law, we state the main existence result of this chapter. In the following Sections,
we use the three-level approximations, namely Faedo-Galerkin, vanishing viscosity, and artificial

pressure, respectively, to prove our main result.

2.1 ENERGY ESTIMATES AND MAIN RESULTS

In this section, we derive some basic energy estimates for the initial-boundary problem (1.1.1)-
(1.1.3), introduce the notion of finite energy weak solutions in the spirit of Feireisl [21, 18], and
state the main results.

Without loss of generality, we take § = a = 1. First we formally derive the energy equality
and some a priori estimates, which will play a very important role in our paper. Multiplying

(1.1.1b) by u, integrating over €2, and using the boundary condition (1.1.3), we obtain

1 2 P’ 2
Oy —plul*+ ——)de+p [ |Vu|?dx
o \2 v—1 Q

_ —)\/ div (Vd 6 vd - (%|Vd|2 + F(d))lg) udz.
Q



Using the equality
1
div(Vd ©® Vd) = V(§|Vd|2) +(Vd)" - Ad,

we have
1
/ div <Vd ®Vd - (gywu2 + F(d))lg) udz
Q
= /(Vd)T - Ad - udr — / VaF(d)udz.
Q Q
Hence, we obtain

1 2 P’ 2
O —plul*+ —— ) de+ [ |Vu|®dx
a\2 v—1 Q

(2.1.1)
= —)\/(Vd)T -Ad - udx+>\/ VaF(d)udz.

Multiplying by A(Ad — f(d)) on the both sides of (1.1.1c) and integrating over 2, we get

2
—at/A’V;‘ dm—@t/)\F(d)dx—/)\VdF(d)udx+/\/(Vd)T-Ad-udm
Q Q Q Q

= )\/ |Ad — f(d)]*da.
0
Then, from (2.1.1), we have the following energy equality to the system (1.1.1),

a/ 1|u|2+—p7 +5|Vd|2+AF(d) da
o 27 S—1 "2
+/ (1IVulde + AAd — f(d)P) da (2.1.2)
Q
—0.
Set

1 2 p’ A 2
E(t) = —plu|* + —— + =|Vd|* + A\F(d) | (¢, z)dz,
o \2 y—1 2

and assume that £(0) < co. From (2.1.2), we have the following a priori estimates:
plul* € L=([0, T); L());
p € L([0,T]; L7(2));
vd € L*([0,T]; L*(Q));

F(d) € L*([0,T]; L'(Q));



Vu € L([0, T]; L*(Q));

and also

Ad — f(d) € L*([0,T]; L*(Q)). (2.1.3)

Although the above estimates will play very important roles in proving of our main existence
theorem, they cannot provide sufficient regularity for the direction field d to control the strongly

nonlinear terms containing Vd.

Remark 2.1.1. We infer from Gagliardo-Nirenberg inequality that

4 1 4 1
][0 < Clld][Lo[|Ad] > + Clld][ze < Clld|7a[|Ad] 2> + Clld] 1,
2 3
VAl < Clld][[[Ad]| 7 + Cl[VAl| .

Using d € L>(0,T; H*(Q)) and Ad € L*(0,T; L*(92)), we will have
de L'0,7;Q) and Ad € L (0,T;0).

Through our paper, we will use C' to denote a generic positive constant, D to denote Cg°, and
D’ to denote the sense of distributions. To introduce the finite energy weak solution (p,u,d), we
also need to take a differentiable function b, and multiply (1.1.1a) by b (p) to get the renormalized

form:

b(p); + div(b(p)u) + (b (p)p — b(p))divu = 0. (2.1.4)

We define the finite energy weak solution (p,u,d) to the initial-boundary value problem (1.1.1)-
(1.1.3) in the following sense: for any 7' > 0,

¢ p20, peL>(0,T];L(2), ue L*([0,T];Wy*(Q)),
d e L*((0,T) x Q)N L>([0,T]; H'(2)) N L*([0, T); H*(2)),
with (p, pu,d)(0,2) = (po(x), my(x),do(z)) for x € Q;

e The equations (1.1.1) hold in D’'((0,T) x ), and (1.1.1a) holds in D’((0,T) x R3) provided

p,u are prolonged to be zero on R? \ ;



e (2.1.4) holds in D'((0,T) x Q), for any b € C'(R") such that

I

b (z) =0 for all z € R large enough, say z > M, (2.1.5)

where the constant M may vary for different function b;

e The energy inequality

E(t)+ /Ot/Q (u|Vuldz + X\|Ad — f(d)[?) dzds < E(0)

holds for almost every ¢ € [0, T].

Remark 2.1.2. Tt’s possible to deduce that (2.1.4) will hold for any b € C'(0,00) N C[0, 00)

satisfying the following conditions

1

b ()| < (2% + 23%) for all z > 0 and a certain o € (0, 3

(2.1.6)
provided (p,u,d) is a finite energy weak solution in the sense of the above definition (see details
in [18]).

Now, our main result on the existence of finite energy weak solutions reads as follows:

Theorem 2.1.1. Assume that Q C R3 is a bounded domain of the class C**, v > 0, and v > %
then for any given T > 0 the initial-boundary value problem (1.1.1)-(1.1.3) has a finite weak
energy solution (p,u,d) on (0,7) x Q.

The proof of Theorem 2.1.1 is based on the following approximation scheme:

pe +div(pu) = eAp, (2.1.7a)
(pu); + div(pu @ u) + VP(p) + 6Vp’ +eVu - Vp

— pAu — Mdiv (Vd@Vd— (%lVd|2+F(d))13), (2.1.7b)
d, +u-vd = Ad - f(d), (2.1.7¢)

with appropriate initial-boundary conditions. Following the approach of Feireisl [21, 18], we shall
obtain the solution of (1.1.1) when ¢ — 0 and 6 — 0 in (2.1.7). We can solve equation (2.1.7a)

provided u is given. Indeed, we can obtain the existence by using classical theory of parabolic

10



equation and overcome the difficulty of vacuum. Next we can also solve equation (2.1.7¢) when
u is fixed. By a direct application of the Schauder fixed point theorem, we can establish the
local existence of u, and then extend this local solution to the whole time interval. Note that
the addition of the extra term eVu - Vp is necessary for keeping the energy conservation. The
last step is to let ¢ — 0 and 6 — 0 to recover the original system. We remark that the strongly
nonlinear terms containing Vd can be controlled by the sufficiently strong estimate about Vd
obtained from the Gagliardo-Nirenberg inequality. In order to control the possible oscillations
of the density p, we adopt the methods in Lions [39] and Feireisl [21, 18] which is based on the
celebrated weak continuity of the effective viscous flux P — pudivu. We refer the readers to Lions

[39], Feireisl [21, 18], and Hu-Wang [29] for discussions on the effective viscous flux.

2.2 THE SOLVABILITY OF THE DIRECTION VECTOR

To solve the approximation system (2.1.7) by the Faedo-Galerkin method, we need to show that

the following system can be uniquely solved in terms of u:

d;+u-Vd=Ad— f(d), (2.2.1a)

dli=o = do, d|on = do, (2.2.1b)

which can be achieved by the two lemmas below.

Lemma 2.2.1. Ifu € C([0,T]; C3(Q,R?)), then there exists at most one function

d e L*0,T; H*(Q)) N L>([0,T); H*(Q))

which solves (2.2.1) in the weak sense on Q x (0,T), and satisfies the initial and boundary

conditions in the sense of traces.

11



Proof. Let di,dy be two solutions of (2.2.1) with the same data, then we have

Multiplying (2.2.2) by A(d; — d3), integrating it over €2, and using integration by parts and the

Cauchy-Schwarz inequality, we obtain

at/ V(d; — dy)[2dz + 2/ IA(d) — dy)[2da
—o / (V(dy — do))" - (A(dy — do)) - udi +2 / ((d)) — F(de))(A(dy — do))de
Q Q

< c/ V(d; — d2)|2da:+/ |A(d; — do)|*dx,
Q Q
where we used the fact that f is smooth, then
Q Q Q

and Lemma 2.2.1 follows from Gronwall’s inequality, and the above inequality. O

Lemma 2.2.2. Let Q C R? be a bounded domain of class C*™, v > 0. Assume that u €
C([0,T); C3(Q,R?)) is a given velocity field. Then the solution operator

u+— d[u]

assigns to u € C([0,T); C2(S;R?)) the unique solution d of (2.2.1). Moreover, the operator
u — d[u] maps bounded sets in C([0,T]; C2(Q;R?)) into bounded subsets of

Y= LA([0, T]; H*(Q)) 0 L>([0, T); H'(2)),

and the mapping
uc 00, T; C;(LR*)) —d €Y

is continuous on any bounded subsets of C'([0,T]; C2(Q;R?)).

12



Proof. The uniqueness of the solution to (2.2.1) is a consequence of Lemma 2.2.2, and the exis-
tence of a solution can be guaranteed by the standard parabolic equation theory. By (2.2.3), we
can conclude that the solution operator u — d(u) maps bounded sets in C([0,T]; C2(Q;R3))
into bounded subsets of the set Y. Our next step is to show that the solution operator is con-
tinuous from any bounded subset of C([0,T]; C2(Q)) to Y. Let {u,}°2, be a bounded sequence
in C([0,T7; C2(£2)), that is to say, u, € B(0, R) C C([0,T]; C3(Q2)) for some R > 0, and

u, — uin C([0,T];C3(Q)) asn — oco.
Here, we denote d[u] = d, and d[u,] = d,,, so we have

8t/Q%|V(dn—d)|2dx+/Q\A(dn—d)\zd:c

= [0V, V)T, s+ [ (7(d) = 1(d,)) - (A, — d))ds
S/Q(Iu—unl : |Vd!+|un||v(d—dn)|)|ﬁ(dn—d)!d$+0/ﬂ|v(dn—d)|2dﬂf (2.2.4)
< = o [V + IV~ )l + 5 [ 1@~ )P

1
< COllun —ullze + V(= di)I7,

where we used facts that d,, is bounded in Y and f is smooth. This implies that

1 1
—at/ |V(dn—d)|2daz+—/ IA(d, — d)2de
2 Ja 2 Jq

< Clluy — ullz= + CIV(dy — d)|7--

(2.2.5)

Integrating (2.2.5) over time ¢ € (0,7"), and then taking the upper limit over n on the both sides,
we get, noting that u,, — u in C([0, T]; C2(Q); R?),

1 1 T
—lim sup/ |V(d, — d)|*dz + = lim sup/ / |A(d, — d)|*dzdt
2n Q 2 n 0o Ja
T
< C'lim sup/ IV(d, — d)||7.dt (2.2.6)
" 0

T
< C'/ limsup ||V(d,, — d)||32dt,
0 n
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thus, using Gronwall’s inequality to (2.2.6) and noting that d,,, d share the same initial data, we

have
lim sup/ |V(d, —d)|*dz =0,
n Q

which means, from (2.2.6) again,

T
lim sup/ / |A(d,, — d)|*dzdt = 0.
" 0 Jo

Thus, we obtain

d, —>dinY.

This completes the proof of the continuity of the solution operator. n

2.3 THE FAEDO-GALERKIN APPROXIMATION SCHEME

In this section, we establish the existence of solution to the following approximation scheme:

pt + div(pu) = eAp, (2.3.1a)

(pu), + div(pu ® u) + VP(p) + 6Vp’ + eVu - Vp

1
= pAu — \div (Vd ©Vd — (§|Vd|2 + F(d))[g) , (2.3.1b)
d; +u-Vd=Ad- f(d), (2.3.1¢)
with boundary conditions
Vp-vlsa =0, (2.3.2a)
d|sn = do, (2.3.2b)
u|39 = 0, (2320)
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together with modified initial data

pli=o = pos(x), (2.3.3a)
puli—o = mg5(x), (2.3.3b)
d|t:0 = do(l’) (233(3)

Here the initial data pos(r) € C*(f) satisfies the following conditions:
0<6< posla) <62, (2.3.4)

and

pos(x) = poin L7(Q), [{pos < po}| =0 asd—0. (2.3.5)

Moreover,

mos(z) = 4 ¢ it pos(@) 2 pole), (2.3.6)

0 if pos(x) < po(2).
The density p = p[u] is determined uniquely as the solution of the following Neumann initial-

boundary value problem (see Lemmas 2.1 and 2.2 of [18]):

pr + div(pu) = eAp, (2.3.7a)
Vp-v|oa =0, (2.3.7b)
Pli=o = po,s(), (2.3.7¢)

To solve (2.3.1b) by a modified Faedo-Galerkin method, we need to introduce the finite-

dimensional space endowed with the L? Hilbert space structure:
X, = span(n)iz,, ne€{1,2,3,---}

where the linearly independent functions n; € D(Q)?, i = 1,2,..., form a dense subset in

C2%(Q,R?). The approximate solution u, should be given by the following form:

/pun( ) ndx—/mw ndx

/ / (nAu, — div(pu, ®u,)) — V(p" 4+ 8p°) —eVp - Vu,) - ndzdt (2.3.8)

— / / Miv(Vd ® Vd — (§|Vd|2 + F(d))Is) - ndxdt
0 Q
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for any t € [0,T] and any n € X,,, where ¢, 4, 5 are fixed. Due to Lemmas 2.1 and 2.2 of [18]
and our Lemmas 2.2.1 and 2.2.2, the problem (2.2.1), (2.3.7) and (2.3.8) can be solved at least
on a short time interval (0,7,,) with 7,, < T by a standard fixed point theorem on the Banach
space C([0, 7], X,,). We refer the readers to [18] for more details. Thus we obtain a local solution
(pn, Uy, dy,) in time.

To obtain uniform bounds on u,,, we derive an energy inequality similar to (2.1.2) as follows.
Taking n = u,(t, z) with fixed ¢ in (2.3.1) and repeating the procedure for a priori estimates in

Section 2, we deduce a “Kinetic energy equality”:

1 1 ) A
8t/ (—pn|un|2—|— P, + pg+—]Vdn]2+)\F(dn)> dx—l—,u/ |V, |*dx
o \2 y- Lt A= 2 o (2.3.9)
n [ 18d, = f(@)Pds+ = [ O+ 5605 IVl =0
Q Q

The uniform estimates obtained from (2.3.9) furnish the possibility of repeating the above fixed
point argument to extend the local solution u,, to the whole time interval [0, T]. Then, by the
solvability of equation (2.3.7) and (2.2.1), we obtain the functions (p,,d,) on the whole time
interval [0, 7).

The next step in the proof of Theorem 2.1.1 is to pass the limit as n — oo in the sequence
of approximate solutions {p,,u,,d,} obtained above. We observe that the terms related to u,
and p, can be treated similarly to [18]. It remains to show the convergence of the terms related
to d,,.

By (2.3.9), smoothness of f, and elliptic estimates, we conclude

Vu, € L*([0,7T]; L*(Q)), (2.3.10)

Ad, — f(d,) is bounded in L*([0,T7]; L*(Q2)), (2.3.11)

and

d, € L=([0, T]; H'(Q)) N L*([0, T]; H*(2)).

