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XFE progeroid syndrome, a disease of accelerated aging caused by deficiency in the DNA repair 

endonuclease XPF-ERCC1, is modeled by Ercc1 knockout and hypomorphic mice. Tissues and 

primary cells from these mice senesce prematurely, offering a unique opportunity to identify 

factors that regulate senescence and aging. We compared microRNA (miRNA) expression in 

Ercc1-/- primary mouse embryonic fibroblasts (MEFs) and wild-type (WT) MEFs in different 

oxygen growth conditions and at different passages to identify miRNAs that possibly drive 

cellular senescence. Microarray analysis showed three differentially expressed miRNAs in 

senescent passage 7 (P7) Ercc1-/- MEFs grown at 20% O2 compared to less senescent Ercc1-/- 

MEFs grown at 3% O2. Thirty-six differentially expressed miRNAs were identified in Ercc1-/- 

MEFs at P7 compared to early passage (P3) in 3% O2. Eight of these miRNAs (miR-449a, miR-

455*, miR-128, miR-497, miR-543, miR-450b-3p, miR-872 and miR-10b) were similarly 

downregulated in the liver of progeroid Ercc1-/Δ and old WT mice compared to adult WT mice, a 

tissue that demonstrates increased senescence with aging. Three miRNAs (miR-449a, miR-455* 

and miR-128) were also downregulated in Ercc1-/Δ and WT old mice kidneys compared to young 

WT mice. We also discovered that the miRNA expression regulator Dicer is significantly 

downregulated in tissues of old mice and late passage cells compared to young controls. 

Collectively these results support the conclusion that the miRNAs identified may play an 

IDENTIFICATION AND CHARACTERIZATION OF SENESCENCE-ASSOCIATED 

MICRORNAS IN A MOUSE MODEL OF THE XFE PROGEROID SYNDROME 

Lolita Sai Nidadavolu, PhD 

University of Pittsburgh, 2013

 

 iv 



important role in staving off cellular senescence and their altered expression could be indicative 

of aging. 

We also identified IL-6 as a possible target for miR-128, one of the senescence- and 

DNA damage-associated miRNAs from our microarray analysis of MEFs. IL-6 mRNA levels 

were reduced significantly when miR-128 was overexpressed and IL-6 mRNA was increased 

when miR-128 was knocked down by 80%. Furthermore, miR-128 knock-down resulted in 

increases to the known senescence markers p16 and miR-146a. MiR-128 overexpression resulted 

in significant IL-6 mRNA reduction, with accompanying reduction in miR-146a.  

Based on these studies, we have shown that progeroid models can be a useful method to 

identify miRNAs that are dysregulated in normal aging processes. We have also identified IL-6 

as a possible target for miR-128, a senescence- and DNA-damage associated miRNA that is 

downregulated in senescent fibroblasts and aged livers and kidney tissues.  
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1.0  INTRODUCTION 

1.1 BIOLOGY OF AGING 

1.1.1 Impact of aging on society 

The percentage of individuals aged 65 years and older is one of the fastest growing segments of 

the population and is expected to increase by over 180% over the next 40 years [1]. In the United 

States, individuals 65 years and older are predicted to reach approximately 20% of the total 

population by the year 2030 [2]. As of 2009, those who survive to age 65 are expected to live for 

another 19.2 years, on average [3]. Individuals over the age of 65 are more likely to develop 

many chronic and debilitating diseases such as hypertension, heart disease, arthritis and diabetes, 

with many individuals suffering from more than one chronic disease [4]. Learning more about 

the molecular mechanisms that regulate aging and influence longevity is critical to help 

individuals remain healthy and active longer.  

1.1.2 Theories on the biology of aging 

At the cellular level, aging is a highly multifactorial process. Accumulation of oxidized proteins, 

mitochondrial dysfunction and stem cell exhaustion are observed in organismal aging and age-
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associated diseases due to both endogenous oxidative species resulting from normal cellular 

metabolism and exogenous damaging agents [5-8]. One general theory that explains the 

evolutionary origins of aging is that of antagonistic pleiotropy, which states that genes that are 

beneficial to young organisms produce deleterious effects when expressed in older individuals. 

The expression of particular genes provides a growth or reproductive advantage for young 

organisms but accelerates age-associated pathologies if these genes are expressed later in life. 

One example of antagonistic pleiotropy is the effect of IGF signaling, which imparts growth 

benefits to young organisms, but whose upregulation in aged organisms can lead to chronic 

inflammatory processes associated with aging and shortened lifespan [9]. The evolutionarily 

conserved mammalian target of rapamycin (mTOR) signaling pathway has beneficial growth and 

reproductive effects for young organisms; however, mTOR activity drives aging processes once 

organisms are fully developed, particularly in male mice [10].  

 The free radical (or mitochondrial) theory of aging, which was advanced in the mid-

1950s, describes how endogenously produced reactive oxygen species (ROS), namely 

superoxide radicals, hydrogen peroxide and hydroxyl radical, can be a source of spontaneous 

oxidative damage to DNA, proteins and organelles, causing dysfunction [11]. These ROS are 

endogenously produced by cellular processes such as mitochondrial respiration, peroxisome 

metabolism, and nitric oxide synthesis [12]. Furthermore, genomic instability in the form of 

point mutations and deletions in mitochondrial DNA can impair cellular energy production and 

lead to further production of ROS, creating a “vicious cycle” of oxidative damage and impaired 

mitochondrial function [13]. Antioxidant enzymes such as superoxide dismutase (SOD), 

catalase, heme oxygenase and peroxiredoxin all function to scavenge and eliminate ROS to 

prevent widespread macromolecular damage [14-16]. Engineered mice lacking the gene SOD1, 
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the predominant intracellular SOD isoform, resulted in increased oxidative damage and 

shortened lifespan by approximately 30% [17]. However, recent studies have complicated the 

mitochondrial theory of aging. It is now believed that mildly inhibiting mitochondrial respiratory 

processes can extend lifespan [18, 19]. Also, ROS have demonstrated the ability to act as 

signaling messenger molecules, when expressed at low levels [20]. These conflicting studies 

underscore the complex nature of cellular responses to ROS, and how ROS modulation can in 

fact provide beneficial outcomes to the cell. 

1.2 CELLULAR SENESCENCE AND AGING 

Cellular senescence, a state of permanent cell cycle arrest, is hypothesized to be both 

beneficial and detrimental to a cell by suppressing cancer progression but also promoting growth 

inhibition and aging [21]. Cellular senescence is proposed to be a potent tumor suppression 

mechanism due to its rapid induction upon oncogene expression and in the presence of persistent 

DNA damage signaling [22]. Senescent cells typically demonstrate defects in mitochondrial 

function, lipofuscin accumulation and increased lysosomal beta-galactosidase [23-25]. 

Chromatin remodeling occurs in senescent cells that appear as senescence-associated 

heterochromatin foci (SAHF) [26]. DNA segments with chromatin alterations reinforcing 

senescence (DNA-SCARS) are also present in cells that senesce due to persistent signaling of the 

DNA damage response [27]. These DNA-SCARS are nuclear foci that contain activated proteins 

involved in mediating the DNA damage response pathway, namely activated checkpoint kinase 2 

(CHK2) and the modified histone γ-H2AX [27]. Studies characterizing aged tissues and cells 
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have shown high levels of senescent cells [28, 29]. It is theorized that senescence is a key 

mechanism by which organismal aging is mediated at the cellular level.  

The primary purpose of senescence is to prevent the proliferation of cells that are 

potentially oncogenic. These damaged cells occur in both young and old organisms, however, 

they are hypothesized to accumulate more in older organisms due in part to decreased clearance 

of senescent cells and reduced stem cell renewal [30, 31]. There is a tissue-specific increase in 

many types of DNA mutations with aging, with liver and small intestine demonstrating the 

highest absolute number of accumulated mutations with aging and brain tissue demonstrating the 

least amount of accumulated mutations [32, 33]. These mutations range from single point 

mutations to large genome rearrangements that potentially affect millions of bases and can 

impair function of tumor suppressor genes or lead to the expression of oncogenes [33].   

 Cellular senescence can occur via at least four stimuli: telomere shortening, oncogene-

expression, DNA damage and epigenomic perturbations. As early as the 1960s, it was observed 

that human diploid cell lines grown in vitro eventually reach a point at which their proliferation 

is permanently arrested and they undergo mitotic arrest [34]. Subsequent studies showed that this 

growth arrest occurred due to telomere shortening with each cycle of DNA replication [35]. In 

addition to telomere-associated senescence, oncogene expression, non-telomere initiated DNA 

damage signaling, especially DNA double-strand breaks, and epigenetic stresses, such as 

chromatin modifications, can induce senescence [36-40]. Oncogene-induced senescence is an 

important pathway in which tumor progression can be inhibited, however this is primarily seen 

in pre-malignant tumors and not in advanced tumors [41, 42].  

The diverse stimuli that can cause cellular senescence converge on two main tumor 

suppressor pathways, p53 and pRb [43-46]. The p53 tumor suppressor protein plays important 
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roles in the DNA damage response, cellular senescence, apoptosis, and cell cycle regulation, and 

is one of the most commonly dysregulated proteins in cancer [47-49]. In the absence of 

genotoxic stresses or DNA damage response signaling, p53 is bound by the mouse double 

minute 2 (MDM2) E3 ubiquitin ligase, which leads to the proteasome-mediated degradation of 

p53 [50, 51]. However, in the presence of persistent DNA damage and other activating stimuli, 

p53 undergoes a series of phosphorylation events, either directly by the ataxia-telangiectasia 

mutated (ATM) kinase or indirectly by checkpoint kinase 1/2 (CHK1/2), and is stabilized [52]. 

These phosphorylation events disrupt the binding site of MDM2 in the p53 transactivation 

domain leading to reduced p53:MDM2 interactions [53]. P53 consequently accumulates in the 

cell, assembling into functionally active tetramer complexes and acts as a transcriptional 

activator, targeting genes that inhibit proliferation and arrest cells at the G1/S checkpoint [54]. 

An important target of p53 relating to cellular senescence is the CDK-interacting protein 1 

(CIP1)/p21, which functions as a universal cyclin-dependent kinase (CDK) inhibitor [55].  P21 is 

overexpressed in senescent cells, and its levels are generally reduced in cancer cells, resulting in 

uncontrolled cell division. However, it was recently shown that p21 can function as both a tumor 

suppressor and oncogene depending upon the cellular micro-environment [56, 57]. 

The pRb pathway controls the G1 to S checkpoint in the cell cycle. When 

unphosphorylated or underphosphorylated, Rb is in complex with the E2F1 transcription factor, 

preventing the transcription of E2F1 target genes essential for the G1/S transition, such as Cyclin 

E and Cyclin A [58, 59]. Sequestration of E2F1 prevents the transcription of other cell cycle-

associated genes through the recruitment of HDACs which act as general repressor complexes 

[60-63]. Following several phosphorylation events by CDKs, pRb no longer associates with the 
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E2F family of transcription factors in the cytosol, allowing E2F1 to activate its downstream 

targets [64].  

The protein levels of the p16 tumor suppressor increase in aged tissues and senescent 

cells, as well as after exposure to DNA damaging agents [29, 65, 66]. P16 is encoded by the 

inhibitor of cdk4/alternate reading frame (INK4/ARF) locus. There are three tumor suppressor 

genes at this locus: p16/INK4A, p15/INK4B, and p19/ARF [67]. P16 inhibits CDK4/6, which 

regulate the G1 to S phase transition in the cell cycle by phosphorylating Rb, which then 

becomes a substrate for further phosphorylation by CDK2 [68]. P16 is also involved in the 

enhancement of ROS production which plays a role in triggering the “vicious cycle” of ROS 

accumulation and mitochondrial dysfunction [69]. Phosphorylated pRb increases p16 levels 

which in turn inhibits CDK4/6, creating a regulatory feedback loop [70]. Reduced CDK4/6 

subsequently reduce pRb phosphorylation, resulting in decreased p16 expression [70]. P16 is 

commonly used as a biomarker to identify senescent cells in tissues and in cell culture.  

 Senescent cells also exhibit a unique gene expression profile in response to persistent 

DNA damage response signaling termed senescence-associated secretory phenotype (SASP), that 

promotes the release of pro-inflammatory cytokines such as IL-6 and IL-8 [71, 72]. In the 

absence of genomic DNA damage or epigenomic disruptions, ectopic overexpression of tumor 

suppressor proteins p16 or p21 does not result in SASP formation [73, 74]. An early response to 

persistent senescence stimuli is high expression of the cytokine IL-1α, which activates the 

nuclear factor-κB (NF-κB) signaling pathway [75, 76]. NF-κB transcriptionally activates the 

inflammatory cytokines IL-6 and IL-8, both of which are primary components of the SASP 

response. The NF-κB pathway was recently shown to be an important regulator and therapeutic 

target of aging-associated diseases [77, 78]. Interestingly, the SASP response elicited in 
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senescence varies depending upon cell type and the process by which senescence was induced. 

For example, human fibroblasts expressing the BRAF oncogene increase IGFBP7 secretion, 

while human dermal and prostate fibroblasts experiencing telomere shortening and oxidative 

stress predominantly secrete cyclooxygenase-2 (COX-2) [79, 80]. It is hypothesized that SASP 

production in senescent cells promotes maintenance of cellular growth arrest.  

The SASP response can also induce hyperproliferative and tumorigenic cell responses in 

a wide range of cell types [71, 81, 82]. This is likely due to the secretion of a large number of 

immune-stimulating factors (e.g.: IL-6, IL-8, GRO-α). Senescent vascular smooth muscle cells 

exhibit a SASP response; however, one of the consequences of senescence for this cell type is 

the expression of pro-calcification genes [83]. Astrocytes undergoing stress-induced senescence 

exhibit SAHF, positive SA β-gal staining and upregulation of p16 and p21 [84]. Senescent 

astrocytes secrete many pro-inflammatory cytokines, and it is hypothesized that this creates a 

neuroinflammatory environment, which is observed in neurodegenerative diseases such as 

Alzheimer’s Disease, Parkinson’s Disease and frontotemporal dementia  [82]. It is still unclear 

what factors influence whether a senescent cell will produce a growth arrest or hyperproliferative 

microenvironment for adjacent cells.  
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1.3 DNA REPAIR 

1.3.1 DNA Repair Pathways 

Nuclear and mitochondrial DNA faces an onslaught of mutagenic agents from exogenous and 

endogenous sources, including ultraviolet (UV) light, radiation, spontaneous base hydrolysis and 

reactive oxidative species. These mutagens cause tens of thousands of DNA lesions per cell, per 

day [85]. The many types of cellular DNA damage necessitate the presence of many DNA repair 

mechanisms. Key repair pathways include base excision repair (BER), nucleotide excision repair 

(NER), mismatch repair (MMR), homologous recombination (HR) and non-homologous end 

joining (NHEJ). NER and BER generally function via “cut and paste” repair mechanisms, MMR 

acts to correct replication mistakes and HR and NHEJ are both responsible for repairing double-

strand DNA breaks. 

 The connection between DNA repair deficiencies and aging is evident from a variety of 

progeroid (rapid aging) disorders which have impaired DNA repair proteins, such as the Werner 

helicase, Lamin-A, and Cockayne Syndrome B proteins. The Werner protein is a RecQ helicase 

truncated in the progeroid disorder Werner Syndrome (WS). Werner helicase is critical for 

maintaining chromosomal telomeres and is also implicated in the repair of oxidative base 

damage [86-88]. WS patients begin to exhibit many classic signs of aging in their mid-30’s, 

including cataracts, cancer and osteoporosis [89]. Lamin-A mutations are responsible for the 

Hutchinson-Guilford Progeria Syndrome (HPGS) and result in abnormal nuclei, increased DNA 

damage and widespread epigenetic changes that are also observed in cells from naturally aged 

individuals [90-92]. It was recently shown that properly functioning Lamin-A is critical for the 
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stabilization of DNA repair foci via interactions with the phosphorylated histone variant γ-H2AX 

[93]. Patients with HGPS demonstrate early signs of aging and over 90% of patients die by 

around age 13 of complications from severe atherosclerosis and cardiovascular complications 

[94]. By studying progeroid disorders, key components of DNA repair pathways have been 

identified and they have revealed the critical effects of dysregulation of genomic repair on aging. 

