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Many older adults and individuals with disabilities have difficulty with reaching, grasping, and 

carrying items that are a necessity to perform independent activities of daily living, including 

meal preparation in the kitchen. Assistive robotic manipulators are starting to show potential for 

independent assistance through their use on wheelchairs or mobile bases, but continue to lack 

many of the autonomous features readily available with fixed environment manipulators.  The 

KitchenBot design described here provides the details and approach to providing an assistive 

robotic manipulator access to an entire kitchen workspace by utilizing a multi-degree track. 

Numerous focus groups were conducted in conjunction with the design and major features like 

heavy payload ability, tablet control interface, and user feedback was extracted. With further 

development, the KitchenBot could perform an even longer list of routine autonomous tasks in a 

product viable for everyone to use. 
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1.0  INTRODUCTION 

Individuals with upper limb impairments due to injury, neuromuscular disease, or other severely 

physically disabling conditions often have difficulties in performing activities of daily living 

(ADLs) that require object handling and manipulation. Assistive robotic manipulators have 

emerged as a potential solution to mitigate the difficulties, frustration, and loss of independence 

experienced by these individuals (Allin, Eckel, Markham, & Brewer, 2010; Romer, Stuyt, & 

Peters, 2005). Assistive robotic manipulators today are usually wheelchair-mounted or on a 

mobile platform. While the wheelchair mounted assistive robotic manipulators have the capacity 

to accommodate unstructured environments and a large range of tasks, it increases the footprint 

of the wheelchair and is only suitable for those who use powered wheelchairs for mobility 

(Stanger, Anglin, Harwin, & Romilly, 1994). Mobile manipulators are flexible and could 

perform tasks independent from the user, but require complex sensing and planning, limiting 

their practical use (Srinivasa, Ferguson, & Vande, 2008). The third option involves mounting a 

manipulator into a fixed environment. The following will outline the design process and 

evaluation of an assistive robotic manipulator embedded into a living space with a dynamic track 

to broaden its work envelope. A kitchen was chosen because it is often referred to as the “heart 

of the house.” Likewise, a survey of 42 individuals who had either limited or no upper limb 

ability showed that the kitchen was considered the best site for accommodating an assistive 

robotic manipulator (Stanger et al., 1994).  
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The project shows initial development of a robotic kitchen appliance (AKA: KitchenBot) 

for people with upper limb impairments by following a product design and development process. 

The KitchenBot is an assistive robotic manipulator that operates along an overhead track built 

into the kitchen. The known position of the assistive robotic manipulator with respect to various 

kitchen components, such as cabinets and appliances, makes it easy to control the manipulator 

manually and autonomously. 

1.1 ASSISTIVE ROBOTS FOR MANIPULATION 

1.1.1 Target population 

In the 2010 U.S. Census, over 12.3 million (4.4 percent) people needed assistance with one or 

more activities of daily living or instrumental activities of daily living (IADLs), 19.9 million 

people (8.2 percent) had difficulty with tasks related to upper body function, and 17.2 million 

people (7.1 percent) reported difficulty lifting a 10-pound object like a bag of groceries (Brault, 

2012). Also, about 1 in 10 adults aged 55 years and over have difficulty reaching (11%) or 

grasping (9.4%) with rates tripling between the ages of 55-64 years and 85 years and over 

(Schoenborn & Heyman, 2009). Likewise, about 1.1 million Americans have experienced 

serious upper extremity impairments, including those with quadriplegia, hemiplegia, and 

hemiparesis. Approximately half of those individuals with hemiplegia have a non-functional arm 

and hand even four years after a stroke (Broeks, Lankhorst, Rumping, & Prevo, 1999). Such 

functional limitations, which are required for interacting within a kitchen environment, can be 

caused by the natural progression of aging, a medical condition, or trauma. In a survey of 89 
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wheelchair users and 52 health care professionals, the ability to adequately reach for objects was 

rated as the most important concern (Holliday, Mihailidis, Rolfson, & Fernie, 2005). 

Those individuals with upper limb impairments, or those who need assistance with ADLs 

or IADLs, generally require assistance from caregivers to complete common daily tasks. The 

world is intensely paying attention to the rise in population and growing population of older 

adults and people with disabilities (Kwang-hyun, Lee, & Bien, 2008). However, attendants and 

caregivers suffer from a shortage of resources while demand continues to increase, causing 

individuals to leave their homes for costly institutional settings simply for the benefit of 

receiving basic care (Feinberg, Wolkwitz, & Goldstein, 2006). In order to provide this basic care, 

improve privacy, and quality of life, without the need of an increased human caregiver 

workforce, assistive robotic manipulators are evolving to best serve individuals and ensure their 

current and future independence.  

1.1.2 Forms of assistive manipulators 

In the past 50 years, nearly a dozen manipulators have been advanced and considered for their 

performance in usability and functionality but only few commercialized assistive robotic 

manipulators are on the market (Chung, Wang, & Cooper, 2013). Moreover, the advancement of 

robotic manipulators and hands have made applications such as telerobotics or upper limb 

prosthetics possible (Pons, Ceres, & Pfeiffer, 1999). Numerous research endeavors seek to 

improve this market for assistive robotic manipulators by demonstrating varied design solutions. 

Traditionally, these robotic manipulators have been placed on a mobile base, mounted on power 

wheelchairs, or installed in fixed environment locations.  
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1.1.2.1 Mobile-based assistive manipulators  

Several research initiatives seek to provide a mobile assistive robotic solution. One example is 

the Home Exploring Robotic Butler (HERB) developed at Carnegie Mellon University, which 

focuses on providing mobile-based dual manipulators with intelligent control software capable of 

detecting objects, planning grasp methods, and navigating environments (Srinivasa et al., 2009). 

Development of the system is still progressing but HERB can already perform tasks such as 

carrying pitchers, getting a pack of chips, sorting dishes, and fetching drinks. User evaluations 

are still to be conducted as the development continues to advance. Another research group 

proposed a service robot which acts as an agent between a user and their complex home 

environment by providing basic interaction and repeatable learning ability via its dual robotic 

arms and mobile base (Z. Z. Bien et al., 2007; Kwang-hyun et al., 2008). It provides interaction 

and learning by recognizing key emotion words on which to operate. Although untested with 

users, a different team has developed a service robot that learns from a sensor equipped kitchen, 

such as RFID tags, light and temperature sensors, and capacitive sensors, to perform tasks with 

its dual robotic arms (Rusu, Gerkey, & Beetz, 2008). A system such as these could grip and 

transport a cup of tea, milk, and coffee and could supplement for some deprived functions 

(Stoian, Nitulescu, & Pana, 2009). The robot EL-E is an assistive mobile manipulator developed 

at Georgia Tech that aims to help people with motor impairments to retrieve lightweight items 

from ground level to 90 [cm] above the ground. Users can control the EL-E using either a laser 

pointer or touch screen for object retrieval and the test was able to successfully demonstrate 

retrieval of 21/25 objects ranked most important by ALS patients (Jain & Kemp, 2009). Even 

humanoid robots would fall into this category of mobile-based robots, such as ASIMO, PR2, or 

HRP-2, which are mainly for demonstration purposes but could eventually assist the elderly or 
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wheelchair users (Graf & Staab, 2009). The Personal Robot 2 (PR2) developed by Willow 

Garage was used in a study of independent living seniors to gain information regarding their 

preference of tasks performed by a robot or human. The study results showed the highest 

preferred robot tasks should be maintaining the lawn, fetching objects from the floor, moving 

heavy items, cleaning the kitchen, and reaching for items. Additionally, their data suggests that 

older adults would be most accepting of a mobile robot if it was performing household or manual 

labor tasks (Mitzner et al., n.d.).  

The benefit of mobile manipulators is the their ability to go in different environments. 

While the potential benefits of these devices are impressive, the drawbacks to mobile robotic 

systems is the complexity needed to perform navigation, mapping, and sophisticated trajectory 

planning in an environment that is unstructured and constantly changing (Srinivasa et al., 2009). 

Moreover, they require large amounts of valuable floor space, can only reach or interact with 

things at mid-level height, are usually bulky, and limited in the ability to handle heavy objects. 

1.1.2.2 Wheelchair-mounted manipulators  

A wheelchair mounted robotic arm (WMRA) can serve many functions and a few companies are 

active in the market. For example, the Manus Assistive Robotic Manipulator (ARM) is a 7 

degree of freedom (DOF) manipulator designed for mounting on power wheelchairs with a built-

in programmable work envelope to protect the nearby user (Rosier et al., 1991). An example 

application of the ARM is the Personal Mobility and Manipulation Appliance (PerMMA), which 

is an advanced wheelchair equipped with dual ARMs on a curved track with local or remote 

controlled task execution (Cooper et al., 2012). The initial testing of 15 participants found that 

although cooperative control took less time to execute five different tasks, individuals reported 

they preferred independent control via the touch interface (Xu et al., 2010). The ARM has also 



 6 

been shown to provide economic benefits with return on the investment occurring 1-1.5 years 

after purchase by greatly reducing the need of a caregiver (Romer et al., 2005). StrongArm is 

also an example of a chair mounted manipulator that aids individuals with transferring by 

providing direct interaction control and an increase in payload ability (Cooper et al., 2012). 

Similarly, the JACO is a lightweight carbon fiber robotic manipulator, intended as a WMRA, 

which has been controlled through a three-axis joystick and has shown potential to reduce 

caregiver time by up to 41% (Maheu, Archambault, Frappier, & Routhier, 2011). An earlier 

study reported greater than 79% success rate for completion of simple tasks with the JACO 

among 11 spinal cord injury, 5 dystrophy, and 7 other neurological disabled participants 

(Routhier & Archambault, 2010). Additionally, other popular WMRA’s include the KARES I, 

FRIEND, and Raptor (Z. Bien et al., 2004; Mahoney, 2001; Ruchel, Lang, & Ivlev, 2001). 

ASIBOT, is a unique robotic arm but needs only a docking station and power to operate in 

numerous locations including a wheelchair, table, wall, or ceiling. The arm changes location by 

docking and undocking via a unique interlocking mechanism, however this has yet to be 

clinically tested or developed with a human-machine interface (Jardón, González, Stoelen, 

Martínez, & Balaguer, 2009).  

