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THERMODYNAMIC STABILITY OF PROTEINS IN THE MEMBRANE

Keith M. Callenberg, Ph.D.

University of Pittsburgh, 2013

The ability of biological membranes to bend is critical to understanding the interaction

between proteins and the lipid bilayer. Experimental and computational studies have

shown that the membrane can bend to expose charged and polar residues to the lipid

headgroups and water, greatly reducing the cost of protein insertion. However, current

computational approaches are poorly equipped to accurately model such deformation;

atomistic simulations often do not reach the time-scale necessary to observe large-scale

rearrangement, and continuum approaches assume a flat, rigid bilayer. In this thesis we

present an efficient computational model of a deformable membrane for probing these

interactions with elasticity theory and continuum electrostatics.

To validate the model, we first investigate the insertion of three membrane proteins and

three aqueous proteins. The model finds the membrane proteins and aqueous proteins

stable and unstable in the membrane, respectively. We also investigate the sensitivity

of these predictions to changes in several key parameters.

The model is then applied to interactions between the membrane and the voltage sensor

segments of voltage-gated potassium channels. Despite their high numbers of basic

residues, experiments have shown that voltage sensors can be stably accommodated

in the membrane. For simple continuum electrostatics approaches that assume a flat

membrane, the penalty of inserting these charged residues would seem to prohibit voltage

sensor insertion. However, in our method the membrane deforms to enable interaction

between solvent and the charged residues. Our calculations predict that the highly

charged S4 helices of several potassium channels are in fact stable in the membrane, in

accord with experimental observations.

Experimental and computational evidence has shown that the cost for inserting multiple

charged amino acids into the membrane is not additive; it is not as costly to insert a

second charge once a first has already been inserted. Our model reflects this phenomenon

and provides a simple mechanical explanation linked to membrane deformation.

We additionally consider the energetics of passive ion penetration into the membrane

from bulk solvent. We use coarse-grained molecular dynamics to guide our input pa-

rameters and show that ion permeation energy profiles agree with atomistic simulations

when membrane bending is included.

ii



Acknowledgements

I would like to thank my advisor for teaching me to think scientifically, my parents for

their love and support, and my wife and son for sharing the beautiful ups and downs of

every day with me.

I dedicate this work to my son, Michael Augustine.

iii



Contents

Abstract ii

Acknowledgements iii

List of Figures vii

List of Tables ix

1 Introduction 1

1.1 Background and motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 A brief history of continuum models for studying the interaction of ions
and proteins with the membrane . . . . . . . . . . . . . . . . . . . . . . . 3

1.3 Outline of this thesis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2 A computational model for predicting the stability of proteins in the
membrane: validation and analysis 6

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.2 Theory and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.1 Elastic energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.2.2 Electrostatic energy . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.3 Nonpolar energy . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.4 Preparation of protein structures . . . . . . . . . . . . . . . . . . . 11

2.2.5 Determining the inner radius . . . . . . . . . . . . . . . . . . . . . 12

2.2.6 Identifying optimal protein-membrane contact shapes . . . . . . . 12

2.2.7 Contact slope . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

2.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.3.1 Elastostatics: membrane stiffness regulates insertion . . . . . . . . 14

2.3.2 Electrostatics: influence of protein dielectric . . . . . . . . . . . . . 16

2.3.3 Electrostatics: influence of headgroup dielectric . . . . . . . . . . . 17

2.3.4 Nonpolar models . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3 Membrane bending is critical for the stability of voltage sensor seg-
ments in the membrane 21

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

iv



Table of Contents v

3.2 Materials and Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.1 Theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.2.2 Construction of Transmembrane Segments . . . . . . . . . . . . . . 26

3.2.3 Search Algorithm for Identifying Optimal Boundary Conditions . . 27

3.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3.1 Our Model Captures Large-scale Membrane Rearrangements . . . 28

3.3.2 Predicting Optimal Membrane Thickness for a Mechanosensitive
Channel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3.3 Amino Acid Insertion Energies Are Not Additive . . . . . . . . . . 32

3.3.4 Some Voltage Sensor Segments Are Stable In the Membrane . . . . 34

3.3.5 Membrane Protein Stability Depends on Bilayer Stiffness . . . . . 37

3.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4 Continuum approaches to understanding ion and peptide interactions
with the membrane 41

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

4.2.1 Description of the Continuum Model . . . . . . . . . . . . . . . . . 44

4.2.2 Coarse-Grained Simulations . . . . . . . . . . . . . . . . . . . . . . 48

4.2.3 Systems Setups and Parameters . . . . . . . . . . . . . . . . . . . . 48

4.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

4.3.1 Using coarse-grained simulations to tune the continuum model . . 50

4.3.2 Ion free energy profiles from continuum model match profiles from
molecular simulations . . . . . . . . . . . . . . . . . . . . . . . . . 53

4.3.3 Permeation barriers increase with increased membrane thickness . 55

4.3.4 The nature of the transition state for ion and small molecule
permeation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

4.3.5 Large scale membrane deformations are not always observed in
coarse-grained simulations . . . . . . . . . . . . . . . . . . . . . . . 59

4.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5 APBSmem: A Graphical Interface for Electrostatic Calculations at the
Membrane 66

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.1 User interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

5.2.2 Membrane potential boundary conditions . . . . . . . . . . . . . . 73

5.2.3 Addition of the membrane . . . . . . . . . . . . . . . . . . . . . . . 75

5.2.4 CASE I: Protein Solvation . . . . . . . . . . . . . . . . . . . . . . . 77

5.2.5 CASE II: Ion Solvation . . . . . . . . . . . . . . . . . . . . . . . . 78

5.2.6 CASE III: Gating Charge . . . . . . . . . . . . . . . . . . . . . . . 82

5.3 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

6 Conclusion 86

6.1 Future Directions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

A Supplemental material for Chapter 3 90



Table of Contents vi

A.1 Search strategies . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

A.2 Comparison to existing residue insertion scales . . . . . . . . . . . . . . . 92

A.3 Context dependence of hydrophobicity scales . . . . . . . . . . . . . . . . 93

A.4 Comparison with Generalized Born . . . . . . . . . . . . . . . . . . . . . . 94

Bibliography 96



List of Figures

2.1 Geometry of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.2 Determining the effective radius of the protein. . . . . . . . . . . . . . . . 13

2.3 Optimal membrane deformation for 3 aqueous proteins (top row) and 3
membrane proteins (bottom row). . . . . . . . . . . . . . . . . . . . . . . 15

2.4 Increasing protein dielectric (εp) makes water soluble proteins stable in
the membrane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Geometry of the system. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.2 Algorithm for identifying the membrane shape with the lowest insertion
energy. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.3 Translation of a hydrophobic WALP peptide across the membrane. . . . . 29

3.4 Optimization of membrane thickness for a mechanosensitive channel. . . . 31

3.5 Membrane bending stabilizes the insertion of voltage sensor S4 segments
in the membrane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Protein stability depends on membrane stiffness. . . . . . . . . . . . . . . 38

4.1 Geometry of the system in the continuum model. . . . . . . . . . . . . . . 46

4.2 Continuum membrane bending is qualitatively similar to deformations
observed in coarse-grained simulations. . . . . . . . . . . . . . . . . . . . . 51

4.3 Free energy profiles along the transmembrane coordinate for a cation and
an anion. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

4.4 Free energy profiles for K+ penetration into bilayers of different thicknesses. 57

4.5 Comparison of coarse-grained and continuum model treatment of the
transition state for ion permeation. . . . . . . . . . . . . . . . . . . . . . . 58

4.6 Free energy of ROP5 binding to a membrane. . . . . . . . . . . . . . . . . 61

4.7 Large scale deformations are observed in large coarse-grained simulations
but not small systems. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.1 A screenshot of the user interface. . . . . . . . . . . . . . . . . . . . . . . 69

5.2 Convergence properties of test cases I-III. . . . . . . . . . . . . . . . . . . 70

5.3 Top view of the KcsA channel (green) and the ε = 2.01 isocontour high-
lighting the membrane interface (gray). . . . . . . . . . . . . . . . . . . . 72

5.4 A cartoon representation of the distinct dielectric environments in each
calculation. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

5.5 States used to compute protein solvation energies. . . . . . . . . . . . . . 78

5.6 States used to compute ion solvation energies. . . . . . . . . . . . . . . . . 81

5.7 Hypothetical gating motion involving movement of N-terminal helix (green)
out of the pore and into the outer bath. . . . . . . . . . . . . . . . . . . . 83

vii



List of Figures viii

6.1 Finite element mesh of the membrane surrounding a large mechanosensi-
tive channel. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

6.2 Most probable rotamer conformations of an arginine side-chain in a trans-
membrane alpha helix. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88

6.3 Model of SNARE-mediated and parainfluenza virus 5 fusion from [1]. . . . 89

A.1 Three different search strategies. We attempted to minimize the total
insertion energy of a hydrophobic helix with a central charged lysine. . . . 91

A.2 Biological hydrophobicity scale for inserting all natural amino acids (ex-
cept proline) in the center of a TM helix. . . . . . . . . . . . . . . . . . . 93



List of Tables

2.1 Base parameters for all calculations . . . . . . . . . . . . . . . . . . . . . . 9

2.2 Elastic membrane material properties . . . . . . . . . . . . . . . . . . . . 9

2.3 Predicted insertion energy for flexible and stiff membranes . . . . . . . . . 16

2.4 Decreasing headgroup dielectric decreases the stability of all proteins in
the membrane . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

2.5 Predicted insertion energies increase under an alternative nonpolar model 19

3.1 The insertion energy of charged residues is not additive. . . . . . . . . . . 33

3.2 Comparison of insertion energy values between our method and a Gener-
alized Born method [2]. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

4.1 Parameters for all continuum calculations . . . . . . . . . . . . . . . . . . 49

4.2 Elastic membrane material properties . . . . . . . . . . . . . . . . . . . . 50

5.1 Parameters for protein solvation CASE I . . . . . . . . . . . . . . . . . . . 79

5.2 Parameters for ion solvation free energy CASE II . . . . . . . . . . . . . . 80

5.3 Ion solvation free energy (kcal/mol) . . . . . . . . . . . . . . . . . . . . . 82

5.4 Parameters for gating charge calculation CASE III . . . . . . . . . . . . . 84

A.1 Electrostatics and system parameters for all calculations . . . . . . . . . . 95

ix



Chapter 1

Introduction

1.1 Background and motivation

Functionally, membranes separate the cell from its external environment. They delineate

organelles from the cytoplasm, and this compartmentalization is essential for carrying

out specialized chemistry in the cytoplasm and the lumen of the golgi, mitochondria,

endoplasmic recticulum, and other cellular spaces. Without the membrane, the cell

cannot survive. Indeed, the functional mechanism of many antimicrobial small molecules

and peptides is to open pores in the cell membrane that ultimately lead to rupture and

cell death.

However, compartmentalization is not all that membranes do; they serve as a platform

for the organization of the channels, transporters, and signaling membrane proteins

that control the flow of material and information from one side of the membrane to

the other. Membranes determine the nature of all communication that goes on between

the inside and the outside of the cell or organelle. The biological membrane is the

gatekeeper that directly or indirectly determines what can pass through. Also, most of

the fundamental biochemical functions of cells involve membranes at some point in their

arc, including: protein synthesis, DNA replication in prokaryotes, protein secretion, and

hormonal responses.

Compositionally, membranes are structured as bilayers, largely composed of amphipathic

lipid molecules. The term “amphipathic” means two natures, and indicates that lipids

typically feature a hydrophilic polar headgroup and a hydrophobic acyl tail. The

hydrophobic tails sequester away from water, creating a highly nonpolar environment in

the center of the membrane. However, biological membranes are more than just simple

lipids; membranes are teeming with diversity. Charged lipids, rafts, sterols, cytoskeletal

1



Chapter 1. Introduction 2

connection, and diverse proteins change the structure and behavior of the membrane.

This diversity comes about largely because of the broad range of functions performed

by the proteins embedded in the membrane.

There are a wide variety of important functions performed by proteins that live in the

membrane. Membrane receptor proteins respond to and transmit signals in and out of

the cell or organelle. Ion channels and transporters shuttle solutes across the membrane

that would otherwise rarely cross the hydrophobic membrane core. Membrane enzymes

such as oxidoreductases, transferases and hydrolases are another large class, along with

cell adhesion molecules that enable interaction between cells.

The lipid hydrocarbon tails create a highly hydrophobic membrane core that is in-

hospitable to charged and polar species. As a result, proteins that embed in the

membrane are generally structured to present nonpolar residues to the lipid acyl chains

and charged and polar residues to the lipid polar headgroups and water. There are

notable circumstances, however, in which charged molecules must pass through or reside

in the membrane for normal biological function. Indeed, many charged residues found

in transmembrane protein segments are evolutionarily conserved [3]. In particular, the

voltage sensor domains of voltage-gated potassium channels contain five to six charged

residues that are essential to channel opening and closing, and evidence suggests these

domains reside in the transmembrane region. Another interesting example is the HIV

TAT protein, which is known to cross membranes quickly despite its large number of

charged arginine residues [4].

Classic studies of the thermodynamic properties of amino acid analogs suggest that

65-80 kcal/mol of energy is required for charged residues to enter organic phases from

aqueous solution [5]. However, experiments harnessing the translocon [6] and outer

membrane proteins [7] have shown that membrane insertion energies for charged groups

are significantly lower. Molecular dynamics simulations propose that membrane bending

stabilizes charged residues by allowing water molecules access to the otherwise buried

charge [8, 9]. This is in agreement with experiments showing that the bilayer thins in

the presence of a charged voltage sensor domain and that the domain is hydrated in the

membrane [10]. The driving hypothesis of this thesis is that membrane bending plays a

central role in explaining the discrepancy between the behavior of the bulk matter and

what occurs in living systems.

How can we test whether membrane deformation is at the heart of these observations?

While experimental methods are ideal – they should always be considered the gold

standard – the scale of this question is small and requires precision. Experiments often

do not have the spatial or temporal resolution to distinguish what is happening at

the molecular level. To get at the heart of what is physically occurring, models and
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theory are needed to go hand-in-hand with experiment. Additionally, because of the

extreme diversity present in membranes and embedded proteins, some might question

the general applicability of results from any particular experimental protein-membrane

system. Experimental methods are also often costly and do not often scale well. For

these reasons, we have explored this question with a theoretical and computational

approach, backed by experimental observations whenever possible.

While molecular dynamics methodologies have been used to answer many important

biochemical and biophysical questions, they are unable to sample long enough to reach

equilibrium in many situations. This is especially relevant when considering conforma-

tional changes of large protein complexes in the membrane such as voltage-gated chan-

nels, and BAR domains that adhere to and induce large scale curvature. Correlated with

the sampling issue is the high computational expense of atomistic molecular dynamics.

Coarse-grained models have been developed to reduce the degrees of freedom, thereby

reducing the computational expense, but despite this, much of the same sampling issue

remains.

We therefore turn to continuum models which simplify these calculations by treating the

membrane and surrounding aqueous environment as continuous substances rather than

thousands of discrete particles. This dramatically reduces the number of calculations

that must be carried out for any given situation. In our model we focus on three

energy components: elasticity, electrostatics, and nonpolar solvation. Since membrane

bending is essential to our primary question, we need a model that allows for distortion

in the lipid bilayer; elasticity theory has been used for over 30 years to successfully

describe membrane shapes. Electrostatics is the primary energy opposing permeation,

as discussed above. Nonpolar water reorganization is an important driving force for the

folding of proteins, and it stabilizes molecules in the greasy interior of the membrane

away from water. In Chapter 2 and chapters that follow, we will clearly define the terms

in this model more precisely. In the rest of this chapter we will place our model in the

context of previous work, and then describe the general outline of the dissertation.

1.2 A brief history of continuum models for studying the

interaction of ions and proteins with the membrane

From the electrostatics perspective, Parsegian pioneered analytical calculations of charged

species in membranes with a study of an ion passing through a low-dielectric slab [11].

Ben-Tal and co-workers, as well as Roux, built upon this theory to propose models

of peptide association that were more complex and required numerics [12, 13]. These

studies introduced a higher level of detail with all-atom representations of the proteins.
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Classical elastostatics were initially proposed by Helfrich to describe the equilibrium

shape of the membrane [14]. This theory was first applied to radially symmetric protein

inclusions by Huang [15] and expanded to include mean bending, bilayer compression,

and surface tension by Andersen and colleagues [16]. Elastostatics, along with continuum

field theories, were later used to develop models of protein-protein interactions mediated

by the membrane [17–19]. These models could all be solved analytically because they

did not treat the protein in atomic detail, and they ignored many of the other molecular

forces such as hydrophobic forces and electrostatics.

More recently, the Mosberg Lab developed a continuum model for investigating the

orientation and stability of proteins in the membrane called Positioning of Proteins

in Membranes (PPM) [20]. The PPM model is largely based on the calculation of

solvent accessible surface area, parameterized using values from the partitioning of small

molecules between aqueous and organic phases. The computational efficiency of PPM

has led to its application to nearly all publicly available membrane protein structures,

catalogued in a useful online database named Orientations of Proteins in Membranes

(OPM) [21].

Up to this point, no studies had yet integrated membrane deformation with continuum

electrostatics. The Grabe lab was the first to do so in its development of a model

that incorporated elasticity theory from Helfrich with Poisson-Boltzmann electrostatics

and a nonpolar solvation term [22]. Following this, the Weinstein lab developed a

multiscale method that combined MD simulations with an elastic representation of

the membrane [23–25]. In their model, atomistic MD simulations are performed and

time-averaged in order to set the protein-membrane contact boundary in the continuum

representation. The Weinstein lab applies this model to quantify the energetics of

membrane deformations presented by the simulations.

While these recent models from the Mosberg and Weinstein labs have demonstrated util-

ity for several important applications, they are not particularly well-suited for answering

whether membrane deformation is essential for charge insertion. In the Weinstein model,

the free energy of insertion is given only by a difference in accessible surface area. While

the surface area is parameterized to effectively minimize hydrophobic mismatch and

expose polar residues to water, the theory by which it does so is relatively unproven.

The Weinstein model additionally requires MD simulations, reducing its computational

efficiency. On the other hand, the PPM model does not require external simulations and

is highly efficient. The authors of the PPM model have also presented some rigorous

validation of their method based on the predicted hydrophobic thickness compared

to experimental measurements. However, the PPM model is based on a rigid slab
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membrane that cannot deform and react to the presence of the protein as a biological

membrane can.

We present in this thesis a method that builds upon the earlier work in the Grabe lab that

utilizes elasticity theory, continuum electrostatics, and a term for nonpolar solvation. In

the extended model, the calculation of these energy terms is uniquely coupled with a

search algorithm to optimize the membrane shape surrounding a transmembrane protein.

This development enables us to probe and explore a much broader range of biological

systems as shown in the chapters that follow.

1.3 Outline of this thesis

This dissertation is organized as follows:

Chapter 2 introduces the model and demonstrates its ability to discriminate between

water soluble and membrane proteins. In this chapter we also investigate the sensitivity

of the model to several key parameters.

Chapter 3 investigates the insertion of isolated voltage sensor segments of voltage-gated

potassium channels. It also applies the model to permeation of a hydrophobic peptide,

and the identification of the hydrophobic segment of a large ion channel. Additionally,

Chapter 3 provides a simple mechanical basis for the non-additivity of charge insertion

into the membrane.

Chapter 4 discusses the passive permeation of ions through the membrane and shows

that the results of our model based on continuum theory are in good agreement with

results from coarse-grained and atomistic molecular dynamics.

Chapter 5 presents the electrostatics underpinning our model and a freely distributed,

open source graphical interface for performing these calculations on a flat membrane.

Finally, Chapter 6 summarizes our results and discusses several future directions for

extending the numerics of the model and applying it to new biological problems.



Chapter 2

A computational model for

predicting the stability of

proteins in the membrane:

validation and analysis

2.1 Introduction

There is a need for quantitative models that predict the stability and interaction of

membrane proteins with the membrane. There is a need at not only a fundamental

level so that we have a deeper and more accurate understanding of membrane protein

interactions with the membrane, but also from a practical perspective. Molecular

dynamics cannot sample long enough to achieve true equilibrium. Coarse-grained models

are a good start, but they still have sampling issues and they must be parameterized.

On the other hand, continuum methods are fast and they have been used for a very long

time, so they have been parameterized to some extent.

The goal of this chapter is twofold: 1) we introduce the theoretical framework for our

continuum model of protein interactions with the membrane and 2) we test the model

against a set of known water soluble and known membrane proteins. We apply the

model to a range of biological systems in the following chapters, but here we focus on

the theory and validation of the model by identifying the key parameters, examining

how the predictions depend on these key parameters, and comparing the model with

test systems.

6
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As we will discuss, there are three energetic terms in our model. The first term, and

the one that is unique to our model, is the elastostatic treatment of the membrane.

The second term is the continuum electrostatics for which we use Poisson-Boltzmann

theory. Finally, we also include a nonpolar solvation energy term. While Poisson-

Boltzmann theory is the gold standard for continuum electrostatics, there is not a

standard, well-accepted nonpolar energy formulation when considering the partitioning

of large molecules and proteins into membranes. For this reason we explore the impact

of this term by comparing the results from two different nonpolar models.

2.2 Theory and Methods

We employ a physics-based continuum model to investigate the stability of proteins in

the membrane. We model the total insertion energy, ∆Gtotal, as the sum of three energy

components:

∆Gtotal = ∆Gmem + ∆Gelec + ∆Gnp (2.1)

where the first term on the right-hand side (∆Gmem) is the energy associated with

distortion in the membrane caused by embedding the protein, the second term (∆Gelec)

is the electrostatic cost required to move the charged protein from solution into the low-

dielectric environment of the membrane, and the final term (∆Gnp) is the nonpolar or

hydrophobic energy gained by removing portions of the protein surface from water and

burying them in the membrane. All energies are calculated with respect to the protein

free in solution far from an unstressed membrane; negative values therefore indicate

stabilization in the membrane.

2.2.1 Elastic energy

Membranes are made up of lipids that have a headgroup that interacts with water and

a nonpolar tail that is sequestered away from the water. The shape and energy of the

membrane in our model are determined using linear elasticity theory, in which each

leaflet is described by a thin surface in polar coordinates, u(r,θ), illustrated in Fig. 2.1,

with material properties that can be tuned to the membrane of interest. The total

membrane deformation energy is given by:
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Figure 2.1: Geometry of the system.

A) Cross section showing membrane distortions in the upper and lower leaflets. Solid
red lines indicate the membrane-water interfaces. Dashed black lines indicate the
equilibrium heights of the membrane leaflets and the midplane at z=0. The equilibrium
bilayer thickness is L0. B) The protein-membrane contact angle is proportional to
the height deviation from equilibrium. C) The protein (gray) is shown in a 3-D
representation with red curves indicating the height of the upper and lower leaflets
as they contact the protein transmembrane segment. Black nodes on these curves are
used as the boundary conditions for solving the elasticity equation. The numeric values
of these nodes are optimized by the search algorithm. 2-D representation of upper and

lower contact curves are shown on the right.

∆Gmem =
1

2

∫
Ω

Ka

L2
0

(u− − u+)2 + . . .

Kc

2

(
(∇2u−)2 + (∇2u+)2

)
+ . . .

α

2

(
(∇u−)2 + (∇u+)2

)
dΩ, (2.2)

where u+ is the shape of the upper leaflet and u− is the shape of the lower leaflet; L0 is

the equilibrium thickness of the membrane, Kc is the membrane bending energy, α is the

surface tension, and Ka is the compression modulus. The energy of the upper and lower

leaflets are coupled through the compression modulus. The functional derivative of Eq.