1.3.2 Functions of the ERCC1-XPF complex  

Excision repair cross complementing 1-Xeroderma Pigmentosum F (ERCC1-XPF) is a 

5’endonuclease that is primarily involved in Nucleotide Excision Repair (NER). NER is the main 

repair pathway for bulky, helix-distorting lesions such as cyclobutane pyrimidine dimers (CPD) 

and (6-4) photoproducts, both of which are incorporated into DNA via UV-A and UV-B solar 

radiation as well as due to endogenous photosensitizers [95-98]. There are two types of NER, 

global genome (GG-NER) and transcription-coupled (TC-NER) repair [99] (Figure 1). These 

two pathways have different mechanisms by which DNA damage is detected, but they converge 

on a common repair pathway following damage recognition. The GG-NER pathway acts as a 

generalized scanner of genome integrity and repairs any large helix distorting lesions it 

recognizes, primarily via binding of the Xeroderma Pigmentosum C-Human Rad23 Homolog B 

(XPC-HR23B) complex at the site of damage [100]. The TC-NER pathway is intimately 

connected to the transcription machinery and resolves bulky lesions that interfere with the 

transcription process. TC-NER damage recognition occurs via RNA polymerase II stalling at the 

site of damage [101, 102]. Despite different methods of substrate recognition, GG-NER and TC-

NER converge on a common pathway for endonucleolytic cleavage, excision of damaged DNA 
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and gap filling [103, 104]. The ERCC1-XPF heterodimer is an integral part of the NER pathway, 

and acts downstream of the damage recognition step, therefore defects in this complex impair 

both GG-NER and TC-NER [105, 106].  
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Figure 1. Nucleotide Excision Repair (NER) Pathway in Eukaryotes [104] 
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Patients have been identified with defects in both GG-NER and TC-NER pathways, and 

have strikingly different phenotypes. Xeroderma Pigmentosum (XP) is an autosomal recessive 

disorder characterized by photosensitivity, increased risk of skin cancer (squamous cell 

carcinomas and basal cell carcinomas), as well as dry, parchment-like skin (xeroderma) and 

increased pigmentation in areas that have been exposed to the sun (pigmentosum) [107, 108]. 

Disease severity is highly heterogeneous depending on which XP family protein is defective, 

what protein domains are disrupted by a particular mutation and where the protein functions in 

the GG and TC-NER pathways. Xeroderma Pigmentosum complement group E (XPE), a mild 

variant of the disease, is caused by a mutation in the DNA damage binding 2 (DDB2), a gene 

that helps increase the affinity of XPC-HR23B to (6-4) photoproduct substrates in GG-NER 

[109, 110]. However, Xeroderma Pigmentosum complement group D (XPD), which is a part of 

the multi-subunit complex Transcription factor II H (TFIIH), is critical to both GG-NER and TC-

NER, and therefore patients with a mutation in this gene can present with severe or mild XP, 

trichothiodystrophy or a combined XP/Cockayne Syndrome (CS) phenotype [111, 112]. The 

severity of disease in XPD depends upon the site of the mutation and which functional domain in 

the protein is affected. Patients with impaired TC-NER have mutations in the Cockayne 

Syndrome A and B proteins (CSA and CSB) and develop mild skin photosensitivity. However, 

these patients also show signs of premature aging not observed in XP patients, including a 

wizened appearance, kyphosis, cachexia, deafness and visual impairment as well as cerebral 

atrophy [113].  

 In addition to its role in NER, the ERCC1-XPF complex is also involved in other DNA 

repair processes such as inter-strand cross-link (ICL) repair and double-strand break (DSB) 

repair [114, 115]. Additionally, both XPF and ERCC1 are involved in promoting transcription of 
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certain genes in the absence of exogenous genotoxic stress [116]. XPF, in particular, is critical 

for recruiting the chromatin loop organizing protein CCCTC-binding factor (CTCF), which is 

involved in regulating gene expression [117]. Also, the XPF-ERCC1 complex co-localizes with 

Fanconi Anemia group D2 (FANCD2) at fragile sites on mitotic chromosomes and plays a role 

in anaphase sister chromatid separation [118]. Depletion of Ercc1 resulted in higher incidences 

of chromosome segregation defects and mitotic failure [118]. These non-NER functions of the 

ERCC1-XPF heterodimer may explain why the phenotype of humans lacking this protein 

complex can be so strikingly different and severe when compared to other XP-family disorders. 

1.3.3 Ercc1-deficient mouse models 

The first human XFE patient was identified in 2006 by Niedernhofer et al [119]. The patient 

achieved all early developmental milestones and demonstrated skin sensitivity, learning 

disabilities and hearing loss. He presented at age 16 with signs of severe accelerated aging, 

including liver and kidney dysfunction, anemia, hypertension, ataxia and skin UV sensitivities. A 

mouse model mimicking this disorder, with the genotype Ercc1-/-, was developed and found to 

exhibit similar liver, bone marrow and renal disturbances [105]. The life-span of Ercc1-/- mice is 

3 to 8 weeks, significantly shorter than the typical 2 to 3 year life-span for normally aged mice, 

and Ercc1-/- mice often die prior to weaning [120]. Ercc1-/- MEFs exhibit earlier onset of cellular 

senescence compared to WT MEFs when cultured in 20% O2 and typically senesce by passage 7 

[105]. Due to the only one month long lifespan of Ercc1-/- mice, our studies also included the 

analysis of Ercc1-/Δ mouse tissues, which have a hypomorphic (Δ) allele of Ercc1, resulting in 

10% of normal Ercc1 protein expression [121]. Tissues from Ercc1-/Δ mice are well-
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characterized and similar to normally aged mice with regards to intervertebral disk degeneration, 

peripheral neuropathy and liver aging [122-124]. These prior studies establish the Ercc1-/Δ mouse 

as a useful model for us to identify microRNAs (miRNAs) and molecular mechanisms that are 

dysregulated with aging.   

1.4 MICRORNAS 

1.4.1 Biogenesis and function of microRNAs 

MicroRNAs are approximately 22 nucleotide, post-transcriptional gene regulators capable of 

repression of translation or degradation of their messenger RNA (mRNA) targets. MiRNA genes 

are generally transcribed by RNA Polymerase (Pol) II to generate primary-miRNA (pri-miRNA), 

which is then processed by Drosha, an RNase III enzyme that generates the hairpin precursor 

miRNA (pre-miRNA) [125, 126]. Following export to the cytoplasm, the RNase III enzyme 

Dicer further processes the hairpin structure, producing a 22 nucleotide miRNA duplex [127, 

128]. The mature single stranded miRNA from the duplex is incorporated into the RNA-induced 

silencing complex (RISC) containing an Argonaute protein [129-132]. The RISC complex 

carries the mature miRNA to its target mRNA [133].  

MiRNAs generally bind to their target mRNAs at their 3’ untranslated regions (3’ UTRs), 

via complementary base-pairing through the miRNA seed sequence (nucleotides 2-8 at the 5’ 

end of the miRNA) [134]. The degree of complementarity between the seed sequence and other 

regions of the miRNA:mRNA duplex determines if the mRNA is translationally repressed or 
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targeted for degradation [135, 136]. The net outcome of miRNA binding to mRNA by either 

mechanism is reduced levels of the protein encoded by the target gene.  

 

 

Figure 2: MicroRNA Processing Pathway[137] 
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1.4.2 MicroRNAs and DNA repair 

MiRNAs can regulate DNA damage responses (DDR) in several ways. MiR-155 directly 

targets two proteins critical to mismatch repair (MMR), mutL homolog 1 (MLH1) and mutS 

homolog 2 (MSH2) [138]. This reduction in MLH2 and MSH2 levels increases the cellular 

mutation rate, increasing cancer incidence [138]. MiR-182-5p is upregulated in breast cancer and 

targets breast cancer 1 (BRCA1), checkpoint kinase 2 (CHEK2) and tumor protein p53 binding 

protein 1 (TP53BP1), all of which are essential to the HR pathway [139, 140]. 

 MiRNAs can also regulate DDR by targeting critical cell cycle checkpoint proteins such 

as cell division cycle 25A (CDC25A), which is targeted by miR-16 [141]. MiR-16 is rapidly 

upregulated after UV irradiation and has been implicated in the rapid reduction of CDC25A 

protein which occurs in the minutes following UV-induced damage [142]. There are three levels 

of regulation of CDC25A following DNA repair pathway activation: (i) Immediate protein 

degradation by ATM and Rad 3-related (ATR)-dependent phosphorylation of CDC25A, (ii) 

prevention of CDC25A protein translation by miR-16 binding to CDC25A mRNA and (iii) long-

term transcriptional suppression of the CDC25A gene via p53 pathway signaling [141].  The role 

for other miRNA regulators of cell cycle control in the presence of de novo DNA damage may 

be similar to that of miR-16; miRNA modulation of protein levels is a faster process than 

transcriptional regulation, which in the case of CDC25A occurs approximately 9 hours following 

UV treatment in a p53 and p21dependent manner [143].  

DDR components can also directly regulate miRNA production. KH-type splicing 

regulatory protein (KSRP) is associated with the miRNA processing proteins Drosha and Dicer, 

and acts to enhance the maturation of a subset of miRNAs involved in cell proliferation by 
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directly binding to precursor pri-miRNAs [144]. ATM phosphorylation is critical in the 

activation of KSRP as a regulator of miRNA maturation, and KSRP-pri-miRNA interactions are 

enhanced in the presence of DNA damage, which globally increases miRNA biogenesis [144]. 

BRCA1 associates with Drosha and enhances the processing of BRCA1 associated miRNAs 

[145]. BRCA1 also interacts with histone deacetylase 2 (HDAC2) to suppress the expression of 

the oncogenic microRNA miR-155 [146]. 

MicroRNAs can also be involved in feedback loops that modulate DDR pathways. The 

tumor suppressor p53 activates the expression of several tumor suppressive microRNAs: miR-

34a/b/c, miR-145, miR-107, miR-192 and miR-215 [147-149]. MiR-34a also acts to enhance p53 

activity by binding to the 3’-UTR of the deacetylase sirtuin 1 (SIRT1), which targets and 

inactivates p53 [150, 151]. Over-expression of miR-34a induces p53-mediated apoptosis and 

senescence from this positive feedback loop [152, 153].  

1.4.3 MicroRNAs and cellular senescence 

Cellular senescence is an irreversible, actively maintained cell fate, and consequently regulation 

of this process occurs at several levels in addition to transcriptional regulation, including 

regulation by small RNAs and protein post-translational modifications [154, 155]. MicroRNAs 

and other non-coding small RNAs play an important role in fine-tuning cellular responses to 

stress, tipping the balance between transient versus permanent cell cycle arrest. Recently, the role 

that microRNAs play in regulating and mediating cellular senescence has begun to be elucidated 

(Table 1). However, confounding factors in finding roles for miRNAs in senescence are the wide 

diversity of possible miRNA targets based on 3’-UTR predicted binding sites and the differential 
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expression of miRNAs in different tissues and cell types. There is a significant amount of 

overlap between miRNAs identified as regulating DDR and those that regulate cellular 

senescence and aging pathways. One example of the interplay between DDR and senescence 

signaling pathways is with miR-34a, which in addition to targeting the p53 regulator SIRT1 also 

inhibits expression of the Myc proto-oncogene in fibroblasts that are induced to senesce via B-

RAF oncogene expression [156].  

The microRNA processing pathway also plays a role in regulating cellular senescence. 

Dicer conditional knock-down in primary mouse embryonic fibroblasts (MEFs) resulted in 

activation of p53-mediated cellular senescence pathways [157]. The pro-senescent effect of 

Dicer knock-down was completely abrogated in cells with p53 deletions [157]. In these Dicer-

ablated MEFs, miRNA processing was halted at the pre-miRNA step, resulting in accumulation 

of hairpin-loop structures in the cytoplasm. Another study knocked-down the auxiliary 

processing protein Di Georges critical region 8 (DGCR8), which works in concert with the 

Drosha ribonuclease to form a pre-miRNA, and showed subsequent growth arrest in human 

primary fibroblasts and MEFs [158].  Fibroblasts with reduced DGCR8 expression had reduced 

BrdU incorporation, expressed SAHF and had increased SA β-gal staining, in part due to p21 

upregulation and the absence of several miRNAs that function to regulate the cell cycle [158]. 

MiR-146a/b was identified as being upregulated in senescent cells, and plays a role in 

modulating the senescence associated secretory phenotype (SASP) [75].  Previous work has 

shown a negative feedback loop in which NF-κB induces expression of miR-146, and increased 

miR-146 subsequently leads to reduced NF-κB activity via downregulation of the IL-1 receptor 

associated kinase 1 (IRAK1) [159, 160]. The SASP response is therefore able to be reduced via 

miR-146a/b upregulation. It is likely that this regulatory mechanism evolved because of the 
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negative consequences that could occur if a robust SASP response were to go unchecked. Long-

term upregulation of inflammatory cytokines can create a pro-tumorigenic environment, as 

several types of cancer stem cells were shown to be induced by IL-6 [161-163]. 

The oncogenic miR-21 was shown to be upregulated in replicative senescence as well as 

in oxidative stress-induced senescence in human umbilical vein endothelial cells (HUVEC) 

[164]. MiR-21 targets two genes that regulate cell cycle arrest, CDC25A which regulates the 

activity of CDK2, and nuclear factor 1 B-type (NF1B) which represses p21 transcription [164, 

165]. In eosinophil progenitor cells and cardiomyocytes, downregulation of miR-21 results in 

decreased cell proliferation; therefore the observation that miR-21 overexpression has anti-

proliferative effects in HUVEC, while having pro-proliferative effects in other tissues reiterates 

that miRNAs expressed in different cell types can have different effects, due in part to 

transcriptome variability [166, 167]. It is especially interesting to note that cellular expression of 

oncogenic Ras leads to increased miR-21 expression, and reduced expression of CDC25A and 

NF1B by miR-21 are possible mechanisms by which Ras can lead to oncogene-induced 

senescence in HUVEC [168]. Other miRNAs that play a role in oncogene-induced senescence 

are listed in Table 2.  

MiRNAs identified as modulating senescence in previous studies (Table 1 and 2) have a 

large number of targets that are modulators of p53 signaling and cell cycle regulation, notably 

SIRT1, p21, CDK6 and E2F family proteins. One common miRNA target is the high mobility 

group A2 (HMGA2) protein. HMGA2 protein levels were reduced in human umbilical cord 

blood stem cells and endothelial cells undergoing replicative senescence, and was associated 

with the upregulation of miR-10b*, miR-21, miR-23a, miR-26 and miR-30, all which have 

binding sites in the HMGA2 3’-UTR [169, 170]. Another target of the above miRNAs is the 
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RNA-binding protein Human antigen R (HuR) which binds to AU-rich elements in the 3’-UTR 

regions of mRNA [171]. HuR can modulate miRNA interactions with their target mRNA 3’-

UTRs by displacing microRNA-induced silencing complexes (miRISC) from their binding sites 

[172, 173]. Downregulation of HuR is observed in replicative senescence and is mediated in part 

by miR-519 upregulation [174, 175]. 

Most studies to date have investigated miRNA dysregulation due to replicative (telomere-

induced) senescence, stress-induced senescence (treating with exogenous DNA damaging agents 

and epigenetic modifiers) or oncogene-induced senescence (over-expressing Ras). Progeroid 

mouse models have recently been used to identify microRNA dysregulation in aging and cellular 

senescence, particularly Hutchinson Guildford Progeria Syndrome (HGPS) and Werner 

Syndrome (WS) [176, 177]. However, despite some phenotypic similarities to natural aging, 

these two models demonstrate a major disadvantage when compared to Ercc1-deificient mice 

because they do not examine the effect of endogenous DNA damage on aging. The main cellular 

perturbations in these other progeroid diseases, nuclear lamin dysfunction in HGPS and 

premature telomere dysfunction in WS are not commonly observed in the human population, and 

because of this, the conclusions that can be made regarding microRNA dysregulation in HGPS 

and WS will have to be considered within the context of that particular progeroid model.  

