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ABSTRACT 

The overall goal of this research was to investigate the impacts of mycotoxin regulations 

on human health and trade. Mycotoxins are toxic and carcinogenic secondary metabolites 

produced by a variety of fungi that infect food crops around the world.  Specifically this research 

focuses on potential health and trade impacts of regulations on the mycotoxins aflatoxin and 

ochratoxin A (OTA).  Aflatoxin is produced primarily by the fungi Aspergillus flavus and A. 

parasiticus and is one of the most potent liver carcinogens known.  OTA, produced by the fungi 

A. ochraceus, A. carbonarius, A. niger, and Penicilium verrucosum has been associated with 

various human nephropathies and has been shown to be a potent renal carcinogen in animals.   

This project makes significant contributions to public health through 1) increasing the 

understanding of how mycotoxin regulations guide trade and how trade patterns influence 

exposure to aflatoxin and 2) determining if OTA exposure is associated with adverse health 

effects.  

First, in light of Health Canada’s recently proposed maximum limits for OTA in a variety 

of commodities, OTA was evaluated to determine its effects on human health and the economy.  

A human health risk assessment revealed, with one exception, there appears to be no statistically 

significant evidence for human health risks associated with OTA exposure.  Furthermore, 

implementation of the proposed OTA MLs in Canada could cause economic losses to Canadian 

food producers in the hundreds of millions of dollars annually. 
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Second, using pistachios as a case commodity model, trade patterns from the US and Iran 

to various countries worldwide were analyzed to determine if countries with similar aflatoxin 

regulations trade more with each other than countries with dissimilar standards.  If countries 

without aflatoxin regulations are importing increased amounts of foods with high levels of 

aflatoxin they will be at risk for increased associated adverse health effects.  A variety of metrics 

and social network models were used to confirm that over the past 15 years the US increasingly 

exported pistachios to countries with stricter aflatoxin standards, while Iran exported to countries 

with more lenient or without regulations. The US pistachio crop has had consistently lower 

levels of aflatoxin than the Iranian crop over this same time period.  Attempts to determine the 

causality of the relationship between trade patterns and regulations were made; however, due to 

conflicting results, no conclusions could be made. 
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1.0  INTRODUCTION TO THE MYCOTOXINS OF INTEREST 

1.1 AFLATOXINS 

Aflatoxins are toxic and carcinogenic secondary metabolites primarily produced by the 

fungi Aspergillus flavus and A. parasiticus.  These fungi infect a variety of food crops such as 

maize, peanuts, tree nuts and cottonseed in tropical and subtropical regions of the world (1). In 

these regions, maize and peanuts are dietary staples and often subject to poor storage conditions 

which favor fungal infection and mycotoxin contamination (2, 3).  High temperatures and 

drought stress are major factors contributing to high aflatoxin concentrations in maize (4).  In 

addition to A. flavus and A. parasiticus, the related fungi A. niger and A. nomius can also produce 

aflatoxin in a variety of crops. 

Aflatoxins were first discovered around 1960 when they were considered etiologic 

factors in turkey X disease, which caused the deaths of hundreds of thousands of turkeys, 

ducklings and pheasants in the United Kingdom from consumption of contaminated peanut meal 

(5, 6). An extensive investigation revealed an association between toxicity and the presence of A. 

flavus in peanut meal (7).  The four major metabolites of aflatoxin are AFB1, AFB2, AFG1 and 

AFG2.  Metabolites were given names based on their ability to produce blue or green-yellow 

fluorescence when placed under UV light, with AFB1 and AFB2 producing blue fluorescence 

and AFG1 and AFG2 producing green. AFB1 is the most abundant, making up nearly 50% of 
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total aflatoxins, and is responsible for the majority of associated toxic and carcinogenic effects in 

humans and animals (6, 8, 9).  Other metabolites include AFM1 and AFM2, the hydroxylation 

products of AFB1 and AFB2, which are found in milk and milk products (8).   

Classified by the International Agency for Research on Cancer (IARC) as a Group 1 

known human carcinogen, aflatoxins are among the most potent liver carcinogens known (3, 9).  

Furthermore, individuals co-exposed to aflatoxin and the hepatitis B virus (HBV) are at 20-30 

times greater risk of developing hepatocellular carcinoma (HCC) than individuals exposed to 

aflatoxin or HBV alone (10).  It is currently estimated that 5 billion people worldwide are 

exposed to dietary aflatoxins (2).  In sub-Saharan Africa and Asia, where aflatoxin exposure is 

the highest, HBV prevalence is also high and populations are at increased risk of developing 

HCC.  Other health effects associated with aflatoxin exposure include immunosuppression, 

childhood stunting and acute aflatoxicosis (6, 8, 11, 12). 

1.1.1 Aflatoxin Biomarkers of Exposure and Effect 

Dietary consumption has been well documented as the main route of exposure to 

aflatoxins (6, 13, 14); however, studies have also shown that inhalation of aflatoxin is 

possible(15, 16). For most species, the LD50, the dose that kills 50% of tested animals, ranges 

from 0.5 to 10 mg/kg bw.  The US Food and Drug Administration (FDA) currently regulate the 

levels of aflatoxin in food and feed at 20 µg/kg and 0.5 µg/kg for AFM1 in milk. It is important 

to point out that the current FDA action levels were based on the minimum detectable amount of 

aflatoxin under UV light and not any specific toxicological data.   

Biomarkers are often used as indicators of exposure and refer to the measurement of a 

specific agent of interest measured in the body which represents the presence and magnitude of 
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current and/or past exposures (6).  Aflatoxin biomarkers allow for the measurement of both 

internal and biologically active dose of aflatoxin exposure when measuring dietary intake is not 

feasible (6).   

Biomarkers used for measures of internal dose include urinary measures of AFM1, 

AFB1-mercapturic acid and serum aflatoxin-albumin adducts (8, 17, 18); AFB1-N7-Guanine 

serves as a urinary biomarker of the biologically effective dose (6).  Whereas serum biomarkers 

of aflatoxin represent past exposure over the past 2-3 months, urinary biomarkers reflect more 

recent exposure to aflatoxin. Various studies have correlated the levels of urinary aflatoxin 

biomarkers (AFM1 and AFB1-N7-Guanine), as well as serum biomarkers (aflatoxin-albumin 

adducts) with dietary aflatoxin intake and have shown dose-response relationships (18-20).  

Potentially one of the most useful biomarkers recently discovered, a TP53 249ser mutation is 

common in HCC patients and may represent early neoplastic exposure and/or chronic exposure 

to aflatoxin (8, 21-23).   

1.1.2 Associated Human Health Effects 

Various human health effects have been associated with exposure to aflatoxins.  Chronic 

exposure to aflatoxin has been well documented to cause HCC, especially when co-exposed to 

HBV (3, 23-27).  Acute exposure to high levels of aflatoxin is associated with aflatoxicosis (28-

30).  Relatively less evidence exists linking aflatoxin exposures to childhood stunting (11, 31, 

32) and immunosuppression (33-36).   
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1.1.2.1 Hepatocellular Carcinoma (HCC) 

Liver cancer is the ninth leading cause of cancer deaths in the US and third leading cause 

of cancer deaths globally (37-39).  It is estimated that each year there are nearly 750,000 liver 

cancer cases and over 600,000 deaths from liver cancer with majority of these cases occurring in 

China, south-east Asia and sub-Saharan Africa (37, 40, 41).  The estimated number of liver 

cancer cases and deaths varies greatly between more developed and less developed regions.  In 

more developed regions, it is estimated that there were nearly 82,000 new liver cancer cases in 

2008 and 75,400 deaths.  In comparison, less developed regions saw over 440,000 new liver 

cancer cases and over 402,000 deaths (37).   

Hepatocellular carcinoma risk factors include, but are not limited to, alcoholism, HBV, 

hepatitis C virus (HBC), aflatoxin exposure, smoking, arsenic, diabetes and obesity (42).   

Worldwide, HBV infects greater than 350 million individuals, while HCV chronically infects 

nearly 170 million individuals (8).  In developed countries, it is estimated that 23% of HCC cases 

are attributed to HBV and 20% attributed to HCV (41).  Developing countries attribute 59% and 

33% to HBV and HCV respectively (41). Heavy alcohol consumption, tobacco use and diabetes 

have been linked to HCC; these risk factors may amplify the effects of HBV and HCV, but also 

may cause HCC in the absence of the hepatitis virus (39).   

The role of the interaction between aflatoxin and HBV in causing HCC has been well 

studied.  The risk of liver cancer in individuals exposed to both HBV and aflatoxin is 20-30 

times greater than exposure to only one of the risk factors (10).  There may also be synergistic 

effects of aflatoxin and HCV in causing HCC, however, the quantitative relationship is unclear 

(43-45).  
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Multiple proposed models and mechanisms currently exist by which aflatoxin and HBV 

cause liver cancer in humans.  Animal models have shown that HBV transgenic mice expressing 

various HBV antigens in the liver showed more than HCC than non-transgenic littermates when 

exposed to AFB1 (8, 46). Other studies have shown that mice with TP53ser246 mutations and 

functional TP53 (8)  had the highest incidences of liver cancer and mice expressing the HBx 

gene exhibited double the number of induced GC to TA transversions compared to wild-type 

mice when exposed to aflatoxin (47).  Also, it has been suggested that aflatoxins may suppress 

DNA repair mechanisms which act in limiting the development of liver cancer from HBV 

infection (3, 48) or that HBV may modify the detoxification process of aflatoxin(49); however, 

aflatoxin itself may interfere with the suppression of cancer(3).  Aflatoxin-induced DNA adducts 

may be fixed as mutations in response to chronic liver injury and regenerative hyperplasia caused 

by oxidative stress and inflammation (50) generated by HBV (8).  Finally, it has been proposed 

that aflatoxin could affect susceptibility to infection by HBV or replication of HBV based on 

evidence in ducklings where AFB1 increased indicators of HBV replication (8, 51). 

Figure 1-1 summarizes the key steps in the development of HCC from exposure to 

aflatoxin and infection with HBV (6).  The metabolic pathway of AFB1 after dietary ingestion is 

the first step in afaltoxin’s mode of toxicity.  The liver is the target organ for aflatoxin and it is 

here that AFB1 is metabolized to the reactive AFB1-8,9-epoxide (AFBO) by the CYP450 

enzyme system (52, 53).  AFBO exists in both the endo and exo forms, however, it is the exo 

form which binds to DNA to form the more mutagenic AFB1-N7-Guanine adducts or serum 

albumin adducts (52, 54).  Other metabolites of AFB1 include aflatoxin Q1 (AFQ1) and 

aflatoxin P1 (AFP1), which are less toxic than AFB1 (55), and AFM1 which is considered 

equally toxic, but less mutagenic (56).   
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Aflatoxin’s toxicity can be reduced through conjugation, which makes the toxin more 

hydrophilic and able to be excreted in bile (57).  Conjugation occurs mainly by certain 

glutathione S-transferases (GSTs) which produces AFB1-glutathione, AFB1-glucaronide, and 

AFB1-sulfate.  AFB1-glutathione is the major conjugate and is the principal detoxification 

pathway essential to prevention and reduction of AFB1-induced carcinogenicity (57).  

The formation of AFB1-N7-Guanine adducts is responsible for aflatoxin’s carcinogenic 

effects due to the guanine to thymine base transversions (58).  The double bond at C-8 of the 

AFB1-8,9-epoxide allows intercalation with the N7-Guanine base in DNA and form the most 

mutagenic lesions (53, 59).  One underlying mechanism of HCC development and progression 

appears to be caused by a mutation in the p53 tumor suppressor gene (60).  Under normal 

circumstances, p53 acts as a cancer suppressor gene by inducting apoptosis in damaged cells, 

however, when mutated, uncontrolled cell division and proliferation occurs. This ultimately leads 

to tumor formation.   

 

Figure 1-1: Summary of the synergistic effect of aflatoxin and HBV in causing HCC (6).  
Copyright permission granted through Oxford University Press. 
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1.1.2.2 Aflatoxicosis 

Aflatoxicosis, caused by acute exposure to high levels of aflatoxins in the diet, is 

characterized by jaundice, ascites, vomiting, lethargy, abdominal pain, hepatitis, hemorrhagic 

necrosis of the liver, edema, bile duct proliferation and death (3, 61).  In most cases, aflatoxicosis 

is associated with high daily consumption of contaminated maize near 300-500 grams/day (8).  

Fatality occurs when consuming levels of aflatoxins at 5000 µg/kg or above; however, the non-

lethal, adverse health effects occur at levels exceeding 1000 µg/kg.  The duration of exposure 

necessary to cause death is estimated to be 7-21 days at levels exceeding 20 µg/kg bw/day in 

adults (8).   While adults are typically more tolerant to aflatoxin exposures, children have the 

greatest risk of fatal aflatoxin exposures (62).   

Major aflatoxicosis outbreaks have occurred over the past 50 years with the largest 

occurring in India in 1974.  This outbreak resulted in 397 recognized cases and 106 deaths from 

consuming contaminated maize with aflatoxin levels ranging from 0.25 to 15 mg/kg (29).  In 

1981 another outbreak occurred in Kenya resulting in twenty hospitalizations and a case fatality 

rate of 60% (30).  Most recently, in 2004-2005 in eastern Kenya, 317 cases were reported with 

125 deaths (28).  It was determined that poorly harvested maize was stored in favorable 

conditions for aflatoxin contamination.  Average measured levels of AFB1 were 50 µg/kg, nearly 

220 times the regulation limit set for aflatoxin in food in Kenya (63).   

 

1.1.2.3 Stunting 

Multiple studies in animals (3) and humans (11, 31, 64) have suggested a possible link 

between aflatoxin exposure and childhood stunting (65) .  Infants may be first exposed to AFM1, 

the hydroxylated metabolite of aflatoxin, in mother’s breast milk if the mother consumed a diet 
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contaminated with aflatoxin.  As a child grows and is weaned onto solid foods, the child will be 

exposed to aflatoxin from the household diet (66). 

An inverse association between aflatoxin exposure and growth was found in children 

aged 1-5 in a cross-sectional study carried out in Benin and Togo (11).  This association was 

extended to take into account in utero exposure in a sample of Gambian children and an 

association was found between aflatoxin exposure and impaired growth (32).  A longitudinal 

study in West Africa showed a strong, negative correlation between aflatoxin-albumin adducts 

and height over an 8-month period (31).  Overall, aflatoxin exposure has been correlated with 

low birthweights and heights (67-69), as well as decreased height and weight at one year of age 

(32). 