2.2 with respect to variations in u+ and u− gives the partial differential equation (PDE)

that determines the shapes of each leaflet. Each surface obeys the following PDE:
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Table 2.1: Base parameters for all calculations

Parameter Value

Electrostatics Grid Dimensions 161 × 161 × 161 Å3

Counter-Ions 0.1 M symmetric salt
Protein Dielectric 2.0
Membrane Dielectric 2.0
Headgroup Dielectric 80.0
Solvent Dielectric 80.0
Solvent Probe Radius 1.4 Å
Surface Sphere Density 10.0 grid points/Å2

Temperature 298.15 K
Membrane Thickness See Table 2.2
Headgroup Thickness 8.0 Å
Bending modulus (Kc) See Table 2.2
Compression modulus (Ka) See Table 2.2
Surface tension (α) 3.00 × 10−13 NÅ

Table 2.2: Elastic membrane material properties

Lipid type Thickness Ka Kc

GMO [16] 42.0 Å 1.425 × 10−11 N/Å 2.85 × 10−10 NÅ
POPC [26] 43.1 Å 2.30 × 10−11 N/Å 8.5 × 10−10 NÅ

∇4u+ − γ∇2u+ + β(u+ − u−) = 0

∇4u− − γ∇2u− + β(u− − u+) = 0. (2.3)

where γ = α/Kc and β = 2Ka/(L
2
0Kc). The last term on the left-hand side of each

equation couples the upper and lower leaflets. This coupled set of fourth-order equations

requires two boundary conditions to be specified on the inner boundary, where the bilayer

contacts the protein, and at the outer boundary, far from the protein. We assume that

the membrane is flat at its equilibrium length, L0, far from the protein. We solve this

equation for u+(r,θ) and u−(r,θ) together applying height and contact angle boundary

conditions at the membrane-protein interface as described below and shown in Fig.

2.1B. After solving for u+(r,θ) and u−(r,θ), the total membrane energy is determined

by carrying out the integral in Eq. 2.2.

Elastic properties In the case where the membrane must bend to incorporate a protein,

you can imagine that the elastic properties of the membrane will drastically affect

the protein stability. Elastic properties including the compression and bending moduli
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were taken from experimental values for glyceryl monooleate (GMO) [16] and palmitoy-

loleoylphosphatidylcholine (POPC) membranes [26]. Membrane material properties are

shown in Table 2.2. The total bilayer thickness was calculated by taking the experimental

DHH value that represents the phosphate-phosphate distance and adding 16 Å for the

headgroup thickness [27].

2.2.2 Electrostatic energy

The electrostatic energy of the protein, Gelec, is highly dependent on the local dielectric

environment, and there is a large energetic cost for moving charged and polar residues

into the membrane [28]. We determine the electrostatic potential, Φ, by solving the

Poisson-Boltzmann equation:

−∇ · [ε(r)∇φ(r)] + κ2(r)sinh[φ(r)] =
e

kBT
4πρ(r), (2.4)

where φ = Φ/kBT is the reduced electrostatic potential, κ is the Debye-Huckel screening

coefficient to account for ionic shielding, ε is the spatially-dependent dielectric constant,

e is the electron charge and ρ is the charge density within the protein. The total

electrostatic energy is then given by:

Gelec =

∫
Φ ρ dx dy dz. (2.5)

In solution, ε was set to the value of water for all points outside of the protein molecular

surface while ε is modified to take on values corresponding to the membrane for all

points between the upper surface, u+, and lower surface, u−, determined from solving

Eq. 2.2. Additionally, κ is set to zero for points between u+ and u− indicating a lack

of ion penetration into the membrane. ∆Gelec is then given by the difference between

the electrostatic energies calculated in solution and in the presence of the membrane. A

detailed description of the manipulations to the microenvironment of the protein in the

presence of the membrane can be found in Chapter 5 and [29].

2.2.3 Nonpolar energy

There is an energetic penalty for placing solutes in water due to the disruption of the

water hydrogen bond network. We model this penalty by assuming that the energy

difference of the protein in solution compared to the protein in the membrane, ∆Gnp,
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is proportional to the difference in the protein’s solvent accessible surface area (SASA)

between solution and the membrane [30]:

∆Gnp = a · (Amem −Asol), (2.6)

where Amem is the protein SASA in the membrane, Asol is the total protein SASA,

and a = 0.028 kcal/mol·Å2
. The a constant has been determined based on the parti-

tioning of small molecules between aqueous and organic phases [31]. SASA values are

calculated with a modified Shrake-Rupley algorithm [32] using the solvent-accessible

surface representation of the protein with a 1.4 Å water probe radius. In the presence

of the membrane, if the point on the surface of the protein lies between the upper, u+,

and lower, u−, leaflets then it is considered occluded and does not contribute to Amem.

MATLAB’s cubic interpolation function was used to navigate between the position of

the point on the protein surface and the grid points describing the upper and lower

membrane surfaces.

Alternative nonpolar method We implemented a nonpolar model similar to the Posi-

tioning of Proteins in Membranes (PPM) method developed by Lomize and colleagues

[20]. The PPM method calculates the transfer free energy for moving atoms into the

membrane using a SASA-based model:

∆Gtransfer =
N∑
i=1

ASAi σi f(zi) (2.7)

where N is the number of atoms in the protein, σi is the atomic solvation parameter that

varies based on atom type, ASA is the solvent accessible surface area, and f(z) is the

water concentration gradient at the z-position of the atom. Several sets of σ parameters

were presented and tested by the PPM model [20]. We used the σ parameters derived

from the decadiene experiments [33]. The water concentration gradient f is used to

scale the energetic effect of atoms based on their depth in the membrane. We did not

include f in our implementation because the depth dependence it reproduces is already

accounted for in our model by the electrostatic energy.

2.2.4 Preparation of protein structures

Protein X-ray structures were downloaded from the Protein Data Bank. All non-

protein atoms such as waters and ligands were removed from the structure. PDB2PQR

version 1.8 was used with the CHARMM forcefield to assign partial charges and radii
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[34, 35]. Finally, all proteins were oriented in the membrane using the Auto-Orient

function of APBSmem [29]. The Auto-Orient feature calculates the principal axes of

the molecule and aligns the longest axis to the Z normal, perpendicular to the mem-

brane. This assumption was appropriate for the membrane proteins as this orientation

minimizes hydrophobic mismatch. For the aqueous proteins it is less clear that lower

energy transmembrane orientations do not exist. However, aligning the longest axis

perpendicular to the membrane plane presented the least amount of charged residues to

the hydrophobic membrane core compared to other fully transmembrane orientations.

We therefore believe these are the lowest energy transmembrane orientations for these

aqueous proteins.

2.2.5 Determining the inner radius

In coupling the elastic, nonpolar, and electrostatic energy components it is necessary

to define the inner radius, r0, at which the membrane contacts the protein. A method,

illustrated in Figure 2.2, was developed to automatically calculate the radius for the

cylindrical approximation of the protein. Briefly, the van der waals radii of all protein

atoms are first projected onto a cartesian grid in the X-Y plane. Grid points on the outer

boundary of the protein are then determined using a custom edge detection algorithm.

The algorithm first identifies an arbitrary starting point on the outer boundary and then

follows the boundary in a clockwise direction until the first point is encountered again.

The distance from the origin is then calculated for all boundary points, and finally the

median distance from the origin was selected as the inner radius r0 of the membrane

domain.

2.2.6 Identifying optimal protein-membrane contact shapes

To optimize the boundary conditions at the protein-membrane interface, u(r0, θ), with

respect to the minimum insertion energy, ∆Gtotal, we have coupled the insertion energy

calculation to a search algorithm. We previously used Powell’s method which is a

conjugate gradient-based algorithm that does not require the calculation of derivatives

[36]. We show in Chapter 3 and [37] that Powell’s method performs well under several

difficult situations including finding the lowest energy state for a peptide translated

through the membrane. In Appendix A we also discuss several search strategies that

speed up the search. However, conjugate gradient-based methods such as Powell’s are

best suited for local optimization, and have difficulty trouble escaping local minima. We

have therefore adjusted our algorithm to begin with a simulated annealing approach for

global optimization [38]. Once the simulated annealing method has reached a tolerance
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Figure 2.2: Determining the effective radius of the protein.

The protein (green) is projected onto the X-Y plane. Grid points on the protein’s outer
boundary (purple) are determined using an edge detection algorithm. The distances
from all boundary points to the origin (red dot) are calculated and the median value is

taken as the inner radius, r0.

threshold, a trust region algorithm is used for local refinement of the boundary curve

[39]. We find empirically that while this hybrid method does not always yield the optimal

solution quickest, it is more sure to do so than Powell’s method alone.

2.2.7 Contact slope

The slope at which the membrane contacts the protein, du
dr (shown in Fig. 2.1), is also

an important boundary condition that needs to be optimized. In order to avoid adding

additional dimensions to our search space, we began each search by first optimizing

the contact boundary curve for the upper and lower leaflets for each protein-membrane

system while assuming a zero contact slope. Contact angle searches were then carried out

to identify the optimal slope. Finally, the contact boundary curve was subsequently re-

optimized with the optimal contact slope. To validate this approximation we performed

several searches that included the contact slope as an extra dimension in the search and

found that the total insertion energy of the approximation was always within 2 kcal/mol.
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2.3 Results

The model was tested on three water soluble proteins and three membrane proteins.

Several criteria were used to select protein structure candidates. First, since our model

utilizes atomic detail for the electrostatic and nonpolar energy calculations, a high

resolution x-ray structure is essential. Second, the protein must be definitively aqueous

or definitively transmembrane. Some water soluble proteins are known to anchor,

permeate, or otherwise interact with membranes. We avoided such structures in order

to clearly separate the two classes of structures. Finally, the overall shape of the protein

structure must be roughly cylindrical to be compatible with our current numeric method.

This requirement comes partially from designing the current implementation of our

elastic solver for polar coordinates. Additionally, and perhaps more importantly, since

the two leaflets of the membrane are coupled through the compression term (see equation

2.3), all points in the upper leaflet must be matched by a point in the lower leaflet.

Therefore, the shape of the protein at the upper leaflet should be fairly similar to the

shape at the lower leaflet. Cylindrical geometry satisfies both of these conditions.

The three aqueous proteins we chose were chymotrypsin, insulin, and green fluorescent

protein (GFP). Chymotrypsin is a serine protease located in the digestive system of

vertebrates. The hormone insulin is a key component in the regulation of carbohydrate

and fat metabolism. GFP is a beta-barrel protein derived from jellyfish that emits green

fluorescence when exposed to ultraviolet light. A literature search was performed to

confirm that these proteins are not known to independently interact with the membrane.

The three membrane proteins we chose were outer membrane protein A (OmpA), voltage-

dependent anion channel (VDAC), and bacteriorhodopsin. OmpA is a porin found in

the outer membrane of gram negative bacteria. VDAC is an ion channel with a large

pore that localizes to the outer mitochondrial membrane. Bacteriorhodopsin is a proton

pump found in archaebacteria that utilizes light energy to transfer protons across the

membrane.

2.3.1 Elastostatics: membrane stiffness regulates insertion

We started by exploring how changes to membrane stiffness influenced protein stability

in the membrane. Glyceryl monooleate (GMO) is a synthetic compound that forms

highly flexible membranes. Although it is not found in nature, GMO proved to be

essential for early studies in membrane biophysics by providing a robust, solvent-free

membrane system [40]. Palmitoyloleoylphosphatidylcholine (POPC) is a standard lipid

found in eukaryotic cells that forms stiffer, physiologically-relevant membranes.
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Figure 2.3: Optimal membrane deformation for 3 aqueous proteins (top row) and 3
membrane proteins (bottom row).

The upper and lower leaflets of the bilayer are represented as gray surfaces while the
membrane headgroup-core interfaces are depicted as transparent blue surfaces. The
bilayer deforms only slightly for the membrane proteins, while dramatic membrane
deformation is predicted for the aqueous proteins. The “pinched” state observed in the
water soluble proteins minimizes the amount of polar and charged residues exposed to
the low dielectric of the membrane core. Proteins are displayed in a molecular surface
representation and colored according to residue type: basic residues in blue, acidic in

red, polar in green, and nonpolar in white.

Here we compare results from calculations using the GMO parameters to those of a

POPC bilayer. Calculations were carried out to optimize the contact boundary curve

for all 6 proteins in both membrane types and we present the total insertion energies in

Table 2.3. We find that for the stiffer POPC membrane, our model is able to discriminate

membrane proteins from aqueous proteins. The model predicts a positive transfer energy

for inserting soluble proteins into the membrane, but the membrane protein energy

values are all negative, indicating greater stability in the membrane. For the membrane

proteins, since very little bending occurs (Figure 2.3), there is little difference in energy

between the two membrane types. However, dramatic bending is observed in the case

of the aqueous proteins. This extreme deformation occurs to expose the numerous

charged and polar residues on the soluble protein surfaces to water. There is a large

elastic penalty for such significant bending, however, and the insertion energy is therefore

significantly increased with the stiff POPC membrane parameters.

We further explore in Section 3.3.5 and [37] how the stiffness of the bilayer can have a

dramatic effect on the stability of peptides in the membrane. We show that an alpha

helix can be stable in a membrane with elastic properties determined from flexible GMO

membranes, yet unstable with a modest increase in membrane stiffness. In that case we

held the bending modulus, Kc, constant and modified only the compression modulus,

Ka, which is appropriate for an increased concentration in membrane-stiffening molecules

such as cholesterol.
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Table 2.3: Predicted insertion energy for flexible and stiff membranes

Protein (PDB ID) GMO (kcal/mol) POPC* (kcal/mol)

Chymotrypsin (4CHA) -59.7 22.1
Insulin (4INS) -21.7 14.9
GFP (1GFL) -34.7 8.8
OmpA (1QJP) -113.7 -110.9
VDAC (3EMN) -170.2 -169.1
Bacteriorhodopsin (1M0L) -296.2 -295.6

Both aqueous and membrane proteins are stable in the membrane when flexible GMO
membrane properties are used. When elastic properties from stiffer POPC bilayers
are used, the water soluble proteins are predicted to be marginally unstable in the
membrane. Water soluble proteins are displayed in italics. The asterisk indicates the

base parameter value used in other calculations when not specified.

2.3.2 Electrostatics: influence of protein dielectric

The use of the continuum Poisson-Boltzmann equation is used extensively throughout

protein biophysics. However, there is a significant amount of debate over the appropriate

dielectric value for the interior of the protein [41]. A dielectric range of 2 to 10 is often

discussed as appropriate, though some work has shown this may be even higher [42]. It

is certainly an approximation to assign a single value to the heterogeneous environment

of the protein, and several studies indicate that the protein dielectric should actually

vary throughout the protein [41]. This has led to several groups that have modeled

a discretely varying dielectric in the protein, and others that have developed methods

which allow for a dielectric gradient inside the protein [43]. It is also worth noting

that different values have been suggested for different kinds of calculations such as pKa,

solvation, or ligand binding. Following work by Sitkoff and co-workers, we have chosen

a protein dielectric of 2 as our standard value [44].

We investigated the sensitivity of our model’s predictions to the protein dielectric. We

chose two water soluble proteins, chymotrypsin and insulin, and for these explored a

range of protein dielectrics up to 10. For each dielectric value, we optimized the boundary

conditions to identify the lowest energy membrane deformation. As we changed the

protein dielectric, the standard model parameters (Table 2.1) with POPC membrane

properties were left unchanged to isolate the influence of the modified dielectric. In

Figure 2.4 we show that although both of these aqueous proteins are unstable in the

membrane with our standard value of 2, our model predicts that chymotrypsin is stable

in the membrane for protein dielectrics 8 and greater.
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Figure 2.4: Increasing protein dielectric (εp) makes water soluble proteins stable in
the membrane.

The search algorithm was carried out on the aqueous proteins insulin (black circles),
trypsin (red squares), and GFP (blue triangles) for protein dielectrics from ranging 2
to 10. Insertion energy values decrease as εp increases. While none are stable using
our standard value εp = 2, all 3 proteins become stable in the membrane over this
range. The values at εp = 2 correspond to the energies reported in the asterisk marked

columns in Tables 2.3, 2.4, and 2.5.

2.3.3 Electrostatics: influence of headgroup dielectric

The electrostatic energy is a dominant term when considering the total insertion energy

of protein into the membrane. While the Poisson-Boltzmann equation is an accepted

model for calculating this energy, there are assumptions that must be made regarding

the dielectric value of the lipid environment and the protein. While many studies agree

that the core of the membrane is best represented by a low dielectric of 1 to 2, there is

some debate about how best to model the headgroup region [45].

We model the headgroup region separately from the core of the bilayer as an 8 Å thick

region of dielectric 80 and counter-ion accessibility set to zero [27, 46]. Similar to the

core of the membrane, protein atoms buried in this region are not considered solvent

accessible. Together, these parameters create a region that is ideal for large residues such

as tryptophan that have been shown to anchor proteins in the membrane. However, a

headgroup dielectric of 80, the same as the solvent dielectric, may over-stabilize the

insertion of charged moieties into this region. We therefore investigated the effect of

decreasing the headgroup dielectric to 40 in our model (Table 2.4). As expected, all

proteins were destabilized by the decrease in εhg. The membrane proteins remained very
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Table 2.4: Decreasing headgroup dielectric decreases the stability of all proteins in
the membrane

Protein (PDB ID) εhg = 40 (kcal/mol) εhg = 80* (kcal/mol)

Chymotrypsin (4CHA) 69.9 22.1
Insulin (4INS) 32.0 14.9
GFP (1GFL) 36.2 8.9
OmpA (1QJP) -89.3 -110.9
VDAC (3EMN) -145.2 -169.1
Bacteriorhodopsin (1M0L) -252.0 -295.6

Water soluble proteins are displayed in italics. The asterisk indicates the base parameter
value used in other calculations when not specified.

stable in the membrane, and the water soluble proteins became more clearly unstable in

the membrane. Interestingly, the difference between the least stable membrane protein

and the most stable aqueous protein was slightly increased by the decrease in headgroup

dielectric.

2.3.4 Nonpolar models

A key aspect of our model is the nonpolar energy component, which can be quite large.

Many studies have focused on this energy term for small molecules, e.g. [44, 47],

and significant work has been done to achieve greater accuracy by including volume

dispersion terms [48]. However this work has largely been focused on small molecules

and peptides, and it is generally agreed that the area term dominates for large solute

sizes [48, 49]. Very few studies have explored the nonpolar energy associated with moving

large molecules, proteins, or protein complexes into the membrane.

We implemented a nonpolar solvation energy model based on the Positioning of Proteins

in Membranes (PPM) model from Lomize and colleagues that takes the atom type into

account when calculating the nonpolar energy [20]. The rationale for this heterogeneous

treatment of the exposed surface area is that some atoms placed in water will disrupt

the bulk water hydrogen bond network more than others. For example, carbon atoms

are simply disruptive to the hydrogen bond network, while nitrogen atoms possess some

propensity to form hydrogen bonds with water molecules. Under the PPM model, there

is a positive nonpolar energy associated with moving a nitrogen atom into the membrane,

and a negative energy for moving a carbon atom into the membrane. In contrast, the

surface area of all atoms in our standard nonpolar model is considered equally disruptive.

We therefore expect the PPM model to yield higher nonpolar energies. More details

about the model and our implementation can be found in Section 2.2.3.
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Table 2.5: Predicted insertion energies increase under an alternative nonpolar model

Protein (PDB ID) Standard nonpolar* PPM [20] PPM, εp = 10

Chymotrypsin (4CHA) 22.1 186.3 172.8
Insulin (4INS) 14.9 91.3 79.0
GFP (1GFL) 8.8 138.2 105.8
OmpA (1QJP) -110.9 15.4 -17.2
VDAC (3EMN) -170.2 20.3 -29.0
Bacteriorhodopsin (1M0L) -296.2 -23.2 -110.6

The atomic solvation parameter (PPM) method leads to higher insertion energies for
all six proteins. Water soluble proteins are displayed in italics. All energies in kcal/mol.
The asterisk indicates the base parameter used in all other calculations unless otherwise

specified.

We carried out calculations using the PPM method as a replacement for our standard

nonpolar method and found that the insertion energies for these proteins were all greater

when using the PPM model (Table 2.5). While all of the aqueous proteins remained

unstable in the membrane, two of the membrane proteins were also predicted to be

unstable under the PPM model. Since we found in Section 2.3.2 that modest increases

in protein dielectric can stabilize insertion (Fig. 2.4), we then performed a set of

calculations in which we combined the PPM nonpolar method with a protein dielectric of

10. Under this combination, all of the membrane proteins were stable in the membrane,

while none of the aqueous proteins were predicted to be stable. Interestingly, for all three

methods, the insertion energies between the most stable aqueous protein (GFP) and the

least stable membrane protein (OmpA) is within ∼3 kcal/mol. This highlights the

importance of the absolute values of these insertion energies since the relative energies

do not seem to vary between these three models.

2.4 Discussion

We applied our method to a set of three membrane proteins and three water soluble

protein structures. Our model predicted that all membrane proteins are stable in the

membrane while the aqueous proteins are not. The ability of our model to discriminate

membrane proteins from soluble proteins is crucial as we extend our method to more

controversial proteins in later chapters. There was a clear difference between the two sets

of proteins we examined in this chapter. The transmembrane portions of the membrane

proteins were dominated by nonpolar residues, while the entire surface of each aqueous

proteins was covered with charged and polar amino acids. However, some proteins do

not neatly fit into these categories. For instance, there are many membrane proteins

that bear evolutionarily conserved charged and polar residues in their transmembrane
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regions [3]. In particular, voltage-gated ion channels require charged residues in the TM

segment to sense changes in membrane potential. While controversial, experiments and

simulations show that even isolated voltage sensor segments can be stably accommodated

in the membrane [8, 50]. In Chapter 3 we present complementary evidence that despite

the presence of many charged residues, such proteins can be stable in the membrane.

In the future, particularly given the speed and computational efficiency of our method,

we plan to apply our model to a much larger set of structures. While the primary

aim of our model is to provide a detailed, microscopic picture of protein-membrane

interactions, it would be interesting to determine the statistical accuracy of our model

in a macroscopic context such as a large set of protein structures from the Protein Data

Bank. Such analysis may be useful in identifying particular regimes under which our

model performs poorly and regimes for which our model could be improved.
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Membrane bending is critical for

the stability of voltage sensor

segments in the membrane

While it is energetically prohibitive to bury charge in the hydrophobic core of the bilayer,

the membrane is a flexible structure that can deform to accommodate such charge.

In this chapter we present further details of our method for calculating the stability

of solutes in the membrane based on elasticity theory and continuum electrostatics.

The coupling of a search algorithm to our insertion energy calculations permits us to

explore a range of biological phenomena that were beyond the scope of the original

method developed in the Grabe lab [22]. We show that the energy required to embed

charged residues in the membrane can be highly non-additive, and our model provides

a simple mechanical explanation for this non-additivity. In addition we predict that

a controversial class of peptides, voltage sensor segments of voltage-gated potassium

channels, can stably insert into a deformable membrane. We also use the model to

investigate hydrophobic mismatch in a large mechanosensitive channel. 1

1This chapter is adapted from: K M Callenberg, N R Latorraca, and M Grabe. Membrane bending
is critical for the stability of voltage sensor segments in the membrane. Journal of General Physiology,
140(1):5568, 2012 [37].