However, microRNA dysregulation in the Ercc1-deficient mouse model are more generalizable 

to normal mouse aging, due to the ubiquity with which these animals are exposed to endogenous 

DNA damage

Currently, little is known about microRNA regulation of cellular senescence induced by 

endogenous, non-telomeric DNA damage. This study seeks to address this gap in knowledge.  
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Table 1: MicroRNA regulators of replicative senescence and DNA damage-induced senescence 

microRNA Gene Target(s) Regulation in 
Senescence Cell Type Reference 

Let-7 HMGA2, EZH2, Rb1, 
E2F Up 

Fibroblast, 
Mesenchymal 

Stem Cell 
[178, 179] 

miR-9 SIRT1 Up Fibroblast, 
Endothelial [81, 180] 

miR-10a KLF4 Up Mesenchymal 
Stem Cells [181] 

miR-10a* HMGA2 Up Endothelial [170] 
miR-22 CDK6, SIRT1, Sp1, OGN Up Fibroblast [182, 183] 

miR-23a HMGA2 Up 
Cord blood-
derived stem 

cells 
[169] 

miR-26 HMGA2 Up 
Cord blood-
derived stem 

cells 
[169] 

miR-28 ASF/SF2 Up Fibroblast [184] 

miR-29a/b/c COL4α1 – α6, B-MYB Up 

Lung, Liver, 
Kidney, Heart, 

HeLa, 
Mesenchymal 

Stem cells  

[185, 186] 

miR-30 B-Myb Up HeLa [186] 

miR-34a SIRT1, MYC, TXNRD2 Up 
Endothelial, 
Fibroblast, 
Mesangial 

[150, 156, 187] 

miR-101 EZH2 Up Fibroblast [188] 

miR-106 P21, RB1 Down 
Aged normal 
tissues and 

tumor tissues 
[189, 190] 

miR-107 HIF1B, CDK6, NOTCH2 Up Colon Cancer, 
Glioma [148] 

miR-126 VCAM-1 Down Endothelial [191] 

miR-146a/b IRAK1, TRAF6 Up 

Fibroblast, 
Human 

trabecular 
meshwork 

[75, 192] 

miR-152 ITGA5 Up Fibroblast [193] 

miR-155 SPI1, DC-SIGN, AID, 
IRF8, MYB Up Monocyte, 

Fibroblast [194-197] 

miR-181a COL16A1 Up Fibroblast [193] 
miR-181a DUSP6 Down T cells [198] 
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miR-191 SATB1, CDK6 Up Keratinocyte [199] 
miR-200c ZEB1 Up Endothelial [200] 

miR-203 E2F3, CAV1 Up Melanoma, 
Breast tissue [201] 

miR-205 E2F1, E2F5 Up Melanoma [202] 
miR-217 SIRT1 Up Endothelial [203] 
miR-221 eNOS Up Endothelial [191] 
miR-222 eNOS Up Endothelial [191] 
miR-290 LRF Up Fibroblast [204] 

miR-299-3p IGF1 Up Endothelial [205] 
miR-335 SOD2 Up Mesangial [187] 

miR-375 LDHB, SP1 Up Myeloid 
leukemia [206] 

miR-486-5p SIRT1 Up Mesenchymal 
Stem Cells [207] 

miR-494 IGF2BP1 Up Lung Cancer [208] 
miR-505 ASF/SF2 Up Fibroblast [184] 

miR-519 HuR Up 

Fibroblast, 
Ovary, 

Kidney, Lung, 
HeLa 

[175] 

 

Table 2: MicroRNA regulators of oncogene-induced senescence  

miR-17-92 
cluster P21 Down Aged normal 

tissues [189] 

miR-20a LRF, P21 Up Fibroblast [189, 209] 

miR-21 CDC25A, HMGA2, 
NF1B, PDCD4 Up Endothelial [164, 170, 210] 

miR-29c SIRT1, CDK6 Up 
Glioma, 

Hepatocellular 
Carcinoma 

[211, 212] 
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1.5 PROJECT HYPOTHESIS 

We hypothesize that miRNAs are important in modulating many of the cellular changes that 

occur during aging and cellular senescence, and propose to use the XFE Progeroid Syndrome as 

a model system to identify miRNAs that are involved in regulating this process. Using cells and 

tissues from Ercc1-/- and Ercc1-/Δ mice will allow us to identify miRNAs dysregulated primarily 

by endogenous DNA damage. We will also focus on miRNAs that are commonly dysregulated in 

tissues from both the progeroid as well as normally aged mice. Once we have identified 

senescence-associated miRNAs, we plan to identify novel gene targets for these miRNAs that are 

relevant to the regulation of cellular senescence. 
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2.0  DYSREGULATION OF MICRORNAS IN THE ERCC1 MOUSE MODEL OF 

PROGERIA 

Work described in this section was published in Aging (Aging (Albany NY). 2013 Jun;5(6):460-

73.) with authors Lolita S. Nidadavolu, Laura J. Niedernhofer and Saleem A. Khan. 
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2.1 INTRODUCTION 

MicroRNAs (miRNAs) are ~22 nucleotide long, single-stranded, non-coding RNAs that regulate 

gene expression. They generally bind the 3’ untranslated regions (UTRs) of target mRNAs with 

varying affinity, resulting in mRNA degradation or inhibition of protein translation [1]. The 

biogenesis of miRNAs is well-characterized, although the mechanisms by which they participate 

in post-transcriptional silencing are still being elucidated [2, 3]. A wide range of disease 

processes including cancer are regulated by miRNAs [4].  

MicroRNAs are implicated in the regulation of cellular senescence and aging. Cellular 

senescence, a state of permanent cell cycle arrest, is hypothesized to be a double-edged sword by 

suppressing cancer progression while promoting growth inhibition and aging-related tissue 

degeneration [5]. Cellular senescence can result from events such as telomere shortening, 

activation of DNA damage response (DDR), epigenetic stresses, or expression of oncogenes such 

as Ras [6-9]. DDR signaling in senescent cells can also take place with little to no DNA damage, 

termed the “pseudo-DNA damage response” [10]. This phenomenon occurs in cells ectopically 

expressing p16 and p21 as well as in cells treated with epigenetic modifiers, such as sodium 

butyrate, an HDAC inhibitor [10, 11]. Senescent cells exhibit a unique gene expression profile, 

termed senescence-associated secretory phenotype (SASP), and promote the release of pro-

inflammatory markers, including IL-6 [12]. The P16INK4A (p16) tumor suppressor is 

significantly upregulated in senescent cells [13]. A recent paper describing the selective 
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apoptosis of p16-expressing cells in a progeroid mouse (BubR1) directly connects accumulation 

of senescent cells and age-associated phenotypes in mice [14].  

Senescent fibroblasts displaying high SASP express miR-146a/b, which attenuates SASP 

activity in a negative-feedback loop [15]. MiR-22, miR-519, miR-152 and miR-181a, among 

others, were recently identified as inducers of cellular senescence [16-18]. Knocking down 

Dicer, a key component in the miRNA processing pathway, causes inhibition of miRNA 

biogenesis and results in cellular senescence via activation of p53 signaling [19]. Also, MEF 

immortalization results in the downregulation of certain tumor suppressor miRNAs: miR-21, 

miR-28 and miR-34a [20]. These data suggest that miRNAs are critical for regulating 

senescence.  

The insulin-like growth factor (IGF) signaling pathway is involved in regulating lifespan 

and mouse mutants with reduced IGF signaling have lifespans 40-70% greater than those of 

wild-type (WT) mice [21-23]. Several studies examining miRNA dysregulation in aging have 

utilized naturally aged or long-lived animals. MicroRNA profiling studies examined liver and 

brain tissues of normally aged mice as well as liver from long-lived Ames Dwarf mouse [24-27]. 

Additional studies have identified that the neuroprotective effects observed in calorie restriction 

in mice is due, in part, to downregulation of miRNAs targeting the pro-survival gene Bcl-2 [28]. 

Human centenarian studies have also demonstrated miRNA expression differences between 

blood samples from long-lived humans and young controls [29, 30]. MicroRNAs have also been 

identified as useful biomarkers for early, non-invasive detection of mild cognitive impairment 

[31]. However, few studies link both senescence and aging with changes in miRNA expression. 

To address this gap in knowledge, we measured miRNA expression in a murine model of 

a progeroid syndrome in tissues where senescence is established, as well as tissues of naturally 
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aged mice and senescent primary mouse embryonic fibroblasts. The XFE progeroid syndrome is 

a disease of accelerated aging caused by a deficiency in the XPF-ERCC1 DNA repair 

endonuclease. Murine models of XFE progeroid syndrome (Ercc1-/- knock-out and Ercc1-/Δ 

hypomorphic mice) are well-characterized models that mimic the histopathology of normal aging 

[119, 124, 213-215]. XPF-ERCC1 is essential for nucleotide excision repair (NER) of helix-

distorting monoadducts, repair of DNA interstrand crosslinks, as well as repair of some double-

strand breaks [114, 216, 217]. Ercc1-/Δ mice accumulate oxidative DNA damage more rapidly 

than WT mice, and this is presumed to drive their accelerated aging [218].  Liver transcriptome 

analysis of Ercc1-/- and Ercc1-/Δ mice revealed gene expression profiles similar to those of livers 

from aged WT mice, including a decrease in the IGF-1/somatotrophic axis and carbohydrate 

metabolism [119]. Additionally, Ercc1-/Δ mice also demonstrate increased p16 expression, 

cellular senescence, and nuclear abnormalities that are similar to those observed in WT old mice 

[124].  

Primary mouse embryonic fibroblasts (MEFs) undergo stress-related senescence due to 

growth conditions, in particular the supra-physiological concentrations of oxygen in standard 

tissue culture conditions [219]. When MEFs are grown in 3% O2 conditions, they demonstrate 

delayed onset of cellular senescence and behave similarly to human fibroblasts expressing 

telomerase [219]. MEFs grown in 20% O2 have three-fold more DNA damage than human 

fibroblasts grown at 20% O2, and have more chromosomal breaks than MEFs grown in 3% O2, 

further underscoring the exquisite sensitivity of MEFs to oxidative damage [219]. Ercc1-/- MEFs, 

which are deficient in DNA repair, quickly accumulate global DNA damage and demonstrate 

cellular senescence phenotypes at earlier passages compared to WT MEFs [105, 119]. Table 3 

demonstrates a characterization of several senescence endpoints in WT and Ercc1-/- MEFs grown 
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to 20% and 3% O2 at increasing passage (Passages 3, 5 and 7) [Gregg and Niedernhofer, 

personal correspondence].There is a clear increase in SA β-gal and γ-H2AX foci, and a decrease 

in cell proliferation with increased passage, particularly in Ercc1-/- MEFs grown in 20% O2 

conditions (Table 3).  

Table 3: Summary of senescence endpoints in WT and Ercc1-/- MEFs.  

WT and Ercc1-/- MEFs were grown in both 20% and 3% O2 conditions to passages 3, 5 or 7. Several different 

senescence endpoints, cell proliferation, senescence-associated β-galactosidase and γ-H2AX foci, were measured 

and compared to WT MEFs grown in 3% O2. Up and down arrows indicate relative expression of the particular 

endpoint relative to WT MEFs grown in 3% O2 at the same passage. SA β-gal, Senescence-associated β-

galactosidase. NC, no change. [Gregg and Niedernhofer, personal correspondence] 

 WT MEF Ercc1-/- MEF 

Passage 3 5 7 3 5 7 3 5 7 

Oxygen % 20 20 20 20 20 20 3 3 3 

Proliferation NC NC ↓ NC ↓ ↓ NC NC ↓ 

SA β-gal NC NC ↑ NC NC NC NC NC NC 

γ-H2AX NC ↑ NC ↑ ↑ NC ↑ ↑ NC 
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An additional benefit of using progeroid mouse models to identify dysregulated miRNAs 

in tissues is that studies can be performed in a relatively short period of time compared to studies 

using normal or long-lived animal models. A previously published study demonstrated the 

usefulness of progeroid models, in particular the Zmpste24-null mouse modeling Hutchinson-

Guilford Progeria Syndrome, in identifying miRNAs regulating organismal aging. This study 

showed that the miR-29 family is linked to the cellular DNA damage response and when 

upregulated in a p53-dependent manner, miR-29b reduces cell proliferation and increases 

cellular senescence [176]. Mir-29 acts as a tumor-suppressive, pro-aging molecule via chronic 

activation of p53 signaling [176].  

We wished to identify miRNAs associated with senescence driven by DNA damage and 

oxidative stress by analyzing changes in miRNA expression in Ercc1-/- MEFs compared to the 

WT MEFs cultured to late passage in both high and low oxygen conditions. A subset of 

differentially expressed miRNAs was found to be dysregulated in Ercc1-/- MEFs driven to 

senescence compared to non-senescent Ercc1-/- MEFs. Additionally, we demonstrate that several 

miRNAs differentially expressed in the Ercc1-/- MEFs (miR-449a, miR-455*, miR-128, miR-

497, miR-543, miR-450b-3p, miR-872 and miR-10b) were also dysregulated in liver tissues of 

both progeroid Ercc1-/Δ and old WT mice compared to young WT mice. We show that three of 

the above miRNAs (miR-449a, miR-455* and miR-128) were downregulated in kidney tissues 

from Ercc1-/Δ progeroid and WT old mice compared to the young mice. Finally, the regulator of 

miRNA biogenesis, Dicer, was significantly downregulated in late passage MEFs compared to 

early passage and in livers of old WT mice compared to young mice. The identified miRNAs in 

this study may play a critical role in staving off cellular senescence and aging. 
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2.2 MATERIALS AND METHODS 

2.2.1 Animal Care and Experimentation 

All experiments involving mouse tissues and cells were approved by the University of Pittsburgh 

Institutional Animal Care and Use Committee and were in accordance with NIH guidelines for 

humane care of animals. Ercc1-/- and Ercc1-/Δ mice were bred and genotyped as previously 

described [217].  All mice used for tissue miRNA qRT-PCR analysis were in a f1 mixed genetic 

background (FVB/n:C57Bl/6). Twenty-week old progeroid Ercc1-/∆ mice along with age-

matched WT littermates with aged (30 month) WT mice were euthanized by CO2 inhalation and 

tissues were excised and flash-frozen in liquid nitrogen. Three mice of each genotype were used 

for subsequent qRT-PCR analysis. The livers and kidneys were homogenized with a hand-held 

homogenizer (Omni International, Kennesaw, GA, USA) and RNA was extracted using the 

Ultraspec RNA Isolation System (Biotecx, Houston, TX, USA). Following isolation, RNA 

quantity was measured using a Nanodrop (Thermo Fisher Scientific Inc., Waltham, MA, USA). 

RNA quality was assessed by formaldehyde-agarose gel electrophoresis. 

2.2.2 Primary Mouse Embryonic Fibroblasts 

The following primary cells were used: wild-type (WT) isogenic mouse embryonic fibroblasts 

(MEFs) and Ercc1-/- (KO) MEFs derived from 13.5-day embryos with a 50:50 C57Bl/6:FVB/n 

background. Cells were serially passaged at either 3% or 20% O2 to passage 3 or passage 7, 
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pelleted and total RNA extracted using the Ultraspec RNA Isolation System. Two independent 

cell lines were used for microarray and qRT-PCR analysis. 

2.2.3 MicroRNA Microarray 

MicroRNA microarray studies were performed using 100 nanograms of total RNA obtained from 

WT and Ercc1-/- MEFs grown to P3 and P7 in 3% or 20% O2. Two independent cell lines were 

used for each sample and both cell lines were analyzed via microarray. We used the Agilent 

mouse miRNA microarrays (V2) (Agilent Technologies, Santa Clara, CA, USA) according to the 

manufacturer’s instructions. Each microarray contains sixteen to twenty oligonucleotide probes 

for each of the 627 mouse miRNAs and 39 mouse viral miRNAs based on the Sanger database 

version 12. The array contains 281 positive controls consisting of high-signal endogenous 

mouse-specific probes, and 434 negative controls consisting of random sequences that have low 

signal and poor hybridization to mouse RNA. RNA was isolated from MEFs using the Ultraspec 

RNA Isolation System, dephosphorylated with calf intestinal alkaline phosphatase, and then 

denatured with dimethyl sulfoxide. The 3’ ends were then ligated to a Cyanine3-pCp molecule 

using T4 RNA ligase. Labeled RNA was purified using a MicroBio-spin 6 column containing 

Bio-Gel P-6 in Tris buffer (Bio-Rad Laboratories, Inc. Hercules, CA, USA). The labeled RNA 

samples were hybridized to Agilent microarray slides at 55˚C for 20 hours. Following 

hybridization, the slides were washed with Agilent-supplied Gene Expression Wash Buffers 1 

and 2. Slides were immediately scanned with an Agilent Microarray Scanner.  

MicroRNA microarray studies were performed using 100 nanograms of total RNA obtained from 

WT and Ercc1-/- MEFs grown to P3 and P7 in 3% or 20% O2. Two independent cell lines were 
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used for each sample and both cell lines were analyzed via microarray. We used the Agilent 

mouse miRNA microarrays (V2) (Agilent Technologies, Santa Clara, CA, USA) according to the 

manufacturer’s instructions. Each microarray contains sixteen to twenty oligonucleotide probes 

for each of the 627 mouse miRNAs and 39 mouse viral miRNAs based on the Sanger database 

version 12. The array contains 281 positive controls consisting of high-signal endogenous 

mouse-specific probes, and 434 negative controls consisting of random sequences that have low 

signal and poor hybridization to mouse RNA. RNA was isolated from MEFs using the Ultraspec 

RNA Isolation System, dephosphorylated with calf intestinal alkaline phosphatase, and then 

denatured with dimethyl sulfoxide. The 3’ ends were then ligated to a Cyanine3-pCp molecule 

using T4 RNA ligase. Labeled RNA was purified using a MicroBio-spin 6 column containing 

Bio-Gel P-6 in Tris buffer (Bio-Rad Laboratories, Inc. Hercules, CA, USA). The labeled RNA 

samples were hybridized to Agilent microarray slides at 55˚C for 20 hours. Following 

hybridization, the slides were washed with Agilent-supplied Gene Expression Wash Buffers 1 

and 2. Slides were immediately scanned with an Agilent Microarray Scanner.  