This yields that
Ad, — f(d,) = Ad — f(d) weakly in L*([0, T]; L*(2)),
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and

d,, — d weakly in L>([0, T]; H*(Q)) N L*([0, T]; H*(2)). (2.3.12)

Using corollary 2.1 in [21] and (2.3.1¢), we can improve (2.3.12) as follows:
dn —d n C([O7T]? L121}eak<Q))‘

Next we need to rely on the following Aubin-Lions compactness lemma (see [41]):

Lemma 2.3.1. Let Xy, X and X; be three Banach spaces with Xqg C X C X;. Suppose that X
is compactly embedded in X and that X is continuously embedded in X1; Suppose also that X

and X, are reflexive spaces. For 1 < p,q < oo, let
du
W= fue D2(0,T): X0 5 € 4(0.7): X1)).

Then the embedding of W into LP(]0,T]; X) is also compact.

We are now applying the Aubin-Lions lemma to obtain the convergence of d,, and Vd,,. From
Remark 2.1.1, we have

d, € L'°((0,T) x Q),

and

Vd, € L7 ((0,T) x Q). (2.3.13)

Using (2.3.1c), we have
< Ollun][zs@) | Vdal 22y + Cl|Ad, — f(dn) || 220,
< OV, |2 + Cl|Ady, — f(dn)l 2,

where we used embedding inequality, the values of C' are variant. Thus, (2.3.10), (2.3.11) and
(2.3.13) yield

|0, d,. || <C.

120,718 (9) =
Notice that H2 ¢ H' C L3 and the injection H? — H' is compact, applying Lemma 2.3.1 we
deduce that the sequence {d,, }°°, is precompact in L*([0,T]; H*()).
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Summing up the previous results, by taking a subsequence if necessary, we can assume that:
d, —»d inC([0,T]; L2, ..(Q)),

d, — d weakly in L*(0,T; H*(Q2)) N L>®(0, T; H'(9)),
d,, — d strongly in L*(0,T; H'(Q)),
Vd, — Vd weakly in L7 ((0,7) x ),
Ad, — f(d,) — Ad — f(d) weakly in L*(0,T; L*(2)),
F(d,) — F(d) strongly in L*(0,T; H*(Q)).

Now, we consider the convergence of the terms related to d,, and Vd,,. Let ¢ be a test function,

then
/Q (Vd, ® Vd,, — Vd © Vd) - Vipdzdt
< /Q (Vd, ® Vd, — Vd, © Vd)Vedzdt + /Q (Vd, ®Vd — Vd ® Vd)Vedzdt ~ (2:3.14)
< C||Vd,|| 2| Vdn — VA| r20) + C||VA]| 120 | VA, — V|| 12()

By the strong convergence of Vd,, in L?(Q2) and (2.3.14), we conclude that
vd, ®Vd, - Vd o Vd in D' (2 x (0,T)).

Similarly,

1 1 /
SIVd L — SIVdPL in D2 x (0,7)),

and

u,Vd, — uVd in D' (Q x (0,7)),

where we used

u,, — u weakly in L*([0, T]; H (2)).

Therefore, (2.2.1) and (2.3.8) hold at least in the sense of distribution. Moreover, by the uniform

estimates on u,d and (1.1.1c), we know that the map
t— / d,(z,t)p(x)dzr  for any ¢ € D(Q),
Q
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is equi-continuous on [0, T]. By the Ascoli-Arzela Theorem, we know that

t—>/ﬂd(x,t)go(:c)dx

is continuous for any ¢ € D(Q2). Thus, d satisfies the initial condition in (2.2.1).

Now we have the existence of a global solution to (2.3.1) as follows:

Proposition 2.3.1. Assume that Q C R3 is a bounded domain of the class C**V, v > 0; Let
e>0,0 >0, and B > maz{4,~v} be fizred. Then for any given T > 0, there is a solution (p,u,d)
to the initial-boundary value problem of (2.3.1) in the following sense:

(1) The density p is a nonnegative function such that
p € L([0, T, W>"(Q)), 0w € L'((0,T) x ),

for some r > 1, the velocity u € L*([0,T]; H}(Q2)), and (2.3.1a) holds almost everywhere on

(0,7) x 8, and the initial and boundary data on p are satisfied in the sense of traces. Moreover,

[ ot tde = | prade
Q Q

for allt € [0,T]; and the following inequalities hold

T
5/ /pﬂﬂdxdt < C(e),
o Jo

T
5/ / |Vp|*dxdt < C with C independent of «.
o Ja

the total mass is conserved, i.e.

(2) All quantities appearing in equation (2.3.1b) are locally integrable, and the equation is
satisfied in D' (Q x (0,T)). Moreover,

pu € C([0,T]; Lyiar (),

and pu satisfies the initial data.

(8) All terms in (2.3.1c) are locally integrable on Q2 x (0,T). The direction d satisfies the
equation (2.2.1a) and the initial data (2.2.1b) in the sense of distribution.
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(4) The energy inequality

1, 1 o 5. A )
8t/9(2,0\u\ —1—7_1,0 +6_1,0 —|—2\Vd] +AF(d) ) dz
+u/ |Vu|2dx+>\/ |Ad — f(d)|*dx

Q 0
<0

holds almost everywhere fort € [0,T].

To complete our proof of the main theorem, we will take vanishing artificial viscosity and

vanishing artificial pressure in the following sections.

2.4 VANISHING VISCOSITY LIMIT

In this section, we will pass the limit as ¢ — 0 in the family of approximate solutions (p., u., d.)
obtained in Proposition 2.3.1. The estimates in Proposition 2.3.1 are independent of n, and those
estimates are still valid for (p., u.,d.). But, we need to remark that p. will lose some regularity
when & — 0 because the term eAp. goes away. The space L>(0,T; L'(Q)) is a non-reflexive
space, and the artificial pressure is bounded only in space L>(0,T; L'(Q)) from the estimates of
Proposition 2.3.1. It is crucial to establish the strong compactness of the density p. for passing
the limits. To this end, we need to obtain better estimates on the artificial pressure.

2.4.1 Uniform estimates of the density

We first introduce an operator
B: {f e LP(Q) : / fdx = 0} — (WP (Q)]
Q
which is a bounded linear operator satisfying

IBU lwar@) < e[ fllzr  forany 1 <p < oo, (2.4.1)
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where the function W = BJ[f] € R? solves the following equation:
diviV = f in Q, W|8Q =0.

Moreover, if the function f can be written in the form f = divg for some g € L, and ¢g-v|gq = 0,

then

IB[f]llzr ) < c(r)llgllr@

for any 1 < r < co. We refer the readers to [21, 18] for more background and discussion of the

operator B. Define the function:

o(t,x) =v(t)Blp- —p], »e€D0,T), 0<v¢ <1,

where

N 1 /
= — t)dzx.
P Qp()

Since p. is a solution to (2.3.1a), by Proposition 2.3.1 and § > 4, we have
p- —p € C([0,T], LX()).

Therefore, from (2.4.1), we have ¢(t, z) € C([0,T], W'*(Q)). In particular, p(t, z) € C ([0, T] x Q)
by the Sobolev embedding theorem. Consequently, ¢ can be used as a test function for (2.3.1b).
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After a little bit lengthy but straightforward computation, we obtain:

T
/ / (pIT + 0plt ) dwdt
o Ja
T T
5[ [ ot v opdyizdr s [ [ vpouBlo. - pldade
0o Ja o Ja
T
—i-,u/ /zﬁVuEVB[ps—ﬂd:vdt
Q
T
_/ /¢peu5®usVB[Ps—ﬁ]dIdt
Q
"
_5/ /preueB[ApE]dxdt (2.4.2)
0
T
—/ /wpsusB[div(peug)]da:dt
Q
oy
—i—&t/ /VUEVpEB[pE—ﬁ]d:cdt
0o Ja
T Vd.|?
_A/‘/(WL®V¢—0—7—+ﬂ®ﬂQwVM&—ﬂMﬁ
o Ja
7
=> 1
j=1

To achieve our lemma below, we need to estimate that the terms I; — I; are bounded. We can

treat the terms related to p., u. similar to [18]. It remains to estimate the term 7. Indeed,

T dg 2
L] = ’)\/0 /Q (Vds ©Vd. - (% + F(d))Ig) WV Blp. — Fldwdt

T T
2 A _ (2.4.3)
<O [ IV g 1802 = gt +C [ 1Bloe = 7l g5

<C,
where we used
1Blpe = lll 1.3 g < Collpe = 7ll 5 g
and § > 4. Consequently, we have proved the following result:

Lemma 2.4.1. Let (p.,u.,d.) be the solutions of the problem (2.3.1) constructed in Proposition
2.53.1, then

19| r+1 0,0y <) + el Lo o.myx0) < C,

where C' is independent of €.
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2.4.2 The vanishing viscosity limit passage

From the previous energy estimates, we have
eAp. — 0 in L*(0,T; W~ 13(Q))

and

eVu.Vp. — 0 in L'(0,T; L*(Q))

as ¢ — 0.

Due to the above estimates so far, we may now assume that

pe = pin C([0,T], L] _..(Q)), (2.4.4a)

u. — u weakly in L*(0, T; W,*(Q)), (2.4.4b)
2y

peu: — pu in C([0,T], L) (). (2.4.4c)

Then we can pass the limits of the terms related to p.,u. similarly to [18]. It remains to show
the convergence of d.. Following the same arguments of Section 4, by taking a subsequence if

necessary, we can assume that:

d. - d inC([0,T]; L2, ..(Q)) (2.4.5a)
d. — d weakly in L*(0,T; H*(Q)) N L>=(0, T; H'(9)), (2.4.5b)
d. — d strongly in L*(0,T; H'(Q)), (2.4.5¢)
Vd. — Vd weakly in L= ((0,7) x ), (2.4.5d)
Ad, — f(d.) — Ad — f(d) weakly in L*(0,T; L*(52)), (2.4.5€)
F(d.) — F(d) strongly in L*(0,T; H'(Q)). (2.4.5f)

Consequently, letting ¢ — 0 and making use of (2.4.4) and (2.4.5), we conclude that the limit of
(pe, ug, d.) satisfies the following system:

pr + div(pu) =0, (2.4.6a)
_ 1

(pu); + div(pu ® u) + VP = pAu — M\div(Vd © Vd — (§|Vd|2 + F(d))l3), (2.4.6b)

d;+u-Vd=Ad - f(d) (2.4.6¢)

where P = ap? + 6p2, here K (z) stands for a weak limit of {K_}.
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2.4.3 The strong convergence of the density

We observe that p., u. is a strong solution of parabolic equation (2.3.1a), then the renormalized

form can be written as

Aeb(p.) + div(b(pe)us) + (b (p:)pe — b(p2))divu,
= ediv(xaVb(p:)) — exab (p:)|Vpe|
in D'((0,T) x R?), with b € C?[0,00), b(0) =0, and b, " bounded functions and b convex,

(2.4.7)

where xq is the characteristics function of Q. By the virtue of (2.4.7) and the convexity of b, we

/ / (b (pe)p- — b(pe)))diva.dzdt < /Q b(pos)de + /0 ' /Q O,b(p.)dudt

for any v € C*[0, 7], 0<v¢ <1, ¢(0)=1, (T)=0.Taking b(z) = zlogz gives us the

have

following estimate:

T T
/ /@Dpedivuada:dtg/poﬁ log(poyg)dx—k/ /8t¢pa log p.dxdt,
0 Jo Q 0 Jo

and letting ¢ — 0 yields

T T
/ /¢pdivudxdt S/po,& 1ogp0,5dx+/ /@@bplogpd:rdt,
o Jo Q o Jao

T
/ /pdivudxdtg/pw logp075dx—/plogp(t)dx. (2.4.8)
o Ja Q Q

Meanwhile, (p,u) satisfies

that is,

db(p) + div(b(p)u) + (b (p)p — b(p))divu = 0. (2.4.9)
Using (2.4.9) and b(z) = zlog z, we deduce the following inequality:
T
/ / pdivudzdt < / po,5 log po sdx — / plog p(t)dx. (2.4.10)
0o Jo Q Q
From (2.4.10) and (2.4.8), we deduce that
T
/ plog p — plog(p)(r)dx < / / pdivu — pdivudzdt (2.4.11)
Q o Jo

for a.e. 7 €[0,7.
To obtain the strong convergence of density p., the crucial point is to get the weak continuity

of the viscous pressure, namely:
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Lemma 2.4.2. Let (p.,u.) be the sequence of approzimate solutions constructed in Proposition

2.3.1, then

T
lim / / Yn(ap? + 6pP — pdivu,)p.dadt
0o Ja

e—0t

T
_ / / on(P — pdiva)pdzdt  for any ¥ € D(0,T), 1 € D(S),
0 Q

where P = ap? + §pP.

Proof. We need to introduce a new operator
A=A 0,v), i=1,2,3,

where A~! stands for the inverse of the Laplace operator on R3. To be more specific, A; can be

expressed by their Fourier symbol

—i&;
€12

Az() = ‘F_l( f())? 1=1,2,3,

with the following properties (see [18]):

[Av|lwrs ) < cls, Qo] psms), 1 <s < oo,

—_
—_

1
||AiU||Lq(Q) S C(Q?'Sa Q)HU Ls(R3), q < 00, prOVided 5 Z - T o

»
w

and

|4z (@) < e(s, Q)]

L5(R3) if s> 3.

Next, we use the quantities

p(t,x) = YO)n(x)Ailps], €D, T), neD@), i=123,
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as a test function for (2.3.1b) to obtain

T
/ / en((pl + 6pl) — pdivu,)p.dadt
0 QT .
= / / YVu.VnAlp.]dzdt — / / (pl + 6p2)VnAlpe|dudt
OT Q 0 Q .
_/ /¢paua®uavnA[pa]d$dt_/ /@btnpauaA[pa]dxdt
0 Q 0 Q
T
—5/ /1/anau5A[diV(XQVp5)]dﬂfdt
0 Q

T T
—I—s/ /anpEVuaA[pg]dxdt—l—,u/ /¢u€Vnp5dxdt
0o Jo o Jo

T T
—M/O /Q%DUsV??VA[Pa]dﬂitﬂL/o /Qwua(pER[paug] — p-u.R[p.])dxdt

T 1 )
~A /O /Q (VdEQVdE—(§|Vd6| +F(d€))lg) DV Alp.)dwdt
T 1
- d. d. — (=|Vd.]* + F(d)I Alp.
A/O /(v © Vd. — (5]Vd.P + F(d.) 3)wnv [pe)dudt

where xq is the characteristics function of Q, Alx] = VA~![z].

Meanwhile, we can use

o(t,x) = p(t)n(x) (VA )[p], ¢ eD(0,T), neDQ),

as a test function for (2.4.6b) to obtain

/T/ ©on(P — pdivu) pdadt
0 Ja .