The mechanisms by which aflatoxins lead to stunted growth in infants and children are 

not yet completely understood.  A variety of proposed mechanisms exist.  These include: 1) 

aflatoxins causing less efficient food conversion and decreased protein synthesis (67); 2) 

compromised intestinal integrity through altered barrier function (66), which may have negative 

effects on micronutrient absorption--specifically vitamins A and E (70); or 3) immune system 

effects which makes intestinal epithelium vulnerable to bacteria or viruses, increases local 

inflammation and impairs nutrient absorption (34, 66). 

1.1.2.4  Immunosuppression   

Aflatoxins have been associated with adverse effects on the immune system dating back 

to the 1960’s and 1970’s when aflatoxin exposure was associated with salmonellosis outbreaks 

causing Turkey X syndrome and an outbreak in swine in the southeastern United States (71).  

While most of the immunomodulatory effects have been considered in animal and cell culture 

studies (3, 71, 72), limited human evidence does exist (31, 32, 34, 70, 73).   
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Human studies have shown reduced phagocytic activity in human peripheral blood 

monocytes in vitro when exposed to aflatoxin (74).  One study in The Gambia found 

significantly higher mean aflatoxin-albumin adducts in children with malaria compared to 

controls (73), while another correlated aflatoxin-albumin levels with lower salivary IgA in 

children (34).  In Ghana, higher aflatoxin-albumin adducts were associated with alterations in 

different lymphocyte subgroups compared to controls (35, 36).  It is possible that aflatoxin-

induced immunosuppression is due to the inhibition of DNA, RNA and protein syntheses or 

through modulation of cytokines (33, 75).   

1.2 OCHRATOXIN A 

Ochratoxin A (OTA) is a foodborne mycotoxin produced by a wide variety of fungi 

including Aspergillus ochraceus, A. carbonarius, A. niger and Penicillium verrucosum.  Due to 

the wide variety of fungi which produce the toxin, OTA contaminates multiple agricultural 

commodities ranging from cereal grains to dried fruits and wines and coffee.  The fungi each 

grow under a different set of conditions; however, contamination typically occurs in moderate 

and subtropical regions at temperatures from 20°C-37°C.  Poor agricultural practices such as 

improper drying and storage of foods favor fungal growth and OTA contamination (76).  

Ordinary food processing measures fail to reduce OTA levels due to OTA’s chemical stability.   

The kidneys are the main target organ for OTA (77) and is one of the most potent renal 

carcinogens known to date (78, 79).  IARC has classified OTA as a Group 2B, possible human 

carcinogen based on carcinogenicity in animal studies (80, 81).  Based on its carcinogenic 

effects, OTA has been associated with various human nephropathies including Balkan endemic 
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nephropathy (BEN) (82-86) and chronic interstitial nephropathy (87-89).  Other OTA-associated 

adverse effects include teratogenic effects (90), immunosuppression (91), inhibition of 

macromolecular synthesis, increased lipid peroxidation, and inhibition of mitochondrial 

respiration (79, 92). 

The purposes of examining the human health effects of OTA were threefold in this study.  

First, OTA was evaluated using the four-step risk assessment process to gain insight about 

population health effects due to dietary OTA exposure.  This research comes in part due to the 

recently proposed OTA maximum levels (MLs) suggested by Health Canada; however, the 

studies used to set this MLs were based on animal and cell culture assays.  Second, the estimated 

cost of implementing an OTA standard in Canada was calculated for both domestic losses and 

losses to countries exporting crops to Canada.  Third, OTA was considered as one of the major 

etiologic factors in BEN.  For this analysis, all of the etiologic factors involved with BEN were 

considered and compared using the Bradford Hill Criteria (BHC), a qualitative evaluation tool. 

1.2.1 OTA Exposure and Toxicity  

The major source of OTA exposure comes through ingestion of OTA-contaminated 

foods.  While cereal grains are the staple foods contaminated by OTA; grapes, raisins, wine, 

coffee, beer, corn, and soy are also often found to contain OTA (90).  The amount of OTA in 

food is dependent on a host of factors including location, season and the amount of time kept in 

storage amongst other factors (93).   

OTA is present in the foods of many countries around the world.  In 2001, the Joint 

FAO/WHO Expert Committee on Food Additives (JECFA) estimated 85% of sampled 

commodities including wheat, rye, barley, oats, dried vegetables, olives and milk came from 
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Europe (94).  Outside of Europe OTA has been found in a variety of commodities in the US, 

Brazil, Canada, Dubai, Japan and throughout Africa (94, 95).  JECFA currently estimates OTA 

exposures from cereals to range from 8-17 ng/kg bw/week based on European data (96). 

OTA is absorbed mainly in the gastrointestinal tract and distributed via blood to the 

kidneys (96).  OTA metabolism occurs in the liver and is carried out by several CYP450 

isoforms.  These isoforms include CYP-1A2, 2B6, 2C9, 2D6 and 2A6 (97). The major 

metabolites are shown in Figure 1-2.  Excretion occurs in urine and feces, however, OTA may be 

reabsorbed from the intestine, then reenter enterohepatic circulation (98), or be reabsorbed in the 

kidney proximal and distal tubules (77).  OTA has a low acute toxicity and large LD50 values 

exist for different species.  Oral LD50 values range from 0.2mg/kg in dogs, 1mg/kg in pigs,  

3.3mg/kg in chickens, 20-30mg/kg in rats and 46-58mg/kg in mice (94).  Intraperitoneal LD50’s 

are more sensitive with values of 13mg/kg for rats and 22-40mg/kg for mice (94).  OTA has a 

long elimination half-life of up to 35 days in human serum (99), but is much shorter in other 

species such as pigs (3-5 days), mice (1-1.5 days) and rats (2-5 days) (96).  Based on its 

excretion in urine and ability to bind to serum proteins, various biomarkers exist for measuring 

exposure to OTA.  These will be further detailed below. 
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Figure 1-2: Major OTA metabolites (97). 
Copyright permission granted through John Wiley and Sons publishing. 

A lowest observable adverse effect level (LOAEL) in pigs was estimated to be 8 µg/kg in 

pigs (100, 101).  This LOAEL value was used as the basis for multiple regulatory advisory 

committees’ determination of safe OTA intake levels.  JECFA used this LOAEL in combination 

with an uncertainty factor of 500 to set the first provisional tolerable weekly intake (PTWI) at 

112 ng OTA per kg bw/week in 1991 and when reevaluating the PWTI at its 44th meeting and 

relaxing the PTWI to 100 ng OTA per kg bw/week.   In a Health Canada risk assessment of 

OTA, Kuiper-Goodman et al. (90) chose to use a benchmark dose of 10% (BD10) rather than a 

LOAEL or NOAEL for risk assessment studies.  Applying the same uncertainty factor of 500 to 

the BD10 of 1.56 µg/kg bw/day calculated from the Krogh (100) study resulted in a tolerable 

daily intake (TDI) of 3 ng/kg bw/day (90), much stricter than previous assessments. 
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1.2.2 OTA Biomarkers of Exposure 

Measuring internal dose of OTA exposure is made possible through the use of 

biomarkers.  In the case of OTA, it is possible to measure both human serum and urine to 

evaluate exposure.  It is important to note that neither serum OTA nor urinary OTA have been 

validated as biomarkers of OTA; however, they have been used in multiple epidemiological 

studies to estimate exposure. 

1.2.2.1 Serum OTA Biomarkers 

First detected in 1977 (102), serum OTA has been the most studied approach to 

biomonitoring OTA exposure (77).  A long elimination half-life of 35 days (99) coupled with 

binding to plasma proteins, renal reabsorption and its enterohepatic circulation (98, 103) allow 

serum to be measured as a biomarker of OTA exposure over the previous weeks (77).  OTA in 

blood has been used extensively since 1982 when OTA was first considered as an etiologic 

factor in BEN (77).  Since then, serum OTA has been measured around the world in multiple 

populations including: Romania (104), Spain (105), the Czech Republic (106, 107), Turkey 

(108), Italy (109), Egypt (89), Algeria (110), and Tunisia (87).  In these studies higher serum or 

plasma OTA levels have been correlated with kidney and urinary disorders when compared to 

healthy controls, however, the associations may not be causal (93). 

Measuring serum OTA has drawbacks.  First, collecting blood samples is an invasive 

process that involves hiring trained personnel and elevated costs (77).  Second, high intra-subject 

variation exists and levels of serum OTA have been shown to vary tenfold in one subject when 

tested over a ten-year period (111).  High variation was also shown in repeatedly tested subjects 
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over one year in Italy(112), Germany (113), Switzerland(99) , Czech Republic (114), Japan 

(115), and Bulgaria (116). 

1.2.2.2 Urinary OTA Biomarkers 

New technologies have made measuring the low amounts of OTA found in human urine 

possible (77).  Relatively easy and non-invasive collection processes are two advantages of using 

urinary measures over serum biomarkers.  Multiple studies have measured urinary OTA as a 

biomarker of OTA exposure in humans around the world.  The study populations were in Italy 

(109, 117), Hungary (81), Egypt (89), the UK (118) and Portugal (119) as well as in BEN-

endemic areas (116).  Two French siblings with renal failure had the highest measured urinary 

OTA levels at 367 ng/ml and 1801 ng/ml (120).  Urinary OTA biomarkers also show stronger 

correlation with dietary intake (118) and are more representative of recent OTA intake when 

compared with serum biomarkers (83, 116). 

1.2.3 OTA Associated Health Effects 

The major adverse health effects associated with exposure to OTA relate to the kidney.  

OTA is one of the most potent renal carcinogens known in animals (90) and has been associated 

with various nephropathies and urothelial tract tumors(96).  OTA has also been considered a 

teratogen (121-127) and may also be mutagenic (128-130) based on animal and cell culture 

studies.  
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1.2.3.1 Potential Mechanisms 

Various hypotheses exist attempting to detail the carcinogenic mode of action by OTA.  

JECFA (96) has summarized both the mechanisms that would account for tumor formation and 

those that may only contribute to tumor formation.  The proposed carcinogenic mechanisms 

include: generation of tumors secondary to chronic renal toxicity, disruption of cell signaling 

pathways and cell division, alteration of calcium homeostasis, mitochondrial dysfunction leading 

to oxidative stress and inhibition of phenylalanine-tRNAPhe synthetase so that amino-acylation 

and peptide elongation are stopped (96, 131).   

Divergent results exist when considering genotoxic modes of action.  OTA has been 

shown to be moderately genotoxic in in vitro and in vivo mammalian systems in some studies 

(132); however, other studies have shown more potent effects in mammalian cells (130, 133).  

Further complicating this issue is the contradictory results regarding DNA adduction. 32P-post-

labelling results (97, 134) from multiple tissues have detected both dose and time-dependent 

DNA adducts in several species (90); however, other studies were unable to detect DNA binding 

(135, 136), and JECFA has concluded that no genotoxic mode of action or covalent binding to 

DNA has been confirmed (96). 

Non-genotoxic modes of action have also been proposed based on a number of animal 

and cell culture assay studies.  OTA exposure has been associated with both in vivo and in vitro 

alterations in oxidative stress pathways, changes in gene expression and cell signaling, increased 

apoptosis, increased cell proliferation, and disruption of mitosis (96).  Further research is needed 

to fully characterize the proposed mechanisms by which OTA may cause adverse health effects 

in humans at biologically relevant doses. 
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1.3 MYCOTOXIN REGULATIONS 

The overall theme of this dissertation was to determine how mycotoxin regulations affect 

human health and trade patterns of contaminated commodities.   

The Food and Agriculture Organization (FAO) has published two reports summarizing 

the status of mycotoxin regulations around the world (137, 138).  As of 2003, over 120 countries 

had mycotoxin regulations for food and feed (137), which is an increase in total nations of 30% 

compared to 1995 (138).  Overall, 87% of the world’s population is covered by mycotoxin 

regulations. This is an increase of 10% compared to 1995 due to slight increases in coverage in 

Latin America and Europe combined with significant increases in Africa and Asia (137).  In 

addition to the increases in number of countries regulating mycotoxins, the number of 

commodities regulated has increased between 1995 and 2003 while tolerance limits have 

remained the same or became stricter (137).  Figure 1-3 summarizes all the countries with and 

without regulations for various mycotoxins (137). 

Aflatoxins are regulated in every country that has any mycotoxin regulation(s).  This 

includes regulations for AFB1 and/or total aflatoxins (AFB1+AFB2+AFG1+AFG2).  61 

countries currently regulate for AFB1, whereas 76 countries regulate for total aflatoxins in food.  

Other regulations exist for other mycotoxins, including OTA.  Figure 1-4 summarizes the ranges 

and medians of limits for total aflatoxins in different regions between 1995 and 2003 (137).  The 

largest change in trends is apparent in Europe and Asia where limits became much stricter.   
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Figure 1-3: Summary of countries with and without mycotoxin regulations in 2003 (137). 

Figure 1-4: Range and median total aflatoxin limits for different world regions (137). 
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The number of countries regulating OTA has also increased between 1995 and 2003, 

specifically for cereal grains and cereal products.  Some regulations, like those in the EU, are 

different depending on if the cereal is raw or processed.  As of 2003, 37 countries had OTA 

regulations in cereal or cereal products ranging from 3-50 ng/g.  In this study, it is important to 

consider Health Canada’s proposed OTA regulations in relation to Canada’s current levels of 

OTA in foods.  Health Canada’s proposed OTA regulations (139) are summarized and compared 

to current OTA regulations in the EU below (140) (Table 1-1).   

Health Canada has proposed matching maximum limits for a variety of commodities 

already in force in the EU.  These regulations cover raw and unprocessed cereal grains, direct 

consumer grains and cereal products, breakfast cereals, fruit juices, dried fruits, and baby foods.  

Health Canada has proposed a regulation for derived cereal products (wheat bran) at 7 ng/g for 

which the EU does not currently regulate.  In addition to the products previously listed, the EU 

also regulates for coffee (roasted beans, instant coffee and grounds), wine/wine products, various 

spices and licorice (root and extract).  As the products are unlikely to be produced in Canada, 

Health Canada has not proposed any maximum levels regulating those commodities.  
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Table 1-1: Proposed Health Canada and European Union Maximum OTA Limits. 