2.2.4 Microarray Statistical Analysis 

After scanning, images were processed using Agilent’s Feature Extraction Software, version 

9.5.3. Extracted data were exported into Agilent's GeneSpring GX version 10 and microarray 

data was log2 transformed and normalized to the mean of each array. An unpaired t-test with 

unequal variance was used to identify differentially expressed miRNAs (P< 0.05). We selected 

microRNAs with 2-fold or greater changes for further study. Microarray experiments conform to 

Minimum Information About a Microarray Experiment (MAIME) guidelines and a full data set 
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has been submitted to the National Center for Biotechnology Information (NCBI) Gene 

Expression Omnibus database (GEO). 

2.2.5 Real-Time Quantitative Reverse-Transcriptase Polymerase Chain Reaction (qRT-

PCR) Analysis 

QRT-PCR analysis was performed on total RNA prepared by Ultraspec RNA isolation by using 

a two-step individual Mature Taqman® MicroRNA Assays kit (Applied Biosystems, Foster City, 

CA, USA) and the Real-Time Thermocycler iQ5 (Bio-Rad, Hercules, CA, USA). All qRT-PCR 

assays were performed according to manufacturer’s instructions and miRNA expression levels 

were normalized to snoRNA135. For all experiments, two independent cell lines were used and 

all assays were performed in triplicate. Relative expression was calculated using the 2-ΔΔCT 

method [220]. Welch’s unpaired t test with 95% confidence intervals was performed for 

statistical analysis of all qRT-PCR experiments using Prism software (GraphPad Software, Inc., 

La Jolla, CA, USA). 

Dicer expression in primary MEFs and mouse livers was quantified via qRT-PCR using the 

iScript One-Step RT-PCR Kit with SYBR Green (BioRad) in accordance with the 

manufacturer’s instructions. Dicer mRNA was amplified using the forward primer sequence 5’-

GGAAGCAGCCAACAAAAGAG- 3’ and the reverse primer 5’-TGAGGGTTTTCTCTGCGTC 

T-3’, amplifying a 145-bp region. The annealing temperature for Dicer qRT-PCR reactions was 

50°C. Dicer mRNA levels were normalized to the glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) gene, using the forward primer 5’-AACTTTGGCATT GTGGAAGG-3’ and the 

reverse primer 5’-GGATGCAGGGATGATGTTCT-3’, amplifying a 132-bp region. DNase I-
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treated total RNA (1 µg) was used for each reaction, and all the reactions were performed in 

triplicate. Relative Dicer mRNA expression was calculated using 2-ΔΔCT values [220]. Welch’s 

unpaired t test with 95% confidence intervals was performed for statistical analysis of MEF 

microRNA qRT-PCR experiments. A one-way ANOVA with a Tuckey’s multiple comparison 

test was used for statistical analysis of Dicer mRNA qRT-PCRs in MEFs. A one-way ANOVA 

with a Dunnett’s multiple comparison test was performed on all microRNA qRT-PCRs of liver 

and kidney tissues. All statistical analyses were performed using Prism software (GraphPad 

Software, Inc., La Jolla, CA, USA). 

2.3 RESULTS 

2.3.1 Identification of senescence- and DNA damage-associated miRNAs in Ercc1-/- MEFs 

We performed miRNA microarray analysis using RNA isolated from early (passage 3) and late 

passage (passage 7) WT and Ercc1-/- MEFs to identify miRNAs that may contribute to cellular 

senescence. Ercc1-/- MEFs grow slower than WT MEFs at 20% O2 and senesce prematurely by 

passage 7 [78, 119]. Several markers of cellular senescence, such as reduced proliferation, 

increased senescence-associated β-galactosidase staining, increased γ-H2AX foci, appear at 

earlier passage time points in Ercc1-/- MEFs grown in 20% O2 compared to Ercc1-/- MEFs grown 

in 3% O2 and WT MEFs grown in 20% O2 (Table 3). Growing MEFs at 3% O2 delays the onset 

of senescence due in part to decreased oxidative stress [219]. We compared the miRNA 

expression profiles of Ercc1-/- and WT MEFs grown in low (3%) and high (20%) oxygen to 
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passage 3 (P3) and passage 7 (P7) using mouse microRNA microarrays to discover miRNAs that 

correlate with senescence. We utilized Agilent mouse miRNA microarrays (V2), which probed 

for 627 total murine miRNAs. All microRNAs included in the microarray are listed in Appendix 

A. The microarray design allows for low sample input (100 ng of total RNA) and has a low 

detection limit, with the ability to detect miRNAs in the 1 x 10-9 nanomole range. However, a 

limitation of this screen is that we only identified miRNAs that were available in the Sanger 

miRBase, version 12.0. This database and the updated version of this microarray have since been 

updated to include over 620 additional microRNAs. Therefore, the analysis that we performed 

using the Agilent mouse miRNA microarrays V2 does not include all currently known murine 

microRNAs.  

We focused on miRNAs that were significantly dysregulated, which was defined as ≥2-fold 

change in expression and p ≤.05. A comparison of the miRNA profiles of P3 (early passage) 

Ercc1-/- and congenic WT MEFs grown along with further qRT-PCR validation showed minimal 

differences between the two samples regardless of oxygen tension (data not shown). This was 

not unexpected since the growth properties of Ercc1-/- MEFs are not appreciably different from 

the WT MEFs at this early passage. We next compared the miRNA expression profiles of P7 

Ercc1-/- and WT MEFs of cells grown in either 20% O2 or 3% O2 to examine inherent changes in 

miRNA expression due to genotype. Comparison of P7 Ercc1-/- and WT MEFs grown in 20% O2 

identified one significantly upregulated miRNA, miR-467a, which was over-expressed 2.19 fold 

in P7 Ercc1-/- MEFs compared to WT cells. MiR-467a may be upregulated as a result of a defect 

in DNA repair capacity. Additionally, we identified six downregulated miRNAs (miR-301a, 

miR-326, miR-455*, miR-497, miR-543 and miR-872) in late-passage P7 Ercc1-/- MEFs 

compared to the WT MEFs grown in 3% O2 (Table 4), all of which are possibly microRNAs 
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dysregulated due to DNA damage accumulation. QRT-PCR analysis confirmed downregulation 

of these six miRNAs in Ercc1-/- compared to WT MEFs, although there were differences in the 

fold-change downregulation based on the two approaches (Figure 3). 

 

Table 4: MiRNAs differentially expressed in Ercc1-/- MEFs compared to WT MEFs grown at 3% O2. 

DNA repair-deficient Ercc1-/- primary MEFs were grown at 3% O2 to prevent cellular senescence. Congenic WT 

cells isolated from a littermate embryo were handled in parallel as a control. At passage 7, total RNA was isolated 

and miRNA expression measured by microarray. Significant changes were defined as ≥2-fold and p <.05 as 

determined by Welch’s unpaired t test. 

MicroRNA Fold-change p-value 
mmu-miR-301a -2.24 0.007 
mmu-miR-543 -2.60 0.023 
mmu-miR-326 -3.05 0.029 
mmu-miR-455* -3.23 0.020 
mmu-miR-872 -6.72 0.044 
mmu-miR-497 -6.87 0.002 
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Figure 3: QRT-PCR confirmation of downregulation of six miRNAs identified from the microarray 

experiments in Ercc1-/- MEFs, compared to WT MEFs.  

MiRNA microarray data (Table 4) was validated by qRT-PCR analysis of Ercc1-/- MEFs at P7 compared to WT 

MEFs at P7, grown to 3% O2. WT MEFs at P7 were assigned a value of -1. Six miRNAs identified in the microarray 

were confirmed to be downregulated by qRT-PCR. MiR-455* refers to the less abundant miRNA product derived 

from the miR-455 stem-loop precursor. P-values were calculated using Welch’s t-tests and are indicated by * (p< 

.001) and ** (p< .0001). 

 

 

Three miRNAs (miR-450B-3p, miR-33 and miR-323-3p) were significantly upregulated 

in P7 Ercc1-/- MEFs grown at 20% O2 compared to those grown at 3% O2 (Table 5), which 

examined isogenic senescent vs. non-senescent cells in the presence of high and low oxygen 

conditions. We next compared miRNA expression in P7 vs. P3 Ercc1-/- MEFs grown in 3% 

(Table 6) or 20% O2 (Table 7), which identified miRNAs dysregulated in Ercc1-/- MEFs with 

sequential passaging of cells under different oxidative stress conditions. Fourteen miRNAs were 

significantly upregulated and 22 downregulated in P7 Ercc1-/- MEFs compared to P3 Ercc1-/- 

MEFs grown at 3% O2 (Table 6). One miRNA, miR-24-2*, was upregulated and three miRNAs, 

miR-204, miR-218, miR-455* were downregulated in P7 Ercc1-/- MEFs grown in 20% O2 

 37 

 



compared to P3 Ercc1-/- MEFs (Table 7). MiR-455* was downregulated in late passage cells 

compared to early passage in both analyses. Finally, we compared miRNA expression profiles of 

the most senescent cells in our analysis, P7 Ercc1-/- MEFs grown at 20% O2, to the least 

senescent cells in our analysis, P3 WT MEFs grown at 3% O2. This revealed significant 

upregulation of one miRNA, miR-129-5p, which was increased 603-fold in Ercc1-/- MEFs. 

 

Table 5: MiRNAs differentially expressed in Ercc1-/- MEFs grown at 20% vs. 3% O
2. 

DNA repair-deficient Ercc1-/- primary MEFs were grown at 20% O
2 to induce cellular senescence. A parallel 

culture of the same cells was grown at 3% O
2 to prevent senescence. At passage 7, total RNA was isolated and 

miRNA expression measured by hybridization-based microarray. Shown is the fold difference in expression for 20% 

versus 3% O
2
. Significant changes were defined as ≥2-fold and p <.05 as calculated via Welch’s unpaired t test. 

MicroRNA Fold-change p-value 
mmu-miR-323-3p 2.14 0.003 
mmu-miR-33 2.10 0.001 
mmu-miR-450b-3p 2.06 0.015 
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Table 6: MiRNAs differentially expressed in late vs. early passage Ercc1
-/-

 MEFs grown in 3% O2.  

DNA repair-deficient Ercc1-/- primary MEFs were grown at 3% O2. At passage 3 and 7, total RNA was isolated and 

miRNA expression measured by hybridization-based microarray. Shown is the fold difference in expression in P7 

versus P3 cells. Significant changes were defined as ≥2-fold and p <.05 as determined by Welch’s unpaired t test. 

 

MicroRNA Fold-change p-value MicroRNA Fold-change p-value 

mmu-miR-671-5p 14.3 0.025 mmu-miR-29b* -2.15 0.003 

mmu-miR-1892 12.7 0.041 mmu-miR-449a -2.24 0.043 

mmu-miR-483 12.6 0.020 mmu-miR-455* -2.77 0.004 

mmu-miR-1894-3p 8.46 0.050 mmu-miR-340-3p -2.96 0.036 

mmu-miR-1895 7.28 0.039 mmu-miR-362-5p -3.56 0.038 

mmu-miR-680 6.54 0.023 mmu-miR-675-3p -3.94 0.041 

mmu-miR-721 6.43 0.029 mmu-miR-466a-3p -3.95 0.037 

mmu-miR-129-5p 5.06 0.046 mmu-miR-128 -4.41 0.047 

mmu-miR-1906 3.82 0.006 mmu-miR-497 -5.16 0.048 

mmu-miR-222 3.73 0.034 mmu-miR-362-3p -5.23 0.012 

mmu-miR-320 3.62 0.010 mmu-miR-192 -5.61 0.004 

mmu-miR-290-5p 3.41 0.002 mmu-miR-496 -5.79 0.044 

mmu-miR-22 3.27 0.023 mmu-miR-543 -6.81 0.023 

mmu-miR-877 2.86 0.039 mmu-miR-30e* -8.15 0.016 

   mmu-miR-382* -10.1 0.029 

   mmu-miR-337-3p -11.3 0.049 

   mmu-miR-450b-3p -12.4 0.014 

   mmu-miR-872 -14.7 0.021 

   mmu-miR-369-5p -15.1 0.024 

   mmu-miR-380-3p -15.7 0.048 

   mmu-miR-154* -31.6 0.019 

   mmu-miR-10b -32.5 0.041 

 39 

 



 

Table 7: MiRNAs differentially expressed in late vs. early passage Ercc1
-/-

 MEFs grown in 20% O2.  

DNA repair-deficient Ercc1
-/- 

primary MEFs were grown at 20% O
2
. At passage 3 and 7, total RNA was isolated and 

miRNA expression measured by hybridization-based microarray. Shown is the fold difference in expression in P7 

versus P3 cells. Significant changes were defined as ≥2-fold and p <.05 as calculated via Welch’s unpaired t test. 

MicroRNA Fold-change p-value 

miR-24-2* 3.14 0.028 

miR-455* -3.98 0.036 

miR-218 -10.3 0.032 

miR-204 -13.1 0.022 
 

For further studies, we selected seven upregulated and ten downregulated miRNAs that 

were altered in our microarray comparison from Table 6 for validation by qRT-PCR analysis. 

The microRNAs we selected were those that appeared in several comparisons, indicating that 

these microRNAs are possibly senescence- or DNA damage-associated. This subset of 17 

miRNAs was selected because they are known to have human homologs based on the miRBase 

database [221-224].  Of the seven upregulated miRNAs, three (miR-680, miR-320 and miR-22) 

were confirmed to be upregulated by qRT-PCR analysis (Figure 4A). The other miRNAs showed 

either no significant change or were found to be downregulated as determined by qRT-PCR 

analysis. Ten downregulated miRNAs were confirmed to be downregulated by qRT-PCR 

analysis (Figure 4B). MiR-455*, miR-497 and miR-543 were significantly downregulated in 

Table 4, which compared late passage DNA repair deficient to DNA repair proficient MEFs,  

and Table 6, comparing DNA repair deficient MEFs at early versus late passage, showing the 
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effect of sequential passaging on miRNA expression. This suggests that miR-455*, miR-497 and 

miR-543 may be dysregulated as a result of deficient DNA repair and/or sequential passaging.  

 

Figure 4: QRT-PCR validation of miRNAs identified from the microarray analysis of late passage 

Ercc1-/- MEFs normalized to early passage Ercc1-/- MEFs.  

(A) Three miRNAs (miR-680, mir-320 and miR-22) identified as being upregulated in late Ercc1-/- MEFs compared 

to early passage via microarray (Table 6) were confirmed to be upregulated by qRT-PCR. QRT-PCR expression 

values are relative to Ercc1-/- passage 3 samples, which were normalized to a value of either 1 or -1. (B) Ten 

downregulated miRNAs in P7 Ercc1-/- MEFs from the microarray analysis (Table 6) were confirmed to be 

downregulated by qRT-PCR. MiR-455* refers to the less abundant miRNA product derived from the miR-455 stem-

loop precursor. Expression values are relative to Ercc1-/- passage 3 samples, which were normalized to a value of -1. 

P-values for qRT-PCR data were calculated using Welch’s t-tests and are indicated by * (p < .05), ** (p< .01) and # 

(p< .0001). 
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We also confirmed that miR-467a was overexpressed in P7 Ercc1-/- versus WT MEFs 

grown in 20% O2 using qRT-PCR (Figure 5A) and observed that it was also overexpressed in P7 

versus P3 Ercc1-/- MEFs grown in 20% O2, despite not appearing upregulated in the microarray 

data (Figure 5B). Additionally, because miR-129-5p was the only miRNA dysregulated in the 

comparison of our most senescent to  least senescent cells, we examined expression of this 

miRNA via qRT-PCR and confirmed that it is over-expressed in P7 Ercc1-/- MEFs in 20% O2 

compared to P3 WT MEFs in 3% O2 (Figure 6).  

 

Figure 5: QRT-PCR expression of miR-467a in Passage 3 Ercc1-/- MEFs, Passage 7 WT MEFs and 

Passage 7 Ercc1-/- MEFs grown in 20% O2.  

(A) MiR-467a is upregulated in Ercc1-/- MEFs (KO) grown to Passage 7 (P7) in 20% O2 compared to WT P7 MEFs 

grown to 20% O2. QRT-PCR expression values are relative to WT P7 samples, which were normalized to a value of 

1. (B) MiR-467a is upregulated in Ercc1-/- MEFs (KO) grown to Passage 7 (P7) in 20% O2 compared to Ercc1-/- 

MEFs (KO) grown to Passage 3 in 20% O2. Expression values are relative to Ercc1-/- passage 3 samples, which were 

normalized to a value of 1. All experiments were performed in triplicate and the standard deviation is plotted as 

error bars.  
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Figure 6: QRT-PCR expression of miR-129-5p in Passage 3 WT MEFs grown in 3% O2 and Passage 

7 Ercc1-/- MEFs grown in 20% O2.  

MiR-129-5p is upregulated in late passage senescent Ercc1-/- MEFs (KO P7) grown in 20% O2 compared to WT 

Passage 3 (P3) MEFs grown in 3% O2,which are the least senescent cells that we examined in our microarray 

experiments. QRT-PCR expression values are relative to WT passage 3 MEFs, which were normalized to a value of 

1. All experiments were performed in triplicate and the standard deviation is plotted as error bars. P-values for qRT-

PCR data were calculated using Welch’s t-tests and are indicated by * (p < .05). 