In general, a WMRA has shown great potential to improve function ability and 

independence of people who use powered wheelchairs for mobility in different everyday 

environments. However, it may not be a practical solution for those who do not use powered 

wheelchairs. In addition, difficulties arise with the control methods of a WMRA that often 

require complex sequences or numerous steps to complete an independent task (Kim, Wang, & 

Behal, 2012). Additionally, it continues to be technically challenging to perform a reliable 

autonomous task. 
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1.1.2.3 Fixed environment manipulators  

Assistive robotic manipulators that are fixed to a particular environment are an alternative 

solution to the two aforementioned methods of assistance. An early example of a fixed 

environment system is the Desktop Vocational Assistant Robot (DeVAR), which is an example 

of a manipulator mounted in a fixed location on an overhead track for assistance in the 

workplace and is controlled using discrete voice commands, shown in Figure 1 (Taylor, Cupo, & 

Sheredos, 1993). A later version, called the Professional Vocational Assistant Robot (ProVAR) 

included force sensors and different training modes via a physical or graphical interface.  

 

Figure 1: ProVAR system 

Ultimately, they showed training with the graphical interface was not time effective but 

training was effective when working with the physical manipulator (Wagner & Van der Loos, 

2004). Another example of a vocational robotic workstation showed participants using an UMI-

RTX manipulator and computer access device performing different occupational therapy (OT) 

assessment tests, such as the Minnesota Rate of Manipulation Test, to measure manipulation skill 
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of a person operating a robot. They suggest someone with severe manipulation deficiencies could 

have a wider range of vocational opportunities with a mounted manipulator (Schuyler & 

Mahoney, 2000).  

 

Figure 2: CAPDI kitchen overhead arm 

Taking this fixed environment installation one step further, the CAPDI kitchen (Adapted 

Kitchen for the Disabled) utilized an overhead linear Cartesian track with a telescoping vertical 

arm to grasp items on a height-adjustable countertop, shown in Figure 2 (Casals, Merchan, 

Portell, Cufi, & Contijoch, 1999). The CAPDI adapted kitchen, which relies on an object 

database and record of user routines, is now being studied and an experimental prototype is being 

developed with aim at personal autonomy (Aranda, Vinagre, Martin, Casamitjana, & Casals, 

2010).  
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Figure 3: “RoboticRoom” long reach manipulator  

Although not intended for task completion, the “RoboticRoom” shown in Figure 3 is an 

interactive environment that utilizes a ceiling-mounted long reach manipulator and a height 

changing kitchen counter to research the benefits of human and robot symbiosis. Ultimately, the 

main advantage presented by the authors is the constantly changing and adapting environment 

that can best suit any user’s need (Sato, Harada, & Mori, 2004).  

The proposed KitchenBot is aimed at furthering the development left behind by these 

previous initiatives. The overall goal is to reduce caregiver needs, by implementing a quickly 

feasible and simple design, so individuals may perform activities of daily living independently, 

improve self-confidence, and increase their quality of life. In comparison to past and present 

work, KitchenBot aims to provide universal accessibility to all individuals with upper limp 

impairments regardless of their mobility status, provide autonomous control of daily routine 

tasks without the complexity of object recognition development, and present opportunities for 

handling heavy payload items. 



 10 

2.0  EARLY STAGE DESIGN PROCESS 

We followed a traditional product design and development process with an emphasis on 

involving potential lead users, project managers, clinicians, and engineers who would contribute 

to the development. The initial meeting with the potential stakeholders resulted in a list of needs 

and a mission statement, which were used to guide the subsequent design process. Numerous 

meetings of similar nature were followed as the design of the KitchenBot evolved. 

2.1 MISSION STATEMENT 

A mission statement encompasses the idea, motivation, and belief of a potential future product. It 

is used to direct the intentions of designers and engineers as the process continues. The mission 

statement derived from the initial meeting became, “Design an overhead mounting system for a 

dynamic robotic manipulator to assist individuals with physical disabilities for tasks associated 

within a kitchen environment.” This statement was the basis on which each concept design 

would be compared. The bounding envelope allowed a free range of ideas the possibility of 

becoming reality without constraining creativity or uniqueness. 
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2.2 DESIGN CRITERIA 

The criteria, resulted from questions such as, “What is the end goal of this research?” and “What 

types of tasks should a robotic arm in the kitchen be able to accomplish?” and “Is there a 

minimum work space?” From these and similar questions, the following list of criteria was 

extracted: 

Table 1: The KitchenBot design criteria 

Is safe to be within close proximity of when operational 
Has built in dead stops and limit switches 

Aesthetically pleasing 
Has low noise (<60dB) 

Able to accommodate a payload up to (25lbs) 
Has minimal track deflection (< 0.1 in) 

Freedom to move within the kitchen footprint 
Incorporates fail-safe braking  

Is motor controlled 
Provide position feedback (~ ± 0.5 in) 
Can accommodate two arms at once 

Can be installed into a standard home kitchen 
 

The idea behind listing these design criteria was to “create a high-quality information channel 

that runs directly between customers in the target market and the developers of the product” 

(Ulrich & Eppinger, 2012). These simple criteria allow the concept designs to be narrowed for 

further refinement and evaluation in the concept selection process. 

Furthermore, the concepts must also adhere to criteria specific to the kitchen space 

available at the Human Engineering Research Laboratories. This kitchen, seen in Figure 4, has a 

ceiling far above the cabinets, concrete floors, an electrical box directly above the cabinets, and 

is part of a much larger space that must retain an open feel.  
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Figure 4: HERL kitchen prototyping space 

2.3 CONCEPT SKETCHES 

After the user needs were identified, a wide range of ideas was generated as possible solutions. 

These ideas ranged from a simple gantry style overhead track to a three-point wire suspension 

system, like those seen in football stadiums for camera suspension. The three most viable 

concepts, which can be seen in Appendix A, included the gantry style, crane style, and hybrid 

style concepts that are explained in detail later. The gantry style concept required mounting of 

two parallel tracks and one perpendicular track above the kitchen with a carriage able to move 

along both. The crane concept was simply modeled after a jib-style crane with a cantilever arm 

and carriage that could rotate and translate. Lastly, the hybrid concept was a simply supported 
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beam with a carriage and articulating cantilever for which the robotic arm could be mounted. 

Sketches of these concepts can be seen in.  

2.4 INITIAL CONCEPT SELECTION 

The top ideas generated during the concept phase were selected to be further evaluated using a 

selection matrix, a tool for ranking concepts based on how well they meet each criteria (Ulrich & 

Eppinger, 2012).  Furthermore, a weight is applied to each criterion to level the importance and 

ensure, for example, that one does not have the same importance as another. The following 

selection matrix was used and evaluated early during the design process.  

Table 2: Selection matrix 

 
  Gantry Crane Hybrid 

Criteria 
Weight [1-

5] Rating 
Weighted 

Score Rating 
Weighted 

Score Rating 
Weighted 

Score 
Low Deflection 4 0 0 0 0 0 0 
Kitchen Safety 5 0 0 0 0 0 0 
Aesthetically 
Pleasing  4 0 0 1 4 1 4 
Easily Hidden  3 0 0 1 3 0 0 
Quieter than an 
EPW 2 0 0 0 0 0 0 
High Payload 
Capabilities 4 0 0 0 0 0 0 
Covers 
Required Work 
Space 5 0 0 0 0 0 0 
Control System 
Simplicity 3 0 0 -1 -3 0 0 
Self-Locking 
Capability 5 0 0 0 0 0 0 
Ease of 
Installation  4 0 0 1 4 1 4 
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Table 2 (continued) 

Ease of 
Manufacturing  4 0 0 1 4 1 4 
Ease of Design 4 0 0 -1 -4 -1 -4 
Low Cost 3 0 0 1 3 0 0 

 
Total Score: 0 0 3 11 2 8 

 
Rank: 

 
3 

 
1 

 
2 

 

From this table, it was shown the crane concept would be the best course of action but 

this was only an initial method for evaluation. The selection matrix is not a definitive method for 

choosing a design solution and thus further consideration required making a pros and cons list of 

the top two concepts. After reviewing the following Table 3, the single mounting point for the 

crane could pose structural problems for the building floor. In comparison to the hybrid system 

though, this structural problem would be less of a concern and ultimately became the next course 

of action. 

Table 3: Pros and cons of top two initial designs 

Crane Hybrid 
Pros Cons Pros Cons 

One mounting 
point 

Counter weight 
clearance issues 

Two mounting 
points 

Large but awkward 
work envelope 

Self contained 
system 

Large bending 
moment 

Self contained 
system 

Requires more 
components (cost) 

2 DOF (w/o Z 
control) Large beam torsion 

2 DOF (w/o Z 
control)   

  
Requires tension 

cables 
Half the bending 

moment   

  
Pie shaped work 

envelope     
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2.5 EARLY CONCEPT ITERATIONS  

Of the three concepts that underwent analysis in the previous section, only the hybrid concept 

was chosen for further advancement. As one will read, the hybrid concept fell short of meeting 

the criteria as it was being developed. However, two new ideas emerged, the telescoping and 

bookshelf ladder concepts, are subsequently detailed below. Each concept was compared to the 

previous solution and criteria.  

2.5.1 Hybrid crane concept 

The following figures show the hybrid crane concept in true scale. The StrongArm, previously 

mentioned, was inverted and was considered the best manipulator to create a prototype. 

Furthermore, reused components from an old gantry crane were incorporated so they would not 

need to be purchased.  

 

Figure 5: Isometric SolidWorks model of the hybrid crane concept 

Gantry crane parts 

StrongArm 
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Figure 6: Top view of hybrid crane SolidWorks model concept 

 

Figure 7: Side view of hybrid crane SolidWorks model concept 

Although the above detailed design was ready for prototyping, it presented two major 

problems. First, it was initially designed without gear motor inputs because of the added 

complexity. That is to say, it would rely on the users force to drive the arm into position and 

brakes would automatically lock everything into place. Second, it would not be able to reach the 
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entire workspace (i.e. the lower cabinets and floor). In addition, the idea of having an overhead-

swinging beam in one’s kitchen could make an individual feel uneasy based on our meetings 

with stakeholders. Due to these issues, the design was reconsidered to better fill the needs of the 

end users. 