21
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3.1 Introduction

The membrane serves as a barrier between the interior of a cell and its environment,

allowing the cell to retain essential components and control its internal chemistry. The

primary constituents of the membrane are amphipathic lipids composed of a polar

headgroup that faces solution and a hydrophobic tail that forms a low-dielectric bar-

rier preventing ions and molecules from penetrating the membrane [51]. Much of the

communication and exchange of material between the inside and outside of the cell is

mediated by embedded membrane proteins that enable a variety of biological phenomena

from small molecule and ion transport to cell signaling. The transmembrane (TM)

spanning regions of membrane proteins are characteristically made up of hydrophobic

amino acids, which are energetically compatible with the hydrophobic environment of

the membrane core. However, charged residues within the TM domains of a variety

of proteins present an electrostatically challenging situation to stable inclusion in the

membrane. For example, voltage-sensor domains of voltage-dependent ion channels

contain charged arginines and lysines in the membrane-spanning S4 segment that make

it possible for the protein to respond to electric fields [52–55]. A classic study of the

thermodynamic properties of amino acid analogs suggests that it requires 65-80 kcal/mol

of energy for charged residues to enter organic phases from water [5], and numerical

calculations support these high energies [44]. Various models have been proposed to

explain how voltage-dependent proteins are able to stably accommodate charged residues

in the hydrophobic span of the bilayer. For instance, the S4 segment may be positioned

within a canaliculus of the protein where it avoids interaction with the bilayer core and

makes charge pairs with other regions of the protein [56–61]. Yet electron paramagnetic

resonance (EPR) experiments on KvAP suggest that some portions of the S4 segment

directly interact with lipid, while other portions are protected from the lipid [62].

Additionally, biotin-avidin accessibility experiments on the KvAP S4 segment suggest

even more extensive interactions of S4 with the lipid [63]. Studies have also attempted

to explain the stability of these charged segments in terms of lipid composition [64, 65],

but it is still unclear to what extent charged voltage sensor segments are exposed to

lipid and whether they are truly stable in any lipidic environment.

Recent translocon [6, 66] and porin folding [67] based experiments have presented data in

which charged residues only destabilize a membrane protein by a few kcal/mol. In light

of these results, it is not surprising that voltage-dependent membrane proteins harbor

charged residues in the membrane-spanning region, but how do we reconcile these low

insertion energies with the large values derived from bulk partitioning experiments [5]?

Molecular dynamics (MD) simulations suggest that membrane bending helps stabilize

charges in the membrane by allowing water access to the buried amino acid [9, 68,
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69]. This is in accord with experiment and MD simulation on the voltage sensor from

KvAP (segments S1-S4) showing that the bilayer thins in the presence of the voltage

sensor and that the voltage sensor is significantly hydrated in the membrane [70]. Based

on such observations, we developed a solvation model for protein insertion into the

membrane that treats the membrane as a deformable continuum [22], similar to classic

studies by Helfrich and others [14, 16, 18], but we couple membrane bending to protein

electrostatics and hydrophobic forces in an analogous manner to theoretical treatments

of small molecule solvation [71, 72]. Interestingly, both MD simulations [9, 69] and our

continuum based molecular calculations [22] predict significantly larger destabilization

energies, on the order of 10-18 kcal/mol, than those predicted by the translocon and

porin folding scales. Nonetheless, these values are much smaller than those based on

bulk experiments [5, 44] due to bilayer deformations in the presence of buried charged

amino acids that expose charged groups to water and polar lipid headgroups [9, 68,

69]. Previously, we predicted the energetics of charged TM segments by using linear

elasticity theory to allow for membrane bending, and our results clearly showed that

these distortions facilitate favorable electrostatic interactions between charged protein

moieties and solvent and polar headgroups at a minimal cost to the membrane bending

energy [22]. However, our method was severely limited by the ability to only allow

distortions in the upper leaflet and the need to posit a priori the boundary curve of

the protein-membrane interface using pre-determined geometries. For simple protein

sequences harboring a single charged residue, we show here that we made good guesses

to the contact curve in our original study, but for more complex peptide sequences a

systematic approach must be adopted. We have therefore expanded our previous work

by introducing a search on the inner boundary curve of the protein-membrane interface

to find optimal distortions in the membrane. Additionally, we now allow both the upper

and lower leaflets to deform.

These extensions to our original model have allowed us to probe several phenomena

central to membrane biophysics. Our method successfully identifies the TM segment

of a membrane protein, and it predicts the vertical position of the protein within the

membrane that minimizes the total insertion energy. Unlike other continuum membrane

models, our method allows for large membrane deformations that cover hydrophobic

stretches of the TM protein and dramatically reduces the system energy. We explore

the influence of varying the membrane thickness on the stability of the mechanosensitive

channel MscL, and we predict a degree of water accessibility that is in good agreement

with experiment. We show that insertion energy values are not additive, in particular

when considering the insertion of multiple charged residues into the TM region. Finally,

our method predicts that the S4 segments of voltage-dependent potassium channels are

stable in the membrane, and we calculate stability values and membrane distortions
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that are in semi-quantitative agreement with fully atomistic and coarse-grained MD

simulations; however, we show that stability values can vary greatly depending on the

material properties of the bilayer. In the Discussion, we suggest additional areas of

biology to which we could apply our method as well as current limitations and future

changes to the algorithm.

3.2 Materials and Methods

3.2.1 Theory

As in our previous work [22], we assume that membrane protein stability is dominated

by three energetic components: membrane bending, Gmem; electrostatics, Gelec; and

nonpolar interactions between the protein and water, Gnp. All free energy changes are

calculated by comparing the energy of the protein in a reference state completely in

solution, far from an unstressed membrane with the energy of the protein embedded

in the membrane. Hence, Gmem is zero for the reference state. We assume that the

protein structure is the same in the reference state and the membrane-embedded state.

Membrane protein stability is then given by the difference in the total energy of the

protein in solution compared to the energy in the environment of the membrane:

∆Gtotal = ∆Gmem + ∆Gelec + ∆Gnp (3.1)

All three energy terms on the right hand side of Eq. 1 are coupled in a complex manner

through the shape of the membrane. As the membrane shape is changed, this influences

the electrostatic energy of the system and the nonpolar energy by altering the amount

of protein surface exposed to water. These second two energy terms drive changes in

the shape of the membrane as our search algorithm, described below, minimizes Gtotal.

The shape and energy of the membrane are determined using linear elasticity theory,

in which each leaflet is described by a thin surface, u(x,y), illustrated in Fig. 3.1, with

material properties that can be tuned to the membrane of interest. The total membrane

bending energy is given by:

∆Gmem =
1

2

∫
Ω

Ka

L2
0

(u− − u+)2 + . . .

Kc

2

(
(∇2u−)2 + (∇2u+)2

)
+ . . .

α

2

(
(∇u−)2 + (∇u+)2

)
dΩ, (3.2)
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where u+ is the shape of the upper leaflet and u− is the shape of the lower leaflet; L0

is the equilibrium length of the membrane, Kc is the membrane bending energy, α is

the surface tension, and Ka is the compression modulus. The energy of the upper and

lower leaflets are coupled through the compression modulus. The functional derivative

of Eq. 2 with respect to variations in u+ and u− gives the partial differential equation

(PDE) that determines the shapes of each leaflet. Assuming the opposite leaflet is flat,

each surface obeys the following PDE:

∇4u− γ∇2u+ βu = 0, (3.3)

where γ = α/Kc and β = 2Ka/(L
2
0Kc). We solve this equation separately for u+(x,y)

and u−(x,y) applying height and contact angle boundary conditions at the membrane-

protein interface as described below and shown in Fig. 3.1B, and far from the protein,

we assume that the membrane is asymptotically flat at its equilibrium length, L0. After

solving for u+(x,y) and u−(x,y), the total membrane energy is determined by carrying

out the integral in Eq. 2. We have investigated the error associated with assuming the

upper leaflet is uncoupled from the lower leaflet during the solution step, and for the

class of problems examined here, the absolute error in the total energy is less than 0.5

kcal/mol (data not shown).

The electrostatic energy component is calculated with Poisson-Boltzmann electrostatics,

and the nonpolar contribution is calculated from the solvent accessible surface area

(SASA). Both of these methods take into account all of the atomic detail of the protein,

and therefore, a PDB file, or equivalent file, is required to carry out these calculations.

To compute the SASA, the rough surface of the protein is computed by running a water

probe of 1.4 Å over the van der Waals surface created by the union of all atomic van der

Waals surfaces for the individual atoms in the protein using the Shrake-Rupley algorithm

[32]. In the presence of the membrane, we carefully keep track of which protein atoms

are embedded in the membrane, and modify the SASA accordingly. Following standard

convention, we ignore hydrogen atoms when calculating the SASA. To compute the

electrostatic energy, we use the software APBS [73]. The protein is treated in atomic

detail, and the atomic partial charges are set using the PARSE parameter set, which

was parameterized to reproduce solvation transfer free energies for small molecules [31].

The protein-water interface is determined using the protein molecular surface, which is

calculated by running a 1.4 Å water probe over the van der Waals radii of the protein

atoms as discussed above. The dielectric value of points inside the protein were set to

2.0, in accord with the PARSE parameterization [31], and values in water were set to

80.0. In the presence of the membrane, the membrane shape determined by u+(x,y)

and u(x,y) is used to modify the local dielectric environment of the protein, and points
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Figure 3.1: Geometry of the system.

A) Cross section showing membrane distortions in the upper and lower leaflets. Solid
red lines indicate the membrane-water interfaces. Dashed black lines indicate the
equilibrium heights of the membrane leaflets and the midplane at z=0. The equilibrium
bilayer thickness is L0. B) The protein-membrane contact angle is proportional to
the height deviation from equilibrium. C) The idealized helix is shown in a 3-D
representation with red curves indicating the height of the upper and lower leaflets as
they contact the TM segment. Black nodes on these curves are used as the boundary
conditions for solving the elasticity equation. The numeric values of these nodes are
optimized by the search algorithm. 2-D representation of upper and lower contact

curves are shown on the right.

in the membrane are given a low dielectric value of 2.0 if in the core and 80.0 if in

the headgroup region. The electrostatic energy difference for insertion, ∆Gelec, is then

computed by subtracting the total electrostatic energy of the protein in pure solution

from the value computed in the presence of the membrane. These energy terms are

described in further detail in the appendix as well as in our previous work [22].

3.2.2 Construction of Transmembrane Segments

Alpha-helical peptides were constructed with the VMD plugin Molefacture version 1.1

[74]. We used SCWRL 4 [75] to optimize side-chain rotamer conformations, and MOD-

ELLER 9v8 [76] to orient the principal axes of the helix to the z-axis, perpendicular
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to the plane of the membrane. The structures were converted to PQR format using

PDB2PQR 1.4 [34, 35] with the PARSE radii parameter set [44]. To be consistent with

most biochemical experiments, the WALP23 peptide was constructed with neutral N

and C-termini in PDB2PQR by turning on the neutraln and neutralc flags. All other

helical segments contained charged N and C-termini.

3.2.3 Search Algorithm for Identifying Optimal Boundary Conditions

We implemented a workflow illustrated in Fig. 3.2 to identify the shape of the membrane

that minimizes the total energy in Eq. 1. For each cycle, we started with a given

discretized contact boundary curve for the upper leaflet and the lower leaflet as shown

in Fig. 3.1C. We solved Eq. 3 once for each leaflet with the height boundary conditions

imposed by the posited boundary curve. The imposed contact angle that the membrane

makes at the protein surface was treated differently for each of the problems investigated

below. For the WALP peptide, we assumed a contact angle of zero, and for the MscL

channel, we assumed that the contact angle was linearly proportional to the displacement

from equilibrium with a coefficient of 1. For the voltage sensor helices, we carried out

contact angle searches to minimizes the total energy. The solution surfaces were then

provided to Eq. 2 to calculate the elastostatic energy.

The membrane shape was used to create dielectric and ion-accessibility maps which

were subsequently read into the Adaptive Poisson-Boltzmann Solver (APBS) version

1.2 software package to calculate the total electrostatic energy [73]. After calculating

the total energy for a given membrane shape, it was used as a cost function in a Powell’s-

based search [36] to generate a new boundary curve for the next cycle of the flowchart.

Powell’s is a conjugate gradient-based method and is particularly suited to this problem

since it operates well on many dimensions and does not require the calculation of

derivatives. We ended a search when the relative error was less than a small tolerance

value of 5 × 10−3, following the typical stop condition for Powell’s method. In our

original implementation, each boundary curve was discretized in θ, the angle around the

cylindrical TM protein, and the search was carried out by vertically moving nodes on the

boundary curve. However, since the displacement of adjacent points was uncorrelated,

the search produced high curvature kinks in the membrane that hindered the ability

to identify global minima. Therefore, we used a Fourier representation of the contact

boundary:

u(r0, θi) = a0 +

4∑
n=1

((ansin(nθi) + an+4cos(nθi)), (3.4)
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Figure 3.2: Algorithm for identifying the membrane shape with the lowest insertion
energy.

Gray boxes represent decision steps, yellow boxes denote numerical calculation steps,
the blue box denotes an intermediate product, and the green boxes represent resulting
energies. The algorithm begins with either a flat membrane or an initial guess and

proceeds until the total energy has been minimized.

where a0 is a constant offset, an is the amplitude of the nth mode, r0 is the radius

of the TM protein and θi is the angular position discretized with 10 points along the

membrane-protein boundary. We determined that including terms above n=4 did not

improve the minimum energy configuration; however, it did increase the search space

and number of iterations required to find the minimum. For n=4, the search space is 8

+ 1 for the upper leaflet and 8 + 1 for the lower leaflet for a total dimension of 18.

3.3 Results

3.3.1 Our Model Captures Large-scale Membrane Rearrangements

Integral membrane proteins are characterized by stretches of hydrophobic residues that

are well suited for incorporation into the low-dielectric core of the membrane. The

chemical nature of these regions is important for the initial targeting of the chain to the

membrane from the translocon and for the ultimate stability of the protein in the lipidic
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Figure 3.3: Translation of a hydrophobic WALP peptide across the membrane.

The COM of the peptide was initially placed at the center of the membrane at position 1,
which is 60 kcal/mol more stable than the reference state in pure water. The minimized
system geometry for each numbered item on the energy curve is shown around the graph.
The hydrophobic residues are white, the flanking tryptophan residues are cyan, and the
upper and lower membrane-water surfaces are the red and blue meshes, respectively.
The protein was translated in the positive and negative directions in 3 Å steps, and a
minimization was carried out in each case using the membrane shape from the previous
step as the initial guess. At position 2, the membrane undergoes considerable deflection
to continue to cover the hydrophobic residues of the protein. At position 3, the elastic
energy penalty outweighs the nonpolar energy benefit of fully covering the peptide and a
snap-through occurs. Finally, position 4 shows that there is a slight energetic advantage
to bending the membrane to bury the terminal tryptophan residues in the interfacial

headgroup region.

environment. However, the boundaries of TM segments are often poorly delineated since

these stretches usually contain a few polar or charged residues. Therefore, it is important

when modeling these systems to consider that the membrane-protein boundary is likely

to have a complex shape that covers hydrophobic residues while exposing polar and

charged residues to water. Moreover, the hydrophobic nature of the TM protein can

induce large-scale conformational rearrangements in the bilayer when anchored to cy-

toskeletal elements or proteins attached to apposing membranes. For instance, SNARE,

BAR, ESCRT-III and coat proteins all cause significant deformations in the membrane

[77–81].

Most methods for identifying optimal protein placement and stability in the membrane
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assume that the membrane is static, ignoring its dynamic and flexible nature [2, 21, 82].

In principle, our method not only captures small deformations of the membrane that

occur around buried charged residues, but it also allows for large-scale, low energy con-

formations that may occur when an embedded protein is under load due to attachment

to the cytoskeleton, for instance. To test our ability to identify such large distortions,

we solved for the membrane shape that maximizes the stability of a WALP23 pep-

tide (sequence GWWLALALALALALALALALWWA). WALPs are ideal for exploring

membrane-protein interactions since their midsection has a strong hydrophobic signature

and flanking tryptophan residues anchor the protein in the membrane by partitioning

into the headgroup-water interface [83, 84].

We translated the peptide from one side of the membrane to the other, moving the

center of mass (COM) from -48 to +48 Å in 3 Å steps. At each position, we used the

search algorithm outlined in Fig. 3.2 to determine the optimal membrane configuration

and corresponding energy as shown in Fig. 3.3. All energy differences are computed

with respect to the reference state in which the membrane protein is free in solution far

from an unperturbed membrane. The system energy takes on a minimum value of ∼-60

kcal/mol when the peptide COM coincides with the middle of the bilayer at z=0. In this

configuration, inset 1 shows that there is no hydrophobic mismatch since the membrane

is flat, yet the hydrophobic residues (white) are maximally embedded in the membrane

and the tryptophan residues (cyan) are in the headgroup region. When the peptide

is moved to +24 Å (inset 2), the total energy increases because the membrane bends

to cover the hydrophobic residues. At +30 Å , the membrane bending energy becomes

larger than the hydrophobic energy required to uncover the TM, and the bilayer exhibits

a snap-through instability that extracts the TM (panel 3 in Fig. 3.3). Our analysis

shows that our search algorithm can successfully identify large-scale deflections in the

membrane that bring about drastic reductions in the total energy of the system.

3.3.2 Predicting Optimal Membrane Thickness for a Mechanosensitive

Channel

Even when the hydrophobic domain of a membrane protein is clearly delineated, mis-

match between the length of the hydrophobic stretch and the equilibrium length of

the membrane can lead to bilayer distortions and an increase in the energy of the

system, and conversely, mismatch can lead to distortions in the protein [85, 86]. X-

ray lamellar diffraction studies show that the membrane expands or compresses at the

edge of the protein to accommodate for hydrophobic mismatch [87], and mismatch has

been shown to cause proteins to segregate to specific locations in the cell [88]. Changes in

membrane thickness have also been shown to influence the functional state of membrane
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Figure 3.4: Optimization of membrane thickness for a mechanosensitive channel.

A) We swept through a range of equilibrium membrane thickness values in 1 Å
steps, and for each value, we identified the membrane shape that optimizes the total
insertion energy for the closed state structure of the mechanosensitive channel of large
conductance (MscL, PDBID: 2OAR). The system is most stable at a 38 Å thickness
for our choice of membrane parameters. The stabilization energy increases by more
than 10 kcal/mol when the membrane thickness is reduced by 6 Å , and it increases to
about 10 kcal/mol in a membrane that is 14 Å thicker. The energy is more sensitive
to decreases in the equilibrium membrane thickness than increases in the thickness. B)
The membrane thins at the edge of the channel to expose regions of polar (green), basic
(blue) and acidic (red) residues when its thickness is greater than the optimal value of
38 Å . To exemplify this situation, we embedded MscL in a non-ideal membrane with
an equilibrium length of 52 Å . The membrane shape (cyan mesh) that minimizes the
insertion energy highlights the thinning that occurs at the protein-membrane boundary.

The energy of this situation is indicated by the arrow in panel A.

proteins such as mechanosensitive channels and voltage-gated ion channels [89]. The

mechanosensitive channel of large conductance (MscL) is a homomeric pentamer that

is thought to open and close like the aperture of a camera [90]. The application of

membrane tension biases the channel from a closed state, in which the TM α-helices

are primarily perpendicular to the plane of the membrane, to an expanded, open state,

in which the helices are significantly tilted. This tilt decreases the hydrophobic length

of the membrane spanning region in the open state with respect to the closed state.

Perozo and co-workers hypothesized that this structural change in the channel should

lead to greater stabilization of the open state in thinner membranes compared to thicker

membranes, and they verified their claim by showing that the channel open probability

increased as the bilayer thickness decreased at a fixed pressure [91].

We used our model to determine the membrane thickness that optimally stabilizes

the closed state of the MscL structure from M. tuberculosis [92]. We removed the

cytoplasmic helices and embedded the TM domain in the bilayer. We then used our

search algorithm to determine the optimal membrane contact curve and total insertion

energy for a given membrane thickness as shown in Fig. 3.4B. Next, we varied the

equilibrium membrane length over the range of values suggested by the experiments
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carried out by Perozo and colleagues and plotted the energy values with respect to the

minimum value (Fig. 3.4A). The channel is stable in the membrane over the entire range

with the optimal thickness being 38 Å . For values larger than 38 Å , the membrane

thins as it approaches the channel surface. The OPM method predicts an optimal

thickness that is several ngstroms larger than our method [21]; however, our value is in

better agreement with fluorescence spectroscopy studies showing that the hydrophobic

thickness of the bilayer is 25 Å [93]; ignoring the headgroup region, we predict a thickness

of 24 Å . Previous low resolution models have been used to calculate the influence of

membrane thickness on the open probability of the channel [94], but this is not possible

with our method since the structure of MscL in the open state is unknown.

3.3.3 Amino Acid Insertion Energies Are Not Additive

Hydrophobicity scales provide a straightforward means for assessing the stability of

transmembrane proteins by adding up the individual energetic contribution from each

amino acid in the transmembrane domain to determine the overall stability. However,

insertion energy scales based on in vitro translation and insertion via the Sec61 translo-

con suggest that the apparent transfer free energy for an amino acid depends on the

amino acid sequence of the transmembrane segment [66]. Thus, it is possible that amino

acid insertion energy values are not additive, which would severely limit the value of any

hydrophobicity scale.

Based on molecular simulations [9, 69], non-additivity has been suggested to arise

because there is no additional membrane bending energy to insert a second or third

charged residue after the membrane has bent to expose the first charged residue. To

further examine this hypothesis, we constructed α-helical peptides containing zero to

three charged residues and probed their stability in the membrane. We find that the

energetic cost of inserting each additional charged amino acid is significantly less than

that of inserting the first (Table 3.1). While a peptide with a single central arginine

is 10 kcal/mol less stable than one with alanine, the addition of a second arginine

requires only 1 additional kcal/mol, and a third requires only an additional 2 kcal/mol.

These low energies support results from recent MD simulations which found that there

is essentially no additional energetic cost required to insert an arginine once the first

has already formed a water defect [95]. Experimental support for non-additivity comes

from membrane protein folding experiments, which show that the cost to insert two

charged residues is less than twice the sum of inserting a single charged residue [67].

Nonetheless, we predict cooperativity values of 9 kcal/mol for inserting two arginines,

while the predicted cooperativity based on the porin folding studies is only 1.6 kcal/mol

[67]. These energy values are highly dependent on system geometry, and it may be
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Table 3.1: The insertion energy of charged residues is not additive.

Peptide sequence ∆Gtotal (kcal/mol)

...NNKKAAAAAAAAAAAAAAAAAAAKKNN... -49.5

...NNKKAAAAAAAAARAAAAAAAAAKKNN... -39.4

...NNKKAAAAAAAARRAAAAAAAAAKKNN... -37.6

...NNKKAAAAAAARARAAAAAAAAAKKNN... -36.2

...NNKKAAAAAARAARAAAAAAAAAKKNN... * -38.5

...NNKKAAAAAAARRRAAAAAAAAAKKNN... -33.2

...NNKKAAAAARARARAAAAAAAAAKKNN... -32.6

...NNKKAAARAARAARAAAAAAAAAKKNN... ** -37.6

Peptides were constructed with the sequences listed below flanked by 12 glycine residues.
A helix with a single arginine at the center of the membrane is10 kcal/mol less stable
than one with an alanine, but the addition of a second arginine makes the peptide only 1
kcal/mol less stable since the membrane has already bent to expose the central arginine.
Further, the cost of including a third charged arginine is similarly an additional 1
kcal/mol. Helices with arginines spaced 2 apart (RXXR) are more stable than those
with no spacing or single spacing since the membrane must only bend on one side of
the helix to expose the residues to water. This incurs minimal elastic and nonpolar
penalties. Helices indicated by * and ** were also created as 310 helices, and their

energy values are discussed in the main text.

difficult to compare values obtained for a single pass α-helix with those obtained from a

beta barrel. Our results highlight the non-additivity inherent in this system and suggest

that a simple hydrophobicity scale may lead to incorrect conclusions, especially when

considering highly charged proteins or peptides.