:,u/o /szVanA[p]dxdt—/o /91/)PV77A[,0]dxdt
—/OT/pru@)anA[p]dajdt—/OT/§2¢tnpuA[p]dxdt
+u/OT/Qwanpdxdt—,u/OT/QwanVA[p]dazdt
+ / ' / vu(pR[pu] — puR|p|)dzdt

o Jo

— A/OT/Q (Vd ®Vd - (%\Vdﬁ + F(d))Ig) YVnAlp|dadt

— A/OT/Q (Vd ®Vd - (%|Vd|2 + F(d))lg) YnV Alpldxdt.
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For the related terms of p., u., following the same line in [18] we can show that these terms in
(2.4.12) converge to their counterparts in (2.4.13). It remains to handle the terms related to d.
in (2.4.12). By virtue of the classical Mikhlin multiplier theorem (see [18]), we have

VAlp] = VAlp] in C([0,T]; L7 (Q)) ase— 0, (2.4.14)

weak

and

Alp:] = Alp) in C((0,T) x 2)) as e — 0. (2.4.15)

Since

/ |IVd. ® Vd.Alp.] — Vd ® VdA[p]| dz

Q

< [ IVA.P Al - Alplldo + [ V4] 9. - V[ Alp]do (2.4.16)
Q Q

+ [ 19, - vl ds
Q
using Holder’s inequality to (2.4.16), by (2.4.14), (2.4.15), and (2.4.5¢) we have
T T
/ /(Vde © Vd.)yYVnA|p:|dxdt — / /(Vd © VA)YVnAlpldzdt ase— 0.
0o Ja 0o Ja
Similarly,
T T
/ /(§‘Vd€|213)1/}v7714[p5]d$dt —>/ /(§]Vd|2lg)wV77A[p]dxdt as e — 0.
0o Ja 0o Ja

Using the strong convergence of F(d.), we conclude that,

T
)\/0 /Q (Vd8 GO Vd, — (%\Vd€|2 + F(dg))fg)) WV Alpeldzdt

T 1 ,
— )\/ / (Vd O Vd — (z|Vd|* + F(d))13)> YVnAlpldedt ase— 0.
o Ja 2

And similarly,

T
y (Vds@ws—<§st|2+F<dg>>fg>) onV Alp.Jdudt

T 1 )
A / / (Vd o vd - (L|vd] + F(d))lg)) oV A[pldzdt  as e — 0.
o Ja 2
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So we deduce that

T
lim / / Un(pd + 0p° — pdivu,) podxdt
0o Ja

e—0t

T
= / / Yn(P — pdiva)pdzdt  for any v € D(0,T), n € D(RQ),
o Jo

where P = p7 + 6p°. The proof of Lemma 2.4.2 is complete.

From Lemma 2.4.2, we have

T L 1T S
/ / pdivu — pdivudzdt < —/ /(Pp — ap"tt + §pBth)dadt.
0 JQ HJo Ja

By(2.4.11) and (2.4.17), we deduce that

- 1 [T _ -
| 7108 - plogo)ro < [ [ (o~ a5
Q 0 Q

and

Pp — p’Y+1 +5p,3+1 S 0

due to the convexity of p” + dp®. So

/Q plog(p) — plog(p)(t)dz < 0.

On the other hand,
plog(p) — plog(p) > 0.

Consequently plog(p) = plog(p) that means
pe — pin L*((0,T) x ).

Thus, we can pass to the limit as ¢ — 0 to obtain the following result:
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Proposition 2.4.1. Assume Q C R? is a bounded domain of class C?>T7 9 > 0. let 6 > 0, and

B > max {4, 2761 3}

be fixed. Then, for any given T > 0, there exists a finite energy weak solution (p,u,d) of the

problem:
pr + div(pu) =0, (2.4.18a)
(pu); + div(pu @ u) + V(p” + 6p”)
= pAu — Mdiv <Vd ®Vd - (%lVdF + F(d))lg) , (2.4.18b)
d;+u-Vd=Ad - f(d) (2.4.18¢)

with the boundary condition ulgg = 0, d|ag = do and initial condition (1.1.2). Moreover,
p € LPHL((0,T) x Q) and the equation (2.4.18a) holds in the sense of renormalized solutions on
D'((0,T) xR?) provided p,u were prolonged to be zero on R*\ Q. Furthermore, (p,u,d) satisfies

the following uniform estimates:

sup. 1)1y < CEs[po, mo, do], (2.4.19)
tel0,T
& sup || p(t) ) < CEslpo, mo, do], (2.4.20)
te[0,7
SUP IV p(t)u(t HL?(Q < CEjs[po, my, dol, (2.4.21)
Hu< )HLQ(OT] I"I1 < CE&[p07m0>d0] (2422)
sup [[Vd|l72q) < CEslpo, mg, do], (2.4.23)
t€[0,T)
Il z2(to,71:22(02)) < CEspo, mo, do], (2.4.24)

where C' s independent of 0 > 0 and

1 |mgs|? 1 ) A
Es[po, my, do] :/ (5‘ pzj’ + - 103,5+ mpﬁ,ﬁ §|VdO|2 +/\F(d0)) dx.
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Remark 2.4.1. Recalling the modified initial data (2.3.3)-(2.3.6), we conclude that the modi-
fied energy Es[po, mg,dy] is bounded, and consequently the estimates in Proposition 2.4.1 hold
independently of §.

2.5 PASSING TO THE LIMIT IN THE ARTIFICIAL PRESSURE TERM

The objective of this section is to recover the original system by vanishing the artificial pressure
term. Again in this part the crucial issue is to recover the strong convergence for ps in L' space.
2.5.1 Better estimate of density

Let us begin with a renormalized continuity equation
b(ps)e + div(b(ps)us) + (V' (ps)ps — b(ps))divas = 0 in D'((0,T) x R?)
for any uniformly bounded function b € C'[0,00). We can regularize the above equation as
O1Sm[b(p)] + div(Sm[b(p)]u) + S [(V (p)p — b(p))divu] = g, on (0,T) x R?, (2.5.1)
where S,,(v) denotes a spatial convolution with a family of regularizing kernels, and
gm — 0 in L*(0,T; L*(R?)) as m — oo,

provided b is uniformly bounded (see details in [18]).

We use the operator B to construct multipliers of the form

1

p(t, ) = () B[Sm[b(ps)] — 1l J; Smlb(ps)lda], € D(0,T), 0<¢ <1,

where the operator B was defined in Section 2.4. Taking b(ps) = p, using (2.5.1) and (2.4.19),

with o small enough, we see that
(e 1 g
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is in the space C([0,T]; LP(R2)) for any finite p > 1. By (2.4.1) and the embedding theorem, we
have p(t,x) € C([0,T] x ). Consequently, ¢(t,z) can be used as a test function for (2.4.18b),

then one arrives at the following formula:

/ /1/1 Py + 0p3) Smlpgdudt
:/0 b(t) (/(,05+5p5)d:1: ’Q’/S P d:z:) dt
[ [emmBisui - gy [ Sulspasiaaa

T
1
" /0 /Q (Vs = pras 95) VBLS, ] - o /Q §,. 5| delddt
T
—I—/ /¢p5U5B[Sm(p§—0p§)divu—ﬁ/Sm[(pg—apg)diVU5]dx]dxdt
/ /wpgu[;B[de [(p(;u(;)]]da:dt—l—/ /z/Jp(;u(;B[ |%’/qudm]dﬂ:dt

2 o 1 o
T\ / / (Vd5®Vd5 (51Vds +F(d5))]3> VIS~ 7 /Q Sonlpg)da]dudt

1
= E I@-+/ /wpéuéB[Qm_ﬁ/dex]dxdt-
i=1 0 JQ | | Q

Noting that ¢, — 0 in L?(0,T; L*(R?)) as m — oo, we can pass to the limit for m — oo in the

above equality to get the following:

6
/ /w (0377 + 0p5 *7)dwdt <> |1i|.
i=1

Now, we can estimate the integrals I; — I as follows.

(1) We see that .
n= [ oo ([t + oidany [ Sutoipie) i

is bounded uniformly in ¢ provided o < v by (2.4.19) and (2.4.20).
(2) As for the second term, by (2.4.19), (2.4.21), (2.4.22) and together with the embedding
WhP(Q) < L>(Q) for p > 3, we have

T 1

[ wossnisan - - | sm<p:;>dx1dxdt\
o o a Jo

T

0

o] =
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provided o < 3

(3) Similarly, for the third term, we have

|I3] =

WMMrmw®mWﬂ&M®T%A&W®MMﬂ

<C
if we choose o < 7

(4) For I, by Holder inequality, we have

14| =

1
/ Ypsus B[S — opF)divu — 9] / Sm(p§ — apf;’)divuﬂx]dxdt‘
Q

sc/nmmmmmmmw%MWMQw
0

where
Gy _ Oy
v -6 1T 7y—6
If we choose 0 < 2 — 1, and use (2.4.19), (2.4.20) and (2.4.22), we conclude that I, is uniformly
bounded.

p:

(5) Using the embedding inequality, we have

T
|I5| = / Ypsus BldivS,, (pfus)|dzdt
Q

T
< [ sl slos st
0

T
<C [ lodluslos ol ot

where r = T If we choose o < %“’ — 1, and use (2.4.19), (2.4.20) and (2.4.22), then I5 is
bounded.

(6) Finally, we estimate term Ig, let 0 < 7, then

’16
' / / (Vda@Vdg (1|Vd5|2+F(d5))13) VB[Sm(pg')—ﬁ/QSm(pg)dx]dxdt‘

<c/|wmwm|wm n05) - m/ﬂ (03)d]], 5 gt

<C,
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where we used the smoothness of F, (2.4.1), (2.4.19), (2.4.20) and
Vds € L5 ((0,T) x Q).

All those above estimates together yield the following lemma:

Lemma 2.5.1. Let v > % There exists o > 0 depending only on vy, such that

P17+ 6p2% is bounded in L*((0,T) x Q).

2.5.2 The limit passage

By virtue of the estimates in Proposition 2.4.1 and Remark 2.4.1, we can assume that, up to a

subsequence if necessary,

ps — pin C([0,T], Ly, (2)), (2.5.2)
u; — u weakly in L*([0, T]; Hg(2)), (2.5.3)
ds — d weakly in L*([0, T]; H*(2)) N L>=([0, T; H'(Q)). (2.5.4)
ds; — d strongly in L*(0,T; H'(Q2)), (2.5.5)
Vds; — Vd weakly in L3 ((0,T) x ), (2.5.6)
Ads — f(d;) — Ad — f(d) weakly in L*(0,T; L*(Q)), (2.5.7)
F(ds) — F(d) strongly in L*(0,T; H'(Q)). (2.5.8)
Letting 6 — 0, we have,
py — p? weakly in L*((0,T) x (£2)), (2.5.9)
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subject to a subsequence.

From (2.5.5) and (2.5.8), we have, as § — 0,

1
Vd; ® Vd;s — (§|Vd5|2 + F(ds)) I3

| (2.5.10)
—Vdo Vvd - (§de\2 + F(d)I; inD(Qx(0,T)),
and

u;-Vds »u-vd in D'(Qx (0,7)), (2.5.11)

as 0 — 0.

On the other hand, by virtue of (2.4.18b), (2.4.19)-(2.4.22), we obtain
2y

psus — puin C([0,T); L)F, (2)). (2.5.12)

Similarly, we have, as 6 — 0,
ds; —d in C([0,T); L2 ().
By Lemma 2.5.1, we get
5ps = 0in L'((0,T) x Q) as § — 0.

Thus, the limit of (p, pu,d) satisfies the initial and boundary conditions of (1.1.2) and (1.1.3).
Since v > 3, (2.5.3) and (2.5.12) combined with the compactness of H*(2) < L*(2) imply,
as 0 — 0,

pslis @ Uz — pu @ u in D'((0,T) x Q).

Consequently, letting 6 — 0 in (2.4.18) and making use of (2.5.2)-(2.5.12), the limit of (ps, us, ds)

satisfies the following system:

pe +div(pu) =0, (2.5.13a)
_ 1
(pu); + div(pu ® u) + Vo7 = pAu — Adiv (Vd ©Vd - (§|Vd|2 + F(d))]g) (2.5.13Db)

d; +u-Vvd = Ad — f(d) (2.5.13c)
in D'(Q x (0,T)).
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2.5.3 The strong convergence of density

In order to complete the proof of Theorem 2.1.1, we still need to show the strong convergence of
ps in L1(Q), or, equivalently p7 = p7.

Since p;, u; is a renormalized solution of the equation (2.5.13a) in D'((0,T) x R?), we have
Ti(ps)e + div(Te(psus)) + (Ti(ps)ps — Ti(ps))div(us) = 0 in D'((0,T) x R),
where T(2) = kT'() for z€ R, k=1,2,3--- and T' € C*(R) is chosen so that
T(z)=zforz<1, T(z)=2forz>3, T convex.

Passing to the limit for 6 — 0 we deduce that

OT(p) + div(T(p))w) + (Th(p)p — Tu(p))divu =0 in D'((0,T) x R?)),

where

Ty(p8)ps — Te(ps)divus — (T;.(p)p — Ti(p))divu  weakly in L*((0,7) x ),

and

Ti(ps) = Ti(p) in C([0,T; LY . (2)) for all 1 < p < oc.

weak

Using the function

o(t, z) = p()n(x)Ai[Ti(ps)], ¢ € D[0,T], ne D),
as a test function for (2.4.18b), by a similar calculation to the previous sections, we can deduce

the following result:

Lemma 2.5.2. Let (ps,us) be the sequence of approximate solutions constructed in Proposition

2.4.1, then

T T
iy [ [ wnly — ptives) Telpnydodt = [ [ on@ - pdiva T dat
=0Jo Ja 0o Jao

for any 1» € D(0,T),n € D(Q).

35



In order to get the strong convergence of ps, we need to define the oscillation defect measure

as follows:

T
OSCyi1(ps — p)]((0,T) x Q) = sup lim Sup/ / T (ps) — Ti(p)) " T dadt.
0

E>1 6—0

Here we state a lemma about the oscillation defect measure:

Lemma 2.5.3. There exists a constant C' independent of k such that
OSC,1lps — p]((0,T) x Q) < C
for any k > 1.

Proof. Following the line of argument presented in [18], and by Lemma 2.5.2, we obtain

6—0

0SC1lps = p((0,T) x Q) < lim / / divu Ty (ps) — divaTa(p)dadt.

On the other hand,

T —
lim / / divusTy(ps) — divuTy(p)dxdt
Q

6—0 Jq
T —
= lim/ (Tx(ps) — Tr(p) + Tk(p) — Tr(p))divusdzdt
0o Ja
< QSI;p IV sl 20,1y x e lim sup | Ti(ps) = Ti(p)ll 2201y x0)-

So we can conclude the Lemma. OJ

We are now ready to show the strong convergence of the density. To this end, we introduce

a sequence of functions Ly, € C*(R) :

zinz, 0<z<k
Li(z) =

zln(k —I—ZfZT" ds, z>k.