 

As the majority of miRNAs identified as dysregulated in ERCC1-depleted cells and 

tissue or old WT mice were downregulated rather than upregulated, we also measured expression 

of Dicer, which is required for miRNA biogenesis (Figure 7A). Dicer mRNA was reduced 

significantly in late passage Ercc1-/- MEFs, regardless of oxygen percentage (Figure 7A). This 

strongly suggests that downregulation of Dicer may also be in response to the accumulation of 

unrepaired DNA damage.  Notably, levels of Dicer mRNA were also significantly reduced in old 

WT mouse liver compared to tissue from young mice and in late passage MEFs compared to 

early passage (Figure 7B). However, not all microRNAs identified from our microarray were 

downregulated. We identified a representative microRNA from our initial microarray that was 

not significantly changed in expression in non-senescent versus senescent cells, miR-31* (Figure 
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8). MiR-31* demonstrated 1.20-fold upregulation in the array, when comparing late passage 

Ercc1-/- MEFs compared to WT MEFs, all grown in 20% O2. This was below our fold-change 

cut-off of 2, and therefore we determined that the dysregulation of miR-31* was not significant. 

When confirming this finding by qRT-PCR, miR-31* is shown to be expressed at approximately 

the same level in WT and Ercc1-/- MEFs at late passage, grown in 20% O2 (Figure 8). Therefore 

downregulation of numerous miRNAs with senescence and aging may arise as a consequence of 

reduced global miRNA biosynthesis due to reduced Dicer expression. However, as is seen in the 

case of miR-31*, this downregulation is not universal, and some miRNAs do not demonstrate 

any dysregulation in senescent cells.  
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Figure 7: QRT-PCR of Dicer mRNA in primary MEFs and in liver tissues shows reduced expression 

in senescence and aging.  

(A) Dicer mRNA is downregulated in Passage 7 Ercc1-/- (P7 KO) MEFs grown in both 20% O2 and 3% O2. QRT-

PCR expression values are relative to WT Passage 3 (P3 WT) samples, which were normalized to a value of 1. (B) 

QRT-PCR analysis was performed on livers of WT young (20 weeks), progeroid Ercc1-/Δ mice (20 weeks), and WT 

old mice (30 months) to examine Dicer mRNA expression. Dicer mRNA is downregulated significantly in WT Old 

mouse livers compared to WT Young and Ercc1-/Δ livers. The mean of three independent mouse livers for each 

condition is graphed as fold-change expression relative to WT young livers, which were normalized to a value of -1. 

All experiments were performed in triplicate and the standard deviation is plotted as error bars. P-values for MEF 

qRT-PCRs (A) were calculated using one-way ANOVA with post hoc Tuckey’s multiple comparison tests. P-values 

for liver tissues (B) were calculated using one-way ANOVA with a post hoc Dunnett’s multiple comparison test, 

with WT young as the control sample: ** (p < .01), *** (p < .001) and # (p < .0001). 
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Figure 8: MiR-31* shows no change in expression in senescent Ercc1-/- MEFs compared to non-

senescent WT MEFs. 

MiR-31* demonstrates no change in late passage senescent Ercc1-/- MEFs (KO P7) grown in 20% O2 compared to 

late passage WT MEFs (WT P7) grown in 20% O2,which are less senescent due to less accumulated DNA damage. 

QRT-PCR expression values are relative to WT passage 7 MEFs, which were normalized to a value of 1. Microarray 

expression value for this comparison is listed in the graph to the far right. All qRT-PCR experiments were 

performed in triplicate and the standard deviation is plotted as error bars.  
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2.3.2 Senescence-associated miRNAs identified in Ercc1-/- MEFs are downregulated in 

livers of progeroid mice 

The liver undergoes many significant changes during the normal aging process. Liver size 

reduces in general, there are decreases in hepatic blood flow and liver regeneration after partial 

hepatectomy is impaired [225-227]. Hepatocyte nuclei become enlarged and develop polyploidy 

and hepatocyte cytoplasm accumulates lipid droplets [228, 229]. The liver of 20 week-old 

progeroid Ercc1-/Δ mice and 26 month-old WT mice show signs of profound cellular senescence 

and demonstrate increases in lipofuscin and lipid hydroperoxide as well as similar genome-wide 

transcriptional changes [124]. Using liver tissues from Ercc1-/Δ and WT old mice offers a unique 

opportunity to determine if the miRNA identified to correlate with senescence in vitro might play 

a role in senescence and aging in vivo. We analyzed the levels of 13 miRNAs confirmed to be 

dysregulated in P7 Ercc1-/- MEFs compared to P3 Ercc1-/- MEFs (miR-680, miR-320, miR-22, 

miR-449a, miR-455*, miR-675-3p, miR-128, miR-497, miR-543, miR-450b-3p, miR-872, miR-

369-5p and miR-10b) in RNA samples prepared from the livers of WT young (20 weeks), the 

progeroid Ercc1-/Δ mice, and WT old mice (30 months). Several of the microRNAs we selected 

were also dysregulated in late passage Ercc1-/- MEFs compared to late passage WT MEFs (Table 

4). Of the ten miRNAs downregulated in Ercc1-/- MEFs, eight (miR-449a, miR-455*, miR-128, 

miR-497, miR-543, miR-450b-3p, miR-872 and miR-10b) were also downregulated in both the 

progeroid and old WT mouse livers compared to the WT young (20 week) control mouse livers 

(Figure 9). The two remaining miRNAs downregulated in Ercc1-/- MEFs, miR-369-5p and miR-

675-3p, showed no expression changes in Ercc1-/Δ mouse livers (data not shown). Three 

 47 

 



miRNAs (miR-680, miR-320, and miR-22) which were upregulated in P7 compared to P3 Ercc1-

/- MEFs (Table 6) as measured by microarray did not show upregulation in livers from progeroid 

and WT old mice compared to young WT controls as measured by qRT-PCR (data not shown).  

 

 48 

 



Figure 9: QRT-PCR quantification of miRNA identified as down-regulated in the liver of old WT 

mice and progeroid Ercc1-/Δ mice compared to adult WT mice.  

QRT-PCR analysis was performed on livers of WT young (20 weeks), Ercc1-/Δ (20 weeks), and WT old mice (30 

months). (A) MiR-449a. (B) MiR-455*. (C) MiR-128. (D) MiR-497. (E) MiR-543. (F) MiR-450b-3p. (G) MiR-872. 

(H) MiR-10b. All eight miRNAs were downregulated in Ercc1-/Δ progeroid mice and WT old mice compared to WT 

young mice. No RT, no reverse transcriptase added. Three mouse livers are in each condition. The mean of three 

experimental replicates for each sample is graphed as relative to WT young samples, which were normalized to a 

value of -1. The standard deviation is plotted as error bars. P-values were calculated using one-way ANOVA with 

Dunnett’s post hoc test, with WT young as the control sample: * (p < .05), ** (p< .01), *** (p< .001) and # (p< 

.0001). 
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2.3.3 Three senescent-associated miRNAs identified in Ercc1-/- MEFs are also 

downregulated in progeroid mice kidneys 

In addition to severe liver abnormalities, ERCC1-deficient mice also develop significant renal 

dysfunction, as demonstrated by increased proteinuria and creatinine levels [119]. Renal 

histopathology is evident, including dilated renal tubules, nuclear abnormalities and fibrosis 

[213]. We examined RNA prepared from kidneys of young (20 weeks) Ercc1-/Δ and WT mice, 

and old (30 months) WT mice to determine whether any of the aging-associated miRNAs we 

identified in this study were similarly dysregulated in the kidney tissue. Of the 8 downregulated 

miRNAs in Ercc1-/Δ and WT old mouse liver compared to WT young mouse liver (Figure 9), 

three miRNAs (miR-449a, miR-455*, miR-128) were also downregulated in the kidneys of 

progeroid mice compared to WT young mice (Figure 10). Interestingly, these three miRNAs 

were also downregulated in the kidneys of old WT mice compared to the young WT mice 

(Figure 9), further strengthening the conclusion that these miRNAs may be aging-associated.   
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Figure 10: QRT-PCR quantification of miRNA identified as down-regulated in the kidney of old WT 

and progeroid Ercc1-/Δ mice compared to adult WT kidney.  

QRT-PCR analysis was performed on kidneys of WT young (20 weeks), Ercc1-/Δ (20 weeks), and WT old mice (30 

months). (A) MiR-449a. (B) MiR-455*. (C) MiR-128. All three miRNAs identified in the microarray were 

significantly downregulated in kidney tissue of Ercc1-/Δ progeroid mice and old mice compared to WT young mice. 

No RT, no reverse transcriptase added. Three mouse kidneys are in each condition. The mean of three experimental 

replicates for each sample is graphed as relative to WT young samples, which were normalized to a value of -1. The 

standard deviation is plotted as error bars. P-values were calculated using one-way ANOVA with Dunnett’s post hoc 

test, with WT young as the control sample: *** (p< .001) and # (p< .0001). 
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2.4 DISCUSSION 

This study is the first characterization of miRNA profiles in the mouse model of the XFE 

Progeroid Syndrome, enabling identification of miRNAs that are dysregulated as a consequence 

of cellular senescence and aging driven by endogenous DNA damage. We also compared the 

expression of differentially expressed miRNAs in liver and kidney tissues of Ercc1-/Δ and WT 

old mice to those of young WT controls and found similarities between the progeroid and old 

mice.  Ercc1-/Δ mice have been established as a useful model for studying diseases of aging such 

as peripheral neuropathy, osteoporosis, intervertebral disk degeneration, and sarcopenia [122, 

123, 230]. These previous studies showed that the rapid aging of Ercc1-/Δ mice is very similar to 

that of normally aged mice. The mice used in this study are genetically identical with the 

exception of the Ercc1 mutation and are all in an f1 background (50:50 mix of C57Bl/6 and 

FVB).  

Here we show that several downregulated miRNAs in the ERCC1-deficient mouse model 

of progeria are also downregulated during normal murine aging. Both the liver and kidney of 

progeroid ERCC1-deficient mice and old WT mice show aging-related functional and 

degenerative changes as well as profound cellular senescence [124, 231]. Eight miRNAs (miR-

449a, miR-455*, miR-128, miR-497, miR-543, miR-450b-3p, miR-872 and miR-10b) are 

significantly downregulated in the livers of progeroid Ercc1-/Δ and naturally aged mice compared 

to young adult mice (Figure 9). Three of these miRNAs (miR-128, miR-449a and miR-455*) 

were also downregulated in the kidneys of progeroid and WT old mouse compared to the young 
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WT mouse kidneys (Figure 10). These data strongly support the conclusion that these miRNAs 

are dysregulated due to accelerated and natural aging. The combination of in vitro and in vivo 

data strongly point to the conclusion that these miRNAs play a role in driving cellular 

senescence and aging, or are powerful biomarkers of these physiological changes. 

Previously confirmed gene targets of the miRNAs identified in this study that are linked 

to cellular senescence and aging (miR-449a, miR-455*, miR-128, miR-497, miR-543, miR-

450b-3p, miR-872 and miR-10b) are listed in Table 8. Several of the 43 gene targets such as 

Sirt1, Bcl2, Sod1, and Myc are involved in cell cycle control and cellular stress responses. Genes 

associated with cellular senescence as well as p53 downstream targets (Ccnd1, Cdk6) are also 

target genes. This list of potential miRNA targets is consistent with a possible role of these 

miRNAs in cellular senescence and aging.  

Table 8: Experimentally validated target genes for miRNAs identified in this study.  

3’-UTR homology between human and mouse gene orthologs was determined using Targetscan 6.2 [232]. 

miRNA Target gene(s) References 
miR-10b Bcl2l11, Hoxd10, Tfap2c [233] 
miR-128 Abcc5,  Bax, Bmi1, E2F3a, E2f5, Hoxa10,  Ntrk3, Reln, 

Ret, Rps6kb1 
[234-238] 

miR-449a Bcl2, Ccnd1, Ccne2, Cdc25a, Cdk6, Dll1, E2f2, E2f3, 
E2f5, Gmnn, Hdac1, Hnf4a, Lef1, Met, Myc, Mycn, 
Notch1, Sirt1 

[239] 

miR-450b-3p No confirmed mRNA targets  
miR-455* No confirmed mRNA targets  
miR-497 Bcl2, Bcl2l2, Ccnd1, Ccnd2, Igf1r, Map2k1, Raf1 [240-242] 
miR-543 Twist1 [243] 
miR-872 Sod1 [244] 

 

Three miRNAs (miR-128, miR-449a and miR-455*) are downregulated in late passage 

MEFs as well as liver and kidney tissues of both progeroid Ercc1-/Δ and WT old mice. MiR-128 

is known to promote cell survival [245]. MiR-449a targets critical cell cycle regulatory proteins 
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such as Cyclin D1 [246, 247]. Interestingly, it was shown that high Cyclin D1 expression is 

observed in senescent cells exhibiting a “pseudo-DNA damage response” and that Cyclin D1 is 

overexpressed in fibroblasts undergoing replicative senescence [248, 249]. These observations 

are in line with our results that miR-449a is downregulated in senescent cells. The transcription 

factor, Hnf4a, is a target of miR-449a in liver cells [250]. Hnf4a is essential to liver development 

and maintenance, and when suppressed, it can cause epigenetic changes that lead to increased 

incidence of hepatocellular cancer [251]. Reduced expression of miR-449 in aging liver would 

increase Hnf4a expression, possibly preventing hepatocyte transformation.  

MiR-10b, which we detected as significantly downregulated in senescent MEFs and aged 

liver, is upregulated in breast cancer and gliomas and its expression closely correlates with tumor 

cell metastatic potential [233]. It is possible that dysregulation of one or more of the above 

miRNAs may result in reduced cell growth and increased cellular senescence through their 

regulation of target genes. Less is known about the cellular targets and function of miR-450b-3p, 

miR-455*, miR-543 and miR-872 (all downregulated in our studies).  

Since the majority of differentially expressed miRNA identified in this study were 

downregulated in senescence and aging, we examined Dicer expression and found it to be 

downregulated in senescent MEFs (Figure 7A). Dicer protein and mRNA transcript were 

significantly downregulated in normally aged mice white adipose tissues and elderly human 

preadipocytes [252]. A recent study examining early passage versus senescent human umbilical 

vein endothelial cells demonstrated that senescent cells had about 2-fold downregulation in Dicer 

expression, further implicating a role for Dicer downregulation in senescence and aging [164]. 

The Zmpste24-/- mouse model of Hutchinson-Gilford progeria demonstrates miR-29b is 

upregulated in liver and muscle of both progeroid and normally aged mice [176]. MiR-29b is a 
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positive regulator of the p53-mediated DNA damage response. The paper by Ugalde et al. was 

the first to use a progeroid mouse models in identifying miRNAs that regulate DNA repair 

processes and senescence. Another study used the mouse and Caenorhabditis elegans models of 

the progeroid disease Werner Syndrome to identify miR-124 modulator of reactive oxygen 

species and ATP production [177]. Our study further underscores the utility of rapid aging 

mouse models to study miRNA dysregulation in aging and cellular senescence. We have used a 

progeroid model of endogenous DNA damage accumulation to identify miRNA dysregulation 

common to both the Ercc1-deficient mouse model of progeria and normal mouse aging in liver 

and kidney tissues.  

In summary, we identified several miRNAs that are similarly dysregulated in senescent 

primary MEFs and senescent tissues of progeroid and naturally aged mice (miR-449a, miR-455*, 

miR-128, miR-497, miR-543, miR-450b-3p, miR-872 and miR-10b). We have shown that Dicer 

expression is downregulated in senescence induced by genotoxic stress, and that the miRNA 

downregulation that we observe in this study could be a consequence of global miRNA 

downregulation. These miRNA are promising as biomarkers of aging and factors that may be 

critical for preventing cell senescence and aging-related degenerative changes in response to 

genotoxic stress. 
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3.0  MICRORNA-128A MODULATES IL-6, A COMPONENT OF THE 

SENESCENCE-ASSOCIATED SECRETORY PHENOTYPE 
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3.1 INTRODUCTION 

Frailty, a geriatric syndrome characterized by decreased physiologic reserve and resistance to 

stress, exhibits increased inflammatory markers, particularly pro-inflammatory cytokines such as  

interleukin-6 (IL-6) [253, 254]. Function of the immune system declines with increasing age and 

it has diminished capacity to fight infections, mount new immune responses, prevent the creation 

of auto-antibodies, and to perform immune surveillance for cancer cells [255-258]. Rat 

neutrophil functionality decreases with age and results in reduced ability to produce superoxide 

bursts, which is critical for intracellular killing of ingested microorganisms [259]. Dendritic cells 

(DCs) from healthy older adults demonstrate elevated basal levels of cytokine production 

compared to DCs from young adults [260]. Aged DCs also demonstrate reduced function of toll-

like receptor (TLR) family proteins, and have diminished responses to immunization with the 

influenza vaccine [260]. Aged murine macrophages produce significantly less nitric oxide 

compared to young mouse macrophages [261]. Following thymic involution, older individuals 

experience decreased T cell production and significantly reduced T cell receptor diversity 

compared to healthy young controls [262]. With age, T cells progressively lose CD28, a critical 

co-stimulatory marker required for T cell activation [263]. Aged human B cells have reduced 

antibody diversity and demonstrate higher incidence of auto-antibody production [264]. 