2.5.2 Telescoping concept  

The idea of a wall mounted telescoping track came up as an improved solution over the hybrid 

crane concept. The “StrongArm”, developed at HERL, utilized an easy to manufacture and 

ridged telescoping mechanism (Cooper et al., 2012). This telescoping design was mimicked in 

the telescoping concept to create one longer so a new manufacturing scheme would not need to 

be considered. Furthermore, having an ominous overhead beam from the previous hybrid crane 

concept was resolved by moving to a wall-mounted track. The idea being that a curved track 

would follow any kitchen design and be suspended from the wall studs. Although the track’s 

shape and mounting was yet to be determined, a design was put into place to keep the project 

moving forward. The JACO arm was chosen, although its payload ability is less than originally 

desired, because it weighs a mere 6 [kg], has a reach of 90 [cm], and can lift objects up to 1.5 

[kg], (Maheu et al., 2011).  

Figure 8 below shows an early rendering of the first telescoping concept. It utilized an 

extra long linear actuator and a carriage system that could drive straight and around a curve. The 

JACO would have been mounted upside-down to optimize the work envelope, though this later 

became a problem upon testing.   
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Figure 8: Preliminary wall-mounted telescoping concept 

Further improvement and design refinement led to the next iteration of this concept. 

Improvements were made to simplify the track’s cross section, define the overall contour, 

specify the mounting locations and style, and reduce the length of telescoping to limit deflection. 

Brackets would be hidden between the cracks of each cabinet and would incorporate a newly 

designed “French Cleat” mounting style. An aluminum rectangular tube was selected because of 

it sharp corners produced during the extrusion process and ability to withstand a high degree of 

torsion.  

The track was expanded to wrap around any shape of cabinetry by turning both left and 

right. This would ensure the manipulator could work in any area of the kitchen and allow the 

manipulator to be stored on the side when unused. Subsequently, this required a carriage that 

could travel around an inside and outside curve. This carriage concept utilized two contact points 

on the top and bottom to pivot when turning a corner and is later discussed in more detail. 

JACO 

Telescope 
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Figure 9: Secondary wall-mounted telescoping concept with brackets at stored position 

 

Figure 10: Secondary wall-mounted telescoping concept with brackets opening drawer 

This concept was a dramatic improvement in practicality and feasibility from the 

previous but some issues were initially overlooked. First, the JACO was not designed for inverse 

mounting. Bench top testing of the arm revealed the motors inability to operate under inverse 

gravity. This again created a false need for a longer telescope so the correctly mounted arm could 

still reach the bottom cabinets. Second, the unsupported arm would have much deflection if the 

track and carriage tolerances were not manufactured to high standards. This would also be 

magnified if the telescope length were to increase. The concept was again reassessed due to the 

better understanding of the JACO’s abilities and the practicality of manufacturing tight 

tolerances over a long track length. 

Al tube 
French cleat brackets 
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2.5.3 Bookshelf ladder concept 

Large libraries have rolling bookshelf ladders that glide around the room on a curved track and 

roll on the floor for an individual to use. The next concept is a modification of the previous, 

which is derived from these rolling ladder products. Though, instead of a ladder with rungs, the 

track would utilize a motorized linear column to raise and lower the attached arm. Furthermore, 

the carriage above would drive the column around the room to position it for a new task. The 

support given from the ground also meant the column would not sway with dynamic motion. The 

JACO no longer needed to be mounted upside-down because the vertical carriage could reach 

close to the ground. This support on the ground would provide a reaction force that would 

decrease the torque on the track and walls and increase the payload ability. 

 

Figure 11: Bookshelf ladder style design with JACO reaching into upper cabinet 
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Figure 12: Bookshelf ladder style design with JACO reaching into lower cabinet 

At this stage, the concept began to take shape and form into a feasible KitchenBot. The 

design would allow an individual to relocate a manipulator throughout the entire kitchen 

envelope, is discrete when unused, has built-in dead-stops, is motor controlled, could provide 

position feedback, and could be installed into a standard style kitchen. Of course, the concept 

was still merely a concept. In the next chapter, the details of overcoming concerns and design 

issues will be explained. Some of the concerns included: 

• The uneven floor 

• The wear on the floor 

• Strength of the walls, brackets, and track 

• Ability to manufacture the track 

• Wear on the track 

• Risk of the column tilting 

• Carriage mechanics 

• Electronics and control software 
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Though many concerns still existed, the design seemed feasible and had potential to 

satisfy all, if not most, of the design criteria. It was at this point that an evaluation was deemed 

necessary to formally seek feedback from potential users of KitchenBot before further 

development work is conducted. 

2.6 FOCUS GROUP CONCEPT EVALUATION 

A focus group is a form of qualitative research to extract user ideas, opinions, and perceptions 

about a particular product or technology (Denzin & Lincoln, 2005). The VA Pittsburgh 

Healthcare System’s Institutional Review Board (IRB) approved the protocol titled 

“Participatory Evaluation of Assistive Technologies”. The protocol allows for numerous 

technologies to be presented and discussed with a group of users for soliciting feedback and 

advice. The KitchenBot was discussed using the approved protocol during the 2012 National 

Veterans Wheelchair Games in Richmond, VA. 

2.6.1 Methodology 

Subjects were recruited if they were over the age of 18, have a physical disability, and could 

comprehend English. All subjects provided informed consent before participation in the focus 

groups.  

Participants first completed a questionnaire about general demographics and their current 

and past experience with assistive technology. They then participated in a round-robin group 

discussion moderated by one of the investigators. Each focus group consisted no more than 15 
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participants and lasted no more than 2.5 hours. During the focus group, subjects were presented 

with enlarged wireframe photos of the conceptual KitchenBot design and incorporated a hand-

sketched wheelchair user interacting with it. These images can be seen in Appendix B. The 

discussions were audio recorded and later transcribed for content analysis. After the focus group 

discussion, subjects were also asked to complete a questionnaire on kitchen area difficulties, 

amount of use, and potential features they would like the KitchenBot to have. A copy of this 

questionnaire can be found in Appendix B.1. 

Descriptive statistics were used to summarize the data from the questionnaires. Context 

analysis was performed to extract common discussion themes based on audio transcriptions. 

2.6.2 Quantitative results 

A total of 25 subjects were recruited at the 2012 National Veterans Wheelchair Games (NVWG) 

to participate in 3 focus groups. Of those 25, 24 reported their disability of either a Spinal Cord 

Injury (15), Multiple Sclerosis (4), Hemiplegia (1), Paralysis (1), Stenosis (1), Arthrogryposis 

(1), or having a bone disease (1). They were recruited due to physical limitations with their upper 

limbs. Of those 25 individuals, 12 have manual wheelchairs, 12 have power wheelchairs, and 1 

has a scooter for their independent mobility. The average number of years with a disability was 

22.4 ± 13.4 years. There were 18 males, 5 females, and 2 with missing information on gender. 

Of the participants, 9 said they live in an urban location, 11 live in a suburban location, 5 

live in a rural location, and 1 was unknown. Furthermore, 22 indicated they live in an apartment, 

home, or condominium with only 1 living in a relative’s home, and 2 unknown others. The 

participants highest education level is well mixed with 9 indicating they have received a high 

school diploma or GED, 8 have an associates or vocational degree, 6 have a bachelors degree, 
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and 2 have a masters degree. Total household income was also diverse with 5 (20%) participants 

earning less than $10k per year, 1 (4%) participants earning $10-$15k per year, 2 (8%) earning 

$15-$20k per year, 2 (8%) earning $20-25k per year, 2 (8%) earning $25-$35k per year, 5 (20%) 

earning $35-$50k per year, 7 (28%) earning $50-$75k per year, and 1 (4%) who is earning more 

than $75k per year. Current work status indicated 1 participant is working full-time outside the 

home, 2 working part-time outside the home, 1 working part-time inside the home, 11 unable to 

work because of disability, and 10 retirees. Participants were also allowed to indicate more than 

one answer in regards to health insurance which showed that 1 pays out-of-pocket for expenses, 

13 are covered by Medicare or Medicaid, 3 are covered by their employer, spouse’s/parent’s 

employer, or previous employer, 9 are covered by the Veterans Affairs, and 2 have missing 

information.  

Information related to the health and experience with technology was also gauged to 

better understand the background of each individual. In regards to self-care, 6 participants (24%) 

indicated they have some problems washing and dressing and 3 participants (12%) indicated they 

are unable to wash or dress themselves. Fourteen participants (56%) also stated they have some 

problems with performing usual activates (work, study, housework, etc.) and 1 (4%) said they 

are unable to perform these activates. Additionally, 4 (16%) participants said they built an 

assistive device to meet their needs, 9 (37.5%) modified some existing technology to meet their 

needs, and 8 (32%) considered themselves as technology savvy. The median response to 

questions pertaining to technology in general is shown in Table 4 with 1 indicating “Not At All” 

or 7 indicating “Completely”. Moreover, the median response to phrases about the participant is 

also listed below in Table 5 with a 1 indicating “Not At All Accurate” or 7 indicating “Extremely 
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Accurate”. Lastly, the median responses to factors for choosing technology, which vary between 

“Not At All Important” to “Extremely Important” are detailed in Table 6 below. 

Table 4: Median response of technology in general on a seven-point Likert scale 

Phrase Median Response 
Makes life easy and convenient: 6.0 

Makes life complicated: 2.0 
Gives people control over their daily lives: 7.0 

Makes people dependent: 5.0 
Makes life comfortable: 7.0 

Makes life stressful: 2.0 
Brings people together: 6.0 
Makes people isolated: 2.0 

Increases personal safety and security: 6.0 
Reduces privacy: 2.0 

 

Table 5: Median response of phrases on a seven-point Likert scale 

Phrase Median Response 
I like to keep up with the latest technology: 6.0 

I generally wait to adopt a new technology until all the 
bugs have been worked out: 4.0 

I enjoy the challenge of figuring out high tech gadgets: 6.0 
I feel confident that I have the ability to learn to use 

technology: 6.0 
Technology makes me nervous: 1.0 

If a human can accomplish a task as well as technology, 
I prefer to interact with a person: 6.0 

I like the idea of using technology to reduce my 
dependence on other people: 7.0 

 

Table 6: Median response of factors for choosing technology on a seven-point Likert scale 

Factor Median Response 
How well it meets your needs: 7.0 

Ease of use: 7.0 
Cost: 7.0 

Attractiveness: 5.0 
How visible it is to others: 4.0 

How it affects your privacy: 6.0 
How safe it is to use: 7.0 
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Table 7 shows the variation in meal preparation activity conducted by each participant on 

an average basis. The majority (72%) of the participants prepare a meal less than once per day at 

home and 56% of participants said they receive assistance with meal preparation more than five 

times per week.  