82
Noting that L; can be written as

where by, satisfy (2.1.6), we deduce that
8th(p5) + diV(Lk(p(S)u(s) + Tk(pg)divu(; =0, (2.5.14)

36



and

O Li.(p) + div(Li(p)u) + Ti(p)divu = 0 (2.5.15)

in D'((0,T) x Q). Letting § — 0, we can assume that

Li(ps) = Li(p) in C([0, TT; Ly (2))-

weak

Taking the difference of (2.5.14) and (2.5.15), and integrating with respect to time ¢, we obtain
[ alon) = Latp)os
T
_ / / ((Lups)us — Lelp)u) - V6 + (Tulp)diva — Ty (ps)divus)o ),
o Jo
for any ¢ € D(Q2). Following the line of argument in [18], we get

[ (B0 - 10) (e

T T
:/ /Tk(p)divuda:dt— lim/ /Tk(pg)divugd.rdt.
0o Ja =0t Jo Ja

We observe that the term Ly(p) — Li(p) is bounded by its definition. Using Lemma 2.5.3 and

(2.5.16)

the monotonicity of the pressure, we can estimate the right-hand side of (2.5.16):

T T
/ / Ty (p)divudzdt — lim / / Ty (ps)divusdadt
0o Ja =0t Jo Ja

$ (2.5.17)
< /O /Q (Ti(p) — Ti(p))divudzdt.

By virtue of Lemma 2.5.3, the right-hand side of (2.5.17) tends to zero as k — co. So we conclude
that

plog(p)(t) = plog(p)(t)

as k — 0o. Thus we obtain the strong convergence of ps in L((0,T) x ).

Therefore we complete the proof of Theorem 2.1.1.
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3.0 INCOMPRESSIBLE FLUID-PARTICLE FLOWS

On physical grounds, the motivation of our study of the incompressible fluid-particle flow is of
primary importance in the modeling of sprays. There are many relevant applications, such as
combustion theory, pollutant transport, and many more. The flow of the continuous phase is
modeled by the forced Navier-Stokes equations, and the flow of the particles is governed by the
kinetic equation. The fluid-particle interactions are described by a friction force exerted from the
fluid onto the particles. From the mathematical viewpoint, it is challenging because the systems
always couple nonlinear evolution equations for unknowns that depend on the different sets of
variables, that is, one of the unknowns, f, depends on more variables than the other, #. There
are many mathematical works regarding the Vlasov-Poisson or Vlasov-Maxwell system. Recently
other complicated couplings have received more attention. One typical example is the Navier-
Stokes-Vlasov system. We aim to establish the existence of weak solutions to the incompressible
Navier-Stokes-Vlasov equations in three dimensions and the uniqueness in two dimensions.

we proved the existence of global weak solutions in three dimensions and the uniqueness in
two dimensions with certain boundary conditions (no-slip is imposed for the velocity of the fluid,
and specular reflection for the particles subject to the Vlasov equation). The global existence
was constructed by the Galerkin methods, fixed point arguments, and convergence analysis with
the large initial data. The uniqueness was established by the classical theory of Stokes equations
and a bootstrap argument. In [58], the global well-posedness to the Cauchy problem of the
two dimensional incompressible Navier-Stokes-Vlasov equations was established. We set up an
iteration for the velocity of fluid and the distribution function of the particles using a character-
istic method and semigroup analysis. Higher regularity can be obtained by the energy method.
Applying the a priori estimates, we can show that the iteration has a fixed point on a small

time interval. Finally, the global well-posedness of classical solutions follows from the bootstrap
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argument.

3.1 A PRIORI ESTIMATES AND MAIN RESULTS

Here we define the energy functional of the particles density:

F(f) ;:/Q [ v dv e,

If u = constant, F'(f)is an energy functional to the third equation in (1.2.1). When u # constant,

we will have the following energy inequality, more precisely:

Lemma 3.1.1. The system (1.2.1) has an energy functional:

1
E(t) := (/ 5|u|2dyc+ F(f)) ().
Q
If d=2,3 and (u, f) is a smooth solution to system (1.2.1) such that

uc L>®0,T; L*(Q)) N L*(0,T; Hy(2)); (3.1.1)

F(L+|v[?) € L=(0,T; L'(2 x RY)), (3.1.2)

then, for allt < T, we have:

d 2 2
%E(t) = — </Q |Vul dx—l—/Q/Rd flu—v| dvd:c) <0. (3.1.3)

Proof. Multiplying by u the both sides of the first equation in (1.2.1), and integrating over €

and by parts, we have

d

1
— [ Z|ufdx +/ |Vul® do = —/ f(u—v)-udvdz. (3.1.4)
dt (9} 2 9} Q JRA

Multiplying by (1 + %|V|2) the both sides of the third equation in (1.2.1), integrating over €2, and

using integration by parts, one obtains that

%F(f)(t)%—/Q Rdf|u—v]2dvd:c:/g » (u—v)- udvdz. (3.1.5)

Using (3.1.4)-(3.1.5), one obtains (3.1.3), and (3.1.1)-(3.1.2) are the consequences of (3.1.3).

The proof is complete.
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In what follows, we denote

my f :/ Iv|*fdv, and M,f = / / \v|*f dvdz.
Rd Q JRrd
Clearly,
Mif = [ s da
Q
Here we state the following lemmas which are due to [26]:

Lemma 3.1.2. Suppose that (u, f) is a smooth solution to (1.2.1). If fo € LP for any p > 1, we
have

£t 2V < e\ follze, for anyt >0;

and if [v|*fo € LY(Q x RY), then we have

1 d+k
d+k
/ \v|*fdvde < C(d,T) ((/ Iv|* fo dvda:) + ([l follze + 1)[Ju LT(O’T;LdM))
QxRd QOxR4

for all o <t < T where the constant C(d,T") > 0 depends only on d and T.

Lemma 3.1.3. Under hypotheses of Lemma 3.1.2 and d = 3, the density mof and the mean

velocity my f have the following estimates for all 0 <t < T,

Imofll2@) < C(L+ || foll Loo (om0 (2xR3) ) A”

[mafll sz < C(1+ ||f0||L°°(0,T;L°°(Q><]R3))A47

where A = (fQ f]R3 |V‘3f0 dIEdV)% + (||fOHLoo(O7T;Loo(QXR3)) + 1)”11”[12(0771;L6(Q)).
Remark 3.1.1. Similar estimates hold in the two dimensional space.

Our main result reads as follows.

Theorem 3.1.1. Ford = 2,3, if Ey < 0o, msfy < 00, and fy € L=(Q x R} NLY(Q x R3), then
there is a weak solution (u, f) to the system (1.2.1) with the initial data (1.2.2) and boundary
condition (1.2.3) for any T > 0.

The weak solution to system (1.2.1)-(1.2.3) is defined as follows.

Definition 3.1.1. A pair (u, f) is called a weak solution to the system (1.2.1)-(1.2.3) in the

sense of distribution if
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e uc L>(0,T; L*) N L*0,T; Hy);

o f(t,z,v) >0, for any (t,7,v) € (0,T) x Q x R¢;
o f € L®0,T; L>®(Q x RY) N LYQ x RY));

o fIv|? € L>(0,T; LY(Q x RY));

e for all ¢ € C*°([0,00) x ) with dive = 0 we have

/ /(—ugpt +u-Vup+ Vu- Vy)dzdt
o Ja

:—/ / f(u—v)-godxdvds+/u0-g0(0,x)da:;
0 QxR Q

o for all ¢ € C*([0,00) x Q x RY) with compact support in v, such that ¢(T,z,v) = 0, we

have

T

[ [ g6y Vs a ) Veg)deavar
0 Jaxrd

:/ foo(0,z,v) dzdv.
QxR

e the energy inequality

1
/—]u[2 dx—l—// f(1+ |v]?) dxdv
02 o Jre
T T
+/ /]Vu\zda;dt—l—/ / flu—v|*dvdzdt
o Ja 0 Jaxrd
1
g/—]u()]z de’—i—// fo(1+ |v]?) do
a2 Q Jrd

holds for ¢ € [0,7] a.e.

In the two dimensional space, we can obtain more regularity and the uniqueness of global

weak solution. More precisely, we have:

Theorem 3.1.2. If uy € H'(Q), fo € L®(Q x R?) N LY(Q x R?), and [o, |v|°fodv < oo,
there exists a unique global solution (u, f) to the system (1.2.1) with the initial data (1.2.2) and
boundary condition (1.2.3), such that

we 0.7 H@) 0 O(0, T (@), e 12((0.7) % ),

f € C(0,T); L>=(Q x R?))
for any T > 0.
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3.2 THE EXISTENCE OF WEAK SOLUTIONS

The goal of this section is to show the existence of global weak solutions to (1.2.1) with initial
data (1.2.2) and boundary condition (1.2.3). The key idea is to construct an approximation
scheme, establish its existence for the global weak solutions, and pass to the limit for recovering
the original system. In this section, we shall prove our main result Theorem 3.1.1 in the case

d = 3. All arguments do work in the case d = 2.

3.2.1 Approximation Scheme

We regularize the equations (1.2.1) and construct a solution of the regularized system of equa-
tions. We view the first two equations in (1.2.1) as Navier-Stokes equations with a source term
Jgs(u—=v)fdv. The key idea is to control [ps(u—v)fdvin L*((0,T) x ) so that we can solve
the Navier-Stokes equations directly. For that purpose, we follow the spirit in [45] to modify the

Vlasov equation by truncating the velocity field u: we consider
Of +v-Vuf +divy ((xa(u) —v)f) =0 (3.2.1)

where
xXa(u) = ulju<ny-

To preserve the similar energy inequality, we need to modify Navier-Stokes equations accordingly.

This can be done by substituting the right hand side of the first equation in (1.2.1) by

—/Xu—ﬂfﬁhmqk
RS

To establish the global weak solutions, we find a modified Galerkin method particularly
convenient. We define the space H as the closure of the space C5°(2,R?) N {u : divu = 0} in
L*(Q,R?). We let {¢;}:2, be an orthogonal basis of the functional space H and such that

A¢; + VP = —e;¢; in (Q,
¢; =0 on 0N

42



for i = 1,2,3.... Here 0 < e; < ey <e3 < ... < e, < ..with e, — 00 as n — 00. Define

P, : H— H,, = span{¢y, ¢9, ..., o} as the orthogonal projection. We propose the following

regularized Navier-Stokes equations
8tum = Pm (Aum — Wy - Vum — / (ﬁ — V)fm dV1{|ﬁ|§)\}> s
R3

u,(x,t) € H,,, and divu,, =0.

Thus the approximation scheme for the Navier-Stokes-Vlasov equations (1.2.1) is given by the

following system

o, = Py, (Au,, —u,, - Vu,,, — G, ,
u,(z,t) € H,, and divu,, =0. (3.2.2)
Ofm + V- Vg fr + dive ((xa(@) — v) f1n) = 0,
with the initial data,
Up|i=0 = P, Jmli=0 = fo,
where
G = /R3(f1 — V) frm dV1{a<n
and
u is given in L*(0,T; L*(2)).

The rest of this subsection is devoted to show the global existence to (3.2.2) with its initial
data. For given u, we can get enough regularity of — fR3(ﬁ — V) fdvlg<x to solve the modified
Navier-Stokes equations.

Indeed, we have

xa() € L2((0,T) x Q),

due to

u € L*(0,T; L*(2)).
Considering the following equation

atf +v- va:f + lev((X)\(ﬁ) - V)f) = 0;
f(z,v,0) = folx,v), f(t,x,v)= f(t,x,v*) for z € 9Q, v-v(r) <D0,
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where v* = v — 2(v - v(z))v(x), the existence and uniqueness of the solution can be obtained as

in [3, 12, 26].

Applying the maximal principle to the above equation, we have
1t 2, v)[le < C(T)| foll e, for any p > 1.

Thanks to Lemma 3.1.2,
xa(a) € L=((0,T) x ),

// \v|° fo dvdx < +o0,
o Jr3
// v’ fdvdr < +oo.
Q JR3

This, together with Lemma 1 in [4], yields

and

we have

fdv € L*(0,T; L*(%)), and / vfdv € L*(0,T; L*(Q)).

R3 R3

By (3.2.4), we get, for all ¢ > 0, that G,,, € L*(0,T; L*(Q)).

For each m we define an approximate solution u,, of (3.2.2) as follows:

U, = Z gim(t)@(x)v

and hence (3.2.2) is equivalent to

dg;,(t)

The initial data becomes
3" 1, (0)¢i(x) = Pruola),
i=1

which is equivalent to saying that
g- (0) = (ug, ¢;) fori=1,2,3,..,m.
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So the system (3.2.5) with its initial data (3.2.6) can be viewed as an ordinary differential
equations in L? verifying the conditions of the Cauchy-Lipschitz theorem. Thus it admits a
unique maximal solution

u,, € CY([0,T,]; L*(2)).

It is easy to find the energy inequality to regularize Navier-Stokes equations as follows

t t
/|um|2dx+2/ /\Vum|2dxdt§/|um0|2dx+/ /Gmumdxdt,
Q 0 Q Q 0 Q

which, together with G,, € L*(0, T; L*(2)), allows us to take T}, = T.

We define an operator
S L*(0,T) x Q)+ L*((0,T) x Q)
u— Uu,,.

Here we need to rely on the following lemma:

Lemma 3.2.1. The operator S has a fived point in L*((0,T) x Q), that is, there is a point
u,, € L*((0,T) x Q) such that Su,, = u,,.

Proof. Multiplying by u,, the both sides of (3.2.2), and using integration by parts, one obtains
that

d 1
d_ —|um|2d:v+/|vum|2dx§/ (/ (ﬁ_V)fde1{ﬁ|<)\}> umdx. (327)
tJa2 Q o \Jrs

Considering the force term of the modified Navier-Stokes equations, we have

[ @y dvde < (1 [ vavio e ] [ favie? + e
R R

QOxR3

This, together with (3.2.7), implies that

1
8t/—|um|2dx+/]Vum|2dx§/ lu,,|2dz + C(m).
a2 Q R3

By Gronwall’s inequality, we have

sup /|um|2dx§0(m),
) JQ

te(0,T
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which means that
1Sl 20,712 () < C(m). (3.2.8)
By the first equation in (3.2.2), one obtains that
||8t5ﬁm||L2(o,T;Hgl(Q)) < C(m). (3.2.9)

By (3.2.8) and (3.2.9), we conclude that the operator S is compact in L?(0,T; L*(€2)) and the
image of the operator S is bounded in L?(0,7;2). So Schauder’s fixed point theorem will give
us that the operator S has a fixed point u,, in L?(0,T; ). ]

Applying Lemma 3.2.1, for any T' > 0, there exists a solution (u,,, f,,) to the following system

o, = P, (Aum —u,, - Vu,, — / (W, — V) fin dv1{|um9}) ,
R3
U, (z,t) € H,, and divu,, =0. (3.2.10)
8tfm +v- V:cfm + diVV((XA(um) - V)fm> = O’
with its initial data

u,(0,z) = Ppug, f(0,2,v) = fo(z,v),

and boundary conditions
Upnloo =0, and f(t,z,v) = f(t,z,v") forany z € 9Q, v-v(zr) <O.