While our method captures the non-additivity inherent in these systems, we wanted to

compare our calculations to Generalized Born models for electrostatics in the presence of

the membrane, which do not account for changes in membrane geometry [2, 21, 82]. To

make a proper comparison with these models, we extracted the electrostatic component

of the insertion energy for helices containing 0 to 3 arginines from Table 3.1 and reported

these values in Table 3.2. Energy values are reported as ∆∆Gn = ∆Gn −∆Gn−1, such

that the value represents the energy required to insert one more charged residue into

the TM helix. Even the electrostatic component of the energy alone from our model is

highly non-additive; however, the energy values calculated using the model of Im and

co-workers is quite linear [2, 96], indicating that subsequent arginines are as costly to

insert as the first. Additionally, the electrostatic component of the energy for inserting

even a single charged residue is 25-30 kcal/mol greater than that predicted with our

model. For charged membrane proteins and membrane-associated proteins, Generalized

Born models that treat the membrane dielectric as a uniform slab could give rise to

incorrect results. However, for proteins that are not highly charged such methods may

be sufficient.
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Table 3.2: Comparison of insertion energy values between our method and a Gener-
alized Born method [2].

Peptide sequence This study GB

...NNKKAAAAAAAAAAAAAAAAAAAKKNN... 0.0 0.0

...NNKKAAAAAAAAARAAAAAAAAAKKNN... -4.7 26.3

...NNKKAAAAAAAARRAAAAAAAAAKKNN... 3.3 28.0

...NNKKAAAAAAARRRAAAAAAAAAKKNN... 0.7 22.9

The electrostatic energy for the four sequences on the left were computed using both
methods. Reported energy values are the difference between the current sequence and
the R-1 containing helix, with the alanine sequence being set to zero. All energy values
are in kcal/mol. While our method allows the membrane to bend to expose charged
arginines, the Generalized Born method treats the membrane as a flat slab with a
dielectric that smoothly switches from membrane to solvent. Thus, the Generalized
Born method predicts an electrostatic cost that is nearly equal for each additional

arginine, while our method does not exhibit additivity.

3.3.4 Some Voltage Sensor Segments Are Stable In the Membrane

Voltage-gated potassium [52], sodium [97] and proton channels [98, 99] as well as voltage-

gated phosphatases [100] all contain 4-7 charged residues in their 4th TM segment

critical for their ability to sense changes in the membrane potential. How such highly

charged segments stably incorporate into the membrane is an outstanding question in

membrane biophysics, and many researchers believe that other TM segments are required

for incorporation [57, 101]. In contrast, both experiment [50] and simulations [68, 102]

suggest that some S4 segments favorably adopt a transmembrane configuration.

In order to further explore these controversial results, we performed calculations on

idealized helices with sequences corresponding to the S4 segments from the Kv1.2 Shaker-

like potassium channel from rat and the KvAP archaebacterial channel. Note that the

sequence of Kv1.2’s S4 segment is identical to Shaker. In the absence of membrane

bending, both helical segments are highly unstable in the membrane with transfer

free energies of +72 kcal/mol and +99 kcal/mol for Kv1.2 and KvAP, respectively.

Remarkably, when we allow the membrane to bend, our model predicts that both

segments are quite stable in the membrane with the S4 from Kv1.2 stabilized by -31

kcal/mol and the segment from KvAP stabilized by -33 kcal/mol (Fig. 3.5). This drastic

reduction in energy is brought about by relatively modest distortions in the membrane

as can be seen from the minimum energy configurations also pictured in the figure. It

is not surprising that the S4 segment from KvAP is 2 kcal/mol more stable than the

Kv1.2 segment since it has only 5 positive charges while Kv1.2 has 6 charges.

With any new approach, it is useful to have a benchmark with which to validate the

model. Fully atomistic MD simulations are the gold standard in this case, but detailed
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Figure 3.5: Membrane bending stabilizes the insertion of voltage sensor S4 segments
in the membrane.

The search algorithm was carried out on S4 segments from KvAP, Kv1.2 and KAT1,
and the final membrane shapes are pictured. Peptide insertion is highly unstable when
no membrane bending is allowed, but considerably improved when the membrane bends
to expose charged and polar amino acids. Our insertion energies for Kv1.2 and KvAP
are similar to values from coarse-grained simulations (values indicated by * were taken
from [102]). Experiments have suggested that isolated S4 segments of KAT1 will not
readily insert [103], and while our method finds a negative insertion energy for the
KAT1 S4, it is more difficult to insert than Kv1.2 and KvAP for which experiments

show isolated insertion.

free energy calculations, even on a single pass TM, in the presence of a membrane are

extremely demanding, and there is a large potential for sampling error. Fortunately,

the Sansom group has carried out free energy calculations on both of these S4 segments

using a more tractable, coarse-grained model of the system [104]. They report insertion

energy values of -36 kcal/mol and -38 kcal/mol for the Kv1.2 and KvAP S4 segments,

respectively [102], which is in strikingly good agreement with our absolute values as

well as our predicted relative stability between both voltage-sensor segments. The

Sansom group used their coarse-grained model results as a starting point to carry out

fully atomistic free energy calculations on the Kv1.2 S4 segment using the GROMOS96

forcefield [102]. This resulted in a minimum energy configuration that was -45 kcal/mol

more stable than the segment in water, which is 9 kcal/mol lower than the coarse-grained

model results and 14 kcal/mol more stable than our results [102]. Thus, while the

membrane deformations and energies in our model are similar to the deformations from

coarse-grained and fully atomistic simulations, our predicted energy values are slightly

higher. While there are differences in the three energy potentials that may account for

these discrepancies, we believe that the most obvious deficiencies in our model are the

lack of protein tilt and side chain reorientation. Adding these two additional degrees of

freedom will reduce the minimum energies that our model will produce, and hopefully

bring our values into closer absolute agreement with other calculations. Additionally,

as explored below, the material properties of the bilayer can significantly impact the

insertion energy of the helix, and it is not clear what the bilayer parameters in our model
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should be to most closely approximate the properties of the coarse-grained membrane.

It is thought that the RXXR spacing of residues in many S4 segments is important

to their stability. To examine this, we created 18 mutated Kv1.2 sequences preserving

the total charge but disrupting the spacing, and we found every mutation led to a

higher insertion energy value. Interestingly, the S4 segment from the hyperpolarization-

activated potassium channel KAT1 has an unconventional charge spacing with two

adjacent arginines, and there is experimental evidence that this segment will not insert

into the membrane when isolated from the rest of the channel [103]. We applied our

model to the KAT1 S4 segment and observed a stabilizing transfer free energy of only -24

kcal/mol, which is 7 kcal/mol less stable than either the Kv1.2 or KvAP S4 segments.

Therefore, we believe that this lower insertion energy may be related to the charge

spacing on KAT1; however, our results still predict that the S4 from KAT1 should

be stable in the membrane which is at odds with the finding that the S3 segment is

also required for membrane stabilization [103]. To specifically explore the importance

of charge spacing, we systematically varied this spacing and measured the stability of

single pass TM segments. Our results suggest that charged residues spaced two apart,

for example RXXR, are 2-4 kcal/mol more stable than those spaced by zero or one

uncharged residues (Table 3.1). Visualization of the minimum energy configuration for

each case shows that the membrane need only bend on one side of the helix to expose

charged residues separated by two intervening nonpolar residues, while the membrane

undergoes much more extensive distortions to expose charged residues with different

spacings (data not shown).

Recent, X-ray structures of voltage-gated ion channels suggest that the S4 helix exists, at

least partially, in a 310 helix rather than an ideal α-helix [105–107]. The 310 configuration

places all the charges with an RXXR spacing on one face, which localizes the membrane

bending to one side of the helix and may reduce the bending energy. We explored this

possibility by creating 310 helices of the two sequences in Table 3.1 that have RXXR

motifs, one harbors 2 arginines (indicated by * in the table) and the second harbors 3

arginines (indicated by ** in the table). The insertion energy values are higher when

these sequences adopt a 310 conformation versus an α-helical conformation by +5.3

kcal/mol (sequence with 2 arginine) and +5.1 kcal/mol (sequence with 3 arginine). Our

calculations indicate that the α-helix configuration is slightly more stable due to an

increased nonpolar stabilization; the α-helix is more compact and buries more surface

area in the membrane. Thus, we believe that the propensity for portions of the S4 helix

to adopt a 310 configuration may be determined by local interactions with the rest of

the channel rather than energetic interactions with the lipid membrane.
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In our previous manuscript, we showed that the membrane dipole only moderately

influenced membrane protein stability since the majority of the amino acids between

the upper and lower leaflets were hydrophobic and therefore neutral [22]. However, this

was the case for helices harboring a single charged residue, and it is possible that with

many basic residues more charge becomes buried between the leaflets and experiences the

significant positive electrostatic potential created by the lipid headgroups. To explore

this scenario, we added a thin layer of positive and negative charge to the upper and

lower leaflets with the negative layer closer to the membrane-water interface as described

in our previous work [22]. The net charge sums to zero, and the separation length and

charge values were chosen to create an interior membrane potential of +300 mV, which

is near the peak dipole potential value of +260 mV measured for phosphatidylcholine

headgroups with ester linkages to the tail [108]. For the configurations pictured in Fig.

3.5, the dipole potential destabilizes the TM helix by 2.6, 2.3, and 1.6 kcal/mol for

the KvAP, Kv1.2, and KAT1 S4 segments, respectively. While larger than previously

observed for helices with a single arginine, the destabilization is not very large, because

the membrane bends to keep most charged groups out of the core.

3.3.5 Membrane Protein Stability Depends on Bilayer Stiffness

Studies on outer membrane proteins have shown that the elastic properties of the mem-

brane influence protein stability in the membrane [85, 109]. We therefore investigated

the effect of increasing bilayer stiffness on the insertion energetics by varying the bilayer

compression modulus (Ka). In all calculations above, we used the Ka value of 142.5

pN/nm measured experimentally by White [40] and employed by Andersen and co-

workers in their mattress models [16]. However, this value is at the low end of the

physiological range, and in the presence of cholesterol Ka can be as high as 1200 pN/nm

[110]. We used this later value as an upper value, and we calculated the insertion

energies for each of the voltage sensor S4 helices over the entire range as shown in Fig.

3.6. In each case, we carried out the full search procedure to identify the optimal shape

that minimizes insertion. As Ka increases, the total insertion energy values increase

significantly due to the increase in the membrane deformation energy. Importantly,

even moderate increases in the compression modulus destabilize the KAT1 S4 segment,

while segments from KvAP and Kv1.2 remain stable. This observation is in very good

agreement with the experimental observation that the S4 from KAT1 is not stable in

the membrane alone [103], but that the isolated voltage sensor helix from KvAP readily

inserts into the membrane [6].
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Figure 3.6: Protein stability depends on membrane stiffness.

The search algorithm was carried out on S4 segments from KvAP, Kv1.2 and KAT1
over a physiological range of membrane compression modulus (Ka) values. Insertion
energy values for KvAP (circles), Kv1.2 (squares) and KAT1 (triangles) increase as
Ka increases. Over this range, Kv1.2 and KvAP remain stable in the membrane, but
KAT1 no longer inserts when Ka is above 700 pN/nm. The values at Ka = 142.5

pN/nm correspond to the configurations and energies reported in Fig. 3.5.

3.4 Discussion

We used our fast continuum method for determining the insertion energy of membrane

proteins to explore several outstanding questions in membrane protein biophysics. Link-

ing the three numeric solvers of our method and adding the search algorithm permits us

to determine arbitrary distortions in the membrane, which is essential for understanding

the true energetics of embedded proteins. While some implicit membrane models account

for membrane flexibility [111, 112], many treat it as a rigid slab [21, 82, 96]. As

shown in Fig. 3.3, our algorithm readily identifies the putative membrane-spanning

region of membrane proteins and moves to bury the hydrophobic residues. As the

protein is translated away from the center of the bilayer, the membrane undergoes a

large, low energy conformational change to minimize the energy of the system. We

believe that such distortions are important for understanding the shapes and energies of

membrane proteins attached to cytoskeletal and extracellular elements such as integrins
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and cadherins. Similarly, the interaction between the membrane and the protein has been

shown to regulate the function of some proteins such as the stretch activated channel

MscL. By systematically varying the equilibrium length of the membrane, we predict

an optimal equilibrium value that minimizes the total system energy, which includes

not only strain in the membrane but also electrostatics and nonpolar effects due to

hydrophobic mismatch (Fig. 3.4). Based on these calculations, we predict membrane

thinning at the edge of the channel for a range of equilibrium thicknesses, and the extent

of this compression is in good agreement with experiments [93].

Our model suggests that amino acid insertion energies are non-additive. This is most

important when considering the placement of multiple charged residues into the TM

domain as we show that placing a second arginine into a TM already containing one

may cost as little as 1 kcal/mol. In part due to this effect, we show that S4 voltage

sensor segments can be stable in the membrane as already suggested by experiment [50],

qualitative MD simulations [8], and quantitative free energy calculations [102]. Our

method provides a simple mechanical explanation for this non-additivity – once the

membrane bends to accommodate one charged residue it no longer needs to bend for

the next one. This feature is an integral component of our method, but it is missing from

other implicit membrane models [21, 82, 96] as we explicitly demonstrate in Table 3.2.

However, our method still predicts insertion energies for single charged amino acids that

are 4-8 kcal/mol larger than those predicted by the translocon scale [6], and 6 kcal/mol

larger for arginine compared to the porin folding scale [7], but a nearly identical value

for lysine compared to the porin folding scale [7]. In general, our larger values may

result from limitations of our system discussed below; however, there are open questions

concerning the interpretation of the translocon studies including whether the H-segment

is actually centered in the membrane [9] and the role of the two additional TM segments

that may alter the stability of the central residues [113].

Previously, we determined that inserting the KvAP S4-S3 helix-turn-helix motif into a

flat membrane is energetically unfavorable [114], but here we show that the S4 helix

is stable if the membrane is deformable. We incorporated membrane bending into our

solvation model by using classical elastostatics to describe the equilibrium shape of the

membrane initially proposed by Helfrich [14] and expanded to include mean bending,

bilayer compression, and surface tension by Andersen and colleagues [16]. Recently, a

multiscale modeling approach was developed which used a similar continuum model of

the membrane to quantify the energetics of membrane deformations observed in fully

atomistic membrane protein simulations [24]. This model used a simple finite difference

method on a square grid to solve for the membrane shape, and with a relatively fine

spatial grid, they were able to compute shapes and energies for non-cylindrical G-protein

coupled receptors.
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As discussed below, we intend to develop a more general membrane model that can

handle arbitrarily shaped membrane proteins. Even when proteins are hydrophobically

matched to the width of the membrane, it has been shown that non-cylindrically shaped

proteins can induce strain in the membrane [18], and this strain can influence pro-

tein function when bilayer leaflets contain lipids favoring spontaneous curvature [115].

These considerations can be incorporated into our model through modifications to the

membrane energy density in Eq. 2 as detailed by Dan and Safran [115]. At the same

time, we would like to incorporate more atomistic detail of the lipid headgroups into

our membrane model. For instance, charged lipids may unevenly accumulate in certain

regions near the embedded protein, and the Weinstein lab has developed a mean field

theory for dealing with this phenomena [23], which is well suited for our continuum

method. Additionally, we could assign spatially dependent material properties that could

attempt to account for different lipid densities or types in the upper versus the lower

leaflet, which has been shown to affect opening of the MscL channel using simulation

[116].

In summary, we have a fast, predictive method for determining the stability of proteins

in the membrane that does not rely on scales or the assumption of additivity. Our results

agree well with coarse-grained models and fully atomistic simulations; however, we

estimate our method to be roughly 600 times faster than comparable coarse-grained MD

calculations [102] and 40,000 times faster than fully atomistic calculations [9]. In the near

future, we intend to include three additional features into our model. First, we intend to

adopt a 3-dimensional model of the membrane that explicitly represents the strain field

between the upper and lower leaflets, and we will employ edge detection to accurately

represent the protein-membrane boundary. This will allow us to incorporate protein tilt

into our model, which has been shown to be important for single TM WALP peptides

[117–119], and it will also allow us to investigate proteins of arbitrary shape. Second,

MD simulations have shown that charged residue side chains “snorkel” to interact with

the polar headgroups and solvent [9]. To account for these changes, which can impact

insertion energies, we will incorporate a rotamer library search on the charged residues

to minimize membrane distortions and electrostatic penalties. Third, we use a simple

SASA model for the nonpolar energy. We will explore different continuum models for

this energy that are more specific for water to membrane transfer free energies as well

as those that account for dispersive solute-solvent interactions [48]. Finally, we intend

to integrate the membrane deformation algorithm presented in this manuscript into our

software APBSmem [29] to help orient proteins in the membrane for use in interpreting

experiments and carrying out MD simulations in a similar manner to the Orientations

of Proteins in Membranes database [21].
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Continuum approaches to

understanding ion and peptide

interactions with the membrane

In Chapter 3 we applied our model to several cases of charged proteins in the mem-

brane. In this chapter we move to a smaller scale as we apply our model to examine

the interaction between ions and the membrane. We utilize coarse-grained molecular

dynamics (MD) simulations to guide key input parameters for our continuum models,

and we show that our ion permeation energy profiles as well as the equilibrium mem-

brane deformation shapes from our model are in qualitative agreement with atomistic

simulations. We discuss the nature of the transition state for the movement of charged

species through the membrane, as well as our ability to probe this state with available

computational methods. Additionally, we highlight important considerations regarding

the non-equilibrium nature of permeation and dependencies on system size which may

be neglected in many coarse-grained and atomistic simulations. 1

1This chapter adapted from: Latorraca, N.R. (co-first author), Callenberg, K.M. (co-first author),
Boyle, J.P., Grabe, M. (2013). Continuum approaches to understanding ion and peptide interactions
with the membrane. BBA - Biomembranes (Submitted)
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4.1 Introduction

The cell membrane serves as a critical barrier differentiating the interior of the cell from

the extracellular medium. This lipid bilayer is inextricably linked to cellular identity -

without a membrane, a cell would lose control of its internal chemistry as its contents

diffused into the external milieu. Destruction of the cell membrane therefore equates

with cell death, and organisms have evolved strategies to kill other cells by attacking

their membranes, as in the mechanisms of many antibiotics. Strikingly, cells induce their

own deaths by compromising the integrity of their membranes during apoptosis through

decoupling the cytoskeletal network from the membrane, which leads to blebbing [120].

Chemical and physical principles underlie the membrane’s dual role as defender against

invaders and regulator of nutrient transport into and out of the cell. Packed hydrophobic

lipids form a low-dielectric barrier to charged and polar molecules, while membrane-

spanning channels and pumps exert exquisite control over the passage of ions and

macromolecules. Such transmembrane (TM) proteins typically consist of hydrophobic

amino acids energetically stable in the low-dielectric membrane. However, proteins with

functionally important, highly charged moieties do reside in the hydrophobic bilayer

core, suggesting that some mechanism must exist to mitigate the electrostatic cost of

their insertion. The arginine- and lysine-rich S4 voltage sensor segments of voltage-

gated potassium channels must respond to changes in potential across the membrane to

open and close the channel [52, 97]. Previous works posited that portions of the protein

surrounded these helices, shielding them from the hydrophobic environment [56], but

recent experimental and computational data have demonstrated that charged moieties

may directly penetrate and interact with the lipid bilayer.

In vitro translocation experiments suggest that TM segments harboring a central, charged

residue partition into the bilayer at a small energetic cost of only 2-3 kcal/mol [121],

while molecular dynamics (MD) simulations have demonstrated that an arginine residue

positioned in the bilayer core may “snorkel”, bringing water and ions into the bilayer

to interact with the buried amino acid [9, 69]. Membrane deformations and distortions,

therefore, represent a potential mechanism for charge insertion into the bilayer. We

previously tested this computationally with S4 segments from three voltage-gated potas-

sium channels and found that they favorably insert into a continuum, elastic bilayer,

suggesting that membrane bending provides a simple mechanical explanation for the

presence of charged residues in TM segments [37].

Membrane elasticity likely facilitates a range of biological processes, from the large-scale

deformations required for vesicle budding and fusion to the localized permeation of small
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molecules across bilayers. Carrier-mediated ion transport and bare ion permeation con-

stitute two distinct contexts in which to further investigate how membrane bending mod-

ulates membrane transport phenomena. For example, ionophores such as Streptomyces-

derived valinomycin selectively chelate potassium ions and shuttle them across host

cell bilayers, disrupting their electrochemical gradient. Similarly, the threat of bare

permeation of small ions and water molecules might have spurred the development of

a high fidelity phospholipid bilayer as an early and critical evolutionary adaptation

on the molecular level, later exploited by processes such as oxidative phosphorylation.

Nonetheless, bare ion permeation, while rare, does occur, and its mechanism remains

unclear.

Here, we focus on bare ion penetration into the membrane, which eventually leads to

permeation across the bilayer. Ion permeation is thought to occur via two distinct

mechanisms: solubility-diffusion and ion-induced pore formation. In the former, the ion

must partition into the hydrophobic core, surmounting a considerable energy barrier,

diffuse across the core, and resolvate as it exits the opposite membrane leaflet [122, 123].

However, rates for bare ion permeation predicted from solubility-diffusion theory disagree

with experiment by several orders of magnitude [51]. Others have proposed that the

presence of a charge induces the formation of membrane-spanning defects, which allow

for the permeation of charges and water molecules through a temporary, electrostatically-

favorable environment, and the primary barrier to permeation is the cost of creating a

pore in the membrane. Paula and colleagues investigated how potassium permeation

changes with changing bilayer thickness and found that crossing rates for thinner bilayers

matched rates predicted theoretically from an ion-induced pore formation model, while

rates for thick bilayer crossing matches predictions from solubility-diffusion models

[124]. Recent MD data have revealed that an N-methyl guanidinium ion crossing a

thin bilayer does give rise to a transient water pore through the membrane, while for

thicker membranes, the bilayer simply bends from one side or the other to promote

favorable electrostatics [125].

Previously, we developed a method that uses elasticity theory to predict membrane

distortions around TM proteins harboring charged, buried residues [22]. Bending dras-

tically reduces the energy required to insert these proteins in the membrane, and our

model is in quantitative agreement with results from atomistic MD simulations, but at

a fraction of the computational cost. Next, we developed a method for determining

the shape of the membrane around chemically complex TM proteins, to determine the

configuration that minimizes the total insertion energy [37]. At present, our continuum

model effectively assesses the energetic equilibria involved in static membrane-protein

interactions. Here, we extend our work by considering the penetration of ions into the

membrane from solution. We compare our results with fully atomistic and coarse-grained
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molecular dynamics simulations as well as experiment. We consider how variations

in bilayer properties such as hydrophobic thickness, membrane compressibility, and

membrane curvature, influence the energetics of ion penetration, and we discuss the

implications of our results on our current understanding of bare ion permeation.

4.2 Methods

4.2.1 Description of the Continuum Model

Previously, we developed a continuum membrane model and search algorithm to cal-

culate insertion energies and membrane distortions for single pass TM proteins[22, 37].

Briefly, in our model the total energetic stability of the solute in the membrane, ∆Gtotal,

is approximated by the following equation:

∆Gtotal = ∆Gmem + ∆Gelec + ∆Gnp (4.1)

where the first term on the right hand side (∆Gmem) is the energy associated with

distortions in the membrane caused by embedding the solute, the second term (∆Gelec)

is the electrostatic cost required to move the charged solute from solution into the low-

dielectric environment of the membrane, and the final term (∆Gnp) is the nonpolar or

hydrophobic energy gained by removing portions of the solute surface from water and

burying them in the membrane. All energies are calculated with respect to the molecule

free in solution far from an unstressed membrane; therefore, negative values indicate

stabilization in the membrane. This model is in excellent agreement with free energies

calculated from simulations [22], and the model supports experimental observations on

the stability of voltage sensors from voltage-gated potassium channels [37].