Collectively, this age-associated dysregulation of both innate and adaptive immune processes is 

termed “immune senescence.” Immune senescence leaves elderly individuals exquisitely 

sensitive to infections, either via re-emergence of latent infections or infection with opportunistic 

pathogens.  
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The gradual development of age-related immune system imbalance can lead to chronic 

inflammation, or inflammaging,. Inflammatory mediators prevent infection in young organisms 

however, aging associated dysregulation of immune cells pre-disposes the older organism to 

diseases caused by chronic low-grade inflammation [265]. Inflammaging is a major contributor 

to the pathogenesis of Alzheimer’s disease and cardiovascular disease, both of which have an 

increase in incidence with age [266, 267]. The expression of Interleukin-10 (IL-10), an anti-

inflammatory cytokine, is reduced with age, further exacerbating the chronic low-grade 

inflammation of aging [268]. Several driving factors of inflammaging have been proposed, 

including age-associated increases in adipocytes, decreased sex steroid production and persistent 

herpes virus infections [269, 270]. Interestingly, IL-6 was not observed to be increased with 

aging in centenarians and in families with longevity [271, 272]. Approximately 20% of the 

participants in the Cardiovascular Healthy All Star Study, with median age of 86 years, 

demonstrated doubling of serum IL-6 over the study period and these participants had a higher 

risk of cognitive or physical impairment and mortality [273]. 

IL-6 demonstrates increased expression in older adults as well as in late-life diseases such 

as atherosclerosis and osteoporosis [274, 275]. IL-6 production is increased in B cells of patients 

with Multiple Sclerosis compared to healthy controls and depletion of IL-6 over-producing B 

cells leads to reduced disease severity in a mouse model of autoimmune encephalitis [276]. 

Many functions have been attributed to IL-6 depending on the cellular context and IL-6 is 

produced by many cell types, including adipocytes, monocytes, fibroblasts, hepatocytes and 

endothelial cells [277-281]. Approximately one-fourth of circulating IL-6 is produced by 

adipocytes, and increased circulating IL-6 can induce insulin resistance and stimulate 

hepatocytes to increase production of acute phase proteins such as C-reactive protein and 
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fibrinogen [277, 282-284]. IL-6 also acts as a growth factor for tumor cells, particularly renal cell 

carcinoma and multiple myeloma [285, 286]. Total cellular IL-6 in non-activated cells is usually 

in the range of pg/ml and in activated cells it increases approximately 1,000-fold to the ng/ml 

range [287].  

In the context of cellular senescence, IL-6 functions as a key mediator of the senescence-

associated secretory phenotype, acting in a paracrine manner on the microenvironment [288].  

IL-6 expression increases in response to nuclear factor-kappa B (NF-κB) activation that occurs 

from activation of DNA repair pathways or oncogene-induced senescence [72, 289, 290]. NF-κB 

is a transcription factor that responds to a variety of environmental changes and was first 

characterized as an activator of inflammatory genes [291, 292]. In addition to its role in pro-

inflammatory pathways, NF-κB is also involved in regulating embryonic development, apoptosis 

and proliferation [293-295]. In mammals, NF-κB consists of five different members that form 

homodimers or heterodimers: RelA/p65, RelB, c-Rel, p105/p50 and p100/p52 [296]. When 

inactive, NF-κB is bound to cytosolic inhibitory (IκB) proteins. Following activation, IκB 

proteins are phosphorylated by IκB-specific kinases (IKKα and IKKβ) and degraded in the 

proteasome, resulting in NF-κB translocation to the nucleus [297-299]. Once in the nucleus, NF-

κB binds to specific DNA sequences in the promoter regions of pro-inflammatory genes such as 

IL-6, C-reactive protein and cyclo-oxygenase-2 [300-302]. Activation of NF-κB can be induced 

by upstream pro-inflammatory signals, such as bacterial lipopolysaccharide, IL-1, tumor necrosis 

factor alpha (TNF-α), or genotoxic stress [303-306].  

NF-κB is a transcription factor that contributes to many of the changes observed in 

inflammaging. Young keratinocytes undergo premature senescence when NF-κB is 

overexpressed [307]. This NF-κB induced premature senescence was found to be mediated by 

 59 

 



manganese superoxide dismutase, which led to increased cellular H2O2 and reactive oxygen 

species generation [307]. Tissue atrophy, which increases in aging organisms, is mediated by 

increased NF-kB signaling [308, 309].  

NF-kB is also upregulated in response to DNA damage signaling, via ATM 

phosphorylation of NEMO, a regulator of IKK [310-312]. Other genotoxic stresses, such as 

oxidative stress and ultraviolet light damage can activate NF-kB signaling [313, 314]. 

Furthermore, NF-kB signaling mediates the effects of the senescence-associated secretory 

phenotype [315]. Increased nuclear localization of the p52 and p65 proteins was observed in 

aged rat livers, with changes in inhibitory IkB complexes or IKK activation, further implying 

that there is an age-associated increase in NF-kB gene targets [316].  A meta-analysis of several 

studies examining gene expression changes in aging mice, rats and humans showed that 

inflammation and immune response genes were highly overexpressed [317]. Genes associated 

with longevity, such as Sirtuin 1 (SIRT1), Sirtuin 6 (SIRT6) and the Foxo3a transcription factor, 

are able to suppress overactive NF-kB signaling [318-320].  Collectively, these data suggest that 

NF-kB signaling and its pro-inflammatory downstream targets are overexpressed in aging 

tissues. 

A recent paper examined NF-κB signaling in wild type old mice (2 years old), Ercc1-/Δ 

mice (3 months old) and Ercc1-/- mice (21 days old) and found that in kidney, muscle, pancreas, 

and liver tissue, there was a significant upregulation of NF-κB [78]. When NF-κB signaling was 

reduced, either by use of pharmacologic inhibitors or by genetically depleting p65, there was 

delayed onset of aging-associated symptoms, namely sarcopenia, kyphosis, urinary incontinence, 

osteoporosis and ocular impairment [78]. Histologically, there was a reduction of liver steatosis, 

glomerulosclerosis and renal protein cast formation as well as a reduction of the 
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neurodegeneration marker glial fibrillary acidic protein, all of which are typically increased in 

aging tissues [78, 321-323]. Furthermore, the cytokine IL-6 was shown to be significantly 

upregulated at the mRNA level in bone marrow stromal cells from Ercc1-/Δ mice compared to 

BMSC derived from WT old mice [324]. Also, IL-6 is elevated in serum of Ercc1-/Δ mice 

compared to age-matched WT animals [324]. This observed serum IL-6 upregulation is 

abrogated in Ercc1-/Δ mice with deficient NF-κB signaling, either via pharmacological inhibition 

or genetic mutation (p65 deficiency) [324].  

Non-coding RNAs, particularly miR-146a/b, have been identified as post-transcriptional 

regulators of inflammatory pathways dysregulated in aging and senescence. MiR-146a/b is 

upregulated by NF-kB signaling and targets TNF receptor-associated factor 6 (TRAF6) and 

interleukin-1 receptor-associated kinase 1 (IRAK1), both of which are involved in upregulation 

of NF-kB [159]. MiR-146a/b is therefore involved in a NF-kB negative feedback loop, allowing 

for fine-tuned modulation of NF-kB activation. Having previously identified senescence-

associated microRNAs in the XFE Progeroid Syndrome and the Ercc1-deficient mouse modeling 

this disease, we hypothesize that these downregulated miRNAs (miR-128a, miR-449, miR-455*) 

may target downstream components of the NF-kB signaling pathway, particularly those involved 

in the SASP response, all of which are upregulated in senescence. Our results show that miR-128 

expression is inversely correlated with IL-6 mRNA expression in livers and kidneys of Ercc1 

progeroid syndrome mice and WT old mice and that modulating expression of miR-128 in 

fibroblasts leads to changes in expression of IL-6 mRNA and miR-146a, two major components 

of the SASP. 
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3.2 MATERIALS AND METHODS 

3.2.1 Cell Culture and Transfections 

Wild-type (WT) isogenic mouse embryonic fibroblasts (MEFs) derived from 13.5-day embryos 

with a 50:50 C57Bl/6:FVB/n background were used for transfections. Cells were grown in 50:50 

F-10 media (Gibco, Grand Island, NY, USA) and Dulbecco’s modified Eagle’s medium 

(DMEM) (Lonza, Walkersville, MD, USA) and supplemented with 10% fetal bovine serum, 1% 

penicillin/streptomycin and 2% Non-essential amino acids, at 37 °C in the presence of 20% O2 

and 5% CO2. NIH3T3 murine fibroblasts were grown in DMEM supplemented with 10% calf 

serum, 1% penicillin/streptomycin and 2% L-glutamine, and were grown at 37 °C in the presence 

of 20% O2 and 5% CO2.  

For transfections, 4 x 104 WT MEFs or 2 x 104 NIH3T3 cells were seeded in 6-well 

plates 24 hours prior to transfection in antibiotic-free media. The next day, cells were transfected 

with 50 nM pre-miR-128 or 50 nM anti-miR-128 (Applied Biosystems, Foster City, CA, USA). 

Transfections were performed using RNAiMAX (Invitrogen, Carlsbad, CA, USA) and Opti-

MEM (Gibco). A FAM-labeled negative control pre-miR (Applied Biosystems) was used as a 

negative control to measure transfection efficiency. Cells were harvested 72 hours following 

transfection.  
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3.2.2 RNA Isolation 

RNA was extracted using the Ultraspec RNA Isolation System (Biotecx, Houston, TX, USA), 

following manufacturer’s instructions. Following isolation, RNA quantity was measured using a 

Nanodrop (Thermo Fisher Scientific Inc., Waltham, MA, USA). 

3.2.3 MicroRNA Quantification by Quantitative Real Time RT-PCR 

QRT-PCR analysis was performed on total RNA to confirm miRNA overexpression or knock-

down using a two-step individual Mature Taqman® MicroRNA Assays kit (Applied Biosystems) 

and the Real-Time Thermocycler iQ5 (Bio-Rad, Hercules, CA, USA). All qRT-PCR assays were 

performed according to manufacturer’s instructions and miRNA expression levels were 

normalized to snoRNA135. For all experiments, two independent cell lines were used and all 

assays were performed in triplicate. Relative expression was calculated using the 2-ΔΔCT method 

[220]. Welch’s unpaired t test with 95% confidence intervals was performed for statistical 

analysis of all qRT-PCR experiments using Prism software (GraphPad Software, Inc., La Jolla, 

CA, USA). 

Interleukin-6 (IL-6), p16 and Bax expression in primary MEFs, NIH3T3 cells, mouse 

livers and kidneys was quantified via qRT-PCR using the iScript One-Step RT-PCR Kit with 

SYBR Green (BioRad) in accordance with the manufacturer’s instructions. Bax mRNA was 

amplified using the forward primer sequence 5’-GAGACACCTGAGCTGACCTT-3’ and the 

reverse primer sequence 5’-CCATATTGCTGTCCAGTTCATC-3’, amplifying a 103 bp region. 

The annealing temperature for Bax qRT-PCR was 60°C. IL-6 mRNA was amplified using the 
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forward primer sequence 5’-CCGGAGAGGAGACTTCACAG-3’ and the reverse primer 5’-

TCCACGATTTCCCAGAGAAC -3’, amplifying a 102 bp region. The annealing temperature 

for the IL-6 qRT-PCR was 55°C. P16 mRNA was amplified using the forward primer sequence 

5’-AACTCGAGGAGAGCCATCTG-3’ and the reverse primer 5’-GGGGTACGACCGAAA 

GAGTT-3’. The annealing temperature for p16 qRT-PCR was 50°C. Bax, p16 and IL-6 mRNA 

levels were normalized to the glyceraldehyde-3-phosphate dehydrogenase (GAPDH) gene, using 

the forward primer 5’-AACTTTGGCATTGTGGAAGG-3’ and the reverse primer 5’-GGA 

TGCAGGGATGATGTTCT-3’, amplifying a 132-bp region. DNase I-treated total RNA (1 µg) 

was used for each reaction, and all the reactions were performed in triplicate. Relative IL-6 

mRNA expression was calculated using 2-ΔΔCT values [220]. Welch’s unpaired t test with 95% 

confidence intervals was performed for statistical analysis of all post-transfection qRT-PCR 

experiments. A one-way ANOVA with a Dunnett’s multiple comparison test was performed on 

IL-6 and Bax qRT-PCRs of liver and kidney tissues. All statistical analyses were performed 

using Prism software (GraphPad Software, Inc., La Jolla, CA, USA). 
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3.3 RESULTS 

3.3.1 Progeroid Ercc1-/Δ and WT old mice tissues are associated with increased IL-6 

mRNA expression 

One microRNA has the potential to target many genes, which makes identifying gene targets for 

miRNAs challenging [134]. The many in silico miRNA target prediction programs rely on 

conservation of seed sequence binding sites in mRNA 3’-UTR as well as on thermodynamic 

principles.  The context of the binding site, such as location within the 3’UTR and neighboring 

sequences, can also impart certain sites with more effective mRNA targeting [325, 326]. 

Focusing on the three miRNAs that were downregulated in both liver and kidney tissues of 

Ercc1-/Δ progeroid and WT old mice relative to young mice, miR-128, miR-449 and miR-455*, 

we identified components of the senescence-associated secretory phenotype that contain 

potential binding sites for these three miRNAs in their 3’-UTRs (Table 9). We focused on IL-6, 

one of the key cytokines produced in the senescence-associated secretory phenotype (SASP). We 

found an increase in IL-6 mRNA in WT old mice livers (Figure 11A) and in Ercc1-/Δ kidneys 

(Figure 11B) compared to WT young mouse tissues. Although both of these tissues have been 

shown to have increased cellular senescence markers by other groups, the differences observed 

in IL-6 mRNA expression of liver and kidney tissues may be due to different mechanisms of 

aging [124, 231]. Liver and kidney tissues of WT old mice and Ercc1-/Δ mice  demonstrate 

significant miR-128 downregulation via qRT-PCR analysis (Figures 9C and 10C). Using data 
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from the miRNA target database TargetScan, we found that the murine IL-6 3’-UTR contains 

one binding site for miR-128 (Figure 12), and was therefore considered a possible target of this 

miRNA for further study [232]. The human IL-6 3’-UTR does not contain a miR-128 binding 

site.  

We first confirmed that the Bcl-2-associated X protein (Bax), a previously identified 

target of miR-128, is upregulated in livers (Figure 13A) and kidneys (Figure 13B) from Ercc1-/Δ 

and WT old mice [235]. Previous studies overexpressing miR-128 in human embryonic kidney 

cells and lung-derived cells induces apoptosis, cell cycle changes and increased ROS production 

[235]. These studies demonstrated a reduction of Bax at both mRNA and protein levels [235]. 

Confirming Bax upregulation in liver and kidney tissues showed that downregulation of miR-128 

in tissues has functional consequences in vivo by upregulating known miR-128 targets.  

 
Table 9: Identification of miRNAs that target murine SASP components 

Senescence-associated miRNAs identified in our study that target murine SASP components [232, 327] 

SASP Factor 3’UTR binding site 
IL-6 miR-128 
KC/GROα/CXCL1 miR-128 
Tnfrsf1b miR-128, miR-449a 
IL-1b miR-128 
MCP1/CCL2 miR-128 
IGFBP-3 miR-449a 
Eotaxin/CCL11 miR-128 
VEGFa miR-449a 
VEGFb miR-128 
VEGFc miR-128 
CCL1 miR-449a 
CCL27a miR-128 
IL-1a miR-128 
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Figure 11: Ercc1-deficient mouse liver and kidney tissues demonstrate increased IL-6 mRNA 

expression 

IL-6 qRT-PCR analysis was performed on tissues of WT young (20 weeks), Ercc1-/Δ (20 weeks), and WT old mice 

(30 months). (A) Livers. (B) Kidneys. IL-6 was upregulated in Ercc1-/Δ progeroid mice and WT old mice compared 

to WT young mice. No RT, no reverse transcriptase added. Three mouse livers were used in each experiment. The 

mean of three experimental replicates for each sample is graphed as relative to WT young samples, which were 

normalized to a value of 1. The standard deviation is plotted as error bars. P-values were calculated using one-way 

ANOVA with a post hoc Dunnett’s multiple comparison test, with WT young as the control sample: * (p< .05) and 

** (p< .01). 

 

 

Figure 12: IL-6 3'UTR demonstrates one miR-128 binding site. 

The miR-128 binding site contains perfect complementarity in the seed sequence (nucleotides 2 – 8, in red). 