Concerning the system (3.2.10) with the initial-boundary data, we have the following energy

inequality

1
/ ~|u,,[*dx +/ fn(1 4 |v|?) dvdz
a2 QOxR3
T T
+/ /|Vum]2da:dt+/ / Flxa () — v|? dvdadt (3.2.11)
0 Q 0 QxR3
1
< [ShuPdrs [ s vPavs
Q2 OxR3

due to the fact

/ (um - V)fml{\um|§)\}um dvdr = / X)x(um)(X/\(um) - V)fm drdv.
OxR3

QOxR3

Then we have the following result:
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Proposition 3.2.1. For any T > 0, there is a weak solution (u™, f™) to the following system

o, = P, (Aum —u,, - Vu,, — / (W, — V) [ dv1{|um§,\}) ,
R3

u,(z,t) € H,, and diva,, =0.

atfm +v- vxfm + divv((X)\(um) - V)fm) = 07

with its initial data

and boundary conditions
Upnloa =0, and f(t,z,v) = f(t,z,v") for any x € 9Q, v-v(zx)<O0.

In additional, the solution satisfies the following energy inequality:

1
/ —|u,,|? dz —|—/ fn(1 4 |v]?) dvdz
Q 2 QxR3

T T
+/ /|Vum|2dxdt—|—/ / Fmha () — v|? dvdadt
0 Q 0 QxR3

1
S/—|uo|2dx+/ fo(L + [v[?) dv dz,
Q 2 QxR3

3.2.2 Passing to the Limit as m — oo

In this section, we will pass the limit as m goes to infinity in the family of approximate solutions
(u™, f™) obtained in Proposition 3.2.1. The estimates in Proposition 3.2.1 are independent of

m, A\, and those estimates still hold for any m. By (3.2.3), we have
1f™ | o (0,130 (2xR3)) < C
for all 1 < p < oo. Proposition 3.2.1 yields the following estimates

[0 Lo (0, 22(0)) < C,

||Vum||L2(07T;L2(Q)) S C

From the above a priori estimates, we conclude that there exists a function f such that
f™— f weak star in L>(0,T; LP(2 x R?))
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for all p € (1, 00).
This weak convergence cannot provide us enough information for passing the limit. For our

purpose, we rely on the following average compactness results for the Vlasov equation due to

DiPerna-Lions-Meyer [14]:

Lemma 3.2.2.

afr

T +v - Vo f" =divy (F"f") in D'(R? +R3 x (0, 00))

where f™ is bounded in L>(0, 00; L2 , (L , (14|v]?)), £ 1+\V| is bounded in L>((0, 00) xR3; L*(R3)).
Then [gs (V) dv is relatively compact in L4(0,T; LP(Bg)) for all R,T < 00, 1 < ¢ < 00,1 <

p < 2 and for n such that €L+ L>® 0€l0,2).

(1+| (vl
Remark 3.2.1. Tt is crucial to use this lemma to get the strong convergence of mg f™ and mq f".

Let mqof and mq f be the density and mean velocity associate with f. Applying Lemma 3.2.2
to the Vlasov equation of (3.2.2), one obtains that

mof"(t,x) = mof(t,x), myfm(t,z) = mif(t,x) (3.2.12)

in L9(0,T; LP(Bg)) for any positive number R and 1 < ¢ < 00,1 < p < 2.
Noticing that the right side of Navier-Stokes equations (3.2.2)

/Q(um — V) [ dv1{um<xy

is bounded in L>(0,T; L?(Q2)) when X is fixed, one obtains that
||3tu”||L2(07T;H71) < C < 0. (3213)

By (3.2.11)-(3.2.13), applying the Aubin-Lions Lemma, (see [52]), there exist au € L>(0,T; L?)N
L*(0,T; H}), such that

u™ — u weak star in L°(0,7;L?) and u™ — uin L*(0,T; Hy)
(3.2.14)
u™ — u strongly in L*(0,T; Hy ).

The next step is to show the convergence of ( fRB J™dv)u™1lgum|<xy in the sense of distributions.
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Note that Vu™ is bounded in L*(0,7, L*(2)) and (3.2.12), we have

(/ fm dv) u”lgum<ay — (/ f dV) ulfjuj<n
R3 R3

in the sense of distributions. Therefore,

(/R Iz dv) ) - (é fdv) ()

in the sense of distributions. Applying these convergence results, one concludes that (u, f) is a

weak solution to the following system

du+u-Vu+Vp—Au=— / (U —v)f dvilu<n,

R3
N (3.2.15)
oS +v-Vuf +dive((xa(u) = v)f) =0

with its initial data
u(0,2) = up(x), f(0,z,v)= f(0,z,v),
and boundary conditions

ulpgo =0, and f(t,z,v)= f(t,z,v") for x € 09Q, v -v(z)<D0.

Next, we show that this solution satisfies a particular energy inequality.

Because the solution (u™, f™) satisfies the energy inequality in Proposition 3.2.1, we have

1
/ —|u™|?dx + / ™1+ |v|]?) dv dx
0?2 QOxR3

T T
—i—/ /]VumIdedt—i—/ / o™ — v|*dv dx dt
o Jo 0 Jaxrs

1
§/—|u0]2daj—1—/ fo(1+ |v[?) dv dz.
a2 QxRS

The difficulty of passing the limit for the energy inequality is the convergence of the term

fOT Jaums fxa(u™) — v|* dv dx dt. Here we write the term as:

T
/ / (™) — v|? dv dz dt
0 Joxr3

! (3.2.16)
= A /Q - (fm|X)\(um)|2 _ 2me)\(um)V + fm|V|2) dedvdt.
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By (3.2.14), we have
a(w,) = xa(u) in L*(0,T; L5(Q)). (3.2.17)

Let us look at

™ xa(u™)|? dvdxdt — / / flxa(u )|2dvda:dt‘
OxR3 QOxR3

/ ([ =nav)oepaas [ [ ([ sav) o - owr) i

(3.2.18)

Applying (3.2.12) and (3.2.17) to (3.2.18), we deduce that

T T
/ / (™)) dvdzdt — / / flhx(u)|? dvdadt
0 QxR3 0 QxR3

as m — oo. Similarly,
T T
/ / vy (u™) dvdzdt — / / vxa(u) dvdxdt
0 JOxR3 0 JOxR3

Finally, because

for all ¢t > 0.

fm=1f weak star in L>®(0, T; LP(Q x R?))
for all p € (1, 00] and myf™ is bounded in L>(0,T; L'(Q2)), then for any fixed R > 0, we have

T T
1

/ / fmv|? dedvdt = / / x(|v| < R)|v|*f™ dzdvdt + O(=)
0 QxR3 0 QxR3 R

uniformly in m, where Yy is the characteristic function of the ball of R? of radius R.

Letting m — oo, then R — oo, we find

T T
/ / fv|? dedvdt —>/ / fIv]? dzdvdt.
0 QxR3 0 QxR3

Thus, we have proved

T T
/ / M xa(u™) — v[*dv dx dt — / / fha(u) = v|* dv dx dt (3.2.19)
0 QxR3 0 QxR3

as m — Q.
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Letting m go to infinity, using the convexity of the energy, the weak convergence of f™ and

u™, and (3.2.19), we deduce

/ |u|2d:1:+/ F(1+ [v[2) dvda
QxR3
/ /|Vu\2da:dt+/ / fxa(u) = v|*dv dz dt
QOxR3

§/—|u0]2dx+/ fo(1+ |v[?) dv dz.
Q2 QxRS

Thus, we have proved the following result:

Proposition 3.2.2. For any T > 0, there is a weak solution (u’, fA) to (3.2.15) with the initial
data

u*(0,7) = ug(x), f2(0,2,v) = fo(z,v),

and boundary condition
uMag =0, and fAt,x,v) = fA(t,x,v*) for x€0Q, v v(x)<O0.

In additional, the solution satisfies the following energy inequality:

/ |uA\2dx—|—/ A4 |v|*)dvdx
QxR3
/ /|Vu’\2dxdt—l-/ / Sf)‘|x)\ ) — v|*dv dz dt
QxR

§/—|u0|2dx+/ Foll+ [v[2) dv da.
92 QxR3
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3.2.3 Passing the limit as A\ - o

The last step of showing the global weak solution is to pass the limit as A goes to infinity. First,
we let (u?, f}) be a solution constructed by Proposition 3.2.2. It is easy to find that all estimates
for (u™, f™) still hold for (u?, f*). So we can treat these terms as before.

It only remains to show that we can pass the limit in the coupling terms y,(u*)f* and

Jes 1 dv1iguna} = [zs frdvxa(u). Here, we treat these terms as follows

/3 f’\u>‘ dV1{|uA|S>\} = /3 f’\u)‘ dv — /3 f’\u)‘ dV1{|u/\|>)\}, (3220)
R R R

and for the second term in (3.2.20),

| /Rg Aot dvipesaylleore)

<[ fravleorzzolulzzoms @)l lge sl 2o m)
R (3.2.21)
0| L2020 )

A

< /3 FAAV|| oo o2 10| 220728 ) (
R

C
<~ 0
<5

as A — 0o, where we used Sobolev embedding theorem.

On the other hand, we have

o[ frdv)+ divm(/ vfrdv) =0,

R3 R3

which implies that 9,( [, f* dv) is bounded in L?(0,T; H~'). This, with the help of Vu* bounded
in L2((0,T) x ), yields that

u’\</R3fAdv)—>u(/RSfdv) as A — 00 (3.2.22)

in the sense of distributions.

By (3.2.20)-(3.2.22), one deduces that

u’ (/ 2 dv1{|ux|<,\}> —u (/ fdv) as A — 00
R3 - R3
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in the sense of distributions. Thus we can pass the limit in the weak solutions of (1.2.1) as
A — oo. We remark that the solution (u*, f}) satisfies the energy inequality in Proposition

3.2.2:

1
/ ~|u* dx +/ A+ v} dvde
Q 2 QxR3

T T
+/ /|Vuk|2dxdt+/ / o) — v|?dv dz dt
0 Q 0 QxR3

1
g/—|uo|2dx+/ fol1 4 [v[2) dv dz.
92 QxR3

Using the same approach as in last subsection, letting A go to infinity, using the convexity of

the energy and the weak convergence of f* and u*, we deduce

1
/ ~|ul?dx —|—/ f(1L+|v|]*)dvdx
Q 2 OxR3

T T
—|—/ / |Vu|2dmdt—|—/ / flu—v*dvdxdt
0 Q 0 QxR3

1
g/—\uo|2dx+/ Fol1+ [V[2) dv da.
Q2 QOxR3

So we have proved Theorem 3.1.1.

3.3 UNIQUENESS IN THE TWO DIMENSIONAL SPACE

The goal of this section is to establish the uniqueness of global solutions in the two dimensional

space. For that purpose, we shall study the regularity first.
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3.3.1 Regularity

The existence of global weak solution to (1.2.1) was obtained by Theorem 3.1.1. We multiply

the first equation of (1.2.1) by u; and use integration by parts over €2 to obtain,
/ w2z + at/ Vul? de
Q Q
< / |m0f-u-ut]d:v—|-/ |u-Vu-ut|dx+/ |ma fu| da.
Q Q Q
By the Cauchy-Schwarz inequality, we deduce
ou d
15 sy + V0l

< lmofllca@llallpa@) el 22y + w22 Ju - Vul|g2(q)

+ [[mafll 2o el 22()-
By Theorem 3.1.1, we have
uec L>0,T; L*(Q)), Vu € L*(0,T; L*(Q)).
Using the Gagliardo-Nirenberg inequality

1/2 1/2
o]l < Cll]l 51Vl

one obtains that

T
/o /Q]u]4 dx dt < CHHH%OO(O,T;LQ(Q))||VUH%2(O,T;L2(Q)) <C.

(3.3.1)

(3.3.2)

(3.3.3)

Since u € L*(0,T; H}(9)), by the Sobolev imbedding inequality, we obtain u € L?(0,T; L?(9))

for any 1 < p < cc.
Thanks to Lemma 3.1.2 with d = 2, we have

Mgf <oo forany 0 <t < T,

if mgfg < Q0.
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Let us estimate mgf in the two dimensional space:

mof = fdv= fdv+ fdv

R2 [v|<r [v|>r

1
<Cflewrt+ 5 | vy

lv>r

for all k > 0. Letting r = (g Iv|¥ fdv)=, then

mof < Cfllm+1)( [ [vfif dv) e

for all & > 0. Taking k = 6, then mof < C(mgf)"/*, which means

1m0 f1] Lo (0,524 (02)) < 0.

Similarly, we have

||m1f||L°°(O,T;L2(Q)) < 00.
By (3.3.1)-(3.3.5), we have for all ¢ > 0

¢ (t)

HVUHLz(m — (14 [Vullf20)) + el Dl )

157 ey +

where C(t) > 0, andf0 t)dt < C for all T > 0.

Next, observe that for all t > 0 in view of (1.2.1), we have

|| — Au + VPHLQ(Q)

SC(Hmlme Ty LT +H|11||VU|HL2(Q)+Hmof'uHL2(9)>-

Due to divu = 0, by the classical regularity on Stokes equations, we obtain

[ull 20

(||m1f||L2(Q)+|| ozt + [Vl oy + mof - ullzs m)

Following the same argument of (3.3.6), we have for all ¢’ > 0,
1
lallzr2ie) < SCLt) + C||—||L2 +ellullm
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where C1(t) > 0, and fo Ci(t)dt < C. Choosing ¢’ = 3, we obtain

[ullfz(q) < Calt) + CII ||L2(Q (3.3.8)

where Cy(t) > 0, and fo C3(t)dt < C. Inserting (3.3.8) in (3.3.6) and choose € = 1/2C, we obtain
forallt >0

122 ey + Va0 < O+ Vo) (33.9)

where C5(t) > 0, and fo C2(t)dt < C.
Applying Gronwall’s inequality to (3.3.9), we obtain

88_1; is bounded in L*(Q x (0,T)),

and

u is bounded in L>®(0,T; Hy (9)).

This, with the help (3.3.8), implies that
u is bounded in L*(0,T; H*(Q)).

Here, we need to rely on the following Lemma which is a very special case of interpolation

theorem of Lions-Magenes. We refer the readers to [52] for the proof of this lemma.

Lemma 3.3.1. Let V C H C V' be three Hilbert spaces, V' is a dual space of V. If a function
u belong to L*(0,T; V) and its derivative W' belongs to L*(0,T; V") then u is almost everywhere

equal to a function continuous from [0,T] into H.