Table 7: Concept focus group’s percentage of participants who prepare meals at home 

20% Do not cook at home 
16% Cook 0-1 times per week 
24% Cook 2-4 times per week 
12% Cook 5-7 times per week 
16% Cook 8-14 times per week 
12% Cook greater than 14 times per week 

 

Furthermore, Table 8 represents the percentage of participants who scored each appliance 

or activity on a seven-point Likert scale between “No Difficulty” and “Much Difficulty”. It 

revealed 28% and 29% of individuals have the most difficulty using the oven and putting away 

groceries. Additionally, 40% said they do not use a dishwasher at all, but this could be explained 

because they may not own one. 

Table 8: Percentage of responses regarding level of difficulty with each activity 

Appliance/Activity 
Total 

answers 
"I do not use 

at all" 
Scored as 

(1,2,3) 
Scored as 

(5,6,7) 
Microwave: 25 4% 88% 8% 

Sink: 25 4% 76% 8% 
Refrigerator: 25 0% 88% 8% 

Stove-top: 25 16% 52% 24% 
Oven: 25 16% 52% 28% 

Dishwasher: 25 40% 44% 16% 
Counter-top appliances (Coffee 

maker, blender, toaster oven): 25 16% 60% 24% 
Putting away groceries: 24 8% 58% 29% 

 

Moreover, Table 9 shows the participants frequency of usage for each of those common 

kitchen appliances. Using the oven or dishwasher is the most commonly neglected appliance, 
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with 52% of participants saying they use it less than once per week or not at all. In regards to the 

dishwasher, this high percentage of non-use could be due to the lack of individuals not owning 

one. 

Table 9: Percentage of responses showing frequency of appliance usage 

Appliance/Activity 
Total 

answers 

"I do not 
use at 
all" 

Less 
than 

once per 
week 

Greater 
than 

once per 
week 

Use the Microwave: 25 4% 36% 60% 
Use the Sink: 25 0% 24% 76% 

Use the Refrigerator: 25 0% 12% 88% 
Use the Stovetop: 25 24% 40% 36% 

Use the Oven: 25 28% 52% 20% 
Use the Dishwasher: 25 52% 32% 16% 

 

A list of potential features were also asked to be scaled from “Less likely to want it” to 

“More likely to want it” by the participants. The results showed the top three most important 

features of the conceptual KitchenBot should be unloading the groceries, handling hot objects, 

and reaching for items in the upper cabinets.  

Table 10: Percentage of responses showing rank of potential KitchenBot features 

Feature 
Total 

answers 
"No 

Difference" 
Scored 
as (5) 

Scored 
as (6) 

Scored 
as (7) 

Scored 
as (5,6,7) 

Opening cabinet doors, 
drawers, and appliances: 25 20% 4% 20% 44% 68% 
Reaching items from the 

upper cabinets: 25 4% 0% 28% 60% 88% 
Reaching items from the 

lower cabinets: 25 28% 8% 12% 36% 56% 
Reaching items from the 

floor: 25 24% 8% 16% 28% 52% 
Stabilizing items: 25 12% 24% 24% 28% 76% 

Unloading the groceries: 25 4% 8% 20% 52% 80% 
Unloading the 

dishwasher: 23 30% 4% 17% 22% 43% 
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Table 10 (Continued)

Handling hot objects: 25 4% 4% 24% 60% 88% 
Handling heavy objects: 25 8% 0% 8% 68% 76% 

Easily Hidden: 25 24% 12% 12% 40% 64% 
 

Finally, the participants were also asked to rank, on the same Likert scale as above, their 

preference with the three types of presented interface. Table 11 shows three quarters of the 

participants would prefer the tablet interface.  

Table 11: Percentage of responses showing rank of potential control interfaces 

Feature 
Total 

answers 
"No 

Difference" 
Scored 
as (5) 

Scored 
as (6) 

Scored 
as (7) 

Scored 
as (5,6,7) 

Control via "touch to 
move" interaction: 25 20% 20% 12% 20% 52% 

Control with a joystick: 25 8% 4% 16% 40% 60% 
Control with a tablet PC: 24 13% 0% 21% 54% 75% 

 

2.6.3 Qualitative results 

Major themes emerged during discussion of the KitchenBot concept including the feasibility of 

home installation, the areas of the kitchen that pose the most difficulty, and the desired features. 

Moreover, the participants, in regards to the concept KitchenBot, also made some suggestions, 

which were not included in the discussion. 

Much of the discussion time was spent gauging the general thoughts of the design and the 

level of difficulty individuals face in the kitchen. Participants, in general, had mixed reviews of 

the concept feasibility. More specifically, some concerns were related to the KitchenBot’s track 

mounting style. When asked if they have about 12 [in] above their cabinets, a mixed response 

was given briefly.  
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Related to areas of difficulty, all the participants seemed to agree that reaching into or 

using the upper cabinets was a difficult challenge. Although, utilizing the bottom cabinets was 

also explained to be not a simple task and reaching into the back is even more challenging. 

Moreover, many expressed difficulty with fine motor tasks like stirring a cup of coffee. Some 

supporting statements by participants said: 

“Even with a reacher, when you try to get something that is high or too heavy, it falls.” 

“Pots and pans are down low and I have to get on my knees, but I have a hard time 

getting back up.” 

“My hands shake, so I can’t cut anything or stir my coffee.” 

“For most of my cabinets, I cannot get anything out of the back.”  

The moderator also explained, through the use of enlarged photos, some of the potential 

features of the concept, such as joystick control, reaching ability, or stirring assistance. In terms 

of control methods, the majority of groups seemed to favor the tablet out of the three possible 

options. Some supporting statements were: 

“Its gatta do the mundane work in the kitchen.” 

 “I would like it to work with me because you’re normally doing many things…to have 

help with some of the other tasks.” 

Some suggestions made during the discussions included the addition of a voice control 

interface and cleaning ability. Moreover, others wanted it simply for the manual labor tasks.  

“Tablet, if it was voice controlled.”  

"It would be a good idea if it could sweep or something" 
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3.0  FINAL PROTOTYPE DESIGN 

The conceptual KitchenBot received an overall positive feedback from the end users who also 

provided suggestions for the design features that are considered in the following prototyping 

phase. Figure 13 shows the final concept model of the KitchenBot with labeled design sections. 

 

Figure 13: KitchenBot design component sections diagram 

This concept model is broken into four main design components: 

1. Curved horizontal s-curve track that surrounds the overhead cabinets 

2. Horizontal carriage that drives the column left or right 

3. Vertical column that drives the manipulator up and down 

4. Bottom carriage that maintains stability  

1 

2 

3 

4 
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Each was a challenge of its own to refine, strengthen, and simplify. In this chapter, each 

section of the KitchenBot will be discussed and explained to further understand the challenges 

and capabilities of the final prototype. 

3.1 KITCHENBOT DESIGN COMPONENTS 

3.1.1 Horizontal track 

A wall-mounted overhead track was a main focus for improvement to ensure safety and 

reliability. The idea of designing an s-curved track would open possibilities for traversing any 

area of the kitchen or home but created more manufacturing and testing challenges. This meant 

devising a ridged curved segment connection method and creating a carriage that could navigate 

a curve from far left to far right. The carriage will be discussed in section (3.1.2), but the method 

for connecting and manufacturing the curved segments, protecting the track surface, and 

ensuring strength of the brackets, studs, and track will be further explained in this section.  

The wall-mounted track model shown in earlier concepts had one solid curved extrusion 

that was for proof-of-concept but was impractical to manufacture. The first track revision 

involved two pairs of quarter circle solid aluminum blocks with square billets on each side that 

would press inside of purchased aluminum rectangle tube extrusion. The two by four inch 

aluminum tube was readily available and large enough to build a robust carriage around. Once 

the solid curve was pressed into the tube, two flat head bolts would restrict it from coming out. 

Additionally, where the center of the ‘S’ joined, the curve would have a dovetail press fit with 

two bolts across (dashed line below). A small-scale example is shown in Figure 14.  
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Figure 14: Curved dovetail example 

The downfall to this concept, which was close to becoming a reality, was the excess solid 

weight and the large tolerance variation on the tubes inner dimensions. Furthermore, if the holes 

for bolting did not meet exact specified distance from the edge, a gap would present itself across 

the threshold.  

To make manufacturing practical, the next revision needed curved sections with low 

weight and a method for pulling the curve tight against the tube. Sandwiching and bolting curved 

aluminum plates on top of a thin center aluminum piece created lightweight but strong curves. At 

the end, a loose fit billet, similar to the one earlier discussed, would provide access for four bolts 

to be inserted parallel to the track and thread into a block previously inserted into the tube a few 

inches deep. Although this design required a tube between each curve, the weight of each 

segment was reduced by over 50%. To make this design work on the ‘S’ turn, two smaller semi 

circles, with the same contour were used with a short tube in between. This maintained the ‘S’ 

concept but was a more gradual change. An image of the tracks assembly and short segment is 

shown in Figure 15. All the mechanical drawings of the track components can be seen in 

Appendix C.1. 

Threshold 
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Figure 15: Horizontal track assembly and joining blocks 

With track design nearing the final form, the next check was for durability of the track 

and rolling surface. Aluminum was chosen because of its low weight to strength ratio and ease of 

manufacturing. However, when steel rollers are used against an aluminum track the surface will 

begin to wear quickly. Steel rollers were required because of their high radial load capabilities 

but the aluminum tube and curve assemblies had to be protected. Ideas for inlaying steel strips or 

having a steel track came to light but the best method to withstand wear on aluminum was to 

have the entire assembly hard anodized. A black hard-coat anodize process, though it added 

0.002 [inches] of thickness, was the perfect solution to ensure the track would last repeated use. 