All of the energies presented in this manuscript are equilibrium values calculated from

static configurations. The exact computational details closely follow the procedure

outlined in our previous manuscript [37] and additional details can be found in [22].

Briefly, the energetic terms and procedure are calculated as follows.

Membrane Deformation Energy (∆Gmem). We use linear elasticity theory to determine

the shape and energetic cost of deforming the bilayer at the site of ion penetration.

Specifically, we use a modified Helfrich Hamiltonian, which includes terms for membrane

bending, compression and tension [14, 87, 126]:
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where u+ is the shape of the upper leaflet and u− is the shape of the lower leaflet, L0 is

the equilibrium length of the membrane, Kc is the membrane bending energy, α is the

surface tension, and Ka is the compression modulus. The surfaces are represented in the

Monge gauge, and correspondingly, the integral extends over the entire x-y domain, Ω.

The functional derivative of Eq. 4.2 with respect to variations in u+ and u− gives the

following partial differential equations (PDEs) that determine the shapes of each leaflet:

∇4u+ − α

Kc
∇2u+ +

2Ka

KcL2
0

(u+ − u−) = 0

∇4u− − α

Kc
∇2u− +

2Ka

KcL2
0

(u− − u+) = 0. (4.3)

The last term on the left hand side of each equation couples the upper and lower leaflets.

This coupled set of fourth-order equations requires two boundary conditions (BC) to be

specified on the inner boundary, where the bilayer contacts the ion, and at the outer

boundary, far from the ion. We assume that the membrane is flat at its equilibrium

length, L0, far from the ion. At the ion, we impose a radially symmetric contact

height for the upper and lower leaflets, and we impose contact angles that determine

the slope of the membrane as it meets the ion (Fig. 4.1). Thus, four independent

parameters determine the boundary conditions at the inner boundary. We determined

these values by carrying out a search on all four parameters to find the membrane

shapes that minimize the total energy in Eq. 4.1 as discussed in reference [37]. In

some cases described in the Results, we imposed some contact angles by hand based

on correspondence with membranes shapes from coarse-grained MD simulations. The

PDEs in Eq. 4.3 were solved using a second-order finite difference method written in

radial coordinates (r and θ), and the membrane bending energy was determined by using

an second-order scheme to compute the integral in Eq. 4.2. While the solver is a general

2D solver, the solutions only vary in r, not θ, due to the underlying symmetry of the

system. All code was written in Matlab (The MathWorks Inc., Natick, Massachusetts).

Electrostatic Energy (∆Gelec). We solve the non-linear Poisson-Boltzmann equation (NPBE)

to determine the cost of inserting a charged molecule into a neutral, uncharged bilayer:
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Figure 4.1: Geometry of the system in the continuum model.

(A) Cross section showing membrane distortions in the upper and lower leaflets.
Solid red lines indicate the membrane-water interfaces. Dashed black lines indicate
the equilibrium heights of the membrane leaflets and the midplane at z = 0. u+

and u− represent the displacement from equilibrium for the upper and lower leaflets,
respectively. The equilibrium bilayer thickness is L0. The inner boundary conditions
are applied at r0, where the solvent accessible surface area (SASA) of the ion contacts
the membrane. (B) The contact point u+(r0) is determined from the search angle that
minimizes the total energy Eq. 4.1. The ion-membrane contact angle, du+/dr, is a free
parameter in the model and is tuned to molecular simulation according to Eq. 4.7. The

contact point and angle on the lower leaflet are treated in similar manners.

−∇ · [ε(~r)∇φ(~r)] + κ2(~r)sinh[φ(~r)] =
e

kBT
4πρ(~r), (4.4)

where φ(~r) = Φ(~r)/kBT is the reduced electrostatic potential at position ~r, κ is the

Debye-Huckel screening coefficient to account for ionic shielding, ε is the spatially-

dependent dielectric constant, e is the electron charge and ρ is the charge density within

the protein. The electrostatic potential is solved using the software APBS [73] along

with scripts for including the dielectric influence of the membrane similar to those found

in APBSmem [29]. The electrostatic energy of the ion in the membrane compared to

solution, ∆Gelec, is calculated by subtracting the total energy of the molecule in the

membrane from the value in solution, far from the membrane. This energy is usually

referred to as the Born solvation energy, ∆GBorn.

In a separate electrostatics calculation, we include the influence of the membrane dipole

potential by adding a sheet of dipole charges at the interface between the headgroup

and the hydrocarbon core – one sheet for the upper leaflet and one for the lower leaflet.

This term accounts for the large electrostatic role that the membrane dipole plays in

charge permeation events, and we tune the charges and the separation distance of the

dipoles to achieve +300 mV at the center of the membrane, which is estimated for

phosphatidylcholine bilayers [108]. For this calculation, we solve the linearized form
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of the Poisson-Boltzmann equation (LPBE) to expedite the calculations. First, we

calculate the total electrostatic energy of the charged molecule in the bilayer with the

dipole potential on. Next, we subtract off the “self” dipole energies by turning off the

charge on the permeating molecule and re-performing the calculation with the dipole

charges still on. Finally, we subtract the electrostatic energy of the charged molecule

with the dipole potential turned off. These three terms added in this way provide the

interaction energy between the ion and the membrane dipole potential, ∆Gdipole. The

total electrostatic energy is then given by the sum of the Born solvation energy and the

dipole energy: ∆Gelec = ∆GBorn + ∆Gdipole. Please note that all electrostatic energy

calculations are multiplied by a factor of 1/2 to account for double counting of the

charge-charge terms. This value is automatically accounted for in the energies returned

by APBS [73], so we do not discuss these factors above.

Nonpolar Energy (∆Gnp). The nonpolar energy arises from the tendency of water to ex-

clude molecules, resulting in the clustering of hydrophobic proteins and the stabilization

of molecules in the membrane. We model the nonpolar energy, ∆Gnp, as proportional

to the difference in the ion’s solvent accessible surface area (SASA) in the membrane

compared to solution:

∆Gnp = a · (Amem −Asol), (4.5)

where Amem is the ion SASA in the membrane, Asol is the total ion SASA, and a

= 0.028 (kcal/mol)/Å
2
. The constant a was determined based on the partitioning of

small nonpolar molecules between aqueous and organic phases [127]. SASA values are

calculated with a modified Shrake-Rupley algorithm [32] using the solvent-accessible

surface representation of the ion with a water probe radius of 1.4 Å. In the presence

of the membrane, if the point on the surface of the ion lies between the upper, u+,

and lower, u−, leaflets then it is considered occluded and does not contribute to Amem.

Matlab’s cubic interpolation function was used to navigate between the position of the

point on the ion surface and the grid points describing the upper and lower membrane

surfaces.

Minimizing the Total Energy. To simulate the permeation of an ion, we systematically

translated the molecule in steps of 3 Å along an axis orthogonal to the membrane

normal, which we call the z axis. For each position, we carried out a search algorithm

to determine the deformation that minimized the total energy of the system in Eq. 4.1.

Initially, during the search, the contact height of the upper and lower leaflets was varied

as was the contact angle with which the leaflets meet the ion (Fig. 4.1B). We then

imposed specific contact angles in accordance with the shapes of coarse-grained MD
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simulations during these searches, described in greater detail later. To facilitate faster

convergence of the search, we used the final, optimal membrane configuration from one

calculation as the starting guess for the subsequent position along the pathway.

4.2.2 Coarse-Grained Simulations

We performed coarse-grained MD simulations using GROMACS version 4.5.3 [128] and

the MARTINI forcefield version 2.0 with polarizable water [129]. Simulations were

performed with umbrella sampling so that the z-position of the ion was harmonically

restrained with respect to the center of mass of the membrane. For cation simulations,

a Na+ was used rather than K+ since K+ has not been parameterized in MARTINI. We

sampled ion positions from one side of the membrane to the other in 1 Å steps. In each

simulation, the ion was initially placed at the restraint minimum in a pre-equilibrated

bilayer. We could possibly have benefited from a speed up in convergence by using

the final configuration from the previous ion position to initiate new simulations, but

we were also interested in the ability of the coarse-grained membrane to undergo large

scale conformational changes in a limited time, so we initiated all simulations from a

flat membrane. After energy minimization, molecular dynamics was performed for 60

ns. The first 10 ns of each simulation were discarded as equilibration, leaving 50 ns of

simulation time for analysis.

We used semi-isotropic pressure coupling with a Berendsen barostat [130] at 1 bar in x

and y with a coupling of 1 ps, a compressibility of 3.0 × 10−5, and temperature set at

320 K. PME electrostatics were used with a 1 Å grid spacing.

The software g wham was used to calculate the potential of mean force (PMF) using the

weighted histogram analysis method (WHAM) [131, 132]. Two hundred bins were used

to construct the histogram, and the energy in bulk solution at ±30 was defined to be 0.

4.2.3 Systems Setups and Parameters

We created input files containing radii and charge for the potassium ion and chloride

ion calculations, assigning them their respective charges of +1 and -1, and we used the

unhydrated radii, 1.49 Å for K+ and 1.64 Å for Cl−, [133]. We also had to specify r0,

the radius of the solute inclusion. See Figure 4.1 for an illustration of the geometry of

the system. For K+ and Cl− we again used literature values, this time for the hydrated

ionic radii [133].

To capture the effect of increasing bilayer thickness on ion permeation in our continuum

model, we had to consider how lipid alkyl tail length, a variable in MD simulations and
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Table 4.1: Parameters for all continuum calculations

Parameter Value

Electrostatics Grid Dimensions 161 × 161 × 161 Å3

Coarse Grid Lengths 200 × 200 × 200 Å3

Fine Grid Lengths 50 × 50 × 50 Å3

Counter-Ions 0.1 M symmetric salt
Protein Dielectric 2.0
Membrane Dielectric 2.0
Head group Dielectric 80.0
Solvent Dielectric 80.0
Solvent Probe Radius 1.4 Å
Surface Sphere Density 10.0 grid points/Å2

Temperature 298.15 K
Membrane Thickness See Table 4.2
Head group Thickness 8.0 Å
Bending modulus (Kc) See Table 4.2
Compression modulus (Ka) 2.30 × 10−11 N/Å
Surface tension (α) 3.00 × 10−13 NÅ

experiments, corresponds to bilayer thickness, and how this in turn affects the elastic

properties of the bilayer. The compression modulus, Ka, does not vary significantly

between different lipid chain lengths. However, the bending modulus, Kc, does increase

systematically as lipid chain length increases [134]. Rawicz and co-workers developed

an empirical relation to describe the hydrophobic thickness to Ka and Kc:

Kc =
L2
c

24
Ka, (4.6)

where 24 is an empirical constant and Lc is the equilibrium hydrocarbon thickness, which

is equal to the entire bilayer thickness, L0, minus twice the thickness of the headgroup

region. For all calculations, we used 8 Å as the headgroup thickness [27]. We computed

Kc from an average Ka of 230 mN/m [134] and from hydrophobic thicknesses reported

by Li and co-workers [125], with the exception of DSPC. For the hydrophobic thickness

of DSPC, which was simulated at a higher temperature than the other lipid types, we

calculated the average increase in hydrophobic thickness among the other bilayers and

added this value to the thickness of DPPC. Please see Table 4.2.

All coarse-grained simulations started with an identical pre-equilibrated DPPC bilayer

composed of either 128 lipid and 2000 water molecules or 512 lipid and 8000 water

molecules. Ions were added as necessary to neutralize the system charge. Helices for the

coarse-grained molecular dynamics simulations were constructed with ideal alpha-helical

backbone angles using VMD Molefacture plugin version 1.2. The secondary structure

of the helices was harmonically restrained with 1000 kJ/mol restraints.
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Table 4.2: Elastic membrane material properties

Lipid type Thickness Ka Kc

DDPC (10) 32.0 Å 2.30 × 10−11 N/Å 2.45 × 10−10 NÅ
DLPC (12) 36.3 Å 2.30 × 10−11 N/Å 3.95 × 10−10 NÅ
DMPC (14) 39.9 Å 2.30 × 10−11 N/Å 5.47 × 10−10 NÅ
DPPC (16) 43.6 Å 2.30 × 10−11 N/Å 7.30 × 10−10 NÅ
DSPC (18) 47.7 Å 2.30 × 10−11 N/Å 9.45 × 10−10 NÅ

See Tables 4.1 and 4.2 for continuum calculation parameters.

4.3 Results

4.3.1 Using coarse-grained simulations to tune the continuum model

When we originally developed our continuum membrane bending model to explore

the stability of charged membrane proteins [22], we were inspired by MD simulations

that showed significant membrane bending around buried charged amino acids [9] and

membrane-penetrating charged molecules [69]. For embedded membrane proteins, our

model produced deformations similar to those observed in fully atomistic simulations

[22, 37], and here we decided to explore its ability to match deformations observed in

ion and charged molecule permeation studies. We moved an ion from the upper solution

at z = +30 Å to the lower solution at z = -30 Å in 3 Å steps. The membrane was

modeled with DPPC lipids, and in the flat, unstressed case it spans from +21.8 Å to

-21.8 Å, centered at zero. We initially modeled a large membrane patch with a radius of

800 Å in the x-y plane. Four equilibrium snapshots of the ion at different positions along

the permeation pathway are shown in Fig. 4.2A. Interestingly, the membrane adopts a

low-energy bent conformation to avoid penetration by the ion. There is some bending of

the upper and lower leaflets at the site of contact with the ion, but the most prominent

feature is the large deflection of the entire patch in the ± z direction depending on

the position of the ion. Avoidance by the membrane is not surprising, given the low

energetic cost for the membrane to adopt a large wavelength deformation and the high

energetic cost for a charged molecule to penetrate the low-dielectric environment of the

membrane interior. However, this behavior is not observed in MD simulations in which

the molecule penetrates deeply into the membrane and sharp curvature is observed at

the site of penetration [69, 125, 135, 136].

The membrane patch size used in the continuum calculations in panel A is very large

compared to most MD simulations of membranes. To better understand the differences

between our continuum model and previous MD simulations, we carried out our own
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Figure 4.2: Continuum membrane bending is qualitatively similar to deformations
observed in coarse-grained simulations.

In all three rows, 4 snapshots are shown for a cation (purple) placed at -9, -1, +3, and
+12 Å with respect to the center of mass of the membrane. In panels A and B the gray
surfaces are the membrane-water interfaces, which separate the headgroup region from
aqueous solution. The interfaces between the headgroup region and the membrane core
are shown as gray dotted curves. The phosphate beads are gray in the snapshots in
panel C and penetrating waters are red and white. A) Snapshots from the continuum
membrane bending model for a large patch of membrane with boundary conditions
applied at 800 Å from the ion. A search was carried out to identify the optimum
contact angle and contact value for the membrane at the upper and lower leaflets for
each position of the ion. The membrane bends to avoid the ion at all positions even
when the ion is placed near the center of the system (z = -1 Å). B) Snapshots from
the continuum model for a small patch of membrane with a 35 Å radius. A search was
carried out to identify the optimum contact value for the membrane at the upper and
lower leaflets, and the contact angle was fixed at α = 0.85 and β = 0 according to Eq.
4.7 to better match the results in panel C. For this small patch of equivalent size to most
MD simulations, the membrane is not able to adopt a low energy, large scale deformation
to avoid penetration by the ion. The leaflet being penetrated bends sharply, while the
opposite leaflet adopts a more gentle bend to relieve compression. C) Snapshots from a
coarse-grained MD simulation of Na+ penetrating a DPPC bilayer using the MARTINI
forcefield. The membrane is approximately square with a side length of 65 Å, and it
is composed of 128 DPPC lipids. Starting with an identical flat, equilibrated bilayer,
71 independent umbrella sampling simulations were performed with the ion restrained
at positions along the membrane normal. The deformation patterns are similar to the

corresponding snapshots from the continuum model in panel B.
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MD simulations of a cation penetrating a bilayer using the coarse-grained MARTINI

force field [129] (Fig. 4.2C). We also carried out continuum calculations on a much

smaller patch size closer to those used in MD simulations (Fig. 4.2B). As discussed in

the Methods, a Na+ was used for these studies since K+ is not parameterized in the

MARTINI force field. The membrane was composed of 128 DPPC lipids, and the x-y

extent of the system was 65 Å × 65 Å. Umbrella sampling was used to harmonically

restrain the ion at positions along the z direction extending from -30 Å to +30 Å.

Simulations were carried out at each position. As in previous work, we observe deep

penetration of the ion into the membrane causing severe deformation of the lipids

adjacent to the ion, which extends laterally away from the site of penetration in a

manner consistent with an elastic deformation (Fig. 4.2C).

Simply reducing the size of the membrane patch to typical MD simulation sizes already

produces continuum membrane deformations that are similar to the coarse-grained

results (data not shown). However, to more closely match the coarse-grained snapshots,

we tuned the contact angles at the upper and lower leaflets where the membrane touches

the permeating ion. We observed an empirical relationship between the depth of the

penetration from one side of the membrane, say u+ in this case when penetrating from

the upper solution, and the contact angle at the upper and lower boundaries:

du+(r0)

dr
= αu+(r0)

du−(r0)

dr
= βu+(r0), (4.7)

where α and β are constants with α = 0.85 > β = 0 as indicated by the larger contact

angle at the leaflet from which the ion is penetrating the membrane. These relationships

are imposed on the continuum model throughout the rest of the manuscript. Since we

imposed contact angles on the model that do not minimize the total energy, the solutions

shown in panel B are higher energy than those shown in panel A, which means that the

states observed in the MD simulations are non-equilibrium, high energy states. There

could be several reasons that the MD simulations produce higher energy states than the

continuum model. First, the finite system size of the MD simulations may restrict the

degree of membrane bending, and second, the simulations may be too short to observe

large scale conformational changes of the membrane. We will discuss these two aspects,

and other potential reasons, in more detail later.
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4.3.2 Ion free energy profiles from continuum model match profiles

from molecular simulations

Our model successfully reproduces the membrane shapes observed in CG simulations

during ion penetration; however, it is not clear if the energetics produced from our

model are in agreement with values from atomistic simulations. Li and colleagues

found that a continuum model of guanidinium permeation poorly matched the results of

their atomistic MD simulations [125]. In particular, energy profiles obtained with their

continuum model exhibited relatively flat, rounded peaks at the free energy maximum

when the ion was at the center of the bilayer. In contrast, their MD simulations yielded

sharply peaked “witch’s hat” profiles, which qualitatively match energy profiles obtained

in other ion permeation simulations [135, 137]. Additionally, guanidinium is stabilized

in the headgroup region relative to bulk solution, as observed in cation simulations

[135, 137], but their continuum model predicts no stabilization in the headgroup region

[125].

To understand how our model compares with atomistic simulations, we computed the

total free energy according to Eq. 4.1 for K+ and Cl− movement across the membrane

in 3 Å steps (red and blue solid lines in Fig. 4.3, respectively). At the center of the

bilayer both curves are sharply peaked, just as observed in the atomistic MD simulations

carried out by Li and co-workers [125]. Also, our model predicts that K+ is stabilized

in the headgroup, as shown in simulation [125, 135, 137]. Stabilization in our model

occurs because we assume that the headgroup has a high dielectric value so there is

little electrostatic penalty for moving charged species into this region, while we assume

that there is a favorable nonpolar energy associated with the solute leaving the aqueous

environment. In fact, the snapshots in Fig. 4.2B show that the membrane bends during

penetration to keep the ion in the headgroup region, as noted previously for atomistic

simulations [125]. Thus, our model does a very good job of recreating both the qualitative

snapshots and the quantitative energy profiles predicted from atomistic simulations. We

also carried out calculations in which the bilayer was not allowed to bend, producing

the red and blue dashed lines in Fig. 4.3 for K+ and Cl−, respectively. These results

are in qualitative agreement with the continuum model created by Li and colleagues,

which also assumes that the membrane is incapable of bending [125], and we believe that

these results highlight the importance of including membrane bending in any continuum

model of the membrane.

Paula and colleagues used spectrofluorimetry to demonstrate that anions permeate

vesicles composed of phosphatidylcholine-based lipids at a much greater rate than cations

[124, 133]. Since K+ and Cl− have comparable hydrated ionic radii, they suggested

that charge differences between these ions, rather than size differences, account for the
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Figure 4.3: Free energy profiles along the transmembrane coordinate for a cation and
an anion.

Using our fully flexible membrane model, we translated K+ (solid red curve) or Cl−

(solid blue curve) across the membrane in 3 Å steps with the ion initially positioned
in bulk solvent approximately 6 Å from the membrane-water interface (z = -30 Å).
As the ions penetrate the bilayer from below at z = -25 Å, they are stabilized in
the headgroup region. At the bilayer center, the membrane has undergone maximal
deformation to ensure that the ion does not penetrate the hydrocarbon region of the
membrane. The symmetric K+ and Cl− profiles both exhibit peaks at the membrane
center, and the equilibrium configurations fail to show penetration of the ions into the
hydrophobic core. The free energy profiles for cation and anion permeation through a
non-deformable membrane (dashed curves) are plotted to demonstrate how membrane
elasticity minimizes the energy required to move ions into the center of the membrane
by 12-30 kcal/mol. The membrane dipole stabilizes Cl− by ∼20 kcal/mol in the non-
deformable model (difference between dashed curves), but only by 2-3 kcal/mol in the

membrane bending model (difference between solid curves).

differences in their permeability values [133]. The only term in our model that accounts

for differences between similarly sized ions of different charge is the membrane potential

dipole term, which is part of ∆Gelec. The charge composition of PC based lipids creates

a positive dipole potential in the membrane interior, which is measured to be on the

order of +300 mV [108]. The positive value causes an increase in the energetic barrier

for cations compared to anions, as can be seen by the higher energy value for K+ (red)

to permeate the bilayer compared to Cl− (blue) (Fig. 4.3). The energy difference is

larger for ions permeating through the core of a flat bilayer since they experience the

full +300 mV of the dipole potential, while ions penetrating bent bilayers remain at the

interface between the headgroup and the hydrophobic core where the dipole field is not

at its maximum value (compare solid curves to dashed curves in Fig. 4.3). Interestingly,

an atomistic MD simulation comparing Na+ and OH− permeation across saturated

phospholipid bilayers reported a permeation barrier for anions 5-10 kcal/mol greater
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than that encountered by cations using the Smondyrev lipid forcefield [138] with the

SPC/Fe water model [135]. Similarly the McCammon group found that the barrier for

Cl− was +2 kcal/mol higher than K+ using CHARMM32 with a TIP3P water model

[137]. So while our continuum model predicts that Cl− permeation should be easier

than K+ permeation, in qualitative agreement with experiments, atomistic simulations

suggest just the opposite.

Another difference between anion and cation interactions with phospholipid bilayers

is that many MD simulations suggest that cations are stable in the headgroup region

with respect to bulk solvent, while anions are not [135, 137]; however, we do note that

simulations with GROMACS suggest that Cl− binds to the headgroup, but more weakly

than Na+ [139]. Our coarse-grained simulations using the MARTINI model predict

behavior similar to the Tepper and Khavrutskii atomistic simulations (data not shown).

In stark contrast, our continuum model predicts that cations and anions are equally

stable as they partition into the headgroup region from solvent (Fig. 4.3), an effect that

results from the nonpolar contribution of inserting ions of equivalent surface areas as

well as our treatment of the membrane dipole potential. We model the charge on the

phospholipid headgroup as a uniform surface of positive and negative charges with a

thin separation centered at the interface between the headgroup and hydrocarbon core.

Ions do not experience the influence of the membrane dipole potential until they cross

this boundary, so there is no charge selectivity for molecules in the headgroup region.