Thanks to

g—': € L*(Q2 x (0,7)), and u € L>=(0,T; H(Q)) N L*(0,T; H*()),

we conclude that u € C([0,T], H'(Q)) by Lemma 3.3.1, consequently f € C'([0, T]; L>°(R*xQ)).
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3.3.2 Uniqueness of solutions

To show the uniqueness, we rely on the following parabolic regularity due to [16, 49, 52]:

Lemma 3.3.2. If u solves
ou—Au+Vp=F,

u(t = 0) = U, 11|aQ = 0,

on some time interval (0,T), then we have

lull o~ oz < € (IFlqomxn + ol )

Now we are ready to show the uniqueness. Let (uy, f1) and (us, f) be two different solutions

to (1.2.1)-(1.2.3). Let @i = u; — uy, and f = f; — f, then we have the following equations:

ﬁt—l—Vp—Aﬁ:—/ (ﬁf1+UQf_—Vf_>dV—(ﬁ'VU1+UQ'Vl_1)

R2

divi— 0. (3.3.10)

fi+v-V.f+divy(ufi + waf —vf) =0

in 2 x R? x (0,7, subject to the following initial data

u(0,z) =0, f(0,2,v) =0,

and boundary condition

oo =0, f(t,z,v*) = f(t,x,v) forz €, v-v(z)<O0.

Here, we denote the space X = L*(0,T; H}) N L*(0,T; H?). Applying Lemma 3.3.2 with

uy = 0, we have the following regularity:

lallx < €| / (6fs + af — vI)dv + (@ - Vg + s - V)| 2oy
R? (3.3.11)

— Jl +J2
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For Ji:

| 2(ﬁfl + upf — v f)dvr2(0.1)x0)
R

= [[amo fi +wgmof — mafl L2 0.r)x0)
< [all 2 o201 @) 1m0 fill L2023 (2)) + (U 2o 0,752 () 12| oo (0,732 2y [0 f | 23 (0. %)
+ [[mafll z2o,mxe)

1, 1 —
< s[tlp} Imofills T2 |0l x + CT8||ug|| Lo 0,750 0)) 10 f || Lo (0,155 (02))
te[0,T

+ lmafll L2 (0,m)x)»

(3.3.12)
where p; =6, x = pﬁgp_"’(s, for any p, > 6, C' depends on the domain 2. And for Js:
@ Vg + uy - Va2 o,0)<0)
< U zsorszs @ 10l e i@ V| s 0.7y <0 (3.3.13)

+ 11 220,700 () 02| L4 0,720 () | V| Lo (0,752 (02))

1 1
< CTH||Vuy| o= llallx + CT#||ug|| pao. ) |0l x,

where y = 1% for any p > 4, C only depends on the domain €2, and we used the Gagliardo-
Nirenberg inequality for Vuy, the Gagliardo-Nirenberg inequality and embedding inequality for
uy. By (3.3.11)-(3.3.13), we can choose small 7" such that

1 1

sup [|mofillz3@)T? + Clluzl|zeo 10T

i) (3.3.14)
1 1

+ CT ||V || Lao,m)x0) + CT |0z Lao, 0 (0)) <

DN | —

then
allx < llmofllzeorr2@) + |mifllrzo.r)xa)- (3.3.15)

The next step is to show ||mof]|r3(0,m)x9) + [|[m1f]|r2(0.1)x) can be controlled by [ulx.

In the two dimensional space, we have

T T
/ ||mof||%3(m dt < C/ / |v|*f dv dz dt,
0 0o JaJr?
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and

T T
/ [ma fl| 720y dt < C/ / |v|*f dv dz dt.
0 o JaJr

Pluging them into (3.3.15), and choosing 7" small enough again, one deduces that

T
HﬁHXSC/ // \v|* fdv d dt. (3.3.16)
o JaoJre

We multiply the second equation of (3.3.10) by |v|* for k > 1, and use integration by parts

over € x R?:

(9,5/ f|v|kdvd:v+k‘// flv|*¥dv dx
o Jr2 0 JRr2

(3.3.17)
:k// ﬁf1|vlk1dvdx+k// uy f|v|" dv d.
o Jr2 o Jr?
We estimate the right hand side terms of (3.3.17):
// afi|v|" 1dvd:1:+k// w flv]F ! dv dx
R? R?
c/ |u||mk_1f1|dx+(]/ s |y f| do (3.3.18)
Q Q
< Cllal| 2@llme—1fill 2@ + Cllellm @ lme—1fllee)
By (3.3.17) and (3.3.18), we have
— T —
sup / f|v|kdvdx+k’/ / fIv|¥dv dx dt
te(0,T) JQ JR2 0 Q JR2
T T ~
§/ ”ﬁ”m(ﬂ)Hmk—lflﬂm(ﬂ)dt+/ sl 2o llm0n—1 fl 1@ dt (3.3.19)
0

1 =
< oy s fill 2 T2 + sl ey TF sup / v[F1 F dv da.
tE[O,T] Q JR2

for all k¥ > 1. Meanwhile, we integrate the third equation in (3.3.10) over Q x R? and use

integration by parts:

/ fdvdr = / fodvdr =0. (3.3.20)
Q JRr2 o JRr2

Using (3.3.19)-(3.3.20) and by induction, we deduce

T
/ / fIv|*dvdzdt < (sup |msfillr2@ T2 + |luzl|x sup ||mafillz2@)T
R2 te[0,T] t€[0,1]

(3.3.21)

+ [uall% sup [ma fill 2oy T2 + wsl} sup [[mofillz@T)llx.
t€[0,T] t€[0,T
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Thanks to (3.3.21) and (3.3.16), choosing 7" > 0 small enough, we obtain:
_ L.
lallx < 5 lafx.

Thus, u = 0, and hence u; = uy on a small time interval. Thus, we have proved the uniqueness
of u on a small time interval.

On the other hand, we have the following equation on the same time interval,
fi + vV f +divy((uy —v)f) =0 in Q x R* x (0,7], (3.3.22)

with its initial data

and boundary condition
ft,x,v) = f(t,z,v*) for z € 9Q, v-v(z)<0.

By (3.3.22), we have

171l Lo (0,115 0xr2) < Cll foll Lo (0,17 x0xR2),
which yields f; = fs. So we have proved the uniqueness of solution (u, f) on a small time interval
[0, T]. For any given T' > 0, we consider the maximal interval of the uniqueness, T} = sup Ty < 7,

such that the solution is unique on [0, 7p]. The main goal is to prove that T} can be taken to be

equal to oo. For any given T > 0, we use
ﬁ(TOax) = 07 f(To,ZL’,V) = 07

as the new initial data to (3.3.10). Applying the same argument to equation (3.3.10) with the
new data, the uniqueness of solution can be extended to [0, Ty + 77| for a small number 7% > 0.
By (3.3.14) and (3.3.21), T* can be chosen only depending on the upper bounds of

sup [|mofillza@), llwllx, luallx, sup ||mifilr2@ fori=0,1,2,3.
te[0,7) t€[0,1]

By the regularity of u in Section 4.1, u;, us are uniformly bounded in the space X. Applying
the same argument of (3.3.4) and Lemma 3.1.2, we can show that the other terms are uniformly

bounded for all time ¢ > 0. All such terms are uniformly bounded for all time ¢ > 0. Thus, T*
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can be chosen not depending on the initial data at time Ty. In fact, we can choose T* = Tj.
One can then repeat the argument many times and obtain the uniqueness of (u, f) on the whole

time.
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4.0 DENSITY-DEPENDENT FLUID-PARTICLE FLOW

It is very hard to carry out the mathematical analysis for the system with density-dependent
interactions because a relaxation of the kinetic regime toward a hydrodynamic regime with
velocity in the vacuum can not be excepted. In [55], we established the existence of global weak
solutions to the Navier-Stokes-Vlasov equations with large data when the density appears in the
interactions. In [55], to overcome this difficulty, we decomposed the interaction of the Navier-
Stokes equations into two components. One component is viewed as the work of internal force
appearing in the left side of the Navier-Stokes equations, and the other component is viewed
as an external force. Thus, we can construct an approximation scheme and use a compactness

argument to obtain the solutions.

4.1 A PRIORI ESTIMATES AND MAIN RESULTS

In this section, we shall derive some fundamental a priori estimates and then state our main
results. These estimates will play an important role in the compactness analysis later since
they will allow us to deduce the global existence upon passing to the limit in the regularized
approximation scheme. We shall develop these a priori estimates in the three-dimensional space,
but they all hold in the two-dimensional space.

First, roughly speaking, (1.3.1) and the incompressibility condition mean that the density
p(t, ) is independent of time ¢. In fact, we take any function 8 € C1([0, 00); ), multiply (1.3.1)

by B'(p), use the incompressibility condition, and integration by parts over €2, then we have

d
- /Q Blp)dz = 0.
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Applying the maximum principle to the transport equations (1.3.1) and (1.3.3), one deduces that

1ol o < [l poll zoe,
and also p > 0, so we have
0 < p(t,2) < llpoll i (4.1.1)

for almost every t.
We now multiply (1.3.2) by u and integrate over €2, and use (1.3.1), (1.3.3), and (1.3.5) to
deduce that

;; plul? dx+2/ |Vu|? das——?// pf(u—v)-udvdz. (4.1.2)
R3

On the other hand, we multiply the Vlasov equation (1.3.4) by %, integrate over Q x R3, and

use integration by parts to obtain

d
E/Q fIv|]? dvdx

B (4.1.3)
=-2 / pflu—vl|? dvd$—{—2// pf(u—v)udvdz.
Q JRr3 Q JRr3
Using (4.1.2)-(4.1.3) and the conservation of mass:
i/ fdvdr =0 (4.1.4)
dt O JR3 - o
we obtain the following energy equality for the system (1.3.1)-(1.3.5):
d
p[u[2 dr + — / / f(1+|v|]?) dvdx + 2/ / pflu—v|? dvde
dt t Q JR3 QO JR3 (415)

+2/ Vul? dz = 0.
Q

Integrating (4.1.5) with respect to ¢, we obtain for all ¢,

t
/p|u|2dx+// f1+v]?) dvdx+2/// pflu—v|? dvdzdt
Q Q Jrs 0 JoJrs

t
+2/ /\vuP dxdt (4.1.6)

2
:/ mof” dx +/ fo(1+|v[*) dvdz.
Q Po R3
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By (4.1.5), it is easy to find that the global energy is non-increasing with respect to ¢:

% (/Q lul? dx—i-/Q/Rg fa+|vP? dvdx) < 0.

Assume
|m0‘2 2
dr + fo(L+|v]7) dvdz < oo,
Q Po Q JR3
then
t
/ / / pflu—v|? dvdzdt < C,
0o JoJrs
and
|Vl L2¢0.m)x0) < C, (4.1.7)
sup ||p[ul?[| 1) < C, (4.1.8)
0<t<T

for any given T > 0 and some generic positive constant C'. Moreover, by the Poincaré inequality

we obtain
[l 20,7513 0)) < C- (4.1.9)

The maximum principle applied to (1.3.4) implies that

[ fllz < Cl foll s (4.1.10)

for all t € [0,7]. Moreover, fo > 0 implies f > 0 for almost every (¢,z,v). Then, by the

conservation of mass (4.1.4) and (4.1.10), one has the following estimate:

| fll oo 0.y xoxr3y + || fll 2o (0,701 (xRS
((0,T) xQxR3) ( (2xR3)) (4‘1‘11)

<C (||f0||L°°((O,T)xQ><R3) + ||f0||L°°(0,T;L1(Q><R3))) :

Let w(t,z) be a smooth vector field in R and let f be a solution to the following kinetic

equation:

8tf+vaf+lev((w—V)f):0, (41 12)
F0,2,v) = fole,v), f(ta,v) = f(t2,v") forz €00, v -v(z) <0 -
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in 2 x R3. DiPerna-Lions [12] obtained the existence and uniqueness of solution to (4.1.12) when

w is not smooth. Denote the moments of f by

mif(t2) = / F(tz V)V dv,
My f(t) = /Q/R3 f(t,x,v)|v|* dvdz,

for any ¢t € [0,T], x € Q, and integer k > 0. It is clear that

Mkf(t):/gmkf(t,x)dx.

We first recall the following lemma [26]:

Lemma 4.1.1. Let w € LP(0,T; LN**(Q)) with 1 < p < oo and k > 1. Assume that fy €
(L N LY(Q x R?) and myfo € L'(Q x R3). Then, the solution f of (4.1.12) should have the

following estimates

N+k
My f < C (Mfo) /™ 4 (| fol e + Dl|wl oo rin (@)

for all 0 <t < T where the constant C' depends only on T'.

We also recall the average compactness result for the Vlasov equation due to Di Perna-Lions-

Meyer [14]:

Lemma 4.1.2. Suppose

af"
ot

+v -V f" =divy (F"f") in D'(Q+R3 x (0,00))

where f" is bounded in L°°(0,00; L*(2 x R3)) and f*(1 + |v|?) is bounded in L>(0,00; L'(Q x
R3), % is bounded in L>((0,00) x R* L*(Q)). Then [z f"n(v)dv is relatively compact in
L9(0,T; LP(2)) for 1 < g < 00,1 <p <2 and forn such that (1—+|’W e L'+ L> 0€]0,2).

Remark 4.1.1. We shall use this lemma for the Vlasov equation to obtain the compactness of

mof and my f, which will allow us to pass the limit when ¢ and ¢ go to zero in the approximation.
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In this paper, we assume that
po > 0 almost everywhere in Q, py € L*>(Q),

2
mg € L*(Q), my =0 almost everywhere on {py = 0}, mol” € LY(Q), (4.1.13)
Po

fo € L®(Q xR?), mgfy € L=((0,T) x Q).

Definition 4.1.1. We say that (p,u, f) is a global weak solution to problem (1.3.1)-(1.3.8) if

the following conditions are satisfied: for any 7" > 0,

e p>0, pel(0.T)x9), peC(0.THIHD), 1<p< oo
o we 120, T HY(Q))

o pluf? € L0, T; L' (@)

o f(t,x,v) >0, for any (¢t,2,v) € (0,T) x Q x R?;

o [ € L®(0,T; L¥(Q x R%) N LY(Q x R?));

maf € L°(0,T; L'(Q x R3));

For any ¢ € C*([0,T] x ), such that div,p = 0, for almost everywhere t,

/mo (0, ) d$+//(—pu-8tcp—(pu®u)-Vg0

(4.1.14)
+,uVu-Vg0+up/ fla—=v)- godv) dzxdt = 0;
R3

For any ¢ € C1([0,T] x Q x R3) with compact support in v, such that ¢(7,-,-) =0,

T
[ ] r@ov Vot pta=v) Vie) deavis= [ [ foo.:) deav
o JaJrs q Jrs
(4.1.15)

The energy inequality

T
/p|u|2dx+// F(1+ v} dvdw+2/ / fla—v|* dvdaxdt
Q o Jrs 0o JaJrs

T
+2/ /|Vu|2 dxdt (4.1.16)

2
/'mol dx +// (1+ V) fo dvda
Q R3

holds for almost everywhere t € [0, T].