The final concern for track design was to confirm wall mounting would achieve the 

required load-carrying capacity and safety margins. Concerns existed regarding the rigidity of 

the building studs, brackets, and track when subjected to load. The brackets were redesigned to 

make the track more accessible to cabinets without gaps and it required using shorter but thicker 

steel plates that would be tied to a unified mounting plate connected to each stud. These brackets 

can also be seen in Appendix C.2. To evaluate the strength of the new bracket design, we 

conducted Finite Element Analysis (FEA) on the assembly. The FEA analysis was performed 
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using SolidWorks Simulation Tool. A small-scale simulation and bench-top test was performed 

on the longest bracket with wood reinforced steel studs, shown in Figure 16 and Figure 17. 

 

Figure 16: SolidWorks small-scale FEA on a long track bracket 

 
Figure 17: Bench-top testing of a long bracket under load 
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A load test was conducted using two recycled steel studs and a long bracket to bench test 

the attachment system. Each stud was fixed to a sawhorse at the standard 16 [in] center-to-center 

distance and bolted together using a steel connecting plate. A load cell was then used to apply the 

same 150 [lbs] of load as in the simulation. The deformation of the bench test, when under the 

same loading as the FEA model, were comparatively minimal. A large-scale simulation was then 

conducted on the entire assembly. The input simulation parameters required defining each 

individual part’s material properties (i.e. yield strength, density, elastic modulus, etc.), the fixed-

in-space faces of the wall studs, all bolt connections (including their torque, mass, and surface 

contact area), all non-penetrating surface contact pairs, and the applied loading (including 

gravity, torque, and payload). The highlighted input parameters can be seen in the following four 

figures.  

 
Figure 18: SolidWorks FEA track assembly’s contact sets 
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Figure 19: SolidWorks FEA track assembly’s bolted connections 

 

Figure 20: SolidWorks FEA track assembly of the building stud bonded connections 

 

Figure 21: SolidWorks FEA track assembly of the brackets welded connections 

To test this assembly, an applied load on the track’s most unsupported point was 50 [lbf], 

derived from the criteria, and a torque of 100 [ft-lbf]. What resulted was a stress level induced in 

the track between 27 [Mpa] and 200 [kpa], the brackets between 12 [Mpa] and 2.5 [Mpa], and 

the studs between 207 [Mpa] and 76 [Mpa]. All static stress values, as well as the negligible 

strain level, are well below the respective material’s yield point and indicative of a safe track. 
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The maximum deflection of the track was 0.059 [in]. This is an acceptable deformation because 

it does not exceed the elastic region of the material’s properties. The lowest Factor of Safety 

(FOS) in the studs, which is a term used for describing the structural capacity of a system beyond 

the load, was found to be 2.5. These results show the track and building studs are safe when 

operating within the design criteria limits set by the earlier design process.  

The output of the simulation provided a visual representation of stress, strain, 

deformation, and the FOS. This can be seen in the following four figures. 

 

Figure 22: SolidWorks FEA track assembly Von Mises stress result 
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Figure 23: SolidWorks FEA track assembly deflection result 

 

Figure 24: SolidWorks FEA track assembly strain result 
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Figure 25: SolidWorks FEA track assembly FOS result 

3.1.2 Horizontal drive carriage 

The overhead carriage assembly is a vital component that must be able to resist torque, remain 

rigid, and drive the lower assemblies in a controlled manor. Many iterations of this design took 

place before the final version was reached. Initially, this carriage comprised many segments but 

was quickly simplified. The three major developments that will be discussed in this section 

include the dual drive carriage prototype, the three-point contact prototype, and the refined 

aluminum prototype.  

The initial concept for a driven carriage evolved from the idea of two separate but 

connected carriages. Each would capture the track with one roller on either side, allowing it to 

pivot about its center axis in both directions. One would provide the power input while the other 

would track position (not shown) in Figure 26 below. The vertical column would have been 

attached to the cantilever arm connecting the two carriages. 
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Figure 26: Dual drive carriage concept 

The downfall to this concept, which was discovered after developing a working 

prototype, was the inability for the carriages to remain parallel when traveling along a straight 

path. Once this twisting occurred, as outlined by the two red lines, it causes the motion to be 

hindered and would have to be manually corrected, as shown in Figure 27 below. Springs were 

added to correct the unwanted motion but the entire assembly was flawed and a better method 

had to be derived. 
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Figure 27: Dual drive carriage failure mode caused by unwanted twisting at the pivot points 

The second major revision to the drive carriage was to eliminate the second carriage, but 

devise a spring loaded method that could change the perpendicular width of three track rollers. 

This would allow the carriage to move around both types of curve without the loss of torsional 

resistance. The amount of motion was determined via a SolidWorks sketch shown in Figure 28. 

The distance between the 0.5 [in] rollers is clearly shown to vary between 2.444 [in] and 2.573 

[in] when turning through a 10 [in] curve. This 10 [in] radius was kept on each curved segment 

but modified to the required arc length.  
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Figure 28: Three-point contact state diagram showing variation in roller width 

 

Figure 29: Three-point horizontal contact plastic drive carriage with two adjusting rollers 
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These two rollers would move along parallel shoulder bolts via a sleeve bearing and be 

under compression of a steel spring. Further refinement of this 3D printed prototype revealed the 

need for spring-loaded track rollers on the bottom to account for variations in the track’s vertical 

height (highlighted in green on Figure 30), added mounting holes (highlighted in red), and added 

bolting points for the drive wheel housing to withstand deflection (highlighted in orange).  

The final prototype of the drive carriage was machined from aluminum and is shown in 

Figure 30 below. As previously discussed, the bottom two track roller axles were given four 

compression springs, the thickness of the assembly was increased, and bolting points were added 

for the motor assembly. Furthermore, the lone track roller was moved to the adjustable side as 

testing showed this to be a more refined method, a solid L-piece replaced the need for two 

column-mounting parts, and the top section was reduced from two to one parts.  

 

Figure 30: Final aluminum prototype drive carriage without motor assembly 
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Figure 31: Final aluminum prototype drive carriage with motor assembly and vertical column 

The torque and speed of the drive carriage motor was determined by assuming the 

maximum horizontal velocity should be no greater than 9 [in/sec], friction could be ignored 

because of the low resistance track rollers, and the mass of the entire assembly, with payload, 

would not exceed 200 [lbs]. Overall, the final motor that was chosen incorporated an encoder, 

fail-safe electromagnetic brake, 220 [in-lbs] of torque, and a maximum speed of 53 [rpm] to 

achieve the required speed (“Midwest Motion Products,” 2013). These specifications were 

enough to satisfy the designs needed capabilities.  

3.1.3 Vertical column 

The vertical column in the KitchenBot is a key aspect in the design but was difficult to develop. 

The major challenges in the design of the vertical column include finding a carriage capable of 

withstanding torque in three dimensions and specifying a capable motor. Initially, early concepts 

of this linear motorized carriage were developed using 80/20 aluminum extrusion and a lead 

Drive Wheel 

Column Mount 



 45 

screw. However, it was quickly realized that a lead screw would be heavy, noisy, and difficult to 

acquire or machine at a length just over six feet.  

An engineered linear actuator was sought-after so that further carriage design would not 

be required to determine the torque limits. We purchased a belt driven linear actuator (motor not 

included) with an aluminum body and carriage from Pacific Bearing Company (Rockford, IL). 

The actuator and carriage could withstand force between 370 and 1011 [lbf] and torque between 

708 and 3982 [lbf-in] (“PBC Linear MTB080 Linear Actuator,” 2013). For the particular axis, 

which the arm will be loading and torqueing, this carriage would be able to withstand the 

maximum required. The motor for this linear actuator had to provide enough power to lift the 

arm and payload at a reasonable safe speed of about 3.5 [in/sec]. At this speed, the carriage could 

traverse from top to bottom in 18 [sec]. The track constants, variables, and outputs can be seen in 

Table 12 and Table 13. 

Table 12: Vertical motor speed and torque calculation inputs 

Constants: 
 

Variables: 
L_stroke [in]: 63.00 

 
V_linear [in/sec]: 3.50 

L_body [in]: 74.02 
 

t_full_stroke [sec]: 18.00 
m_trolley[lbs]: 5.13 

 
t_to_V_constant [sec]: 0.50 

m_load[lbs]: 125.00 
 

a_trolley [in/sec/sec]: 7.00 
D_pulley [in]: 1.95 

 
a_trolley [ft/sec/sec]: 0.58 

Pulley_ratio [in/rev]: 6.30 
 

FS 2.00 
 

Table 13: Vertical motor speed and torque calculation outputs 

Speed Output 
 

Torque Output 
W [rpm]: 33.3 

 
T_total_req [in-lbs]: 327.8 

Where: 
 

T_static_req [in-lbs]: 253.7 
W [rpm] = V_linear/Pulley_ratio*60 

 
T_inertial_req [in-lbs] 74.0 

   
Where:   

   
T_total_req = T_static_req + T_inertial_req 

   
T_static_req = FS*r_pulley*m_total 

   
T_inertial_req = m_total*a_trolley*r_pulley 
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Furthermore, it also needed to incorporate an encoder and electromagnetic brake for 

tracking position and locking when power is lost. The motor chosen to satisfy these requirements 

came from Midwest Motion (Watertown, MN) and supplied 33 [rpm] and 352 [in-lbs] of torque 

(“Midwest Motion Products,” 2013). The next challenge was to keep the column vertical at all 

times. 

3.1.4 Bottom carriage 

The bottom carriage is the assembly that contacts the floor and is mounted to the vertical 

column. The purpose of this assembly is to ensure the column remains vertical when translating, 

provide a vertical reaction force from the ground, and prevent the column from swaying when 

stationary.  

This carriage had numerous criteria to follow that included being spring loaded, power 

driven, lockable, able to turn through a corner, and maintain a small footprint. Compression 

springs were needed to ensure the assembly would always be contacting the uneven floor. 

Measurements showed an entire half-inch of variation in the HERL kitchen floor. Furthermore, 

the bottom carriage had to compensate for column tilt, via a driving wheel, when it deviates from 

the vertical. Most importantly; however, the assembly had to remain smaller than a power 

wheelchair base because the floor is considered valuable space. 

To satisfy these criteria, a single driven rubber wheel mounted on small linear ball 

bearings was the best working solution. The design simply repurposed a duplicate horizontal 

drive motor that incorporated an EM brake and encoder. The rubber wheel, as shown in Figure 
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32, is a hard polymer that provided good friction on the floor and could scrub around turns 

easily.  