Product Proposed Health Canada 
maximum limits (ng/g OTA) 

European Union maximum 
levels (ng/g OTA) 

Raw cereal grains / 
unprocessed cereals 5 5 

Direct consumer grains (i.e. 
rice, oats, pearled barley) 3 3 

Derived cereal products (flour) 3 3 

Derived cereal products 
(wheat bran) 7 N/A 

Breakfast cereals 3 3 

Grape juice (and as ingredients 
in other beverages) and related 

products 
2 2 

Dried vine fruit (currants, 
raisins, sultanas) 10 10 

Baby foods and processed 
cereal-based foods for infants 

and young children 
0.5 0.5 

Dietary foods for special 
medicinal purposes intended 

for infants 
0.5 0.5 

Roasted coffee beans and 
ground roasted coffee N/A 5 

Soluble (instant) coffee N/A 10 

Wine N/A 2 

Aromatized wine, wine-based 
drinks, and wine-product 

cocktails 
N/A 2 

Spices N/A 15 

Licorice, licorice root N/A 20 

Licorice extract N/A 80 

*N/A: Not available – OTA not regulated in respective commodity. 
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2.0  RESEARCH ON OCHRATOXIN A 

2.1 OCHRATOXIN A AND HUMAN HEALTH RISK: A REVIEW OF THE 

EVIDENCE 

The data presented in this chapter is published in 

Bui-Klimke TR, Wu F (2013). “Ochratoxin A and human health risk: A review of the evidence.” 
Critical Reviews in Food Science and Nutrition, in press. 

This is a preprint of an article whose final and definitive form has been published in Critical 
Reviews in Food Science and Nutrition ©2013 reprinted by permission of Taylor & Francis; 

available online at http://www.tandfonline.com 

2.1.1 Abstract 

Ochratoxin A (OTA) is a mycotoxin produced by several fungal species including 

Aspergillus ochraceus, A. carbonarius, A. niger and Penicillium verrucosum. OTA causes 

nephrotoxicity and renal tumors in a variety of animal species; however, human health effects 

are less well-characterized. Various studies have linked OTA exposure with the human diseases 

Balkan endemic nephropathy (BEN) and chronic interstitial nephropathy (CIN), as well as other 

renal diseases.  This study reviews the epidemiological literature on OTA exposure and adverse 

health effects in different populations worldwide, and assesses the potential human health risks 

of OTA exposure.  Epidemiological studies identified in a systematic review were used to 
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calculate unadjusted odds ratios for OTA associated with various health endpoints.  With one 

exception, there appears to be no statistically significant evidence for human health risks 

associated with OTA exposure.  One Egyptian study showed a significantly higher risk of 

nephritic syndrome in those with very high urinary OTA levels compared with relatively 

unexposed individuals; however, other potential risk factors were not controlled for in the study.  

Larger cohort or case-control studies are needed in the future to better establish potential OTA-

related human health effects, and further duplicate-diet studies are needed to further develop 

biomarkers of OTA exposure in humans. 

2.1.2 Introduction 

Ochratoxin A, as previously reviewed, is a naturally occurring foodborne mycotoxin 

found in a wide variety of agricultural commodities worldwide, ranging from cereal grains to 

dried fruits to wine and coffee. Table 2-1 summarizes the fungi which are known to produce 

OTA, their optimal growing temperature, optimal water activity, and the commodities which are 

affected by each particular fungi.  Contamination generally occurs as a result of poor storage of 

commodities and suboptimal agricultural practices during the drying of foods (76).  OTA is a 

chemically stable compound; hence, ordinary food processing measures fail to substantially 

reduce its presence in foods and beverages. 
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Table 2-1: Ochratoxin-producing fungi, optimal growth conditions, and commodities affected. 

OTA-
producing 

species 

Optimal 
temperature 
range (Min-

Max) °C 

Water 
activity Commodities affected 

A. ochraceus 24-31 (8-37) 0.95-
0.99 

Smoked and salted dried fish, dried beans, 
biltong, soya beans, chickpeas, rapeseed, pepper, 
dried fruit, and sesame seeds, nuts, cereals rice, 

barley, maize, wheat, flour, and bran, coffee 
beans 

 

A. carbonarius 32-25 (N/A-
40) 0.82 

Grapes and grape products, including table 
grapes, wines, and dried vine fruits 

 

A. niger 35-37 (6-47) 0.77 

Nuts, apples, pears, peaches, citrus, grapes, figs, 
strawberries, mangoes, tomatoes, melons, 

onions, garlic, and yams 
 

P. verrucosum 20 (0-30) 0.80 Cereal crops; cheese, meat products 
 

Source: (94) 

Ochratoxin A has become an important topic in recent years, as Health Canada has 

proposed maximum limits (MLs) for OTA in a variety of foods and drinks that could have 

consequences for the marketability of these commodities in Canada, and could also affect nations 

that attempt to export food to Canada (141).  Yet, little is known about population health impacts 

of dietary OTA exposure.  Thus far, risk assessments on OTA, including those that have guided 

Health Canada’s recently proposed MLs, have largely been based on animal and cell culture 

assay studies, with relatively less focus on human studies.  The goal of this study was to 

systematically review the epidemiological literature linking OTA exposure with adverse health 

effects in diverse human populations worldwide.  In a discussion of risk assessments conducted 

on OTA in the past, we compare the state of known data with what is still missing in terms of 

assessing human health effects.  We collected available human studies linking OTA exposure 

with a variety of health outcomes, and selected those studies that met predefined criteria for 
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inclusion in the review.  Odds ratios were estimated for these different studies where the data 

permitted these calculations. The current state of exposure assessment for OTA is discussed as 

well.  We characterize the risk of OTA to human populations and describe limitations in the 

available data. 

2.1.3 Background: Risk Assessment of Ochratoxin A 

Risk assessment, the process of estimating the magnitude and the probability of a harmful 

effect to populations from certain agents or activities, consists of four main steps: hazard 

identification, hazard characterization or dose-response assessment, exposure assessment, and 

risk characterization (142). The four steps involved in the estimation of risk are outlined below 

(143). 

Hazard identification, determining whether exposure to an agent can increase the 

incidence of a particular health condition, has been carried out for OTA in assessments 

conducted by multiple institutions; including the International Agency for Research on Cancer 

(IARC), Health Canada, the Joint Food and Agriculture Organization / World Health 

Organization Expert Committee on Food Additives (JECFA), and the European Food Safety 

Authority (EFSA) (80, 141, 144, 145).  Ochratoxin is identified as a renal carcinogen to 

particular animal species (79) and can cause nephrotoxic, teratogenic, and immunosuppressive 

effects in multiple animal species (79, 146).   

For humans, however, hazard identification has been more difficult.  Several adverse 

human health effects, including the kidney diseases Balkan Endemic Nephropathy (BEN) and 

chronic interstitial nephropathy (CIN), have been associated with exposure to OTA; but these 

associations have thus far been less conclusive than those for OTA-associated adverse effects in 
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laboratory animal studies. The hallmark features of BEN include a familial but not inherited 

pattern of disease, initial manifestation after living in an endemic village for 15 years or more, 

and an association with upper urothelial tract cancer (147).  However, aristolochic acid (AA), a 

toxin produced in Aristolochia weeds commonly found in Balkan grain fields, has emerged as 

the most likely causative agent of BEN; as aristolactam-DNA adducts have been found in the 

renal cortex of BEN patients but not in patients with other chronic renal diseases (26).   CIN does 

not appear to have the familial pattern of BEN, and may be acute or chronic with cases 

presenting anywhere from a few days up to 5 months.  The etiology of CIN has been postulated 

to include infections, toxins such as OTA, or reactions to medications (148). 

Hazard characterization or dose-response assessment describes the relationship between 

different levels of exposure to a substance and associated incidence of disease in a population of 

animals or humans.  Dose-response data from animal studies of a particular toxin are used to 

extrapolate an acceptable daily or weekly exposure to humans, below which no adverse effects 

are expected. This step usually involves a critical review of toxicological studies to set 

appropriate exposure metrics (90), such as tolerable daily or weekly intake or negligible cancer 

risk intake.  In the case of OTA, diverse regulatory and advisory bodies have assessed dose-

response data on OTA and have set exposure metrics for tolerable exposure to OTA in humans. 

These are summarized in Table 2-2. 
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Table 2-2: Summary of calculated tolerable human intakes of ochratoxin A (OTA) by international 
organization. 

Organization 
Tolerable 

intake 
metric* 

Limit Year  (Reference) 

European Food Safety Authority 
(EFSA) PTWI 120 ng/kg bw/week 2006 (145) 

Health Canada PTDI 3 ng/kg bw/day 2010 (90) 

Health Canada NCRI 4 ng/kg bw/day 2004 (149); 2010 (90) 

Joint FAO/WHO Expert 
Committee on Food Additives 

(JECFA) 2007 
PTWI 100 ng/kg bw/week 2007 (96) 

Nordic Expert Group on Food 
Safety TDI 5 ng/kg bw/day 1991 (150) 

Scientific Committee of Food 
(SCF) of the European Union PTDI 5 ng/kg bw/day 1998 Reviewed in 

(145) 
*TDI - tolerable daily intake; PTDI - provisional tolerable daily intake; PTWI - provisional 
tolerable weekly intake; NCRI - negligible cancer risk intake 
 
 

Various dose-response studies in animals were the basis for advisory groups’ 

determinations of safe weekly or daily OTA intakes for humans. JECFA first evaluated OTA at 

its 37th meeting (144), setting a provisional tolerable weekly intake (PTWI) at 112 ng OTA per 

kg bodyweight (bw) per week based on a dose-response study of renal function deterioration in 

pigs, for which the lowest observed adverse effect level (LOAEL) was 8 µg/kg bw/day (100, 

101). A combined uncertainty factor (UF) of 500 was applied in the calculation.  JECFA 

reevaluated OTA at its 44th meeting, taking into account new toxicological data.  The PTWI was 

confirmed, but rounded down to 100 ng/kg bw/week.  The most recent assessment of OTA at the 

68th meeting in 2008 resulted in retaining the PTWI previously found.   JECFA currently 

estimates OTA exposure from cereals, based on European data, to be about 8-17 ng/kg bw/week: 

well below the PTWI.  
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The European Food Safety Authority (EFSA) derived a PTWI for ochratoxin A of 120 

ng/kg bw/week, based on the 8 µg/kg bw/day LOAEL used in the JECFA evaluation (145).  An 

uncertainty factor of 450, rather than 500 used in JECFA, was applied to the LOAEL.  This 

composite uncertainty factor was based on an intra-species factor of 10, interspecies factor of 15, 

and a factor of 3 for use of a LOAEL instead of a no observed adverse effect level (NOAEL). 

The interspecies factor of 15 was based on the longer OTA half-life in humans and monkeys 

rather than pigs as determined by Hagelberg et al. (151). 

A Health Canada risk assessment team (90) chose to reevaluate EFSA’s PTWI for 

ochratoxin A, positing that the use of LOAEL rather than a NOAEL was not appropriate given 

the small number of animals per group, and the fact that 4 out of 9 pigs in the lowest dose group 

showed functional kidney changes.  Rather than use a NOAEL or LOAEL, a benchmark dose 

corresponding to a response of 10% above background (BD10) was derived. Uncertainty factors 

of 10 for intra-species variability, 25 for interspecies variability, and 2 for use of a sub-chronic 

rather than chronic study were combined in a composite uncertainty factor of 500. Applying this 

composite uncertainty factor to the BD10
 of 1.56 µg/kg bw/day resulted in a TDI of 3.0 ng/kg 

bw/day after rounding (90), which in practice is considerably stricter than the JECFA or EFSA 

tolerable limits. 

Additionally, Health Canada derived a negligible cancer risk intake (NCRI) for OTA: the 

exposure associated with an increased cancer risk of 1:100,000 and equivalent in units to the 

TDI.  The tumorigenic dose at which 5% of the animals are likely to have tumors (TD05) was 

used to derive the NCRI for OTA(78). This dose was determined to be 19.6 µg/kg bw/day.  The 

TD05 was then divided by 5000, the linear extrapolation to zero exposure, resulting in a NCRI of 

4 ng/kg bw/day (28). 
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Exposure assessment involves estimating the intensity, frequency, and duration of human 

exposures to toxic substances.  Ochratoxin exposure is a function of the concentration of 

ochratoxin in foodstuffs, as well as the amount of these foodstuffs that are consumed in different 

populations.  Depending on location, seasons, and amount of time food is kept in storage, both 

the amount and contamination levels of food may vary greatly even for the same population or 

individual (93).  Estimating human OTA exposure may be done using food surveys combined 

with OTA surveillance in commodities, or biomarkers of exposure.   

By determining ranges of OTA contamination of foods, OTA exposure can be estimated 

from the known intake levels of the given commodities (152).  However, the accuracy of this 

estimation is limited due to the large variability in OTA content in commodities, as well as 

variation in dietary habits (81).  Surveillance data on OTA concentrations in different regions of 

the world is limited.  JECFA provides extensive data on OTA exposure concentrations in 

commodities(94); however, 85% of sampled commodities including wheat, rye, barley, oats, 

dried vegetables, olives, and milk came from Europe.  However, it was noted that OTA occurs in 

coffee in countries including Brazil, Canada, Dubai, Europe, Japan, and the USA(94).  In 

Denmark, Norway, and the UK, OTA was found in oat samples.  In Germany, high OTA levels 

were found in unprocessed cereals, rye and buckwheat, with levels ranging from 95.6-125 ug/kg.  

In Africa, OTA was found in wheat, barley, cereals, dried vegetables and olives.  Specifically, 

Maaroufi et al. (95) found high OTA levels, with a maximum of 33,000 ug/kg in wheat, barley, 

mixed cereals, dried vegetables, and olives in a Tunisian population.  In Nigeria, Ghana, and 

Burkina Faso, OTA was detected in sorghum, maize, and millet. 

A more accurate method to estimate exposure, when possible, is through measuring 

human biomarkers of OTA exposure, as reviewed in Duarte et al.(77). Although neither serum 
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OTA nor urinary OTA has been validated, they have been used in multiple studies to estimate 

OTA exposure.  OTA is found in serum due to its long elimination half-life of about 35 days(99), 

and is excreted in urine as both unchanged OTA and its derivatives.     

OTA in serum was first detected in 1977 and has been one of the most widely used 

biomonitoring approaches for human OTA exposure.  Renal absorption, enterohepatic circulation 

and binding to plasma proteins results in a long half-life for OTA in the body, allowing it to be 

detected in human blood (98, 103).  Epidemiological studies conducted in multiple countries, 

including Romania (104), Spain (105), the Czech Republic (106, 107), Turkey (108), Italy (109), 

Egypt (89), Algeria (110), and Tunisia (87, 153), have associated higher serum or plasma OTA 

levels in patients with kidney and urinary disorders compared to healthy controls, although the 

associations may not be causal (93).  Although many studies have used serum OTA as a human 

biomarker of OTA exposure, considerable intra-subject variation has been noted.  Levels of 

serum OTA have been noted to vary up to tenfold in one subject when tested over a ten-year 

period (111) and in repeatedly tested subjects over one year in Tuscany (112).  Furthermore, 

studies in Germany (113), Switzerland(99), Czech Republic (114), Japan (115), and Bulgaria 

(116) all showed high intra-subject variability in human subjects tested over time.  This 

variability is likely due to the decreases in plasma concentrations based on the half-life of OTA 

(93).   