Interestingly, Knecht and Klasczyk recently showed using electrophoresis and isothermal

titration calorimetry that Na+ and Cl− exhibit similar affinities for interacting with the

surface of POPC bilayers [140], in agreement with predictions from our model.

4.3.3 Permeation barriers increase with increased membrane thickness

As one might expect, the permeability of ions across phospholipid membranes decreases

as the membrane thickness increases [124, 133]. To investigate the dependence of the

energy profiles on membrane thickness, Li and colleagues carried out atomistic MD

simulations of guanidinium penetrating homogeneous phospholipid bilayers having tail

lengths ranging from 10 carbons (DDPC) to 18 carbons (DSPC) [125]. We used our

model to compare with the atomistic results by translating a K+ ion in 3 Å steps across

membranes of comparable thicknesses and corresponding material properties as those

examined by Li and colleagues. At each step, we carried out a search algorithm to

identify the contact values of the upper and lower leaflets that minimized the insertion

energy, while holding the contact angle constant as shown in Eq. 4.1. The energy

required to move the ion into the middle of the bilayer increases dramatically as the

membrane thickness increases (Fig. 4.4), which appears to be in qualitative agreement
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with the results from experiment [124]. Additionally, the shapes of the energy profiles

are remarkably similar to the results obtained for guanidinium from MD simulations,

which are shown in the inset. The energy for the arginine side chain at the center of

the membrane is in good agreement with that predicted by our model for K+ for all

but the thickest membrane. Unfortunately, atomistic free energy profiles as a function

of membrane thickness do not exist for K+, and the reduced energy for arginine is

certainly in part related to chemical differences. The curves from both methods exhibit

a constant slope approaching the membrane center, which indicates that there is a

constant force on the molecule. In the continuum model, the constant force is largely

the linear restoring force of the elastic membrane. Except for the thickest membrane,

DSPC, the permeation energy barrier increased by about 5 kcal/mol for each increase

in bilayer thickness, similar to the trend seen by Li and colleagues shown in the inset

of Figure 4.4 [125]. While our method matches the results from atomistic simulations

very well, one difference is that for the thin bilayers, DDPC and DLPC, the energy

profiles from MD simulations plateau rather than peak as predicted by the continuum

model (Fig. 4.4). This discrepancy is most likely related to the permeation mechanism

as discussed next.

4.3.4 The nature of the transition state for ion and small molecule

permeation

The solubility-diffusion model and the ion-induced pore formation model are the two

prevailing models for passive ion permeation across bilayers [133]. The critical step

in each mechanism, the transition state, is the point at which the ion has penetrated

deep into the bilayer and is ready to cross to the other side. If the process occurs

at equilibrium, symmetry arguments mandate that the shape of the membrane at the

transition state must be the same whether permeation occurs from the upper leaflet

or the lower leaflet. For the solubility-diffusion model, the transition state occurs once

the ion has partitioned into the hydrophobic core of the flat, unstrained membrane and

diffused half way across the membrane. In the ion-induced pore model, ion penetration

creates a defect in the membrane in which the headgroups from both leaflets surround

the ion, and water penetrates from both sides. From our model, when the ion is at

the center of the membrane the symmetry is broken depending on which side the ion

originated (Fig. 4.5A). Both snapshots show that the ion still remains in the headgroup,

and the entire hydrophobic width of the membrane, d, separates it from the adjacent

leaflet. Moving the ion 1 Å farther produces a snap through bifurcation in which the

ion is now localized in the headgroup region of the other leaflet (Fig. 4.5A). This
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Figure 4.4: Free energy profiles for K+ penetration into bilayers of different thick-
nesses.

For all thicknesses, the ion is stabilized as it enters the headgroup region, but rises to a
sharp-peak at the membrane center. The penetration energy increases with membrane
thickness with values at the center ranging from 3 to 32 kcal/mol. The inset shows
similar free energy profiles obtained from atomistic MD simulations carried out on
the positively charged arginine side chain analogue, MguanH+ [125]. The equilibrium
length (L0) and bending modulus (Kc) were increased to match the known properties of
lipids being modeled, and values are given in Table 4.2. The compression modulus (Ka)
was held constant since it is thought to be independent of the hydrophobic thickness. In
all cases, L0 for each lipid type is similar between the MD simulations and continuum

model except for DSPC, as discussed in the Methods.

second configuration also has broken symmetry, and in fact, our model never samples

the transition state.

The range of measured permeability values as a function of membrane thickness is smaller

for chloride ions (10−9 to 10−8 cm/s) than it is for K+ ions (10−12 to 10−10 cm/s) [133].

Based on these measurements, Paula and colleagues argued that anions always permeate

via a solubility-diffusion model, but the wide spread in K+ permeabilities can only be

understood if permeation occurs by solubility-diffusion for thick membranes and ion-

induced pore model for thin membranes [133]. The careful PMFs carried out by the

Allen group on guanidinium penetration seem to support this hypothesis. The peaked

“witch’s hat” profiles occur for thick membranes (DMPC-DSPC), which indicates that

the ion never leaves the headgroup region as it is moved to the center of the bilayer, as

observed with our continuum model (inset and main figure of Fig. 4.4, respectively).

So for permeation to occur, the cation must still partition into the hydrophobic core
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Figure 4.5: Comparison of coarse-grained and continuum model treatment of the
transition state for ion permeation.

A) Membrane configurations from the continuum model for a K+ at the center of the
membrane (left) and just to the right of the membrane center (right). The relevant
portion of the energy profile from Fig. 4.3 is shown in the middle. B) Snapshot from
a coarse-grained MARTINI model simulation of a Na+ ion (purple) restrained at the
center of a DHPC bilayer. Polarizable water beads are depicted in red and white;
phosphate beads of the membrane are shown in gray. The phosphate beads bend in
both the upper and lower leaflets of the membrane to interact with the ion and expose
it to water. C) Snapshot from a coarse-grained MARTINI model simulation of a Cl−

ion (cyan) restrained at the center of a DHPC bilayer. The coloring scheme is the same
as panel B. The ion-induced pore formed in the membrane is much more profound than

the defect induced by Na+.

and diffuse all the way across to the other leaflet. This step is not sampled in the

Allen data, and there is symmetry breaking in the system at z = 0 just as in our model

for thick membranes. However, for thin membranes (DDPC and DLPC), the atomistic

simulations show that the energy profile plateaus at z = 0 (inset of Fig. 4.4). Snapshots

of these simulations indicate that water penetration and lipid bending occurs into the

middle of the bilayer from both leaflets, which restores the symmetry and supports the

pore-formation model [125]. Unfortunately, our continuum model does not identify such

low energy conformations, and we will return to this in the Discussion.

We decided to carry out coarse-grained MARTINI model simulations of Na+ and Cl−

embedded at or near the center of membranes to further explore the nature of the

transition state. The Marrink group used coarse grained simulations to study the

movement of Na+ and Cl− through preformed pores in the membrane, and they showed

that once a pore is formed Na+ will permeate small and large pores, but Cl− will

only permeate large pores [136]. Based on this observation, they argue that Cl− most
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likely permeates via a solubility-diffusion mechanism, but cations can permeate via

pores, although their simulations did not address ion-induced pores. Our coarse-grained

simulations indicate that membrane breakdown occurs when Na+ or Cl− is restrained

at the center of the membrane for 10 ns (Fig. 4.5B,C). Interestingly, Cl− elicits much

more profound and long-lived membrane breakdown than does Na+, and this qualitative

observation does not fit with the hypothesis that Cl− permeation only occurs via a

solubility-diffusion mechanism [133]. For Na+ in thicker bilayers, we failed to observe

any membrane breakdown over the course of the 60 ns simulation, which supports the

solubility-diffusion model for cation permeation of thick bilayers [133].

4.3.5 Large scale membrane deformations are not always observed in

coarse-grained simulations

Current computational resources and techniques are making it possible to explore the

movement of not only small molecules and ions into membranes, but also small proteins.

In recent years, research groups have used computational approaches to explore the

insertion and translocation of proteins such as the charged S4 segments from voltage-

gated ion channels [8, 9, 37, 102, 104], the HIV Tat protein [141, 142], peptide antibiotics

that insert into membranes [143–145]. These studies range from using fully atomistic

simulations to continuum methods, and they also range from determining quantitative

energies to reporting qualitative observations. Of particular interest are those studies

that included a high level of molecular detail yet also perform rigorous free energy

calculations, because they have the potential to have predictive power and shape our

understanding of membrane related phenomena. However, there is a trade-off between

the chemical accuracy of the system and whether the relevant membrane and protein

configurations can be adequately sampled.

We carried out extensive coarse-grained simulations on the membrane targeting domain

of the rhoptry protein 5 (ROP5) to attempt to calculate its binding energy to the

membrane. ROP5 is a rhoptry protein secreted by the pathogen Toxoplasma gondii

during infection of a host cell. ROP5 associates with the nascent parasitophorous vacuole

membrane (PVM), which forms about the parasite. The ability of ROP5 to associate

with the PVM is due to a specific arginine-rich domain consisting of three putative alpha-

helices, and this domain has been shown to be necessary and sufficient for membrane

binding [146]. ROP5 is a potent virulence gene in Toxoplasma [147, 148]. Deletion of

this locus renders highly virulent strains of this parasite avirulent. This interaction is

hypothesized to be important to the infection process [146], but further experiments are

needed to confirm this.
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Each helix has a high positive charge content due to the presence of the arginine residues,

and they also contain a hydrophobic face making them amphipathic. Deletion of helix 2

in the ROP5 protein most effectively reduced ROP5 binding to the PVM [146] leading

to the hypothesis that helix 2 has the highest binding affinity to the membrane. We

attempted to test this hypothesis by carrying out separate coarse-grained, MARTINI

model MD simulations of helix 1, 2 or 3 in the presence of a homogeneous DPPC

bilayer. Following the protocols outlined by the Sansom lab [102, 104], umbrella sampling

combined with weighted histogram analysis were used to construct free energy profiles

for each helix [132]. In this protocol, the reaction coordinate was chosen as the distance

from the center of mass (COM) of the protein to the COM of the membrane. The

membrane starts in a flat state that is identical across all simulations, and the protein is

translated to many different starting positions across the bilayer prior to minimization

and production runs (Fig. 4.6B). The long axis of the helix is initially parallel to

the membrane normal with the N-terminus always pointing up. Minimization and

equilibration successfully remove any steric clashes between the embedded protein and

the lipids, and then production is run for 60 ns per window.

The binding energy for helix 2 is reported in Fig. 4.6B for both a small membrane patch

of 128 lipids (red curve) and a large membrane patch with 512 lipids (black curve). As

expected, the helix is most stable at the membrane-water interface (-20 Å), where it

adopts a conformation with the hydrophobic face buried in the membrane core and the

arginine residues exposed to water. Interestingly, the free energy curves are not identical

for these two systems. While the energy barrier at the center of the bilayer is nearly

identical, the shape of the PMF is quite different between the two lipid patch sizes

leading to different estimates of the interfacial binding energy (Fig. 4.6B). We observe

that when a small number of lipids are simulated with the helix restrained at 28 Å from

the membrane center no large scale membrane bending occurs, and the helix remains

largely solvated in water. However, simulations of the same situation with the larger

patch size shows a large scale deformation of the bilayer that embeds the hydrophobic

residues in the membrane (Fig. 4.7). We performed 3 additional simulations with

different random seeds for each system and found this difference in membrane behavior

was consistent; the smaller patch never exhibited large scale bending during the length

of the entire simulation. Carrying out umbrella sampling in windows separated by 1 Å

steps, we found that the small lipid patch does not deform until the helix is restrained 25

Å from the COM of the bilayer. The behavior is in exact agreement with our continuum

model shown in Fig. 4.2A in which the membrane undergoes large scale deformations

to minimize the energy of the system. In the small patch size simulations, it is not

possible for the membrane to undergo such large scale deformations, and the results

are necessarily higher energy compared to the larger systems. Thus, it is important to
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Figure 4.6: Free energy of ROP5 binding to a membrane.

A) Sequence of 3 helices from the RAH targeting domain of the ROP5 protein. All
sequences are amphipathic, suggesting that they would be stabilized at the membrane-
water interface. B) Initial setup for all peptide simulations. Identical copies of helix 2
were translated along the z-axis in 1 Å steps to initiate umbrella sampling simulations.
The initial orientation was the same in each umbrella, with the N terminus (starred
end) in the positive z-direction. C) The Potential of Mean Force (PMF) for helix 2
translated from the lower bath into the center of the bilayer. The PMFs are flat in
water, but exhibit a sharp downward slope at -32 Å (512 patch, black curve) and -28
Å (128 patch, red curve) when the membrane starts to bend to interact with the helix.
The large patch is able to bend to reach the helix before the small patch leading to
robust differences between the two PMFs. The interfacial region near -20 Å is the most
stable position for both simulations, but the binding is predicted to be 5 kcal/mol more
stable for the small patch than the large patch. The interface between the headgroup
and aqueous environment in the unstrained membrane is indicated by the grey line.
D) Symmetry breaking of the helix orientation. Equilibration in each window is as
long or longer than typical published protocols; however, we find that this time is
insufficient for helix 2 to reorient in the membrane and adopt configurations that must
be minimum energy as dictated by symmetry. This poor sampling gives rise to non-
symmetric PMF profiles for helices and peptides translated across the entire bilayer,
and we suggest using orientations shown in panel D to start with the most favorable
terminus in the membrane. A priori it is difficult to know which terminus is most
stable in the membrane, and the central position must sample both configurations by

symmetry arguments.
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consider membrane patch size when computing protein binding energies to membranes,

and future studies must address this issue in a rigorous manner. One way to remove

the dependence on patch size is to define the membrane COM using a small number of

lipid molecules within a cutoff radius of the permeating molecule. This definition selects

higher energy configurations, but it also uncouples the long wavelength behavior of the

membrane to the local changes that accompany permeation. Interestingly, the PMFs

in Figure 4.6C suggest that the ROP helix is somewhat stable in a TM region given

the low energy at z = 0. When these calculations are carried out with the MARTINI

forcefield that does not use long range electrostatics, these highly charged helices are

highly unstable in the transmembrane configuration (data not shown).

Finally, simple considerations of symmetry dictate that the free energy profile for protein

movement through the bilayer should be symmetric with respect to the origin. Addi-

tionally, if the protein, or helix in the cases discussed here, is asymmetric with respect

to the N- and C-termini, then its orientation along the z-axis must flip as it moves

through the origin (Fig. 4.6D). The system setup we employed (Fig. 4.6B), and used

by Sansom and co-workers [102, 104], places the protein with the same orientation for

all initial positions. Therefore, if the computed free energy profiles are to be symmetric,

the protein must be able to flip its orientation during each window of the simulation.

In practice, we do not observe these events for crucial windows in which the helix is

buried in the membrane even when we extend our simulations to be 6 times longer than

those reported by Bond and Wee (data not shown) [102, 104]. Therefore, even with

coarse-grained simulations adequate sampling is still a major hurdle.

4.4 Discussion

Our continuum model produces shapes (Fig. 4.2) and energetics (Fig. 4.4) that are

qualitatively consistent with fully atomistic and coarse-grained simulations of ion pene-

tration into membranes. This connection is encouraging since ion, ionophore and peptide

permeation across membranes is of extreme interest from both a basic biological stand

point and a pharmacological perspective. Computational approaches to understanding

these phenomena are needed to gain atomic level insight and provide predictive power.

One advantage of a continuum model is that the reduction of the system size, by treating

the membrane and water as a continuum, leads to energy calculations that are thousands

of times faster than corresponding atomistic simulations [37]. Another benefit of contin-

uum approaches is that it is very easy to determine the contribution of each energy term

in the model to the total energetics of the system. For instance, the membrane bending

energy is easily computed from our model, but is quite hard to accurately calculate
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from averaging over membrane configurations in an atomistic simulation. Along these

lines, the Weinstein lab has observed similar qualitative agreement between MD and

continuum results, and they have implemented a method that combines both approaches

to better understand the energetics of their membrane protein systems [24].

Our model predicts that both cations and anions are stabilized in the headgroup region,

which is in agreement with recent experiments [140]. Our model has very little chemical

detail, and the degree of stabilization in the headgroup may be overstated. While atom-

istic MD simulations of guanidinium predicted similar stabilization in PC headgroups,

guanidinium has a much larger nonpolar surface area than K+ and Cl−, and in the near

future we intend to tune variables in our continuum model to more closely match results

from chemically accurate simulations. Unfortunately, molecular dynamics simulations

fail to reproduce the experimental finding that anions are stable in the headgroup and

that anions permeate bilayers more readily than cations [135, 137]. It is possible that

the higher anion permeation barriers compared to cations is due to poor sampling of

the true transition state, but it is also possible that these differences are inherent in the

forcefields. These fundamental issues must be worked out before attempting to fit our

continuum model to energy profiles produced from MD simulations.

The nature of the transition state for ion permeation is poorly defined and poorly

sampled in atomistic MD simulations, but understanding the molecular details of the

ion passing from one leaflet to the other is crucial for making connections to classical

pore formation or solubility diffusion models of permeation. As we move ions through

the membrane, our continuum model exhibits a bifurcation point at the origin where

the ion discontinuously switches from one leaflet to the other. The McCammon lab

observed very similar bistable configurations in their atomistic simulations of Na+ and

Cl− permeation across a DMPC bilayer [137]. When the ions reach the center of the

bilayer, the finger of water connecting the ion to one side of the membrane quickly

retracts and a new finger of water from the opposite side appears. This switching is

rare, but when it occurs it happens very fast - on the nanosecond time scale [137].

The degeneracy of these two configurations when the ion is at the center of the bilayer

highlights the fact that the z position does not fully describe the reaction, and the

transition state occurs along other degrees of freedom. Not surprisingly, it was shown

that PMFs along z exhibit the greatest error at this critical position [137]. In order

to understand ion permeation, the details and energetics must be explored along the

relevant reaction coordinate orthogonal to the z-axis when the ion is at the origin. It

is likely that the transition is a non-equilibrium event in which ballistic ions partition

into and move through the hydrophobic core on a time scale that is too fast for the

membrane to reorganize and achieve equilibrium. If this is the case, our model will fail,

and we must include dynamics to attempt to understand these transitions.
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128 lipids 512 lipids

Figure 4.7: Large scale deformations are observed in large coarse-grained simulations
but not small systems.

When helix 2 from the ROP5 protein is restrained -30 Å from the center of a DPPC
bilayer, a large membrane patch is able to undergo a large scale conformational change
to allow the helix to go completely interfacial (right), while the small patch is unable
to accommodate such a bending mode (left). These differences in system size give rise
to differences in the energetics of helix association with the membrane as seen in Fig.

4.6C.

Perhaps our most important observation is that computed energy profiles for ion and

peptide association with the membrane depend on the size of the membrane patch.

Advances in computer hardware and computational methods are making it possible

to quantitatively probe membrane interactions with peptides and small proteins using

molecular simulation. However, our continuum model shows that if the membrane patch

is large enough low energy, long wavelength deformations in the bilayer allow for protein-

membrane interactions over long distances [37], and this is highlighted in our qualitative

coarse grained simulations with ROP5 (Fig. 4.7). The underlying free energy profiles

are quite different for the small system and the big system (Fig. 4.6C), which will make

it difficult to compare results between studies unless system size is taken into account.

Moreover, it is not clear which simulation setup is most appropriate for comparing theory

to experimental binding energy values.

While our continuum model does a good job of describing large scale deformations that

are difficult to capture in molecular simulations, it does not capture small length scales

changes at the single lipid level. Kim and co-workers recently described the membrane

deformation profile around the membrane spanning antibiotic peptide gramicidin A

[149]. They showed that the membrane surface undergoes non-monotonic changes in

height in the first few lipid shells surrounding the peptide. Our experience leads us
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to agree with their conclusion that such solutions are not possible given the class of

elastic models we are using. The impact that these undulations play on membrane

protein function and system energetics must be further explored, and it may take more

sophisticated continuum models to describe membrane structure at this level of detail.

One of our primary goals for this study was to predict kinetic rates of ion and small

molecule permeation across membranes using our continuum model, but our inability

to accurately describe the transition states has made this impossible. In our opinion,

nearly all computational studies of ion and small protein movement across bilayers poorly

describe the transition states where the molecules are near the center of the bilayer.

Future studies must employ more sophisticated reaction coordinates to better sample

the point at which molecules partition into the hydrocarbon core, or the point at which

molecules rapidly switch between opposite leaflets. Additionally, peptide binding studies

must more carefully treat the orientation of the peptide in the membrane when it is near

the center of the bilayer as highlighted in Fig. 4.6D. Our continuum model does not

produce minimum energy configurations in which the leaflets bend from both sides of

the membrane producing pore like structures. These topological transformations are

most likely difficult to obtain using our Monge gauge representation of the membrane,

but we hope to incorporate such changes in future studies. We also hope to extend

our calculations into the time regime, which may be needed if permeation proves to be

a non-equilibrium phenomenon. Finally, we would like to use our model to describe

charged peptide transport, which would require coupling in conformational changes in

the permeating molecule, which has been successfully done for neutral molecules [150].



Chapter 5

APBSmem: A Graphical

Interface for Electrostatic

Calculations at the Membrane

Electrostatics are one of the primary determinants of molecular interactions. They are

intricately involved in the folding of proteins, protein-protein interactions, and they

facilitate protein-DNA and protein-ligand binding. Numerically solving the Poisson-

Boltzmann equation is a popular method for evaluating the electrostatic properties of

biological systems. In this chapter we present a method for using the Adaptive Poisson-

Boltzmann Solver (APBS) as a back-end for membrane protein calculations, which can

be technically difficult and time-intensive to configure properly. These calculations are

an essential component of the results shown in Chapters 2, 3, and 4. A Java-based

graphical user interface is also presented with three relevant test systems that highlight

the different quantities of interest that can be calculated. 1

1This chapter is adapted from: K M Callenberg, O P Choudhary, G L DeForest, D W Gohara, N A
Baker, and M Grabe. APBSmem: a graphical interface for electrostatic calculations at the membrane.
PloS ONE, 5(9):e12722, 2010 [29].
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5.1 Introduction

The relationship between the electric field and the charge in a system is determined

by Maxwell’s equations; however, several factors contribute to making these equations

difficult to solve in a heterogeneous, condensed phase. The most popular method for

carrying out electrostatic calculations in a biological setting is to solve the Poisson-

Boltzmann (PB) equation. Starting from a known protein structure, this method treats

the protein and water as distinct dielectric environments, and the charges on the protein

give rise to the electric field. Additionally, PB theory implicitly accounts for counter-ions

in solution via a non-linear term that depends on the bulk counter-ion concentration and

the electrostatic potential. The PB equation for a one-to-one electrolyte solution is:

−∇ · [ε(~r)∇φ(~r)] + κ2(~r) sinh [φ(~r)] =
e

kBT
4πρ(~r), (5.1)

where φ = eΦ/kBT is the reduced electrostatic potential and Φ is the electrostatic

potential, κ2 is the Debye-Hückel screening parameter, which accounts for ionic shielding,

ε is the dielectric constant for each of the distinct microscopic regimes in the system, and

ρ is the density of charge within the protein moiety. Since the 1980s, researchers have

studied the electrostatic properties of protein and nucleic acid systems by numerically

solving the PB equation using finite difference and finite element methods [151–154].

Today, there are several popular software packages available to perform PB calculations

such as DelPhi [155], the Adaptive Poisson-Boltzmann Solver (APBS) [73], MIBPB

[156], ZAP [157], and the PBEQ module in CHARMM [158]. Unfortunately, there is

a dearth of programs that allow researchers to carry out these calculations at or near

a membrane. Nonetheless, over the last two decades the number of high-resolution

membrane protein structures has dramatically increased. The membrane has several

unique electrical properties. For instance, the core of the membrane is extremely

hydrophobic giving rise to a desolvation penalty for moving charged molecules into

this region. This property is essential to the membrane’s ability to control the flow of

materials into and out of the cell. Additionally, most cells have a substantial membrane

potential that coordinates the action of voltage-dependent membrane proteins such as

voltage-gated ion channels. Without including the effects of the membrane dielectric

and the transmembrane potential, there is a huge class of molecules whose electrical

properties cannot easily be explored.