 

Figure 32: Final bottom carriage assembly cross-section view 

The axis of rotation (shown in orange on Figure 32) was placed directly over the wheel so 

that scrubbing occurs on its center-point when moving horizontally through a curve. Moreover, a 

needle roller bearing was included to distribute the radial loading. The entire assembly could also 

move up or down depending on the distance to the floor and was under spring force (shown in 

green on Figure 32) to ensure enough friction was created to withstand the arm’s torque. This 

friction created by the lower and upper drive wheels provide the reaction forces, which vary 

depending on the position of the column and manipulator height, are necessary to keep the body 

ridged when loaded by the manipulator. The 6 compression springs delivers between 38 [lbs] and 

82 [lbs] of force depending on the position and deflect a maximum of 0.5 [in].  

Needle-Roller 
Bearing 
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A simple static load test was conducted to demonstrate the bottom carriage would not slip 

when torque is applied in different dimensions by a manipulator. The test was done by clamping 

steel bar stock onto the manipulator’s mounting point to serve as a lever. The column was 

positioned to an approximate point along the track with the least amount of spring force. Weight 

was then gradual added with a load cell 2 [ft] from the mounting point to simulate a torque away, 

towards, and about the cabinets. The assembly held a maximum torque of 80 [ft-lbs] in each of 

the three directions, which is indicative of a plausible payload ability of 26 [lbs] at 3 [ft] from the 

vertical carriage. This test and result indicate proper design feasibility. 

 

Figure 33: Robotic manipulator static load test on the mounting point in one dimension 

Load Cell 

Lever 
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Additionally, the bottom carriage responds in the same way as an inverse pendulum. As 

the column begins to tilt, the driving wheel compensates its speed, based on an accelerometer, to 

ensure the column remains vertical. A proportional accelerometer signal is averaged and 

converted into an angle with respect to the pull of gravity. The motor speed is proportional to the 

angle, up to an arbitrary 10 [degrees], resulting in a faster correction. 

 

 

Figure 34: Final bottom carriage footprint and easy access window 

3.1.5 Electronics and control 

The programming and electrical components were written in Arduino C-complier and put 

together on a breadboard for quick functionality. The entire assembly and electronics were 

designed for use with an Arduino Mega 2560 for its numerous inputs and outputs. These inputs 

5’’ 
11.5’’ 
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initially included the three motor encoders, joystick controller, limit switches, accelerometers, 

and wireless xBee transmitter for limit-switch information transfer between the kitchen and 

robot. The main pulse width modulation (PWM) outputs were for the motor controllers that 

would subsequently drive the motors via a speed and directional signal and digital outputs would 

control the simple electromagnetic brake solenoid. A schematic of the electronics can be seen in 

Appendix D. 

The control code to operate these electronics was created in numerous stages to avoid 

problems. Initially, only a single motor and brake was driven with gradual complexity added. 

Next, the other two motors were added with functions created to read from the accelerometers 

and compensate for column tilting. Further capabilities were then created to read from on-board 

limit switches and from external wirelessly transmitted limit switches. Encoders were then 

incorporated to track position down to a tenth of an inch and the data was saved via the 

Arduino’s internal memory. The final version of the prototyped code allowed for input from a 

column-mounted joystick or from a computer’s serial interface to autonomously move the track 

to a given X, Y position within 0.1 [inches]. It was at this point a demo could be generated and a 

prototype focus group evaluation could be conducted. The final working version of Arduino-

based code can be seen in Appendix D. The finished prototype can be seen in Figure 35 below. 



 51 

 

Figure 35: Final prototyped KitchenBot 
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4.0  FOCUS GROUP PROTOTYPE EVALUATION 

The second iteration of the “Participatory Evaluation of Assistive Technologies” protocol was 

conducted with a modified questionnaire and a working prototype for demonstration. This 

evaluation would provide some user insight to assist with the next stage of development. The 

KitchenBot was discussed in three different focus groups at the Human Engineering Research 

Laboratories in Pittsburgh, PA. 

4.1 METHODOLOGY 

Similar to the previous focus groups, subjects were recruited if they were over the age of 18, 

have a physical disability, and can comprehend English. All subjects provided informed consent 

before participation in the focus group.  

Participants first completed a questionnaire about general demographics, their current and 

past experience with assistive technology, meal preparation task importance, and frequency of 

assistance. They then participated in a round-robin group discussion with each group consisting 

of no more than 5 participants and lasting no more than 1.5 hours. Although the participants were 

not allowed to directly interact with the KitchenBot, they were able to see a demonstration of the 

KitchenBot autonomously opening kitchen cabinets, appliances, and the sink faucet. Towards the 

end of the discussion, the group was asked to rank the priority of topics discussed which were 
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outlined on a whiteboard. These images can be seen in Appendix E. The discussions were audio 

recorded and later transcribed for content analysis. After the focus group discussion, subjects 

were asked to complete the end of the questionnaire related to frequency of meal preparation, 

frequency of meal preparation assistance, perceived KitchenBot usefulness, and perceived 

KitchenBot ease-of-use. Likert-Type scale response anchors were used to aid individual 

responses for varying levels of agreement, importance, and concern (Vagias, 2006). A copy of 

this questionnaire can be found in Appendix E.1. 

4.2 RESULTS 

4.2.1 Quantitative data 

A total of 11 subjects were recruited to participate in three focus groups. Of those 11, six 

reported their disability as a Spinal Cord Injury, two as having Cerebral Palsy, one as having 

Polio, one as a double amputee, and one as having orthopedic impairments. There were 5 who 

use manual wheelchairs, 5 who use power wheelchairs, and 1 who uses a scooter for independent 

mobility. The average number of years with a disability was 24.9 ± 24.4 years. There were 7 

males and 4 females with an average age of 44 ± 21 years. 

Of the participants, 7 said they live in an urban location, 3 live in a suburban location, 

and 1 lives in a rural location. Furthermore, 10 indicated they live in an apartment, home, or 

condominium with only 1 living in a residence hall or collage dormitory. The participants 

highest education level is well mixed with 3 indicating they have received a high school diploma 

or GED, 3 have an associates or vocational degree, 3 have a bachelors degree, and 2 have a 
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masters degree. Total household income was also diverse with 2 participants earning $10-$15k 

per year, 3 earning $15-$20k per year, 1 earning $20-25k per year, 1 earning $25-$35k per year, 

2 earning $35-$50k per year, and 2 who elected not to answer. Current work status indicated 3 

participants are students, 1 working full-time outside the home, 3 working part-time outside the 

home, 1 working part-time inside the home, 1 unable to work because of disability, 1 retiree, and 

1 with missing information. Participants were also allowed to indicate more than one answer in 

regards to health insurance which showed that 7 are covered by Medicare or Medicaid, 4 are 

covered by their employer, spouse’s/parent’s employer, or previous employer, and 2 pay out-of-

pocket for coverage.  

Information related to the health and experience with technology was also gauged to 

better understand the background of each individual. In regards to self-care, 4 participants 

(36.4%) indicated they have some problems washing and dressing and 1 participant (9.1%) 

indicated they are unable to wash or dress themselves. Seven participants (63.6%) also stated 

they have some problems with performing usual activates (work, study, housework, etc.). 

Additionally, 4 (36.4%) participants said they built an assistive device to meet their needs, 7 

(63.6%) modified some existing technology to meet their needs, and 4 (36.4%) considered 

themselves as technology savvy. The median response to questions pertaining to technology in 

general is shown in Table 14 with 1 indicating “Not At All” or 7 indicating “Completely”. 

Moreover, the median response to phrases about the participant is also listed below in Table 15 

with a 1 indicating “Not At All Accurate” or 7 indicating “Extremely Accurate”. Lastly, the 

median responses to factors for choosing technology, which vary between “Not At All 

Important” to “Extremely Important” are detailed in Table 16 below. 
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Table 14: Median response of technology in general on a seven-point Likert scale 

Phrase Median Response 
Makes life easy and convenient: 6.0 

Makes life complicated: 2.0 
Gives people control over their daily lives: 6.0 

Makes people dependent: 5.0 
Makes life comfortable: 6.0 

Makes life stressful: 2.0 
Brings people together: 5.0 
Makes people isolated: 4.0 

Increases personal safety and security: 6.0 
Reduces privacy: 3.0 

 

Table 15: Median response of phrases on a seven-point Likert scale  

Phrase Median Response 
I like to keep up with the latest technology: 6.0 

I generally wait to adopt a new technology until all the bugs have been 
worked out: 5.0 

I enjoy the challenge of figuring out high tech gadgets: 5.0 
I feel confident that I have the ability to learn to use technology: 6.0 

Technology makes me nervous: 1.0 
If a human can accomplish a task as well as technology, I prefer to 

interact with a person: 4.0 
I like the idea of using technology to reduce my dependence on other 

people: 6.5 
 

Table 16: Median response of factors for choosing technology on a seven-point Likert scale 

Factor Median Response 
How well it meets your needs: 7.0 

Ease of use: 5.5 
Cost: 5.0 

Attractiveness: 5.0 
How visible it is to others: 4.0 

How it affects your privacy: 3.0 
How safe it is to use: 6.0 

 



 56 

Before the group discussion, each participant was asked to respond to a list of kitchen 

related tasks using a seven-point Likert scale from “Very Unimportant” to “Very Important” and 

the frequency they receive assistance with each of those tasks from “Never” to “Every Time”. 

The percentage of participants who said the most important tasks, those ranked between 

“Slightly Important” and “Very Important”, were found to be opening/closing/reaching into a 

cabinet above the countertop (90%), moving hot objects from the stove and oven (90%), moving 

hot objects from the microwave (91%), and putting in/taking out heavy objects (91%). In 

addition, participants also reported they needed assistance “Frequently”, “Usually”, or “Every 

Time” with stabilizing pots on the stove (55%), opening/closing/reaching a cabinet above the 

countertop (55%), moving hot objects from the stove (60%), moving hot objects from the oven 

(64%), putting in/taking out heavy objects (64%), and carrying heavy objects (64%). 