Urinary OTA, another potential biomarker of OTA exposure, is often found in very low 

amounts compared to those in blood; however, new technologies have increase the sensitivity 

and accuracy of detection(77).  Pascale & Visconti (117) detected OTA in 37 out of 55 healthy 

individuals in Italy with levels ranging from 0.012-0.046 ng/ml. In Hungary, Fazekas et al. (81) 

detected OTA in 54 out of 88 samples from healthy individuals at levels of 0.006-0.065 mg/ml.  
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Patients with end stage renal disease or nephritic syndrome in Egypt had significantly higher 

levels of urinary OTA than two reference groups (89). The highest incidence of detectable OTA 

exposures in urine, 100%, were found by Petkova-Bocharova et al. (116) in a BEN-endemic 

region and in non-endemic regions including Portugal (119) and Italy (109).  The highest 

recorded levels of OTA in urine, 367 ng/ml and 1801 ng/ml, were found in two French siblings 

with renal failure (120).  Petkova-Bocharova et al. (116) and Castegnaro et al. (83) applied 

similar methodology as Gilbert et al. (118) when studying 16 human participants (83).  Increases 

of OTA intake resulted in an increase of OTA elimination a week after ingestion, not 

immediately (83).  Table 2-3 summarizes urinary OTA levels in populations from different world 

regions.  The table includes OTA levels from Duarte et al. (77) and more recent studies. 

Table 2-3: OTA occurrence in human urine. 

Country Year 
collected 

Number of 
positive 

samples (%) 
for OTA 

Range of 
urinary 

OTA 
levels 

(ng/ml) 

Sampled 
population Reference 

Bulgaria 1984-1990 44/127 (35) 0.005-
0.604 

Healthy humans in 
Balkan Endemic 

Nephropathy (BEN) 
areas, Non-BEN 
areas and BEN 

patients 

(154) 

Bulgaria 2003 16/16 (100) 0.016-
0.860 

Patients from BEN 
areas (116) 

Bulgaria Not 
Available 61/152 (40) n.d.-0.03

BEN and Urothelial 
Tract Tumor (UTT) 

patients 

(155) 

Croatia 2000 24/63 (38) 0.005-
0.086 

BEN and Non-BEN 
areas 

(156) 

Croatia 2005 9/63 (14) 0.005-
0.015 

BEN and Non-BEN 
areas 

(156) 

Egypt 1998 19/122 (16) 0-8.19 
Healthy controls, 
kidney donors, 

patients with End 

(89) 
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Stage Renal Disease 
(ESRD), transplant 
recipients, nephritic 
syndrome patients, 
and UTT patients 

Germany 2008 13/13 (100) 0.02-0.13 Healthy volunteers (157) 

Hungary 2003 54/88 (61) 0.006-
0.065 Healthy volunteers (81) 

Italy 2001 25/41 (61) 0.012-
0.140 

Healthy individuals 
and karyomegalic 

interstitial nephritis 
patients 

(117) 

Italy Not 
Available 10/10 (100) 0.02-0.25 Healthy volunteers (158) 

Korea Not 
Available 12/12 (100) 0.012-

0.093 Healthy volunteers (159) 

Portugal 2007 174/198 (88) n.d.-0.071 Healthy volunteers (160, 161) 

Portugal 2004 42/60 (70) n.d.-0.105 Healthy volunteers (162) 

Portugal 2005 13/30 (43) n.d.-0.208 Healthy volunteers (163) 

Sierra Leone 1992-93 63/434 (25) 0.06-148 Healthy child 
volunteers 

(164) 

Spain 2005 25/31 (81) n.d.-0.124 Healthy volunteers (163) 

Spain 2011 9/72 (13) 0.057-
0.562 Healthy volunteers (165) 

Spain 2011 3/27 (11) n.d.-<1.5 Healthy volunteers (166) 

United 
Kingdom 2001 46/50 (92) <0.01-

0.058 Healthy volunteers (118) 

 

A 2001 study on both serum and urinary biomarkers of OTA exposure revealed a 

stronger correlation between dietary OTA intake and urinary OTA than serum OTA. Gilbert et 

al. (118) examined OTA levels in urine and plasma as a function of dietary OTA intake in 50 

subjects in the United Kingdom.  The volunteers kept a daily food diary and provided blood 

samples once per week, urine samples daily, and duplicate diet samples daily, for one month.   

Baseline samples were taken at the beginning of the study.  OTA was detected in all but four 

urine samples, with levels ranging from <0.01-0.058 ng/ml.  OTA was detected in all plasma 

Table 2-3 Continued 
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samples with baseline sample levels ranging from 0.15-2.17 ng/ml and composited plasma 

samples ranging from 0.4-3.11 ng/ml.  A statistically significant correlation between urine OTA 

levels (R2 = 0.52) and dietary OTA consumption was found.  However, the authors caution that 

this relationship is too weak to be used in a predictive manner (118).  In plasma, no significant 

correlation was found between the two (R2 = 0.29). For the purpose of establishing a valid 

biomarker of OTA exposure in the future, urinary OTA appears a stronger candidate.   

Risk characterization integrates the dose-response and exposure assessments to 

determine the probability of an adverse effect to human populations by an agent.  To estimate 

risk associated with OTA exposure and various health effects, it was not possible to estimate a 

population attributable risk due to a lack of available epidemiological data. Instead, a systematic 

review was performed in this study, and unadjusted odds ratios (ORs) were calculated for 

various health effects associated with OTA exposure based on data from existing studies.   

2.1.4  Systematic Review  

The purpose of this systematic review was to attempt to reconcile the human and animal 

study results on OTA toxicity, or lack thereof.  A literature search was performed on PubMed 

until October 4th, 2011. Search terms used without restriction included combinations of: 

(ochratoxin A), (human), (population), (disease), (urinary ochratoxin), (urinary OTA), and 

(urinary biomarker).  Additionally, we searched reference lists from retrieved articles and 

searched ochratoxin review papers for any additional epidemiological studies on adverse effects 

associated with OTA exposure that may not have been retrieved in the initial search. 

Eligibility criteria for inclusion in the review were as follows: (1) epidemiological 

studies; (2) case-control or cohort study design; (3) ochratoxin A as the exposure of interest; (4) 
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OTA exposure measured either in terms of dietary intake or urinary OTA levels; and (5) relative 

risk (RR) or odds ratio (OR) estimates with 95% confidence intervals (CIs) reported, or data to 

calculate these. Studies using serum OTA as a marker for exposure were excluded because of the 

poor correlation between dietary OTA intake and serum OTA as measured in (33).   

Data on the following were extracted from each study: authors, publication year, study 

design and sample size, study location, study period, participants’ gender and age, range of 

ochratoxin exposure, health effect under investigation, and data necessary to calculate ORs for 

each health effect if the OR was not already calculated.  From these data, we calculated 

unadjusted ORs and 95% confidence intervals for each ochratoxin-related health effect examined 

in each of the studies (several studies examined more than one adverse effect).   

2.1.5 Results 

The step-by-step process of our literature search is presented in Figure 2-1 (Figure format 

(167)). From 2431 results, only those studies that met the criteria listed above were included.  

Fifteen studies were selected based on information in the title and abstract, and seven more were 

added based on reference lists in those selected studies.  A full-text review of all 22 articles 

resulted in 19 being excluded because they did not measure urinary OTA or dietary OTA, or did 

not include both diseased and healthy individuals.  Three studies contained the relevant 

information needed to calculate unadjusted ORs for different OTA health effects.  

Table 2-4 provides an overview of the three eligible studies.  Based on the data needed to 

calculate ORs, three studies were included.  Due to the lack of similar health endpoints across the 

different studies, data could not be combined for meta-analysis.  The three eligible studies 

included two in the Balkans (Croatia and Bulgaria) and one in Egypt.  All studies measured 
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urinary OTA levels and associated these levels with several different adverse health effects.  

Each study also had at least one corresponding control group.  Domijan et al. (156) compared 

individuals in a BEN-endemic village to those in a non-BEN-endemic village, whereas Nikolov 

et al. (154) and Wafa et al. (89) study used healthy human controls.  Epidemiological studies 

were not included in the review if they did not examine both cases (i.e., those with confirmed 

disease) and controls.  For example, Petkova-Bocharova et al. (116) and Castegnaro et al. (83) 

examined OTA in serum and urine in human subjects living in BEN-endemic vs. non-BEN-

endemic villages, but all subjects involved in the study were healthy.   

 

 

Figure 2-1: Selection of studies for inclusion in systematic review of adverse health effects associated with 
ochratoxin A (OTA) exposure as measured by urinary OTA. 
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Table 2-4: Eligible studies and Unadjusted Odds Ratios (ORs). 

Location Population 
characteristics 

Proportion 
positive for 

urinary OTA 
(%) 

Mean urinary 
OTA (ng/ml) 

(Range) 
OR (95% CI) Reference 

Egypt 

End Stage 
Renal Disease 

(ESRD) 
patients w/ 
treatment 

4/11 (36.4%) 1.85 (nd*-6.70) 2.74 (0.402-
18.69) (89)a 

 ESRD dialysis 
patients 1/11 (9.1%) 0.36 (nd-4.0) 1.23 (0.115-

13.14)  

 ESRD Totals 5/22 (22.7%) Not Available 1.94 (0.357-
10.52)  

 
Renal 

transplant 
recipients 

2/15 (13.3%) 0.12 (nd-1.36) 1.89 (0.28-
12.65)  

 
Nephritic 
Syndrome 
patients 

8/15 (53.3%) 3.09 (nd-8.19) 10.79 (2.28-
50.91)  

 
Patients with 

urothelial tract 
tumors (UTT) 

1/15 (6.7%) 0.36 (nd-4.64) 0.88 (0.085-
9.14)  

 Potential 
kidney donors 2/15 (13.3%) 0.26 (nd-3.42) Not Available  

 Controls 3/40 (7.5%) 0.01 (nd-0.31) Not Available  

Bulgaria BEN/UTT 
patients 14/36 (38.9%) Not Available 

(0.005-0.604) 
1.29 (0.58-

2.87) (154)b 

 
Healthy 

persons from 
BEN families 

12/25 (48%) Not Available 
(nd-0.033) Not Available  

 

Healthy 
persons from 

non-BEN 
families in 

BEN villages 

14/32 (43.8%) Not Available 
(nd-0.043) Not Available  

 

Healthy 
persons from 

non-BEN 
villages in 
BEN area 

4/31 (12.9%) Not Available 
(nd-0.041) Not Available  
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Healthy 
persons from 
non-BEN area 

0/3 (0%) Not Available Not Available 

Croatia 
2000 

Endemic BEN 
village 19/45 (43%) 0.007 

(nd-0.086) 
1.90 (0.58-

6.23) (156)c

Healthy control 
village 5/18 (28%) 0.003 

(nd-0.02) Not Available 

Croatia 
2005 

Endemic BEN 
village 8/45 (18%) 0.001 

(nd-0.015) 
3.68 (0.43-

31.78) 
(156)c

Healthy control 
village 1/18 (6%) 0.005 (0-0.01) Not Available 

Combined 
BEN Villages 27/90 (30%) Not Available 2.14 (0.80-

5.74) 
*nd: non-detect
**Mean urinary OTA levels were not provided for all sampled groups and were therefore labeled 
as ‘Not Available’.  Odds ratios labeled ‘Not Available’ were for control groups, hence, no odds 
ratio could be calculated.   
Methods 
a: HPLC confirmed by hydrolysis 
b: OTA determination methods unknown 
c: HPLC confirmed using internal standard 

The calculated unadjusted odds ratios are summarized by study and health effect in Table 

2-4. The table includes the three studies used to calculate unadjusted ORs organized by location.  

Information on each disease assessed, the proportion of subjects with each disease who had 

detectable urinary OTA, the levels (mean and range) of measured urinary OTA, and unadjusted 

odds ratio with 95% confidence interval are included in the table.  The highest level of measured 

urinary OTA was in nephritic syndrome patients in Egypt, followed by patients being treated for 

ESRD in Egypt.  Patients mean levels of urinary OTA were 3.09±3.4 ng/ml and 1.85±2.8 ng/ml 

respectively.  Unadjusted ORs ranged from 0.88-10.79 for all adverse health endpoints.  While 

these ORs were unadjusted, demographics including age, sex, socio-economic status, and other 

lifestyle factors, were similar across both cases and controls in each accepted study.   

Table 2-4 Continued 
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No statistically significant associations between OTA exposure and any human disease 

were found in the Bulgarian or Croatian study populations.  Only one adverse health effect, 

nephritic syndrome, was found to have a statistically significant association with OTA exposure, 

in the Egyptian study population (44).  The OR of OTA-related nephritic syndrome in this 

population was 10.79 (95% CI: 2.28-50.91). However, it is worth noting that the sample size of 

this particular study group was 15: relatively small.  Figure 2-2 summarizes ORs and 95% 

confidence intervals for each of the adverse health outcomes associated with OTA exposure as 

measured by urinary OTA in the three study populations.   

Urinary OTA levels obtained by Wafa et al. (89) were compared to those obtained by 

Gilbert et al. (118) and the urinary OTA studies summarized in Table 2-3.  Upon comparison, the 

levels of OTA found in urine in the Gilbert study ranged from non-detectable to 0.06 ng/ml: 

much lower than the 3.09 ng/ml mean urinary OTA level found in the nephritic syndrome 

patients in Wafa et al.(89).  Urinary OTA levels in humans from several different world regions, 

summarized in Table 2-3, range from <0.01-148 ng/ml. The extremely high end of this range 

comes from a study in Sierra Leone (72). When this study and the Egyptian study are excluded, 

the urinary OTA levels measured in different world regions ranges from non-detectable to 0.860 

ng/ml: much lower than the levels found in the study populations in Egypt and Sierra Leone.   
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Figure 2-2: Unadjusted odds ratios and 95% confidence intervals for various health endpoints of OTA 
exposure identified through a systematic review. 

2.1.6 Conclusions 

The review of the epidemiological data suggests that, with one exception, there appears 

to be limited statistically significant evidence for human health risks associated with OTA 

exposure.  The one statistically significant association concerns an increased risk of nephritic 
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syndrome at very high exposures to OTA, based on case-control studies assessing multiple 

potential adverse health effects in an Egyptian population (44).  However, the sample size of this 

studied population was very small, and the urinary OTA levels associated with nephritic 

syndrome were much higher than urinary OTA levels measured in multiple other world regions, 

with the exception of Sierra Leone. 