Sequence obtained from TargetScan 6.2 [232]. 
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Figure 13: Bax, a confirmed target of miR-128, is upregulated in Ercc1-deficient mouse livers and 

kidneys. 

Bax mRNA, a previously confirmed target of miR-128 [235], was upregulated in livers and kidneys from Ercc1-/Δ 

progeroid and WT old mice compared to WT young mice. QRT-PCR analysis was performed on (A) livers and (B) 

kidneys of WT young (20 weeks), Ercc1-/Δ (20 weeks), and WT old mice (30 months). No RT, no reverse 

transcriptase added. Three mouse livers and kidneys were used in each experiment. The mean of three experimental 

replicates for each sample is graphed as relative to WT young samples, which were normalized to a value of 1. The 

standard deviation is plotted as error bars. P-values were calculated using one-way ANOVA with a post hoc 

Dunnett’s multiple comparison test, with WT young as the control sample: * (p< .05). 
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3.3.2 MiR-128 knock-down in NIH3T3 cells results in increased IL-6 mRNA 

We next performed functional studies with miRNA inhibitors (anti-miRs) for miR-128 in 

NIH3T3 fibroblasts. NIH3T3 mouse embryonic fibroblast cell lines were used because knock-

down of miR-128 in WT MEFs proved difficult to quantify via qRT-PCR analysis (data not 

shown). Transfecting NIH3T3 fibroblasts with 50 nM of non-targeting Cy3 anti-miR and 

subsequently performing flow cytometry showed that the transfection efficiency was 

approximately 90% (data not shown). Next, we transfected NIH3T3 cells with 50 nM of either 

non-targeting FAM labeled anti-miR or 50 nM of anti-miR-128. Seventy-two hours post-

transfection, RNA was isolated and miR-128 knock-down was quantified via qRT-PCR. MiR-

128 expression was reduced by approximately 80% (Figure 14A). In the cells with miR-128 

knock-down, IL-6 mRNA was significantly upregulated by over 30% (Figure 14B).  
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Figure 14: MiR-128 is significantly knocked-down in NIH3T3 fibroblasts and results in upregulation 

of IL-6 mRNA.  

(A) MiR-128 was confirmed to be significantly knocked-down by transfecting 50 nM anti-miR-128 into NIH3T3 

fibroblasts for 72 hours. (B) IL-6 mRNA expression was significantly upregulated in cells that had reduced miR-128 

expression. No RT, no reverse transcriptase added. The mean of three experimental replicates for each sample is 

graphed as relative to FAM 50 nM transfection, which was normalized to a value of 1. The standard deviation is 

plotted as error bars. P-values were calculated comparing samples to FAM 50 nM using Welch’s t-tests and are 

indicated by * (p < .05) and *** (p< .001). 
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3.3.3 MiR-128 knock-down in NIH3T3 cells results in increased miR-146a and p16 

mRNA expression 

Due to the consistent upregulation of IL-6 following miR-128 knock-down, we next tested 

whether the levels of a miRNA component of SASP, miR-146a, are also increased. MiR-146a 

demonstrates robust expression in senescent fibroblast and endothelial cells, and its expression 

increases approximately 12 days following treatment with DNA damaging agents, oxidative 

stress or oncogene expression [75, 81]. Interestingly, increased secretion of SASP components is 

observed within 4 days following DNA damage, indicating that miR-146a upregulation requires 

a robust SASP response to be established first [71, 288]. 

MiR-146a expression was quantified via qRT-PCR 72 hours following miR-128 knock-

down (Figure 15). MiR-146a was significantly upregulated in NIH3T3 cells with miR-128 

knock-down, further indicating a connection between upregulation of SASP components, namely 

IL-6, and upregulation of miR-146a promoter expression. P16, a key component that is 

significantly upregulated in cellular senescence, was also upregulated after miR-128 knock-

down, further suggesting that reduced levels of miR-128 may promote cellular senescence 

(Figure 16).  Notably, in our studies, we did not see increased staining of senescence-associated 

beta-galactosidase within the 72 hour time frame that we examined (data not shown). However a 

limitation to our studies is that we did not examine cellular changes beyond 72 hours post-

transfection.   
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Figure 15: MiR-128 knock-down in murine fibroblasts results in upregulation of miR-146a 

QRT-PCR analysis of miR-146a was performed in NIH3T3 fibroblasts with transient miR-128 knock-down. No RT, 

no reverse transcriptase added. The mean of three experimental replicates for each sample is graphed as relative to 

FAM 50 nM transfection, which was normalized to a value of 1. The standard deviation is plotted as error bars. P-

values were calculated comparing samples to FAM 50 nM transfection using Welch’s t-tests and are indicated by * 

(p < .05). 

 

Figure 16: MiR-128 knock-down increases p16, a marker of cellular senescence. 

QRT-PCR analysis of p16 was performed in NIH3T3 fibroblasts with transient miR-128 knock-down. No RT, no 

reverse transcriptase added. The mean of three experimental replicates for each sample is graphed as relative to 

FAM 50 nM transfection, which was normalized to a value of 1. The standard deviation is plotted as error bars.  
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3.3.4 MiR-128 over-expression in WT MEFs results in reduced IL-6 and miR-146a 

expression 

We next over-expressed miR-128 in WT MEFs (Passage 7) that were grown in 20% O2, to 

examine whether changes in IL-6 mRNA expression were directly mediated by miR-128. 

Seventy-two hours post-transfection with miR-128 precursor (pre-miR-128), we harvested MEFs 

and isolated RNA. MiR-128 was confirmed to be significantly overexpressed via qRT-PCR 

(Figure 17A) and IL-6 mRNA was found to be downregulated (Figure 17B). Interestingly, miR-

146a levels were also significantly downregulated upon miR-128 over-expression as 

demonstrated by qRT-PCR (Figure 17C). 
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Figure 17: MiR-128 over-expression in WT MEFs reduces expression of IL-6 mRNA and miR-146a. 

QRT-PCR analysis of miR-128, IL-6 and miR-146a was performed in WT P7 MEFs with transient miR-128 over-

expression. No RT, no reverse transcriptase added. The mean of three experimental replicates for each sample is 

graphed as relative to WT young samples, which were normalized to a value of 1. The standard deviation is plotted 

as error bars. P-values were calculated comparing samples to FAM 50 nM using Welch’s t-tests and are indicated by 

* (p < .05) and # (p< .0001). 
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3.4 DISCUSSION  

We have shown that miR-128 is a senescence-associated microRNA that has the capacity to 

modulate several SASP components: IL-6 and miR-146a as well as the senescence-associated 

marker p16. The regulation that miR-128 may have IL-6 has not yet been confirmed to be 

directly through interactions with the IL-6 3’-UTR, but this  can be shown with luciferase-based 

assays to see if there is direct binding of miR-128 to the IL-6 3’-UTR. Interestingly, liver tissues 

of wild type young, wild type old and progeroid Ercc1-/Δ mice demonstrated that IL-6 mRNA 

expression was highest in WT old mice (Figure 11A), while IL-6 mRNA expression was highest 

in kidneys from Ercc1-/Δ mice (Figure 11B). This result is likely due to inherent differences in 

the biology of aging for liver and kidney tissues. A recent paper analyzed accumulation of a 

particular type of DNA damage, 8,5’-cyclopurine-2’-deoxynucleosides (cPu) in liver and kidney 

of Ercc1-deficient mice and compared them to age-matched WT mice tissues [218]. The authors 

showed that there is an overall two-fold higher amount of cPu lesions in liver tissues compared 

to kidney tissues of Ercc1-/Δ mice [218]. Furthermore, the authors also showed that while Ercc1-

/Δ mouse livers developed significantly more cPu lesions compared to WT aged mice livers, 

Ercc1-/Δ mouse kidneys develop approximately the same amount of cPu lesions as WT aged 

mouse kidneys [218]. This biological difference in DNA damage burden in liver and kidney 

tissues could also result in differences in IL-6/STAT3 pathway activation, leading to differences 

in IL-6 transcription[328].  
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MiR-128 is a conserved microRNA among mammals and is encoded by two genes, miR-

128-1 and miR-128-2. The murine miR-128-1 transcript is encoded in an exon in the R3H 

domain containing 1 (R3hdm1) gene on chromosome 1and the miR-128-2 transcript is encoded 

in an exon in the gene cyclic AMP-regulated phosphoprotein, 21 (Arpp21) on chromosome 9 

[329]. Both of these precursor transcripts are processed into the same mature miRNA, miR-128 

[329]. Like many microRNAs, miR-128 appears to have different functions depending on the 

cell type. MiR-128 expression is upregulated in endometrial cancers, but was shown to be 

downregulated in glioblastomas [330, 331]. A recent study identified two components of the 

Polycomb Repressor Complex (PRC) in glioma stem cells, B lymphoma Mo-MLV insertion 

region 1 (BMI1) and suppressor of zeste 12 (SUZ12), as targets of miR-128. PRC components 

are commonly upregulated in glioblastoma multiforme, and concomitant miR-128 suppression is 

also observed [332]. The diversity of function of miR-128 is further suggested by a recent 

finding that miR-128 is one of the most commonly identified miRNAs derived from exosomes 

from human plasma [333]. Uptake of these miRNA-containing exosomes by diverse target 

tissues can expose cell populations with varying transcriptomes to the effects of miR-128 

targeting, resulting in different functional outcomes.   

Argonaute 2 immunoprecipitation studies in hepatic stellate cells demonstrated a high 

degree of interaction between miR-128 and chemokine and chemokine receptor mRNAs, 

indicating a role for miR-128 in regulating inflammatory responses [334]. Our work has 

demonstrated another link between miR-128 and inflammatory pathways. Ercc1-/Δ progeroid and 

WT old mice livers and kidneys, which demonstrate reduced miR-128 expression, have 

increased expression of Bax (Figure 13), a confirmed miR-128 target, and IL-6 (Figure 11), 

another predicted miR-128 target.  
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MiR-128 knock-down in NIH-3T3 fibroblasts resulted in increased IL-6 expression 

(Figure 14B) as well as increases in a marker of cellular senescence, p16 (Figure 16). Also, a 

miRNA involved in regulating the senescence-associated secretory phenotype (SASP), miR-

146a, was upregulated in cells with significant miR-128 knock-down (Figure 15). Over-

expression studies were performed in WT P7 MEFs, due to technical difficulties in quantifying 

miR-128 knock-down in these primary cells (data not shown). Robust over-expression of miR-

128 (Figure 17A) resulted in significant IL-6 knock-down (Figure 17B) and concomitant miR-

146a knock-down (Figure 17C).  

The data presented in this study suggests that miR-128 targets IL-6 in vivo in mouse liver 

and kidney tissues and in mouse fibroblast cell lines. Interestingly, the human IL-6 3’-UTR does 

not contain a canonical binding site for miR-128, however, it is possible that a different human 

microRNA could serve a similar function to that of miR-128 in regulating the expression of IL-6, 

a critical cytokine mediator of senescence-associated inflammatory responses. Future studies 

could also examine whether miR-128 targets IL-6 mRNA via non-canonical miRNA targeting 

mechanisms, such as targeting the coding region or 5’UTR of a target mRNA transcript [335, 

336]. This data could lead to a better understanding of the complex manner in which the SASP is 

regulated, further elucidating the role of inflammation in cellular senescence. MiR-128 knock-

down in senescent or aged tissues could be a regulatory mechanism influencing the 

establishment of SASP and exerting its effects on the cellular microenvironment.  
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4.0  SUMMARY, CONCLUSION AND FUTURE DIRECTIONS 
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4.1 GENERAL SUMMARY AND CONCLUSIONS 

MicroRNAs dysregulation has been observed in aging and in regulating key pathways that are 

involved in senescence [157, 188, 337, 338]. While many recent papers have examined miRNA 

dysregulation in naturally aged humans and mice, there is utility in studying progeroid, or rapid 

aging, models to identify miRNA dysregulation that occurs in common with progeroid and 

normal aging. Previous studies have examined the Hutchinson-Guilford Progeroid Syndrome 

(HGPS) and Werner Syndrome, to identify aging-associated pathways that are regulated by 

miRNAs [176, 177]. The XFE Progeroid Syndrome and Ercc1-deficient mouse models are also 

useful tools to study the effects of endogenous DNA damage on aging and cellular senescence 

[122, 123, 213, 214].  

Our studies are the first to characterize miRNA expression in the Ercc1-deficient mouse 

model of progeria. We have identified miRNAs dysregulated in Ercc1-/- MEFs at early and late 

passage and compared them to WT MEFs at early and late passage in varying oxidative stress 

growth conditions. This study shows that there is indeed a dysregulation of miRNAs in WT 

MEFs and Ercc1-/- MEFs, and that some of these dysregulated miRNAs are similarly 

dysregulated in conditions of increased endogenous DNA damage as well as in cases of 

increased oxidative stress.  A significant subset of miRNAs identified from our MEF microarray 

were similarly downregulated in livers and kidneys of WT old mice as well as progeroid Ercc1-/Δ 

mice compared to WT young counterparts (Figure 8, Figure 9). This similar dysregulation is 

especially interesting because many miRNAs are known to have different expression patterns in 

different tissues, so these similarities strongly suggest that there is a common upstream 
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mechanism in fibroblasts, liver and kidney tissues that is responsible for downregulation of these 

particular miRNAs.  

We have also shown in these studies a possible function for one of the downregulated 

miRNAs: miR-128. This miRNA has been previously implicated in regulating inflammatory 

processes, and we have found a role for this miRNA in targeting the pro-inflammatory IL-6 

[334]. MiR-128 and IL-6 expression were inversely correlated in our studies, and we believe that 

this effect is mediated by miR-128 directly binding to a target site in the 3’-UTR of the IL-6 

mRNA. MiR-128 knock-down and overexpression also modulates the expression of two 

senescence-associated markers, p16 and miR-146a. 
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4.2 FUTURE DIRECTIONS 

The data presented in this study is a promising first step in identifying miRNAs that are 

dysregulated in aging and in further charactering the role(s) they may play in modulating known 

aging and senescence pathways. The current study focused primarily on the role of miR-128, 

however, future studies can look at the two other miRNAs that were commonly downregulated 

in senescent fibroblasts, aged livers and kidneys, miR-449 and miR-455*.  

Additional studies are necessary to further confirm the role of miR-128 in targeting the 

IL-6 3’UTR, namely studies with the IL-6 3’-UTR cloned into a luciferase plasmid, to test 

whether transient over-expression of miR-128 results in a reduction of luciferase expression. 

Another luciferase reporter study that should also be done is to mutate the mRNA:miRNA 

binding site in the 3’-UTR which should abolish the effect of miR-128 on luciferase expression. 

These studies are expected to show that miR-128 indeed targets IL-6 and this binding is 

dependent on the seed sequence binding site in the IL-6 3’-UTR. Also, a western blot of IL-6 in 

fibroblasts with increased or reduced expression of miR-128 will further support that miR-128 

targets IL-6.  

In addition to identifying IL-6 as a novel target of miR-128, other SASP components 

have miR-128 binding sites in their 3’-UTR regions (Table 9). As of now, none of the genes 

listed in this table have been validated as miR-128 targets; however, future studies examining 

whether miR-128 directly modulates expression of these mRNAs would further substantiate the 

findings that miR-128 appears to be a modulator of many key inflammatory processes, which a 
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recent paper suggested was a possibility with Argonaute-2 precipitation studies using miR-128 

[334]. Identification of other SASP components being targeted by miR-128 would give new 

evidence for miR-128 as a modulator of SASP expression in senescence. Subsequent studies can 

examine whether this down-regulation of miR-128 and upregulation of IL-6 is seen in other 

modes of inducing senescence, such as oncogene-induced senescence, replicative senescence and 

stress-induced senescence (treatment with hydrogen peroxide or generalized epigenetic modifiers 

such as HDAC inhibitor compounds).  

Additionally, we would like to perform further functional studies using over-expression 

and knock-down of miR-128 in fibroblast cell lines and liver-derived primary cells to see 

whether miR-128 regulates apoptosis, cell cycling or cell proliferation, to determine whether 

miR-128 is a driver of senescence or is merely downregulated as a result of senescence. Also, 

while we have shown that miR-128 modulates the expression of two senescence markers, p16 

and miR-146a, there is no gold standard marker of senescence, and other studies will need to be 

done to concretely show that miR-128 knock-down is able to increase cellular senescence. Some 

of these experiments would include, senescence-associated beta-galactosidase staining, 

lipofuscin staining, proliferation assays, BrdU proliferation studies to show reduced cell cycling, 

and apoptosis assays to confirm that any changes observed in miR-128 knock-down cells is not 

due to increased apoptosis.  