Our main result on the global weak solutions reads as follows.
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Theorem 4.1.1. Under the assumption (4.1.13), there exists a global weak solution (p,u, f) to
the initial-boundary value problem (1.3.1)-(1.3.9) for any T > 0.

Remark 4.1.2. The same existence of global weak solutions holds also in two-dimensional spaces.

4.2 EXISTENCE OF GLOBAL WEAK SOLUTIONS

In this section, we are going to prove Theorem 4.1.1 in two steps. First, we build a regularized
approximation system for the original system, and solve this approximation system. Then, we
recover the original system from the approximation scheme by passing to the limit of the sequence

of solutions obtained in the first step.

4.2.1 Construction of approximation solutions

For each € > 0, we define

and denote

u. :=uxo,,

where 6 is the the standard mollifier satisfying
6 € C=(R?),0 > 0,/ Odx = 1.
R3
By (4.1.1), all values of the solution p are bounded uniformly. The regularity of the term

— fR3(u — v)pfdv is not enough to solve the Navier-Stokes equation directly. Inspired by the

work of [26], we introduce the following regularization function

1
1+6 [ou f dv+ 0| [gs fydv|

Rs(mof,mif) = for any fixed 6 > 0.

Clearly
0 < Rs(mof,mif) <1
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for any 6 > 0, and
Rs(mof,mif) — 1

as 0 — 0. For any fixed 6 > 0, as mentioned in the introduction, the regularized force term

pRg/RS(u—V)f dv

consists of two terms:

,0<R5/Rgfdv)u and p(R(;/Rgvfdv)

the first one is viewed as the work of internal force, and the second one is viewed as the external
force. The regularized external force is in L?((0,7) x ), which ensures that the regularized
Navier-Stokes equations with the work of internal force have a smooth solution. To keep a
similar energy inequality for the approximation scheme, we need to regularize the acceleration

term as
Rs(u—v)pf

in the Vlasov equation. Thus, we consider the following approximation problem:

pr + div(pu.) = 0, (4.2.1)

8(§:> +div(pu: ®u) — pAu+Vp+p (R5 /}RS fdv) u=p (35 /RB vf dv) , (4.2.2)
divu = 0, (4.2.3)

of :
o TV Vi +dive(Rs(u—v)pf) =0. (4.2.4)

To define u, well, we need to set
Q. ={x € Q, dist(x,09) > ¢}
for any ¢ > 0 if €2 is smooth. Otherwise, we can choose a smooth connected domain €2, such that
{x € Q, dist(z,0Q) >} Cc Q. C Q. C Q.
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We let G1° to be the truncation in €2, of u, and we extended it by 0 to 2. We define u. = a° 0%.

It is easy to find that u. is a smooth function with respect to x, and
u.=0 on 90 and divu.=0 in R%

To impose the initial value for our approximate system, we need the following elementary

variant of Hodge-de Rham decomposition (see [39]):

Lemma 4.2.1. Let N > 2, p € L®(R") such that p > p > 0 almost everywhere on RN for
some p € (0,00). Then there exists two bounded operators Ps, Qs on L*(RN) such that for all

m € L*(RY), (m,, m,) = (P,m,Q,m) is the unique solution in L*(RN) of
m =m, + m,, (—=A)Y2div(p~'m,) =0, (=A)"Y*rot(m,) = 0.

Furthermore, if p, € L®(RY), P < pn < p almost everywhere on RN for some 0 < p<p<
and p, converges almost everywhere to p, then (P, m,,Q, m,) converges weakly in L*(RY) to

(P,m, Q,m) whenever m,, converges weakly to m.

We are ready to discuss the initial conditions for the approximation scheme (4.2.1)-(4.2.4).
Before imposing initial data, we have to point out that the initial density may be vanish in a
domain: an initial vacuum may exist, and then in this case we cannot directly impose initial

data on the velocity u. To remove this difficulty, we adopt the idea from [39] to define

. po, ifxisin

1, if x is in Q°,

define

S
(=]
D
S

[N}
SN—

)

|

S
[==]
D
S

[

—_
—~—
ISH
V
)

)
—
N——

*
>
[2)

where d = dist(x, 092).
Now we define

pli=o = p = (po)e + &, (4.2.5)
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which implies

ggp(e]gc(h

where () is independent on e, and

(pO)s = po * 0-.

Clearly, pf € C*°(Q2), and

We define

and

It is easy to see

m; — mg in L*(Q),  mG(pf)”

o — po in LP(Q) forall 1 <p< .

pul,_o = m,

ms = (mopy ). (%), € C2(Q).

1/2

Relying on Lemma 4.2.1, we decompose m; as

and then

Letting

We have

Thus

mg = poug + Vg, where ug, g5 € C(Q),

divag =0 in Q,
(1 - :
div (—E(ng — mf))) =0 in .
Po

mj = g + Va5, where u € C5°(2),

lug —ug|| <e, divug =0 in Q.

mj — mg in L*(Q), m§(p5) " V* — mopal/2 in L*(Q).

puli=o = mg = mg + ph(ug — ),
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and we can impose the initial condition of u as
uli—o = ug. (4.2.9)
Finally, we impose the initial condition for f as

fli=o = fo. (4.2.10)

We now state and prove the following existence result.

Theorem 4.2.1. With the above notations and assumptions, there exists a solution (p,u, f) of
(4.2.1)-(4.2.4) with the initial conditions (4.2.5), (4.2.9) and (4.2.10), and the boundary condi-
tions (1.3.9), such that p € C*°(Q x [0,00)), u € C*(2 x [0,00)) and f € L=(Q x R? x [0, 00)).

Remark 4.2.1. Our approximation scheme is inspired by Lions’ work on the density-dependent

Navier-Stokes equations [39] and Hamdache’s work on the Vlasov-Stokes equations [26].

Remark 4.2.2. If the initial data f; is smooth enough, we can show that the solutions are classical

solutions. In fact, we can also show the uniqueness of such solutions.

Proof of Theorem 4.2.1. We define M as the convex set in

C([0,T] x Q) x L*(0,T; Hy(£2))

M = {(p,0) € C(0,T) x Q) x L0, T: H}(%),
e<p<Cyin[0,7] x 2, divi =0 almost everywhere on (0,7 x €,
16l 20,152 (0)) < K},

where K > 0 is to be determined. Here we define a map 71" from M into itself as
T(5,0) = (p, ).

As a first step, we consider the following initial-value problem:

ap

5 + div(a.p) = 0, Pli=o = pg, (4.2.11)
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in (0,7) x Q, where @i, = @ * .. The construction of @i, implies that u. € L*(0,T;C>(R)), and

diva, = 0 in (0,7") x Q. The solution of (4.2.11) can be written in terms of characteristics:

dX

d—:ﬁg(X,s), X(zyz, t) =2, xz€Q, tel0,T]. (4.2.12)
s

By the properties of i, € L*(0,T; C*(1)), and the basic theory of ordinary differential equations,

we know that there exists a unique solution X of (4.2.12). Therefore, we have
p(t,x) = pg(X(0;¢,2)), forallte[0,T], ze€q.

It is clear that ¢ < p < Cp in [0,T] x Q. Since u. € L*(0,T;C>(Q)), then p(t,x) lies in

C([0,T];C>*(Q2)). By (4.2.11) and the properties of u., we have %§ € L?(0,T;C>(Q)). Thus,

0, ‘gf are bounded in these spaces uniformly in (p,u) € M. In particular, by the Aubin-Lions

lemma, the set of p built in this way is clearly compact in C([0,T] x 2).
The second step is to build u by solving the following problem:

ou
p— + pu.-Vu — Au+Vp+p( / fdv) (R(;/ vfdv),

ot R (4.2.13)
divu=0, uf— = ug, divug = 0,

in(0,7") x €. Let
e—R(;/deZO, g—Rzg/ vfdv.
R3 R3

Multiplying u on both sides of (4.2.13), one obtains the following energy equality related to

(4.2.13):
1
8t/—p|u|2 dm+/|Vu|2 d:}0—|—/ep|u|2 dx:/pgu dx.
2 Q 0 Q

The right-hand side of above energy equality is bounded by

[ pwds < ([ plal a0t ([ praf do?
Q Q Q

1
< ol foo o 191l 2@ VAUl L2(0)

In conclusion, we obtain for all ¢ € (0,7,

1 t t
—/p\u\de—l—/ /\Vu]Q da:dt—i—/ /ep\u\2 dxdt
2 2 ’mOP
<C/ /|g| d:tdt+C’/ /p|u| dxdt + - / dx.
Q
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Applying Gronwall inequality, we obtain

sup |[|plul?|| 1) < C,
te(0,T)

Ivepu| 200 < C,

||u||L2(0,T;H3(Q)) <,

(4.2.14)

where C' denotes various constant which depend only on T',€, ¢, and bounds on ||pol|ze(q),

oo uf*[| 1 (0)-
Rewriting (4.2.13) as follows
Ju

+b-Vu—Au+ Vp+au=h,
ot (4.2.15)

: € : €
divu=0, ulmo=1ug, divu;=0,

c

in (0,7) x Q, where

ce L®((0,T) x Q), be L*0,T;L°(R)), ac L>((0,T) x Q),
he L*((0,T)xQ), ¢>d>0.
To continue our proof, we need the following lemma:

Lemma 4.2.2. There exists a unique solution w of (4.2.15) with the following regqularity:

uc L*0,T; H*(Q)) N C([0,T); H;(Q)); Vp, g—‘: € L*((0,T) x Q). (4.2.16)

Proof. First, we multiply (4.2.15) by %—‘: and use integration by parts over {2 to obtain:

o),

< /Q(Ihllutl + bl Vul[| + |af[u]|u,[) dz

2
d [1_
dx—l—a Q§|Vu| dx

ou

ot

Using the Cauchy-Schwarz inequality and embedding inequality, one deduces that

7!
2 Ja

< O (U B2y + a2 o) / Vul2d,

ou

2
ou” d 1
ot

2
— | = d
T+ ; 2]Vu\ x

(4.2.17)
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where )\g is a constant from the Sobloev inequality. By the regularity of a,b and Gronwall’s

inequality, we deduce that

uGLWQﬂH&@L%%GLW&ﬂxQ)

We rewrite (4.2.15) as follows

—Au+Vp=h-—cuy —b-Vu-—au,

diva = 0,

in 2 x (0,7), and u € H}(Q). Let h=h—cu, — b- Vu — au, and

he L*0,T;0Q),
thus we have

—Au+ Vp = E,

diva = 0.

(4.2.18)

By the regularity of u and %, we conclude that p is bounded in L2((0,T); H=(€2)). We deduce

that p is bounded in L*((0,7T) x ) if we normalize p by imposing

/ pdr =0, almost everywhere t € (0,7).
Q

To normalize p, we refer the readers to [39, 52] for more details. Also we conclude that u is

bounded in L?(0,T; H*(Q2)) by the classical regularity on Stokes equation. Thus, we proved the

regularity of (4.2.16). The existence and uniqueness of (4.2.15) follows from the Lax-Milgram

theorem, see for example [9].
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By Lemma 4.2.2, there exists a unique solution to (4.2.13) with the regularity of (4.2.16). By
the Aubin-Lions Lemma, u is compact in L*(0,T; H}(Q2)). This, with the help of compactness of
p in M, implies that the mapping 7' is compact in M.

To find the fixed point of map T" by the Schauder theorem, it remains to find K > 0 such
that

[l 220712 0)) < K.
By (4.2.14), we have
[l 2013 ) < K
this K’ only depends on initial data. Thus, we can choose K = K’ + 1.
Following the same argument of the proof of Lemma 4.2.2, we deduce that

u e LP(0,T; W*P(Q)), g—;‘ € LP((0,T) x Q)

for all 1 < p < co. With such regularity of u, we can bootstrap and obtain more time regularity
on u. and then on p and thus more regularity on u.
In the third step, we would like to find the solutions to the following nonlinear Vlasov

equation:

of | -
B + vV, f+divy(Rs(u—v)pf) =0, (42.19)
f0,2,v) = folz,v), f(t,x,v)= f(t,z,v"), for x € 90, v-v(x) <.

where u, p are smooth functions obtained in step 2. The existence and uniqueness for the above
Vlasov equation can be obtained as in [3, 12].

Thus we have proved Theorem 4.2.1. O

Remark 4.2.3. The solutions (p,u, f) obtained in Theorem 4.2.1 satisfy the following energy

d 1 1
< (/ﬂ Sl dm+/Q/RS S0+ V) dxdv) o

+/ (Vul® do +/ Rspf(u—v)? dzdv < 0.
Q 0 JRr3

inequality

The energy inequality will be crucial in deriving a prior estimates on the solutions (p,u, f) of

the approximate system of equations.
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4.2.2 Pass to the limit as ¢ — 0.

The objective of this section is to recover the original system from the approximation scheme
(4.2.1)-(4.2.4) upon letting  goes to 0. Here and below, we denote by (p°,u®, f¢) the solution
constructed in Theorem 4.2.1.

We take § € C'(2,R?), use (4.2.1) and (4.2.3) to find that [, 5(p°)dx is independent of time
t, that is,

/B ) dx = / B(pg) de  for all ¢t € (0, 00). (4.2.21)

Observing that (p°, u®, f¢) satisfies (4.2.20), one obtains

d([1_ _, 1
— —oflufle d —f¢(1 2 dxd
dt(/ﬂzmu\ o [ [ sy xv)

—l—/\VuE\Q dw+// Rsp° f*(u® — v)? dxdv < 0.
0 0 JR3

Integrating it from 0 to t, we have

/ —pluc? dx—i—// —ff(1 + |v|]*) dzdv
//]Vu€|2 dxdt—i—/ // Rsp° f|u® — v|? dedvdt (4.2.22)
/p()]u()|2 dr + = // (14 |v[>) fo dedv
R3

for all ¢ > 0. By (4.2.22), one obtains the following estimates:

w22 0,0:m302)) < €

) (4.2.23)
sup |[p%[u®[*f| @) < C,
0<t<T
where C' denotes a generic positive constant independent of ¢.
By (4.2.5) and (4.2.6), we assume that, up to the extraction of subsequences,
p°— p in C([0,T]; LP(Q2)) for any 1 < p < oc. (4.2.24)

We denote by u the weak limit of u® in L?(0,T; Hj(2)) due to (4.2.23). By the compactness
of the embedding L?(Q) — Wy *(Q) for any p > 6/5, one deduces from (4.2.24):

p° = p in C([0,T]; Wy (). (4.2.25)
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This, together with (4.2.23), yields
pfu® — pu in D'((0,7T) x Q).
Let a function g € C([0,T]; LP(Q2)) for any 1 < p < oo satisfy ¢(0) = 0 on © and

% +div(gu) =0 in D'((0,7T) x Q),

then g = 0, which implies the uniqueness of the density p when u is fixed. Thus we have proved
that p is the solution to (1.3.1).