Nephritic syndrome, also known as glomerulonephritis, is a disorder of the glomeruli 

characterized by body tissue swelling (edema), high blood pressure, and the presence of red 

blood cells in the urine (168).  The cause of nephritic syndrome is multifactorial, and the term 

“nephritic syndrome” itself describes a condition with multiple symptoms.  As no other risk 

factors were controlled for in Wafa et al. (89), it is possible that OTA is not the only etiologic 

factor in all the cases of nephritic syndrome in this study population.  Moreover, the OTA 

exposures measured in Wafa et al. (89) were over three orders of magnitude higher than the 

highest exposures measured in Gilbert et al. (118) and the vast majority of other urinary 

biomarker studies.  Populations in which OTA exposures are extremely high (such as those 

studied in Egypt and Sierra Leone) may experience a significantly increased risk of nephritic 

syndrome. However, because this extremely high level of OTA exposure is not expected in most 

other parts of the world as evidenced by urinary OTA levels collected in multiple other world 

regions, the risk of OTA-related nephritic syndrome on a global scale is not expected to be 

significant. In relation to Health Canada’s recently proposed MLs in a variety of commodities, it 

appears that these regulations would not significantly improve human health due to limited 

evidence linking OTA exposure to adverse health effects in diverse populations. 

Finally, when looking a bladder cancer, an adverse health endpoint often associated with  

OTA exposure, both incidence and mortality rates remain relatively low compared to other 
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countries.  Bladder cancer incidence, for both sexes in Canada, sits at 6.8/100k, while mortality 

is much lower at 2.5/100k individuals (169).  This incidence rate is outside of the top fifty 

rankings worldwide and is third in the Americas.  Canada falls behind the US, which does not 

regulate OTA, and Uruguay, which has a very lenient regulation of 50 ng/g in rice, barley, beans, 

coffee and corn.  In relation to other incidence rates for cancers in Canada, bladder cancer is 

twelfth  on the list behind prostate, breast, colorectum, lung, corpus uteri, non-Hodgkin 

lumphoma, skin melanoma, thyroid, leukemia, kidney and ovarian cancers.   

Several limitations exist with our analysis of epidemiological studies on OTA.  The main 

limitation is lack of validated markers of exposure in human populations.  While multiple studies 

examined urinary and serum OTA levels in humans in different regions of the world, none of the 

studies for which odds ratios were calculated measured actual OTA exposure in the diet.  Ideally, 

the urinary OTA biomarker of exposure should be further studied to determine if it accurately 

measures internal dose of OTA and/or dietary exposure.  This may be done by investigating 

repeated associations of serum or urinary OTA with dietary intake, with reasonable statistical 

significance, in other populations worldwide.  Another limitation of our analysis concerns the 

small number of studies assessed, and the relatively small sample population sizes in these few 

case-control studies.  It was not feasible to conduct a meta-analysis of OTA-related health 

disease, because each study assessed measured a different health endpoint.  Finally, it was not 

possible to calculate adjusted odds ratios, because the studies did not provide sufficient data on 

potential confounders; instead, unadjusted odds ratios were calculated.   

For the purposes of establishing appropriate regulatory policies regarding human 

exposure to ochratoxin A, it is critical to gain a better understanding of OTA’s impacts on human 

health.  To improve our understanding of possible effects of OTA exposure on human health, 
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two types of further studies would be useful.  First, larger cohort or case-control studies in 

different parts of the world, which control for sociodemographic and other potential risk factors, 

are needed to better establish potential OTA-related human health effects.  Second, further 

duplicate-diet studies are needed to validate biomarkers of OTA exposure in humans. Ideally, 

these studies would be replicated in different parts of the world; and, similar to (56), would 

assess OTA intake and biomarker levels over at least one month to account for the long serum 

half-life and renal elimination of OTA. Such studies would allow for improved exposure 

assessment, as well as improved correlation with human diseases and conditions, to better inform 

human health risk assessment of OTA. 

2.2 ADDITIONAL RESEARCH REGARDING OCHRATOXIN A 

In addition to analyzing available human health data and evaluating adverse health effects 

associated with OTA exposure, one further project investigated the economic impacts of 

Canadian OTA regulations and the likelihood of individual’s exposure to OTA in Canada.  First, 

Drs. Felicia Wu and Kyra Naumoff-Shields estimated the potential economic impacts to 

implementing OTA standards in Canada using a combination of studies to estimate OTA levels 

in Canada and extrapolate the amount of crops which would be rejected under Health Canada’s 

proposed maximum limits.  Second, as part of this group project, my research involved 

estimating the amount of OTA that would need to be consumed in order to develop any adverse 

health effect in Canada.  A brief summary of the overall study along with the dietary 

consumption calculation are detailed below. 
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2.2.1 Potential Economic and Health Impacts of Ochratoxin A Standards 

 
Wu F, Bui-Klimke TR, Shields KN. “Potential Economic and Health Impacts of Ochratoxin A 

Standards.” (submitted for publication). 
 

2.2.1.1 Introduction 

As previously discussed, OTA has been shown to cause adverse renal effects in animal 

species; however, a risk assessment on human health effects showed only nephritic syndrome 

was associated with extremely high OTA exposures.  Until recently, most nations did not have 

regulations for OTA in food and beverages.  Implementation of regulations is likely to cause 

significant economic impacts which should be considered alongside potential health benefits. 

2.2.1.2 Methods 

The potential economic impacts to Canadian food producers was estimated using data 

from reported proportion of foodstuffs exceeding OTA MLs (90), and market data from farm 

cash receipts from Statistics Canada (170).  For nations exporting to Canada, it was assumed that 

the proportion of rejected commodities was the same as those that would be rejected within 

Canada.  This proportion data was used in combination with the Canadian Importer’s Database 

by Industry Canada (171) and the United States Department of Agriculture (USDA) Foreign 

Agricultural Service's Global Agricultural Trade System (GATS) Database (172) to estimate 

foreign economic losses.  Finally, the estimated level of OTA intake necessary to cause adverse 

health effects in humans was estimated using a combination of studies.  This includes the 

previous risk assessment on human health and OTA exposure (173), the duplicate diet study by 
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Gilbert et al. (118), and the estimated level of OTA in certain Canadian commodities (90).  This 

calculation was then compared to the actual per capita consumption for select commodities. 

2.2.1.3 Results  

Results indicate that if Health Canada’s proposed MLs are enforced, losses to Canadian 

food producers could exceed $260 million Canadian dollars (CD) annually based on the 

proportion of products expected to exceed the MLs (Table 2-5).  The greatest losses would occur 

to producers of wheat, oats and barley.  Also included in Table 3-1 is information regarding the 

mean level of OTA in selected commodities, percent of samples that would exceed proposed 

MLs and the total annual value of Canadian commodities in 2011.   

In the previous human health risk assessment on OTA, it was determined that only 

nephritic syndrome in an Egyptian population was significantly associated with OTA exposure 

(173).  The mean urinary level of OTA of these patients was 3.09 ng/ml (89).  Dietary OTA 

exposure corresponding to a urinary OTA level of 3.09 ng/ml was estimated using Gilbert et al.’s 

(118) duplicate diet study.  Based on linearizing the data from (118) and extrapolating to OTA 

exposures in (89), the amount of OTA consumed necessary to achieve a urinary OTA level of 

3.09 ng/ml and subsequently be at increased risk for developing nephritic syndrome is about 

25,749 ng OTA per day.  The risk that Canadians would ever reach these levels of OTA 

exposure is extremely small, regardless of the presence of absence of a ML. Even without an 

OTA ML established, a Canadian would need to consume over 29,000 g of wheat per day to 

achieve the exposures associated with nephritic syndrome in (89). However, the average 

Canadian adult was estimated to consume 53 g wheat per day (174). 
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2.2.1.4 Conclusion 

 Implementation of the proposed OTA MLs in Canada could cause economic losses to 

Canadian food producers in the hundreds of millions annually. The countervailing health 

benefits, however, of such OTA standards are unclear.  Unless OTA levels significantly increase 

in Canadian commodities, it is highly unlikely that Canadians would consume the necessary 

amounts of contaminated foods necessary to cause adverse health effects.  It is important that 

policymakers consider both the economic impacts and potential human health benefits when 

setting regulatory standards.   

Table 2-5: Potential economic losses for Canadian domestic market under implementation of Health Canada 
OTA MLs. 

Commodity 
Assessed 

Mean                   
(ng 

OTA/g)* 

% 
Samples > 

ML 

Total Annual Value 
of Canadian 

Commodities, 2011 
(CD)** 

Year 
Potential 

Economic Loss 
(CD) 

All wheat excl. 
durum 0.98 2% $4,300,081,000 2011 $86,001,620 

Durum wheat 1.05 6% $816,410,000 2011 $48,984,600 

Oats 2.24* 15% $524,241,000 2011 $78,636,150 

Barley 0.46 5% $631,073,000 2011 $31,553,650 

Ready-to-
serve breakfast 

cereal foods 
0.196 1% $1,197,437,000 2008 $11,974,370 

Other 
breakfast 

cereal foods, 
including 

infant cereal 

0.23 9% $37,411,000 2009 $3,366,990 

TOTAL     $260,517,380 

*Kuiper-Goodman et al. (90)  and **Statistics Canada(170). (2011 Farm cash receipts)  
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3.0  AFLATOXIN REGULATIONS AND GLOBAL PISTACHIO TRADE: 

 INSIGHTS FROM A SOCIAL NETWORK ANALYSIS 

Bui-Klimke TR, Guclu H, Kensler TW, Yuan J-M, Wu F. “Aflatoxin Regulations and Global 
Pistachio Trade: Insights from a Social Network Analysis.” (submitted for publication). 

3.1 ABSTRACT 

Aflatoxins, carcinogenic toxins produced by a variety of Aspergillus fungi, contaminate 

maize, peanuts, and tree nuts in many regions of the world.  Pistachios are the main contributor 

to human dietary aflatoxin exposure from tree nuts worldwide.  Over 120 countries have 

regulations for maximum allowable aflatoxin levels in food commodities.  We developed social 

network models to analyze the association between nations’ aflatoxin regulations and global 

trade patterns of pistachios from 1996-2010. The main pistachio producing countries are Iran and 

the United States (US), which together contribute to nearly 75% of the total global pistachio 

market. Over this time period, which saw changes in nations’ aflatoxin regulations in pistachios, 

global pistachio trade patterns changed; with the US increasingly exporting to countries with 

stricter aflatoxin standards. The US pistachio crop has had consistently lower levels of aflatoxin 

than the Iranian crop over this same time period. As similar trading patterns have also been 
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documented in maize, public health may be affected if countries without regulations, or with 

more relaxed regulations, continually import crops with higher aflatoxin levels.   

3.2 INTRODUCTION 

Aflatoxins are among the most potent naturally occurring liver carcinogens known, and 

contaminate a variety of food crops around the world.  With an estimated 5 billion people 

exposed to dietary aflatoxins and over 120 countries regulating aflatoxin in food as of 2003, this 

research investigated the role aflatoxin regulations play on impacting human health.  Aflatoxin 

regulations are in place to protect human health by decreasing dietary exposures to aflatoxin 

(137, 175).  Several of these regulations are summarized in Table 3-1.   

While many regulations on maximum allowable aflatoxin levels are put in place to 

protect human and animal health, they may also have substantial impacts on food trade activities 

around the world.  For example, imposing a harmonized worldwide standard of 20 nanograms of 

aflatoxin per gram of maize (ng/g) was estimated to result in annual losses of $92 million USD 

in global maize trade, compared to a standard of 4 ng/g, which would result in over $450 million 

USD in annual losses (176).  Because of the large number of countries that have regulations on 

allowable mycotoxin levels in imported foodstuffs, there has been recent interest in whether 

associations exist between regulations and trade.  Wu and Guclu (173, 175) recently examined 

aflatoxin regulations in a network of global maize trade and found nations tend to trade maize 

with other nations that have identical or very similar aflatoxin standards, even defying 

geographical distances to engage in such trade. 
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Table 3-1: Summary of aflatoxin regulations (total aflatoxins) for pistachios in select countries. 

Country 
Standard for total allowable 

aflatoxins in 1995(138) 
(ng/g) 

Standard for total allowable 
aflatoxins in 2003(137) 

(ng/g) 

USA 15 15 

Iran No Regulation 15 

European Union (EU) No Regulation 4 (Changed to 10 in 2009) 

Belgium No Regulation 4 (Changed to 10 in 2009) 

Canada 15 15 

Germany 4 4 (Changed to 10 in 2009) 

Hong Kong 15 15 

Japan 20* 20* 

Saudi Arabia No Regulations No regulations 

China No Regulations No Regulations 

Egypt No Regulations No Regulations 

The Netherlands 10* 4 (Changed to 10 in 2009) 

Russia 5 5 
*The standard in Japan and The Netherlands is based on a standard for AFB1 only.  AFB1 
represents about half of the sum of total aflatoxins (AF B1 + B2 + G1+ G2), thus, the standard was 
doubled. 
 

Aflatoxin contamination events in pistachios have commonly disrupted trade in the last 

two decades.  Most notably, in 1997, the European Union (EU) banned all pistachio imports 

from Iran due to aflatoxin levels between 11-400 ng/g.  In 2002, the UK called for a 

reinstatement of the 1997 ban on Iran pistachios due to aflatoxins contaminating over 10% of 

sampled consignments.  Most recently, in 2010, the US instituted a ban on all Iran pistachios. 

The global pistachio market is dominated by Iran and the United States; nearly 75% of the 

world’s pistachio exports come from Iran (47%) and the US (25%) (177).  However, there 

appears to be a difference in the crop quality between countries with Iran pistachios containing 

an average of 54 ng/g aflatoxin and majority of US pistachios containing average levels below 
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the EU standard of 10 ng/g (96).  The history of pistachio contamination with aflatoxin combined 

with the market domination by Iran and the US make it feasible for trade patterns to be analyzed 

over time to determine if associations exist between pistachio crop quality, exports and global 

trade.   

The goal of this paper is to examine the impact of aflatoxin regulations on trade patterns 

for pistachios worldwide.  Pistachios, like maize, are commonly infected by Aspergillus spp. and 

subsequently contaminated with aflatoxin.  Furthermore, pistachios are the main contributor to 

dietary aflatoxin exposure from tree nuts, accounting for 7-45% of total aflatoxin exposure from 

all sources (96).   