Groups have carried out simulations using several different levels of theory to include

the effects of the membrane such as fully atomistic calculations (for an incomplete

list of references see [70, 159–164]), implicit membrane calculations using Generalized

Born models (for an incomplete list see [45, 82, 165–175]), and continuum approaches
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employing the PB equation (for an incomplete list see [61, 114, 176–185]); however, all

of these studies require the user to have a high level of computational sophistication

as highlighted by the relatively few papers from non-computational laboratories. Thus,

it is desirable to have a program that removes many of the technical and bookkeeping

aspects from these calculations. Toward this end, very recently, an online web server

was created to facilitate PB calculations on membrane proteins using the PBEQ module

[186], and here, we present our program, APBSmem, which combines an easy to use

interface with APBS to allow non-experts to calculate the electrostatic properties of

membrane proteins. APBSmem can be downloaded, easily installed, and run locally

on Windows, Mac, and Linux platforms. APBSmem has several pull down templates

that allow researchers to carry out specific membrane related calculations, and it has

a built-in graphical window that provides quick visual feedback to make sure that the

system is set up correctly and to view results.

5.2 Methods

5.2.1 User interface

Though the majority of the calculations described here may be performed using APBS

input files, keeping track of the files and parameters can become quite difficult. To

improve this process we built a Java-based GUI that writes the input files and runs

the calculations (Figure 5.1). The GUI has an embedded Jmol [187] viewer that allows

users to visualize the protein-membrane system and the electrostatic potential. Here we

explain the necessary parameters and use of the interface in a step-by-step fashion.

Calculation Type. To perform a calculation, the user first selects a type (Protein

Solvation, Ion Solvation, or Gating Charge) from the drop down menu. Each type is

described in more detail in the case studies below. The user then selects coordinate files,

in PQR format, for all of the protein configurations of interest. PQR files contain the

atomic positions of all of the atoms in the system in addition to their charge and radii.

PQR files can be generated from PDB files with the PDB2PQR tool [188], which allows

the user to choose from several commonly used charge and radii parameter sets: PARSE

[44], CHARMM27 [189], Swanson [190], AMBER99 [191], along with several other sets

and user defined values. This choice is crucial since calculations can be sensitive to

the parameter set [192] especially when performing solvation energy calculations. File

locations may be entered manually or found and selected from the filesystem with the

Browse button. At present, APBSmem does not allow the spatial orientation and

placement of the protein to be altered once read in through the GUI, and external
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Figure 5.1: A screenshot of the user interface.

Parameters pertaining to the calculation are entered in the field on the left, and the
molecule and membrane can be viewed in the embedded Jmol viewer on the right.
Pictured here is the membrane-embedded single transmembrane helix used for the

calculations in CASE I.

software must be employed if a different orientation is desired. For Protein Solvation

calculations, the user should provide a coordinate file with only the membrane protein.

Ion Solvation calculations require a PQR file with only the protein and a PQR file with

only the ion. Two files corresponding to an open and a closed channel are needed in the

case of a Gating Charge calculation.

Grid Spacing. Next, the user must specify the desired level of discretization, which is

related to the fidelity with which the underlying equations will be solved. It is necessary

to apply the appropriate boundary conditions far from the protein to accurately solve

electrostatics calculations, and this requires large grid lengths to remain computationally

tractable. However, coarse discretization does not capture the correct electrostatic

behavior near the protein, where small grid spacing is needed. A technique known

as focusing is employed to rectify this problem by solving the equations in a series of

steps starting at the largest length scale and focusing into the smallest length scale [155].

When using multiple levels of focusing, the user can set the desired level in the Focus

menu to enable fields for additional grid lengths.

With any numeric calculation, the accuracy of the solution is directly related to the

degree of discretization. It is important to check the convergence properties of your

solution. This is typically done by recalculating with increasing numbers of grid points

without changing any of the other parameters. The exact convergence properties depend
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Figure 5.2: Convergence properties of test cases I-III.

We computed the absolute value of the percent error, 100 · |(E(∆x) −
E(∆xfinest))/E(∆xfinest)|, for each test case using a number of different discretization
values. All energies are reported with respect to the solution value at the finest level
of discretization, ∆xfinest, which was 0.312 Å in test Case I and 0.375 Å in Cases II
and III. Values along the x-axis are spaced using a log base 2 scale. In all graphs, the
number of grid points used to achieve the grid spacing on the x-axis was 17, 33, 65,
97, 129, and 161 (∆xfinest). (A) Convergence of the protein solvation energy, Case
I. A grid spacing of 0.512 Å gives a solution 1.5% of the highest resolution value.
The energy values smoothly converge as the resolution increases. (B) Convergence of
the ion solvation energy, Case II. The error monotonically decreases as the level of
discretization increases. At ∆x = 0.625 Å , the energy value is within 2.5% of the
final value. (C) Convergence of the gating charge energy in the closed state, Case III.
Rather than report the gating charge, here we plot the energy of the closed state. This
method converges much more quickly than the other Cases since it does not involve
Born Self energy terms. The energy at the second finest level is 0.33% of the value
at the finest level. Even at a grid spacing of ∆x = 0.938 Å the computed energy is
within 3% of the best value. In all cases, the convergence properties and the accuracy
of the solutions depend critically on the refinement of the protein surface boundaries.
Here we use the spl2 method for charge mapping in APBS, which gives very desirable

convergence properties.

on the numeric algorithm and the details of the system. In Figure 5.2, we calculated

the convergence for each test case in the Results section. However, all systems behave

differently, and users should not assume that discretization schemes that give accurate

results here will also give accurate values for other protein-membrane systems.

Dielectric Parameters. In continuum electrostatics, different regions of the system
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are defined by unique dielectric values. These values are related to the polarizability

of each region in response to an applied electric field. The protein dielectric value is

assigned to points within the protein’s solvent accessible surface. All points outside the

protein, but within the membrane region defined by the geometry settings, are assigned

a dielectric value corresponding to the membrane. While the core of the membrane

often has a very low dielectric value, the head group region may be characterized by a

much higher value. If desired, this physical feature can be included in calculations by

increasing the default head group thickness and setting the head group dielectric value.

All other points in the system are assigned the solvent dielectric value.

Proteins are heterogeneous, and it is not always appropriate to describe the entire

molecule with a single uniform dielectric value [41]. Nonetheless, uniformity is a common

assumption of PB solvers. Experiments indicate that the protein interior is modeled

best by dielectric values between 2 and 20 [42]. With this in mind, we recommend that

researchers test the robustness of their results by repeating calculations with several

different dielectric constant values within this range.

Boundary Conditions. Several options are offered for Dirichlet boundary conditions

when solving the PB equation in APBS. The user may set all boundaries to zero,

use a single Debye-Hückel model, multiple Debye-Hückel model, or focusing, in which

the boundaries are determined by a previous calculation. When the Gating Charge

calculation type is chosen, the boundary condition is set to impose a range of membrane

potentials across the membrane as described in Case III. The user provides a membrane

potential value in milliVolts, Vin, and the interface performs a sweep of calculations from

−|Vin| to +|Vin| to determine the valence of the gating motion. At present, calculations

with a membrane potential are only carried out in the linearized limit of Eq. 5.1.

Additionally, application of the boundary conditions ignores differences between the

dielectric values of the head group and the membrane core, which has been included in

a recent study [193].

Protein Surface Representation. An accurate representation of the protein surface

is important in constructing the dielectric and ion-accessibility maps. A probe-based

dielectric function is used to construct the protein surface in APBS. The solvent probe

radius specifies the size of water spheres for the determination of the solvent space and

is typically set to 1.4 Å for water. The surface sphere density determines the resolution

at which this boundary is calculated and is typically set to 10 grid points/Å2.

System Geometry. The system geometry parameters determine the shape and location

of the membrane. The membrane thickness and vertical position should be adjusted for

the protein of interest so that the bilayer interfaces with the protein as expected. It is

difficult to determine this placement, and it is an ongoing area of research in the Grabe
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Figure 5.3: Top view of the KcsA channel (green) and the ε = 2.01 isocontour
highlighting the membrane interface (gray).

The K+ ion in the center of the channel is shown in blue. (A) When the membrane is
not excluded from the channel pore, we observe that membrane is added to the pore
region. (B) With the exclusion radii set too high at 28 Å, there are large gaps of water
between the outer membrane and the protein. (C) The channel should be clear of
membrane and the membrane should fit snugly around the outside of the protein as
shown here. Membrane exclusion radii are 24 Å and 16 Å at the top and bottom of the

channel, respectively.

lab [22]. In practice, this placement is often done ad hoc based on the location of the

hydrophobic residues making up the membrane spanning region. A better alternative is

to first estimate the orientation of the membrane protein and extent of the membrane

spanning region by using the Orientations of Proteins in Membranes database [21]. A

second point of concern is that ion channels and transporters often have hydrophilic,

water-filled cavities essential for transport. Users must employ the interface exclusion

radii to prevent APBSmem from rewriting these cavities as membrane. These radii

should be adjusted so that central cavities, if present, are filled with water and the

membrane is arranged flush with the outside of the protein. We intend to provide

automated cavity detection in future releases. Figure 5.3 compares correct and incorrect

configurations of the membrane geometry with the KcsA potassium channel.

System Preview. After the user has entered parameters for the dielectric environment

and membrane geometry, the Preview button can be used to visualize the system. This

Preview action performs a quick “dummy” calculation with coarse grid dimensions to

generate the numeric representation of the membrane and display it graphically. If the

system and parameters appear to be correct, the user can click Run to perform the

calculation with APBS. When the calculations have completed, the total energy is given

in kJ/mol, kcal/mol and kBT, and the most focused dielectric map of the membrane is

displayed in the Jmol panel. The electrostatic potential may also be viewed in the Jmol

panel by selecting the Draw Potential option. The user provides an isocontour value

of interest and the interface displays the positive (red) and negative (blue) surfaces

over the protein. The exterior bulk and cavity (if any) at the interior of the protein
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are modeled into APBS as coefficient maps (openDX- format). These maps include

dielectric maps (diel), ion-accessibility coefficient maps (kappa) and charge distribution

maps (charge) for different regions of the protein-membrane complex. All input and

output files, including the potential and DX maps are saved for later use and reference.

5.2.2 Membrane potential boundary conditions

In a typical cell, electrogenic transporters create a difference between the electrical poten-

tial inside the cell, Vin, and outside the cell, Vout. A small violation in electroneutrality

near the membrane gives rise to this potential difference; however, more than a Debye

length from the membrane, electroneutrality is restored. It is possible to model this

behavior with the Poisson-Boltzmann equation as outlined by Roux in his seminal work

on this topic [13]. Most researchers will want to compute the membrane potential in the

absence of protein charges to understand the profile across the protein, and in some cases,

they will be interested in computing the interaction energy of the membrane electric field

with the charges on the protein. The field due to the protein charges and the membrane

potential are only separable when solving the linearized form of the equation. Thus,

in order to be self consistent, APBSmem only solves the linearized Poisson-Boltzmann

equation when employing membrane potential boundary conditions. In future releases,

we will extend this to the full non-linear equation. The presentation in this section and

the next largely follows the supporting text found in Grabe et al. [114], but the essence

is similar to Roux’s [13]. We start by rewriting Eq. 5.1 in the linearized form:

−∇ · [ε(~r)∇φ(~r)] + κ2(~r)φ(~r) =
e

kBT
4πρ(~r), (5.2)

However, this equation does not satisfy the asymptotic boundary condition: Φ(x, y, z →
−∞)→ Vin. This oversight can be corrected by adding a constant term to the equation

for all positions in the inner solution space:

−∇ · [ε(~r)∇φ(~r)] + κ2(~r)
(
φ(~r)− f(~r)

e

kT
Vin

)
=
e4πρ(~r)

kBT
, (5.3)

where f(~r) is 1 for all points in the inner solution space and zero otherwise (see Figure

5.4). Now far from the protein where φ is no longer changing, Φ(x, y, z → −∞) → Vin

as desired. Eq. 5.3 can be rewritten as:

−∇ · [ε(~r)∇φ(~r)] + κ2(~r)φ(~r) =
e4π

kBT

(
ρ(~r) +

κ2Vin
4π

f(~r)

)
. (5.4)
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Figure 5.4: A cartoon representation of the distinct dielectric environments in each
calculation.

The orange regions represent protein, the gray membrane, and all white areas indicate
water. The inner solution space at the bottom is assigned a voltage of Vin, and
correspondingly an effective charge density ρeff is assigned and a value of one for
the variable f . The water in the center of the channel is assigned values for ρ and
f that correspond to the outer solution space. The lower z value of the membrane
(dashed line) separates the inner and outer solution spaces. In the gray region, κ and

ε are set to 0 and εm, respectively, to mimic the membrane.

Thus, the modified Poisson-Boltzmann equation above takes the form of Eq. 5.2 with

the membrane potential arising from a term that looks like a uniform source charge.

The spatial dependence of κ is carried by f(~r) on the right hand side. Since Eq. 5.4

is linear, it is possible to separate the total reduced electrostatic potential, φ, into

contributions from the membrane potential, φm, and contributions from the protein,

φm, as φ = φp + φm. Each field is the solution to corresponding equations as shown:

−∇ · [ε(~r)∇φp(~r)] + κ2(~r)φp(~r) = e
kBT

4πρ(~r),

−∇ · [ε(~r)∇φm(~r)] + κ2(~r)φm(~r) = e
kBT

4π κ
2Vin
4π f(~r).

(5.5)

Far away from the protein, φp approaches zero. Poisson-Boltzmann solvers typically set

zero boundary conditions at the outer boundary to account for this behavior, or they

use some asymptotic approximation to the field based on the protein’s total charge. In

the case of a membrane potential, the behavior of φm far from the membrane protein is

required so that far field boundary conditions can be imposed on the system.

φm on the boundary is determined by considering a planar slab of low-dielectric material

with symmetric electrolyte solution in the half-spaces above and below the slab. This
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follows the work of Roux with a slight change in geometry [13]. By symmetry φm(~r) =

φ(z), and we assign z = 0 to the center of the membrane. The slab has a length L, and

there are three distinct regions of space: z > L/2 (out); L/2 ≥ z ≥ −L/2 (membrane);

z < −L/2 (in). The dielectric of water is εw, and the dielectric constant of the membrane

is assigned εm. We assume that ions cannot enter the membrane so κ is set to 0 in this

region, while the inner and outer spaces have the same value of the screening parameter.

According to Eq. 5.5 the φm satisfies the following equations in each region

−εw∂2
zφ

m
1 (z) + κ2φm1 (z) = 0 (outer)

−εm∂2
zφ

m
2 (z) = 0 (membrane)

−εw∂2
zφ

m
3 (z) + κ2(φm3 (z)− e

kBT
Vin) = 0. (inner)

(5.6)

From elementary electrostatics, we know that the potential is continuous at the mem-

brane boundaries but the z-component of the electric field is discontinuous due to the

jump in dielectric value:

φm3 (−L
2 ) = φm2 (−L

2 ); εw∂zφ
m
3 |−L

2
= εm∂zφ

m
2 |−L

2

φm2 (L2 ) = φm1 (L2 ); εm∂zφ
m
2 |L

2
= εw∂zφ

m
1 |L

2
.

(5.7)

The potential profile can be determined from Eqs. 5.6 and 5.7:

φm1 (z) = e
kBT

Vin
1

εw
εm

κL+2
eκ(L/2−z) (outer)

φm2 (z) = e
kBT

Vin

(
1
2 −

1
εw
εm

κL+2
εw
εm
κz
)

(membrane)

φm3 (z) = e
kBT

Vin

(
1− 1

εw
εm

κL+2
eκ(z+L/2)

)
, (inner)

(5.8)

where κ2 ≡ εwκ
2. When membrane potential calculations are performed, Eq. 5.8 is

used to set φm on the domain boundary. This requires first providing the z-position of

the top and bottom of the membrane and the dielectric constants of the membrane and

water.

5.2.3 Addition of the membrane

The influence of the membrane must be included in the calculation. Based on the

structure file provided, the program calls on APBS to generate dielectric (ε), charge

(ρ), and ion-accessibility maps (κ) of the molecule as if it were in solution. The protein

dielectric value can be set to any value, and the method for delineating the solvent
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boundary is also configurable. At present, the GUI allows up to 2 levels of focusing,

which corresponds to 3 sets of maps produced at this initial stage. Maps are then

modified to add the presence of a low-dielectric slab acting as a surrogate membrane.

APBS is run with the finite differencing scheme option; therefore, all map points are

associated with a regular grid in 3-space. Next, the initial maps are read by a second

routine, and the numeric values of points on the grid are modified based on the spatial

position and the user-defined placement of the membrane. The program iterates over

every grid position and evaluates each position in the following order:

1) Determine if the point is inside the provided protein. If the initial dielectric

map value equals εp, the point is located within the protein. Dielectric map values are

not changed for these points.

2) Determine if the point is inside the membrane. If the point does not fall

within the protein, it falls within the z-extent of the membrane determined by zupper

and zlower, and it falls outside the cylinder described by the exclusion radii, the value of

the dielectric map is set to εm, the ion-accessibility is set to zero, and the charge map is

not changed.

3) Determine if the point is in the inner solution space. If the point is below the

membrane and the ion-accessibility is not zero, then the neutral charge map is modified

for the calculations of φm. The value assigned to the charge map position is determined

from Eq. 5.5 (bottom equation). The effective charge density, ρeff , follows from the

right hand sides of the upper and lower equations:

e

kBT
4πρeff =

e

kBT
4π
κ2Vin

4π

The text maps are written in terms of the number density, neff = ρeff/e, and using

this along with the definition of the Debye length we arrive at the modified value for the

charge map

neff = εw
κ2Vin
4πe

=
εwVin
4πe

(
8πe2 NaI

εw kBT

)
,

where I is the molar concentration of one of the salt species (assumed balanced) and Na

is Avogodro’s number. The Debye constant above is twice the value that can be found

on page 497 of Jackson’s Classical Electrodynamics (Second Edition) [194], since we

assume that there are mobile cationic and anionic species, not just one mobile species.

Simplifying this equation we arrive at:
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neff = 0.001204428 I uin,

where uin = eVin/kBT is the reduced inner potential and the counter-ion concentration

is given in moles per liter. The effective number density is now in inverse Ångstroms

cubed, which is consistent with the APBS solver.

Results

APBSmem was developed in Java and requires Java Runtime Environment 5.0 or later

and APBS version 1.2.0 or later which can be downloaded from http://java.sun.com/

and http://www.poissonboltzmann.org/, respectively. The program can be run from the

command-line using java -jar apbsmem.jar. Three case studies are presented here to

demonstrate potential calculations. All files necessary to perform these calculations are

packaged with the APBSmem program.

5.2.4 CASE I: Protein Solvation

The cell membrane is composed of lipid molecules and hosts membrane proteins which

account for a third of all proteins in a cell. The hydrophobic core of the membrane

provides a dielectric barrier against polar and charged molecules. The transmembrane

segments of membrane proteins are therefore largely composed of hydrophobic residues;

but charged and polar residues are also sometimes present, so it is natural to ask how

these charged residues can be stably accomodated in the membrane. Choe et al. [22]

investigated this question using continuum electrostatics with APBS. Here we revisit

this problem to demonstrate the applicability of our graphical interface, and we do this

by calculating the solvation energy required to insert a charged helix into the membrane.

The total energy of a simple α-helix in bulk water (Figure 5.5B) is first computed and

then subtracted from the total energy of the helix embedded in the membrane (Figure

5.5A).

Using APBSmem to compute the protein solvation energy requires the protein to be

read in as PQR file 1. The system of interest for this case study is an α-helix composed

of 27 residues, aligned along the z-axis and centered at the origin. The helix is composed

of nonpolar hydrophobic residues with the exception of a charged arginine at the center.

The protein solvation energy calculation is performed on a 1613 grid using two levels of

focusing from a cube with side length 200 Å to a cube of side length 50 Å. The bathing

solution contains 0.1 M symmetric monovalent salt with 2 Å probe radii. The protein
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Figure 5.5: States used to compute protein solvation energies.

(A) The helix (orange) is pictured embedded in the membrane, which is delineated by
the upper blue and lower gray lines. The membrane core between the two red lines is
assigned a dielectric value εm = 2. A headgroup region of 8 Å is indicated between the
water and membrane core. Bulk water above and below the membrane is assigned a
dielectric value of εw = 80. (B) The helix in the bulk water (εw = 80) in the absence
of the membrane. The helix carries one charged residue (Arg14) shown in green in (A)
and (B). The protein solvation energy is calculated by computing the total electrostatic
energy of systems A and B and then calculating the quantity: Etotal = EA − EB .

Images rendered with VMD [195].

is assigned a dielectric value of εp = 5, bulk water is assigned a value of εw = 80, and

membrane is assigned a dielectric of εm = 2. The head group is modeled as a region of

high dielectric, εh = 80, with a thickness of 8 Å. Calculations are carried out with the

linearized PB equation with a solvent probe radius of 1.4 AA, a surface sphere density

of 10 gridpoints/Å2 and a temperature of 298.15 K. The total membrane thickness is 42

Å running from z = -21 Å to z = +21 Å. The upper and lower exclusion radii are set to

0 Å since there is no pore. Parameters are summarized in Table 5.1.

For this system, we obtain a protein solvation energy of 28 kcal/mol, and Figure 5.2A

indicates good convergence with grid spacing smaller than 0.781 Å at the finest level.

While this energy is large, it is greatly reduced when nonpolar energies are considered.

Additionally, a large component of this energy is the cost of inserting the charged

arginine. If the arginine is replaced with an alanine, the solvation energy drops to

4 kcal/mol. It has been shown that the electrostatic component of the membrane

deformation energy can be considerably reduced by allowing the membrane to bend

around the charged residue in the core of the membrane [22]. We will incorporate

membrane bending and nonpolar energy terms in future releases of APBSmem.

5.2.5 CASE II: Ion Solvation

The primary role of ion channels is to facilitate the movement of ions across the dielectric

barrier imposed by the lipid bilayer. The hydrated ions in the bulk water are essentially

stripped of water molecules (depending on the channel pore size) upon entering a low-

dielectric medium [11, 196, 197]. The total ion solvation free energy of an ion consists of
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Table 5.1: Parameters for protein solvation CASE I

Parameter Value

Calculation type Protein solvation
PQR File Helix.pqr
Grid Dimensions 161 × 161 × 161
Coarse Grid Lengths 200 × 200 × 200
Medium Grid Lengths 100 × 100 × 100
Fine Grid Length 50 × 50 × 50
Counter-Ions 1.0, 0.10, 2.0

-1.0, 0.10, 2.0
Protein Dielectric 5.0
Solvent dielectric 80.0
Membrane Dielectric 2.0
Headgroup Dielectric 80.0
Solution Method lpbe
Boundary Condition Focus
Solvent probe radius (srad) 1.4
Surface sphere density (sdens) 10.0
Temperature 298.15
Z-position of membrane bottom -21
Membrane thickness 42
Head group thickness 8
Upper exclusion radius 0
Lower exclusion radius 0

a Born solvation term, which corresponds to the removal of water molecules away from

the ion and an electrostatic term that corresponds to interaction between protein charges

and the ion. APBSmem calculates the ion solvation free energy by first computing the

total energy of the protein-ion assembly embedded in the membrane and then subtracting

the energies of the membrane-embedded protein without the ion and the energy of the

ion in bulk water.