After the group discussion, participants then responded to questions of meal preparation 

frequency and assistance. Results showed 10% do not cook at home, 40% cook 0-4 times per 

week, 20% cook 5-7 times per week, and only 30% of participants prepare a meal more than 

once per week at home. Moreover, 70% of the group reported they receive assistance with meal 

preparation more than once per week, 20% receive assistance 2-4 times per week, and only 10% 

reported being completely independent with meal preparation. The following Table 17 compares 

the concept and prototype focus group meal preparation frequency responses.  

Table 17: Comparison of focus group meal preparation frequency responses 

Concept 
Focus Group 

Prototype Focus 
Group Average Question 

20% 10% 15% Do not cook at home 
16% 20% 18% Cook 0-1 times per week 
24% 20% 22% Cook 2-4 times per week 
12% 20% 16% Cook 5-7 times per week 
16% 10% 13% Cook 8-14 times per week 
12% 20% 16% Cook greater than 14 times per week 
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The final tables of the questionnaire also gauged the participants perceived ease-of-use 

and usefulness of the KitchenBot. These ease-of-use and usefulness tables were modeled after an 

established questionnaire (Sauro, 2011). From the results, 90.9% of participants believed it 

would be easy for them to remember how to operate the KitchenBot and 72.7% reported that 

interacting with KitchenBot would be understandable, as shown in Table 18. Moreover, almost 

two thirds of the participants (63.6%) believed the KitchenBot would be easy to use and 81.8% 

believed using the KitchenBot would allow them to complete tasks they currently could not do 

independently, as shown in Table 19. 

Table 18: Percentage of responses in regard to perceived KitchenBot ease-of-use 

Statement 

Neither 
Agree or 
Disagree 

(4) 

Somewhat 
Agree (5) 

Agree 
(6) 

Strongly 
Agree 

(7) 

Somewhat to 
Strongly 

Agree (5,6,7) 

KitchenBot would be cumbersome 
to use 0.0% 36.4% 9.1% 0.0% 45.5% 

Learning to operate KitchenBot 
would be easy for me 10.0% 9.1% 36.4% 18.2% 70.0% 

Interacting with KitchenBot would 
be frustrating 18.2% 18.2% 0.0% 9.1% 27.3% 

It would be easy to get KitchenBot 
to do what I want it to do 0.0% 18.2% 36.4% 9.1% 63.6% 

It would be easy for me to 
remember how to operate 
KitchenBot 

0.0% 18.2% 45.5% 27.3% 90.9% 

Interacting with KitchenBot would 
require a lot of mental effort 9.1% 18.2% 27.3% 0.0% 45.5% 

Interacting with KitchenBot would 
be understandable 0.0% 18.2% 54.5% 0.0% 72.7% 

It would take a lot of effort to 
become skillful as using 
KitchenBot 

18.2% 18.2% 18.2% 9.1% 45.5% 

It would be easier to just get 
another person to help rather than 
use KitchenBot 

20.0% 9.1% 27.3% 9.1% 50.0% 

I would be anxious about using 
KitchenBot 27.3% 27.3% 18.2% 0.0% 45.5% 

KitchenBot would be easy to use 9.1% 9.1% 54.5% 0.0% 63.6% 
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Table 19: Percentage of responses in regard to perceived KitchenBot usability 

Statement 
Neither 

Agree or 
Disagree (4) 

Somewhat 
Agree (5) Agree (6) 

Strongly 
Agree 

(7) 

Somewhat to 
Strongly 

Agree (5,6,7) 
Using KitchenBot would 
allow me to complete 
kitchen tasks that I cannot 
do independently  

9.1% 18.2% 36.4% 27.3% 81.8% 

KitchenBot would enable 
me to complete kitchen 
tasks more quickly 

18.2% 27.3% 27.3% 0.0% 54.5% 

Using KitchenBot would 
improve my performance 
with kitchen tasks 

20.0% 18.2% 27.3% 0.0% 50.0% 

Using KitchenBot would 
allow me to complete 
more kitchen tasks than 
would otherwise be 
possible 

10.0% 18.2% 36.4% 9.1% 70.0% 

Using KitchenBot would 
enhance my effectiveness 
with kitchen tasks  

20.0% 18.2% 18.2% 9.1% 50.0% 

Using KitchenBot would 
make my life easier 20.0% 27.3% 27.3% 9.1% 70.0% 

It would be embarrassing 
to be seen using 
KitchenBot 

9.1% 0.0% 0.0% 18.2% 18.2% 

Overall, KitchenBot 
would be useful in my 
daily routine 

9.1% 18.2% 27.3% 27.3% 72.7% 

The government should 
invest resources to 
develop KitchenBot 

0.0% 27.3% 27.3% 45.5% 100.0% 

 

This is congruent with the earlier concept focus group findings, which leads us to better 

understand the numerous challenges individuals with disabilities face with meal preparation. 

With 45.5% of the participants saying they would either “Likely”, “Very Likely”, or “Definitely” 

be willing to have the KitchenBot in their home, this robot could prove to be a viable solution. 
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4.2.2 Qualitative data 

Discussion topics included the types of interface and control method, feasibility, safety, and 

development priority. Varying amounts of time were spent on each topic and were dictated by 

the demeanor of the group.  

The early portion of the discussion was spent considering the different types of interface 

and control method. The three types of interface included the joystick, tablet, and voice control. 

The joystick method was demonstrated utilizing a column-mounted horizontal two-degree of 

freedom joystick for the track and a separate tethered joystick for controlling the arm, shown in 

Figure 36. The tablet was demonstrated next with the majority of individuals stating that direct 

use of the tablet would be the only way they could really critique its layout and features, shown 

in Figure 37. Voice control was examined last with an explanation of its potential architecture, 

such as manual motion or task type commands. Some common interface and control method 

themes can be explained when some said: 

"The problem I see, especially if you are using a manual chair, is to follow [the 

joystick’s] movement through the environment." 

“It seems like the joystick would be easier instead of like talking." 

 “That's what's nice about this screen, because if it's on a computer, you can use adapted 

equipment to control it, like a track ball, or dragon, or a head pointer." 

"If you have any background noise, [voice control] is very sensitive. So, it would have to 

be really quiet for it to be accurate." 
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Figure 36: Joystick track control interface 

 

Figure 37: Tablet control interface  

In response to the varied types of track interface, the tablet was ranked the favorite more 

times than the joystick or voice control. Moreover, in response to the gripper control, the favorite 

method was tied between the tablet and voice method. Autonomous vs. manual control was also 

discussed with an explanation that a hybrid of both methods could exist, such as performing 
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semi-autonomous tasks. The idea of KitchenBot performing automated or semi-automated tasks 

was widely liked and could be summarized by one participant which said: 

“I would think automated tasks, because that could greatly reduce the time and effort to 

get something.” 

The KitchenBot feasibility was the next major discussion topic with areas including the 

level of noise, track installation, footprint, adapted kitchen equipment/organization, and dual 

arms. In general, the response to the level of noise was neutral, but all the participants agreed that 

noise would not hinder their willingness to use the KitchenBot. As with the earlier concept focus 

group, participants were well mixed in the likelihood of installing this type of track above their 

cabinets. Similarly, in regards to the footprint, some had concerns with maneuvering around the 

KitchenBot because of their small apartment style kitchen while others thought it should not be a 

problem. Discussion also delved into the idea of robot adapted kitchen equipment or item 

organization to further improve the manipulator’s capabilities. Many adapted equipment 

suggestions were made in regards to pickup up items, but generally the groups had no issues with 

using custom equipment or sticking to a particular organizational scheme as long as items could 

be replaced, if needed. Lastly, responses regarding adding another arm revolved around which 

types of tasks would benefit, particularly opening containers or taking out heavy items from the 

oven. Some comments related to these discussion themes were: 

“If you have friends over or something else, then [the noise] might get annoying when 

you’re trying to do something at the same time.” 

“This looks like [KitchenBot] would cater to a more modern home type of kitchen. You 

know, spacious.” 

“My kitchen does have room where the track could be put.” 
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 “I would prefer [footprint] to be less, but if it came like that I would just deal with it.”  

 “You can make [footprint size] reductions, but in my case, I could make it work.” 

“The only time I think you would need two arms is if you’re stirring something and you 

need to hold the bowl with one.” 

“You would really only use two arms for opening containers, unless you had something 

else that could grip it.” 

Safety was discussed briefly among participants. The emergency stop button on the 

joystick and current-limiting manipulator were explained to the group and opinions and 

suggestions were heard. The groups thought an emergency button should be located somewhere 

other than the column, but preferably two groups thought it should just stop on its own. 

The whiteboard development priority ranking was the last discussion topic. As the groups 

discussed the previously mentioned aspects, they were written onto a whiteboard for prioritizing. 

These three whiteboard images can be seen in Appendix E. Each of the three groups picked 

“automating tasks” as the most important priority for the next stage of development. Moreover, 

“safety features” was chosen among all the groups as the second most or third most important 

development priority. Group one and three thought customizing the track and footprint to fit 

smaller sized kitchens should be the third most important development priority. Lastly, group 2 

thought working on item organization and adapted kitchen equipment should be the third most 

important development priority.  

Some design and development suggestions emerged from the groups as well. These 

comments varied from topic to topic but are shown here: 

“Maybe you could have a wireless [joystick] device.” 

“I think two [arms] would make it complicated.” 
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“You should have like an automatic safety stop.” 

“An emergency button to call [for help].” 
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5.0  CONCLUSION 

The KitchenBot prototype and focus group evaluations were a stepping-stone for further 

improvement. The design of the KitchenBot was not truly a technological advancement, but 

merely a unique combination of existing technology. A series of practical autonomous 

capabilities, such as opening doors, opening the faucet, or pulling out drawers have already been 

quickly developed. Further refinement of such tasks can provide a viable product for the end user 

without long development time. This refinement must be systematically evaluated using the 

design criteria. The final section will outline the future work of the KitchenBot. 

5.1 FUTURE WORK 

 

The KitchenBot prototype possesses the potential to improve the functional capabilities of an 

individual with manipulation, mobility, reach, and or strength deficiencies by successfully 

completing the criteria. Design criteria previously discussed, such as having the freedom to move 

within the entire kitchen, being motor controlled, providing position feedback, incorporating fail-

safe brakes, having limit switches, able to accommodate two arms, having limited track 

deflection, and theoretically being able to lift a 25 [lbs] turkey from the oven have been 

achieved. These were verified through the use of control software, FEA, and static load testing. 