Using social network modeling tools (178), we tracked global trade patterns from the US 

and Iran each year between the years of 1996 and 2010, inclusive, to determine if aflatoxin 

regulations in the pistachio-importing nations worldwide appear to play a role in whether nations 

import primarily from the US or Iran, independent of other political factors.  Each model 

contains information about the volume of trade of pistachios as well as aflatoxin regulation data 

for each country.  Network modeling has provided a useful tool for other public health 

applications, including prediction models for disease transmission and control (179-181), 

prediction of obesity and smoking in social groups(182, 183), and modeling global maize trade 

(173, 175).   

We hypothesized, based upon an earlier study examining the impact of EU aflatoxin 

regulations on US pistachio and almond trade (175, 184), that the nations with the strictest 

standards would import from countries with the highest quality crop in order to reduce economic 

losses.  If this hypothesis holds true, public health is likely being negatively affected in many 

ways.  As shown in Wu & Guclu (175), countries with similar regulations trade more maize with 
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each other than countries with dissimilar regulations.  If this pattern also exists for pistachios on 

a global scale, it may also exist for a wide range of commodities.  Therefore, countries without 

regulations may be importing more contaminated commodities from other countries with lenient 

or no regulations, predisposing individuals in those nations to higher risk of adverse effects 

associated with food contaminant exposures. 

3.3 METHODS 

3.3.1 Social Network Modeling 

To determine market trends in pistachio trade, a social network model was created for 

every year from 1996 to 2010, inclusive.  Each model depicts the amount of pistachios exported 

from the US and Iran to each importing nation worldwide.  Each nation is represented as an 

individual node or “actor” in the network models, connected to other nations by lines (edges) if 

these two nations traded pistachios (one nation exporting to the other).  In these specialized 

directed social network models - one for each year from 1996-2010 - the US and Iran are the two 

central nodes exporting pistachio to other countries, and the amounts of pistachio exports are 

represented by the thickness of the line in the network representations.  The nodes on the 

boundary of the graphical network representations signify the countries, which are importing 

pistachios from either the US or Iran or both (Figure 3-1 through 3-5).   

The nodes representing the pistachio-importing nations are color-coded according to the 

strictness of their aflatoxin regulations; i.e., maximum tolerable level of total aflatoxins 
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(aflatoxin B1+B2+G1+G2) in pistachios.  As aflatoxin regulations and the amount of exports 

changed over the years, the colors of nodes and line thickness also changed.   

The network analysis software Pajek™ (185) and igraph library (186) was used to create 

the 15 yearly network models.  Pistachio export data was compiled using the USDA Foreign 

Agricultural Service Global Agricultural Trade System (FAS GATS - 

http://www.fas.usda.gov/gats/default.aspx) and the Iran Pistachio Association (IPA - 

http://www.iranpistachio.org/). Data on the number of pistachio consignment rejections in the 

EU was compiled using the EUROPA - Rapid Alert System for Food and Feed (RASFF) - 

(http://ec.europa.eu/food/food/rapidalert/index_en.htm). 

The models were analyzed longitudinally to determine the main importers from the US 

and Iran; as well as to determine the association, if any, between aflatoxin standards and 

pistachio trade patterns over the years.  The total amount of pistachios exported from the US and 

Iran was compared year by year to determine the major pistachio exporter in each model.  

Additionally, the amount of pistachios and aflatoxin regulatory level was compared between 

years to determine trends in exports.  The amounts of pistachio exports from the US and Iran to 

countries which had changes in aflatoxin tree nut regulations were analyzed to determine if 

countries with strict standards imported from Iran or the US, or if there were no differences.  

Likewise, this analysis was done for pistachio-importing nations with relaxed or no aflatoxin 

standards on pistachios.     

3.3.2 Crop Quality Assessment 

The relative levels of aflatoxin contamination in the US and Iranian pistachio crops were 

compared in two ways.  First, governmental reports, peer-reviewed publications, and online 
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agricultural databases were searched for information regarding aflatoxin levels in US and Iranian 

pistachios.  Next, the RASFF database was used to determine the number of rejected 

consignments being exported from the US and Iran to the EU.  The number of rejected 

consignments from each country was graphed along with the amount of pistachios imported from 

the US and Iran.  As the RASFF database also reports contamination levels measured in rejected 

food lots, it was possible to calculate average aflatoxin levels in rejected pistachio consignments 

entering the EU from both the US and Iran. 

3.3.3 Market Segregation Analysis 

We analyzed market segregation due to competition between USA and Iran in two ways.  

First, the United States’ export share over that of Iran was calculated for the top ten pistachio 

importers worldwide. The proportion of the US exports was graphed for each of the top ten 

countries for each year, using the equation: 

  , 

where nUSA represents the amount of pistachios exported from the US to a particular country, 

nIran represents the amount of pistachios exported from Iran to the same country, and   

represents an average over the top ten importers. To calculate the US’s export share over that of 

Iran, the amount of pistachios exported from the US to each of the top ten countries was divided 

by the total amount exported to each country from the US and Iran.   A proportion of 1 signifies 

that 100% of pistachios imported to a particular country came from the US, whereas a proportion 

closer to 0 signifies that the majority of pistachios were imported from Iran.  
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Second, in order to take into account each importing country’s aflatoxin standard, the 

weighted average for each country’s imports was assessed longitudinally.  The inverse of each 

country’s standard (a measure of strictness of the aflatoxin standard) was multiplied by the 

amount of pistachios imported to obtain a strictness-weighted amount.  The inverse of each 

standard was used so that a stricter standard was associated with a higher score, while nations 

with no aflatoxin standards for pistachios were given a strictness score of zero.  This analysis 

was used to determine if the US or Iran traded with more countries with stricter aflatoxin 

standards.  Because the US dataset contained more countries than Iran, the datasets were 

matched, each containing the same 41 pistachio importing countries.  The following equation 

was used: 

 

where AflaStd represents the aflatoxin standard of the importing country, ncountry represents the 

amount of pistachios imported from the US or Iran, and ntotal represents the total amount of 

pistachios exported from both the US and Iran that year. 

Finally, to serve as a control in order to determine if segregation was a result of aflatoxin 

regulations or of political factors unrelated to aflatoxin, we conducted the same analyses using 

grape exports.  Grapes, which are not commonly contaminated by aflatoxin, are not subject to 

aflatoxin regulations.  It was assumed that any sanctions placed on Iran would be followed by all 

UN nations.  Greece is a member of the UN.  Therefore, Iran’s grape exports were compared to 

Greece’s grape exports (a country with similar amounts of exports) to a variety of countries.  

Any difference in grape trading patterns between Greece and Iran with other countries could 
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infer the impact of sanctions – or any type of non-aflatoxin-related barriers – on Iran’s exporting 

business activities. 
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Figure 3-1: Social network model for 1996. 

1996 serves as an initial time point for our dataset. 

 

53 



 

Figure 3-2: Social network model for 1997. 

1997 shows a year when a notable aflatoxin outbreak occurred in Iran pistachios. 
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Figure 3-3: Social network model for 2004. 

2004 shows the year after the EU implemented a 4 ng/g aflatoxin standard in tree nuts. 
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Figure 3-4: Social network model for 2008. 

2008 shows the first year the US produced more pistachios than Iran and the final year before the EU relaxed the aflatoxin regulation to 10 ng/g. 
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Figure 3-5: Social network model for 2010. 

2010 shows the recent trends in pistachio trade.  Also, in 2009, the EU relaxed its tree nut aflatoxin standard to10 ng/g.  
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3.4 RESULTS 

Figures 3-1 through 3-5 shows five of the fifteen network models created of pistachio 

exports from the US and Iran to various nations worldwide. In 1996 (Figure 3-1), Iran was the 

major exporter of pistachios to all countries, with over 120,000 tons of pistachios exported; 

compared to only 22,000 tons for the US.  The EU-15 was the major importer of pistachios in 

1996 with 89,000 tons imported; 96% of which came from Iran.  The US’ largest exports went to 

Hong Kong, the EU and Canada; the three countries made up 65% of the United States’ exports.  

As for Iran, 68% of pistachio exports went to the EU while 13% went to the United Arab 

Emirates (UAE).   

In 1996, 71 out of 113 pistachio-importing countries did not have aflatoxin regulations 

for pistachios.  Three of the top 5 importers from Iran did not have aflatoxin regulations; this 

included the EU, which did not have a blanket regulation for all member countries.  Hong Kong 

and Canada, the US’ major pistachio importers, each regulated aflatoxin at 15 ng/g (138).  

Thirteen countries had strict regulations ranging from 1-5 ng/g, fourteen had moderate 

regulations of 10-15 ng/g, and thirteen had the least strict regulations at 20-34 ng/g (138).  Most 

importantly, no aflatoxin regulation existed for Iran in 1995, while the US regulated total 

aflatoxins at 15 ng/g (138).  This did not change until 2003 when Iran began to regulate total 

aflatoxins in pistachios at 15 ng/g (138). 

Due to high levels of aflatoxin contamination in Iranian pistachios in 1997, Iran’s 

pistachio exports in that year (Figure 3-2) decreased by 46%, whereas the US increased total 

pistachio exports by 17%.  Globally, Iran remained the major exporter of pistachios over the US; 
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however, the EU imported only 23% of its crop from Iran in 1997, compared with 96% the year 

before.  Yet Iran’s major importer in 1997 remained the EU (30% of total Iranian exports), while 

the UAE imported 28% of Iran’s total crop.  The US continued to export the majority of its 

pistachios to Hong Kong (34%), the EU (33%) and Canada (7%).  No major changes in aflatoxin 

regulations occurred between 1996 and 1997. 

Between the years 1998 and 2003, Iran remained the top exporter of pistachios globally 

and to the EU.  In the year following the 1997 aflatoxin outbreak, the EU nearly quadrupled its 

pistachio imports from Iran while also increasing imports from the US.  Over the next four years, 

Iran’s major importers remained the EU, UAE, and Hong Kong.  For the US, Japan, Hong Kong, 

and the EU were the major importers with Mexico importing increasing amounts of pistachios 

starting in 2000.   

Over this time, regulations also began to change.  By 2003, the EU had imposed a 

harmonized aflatoxin standard in tree nuts, including pistachios, of 4 ng/g.  This regulation went 

into place for all EU member states, as well as the candidate member states in 2003.    

Regardless of the aflatoxin regulation in the EU, Iran has remained the top producer and exporter 

of pistachios globally for most of the years since 1996.  In 2003, the total Iranian export amount 

topped 160,000 tons with over 70% exported to the EU (21%), UAE (36%), and Hong Kong 

(13%).  Just over 35,000 tons of pistachios were exported from the US in 2003, the second 

highest total to date.  The EU imported 65% of the US’ pistachio crop, while Hong Kong only 

imported 2%, choosing Iran as their main supplier.  Japan and Canada remained main importers 

of US crops and China increased its imports from 29 tons in 1996 to over 3100 tons in 2003.   

Figure 3-3 shows 2004 exports from Iran and the US a year after the significant changes 

were made for aflatoxin standards in the EU.  From 2003 to 2004, Iran total exports dropped 

59 



30%, while the US increased exports about 36%.  Shortly after the EU aflatoxin regulations 

came into place, there was a significant decrease in Iranian pistachio exports to the EU and UAE; 

however, there were substantial increases in Iranian exports to Russia, Iraq and Hong Kong.  

Canada and Japan remained major importers of US pistachios in 2004, but were joined by the 

UK and UAE.   

From 2004 to 2008 (Figure 3-4), major changes occurred in pistachio trade with little or 

no changes occurring in pistachio regulations.  For the first time, the US was the major exporter 

of pistachios with exports reaching over 120,000 tons, almost 40,000 more than Iran.  The EU 

imported nearly 60,000 tons of pistachios from the US, compared to only 13,500 from Iran.  The 

top 5 importers of US pistachios in 2008 were the EU, China, Hong Kong, Mexico and Canada.  

China and Mexico have no aflatoxin regulations; however, Hong Kong and Canada regulate 

aflatoxin at 15 ng/g and the EU at 4 ng/g.   

In 2009, the EU revised the aflatoxin standard in tree nuts to a more relaxed standard of 

10 ng/g.  Results of this change are shown in Figure 3-5.  As of 2010, Iran has regained the lead 

in global pistachio exports over the US, with over 160,000 tons exported.  Their major importers 

were Hong Kong (38%), the EU (11%), and the UAE (10%).  While the EU was a top importer 

of Iranian pistachios, the amount of pistachios imported from the US was nearly triple this 

amount.  Major importers of US crops, other than the EU (43%), included Mexico (3%), Japan 

(3%), China (6%) and Canada (7%).    

Overall, these network models and the associated analyses show that the US and Iran 

have exported to different markets over the past 15 years.  Notable changes in trade occurred 

after the EU instituted stricter aflatoxin standards.  The US is trading more with countries with 
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stricter standards; however, Iran has kept total exports up by exporting to countries with less 

strict regulations. 

Figure 3-6 summarizes the amount of pistachios produced and exported by the US and 

Iran over the past 15 years.  Over this time, Iran has remained the top producer and exporter of 

pistachios; however, US pistachio production and exports are slowly trending upwards.  Iran had 

noticeable drops in both production and exports in the years 1997-1998 and 2000, largely due to 

excessively high aflatoxin levels.  Over this same time period, the US has continued to increase 

pistachio exports such that it now roughly matches Iranian pistachio exports, although overall, 

US production is still much lower.   

To determine the relative quality of Iranian and US pistachios in terms of aflatoxin levels, 

the number of RASFF rejections for aflatoxins exceeding the EU regulation was calculated 

between 1997 and 2010.  No data prior to 1997 were available.  The number of RASFF pistachio 

consignment rejections in the EU were graphed alongside the amount of pistachios imported 

from the US and Iran in Figure 3-7.  The amount of pistachios exported from the US to the EU is 

slowly on the rise, whereas EU imports from Iran have been decreasing.  The number of 

rejections of Iranian pistachios peaked in 2003 with 489 and was followed closely in 2004 with 

485.  US rejections peaked at 32 in 2009, but have remained under 20 per year for 11 out of the 

14 years sampled.  Even with Iran instituting a 15 ng/g maximum allowable aflatoxin regulation 

in 2003, the number and proportion of consignments rejected for excessively high aflatoxins has 

remained higher than those from the US.  Between 2003 and 2005 inclusive, Iran and the US 

exported similar amounts of pistachios to the EU; yet the number of rejections over the three-

year span for excessively high aflatoxin levels was 477 for Iran vs. 9 for the US.  As of 2010, the 

number of Iranian pistachio consignment rejections remained higher than the US, though Iran 
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exported 35,000 fewer tons than the US to the EU. It appears as though the US crop has 

remained a more viable option because of lower aflatoxin levels, and the EU has increasingly 

accepted pistachios from the US.  