We now estimate my f*:

mof° = fedv = fedv+ fedv
R3

[v|<r |v|>r

1
<O llert + = [ v av

lvzr

for all k > 0. Taking r = ( [gs |k fedv)F5, we have

3

mof < Ol ([ ran) ™ (f wita) ™
R3 R3
Letting k = 3, then
1/2
Imaf oy < =+ 1 ([ [ wrar)
Q Jr3
Thanks to Lemma 4.1.1, we conclude that mg3f¢ is bounded in L°°(0,7T; L'(Q)). This yields
lmo f*[| Lo (0,1:22(0)) < C- (4.2.26)
Following the same argument, one deduces that
||m1fs||Loo(07T;L%(Q)) <C. (4.2.27)

Using the fact Rs < 1, we see that

loRsmofu | 20 7:15/2(0
L2(0,T3L3/2()) (4.2.28)

< ClpollLo=(0,1yx) M0 fl oo (0,32 (0)) - 10| £20,7528(92)) 5
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and

HpR5m1f8HLOO(O,T;L3/2(Q)) < CHpOHLOO((O,T)XQ) HmleHLOO(O,T;L%(Q))' (4229)

Observing
pER(;/ (u® — v)fedv = p"Rsmo fTu® — pRsmy f*,
R3
and using (4.2.28) and (4.2.29), we obtain that

pER(s/ (u® —v)f¢dv is bounded in L*(0,T; L¥?(Q)).
R3

Since

a E11E
<%tu ) = —div(p°u. ® u) + Au® + Vp + pR(;/ (u® —v)fedv,
R3

and in particular, Vu® is bounded in L?((0,7) x ) and
9536/ (u — v)fedv is bounded in L*(0,T; L**(Q2))
R3

while pu. ® u¢ is bounded in L2(0,T; L2 (£2)), one obtains that

I(p°u?)

5 is bounded in L*(0,T; H *(Q)).

By Theorem 2.4 of [39], we obtain
Vpru® — \/pu in LP(0,T; L"(Q))
for2<p<ooand1§r<3£—f4, and thus
p‘u® — pu in LP(0,T;L"(Q))

for the same values of p,r.

Applying Lemma 4.1.2 to (4.2.4), we obtain
mofS — mof, mif®— myf for almost everywhere (¢, z). (4.2.30)

By (4.2.26) and (4.2.27), the relation (4.2.30) can be strengthened to the following statements:

mof¢ — mof  strongly in L(0,T; L*(Q)),
(4.2.31)
myfe — myf  strongly in L®(0,T; L¥?(Q)).
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By (4.2.24), we have
p mofe — pmof strongly in L>(0,T; L;TPP(Q)), (4.2.32)

and

p°myf¢ — pmyf strongly in L>°(0, T} L%(Q)) (4.2.33)
Thanks to (4.2.32)-(4.2.33) and the weak convergence of u® in L*(0,T; H}(Q2)), one has

R(;/ (u® —v)p°ffdv — R(;/ (w—v)pf dv in the sense of distributions. (4.2.34)
R3 R3

The next step is to deal with the convergence of divy(Rsp°(u® —v) ). Let ¢(v) € D(R?) be

a test function, we want to show

lim ( [ ot =) y900 dvda:) -
//R (Rsp(u — v)f) Vv dvda,

which can be reached by (4.2.34).

(4.2.35)

We consider a test function ¢ € C3([0,T] x Q) such that divp = 0, and a test function
¢ € CH([0, T] x 2xR3) with compact support in v, such that ¢(7, -, -) = 0. The weak formulation

associated with the approximation scheme (4.2.1)-(4.2.4) should be

t
= [ w0,y do+ [ [ (w00 - () v
Q 0 Q

(4.2.36)
+Vu®-Vo+ - R(;/ (u® —v)p° fedv} dxdt = 0;
R3

and

/ / fE(Oip+v-Vud+ Rs(u® —v)p° - Vi) dxdvds
R3

(4.2.37)
= / fo#(0, -, ) dxdv.
Q JR3

By (4.2.7)-(4.2.8), we have
/pgug-godx:/mg-godx—>/m0-g0da: as € — 0,
Q Q Q
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for all test functions ¢.

All the above convergence results in this subsection allow us to recover (4.1.14)-(4.1.15) by

passing to the limits in (4.2.36) and (4.2.37) as ¢ — 0.
From (4.2.22), the solution (p°, u®, f¢) satisfies the following;:

/ p[u\zd:v—i—// (1 + |v[?) dzdv
//|Vu5|2 d:vdt—l—/// Rsp° f|u® — v|* dedvdt
R3
<5 [ ol o5 [ [ s v dod.

The difficulty of passing the limit for the energy inequality is the convergence of the term

I Jowms Bsp® f2 [0 — v[? dvdzdt. We follow the same way as in [26, 57] to treat the term as

follows
T
/ / Rsp® f|u® — v|* dv dx dt
0 QxR3
T
= / / (Rsp” fI0®|? — 2Rsp” fu'v + Rsp® f°|v[*) dadvdt.
0 OxR3
By the embedding inequality, we have
u® —u in L*(0,T; L5(Q)).
By (4.2.32), (4.2.39), we deduce that
Rsp"mof|u®|* — Rspmof|ul*  weakly in L'(0,T;Q)
as € — o0o. Similarly,

Rsp*my ffu® — Rspmyfu  weakly in L'(0,7; Q)

as ¢ — 0.

Finally, let us look at the terms:

t
R5p6f6|v|2dvdxdt—/// R(;pf|v|2dvdxdt‘
3 0o JoJrs

Q JR
T t
<Ol =pllw [ [ mafdedes Cllolle [ [ (maf —magydza

=1 + L.
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It is clear to see that I; — 0 as ¢ — 0. For the term I,, because
ff=f weak star in L>(0,T; LP(Q x R?))

for all p € (1, 00] and m3f¢ is bounded in L>(0,T; L*(f2)), then for any fixed r > 0, we have

T T
1

/ / fEIv|? dedvdt :/ / x(|[v| < r)|v]Afe dvdvdt + O(=)
0 JOxRrs 0 JOxRrs r

uniformly in € where Y is the characteristic function of the ball of R? of radius r. Letting ¢ — 0,

T T
/ / fe|v|? dedvdt — / / fIv]? dzdvdt,
0 QxR3 0 QxR3

which means I, — 0 as € — 0. Thus, we have proved

then r — oo, we find

/ / Rspf fe|u® — v|* dvdxdt — / / Rspflu — v|? dvdxdt (4.2.40)
QxR3 QxR3

as € — oQ.

We observe that

1
/ ool e = / L mg - VEP de
Q Q Po

€2 \VO AL 2
:/Q(!rrplgl N /Z)O’ ( £ LV - vqg) da (4.2.41)

m52
:/Q(’p[j 2 Vi = )
0

where we used Lemma 4.2.1.

Using divug = 0, one obtains

V el2 2
/Qp8|u§|2dx+/g| qu| /' ml” (4.2.42)
0

Letting ¢ — 0, using (4.2.8), (4.2.22), (4.2.40), (4.2.42), and the weak convergence of

(p°,u®, f7), we obtain

1 1
/ —plu|? dz + / / —f(1+ |v[]*) dedv
QO 2 Q JR3 2
¢ t
+/ /|Vu|2 d:zcdt—I—/ // Rspfla — v|? dzdvdt

2
Imol” 4 4 1 // 1+ [v[2) fo dzdv.
2 a Po R3

So far, we have proved the following result:
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Proposition 4.2.1. For any T > 0, there is a weak solution (p°,u’, f0) to the following system.

pt + div(pu) =0,

0

%—i—dlv(pu@u) —uAu+Vp:pR5/ (u—v)fdv,
R3

divu = 0,

af

e +v - Vf+divy(Rs(u—v)pf) = 0.

with the initial data u(0,x) =y and f(0,z,v) = fo(z,Vv), and boundary conditions

u(t,z) =0 on 09,
flt,x,v) = f(t,x,v*) for x € 0Q,v-v(x) <O.

In additional, the solution satisfies the following energy inequality:

/1,0|u|2 da:—l—// 1f(1+’V|2) dxdv
a2 aJrs 2

t t
+//\Vu|2dxdt+/// Rspflu — v|? dedvdt

R3
2
/‘mo’ du + - // (1 + V]2 fo dzdv.
0 R3

4.2.3 Pass the limit as § — 0

The last step of showing the global weak solution is to pass the limit as § goes to zero. First, we
let (p?, f°,u’) be a solution constructed by Proposition 4.2.1. It is easy to find that all estimates
for (p°, £, u) still hold for (p°, f°,u’), thus we can treat these terms as before.

It only remains to show the convergence of the terms

Rsp’fo(u® —v)dv, and div(Rsp’(u’ —v)).

R3

The next step is to deal with the convergence of div,(Rs(u® —v)p° f°). Let ¢(v) € D(R?) to

be a test function, we want to show

i ( /Q Rap‘;u‘s( } f5Vv<z5dV> - /Q /R 3 Rap5f5vvv¢)
= /qu< . fvv¢dv) d:lc—/Q/]R3 pfvVy¢ dvdz.
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To prove (4.2.43), we introduce a new function Qs = 1 — Rs (see [26]), it is easy to see that
Qs — 0 asd— 0.

Writing

5.5 5 _ 5.5 5
/QR(;pu (/Rgfvvgbdv>dx—/gpu (Rgfvvgde)dx

(4.2.44)
— / Qspu’ ( V0 dv) dz.
Q RS
On one hand, applying Lemma 4.1.2 to (4.2.4), we see that
oV pdv — fVypdv almost everywhere (¢, z). (4.2.45)
R3 RS
It is easy to see
OV pdv| < Clmof). (4.2.46)
R3
This, combined with (4.2.31), strengthens (4.2.45) as follows:
fVyodv — | fV,pdv strongly in L=(0,T; L*(Q)). (4.2.47)
R3 R3

By the convergence of p°, (4.2.47) and the weak convergence of u’ in L2(0, T; H}(£2)), one deduces

/ pou’ ( f5vv¢dv> dx — / pu< Vo dv) dz.
Q R3 Q R3
/ Qsp’u’ ( / Vo dv) dx
Q R3

< C/ Qsmo f|0’| dadt
Q

On the other hand,

(4.2.48)
< Cllmo || oo o.1:r20) 10 | 220 75 | Qs | £2 0.7:23 )

< C||Qsll 20,7528 (2

/ Qsp’u’ ( féchzﬁdV)
Q R3

where we used that mgf? is bounded inL>(0,T; L*(Q2)) and u’ is bounded in L%(0,T; L5(f)),
and Qs — 0 strongly in L?(0,T; L3(2)).

which yields

—0 asd—0,
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So we have proved the convergence of the first integral on the left of (4.2.43). We can treat
similarly the convergence of the second integral of (4.2.43). Thus, we finish the proof of (4.2.43).

To complete the proof of Theorem 4.1.1, it only remains to check that (p,u, f) satisfies the
energy inequality (4.1.16). In order to verify the energy inequality (4.1.16), we need to show

t t
/// Rsp’ O’ — v|? dxdvdt%/// pflu—v|? dedvdt (4.2.49)
0 JaoJr3 0 Jao Jr3

as 0 — 0.
Denote
E = / / P fou® — v|? dvdz,
o JRr3

E° = E° — 2FES + EX,

where
Bi= [ [ P avds = [ gl da.
o JRr3 Q
ES = / / P’ foulv dvdr = / p°ma fou’ dz,

o JRr3 Q

and

B = // P fov|? dvdax = / pPomaf? dz.
Q Jr3 Q
Write RsE° = E? — QsE°, we consider the convergence of E? first.

Since
T T
// p‘sf‘s\u5|2dvda:dt—// pf|u|2dvd:vdt’
0o Joxms 0 Joxrs
T T
S//(P6—P)mof5|u5|2d$dt+/ /p(m0f5—mof)|u6|2dxdt
0o Ja o Jo
T
[ [ omaf (P = uP) e,
o Jo
then

t t
/Efdt—>/// pflul*dvdzdt as § — 0
0 0 Q JR3

for all ¢ > 0. Similarly, we obtain

t t
/Egdt%/// pfuv dvdzdt as d — 0
0 0 Q JR3

for all ¢t > 0.
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Finally, let us examine

t t
/// p‘sf‘5|vl2dvda:dt—/// pf|v]2dvda:dt‘
0 Jo Jrs 0 JoJrs
T ¢
<1 = ol [ [ mafdsdt+ Clolw [ [ (maf = maf)dsd
o Ja 0 Jo

:[1 —|—IQ

It is clear that I; — 0 as 6 — 0. For the term I, because
fo— f weak star in L>=(0,T; LP(2 x R?))

for all p € (1,00] and msf° is bounded in L>(0,T; L*(Q2)), then for any fixed r > 0, we have

T T
1
// f5|v\2da:dvdt:// (V] < PVEFE dedvdt + O(L)
0 JOxRrs 0 Joxrs r

uniformly in § where Y is the characteristic function of the ball of R? of radius r. Letting § — 0,

T T
/ / fPIv|? dedvdt — / / fIv]? dzdvdt,
0 QxR3 0 QxR3

which means Iy — 0 as 6 — 0. Thus, we have proved

t t
/E‘sdt—>/// pflu—v|? dvdzdt asd — 0.
0 0o JoJrs

In order to show (4.2.49), it remains to show that

then r — oo, we find

t
/ QsE°dt -+ 0 asd — 0. (4.2.50)
0

By the Holder inequality, we obtain

t
//Q5p5m0f5]u5]2 dxdt
0 Jo

< C||Qsll 20,750 1m0 £l oo (0.7:120) 10 | 220,715 00 -

This, together with the definition of ()5, implies that
t
/ / Qsp’mofo|u’Pdadt — 0 asd — 0
0 Jo
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for all t > 0. Following the same argument, it is easy to see

t
/ / Qsp’my fouldxdt — 0 asd — 0.
0o Jo
We write
t t C
| [ ] ewiviriavasde= [ [ [ Quflvpavasde + @i
0 JoJrs 0 JaJvi<r "
¢ C
:/ // x(|v| < 7Qsp’ |vI2 fodvdadt + —Qs
0 Jao Jr3 r
uniformly in §, where x(x) is a characterized function. We have
P’ — p in C([0,T]; LP()) for any 1 < p < oo,
and by the definition of Q°, we have
x(|v] < 7)Qsp’ — 0 strongly in LP(0,T; L4(Q)) for any 1 < p,q < oo.

It follows
/t/ Qs0°|v)? fodvdadt — 0
o JaJrs
when letting § — 0 and r — oo. Thus, we have proved that (4.2.50), and hence have proved
(4.2.49).
Thanks to the convergence facts and the convexity of the energy inequality, we deduce (4.1.16)

from energy inequality in Proposition 4.2.1.

The proof of Theorem 4.1.1 is complete.
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