Roux and MacKinnon carried out a classic study using this approach to investigate the

transfer energy for a single K+ from bulk water to the central cavity of the potassium

channel KcsA [198]. Here we revisit this calculation. KcsA (PDB ID 1BL8) is aligned

along the z-axis and centered at the origin. The ion solvation calculation requires: a

PQR file with only the KcsA ion channel and a PQR file consisting of a K+ ion at the

coordinate of interest. The ion transfer free energy is calculated using a finite difference

method on a 1613 grid with two levels of focusing from a cubic system of side length

300 Å to a cube of side length 60 Å. The bathing solution contains 0.1 M symmetric

monovalent salt with 2 Å probe radii. The protein is assigned a dielectric interior of

εp = 2, bulk water above and below the membrane, a dielectric of εw = 80, and a

low-dielectric slab of dielectric value εm = 2 represents the membrane. The separate
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Table 5.2: Parameters for ion solvation free energy CASE II

Parameter Value

Calculation type Ion solvation
PQR file 1 KcsA PQR file
PQR file 2 K+ ion PQR file
Grid dimensions 161 × 161 × 161
Coarse grid lengths 300 × 300 × 300
Medium grid lengths 120 × 120 × 120
Fine grid length 60 × 60 × 60
Counter-ions 1.0, 0.03, 2.0

-1.0, 0.03, 2.0
Protein dielectric 2.0
Solvent dielectric 80.0
Membrane dielectric 2.0
Headgroup dielectric 80.0
Solution method lpbe
Boundary condition Focus
Solvent probe radius (srad) 1.4
Surface sphere density (sdens) 10.0
Temperature 298.15
Z-position of membrane bottom -12
Membrane thickness 24
Headgroup thickness 0
Upper exclusion radius 24
Lower exclusion radius 16

dielectric for the head group region (ε = 80) is not used since its thickness is set to zero.

The linearized PB equation is solved using focused boundary conditions (one level of

focusing) at 298.15 K in the absence of membrane potential. The solvent probe radius

is set to 1.4 Å and a surface sphere density of 10 gridpoints/Å2 is used. The z-position

of the bottom of the membrane and thickness of the membrane slab are set to -12 Å and

24 Å, respectively. Membrane exclusion radii of 24 Å and 16 Å are used for the channel

at the top and bottom, respectively (Figure 5.3C). Parameters are summarized in Table

5.2.

APBSmem performs nine calculations: three sequential focusing calculations on the

protein-ion system embedded in the membrane (Figure 5.6A), three sequential focusing

calculations on just the protein in the membrane (Figure 5.6B) and three sequential

focusing calculations on the K+ ion in bulk water (Figure 5.6C). Note that the system

in Figure 5.6C computes the self energy of K+ in bulk water. APBSmem obtains the ion

solvation energy by subtracting the energy values obtained from the fine grid calculation

of systems in Figure 5.6B and 5.6C from the system in Figure 5.6A, and a grid spacing

of 0.625 Å or smaller gives well converged values (Figure 5.2B).
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Figure 5.6: States used to compute ion solvation energies.

(A) KcsA ion channel (orange) embedded in a slab of low-dielectric material (gray)
with two ions in the selectivity filter (blue) and a single ion in the water filled cavity
(red). For clarity only two subunits are shown. (B) Set up in panel A without the
cavity ion. (C) The cavity ion in bulk water in the absence of KcsA and the membrane.
The ion solvation energy is calculated by computing the total electrostatic energy of
each system in A, B and C and then calculating the quantity: Etotal = EA−EB −EC .

Using these parameters, the calculated transfer free energy (from bulk water to the

center of the cavity) is 7.5 kcal/mol for a single K+ ion when protein charges are turned

off. When two K+ ions (blue spheres in Figure 5.6) are present in the selectivity filter,

the calculated transfer free energy increases to 16.2 kcal/mol. This is due to electrostatic

repulsion between the K+ ions in the selectivity filter and the incoming K+ ion. Upon

turning protein charges on and in the presence of two K+ ions in the selectivity filter,

the transfer free energy drops to -8.3 kcal/mol. Four pore helices (residues 62 - 74) along

with the two K+ ions in the selectivity filter account for an ion transfer free energy of

-3.5 kcal/mol. While there are minor differences between some of our calculated values

and those of Roux and MacKinnon (see Table 5.3), we believe that the same conclusions

can be drawn from our values.
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Table 5.3: Ion solvation free energy (kcal/mol)

Roux and MacKinnon [198] Calculated values

K+
1 only 6.3 7.5

K+
1 , K+

2 , K+
3 only 16.3 16.2

K+
1 , K+

2 , K+
3 and all protein -8.5 -8.3

K+
1 , K+

2 , K+
3 and pore helices only -4.5 -3.5

5.2.6 CASE III: Gating Charge

Voltage-gated ion channels are sensitive to changes in membrane potential. The charged

residues of the channel experience a force due to the electric field across the membrane-

channel complex, and this force drives the channel to open and closed conformations

as the membrane potential changes. The voltage dependence of conformational changes

can be described by an equivalent “gating charge” or “sensor valence” that is defined

as the fraction of the membrane electric field traversed by charges on the protein

during the gating process. Thus, a gating charge of 1 indicates that a unit charge

has moved through the entire membrane electric field. The gating charge often adopts

non-integer values, and the higher the gating charge of a channel, the steeper its voltage

dependence. The theory for using continuum electrostatic calculations to determine

sensor valence was developed previously [13]. Briefly, the modified PB equation considers

the transmembrane potential and calculates the interaction energy of protein charges

with the field.

Here we use the murine voltage dependent anion channel 1 (mVDAC1) to illustrate gat-

ing charge calculations using APBSmem. The X-ray crystal structure of mVDAC1 shows

that it is a 19-stranded β-barrel with an N-terminal α-helix thought to be mVDAC1’s

primary voltage sensor [199]. Both PB and Poisson-Nernst-Planck (PNP) electrostatic

calculations on mVDAC1 suggested that the structure represents the open state of the

channel [200]. This case study examines the plausibility of a hypothetical gating motion

of the channel, ruled out by Choudhary and co-workers [200]. We consider a gating

motion in which the N-terminal helix moves out of the channel and into the outer bath,

as shown in Figure 5.7.

The gating charge calculation for this gating motion requires two PQR files - mVDAC1

(PDB ID 3EMN) and a hypothetical closed state structure, to be read in as PQR file 1

and PQR file 2, respectively. We first align mVDAC1 and the hypothetical closed state

structure along the z-axis and center them at the origin. The gating charge calculations

in this study are carried out on a 1613 grid with two levels of focusing from a cubic

system with side length 300 Å to a smaller cubic system of side length 60 Å. The

bathing solution contains 0.1 M symmetric monovalent salt with 2 Å probe radii. The
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Figure 5.7: Hypothetical gating motion involving movement of N-terminal helix
(green) out of the pore and into the outer bath.

(A) mVDAC1 x-ray structure (PDB ID 3EMN) embedded in a slab of low-dielectric
material (gray). (B) Hypothetical closed state structure embedded in the membrane.
In (A) and (B), the potential at the outer bath is held at 0 mV and the potential at

inner bath is varied from -50 mV to +50 mV.

influence of the membrane is included as a dielectric slab of value εm = 2. Water is

assigned a dielectric value of εw = 80, and the protein dielectric is set to εp = 5. The

head group dielectric (ε = 80) is only a placeholder variable since its thickness is zero.

The linearized PB equation (lpbe) is solved using focused boundary conditions with one

level of focusing at 298.15 K. The interface varies the membrane potential of the inner

bath from -50 mV to +50 mV, keeping the potential of the outer bath constant at 0 mV,

as shown in Figure 5.7. A solvent probe radius of 1.4 Å and a surface sphere density of

10 gridpoints/Å2 is used. The z-position of the bottom of the membrane and thickness

of the membrane slab are set to -14 Å and 28 Å, respectively. The upper and lower

exclusion radii for the membrane are both set to 18.5 Å. All the parameters used for

this case study are summarized in Table 5.4.
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Table 5.4: Parameters for gating charge calculation CASE III

Parameter Value

Calculation type Gating charge
PQR File 1 3EMN
PQR File 2 Hypothetical closed state
Grid Dimensions 161 × 161 × 161
Coarse Grid Lengths 300 × 300 × 300
Medium Grid Lengths 120 × 120 × 120
Fine Grid Length 60 × 60 × 60
Counter-Ions 1.0, 0.10, 2.0

-1.0, 0.10, 2.0
Protein Dielectric 5.0
Solvent dielectric 80.0
Membrane Dielectric 2.0
Headgroup Dielectric 80.0
Solution Method lpbe
Boundary Condition Membrane potential

(-50 → +50 mV)
Solvent probe radius (srad) 1.4
Surface sphere density (sdens) 10.0
Temperature 298.15
Z-position of membrane bottom -14
Membrane thickness 28
Head group thickness 0
Upper exclusion radius 18.5
Lower exclusion radius 18.5

APBSmem performs PB calculations to determine the membrane potential’s contri-

bution to the energy difference between mVDAC1, E1, and the hypothetical closed

structure, E2 (E = E2 − E1). The energy difference is due to interaction of the protein

charges with the membrane electric field. Note that the N-terminal helix has a net charge

of +2. The slope of the voltage dependence curve is a measure of voltage-sensor valence

which is 1.58 e in this case. This value is very close to that obtained by Choudhary and

co-workers [200]. These calculations are useful for determining the voltage sensitivity

of a proposed gating mechanism, and within 2.5% of the best estimate they converge

to a coarse grid of 1 Å (Figure 5.2). As long as researchers can provide models of

hypothetical transitions, these gating calculations can be used to help evaluate their

biophysical correctness.

5.3 Discussion

APBSmem is an easy to use software package that carries out electrostatic calculations

in the presence of a membrane. We have provided three common cases of interest to
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researchers in this field. The first calculates the electrostatic penalty of moving charged

proteins into the membrane. This has implications for the stability of membrane proteins

and for the design of membrane-permeable molecules. The second example examines

the electrostatic energy for moving ions through or into ion channels and transporters.

Finally, we showed how APBSmem can be used to determine the voltage dependence of a

particular molecular movement. As noted earlier in the protein solvation case study, the

membrane is modeled as a dielectric slab of variable thickness. Choe et al. [22] discussed

the significant effects of membrane bending and its relationship to charged particles.

APBSmem will eventually be expanded to identify optimal membrane deformations

near the embedded molecule to provide a more complete picture of membrane protein

energetics.

APBSmem has been tested on Linux, Mac OS X, and Windows, and both source code

and binaries are available for download at http://apbsmem.sourceforge.net/.

http://apbsmem.sourceforge.net/


Chapter 6

Conclusion

In this dissertation we have presented and evaluated results from a continuum model for

evaluating the stability of proteins in the lipid bilayer. The central goal of this model

has been to address the question: what are the dominant energetic factors contributing

to membrane protein stability? This question is largely motivated by yet another: how

can polar and charged residues be stable in the membrane? To this end, we have shown

that the model is able to discriminate between membrane proteins and water soluble

proteins. The model shows that charged peptides can be stable in the membrane, but

not all are stable. This result is important for understanding the function of highly

charged membrane proteins such as voltage gated channels as well as charged antibiotic

peptides that insert into and cross membranes. Additionally, our model has provided a

simple mechanical explanation for the phenomenon of non-additivity of charge insertion.

6.1 Future Directions

We imagine many possible directions for future extensions and enhancements of the

work presented here. It would be very useful to use our model to carry out a broader

statistical analysis of all membrane proteins alongside a large set of known water soluble

proteins, e.g. [201]. This analysis would allow us to more finely tune the model to

discriminate between membrane and soluble proteins, likely revealing the most critical

physical properties for protein insertion. These results could also be used to build a

comparable resource to the Orientation of Proteins in Membranes (OPM) database [21],

thereby providing researchers with an alternative prediction of protein stability and

membrane interaction which would account for the flexible nature of the membrane.

For many proteins, we imagine the results of both approaches would be quite similar,

86



Conclusion 87

Figure 6.1: Finite element mesh of the membrane surrounding a large mechanosensi-
tive channel.

Atoms of the protein are not shown for clarity. The mesh is finely discretized near
the protein for greater accuracy, yet increasingly coarsely discretized toward the outer
boundary for computational speed. The inset image is a close-up to highlight the fine

discretization at the protein-membrane interface.

but in the case of charged proteins we expect our method to potentially give a much

more accurate result.

However, as discussed at the end of Chapter 3, in order to extend this model to a broader

set of biological systems, there are several limitations of the current method that must be

overcome. First, the ability of the protein to tilt to help minimize hydrophobic mismatch

is an important phenomenon that cannot currently be represented in this model. This

is due to the implementation of our elastic solver which couples the upper and lower

leaflets, requiring that each point in the upper leaflet be matched by a point in the lower

leaflet. In the case of a tilted protein, this requirement is not met in the region close

to the protein. Additionally, charged amino acid side-chains in transmembrane proteins
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Figure 6.2: Most probable rotamer conformations of an arginine side-chain in a
transmembrane alpha helix.

The helix (blue) is displayed in cartoon representation, embedded in a flat membrane
(light blue). The top 8 most probable arginine side-chains according to the Dunbrack
backbone-dependent rotamer library [202] are shown as outlines with the charged

termini highlighted as orange spheres.

are known to adjust to their membrane environment. Arginines and lysines in particular

have been shown to “snorkel” out of the core of the membrane to interact with polar

lipid headgroups and water. Our model utilizes static X-ray and NMR structures and

currently does not test alternative side-chain conformations. An important extension

of the model would be to optimize important side-chain rotamers, during or after our

membrane shape optimization (Figure 6.2). Finally, and perhaps most importantly,

our model is currently limited to proteins of approximately cylindrical shape. We have

explored the use of cartesian-based elastic solvers, similar to those used by the Weinstein

lab [23]; however convergence is very slow for simple finite difference schemes, and the

application of non-trivial boundary conditions on the complex boundary proved to be

more complex than originally thought. Although challenging to implement, a finite

element or adaptive grid refinement scheme may greatly speed up convergence in these

systems. These schemes simultaneously allow for both a fine discretization of the elastic

membrane surface near the protein to improve accuracy and convergence, and a coarsely

discretized surface far from the protein for computational efficiency (Figure 6.1).

There are several other extensions of this work that could be of high practical and

scientific value. First, a webserver could be created that allows researchers to upload

their own protein, determine the energy of stabilization, and identify the most probable

configuration of the protein and shape of the membrane.

Next, this model would be well-suited for exploring the extraction kinetics of membrane
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Figure 6.3: Model of SNARE-mediated and parainfluenza virus 5 fusion from [1].

proteins from the endoplasmic reticulum (ER) membrane once they have been targeted

for ER-associated degradation. How fast can some proteins be removed compared to

others? Do charged, lumenal portions of the protein slow down the process of removal

across the membrane?

Finally, the flexibility of this membrane model makes it ideal for examining the fusion of

adjacent membranes during viral membrane fusion in influenza [1] or SNARE-mediated

membrane fusion during exocytosis (Figure 6.3). The membrane proteins play a crucial

role in facilitating this process, so the atomistic details are important; however, the

system is so large that molecular dynamics would be very difficult to simulate sufficiently.

However, our model allows for large-scale membrane deformation and can capture the

atomistic nature of the embedded proteins that initiate the fusion.



Appendix A

Supplemental material for

Chapter 3

A.1 Search strategies

Searches that are initiated from a flat membrane must overcome a large nonpolar energy

barrier to expose a central charged residue to aqueous solution. The red curve in

Figure A.1 illustrates the difficulty that the original search algorithm has in crossing

this barrier to solvate a central lysine residue on a hydrophobic leucine-alanine TM

segment. At iteration 0, the membrane is flat and the insertion energy for the segment

is -15 kcal/mol, while we know that the true minimum energy is below -40 kcal/mol

(see blue and green curves). Even after almost 3000 iterations, the initial strategy

fails to promote sufficient bending of the membrane to expose the lysine, resulting in

unfavorable electrostatics. Our next approach was to ignore the nonpolar energy term

in the cost function for the first 50 iterations, thereby removing the nonpolar barrier and

minimizing the electrostatic energy component. Within the first 50 iterations the search

identifies large bent configurations that drop the total energy down below -20 kcal/mol

by exposing the lysine (green curve). By 1000 iterations, the search has dropped below -

40 kcal/mol and shows little improvement over the next 2000 iterations. The large spikes

in the energy every 250 iterations are due to the search algorithm attempting to cover

the charged residue. Lastly, we started the search from two initial guesses that exposed

the buried charged residue. First, the lower leaflet remained flat and the shape of the

upper leaflet was set to a pure sinusoidal curve with a period of 2π and an amplitude

and phase that placed the charged atoms in the polar headgroup region or solvent. This

was then repeated for the bottom leaflet, and the shape that produced the lowest energy

was used to initiate the Powell’s-based search. The initial guess method significantly
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Figure A.1: Three different search strategies. We attempted to minimize the total
insertion energy of a hydrophobic helix with a central charged lysine.

The original search strategy has the membrane start from a flat, unstressed state. The
height value of the contact curve nodes shown in Fig. 1C were then used as independent
parameters in the Powell’s search strategy. After nearly 3000 iterations of the search
strategy, the total energy has been reduced by only a few kcal/mol due to the inability to
cross a high energy barrier of exposing hydrophobic residues to solvent before uncovering
the lysine (red curve). The modified nonpolar search strategy disregards the nonpolar
energy for the first 50 iterations to overcome the barrier and expose the central charged
residue to water after about 1000 iterations (green curve). The initial guess search
strategy starts from a distorted contact curve that already exposes the buried charged
residue to water (blue curve). This method quickly identifies a membrane configuration

that is a few kcal/mol more stable than the nonpolar method.

outperforms the other strategies in both its speed and ability to identify global minima

as indicated by the blue curve in Figure A.1. For all of the results presented in this

manuscript, the initial guess strategy was used and produced the most energetically

favorable solutions; however, in many cases we ran all search strategies as a precaution.
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A.2 Comparison to existing residue insertion scales

The construction of a hydrophobicity scale allows us to compare our method to a range

of previous computational and experimental work. Our expectation was that optimizing

the membrane configuration would lead to lower insertion energies compared to our

previous calculations which posited simple contact curves [22], and this is important since

experiments reveal relatively low insertion energy values compared to computational

scales. As in previous studies [22, 121], we matched each helix containing a unique

central amino acid with an identical helix whose central residue had been replaced with

leucine. We determined the apparent free energy of insertion for each amino acid by

finding the difference in the two peptides’ insertion energies and subtracting the insertion

energy of an individual leucine, -3.6 kcal/mol, calculated as described in our previous

work [22].

As shown in Figure A.2, our revised scale is consistent with the overall trend of ex-

periments that finds hydrophobic residues most stable in the membrane and polar and

charged residues less stable. The magnitude and spread of the energy values remain

the same between our current results and our original work [22], but importantly, our

new algorithm outperforms the original model for all amino acids predicting charged

residue insertion energies to be 1-2 kcal/mol lower. While the rank ordering of our

scale is similar to a recent experiment on peptide insertion in the inner mitochondrial

membrane [203], our predicted values are still more in-line with computational results

(e.g. [161]) than the low values reported by the translocon studies [66, 121]. Visualization

of the system geometry revealed that the membrane significantly bends around central

charged residues but that it remains flat when polar and hydrophobic amino acids

are inserted. As we previously reported, charged lysine and polar asparagine have

comparable insertion energies, although the cost of inserting asparagine is primarily

electrostatic since the membrane does not bend while the cost of inserting lysine is

largely nonpolar since the membrane bends to expose large regions of the TM segment.

We also tested the effect that the material properties of the membrane had on the scale.

In separate calculations, we reduced the compression modulus (Ka), bending modulus

(Kc), and stretch (α) parameters to 1/2 of their normal value and in each case the

insertion energy scale was only mildly impacted. The charged residue values were most

affected, becoming 0.5 kcal/mol easier to insert (data not shown).
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Figure A.2: Biological hydrophobicity scale for inserting all natural amino acids
(except proline) in the center of a TM helix.

Our search algorithm (dark green) identifies insertion energies that are lower than
manual guesses from our previous work (light green) when using the same Helix 1
peptides (H-segments) flanked by 4 glycine residues [22]. Charged amino acids (K, E,
D, R) are 2-7 kcal/mol more destabilizing to Helix 2 peptides (yellow bars), which are
flanked by polar asparagines and charged lysines. All 3 scales were shifted by +2.04

kcal/mol to set the alanine insertion energy to zero for the Current Method.

A.3 Context dependence of hydrophobicity scales

A biological hydrophobicity scale was reconstructed using a TM segment with different

flanking residues (yellow bars in Figure A.2). We replaced the N- and C-terminal

flanking glycine residues, similar to the H-segment studied by Hessa and co-workers

[121], with a charged sequence, NNKK ... KKNN, typical of amino acid sequences at

the membrane-water interface. As shown in the bar chart, most of the Helix 2 insertion

energies are within 1 kcal/mol of the original values (dark green); however, glutamate,

aspartate, lysine and arginine all destabilize the new segment 2-7 kcal/mol more than

they destabilize the original segment.

This destabilization is predominantly due to a large increase in the solvent-accessible

surface area. In the new reference peptide, in which the central amino acid is a leucine,

the membrane remains flat and the lysine residues are buried in the headgroup region.



Appendix A. Additional Methods for Chapter 3 94

This is an energetically favorable configuration since it reduces the SASA of the TM

segment while allowing the charged lysines to interact favorably with polar lipid head-

groups. When the central amino acid is replaced by a charged residue, the membrane

bends to expose the NNKK sequence to water resulting in a much greater nonpolar

energy penalty than incurred for the original GGGG sequence due to the larger size of

lysines and asparagines.

A.4 Comparison with Generalized Born

We wanted to compare our continuum method for computing the energetics of membrane

proteins to other continuum methods that use Generalized Born methods along with

modifications to model the membrane. We chose the CHARMM GBSW module which is

an extremely popular method in the field [2, 172]. Insertion energies for TM helices har-

boring varying numbers of arginine residues were calculated in CHARMM c32b2 using

the molecular surface representation, a bilayer thickness of 42 Ångstroms, a membrane

dielectric of 2, a solvent dielectric of 80, and an effective surface tension coefficient of

0.005. We used the set of same parameter values to carry out the comparison calculations

using our method. The peptide’s atomic radii were taken from the radius gbsw set which

was calibrated for GBSW calculations [204, 205]. A membrane switching length of 2.5

angstroms was used. The default values were used for all other GBSW parameters.

Briefly, we carried out an electrostatic point calculation in the presence of the membrane,

and then we carried out the same point calculation in solution using an external dielectric

value of 80 everywhere outside the protein. The electrostatic component of the insertion

energy was recorded as the difference between these two energies.
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Table A.1: Electrostatics and system parameters for all calculations

Parameter Value

Electrostatics Grid Dimensions 161 × 161 × 161 Å3

Coarse Grid Lengths 200 × 200 × 200 Å3

Medium Grid Lengths 100 × 100 × 100 Å3

Fine Grid Lengths 50 × 50 × 50 Å3

Counter-Ions 0.1 M symmetric salt
Protein Dielectric 2.0
Membrane Dielectric 2.0
Headgroup Dielectric 80.0
Solvent Dielectric 80.0
Solution Method Linearized Poisson-Boltzmann Equation
Solvent Probe Radius 1.4 Å
Surface Sphere Density 10.0 grid points/Å2

Temperature 298.15 K
Membrane Thickness 42.0 Å
Headgroup Thickness 8.0 Å
Bending modulus (Kc) 2.85 × 10−10 N/Å
Compression modulus (Ka) 1.425 × 10−11 N/Å
Surface tension (α) 3 × 10−13 NÅ
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