A 2007 report by the Joint FAO/WHO Expert Committee on Food Additives (JECFA) 

(96) obtained 1849 pistachio samples from Iran to be tested for aflatoxin.  The mean level of 

aflatoxin detected in these samples was 54 ng/g.  As of 2007, aflatoxin regulatory limits for 

pistachios ranged from 4 ng/g to 35 ng/g around the world.  JECFA estimates that the proportion 

of rejected pistachio consignment samples from Iran would range from 40% in countries with 

MLs at 20 ng/g, to 60% in countries, like those in the EU, with MLs at 4 ng/g.  The high mean 

level of aflatoxin reported by JECFA was likely caused by several samples containing extremely 

high levels of aflatoxins. 

No reports or publications were found in the publicly available literature that estimated 

aflatoxin levels in pistachios produced in the United States.  However, the EU RASFF database 

has reported aflatoxin levels in rejected consignments since 2003; from which it is possible to 

infer relative pistachio quality from exporters to the EU, including the US.  The mean level of 

aflatoxin reported in rejected consignments sent from the US to the EU between 2003 and 2011 

was found to be 24 ng/g, whereas the mean rejected level in Iranian pistachios was 63 ng/g.  The 

mean total aflatoxin level of US to EU rejected crops is less than half of the Iranian crops. 
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Figure 3-6: Iranian and US pistachio production and exports between 1995 and 2010. 

 

Figure 3-7: EU-specific exports from the US and Iran and number of pistachio consignment rejections. 

Figure 3-8 demonstrates the market segregation of global pistachio trade, with nations 

with stricter aflatoxin standards importing primarily from the US, and nations with more relaxed 

or nonexistent aflatoxin standards importing primarily from Iran.  There appeared to be little or 

no market segregation in the mid to late 1990s, with most countries importing equally from Iran 
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and the US.  Russia and Germany appeared to import the majority of its pistachios from Iran 

over the past 15 years, whereas Canada and Belgium imported mainly from the US.  In 2003, 

when the EU set its most stringent limit for aflatoxins in pistachios, the market began to 

segregate with the Netherlands, Belgium, Canada, China, and Japan importing 70% or more of 

its crop from the US, while Russia, Egypt, UAE, Hong Kong and Germany imported primarily 

from Iran.  When comparing the number of rejections by the EU (Figure 3-7), the market 

appeared to respond accordingly by segregating, with more strict countries importing from the 

US and more lenient countries importing from Iran.  Among these top ten pistachio-importing 

countries, China is the only country to which the US exports without an aflatoxin regulation.  

The remaining four countries import primarily or exclusively from the US have aflatoxin 

regulations at 15 ng/g or stricter.  On the other hand, Iran exports to Egypt and the UAE, which 

have no regulations, to Hong Kong which has a regulation on aflatoxin at 15 ng/g, Russia at 10 

ng/g, and Germany at 4 ng/g.  Figure 3-9 summarizes grape export data used as a control, to 

bolster the hypothesis that the pistachio market segregation occurred based upon aflatoxin 

standards rather than other policy factors, including political ones.  Unlike the pistachio data 

where a split in the markets was apparent around 2003, no obvious segregation of markets 

between Iran and Greece was seen in the same year.  It appeared that only a few countries import 

only from one country, while most countries imported grapes at varying levels from each country 

over the 15-year period. Grapes, unlike pistachios, are not subject to aflatoxin regulations. 
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Figure 3-8: Market segregation for the top ten global importers of pistachios, as a function of the ratio of total 
US exports to total exports from both Iran and the US. 

 

 

Figure 3-9: Lack of market segregation for grape exports from Iran and Greece. 
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As a final assessment to determine if differences between pistachio-trade patterns of US 

and Iran exist when the amount of pistachio exports to each country was weighted with the 

importing nations’ aflatoxin standards (Figure 3-10).  There appeared to be no difference in 

exports until 2003, when the markets began segregating with the US exporting to countries with 

stricter aflatoxin standards.  Iran, continuing to export a larger pistachio crop, was exporting to 

countries with less strict regulations.  After 2009, when the EU relaxed its tree nut standard to 10 

ng/g, the market segregation began to diminish, although the US is still the EU’s main pistachio 

source. 

 

 

 

Figure 3-10: Market segregation taking into account the importing countries aflatoxin standard. 
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3.5 DISCUSSION 

The time-series network modeling analyses conducted in this study suggest that the 

global pistachio market is segregated based on aflatoxin regulations worldwide, with the top 

exporters, the United States and Iran, exporting to nations with strict standards and relaxed/non-

existent standards, respectively.  Iran once dominated the global pistachio market; however, in 

recent years, the US has increased its pistachio exports substantially.  Since 2003, the US has 

been exporting the majority of it pistachios to countries with stricter aflatoxin standards than 

Iran.  Regardless of the amount produced and viability of the crop, Iran continues to trade with 

countries with relaxed regulation levels, or no aflatoxin regulations at all.   

Since the implementation of the European Union’s RASFF system for tracking 

consignment rejections due to aflatoxin, rejections by the EU of Iranian pistachios have greatly 

exceeded those of US pistachios.  Between 2003 and 2005, the US and Iran exported similar 

amounts of pistachios to the EU, but the number of rejected consignments for excessively high 

aflatoxin in pistachios was substantially higher for Iran than for the US (477 vs. 9).  After 2005, 

Iran pistachio rejections by the EU decreased, but this is likely due to the decrease in the total 

amount of Iranian exports to the EU, while US to EU exports were increasing.   

Clear evidence of market segregation based on aflatoxin regulations started in about 

2003.  Prior to 2003, the main pistachio-importing countries varied their pistachio imports 

between the US and Iran. However, as aflatoxin regulations became stricter in certain nations 

worldwide, the US became the major exporter to countries with strict standards.   

Political factors were considered when analyzing results.  Since 2006, the United Nations 

(UN) has imposed multiple sanctions on Iran (187).  In total, six different UN sanctions occurred 

between 2006 and 2010.  Investigating each sanction, no sanctions were placed on food or feed 
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trade between Iran and members of the UN.  The sanctions focused on embargoes on arms and 

assets, which would likely have little or no impact to the global trade of pistachios (187). Indeed, 

the grape market (of which Iran is a key exporter) shows no evidence of segregation based on 

different nations. It is used as a control in this study to demonstrate the potential role of the 

aflatoxin regulations in contributing to the market segregation seen in global pistachio trade. 

Due to segregation in the global market, not only for pistachios but also for maize and 

other aflatoxin-contaminated commodities (175) many economic and health issues may arise 

(184). First, strict aflatoxin standards mean that less developed nations will export their best 

crops to avoid economic losses, but in turn be subject so consuming the highest contaminated 

crops themselves. Second, due to varying aflatoxin regulations in each country, even the best 

crops may be rejected resulting in large economic losses. Third, even if a rejected consignment 

can be returned to the country attempting to export, the cost of demurrage fees is substantial, and 

vulnerable populations may be exposed to higher levels of aflatoxin, resulting in adverse health 

effects.  In many cases, it is low-income importing nations that have more relaxed or non-

existent aflatoxin regulations, predisposing populations who are already at risk of various health 

effects from inadequate diets to higher levels of risk. 

In summary, social network models show that pistachio trade patterns have changed 

globally over the past 15 years, with aflatoxin regulations likely playing a key role in the 

changing patterns of trade.  Iran once dominated the global market individually, but now must 

compete with the US to be the world’s top exporter of the crop.  Aflatoxin regulations play a part 

in organizing the global trade of the crop, with the US exporting to countries with stricter 

aflatoxin standards.  Whether it is to protect human health or reduce economic losses, countries 
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are increasingly importing pistachios from the US, especially those countries with strict 

maximum levels. 
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4.0  AFLATOXIN REGULATIONS OR MAIZE TRADE PATTERNS: 

WHICH CAME FIRST? A “CHICKEN-OR-EGG” INVESTIGATION 

4.1 RESEARCH OVERVIEW 

Previous research on global maize trade has shown that countries with similar regulations 

tend to trade more maize with each other than countries with dissimilar regulations (175).  Three 

main maize trading clusters exist.  The US is the center of one cluster and the countries which 

make up the EU represent another major maize trading group.  The third cluster, which exports 

maize all over the world, is made up of Argentina, Brazil and China (175).  In most 

circumstances, the top maize trading pairs have total aflatoxin regulations varying no more than 

5 ng/g (175). 

While it has been shown that nations tend to cluster into maize trading communities that 

share aflatoxin regulations, no causality has been elucidated.  The goal of this project was to 

build upon the results of Wu and Guclu (175) to determine if maize trading patterns influenced 

aflatoxin regulations, or vice versa.  Using a variety of annual maize trade data combined with 

each countries aflatoxin regulation and maize production, attempts were made to shed light on 

this “chicken-or-egg” scenario. 
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4.2 METHODS 

4.2.1 Data Collection 

Maize trade data were collected from the United Nations Commodity Trade Statistics 

Database (UN Comtrade, comtrade.un.org) between 1991 and 2010.  Data included the amount 

of maize traded (in tons) for every import-export pair around the world.  The mean maize trade 

was used in cases where countries reported imports differed from their exporting countries 

reported exports.  For example, if Country A reported importing 100,000 tons from Country B, 

but Country B reported exporting 125,000 to Country A; the mean of the two values was used for 

analysis.   

Aflatoxin regulation data was collected from both the FAO 1995(138) and FAO 

2003(137) mycotoxin reports.  Relevant databases were searched for any reports of aflatoxin 

regulations occurring (or changing) before or after the FAO reports were published. 

 

4.2.2 Data Analysis  

The top twenty maize trading partners, identified in Wu & Guclu (175), were graphed 

longitudinally along with aflatoxin regulation data.  Changes in trade were examined specifically 

before and after maize trade regulations changed.  This change could have occurred to the maize 

importer, exporter, or both.  This preliminary analysis would indicate whether maize trade 

guided aflatoxin regulations or if countries became partners after regulations became more 

similar. 
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Further analyses focused on maize trade from the top ten exporters over the past 20 years.  

The amount of maize traded and aflatoxin regulations for the top ten exporters was compared 

with the top ten importers from each country, as well as ten “middle” importers. A middle 

importer was defined by sorting all of the importing countries from one major exporter from 

largest to smallest and taking the median ten countries.  It was assumed that the top importers 

would have more similar regulations than the middle countries compared to the exporting 

country.  The number of countries matching an exporter’s aflatoxin regulation was compared 

with the number of countries which had more lenient, stricter, or no regulations.  This 

comparison was broken up into two time periods, 1991-2002 and 2003-2010 based on the 

number of countries which changed aflatoxin regulations in 2003.  

Other metrics calculated comparing top exporters to top and middle importers included: 

1) Comparing the average of the inverse aflatoxin standards between top and middle 

importers and between 1991-2002 and 2003-2010 groups to the inverse 

aflatoxin standard of the exporter.  This was calculated using the following 

formula for each of the ten exporting countries considered:  

,  

where AflaStd represents the aflatoxin regulation level for each of the ten top or 

middle importers and k represents the number of years sampled in each time 

period (12 in the case of 1991-2002; 9 in the case of 2003-2011).   

 

2) Calculating the differences in weighted averages using the inverse aflatoxin 

standards and amount of maize exported for each group of countries. 
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,  

where s represents the inverse of an aflatoxin standard, si
k represents the strictness 

of top or middle importing country in year k, se
k represents the strictness of 

exporting country in year k, mk
i,j

 represents the amount of maize traded from 

country i to j in year k.   

 

3) Calculating a weighted average inverse using the absolute value of the average 

difference in aflatoxin standards.  This used the same formula as the weighted 

inverse calculation; however, the absolute value of the inverse aflatoxin 

standards was used.  This calculation was used to remove the negative weight 

associated with some regulation changes between importer and exporter.  For 

example, if Country A had a regulation of 10, Country B had a regulation of 5, 

and Country C had a regulation of 15; the difference of A and B is 5 and the 

difference of B and C is -5.  Since the comparison is just looking at the 

difference between importer and exporter, the absolute difference should be 

considered and a negative weight should be avoided.   

 

In all cases, values near 0 mean there is less difference between exporter and importer.  

Trends were examined to determine if regulations guided trade to trade guided regulations by 

comparing across time periods (1991-2002 vs. 2003-2010) and between top and middle 
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importers.  Each formula was used for each of the major exporting countries, however, each 

country’s top importers varied.   

4.3 RESULTS 

While many trading pairs increased the amount of maize traded over the past 20 years, no 

noticeable changes occurred after aflatoxin regulations changed or came into place.  As of 1991, 

all of the top twenty exporters had aflatoxin regulations in place and 14/20 importers had 

aflatoxin regulations.  In 2003, all exporting and importing countries had aflatoxin standards.  

There appeared to be no increases or decrease in maize trade depending on whether countries did 

or did not have aflatoxin regulations.  For example, Figure 4-1 shows the amount of maize traded 

from the USA to Mexico from 1990-2011.  The US regulated aflatoxin in maize at 20 ng/g 

during this time period, however Mexico did not regulate aflatoxin in maize until 1996 when a 

regulation was set at 20 ng/g (arrow).  No changes in maize trade are apparent before or after 

regulations were put into place.  Algeria (Figure 4-2) instituted a regulation of 20 ng/g in 2004, 

however, even though it matched the US’ standard, showed decreasing imports from the US. 

 The top ten maize exporting countries over the past 20 years are Argentina, Brazil, China, 

France, Hungary, India, Paraguay, South Africa, Ukraine, and the United States.  Table 4-1 

summarizes the number of top and middle importers which have aflatoxin regulations matching 

the exporting nation for the two main time periods analyzed.  The top importers have more 

matching countries compared to the middle importers and the amount of countries matching 

regulations increases between 1991-2002 and 2003-2011 for both top and middle importers.  A 

similar opposite trend for countries without regulations. 100 countries were considered in each 
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time period since the analysis took into account ten importers from each of the ten major 

exporters. 

 

 

Figure 4-1: USA-Mexico maize trading relationship from 1991-2011. 

 

 

Figure 4-2: USA-Algeria maize trading relationship from 1991-2011. 
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Table 4-1: Number of Countries Matching Aflatoxin Regulations with the Top Ten Maize Exporting 
Countries. 