To further characterize the regulation of miR-128 in aging and senescence, future studies 

can also examine the miR-128 promoter region to look for binding sites of known transcription 

factors that are regulated in aging, such as NF-kB [339]. Also, studies can examine the 

methylation and chromatin state of the miR-128 promoters, since recent studies have shown that 

there are significant global changes in the methylome with aging [340]. Treatment with the drug 
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inhibitors of DNA methylation and inhibitors of histone acetyltransferases and 

methyltransferases should provide insight into the mechanisms by which miR-128 may be 

epigenetically modified in aging and senescence [341]. 
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APPENDIX A 

MICRORNAS LISTED IN AGILENT MOUSE MICROARRAY 
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A.1 MICRORNAS LISTED IN MOUSE MICROARRAY  

 

mcmv-miR-m01-1 mghv-miR-M1-6 mmu-miR-1186 mmu-miR-133a 
mcmv-miR-m01-2 mghv-miR-M1-7-3p mmu-miR-1187 mmu-miR-133a* 
mcmv-miR-m01-2* mghv-miR-M1-7-5p mmu-miR-1188 mmu-miR-133b 
mcmv-miR-m01-3 mghv-miR-M1-8 mmu-miR-1190 mmu-miR-134 
mcmv-miR-m01-3* mghv-miR-M1-9 mmu-miR-1191 mmu-miR-135a 
mcmv-miR-m01-4 mmu-let-7a mmu-miR-1192 mmu-miR-135a* 
mcmv-miR-m01-4* mmu-let-7a* mmu-miR-1193 mmu-miR-135b 
mcmv-miR-m107-1-3p mmu-let-7b mmu-miR-1194 mmu-miR-136 
mcmv-miR-m107-1-5p mmu-let-7b* mmu-miR-1195 mmu-miR-136* 
mcmv-miR-m108-1 mmu-let-7c mmu-miR-1196 mmu-miR-137 
mcmv-miR-m108-1* mmu-let-7c-1* mmu-miR-1197 mmu-miR-138 
mcmv-miR-m108-2-3p mmu-let-7d mmu-miR-1198 mmu-miR-138* 
mcmv-miR-m108-2-5p.1 mmu-let-7d* mmu-miR-1199 mmu-miR-138* 
mcmv-miR-m108-2-5p.2 mmu-let-7e mmu-miR-122 mmu-miR-139-3p 
mcmv-miR-m21-1 mmu-let-7f mmu-miR-1224 mmu-miR-139-5p 
mcmv-miR-m22-1 mmu-let-7f* mmu-miR-124 mmu-miR-140 
mcmv-miR-M23-1-3p mmu-let-7g mmu-miR-124* mmu-miR-140* 
mcmv-miR-M23-1-5p mmu-let-7g* mmu-miR-125a-3p mmu-miR-141 
mcmv-miR-M23-2 mmu-let-7i mmu-miR-125a-5p mmu-miR-141* 
mcmv-miR-M23-2* mmu-let-7i* mmu-miR-125b* mmu-miR-142-3p 
mcmv-miR-M44-1 mmu-miR-1 mmu-miR-125b-3p mmu-miR-142-5p 
mcmv-miR-M55-1 mmu-miR-100 mmu-miR-125b-5p mmu-miR-143 
mcmv-miR-m59-1 mmu-miR-101a mmu-miR-126-3p mmu-miR-144 
mcmv-miR-m59-2 mmu-miR-101a* mmu-miR-126-5p mmu-miR-145 
mcmv-miR-M87-1 mmu-miR-101b mmu-miR-127 mmu-miR-145* 
mcmv-miR-m88-1 mmu-miR-103 mmu-miR-127* mmu-miR-146a 
mcmv-miR-m88-1* mmu-miR-105 mmu-miR-128 mmu-miR-146b 
mcmv-miR-M95-1-3p mmu-miR-106b mmu-miR-129-3p mmu-miR-146b* 
mcmv-miR-M95-1-5p mmu-miR-106b* mmu-miR-129-5p mmu-miR-147 
mghv-miR-M1-1 mmu-miR-107 mmu-miR-1-2-as mmu-miR-148a 
mghv-miR-M1-2 mmu-miR-10a mmu-miR-130a mmu-miR-148a* 
mghv-miR-M1-3 mmu-miR-10a* mmu-miR-130b mmu-miR-148b 
mghv-miR-M1-4 mmu-miR-10b mmu-miR-130b* mmu-miR-149 
mghv-miR-M1-5 mmu-miR-10b* mmu-miR-132 mmu-miR-150 
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mmu-miR-150* mmu-miR-1894-3p mmu-miR-199a-5p mmu-miR-216a 
mmu-miR-151-3p mmu-miR-1894-5p mmu-miR-199b* mmu-miR-216b 
mmu-miR-151-5p mmu-miR-1895 mmu-miR-19a mmu-miR-217 
mmu-miR-152 mmu-miR-1896 mmu-miR-19a* mmu-miR-218 
mmu-miR-153 mmu-miR-1897-3p mmu-miR-19b mmu-miR-218-1* 
mmu-miR-154 mmu-miR-1897-5p mmu-miR-200a mmu-miR-218-2* 
mmu-miR-154* mmu-miR-1898 mmu-miR-200a* mmu-miR-219 
mmu-miR-155 mmu-miR-1899 mmu-miR-200b mmu-miR-22 
mmu-miR-15a mmu-miR-18a mmu-miR-200b* mmu-miR-22* 
mmu-miR-15a* mmu-miR-18a* mmu-miR-200c mmu-miR-220 
mmu-miR-15b mmu-miR-18b mmu-miR-200c* mmu-miR-221 
mmu-miR-15b* mmu-miR-190 mmu-miR-201 mmu-miR-222 
mmu-miR-16 mmu-miR-1900 mmu-miR-202-3p mmu-miR-223 
mmu-miR-16* mmu-miR-1901 mmu-miR-202-5p mmu-miR-224 
mmu-miR-17 mmu-miR-1902 mmu-miR-203 mmu-miR-23a 
mmu-miR-17* mmu-miR-1903 mmu-miR-203* mmu-miR-23b 
mmu-miR-181a mmu-miR-1904 mmu-miR-204 mmu-miR-24 
mmu-miR-181a-1* mmu-miR-1905 mmu-miR-205 mmu-miR-24-1* 
mmu-miR-181a-2* mmu-miR-1906 mmu-miR-206 mmu-miR-24-2* 
mmu-miR-181b mmu-miR-1907 mmu-miR-207 mmu-miR-25 
mmu-miR-181c mmu-miR-190b mmu-miR-208a mmu-miR-26a 
mmu-miR-181d mmu-miR-191 mmu-miR-208b mmu-miR-26b 
mmu-miR-182 mmu-miR-191* mmu-miR-20a mmu-miR-26b* 
mmu-miR-183 mmu-miR-192 mmu-miR-20a* mmu-miR-27a 
mmu-miR-183* mmu-miR-193 mmu-miR-20b mmu-miR-27a* 
mmu-miR-184 mmu-miR-193* mmu-miR-20b* mmu-miR-27b 
mmu-miR-185 mmu-miR-193b mmu-miR-21 mmu-miR-27b* 
mmu-miR-186 mmu-miR-194 mmu-miR-21* mmu-miR-28 
mmu-miR-186* mmu-miR-195 mmu-miR-210 mmu-miR-28* 
mmu-miR-187 mmu-miR-196a mmu-miR-211 mmu-miR-290-3p 
mmu-miR-188-3p mmu-miR-196a* mmu-miR-212 mmu-miR-290-5p 
mmu-miR-188-5p mmu-miR-196b mmu-miR-214 mmu-miR-291a-3p 
mmu-miR-1892 mmu-miR-197 mmu-miR-214* mmu-miR-291a-5p 
mmu-miR-1893 mmu-miR-199a-3p mmu-miR-215 mmu-miR-291b-3p 
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mmu-miR-291b-5p mmu-miR-30a mmu-miR-337-3p mmu-miR-375 
mmu-miR-292-3p mmu-miR-30a* mmu-miR-337-5p mmu-miR-376a 
mmu-miR-292-5p mmu-miR-30b mmu-miR-338-3p mmu-miR-376a* 
mmu-miR-293 mmu-miR-30b* mmu-miR-338-5p mmu-miR-376b 
mmu-miR-293* mmu-miR-30c mmu-miR-339-3p mmu-miR-376b* 
mmu-miR-294 mmu-miR-30c-1* mmu-miR-339-5p mmu-miR-376c 
mmu-miR-294* mmu-miR-30c-2* mmu-miR-340-3p mmu-miR-376c* 
mmu-miR-295 mmu-miR-30d mmu-miR-340-5p mmu-miR-377 
mmu-miR-295* mmu-miR-30e mmu-miR-341 mmu-miR-378 
mmu-miR-296-3p mmu-miR-30e* mmu-miR-342-3p mmu-miR-378* 
mmu-miR-296-5p mmu-miR-31 mmu-miR-342-5p mmu-miR-379 
mmu-miR-297a* mmu-miR-31* mmu-miR-343 mmu-miR-380-3p 
mmu-miR-297b-5p mmu-miR-32 mmu-miR-344 mmu-miR-380-5p 
mmu-miR-297c mmu-miR-320 mmu-miR-345-3p mmu-miR-381 
mmu-miR-298 mmu-miR-322 mmu-miR-345-5p mmu-miR-382 
mmu-miR-299 mmu-miR-322* mmu-miR-346 mmu-miR-382* 
mmu-miR-299* mmu-miR-323-3p mmu-miR-34a mmu-miR-383 
mmu-miR-29a mmu-miR-323-5p mmu-miR-34b-3p mmu-miR-384-3p 
mmu-miR-29a* mmu-miR-324-3p mmu-miR-34b-5p mmu-miR-384-5p 
mmu-miR-29b mmu-miR-324-5p mmu-miR-34c mmu-miR-409-3p 
mmu-miR-29b* mmu-miR-325 mmu-miR-34c* mmu-miR-409-5p 
mmu-miR-29c mmu-miR-325* mmu-miR-350 mmu-miR-410 
mmu-miR-29c* mmu-miR-326 mmu-miR-351 mmu-miR-411 
mmu-miR-300 mmu-miR-327 mmu-miR-361 mmu-miR-411* 
mmu-miR-300* mmu-miR-328 mmu-miR-362-3p mmu-miR-412 
mmu-miR-301a mmu-miR-329 mmu-miR-362-5p mmu-miR-421 
mmu-miR-301b mmu-miR-33 mmu-miR-363 mmu-miR-423-3p 
mmu-miR-302a mmu-miR-33* mmu-miR-365 mmu-miR-423-5p 
mmu-miR-302a* mmu-miR-330 mmu-miR-367 mmu-miR-425 
mmu-miR-302b mmu-miR-330* mmu-miR-369-3p mmu-miR-425* 
mmu-miR-302b* mmu-miR-331-3p mmu-miR-369-5p mmu-miR-429 
mmu-miR-302c mmu-miR-331-5p mmu-miR-370 mmu-miR-431 
mmu-miR-302c* mmu-miR-335-3p mmu-miR-374 mmu-miR-431* 
mmu-miR-302d mmu-miR-335-5p mmu-miR-374* mmu-miR-433 
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mmu-miR-433* mmu-miR-466j mmu-miR-497 mmu-miR-615-3p 
mmu-miR-434-3p mmu-miR-466k mmu-miR-499 mmu-miR-615-5p 
mmu-miR-434-5p mmu-miR-466l mmu-miR-500 mmu-miR-652 
mmu-miR-448 mmu-miR-467a mmu-miR-501-3p mmu-miR-653 
mmu-miR-449a mmu-miR-467a* mmu-miR-501-5p mmu-miR-654-3p 
mmu-miR-449b mmu-miR-467b mmu-miR-503 mmu-miR-654-5p 
mmu-miR-449c mmu-miR-467b* mmu-miR-503* mmu-miR-665 
mmu-miR-450a-3p mmu-miR-467c mmu-miR-504 mmu-miR-666-3p 
mmu-miR-450a-5p mmu-miR-467d mmu-miR-505 mmu-miR-666-5p 
mmu-miR-450b-3p mmu-miR-467e mmu-miR-509-3p mmu-miR-667 
mmu-miR-450b-5p mmu-miR-467e* mmu-miR-509-5p mmu-miR-668 
mmu-miR-451 mmu-miR-467f mmu-miR-511 mmu-miR-669a 
mmu-miR-452 mmu-miR-467g mmu-miR-532-3p mmu-miR-669b 
mmu-miR-453 mmu-miR-468 mmu-miR-532-5p mmu-miR-669e 
mmu-miR-455 mmu-miR-469 mmu-miR-539 mmu-miR-669f 
mmu-miR-455* mmu-miR-470 mmu-miR-540-3p mmu-miR-669g 
mmu-miR-463 mmu-miR-470* mmu-miR-540-5p mmu-miR-669h-3p 
mmu-miR-463* mmu-miR-471 mmu-miR-541 mmu-miR-669h-5p 
mmu-miR-464 mmu-miR-483 mmu-miR-542-3p mmu-miR-669i 
mmu-miR-465a-3p mmu-miR-483* mmu-miR-542-5p mmu-miR-669j 
mmu-miR-465a-5p mmu-miR-484 mmu-miR-543 mmu-miR-669k 
mmu-miR-465b-5p mmu-miR-485 mmu-miR-544 mmu-miR-669l 
mmu-miR-465c-5p mmu-miR-485* mmu-miR-546 mmu-miR-669n 
mmu-miR-466a-3p mmu-miR-486 mmu-miR-547 mmu-miR-670 
mmu-miR-466a-5p mmu-miR-487b mmu-miR-551b mmu-miR-671-3p 
mmu-miR-466b-5p mmu-miR-488 mmu-miR-568 mmu-miR-671-5p 
mmu-miR-466c-5p mmu-miR-488* mmu-miR-574-3p mmu-miR-672 
mmu-miR-466d-3p mmu-miR-489 mmu-miR-574-5p mmu-miR-673-3p 
mmu-miR-466d-5p mmu-miR-490 mmu-miR-582-3p mmu-miR-673-5p 
mmu-miR-466f-3p mmu-miR-491 mmu-miR-582-5p mmu-miR-674 
mmu-miR-466f-5p mmu-miR-493 mmu-miR-590-3p mmu-miR-674* 
mmu-miR-466g mmu-miR-494 mmu-miR-590-5p mmu-miR-675-3p 
mmu-miR-466h mmu-miR-495 mmu-miR-592 mmu-miR-675-5p 
mmu-miR-466i mmu-miR-496 mmu-miR-598 mmu-miR-676 
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mmu-miR-676* mmu-miR-708* mmu-miR-7b mmu-miR-96 
mmu-miR-677 mmu-miR-709 mmu-miR-802 mmu-miR-98 
mmu-miR-678 mmu-miR-710 mmu-miR-804 mmu-miR-99a 
mmu-miR-679 mmu-miR-711 mmu-miR-805 mmu-miR-99b 
mmu-miR-680 mmu-miR-712 mmu-miR-871 mmu-miR-99b* 
mmu-miR-681 mmu-miR-712* mmu-miR-872 dmr_285 
mmu-miR-682 mmu-miR-713 mmu-miR-872* dmr_3 
mmu-miR-683 mmu-miR-714 mmu-miR-873 dmr_308 
mmu-miR-684 mmu-miR-715 mmu-miR-874 dmr_316 
mmu-miR-685 mmu-miR-717 mmu-miR-875-3p dmr_31a 
mmu-miR-686 mmu-miR-718 mmu-miR-875-5p dmr_6 
mmu-miR-687 mmu-miR-719 mmu-miR-876-3p hur_1 
mmu-miR-688 mmu-miR-720 mmu-miR-876-5p hur_2 
mmu-miR-689 mmu-miR-721 mmu-miR-877 hur_4 
mmu-miR-690 mmu-miR-741 mmu-miR-877* hur_5 
mmu-miR-691 mmu-miR-742 mmu-miR-878-3p hur_6 
mmu-miR-692 mmu-miR-742* mmu-miR-878-5p mr_1 
mmu-miR-693-3p mmu-miR-743a mmu-miR-879 

 mmu-miR-693-5p mmu-miR-743b-3p mmu-miR-879* 
 mmu-miR-694 mmu-miR-743b-5p mmu-miR-880 
 mmu-miR-695 mmu-miR-744 mmu-miR-881 
 mmu-miR-696 mmu-miR-744* mmu-miR-881* 
 mmu-miR-697 mmu-miR-758 mmu-miR-882 
 mmu-miR-698 mmu-miR-759 mmu-miR-883a-3p 
 mmu-miR-699_v12.0 mmu-miR-760 mmu-miR-883a-5p 

 mmu-miR-700 mmu-miR-761 mmu-miR-883b-3p 
 mmu-miR-701 mmu-miR-762 mmu-miR-883b-5p 
 mmu-miR-702 mmu-miR-763 mmu-miR-9 
 mmu-miR-703 mmu-miR-764-3p mmu-miR-9* 
 mmu-miR-704 mmu-miR-764-5p mmu-miR-92a 
 mmu-miR-705 mmu-miR-770-3p mmu-miR-92a* 
 mmu-miR-706 mmu-miR-770-5p mmu-miR-92b 
 mmu-miR-707 mmu-miR-7a mmu-miR-93 
 mmu-miR-708 mmu-miR-7a* mmu-miR-93* 
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