Top Ten Importers From Major Exporters 
 Matched No Regs Strict Lenient 

1991-2002 18 44 26 12 
2003-2011 44 20 22 14 

     
Middle Ten Importers From Major Exporters 

 Matched No Regs Strict Lenient 
1991-2002 6 53 31 10 
2003-2011 16 32 38 14 

 

Table 4-2 summarizes the average inverse difference, weighted average inverse 

difference, and absolute weighted inverse difference calculations.  For each metric, values closer 

to 0 represent standards that are less different than the exporter’s standard; both larger positive 

and negative numbers represent average difference in regulations comparing top and middle 

importers to major exporters.  Average inverse of importers showed regulations in the top ten 

importers were closer to the exporter country’s standard in 2003-2011 than 1991-2002.  Also, 

comparing between top and middle importers, 6/10 top importers were closer in 2003-2011 

compared to 1991-2002, while only 3/10 were closer for middle importers between the time 

periods.  For most importing countries, the average inverse difference was smaller in 2003-2011 

than in 1991-2002, potentially indicating regulations were more similar for top importers that 

had established trading patterns. 

When weighting the average inverse difference with the amount of maize exported by 

each country the differences are less apparent.   Half of the top ten exporters showed weighted 

average inverse differences closer to 0 in 2003-2011 than in 1991-2002.  Only two exporters to 

middle importing countries indicated smaller differences between the time periods.  The top 
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importers did have increased number of countries which changed regulations between the time 

periods; however, the number of countries that did show improved change remained at five. 

Similar results exist for the absolute average difference calculations.  In the 1991-2002 

time period, 9/10 of exporting countries have values closer to 0, indicating regulations closer to 

their top importers.  However, when comparing between time periods, only four exporting 

countries had more similar regulations to their top importers.   

4.4 CONCLUSIONS 

 

Conflicting results are present when attempts were made to determine causality in maize 

trade and aflatoxin regulations; i.e., which came first, the trading partnerships or the aflatoxin 

regulations?  When examining the amount of maize traded between the top twenty maize trading 

pairs longitudinally along with aflatoxin regulations of each country, there did not appear to be 

any consistent trends.  No significant changes in maize trade occurred before or after aflatoxin 

regulations became more similar or different.  In some trading pairs, one country adopted a more 

similar regulation to its partnering country, which may be indicative that maize trade guided 

regulations.  However, in some cases, after countries aflatoxin regulations became more similar 

the amount of trade decreased or showed varying patterns of increased and decreased trade.  In 

other cases, pairs without similar regulations maintained high maize trade levels over the past 20 

years. 

The most compelling evidence that maize trade may have guided the implementation of 

aflatoxin regulations comes from comparing the inverse standard of the exporting country to the 
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average regulations of the top ten and middle ten importers from 1991-2002 and 2003-present.  

Since many countries, including the European Union, adopted aflatoxin regulations in 2003 it 

was assumed trading patterns may have changed after their implementation.  The average inverse 

regulations of the top importers were more similar to their respective major importer than the 

middle importers.  Also, the average inverses were more similar for the top importers in 2003-

2011 than in 1991-2002.  Both indicate that once trading partnerships were established the 

aflatoxin regulations became more similar.  This pattern was also evident in Table 4-1 comparing 

the number of exporting countries which had top importers with more matching aflatoxin 

regulations compared with middle importers. 

Weighting the difference of aflatoxin regulations between exporters and top/middle 

importers did not show the same correlation.  Mixed results using both the weighted difference 

and absolute value of the difference did not indicate that countries with established trading 

patterns assumed more similar regulations when compared between time periods or between top 

and middle importers.  Overall, conflicting data did not provide enough evidence to determine 

causality as to which occurred first: aflatoxin regulations or trading patterns.   

Various limitations existed in the data.  The primary issue was a lack of maize trade data 

prior to 1991.  Many aflatoxin regulations came into place prior to 1991 and without maize trade 

during periods both before and after regulations it was difficult to determine which came first: 

regulations or trade.  Ideally, analysis would have included a time period analyzing major 

importers from particular countries before regulations were put into place and a time period 

between the same countries after regulations were implemented.  Also, a lack of validated 

metrics analyzing differences in regulations was a limitation.   
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Future analyses investigating causality into how aflatoxin regulations impact maize trade, 

or vice versa, should focus on commodities recently regulated for aflatoxin.  Any commodity 

which has been recently regulated would likely have databases documenting trade before and 

after the regulation was put into place.  Social network analysis could be used to compare 

country trade patterns and clustering, while metrics comparing the similarity of trading partners 

could be compared to countries trading smaller amounts of the same commodity.  
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Table 4-2: Summary of metrics comparing aflatoxin regulations between 1991-2002 and 2003-2011 and between top and middle maize importers. 

 

  Top 10 Importers Middle 10 Importers 

Exporting 
Country 

Inverse 
Exporter 

Regulation 

Avg Inverse 
of Importers 

Weighted 
Inverse 

Difference 

|Weighted 
Inv| 

Difference 

Avg Inverse 
Difference 

Weighted 
Inverse 

Difference 

|Weighted 
Inv| 

Difference 

1991-2002 

USA 0.05 0.026 0.013 0.013 0.07 -0.025 0.08 
Argentina 0.05 0.036 0.007 0.03 NA 0.005 0.046 

Brazil 0.033 0.035 -0.014 0.023 0.087 0.023 0.038 
China 0.025 0.0069 0.0062 0.022 0.062 -0.007 0.017 
France 0.05 0.086 -0.041 0.075 0.04 -0.004 0.09 

Hungary 0.1 0.083 0.04 0.065 0.081 0.071 0.08 
India 0.0166 0.014 0.0025 0.014 0.04 -0.036 0.037 

Paraguay NA 0.062 -0.005 0.038 0.059 -0.045 0.045 
South Africa 0.1 0.03 0.058 0.059 0.083 0.04 0.099 

Ukraine 0.1 0.0467 0.058 0.067 0.078 0.058 0.12 
        

2003-2011 

USA 0.05 0.04 -0.0003 0.0016 0.08 -0.09 0.12 
Argentina 0.05 0.07 -0.022 0.05 0.072 -0.017 0.067 

Brazil 0.05 0.1 -0.046 0.065 0.087 -0.038 0.062 
China 0.025 0.038 -0.024 0.025 0.12 -0.009 0.009 
France 0.25 0.23 0.00000029 0.000000029 0.105 0.075 0.075 

Hungary 0.25 0.235 0.0009 0.0009 0.135 0.081 0.08 
India 0.033 0.026 -0.0026 0.029 0.122 -0.23 0.229 

Paraguay 0.05 0.115 0.019 0.014 0.125 -0.049 0.055 
South Africa 0.1 0.058 0.045 0.048 0.103 0.007 0.085 

Ukraine 0.1 0.095 -0.006 0.068 0.141 -0.042 0.12 
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5.0  FINAL CONCLUSIONS AND PUBLIC HEALTH SIGNIFCANCE 

The overall goal of this research was to investigate the impacts of mycotoxin regulations 

on human health and trade, specifically focusing on aflatoxin and OTA.   

A systematic review of epidemiologic literature associating OTA exposure with adverse 

health effects in humans revealed limited statistically significant associations.  The one 

significant association concerns an increased risk of nephritic syndrome at very high exposures 

to OTA; however, the sample size of this population was small and the urinary OTA levels 

measured were much higher than in multiple other studies.  Furthermore, the cause of nephritic 

syndrome is multifactorial, and it is possible that OTA was not the only etiologic factor in the 

disease in the particular population studied. 

 In relation to Health Canada’s recent proposal to implement OTA regulations in a variety 

of commodities, it is critical to gain a better understanding of OTA’s impacts to human health.  

While previous risk assessments were based on animal and cell culture assay studies, this risk 

assessment was one of the firsts focusing on adverse human health endpoints. Additionally, 

bladder cancer incidence and mortality rates remain low.  Bladder cancer incidence in Canada 

sits at 6.8/100k, while mortality is much lower at 2.5/100k individuals (169).  This incidence rate 

is outside of the top fifty rankings worldwide and is third in the Americas.  Canada falls behind 

the US, which does not regulate OTA, and Uruguay, which has a very lenient regulation of 50 

ng/g in rice, barley, beans, coffee and corn.  With limited evidence that OTA is causing adverse 
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health effects in Canada and low rates of cancers associated with OTA in Canada, it appears the 

recently proposed MLs would have little benefit to improving human health.     

Furthermore, with limited evidence associating OTA with adverse health effects in 

humans, the economic losses to Canadian associated with implementation of an OTA ML was 

investigated.  Based on the estimated amount of Canadian crops that would be rejected under the 

new regulations and the current price of each crop, Canadian farmers are at risk of losing $260 

million CD annually, while foreign exporters would be at risk of losing up to $18 million CD 

annually.  Using contamination data in from the crops most likely to be affected by OTA, 

Canadians would need to consume unrealistic amounts of the respective crops in order to be at 

risk any adverse health effects.  At this time, implementation of OTA regulations in Canada 

appears unlikely to significantly improve human health, while costing both Canadian farmers 

and foreign exporters millions of dollars annually.   

It is important that policymakers consider the balance between economic losses and 

improvements to human health when implementing new regulations. In the case of OTA, there is 

no reliable way to estimate health gains associated with the economic losses because of the lack 

of evidence linking OTA exposure to adverse health effects.  The animal and cell studies used to 

develop Health Canada’s MLs, which used OTA doses of three to four orders of magnitude 

higher than current human exposures (188),  cannot be used to link current OTA exposures to 

future OTA exposures under new MLs.  Policymakers must consider both the economic impacts 

along with the potential improvements to human health.  This is especially the case for OTA 

standards due to a lack of countervailing health effects linking exposure to adverse health 

impacts and limited OTA exposure in Canada. 

82 



Using pistachios as a case commodity to investigate the impacts aflatoxin regulations 

have on trade a human health revealed that countries with strict regulations tend to trade with 

other countries with strict regulations, and vice versa.  Time-series network modeling and 

various metrics showing market segregation suggested that the pistachio market was once 

dominated by Iran, however, in recent years has become segregated with the US becoming a 

major pistachio producer and exporter.  Because these trends in trade changed after the 2003 

implementation of an aflatoxin regulation in tree nuts, it appears that regulations have varying 

impacts on global trade and, subsequently, human health. 

 Results from this study should be considered with trade trends for multiple aflatoxin-

contaminated commodities including maize and peanuts.  Countries without aflatoxin regulations 

may be subjected to consuming total crops high in aflatoxin due to implementation of aflatoxin 

regulations in other countries.  For example, farmers in countries attempting to export their crops 

may be forced to export only the highest quality crop to avoid rejections and consume the most 

heavily contaminated crops for their own diets.  On the other hand, countries without regulations 

may be forced to import crops of low quality since the exporting country is exporting high 

quality crops to countries with strict regulations.  If these trends exist for multiple commodities, 

countries without aflatoxin regulations may be subject to diets containing high levels of aflatoxin 

and be at increased risk for developing aflatoxin-related health effects.   

Regulations, which are put in place to product human health, may also have adverse 

effects to human health in some regions.  Regions at greatest risk for adverse health impacts 

from aflatoxin exposure include sub-Saharan Africa and Asia, both of which have Hepatitis B 

prevalence of  greater than 8% (189).  These same regions have the highest incidences and 

mortality rates from liver cancer.  Eastern Asia has the highest incidence (24.0/100k) and 
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mortality (21.6/100k) followed by Africa with an incidence of 8.3/100k and mortality of 

8.4/100k (169).  In these “high-risk” regions, many countries are without aflatoxin regulations or 

have very lenient regulations.  Furthermore, many countries in these areas with regulations may 

not necessarily enforce them.  This is the case for subsistence farmers which consume most of 

their crops or trade them locally where no crop is monitored for contamination.  The pistachio 

case-commodity modeling and market segregation data has shown that some high-risk countries 

in these areas already import majority of their pistachios from Iran and would have higher 

aflatoxin in their diets because of this trading trend.  If these high-risk areas are also importing 

multiple other aflatoxin-contaminated commodities of low quality, their total diets would be high 

in aflatoxin and individuals would be at increased risk for developing liver cancer. It is important 

that policymakers take this into account and realize that regulations may have unintended 

negative consequences for public health in regions without regulations.    

Overall, mycotoxin regulations have varying effects on human health and economics.  A 

human health risk assessment did not associate any adverse health effects with OTA exposure 

except for nephritic syndrome.  Recently proposed OTA regulations in Canada may have little 

impact to improving human health while costing Canadian producers and foreign exporters 

millions of dollars.  Aflatoxin regulations appear to have molded trade patterns over the past 15 

years, at least for pistachios.  Countries without regulations appear to be importing lower quality 

crops than countries with strict regulations.  Both results indicate important aspects of 

regulations which may have significant impacts to public health that policymakers should 

consider in future decision-making processes.   
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APPENDIX  

ABBREVIATIONS 

AA = Aristolochic acid 

AFB1 = Aflatoxin B1 

AFB2 = Aflatoxin B2 

AFG1 = Aflatoxin G1 

AFG2 = Aflatoxin G2 

AFM1 = Aflatoxin M1 

AFM2 = Aflatoxin M2 

AL-DNA = Aristolactam-DNA  

BD10 = Benchmark dose 10% 

BEN = Balkan Endemic Nephropathy 

BHC = Bradford Hill Criteria 

CD = Canadian dollars 

CIN = Chronic interstitial nephropathy 

EFSA = European Food Safety Authority 

ESRD = End-stage renal disease 
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EU = European Union 

EU RASFF = European Union Rapid Alert System for Food and Feed 

FAO = Food and Agricultural Organization  

FAS GATS = Foreign Agricultural Service – Global Agricultural Trade System  

FDA = Food and Drug Administration  

GST = Glutathione S-transferases 

HBV = Hepatitis B virus 

HCC = Hepatocellular carcinoma 

HCV = Hepatitis C virus 

HPLC = High-performance liquid chromatography 

IARC = International Agency for Research on Cancer 

IPA – Iran Pistachio Association 

JECFA – Joint FAO/WHO Expert Committee on Food Additives 

LD50 = Lethal dose 50% 

LOAEL = Lowest observable adverse effect level 

ML = Maximum limit 

NCRI = Negligible cancer risk intake 

NOAEL = No observable adverse effect level 

OR = Odds ratio 

OTA = Ochratoxin A 

PAH = Polycyclic aromatic hydrocarbons 

PTDI = Provisional tolerable daily intake 

PTWI = Provisional tolerable weekly intake 
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RR = Relative Risk  

SCF = Scientific Committee of Food 

TDI = Tolerable daily intake 

UAE = United Arab Emirates 

UF = Uncertainty factor 

UK = United Kingdom 

UN = United Nations 

UN COMTRADE = United Nations Commodity Trade Statistics Database 

US = United States 

UTT = Urothelial tract tumors 

UUC = Upper urothelial carcinomas  
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