 65 

From those results, it was determined the track would deflect less than 0.1 [in], the current 

prototype could provide position feedback to within 0.1 [in], and the carriage for the arm could 

withstand torque of 80 [ft-lbs]. However, not all criteria were achieved.  

Some criteria which have been previously unsatisfied can be evaluated by bench-top 

testing. These would include the level of noise, the ability to install the system into a standard 

residential home, and the safety of the system. The criterion related to noise can easily be tested 

with a decibel meter and if necessary, the motors can be replaced with comparable planetary gear 

motors that generate far less noise. The criteria for allowing residential home installation would 

need to be further analyzed using FEA and common building material properties and standards. 

Finally, safety could be demonstrated by running continuous testing of the system components 

and recording failure modes and frequency. This would give a good indication; if failure 

occurrence were low the system is safe. Though, safety can and should also be evaluated by the 

end users.  

The remaining criterion, aesthetically pleasing, is a non-quantified criterion, which means 

that evaluation and completion must come from the consensus of the end users. This can be 

accomplished by testing subjects with the system to provide feedback related to the criterion. 

Moreover, safety could also be included in this research as added verification.  

Overall, to evaluate whether the KitchenBot has achieved all the criteria and to prove its 

effectiveness, a single subject design could be utilized so that clinical significance could be 

demonstrated. Participants could be timed and asked their exertion level for completion of simple 

kitchen tasks before and after using the system. Before this can be successfully demonstrated, 

some aspects of further improvement include the design of the bottom carriage, the safety 

features, the type of manipulator and mounting, and the control interface.  
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The bottom carriage of the KitchenBot ensures the column remains vertical during 

horizontal motion and provides the reaction force during manipulation tasks. The prototype 

explained above successfully achieved these two criteria but due to the simplicity of the design, 

the prototype lacks a second degree of control to compensate for tilt in the perpendicular 

direction. A possible solution would be to implement a ball assembly that can translate in two 

dimensions or utilize the novel features of Omni-wheels. Moreover, this new assembly should 

maintain, at most, the approximate footprint of the current design and should include sensors, per 

the users feedback, to restrict motion if an object is in the path of travel. 

Additional safety features should include an external emergency stop switch, sensors for 

detecting objects in its horizontal and vertical path of travel. The prototype only uses 

accelerometers and encoders for positioning but infrared, ultrasonic, or laser range sensors could 

be incorporated to restrict motion automatically. A safe-zone could also be programmed to limit 

the robot from entering an area that is off-limits or could cause damage to the building or 

individual. This would allow the KitchenBot to perform more autonomous tasks within close 

proximity of individuals and objects, such as cabinets and drawers, without assuming their 

position. Moreover, the focus groups brought to light the need for an external emergency stop 

switch to ensure, if the user could not be next to the robot, there would be a method of hindering 

motion. This switch input could even include other features of control including manual direction 

control or visual feedback of position and processes to inform the user of the KitchenBot’s 

objectives. This external safety feature could even be tightly woven into the future control 

interface.  

The focus group participants expressed interest in all of the final three types of control 

interface. However, the best foreseeable course of action would be to further develop a simple to 
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use tablet-based graphical user interface (GUI). With this flexible GUI, a user could customize 

layout, utilize numerous autonomous or manual control features, or use computer access devices 

to improve accessibility. Some examples of computer access devices could be voice recognition 

software, such as Dragon NaturallySpeaking, to interact with different features of the GUI, a 

trackball or joystick to control a cursor on the screen, or a switch could even allow scanning to 

sequentially select items on the screen. This interface would open possibilities for single click 

autonomous tasks. Such tasks could be programmed into the robot as simplified sub-routines. 

With this database of sub-routines, a user could chain together numerous autonomous features to 

perform varied organizational, meal preparation, or cleanup tasks. Some examples could be 

retrieval of objects, opening doors, drawers, or appliances, and pushing appliance buttons. 

Another potential area of investigation could be gesture control with use of a Kinect or 

Leap Motion sensor (“Leap Motion,” 2013). Users could be able to point or directly control the 

track, manipulator, and hand by using their own fingers as inputs. The combination of these 

aforementioned interfaces could allow a user to work with the KitchenBot as though it is another 

human partner or sous-chef. 

The JACO robotic manipulator could serve as a long-term demonstration of KitchenBot 

capabilities, but further improvement of the mounting and manipulator could be developed. 

Although the JACO is a well-researched manipulator with previously published clinical and 

economic implications, it lacks the ability to provide assistance with heavy payload tasks. 

Further development or adaptation of various manipulators could eventually provide limitless 

task potential. Moreover, the point used for mounting of the manipulator could be further 

developed to allow an individual to autonomously dock the KitchenBot manipulator on their 

powered wheelchair for external manual manipulation tasks. Even collaboration with smart 
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kitchen technology, a rapidly growing market, could more easily allow the KitchenBot to 

recognize, locate, or organize items. With implementation of the previously suggested work and 

a potential system for detecting static objects, the KitchenBot could perform numerous 

autonomous tasks such as unloading your groceries, loading a dishwasher, retrieving items, or 

preparing a meal for just about anybody who needs assistance to stay home and independent.  
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APPENDIX A 

CONCEPT SKETCHES 

 

Figure 38: Gantry track style concept sketch with one corner under suspension 
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Figure 39: Jib crane style concept sketch with pie shaped work envelope 
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Figure 40: Hybrid concept sketch with telescoping arm and counterweight 

 

 
Figure 41: Stadium camera concept sketch with three fast acting winch cables 
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Figure 42: Early carriage cross section sketches 

 

Figure 43: Early carriage cross section sketches (continued) 
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Figure 44: Early carriage cross section sketches (continued) 
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APPENDIX B 

CONCEPT FOCUS GROUP 

 

Figure 45: Conceptual KitchenBot reaching into a drawer 
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Figure 46: Conceptual KitchenBot reaching into an upper cabinet 
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Figure 47: Conceptual KitchenBot stabilizing a pot 

 
Figure 48: Conceptual KitchenBot full view reaching into a drawer 
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Figure 49: KitchenBot and robot arm potential interfaces 

 

Figure 50: Focus group poster setup 
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B.1 CONCEPT FOCUS GROUP QUESTIONNAIRE 
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APPENDIX C 

MECHANICAL DRAWINGS 

C.1 HORIZONTAL TRACK 
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C.2 MOUNTING BRACKETS 
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C.3 HORIZONTAL CARRIAGE 
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APPENDIX D 

ELECTRONICS AND CONTROL CODE 
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//KitchenBot Control Code v19 
//Created by: Joshua Telson 
//NOTES: ALWAYS apply power via supply before connecting USB for debugging  
//NOTES: CAUTION when bottom carriage tilts towards cabinets 
//NOTES: EEPROM (memory) has recommended life span of 100,000 read/writes  
 
#include <SoftwareSerial.h> 
#include <EEPROM.h> 
//#define ENCODER_OPTIMIZE_INTERRUPTS 
#include <Encoder.h> 
#include "EEPROMAnything.h" 
#include <math.h> 
 
SoftwareSerial mySerial(50, 51); //RX, TX 
int PWM_1 = 7; //Horizontal 
int PWM_2 = 8; //Vertical 
int PWM_3 = 9; //Bottom 
int dir_1 = 10; //Horz 
int dir_2 = 11; //Vert 
int dir_3 = 12;   
int rotate_1_speed = 100; //horizontal     //Designed speed should be 200PWM, anything higher than 100 will result 
in missed "auto_motion" (i.e. cannot hit X_in value)  
int rotate_2_speed = 200; // vertical     //Designed speed should be 255PWM 
int rotate_3_speed = 100; //bottom 
int brake_1 = 22; 
int brake_2 = 23; 
int brake_3 = 24; 
int brakeDelay = 50; 
int LED = 13; 
int incomingByte = 50; 
int forward = 4; //joystick input 
int right = 5; 
int backward = 6; 
int left = 47; 
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int red = 48; 
int Limit_vert_top = 30; 
int Limit_vert_bottom = 31; 
boolean limit_counter_vert; 
boolean limit_counter_bottom; 
 
int X_input_1 = A0; 
int Y_input_1 = A1; 
int X_input_2 = A2; 
int Y_input_2 = A3; 
float angleX1; 
float angleY1; 
float angleX2; 
float angleY2; 
float angleXavg; 
float angleYavg; 
float corr_speed; 
float max_corr_speed = 20; 
float angleX_max = 5; 
 
Encoder myEncX(2,3); 
//long oldposX = -999; 
float newposXinch; 
Encoder myEncY(18,19); 
//long oldposY = -999; 
float newposYinch; 
long newposX; 
long newposY; 
int save_count; 
 
char xy_input_flag;  
float X_in; 
float Y_in; 
boolean auto_motion_x; 
boolean auto_motion_y; 
float accuracy_threshold = 0.1; 
 
//Signifies Arduino Reset 
void blinkLED(int whatPin, int howManyTimes, int miliSecs) { 
 int i = 0; 
 for (i = 0; i < howManyTimes; i++) { 
  digitalWrite(whatPin, HIGH); 
  delay(miliSecs/2); 
  digitalWrite(whatPin,LOW); 
  delay(miliSecs/2); 
 }  
} 
//END 
 
void motor(int type, boolean dir, int speedy) { 
  //Serial.println(speedy); 
  if (dir == HIGH) { 
    switch (type) { 
      case 1: 
        digitalWrite(dir_1, HIGH);                   //CHECK 
        if (digitalRead(brake_1) == LOW){ 
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          digitalWrite(brake_1,HIGH); 
          delay(brakeDelay); 
        } 
        analogWrite(PWM_1, speedy); 
      break; 
      case 2: 
        digitalWrite(dir_2, HIGH);                   //CHECK 
        if (digitalRead(brake_2) == LOW){ 
          digitalWrite(brake_2,HIGH); 
          delay(brakeDelay); 
        } 
        analogWrite(PWM_2, speedy); 
      break; 
      case 3: 
        digitalWrite(dir_3, HIGH);                   //CHECK 
        if (digitalRead(brake_3) == LOW){ 
          digitalWrite(brake_3,HIGH); 
          delay(brakeDelay); 
        } 
        analogWrite(PWM_3, speedy); 
      break; 
    } 
  } 
  else if (dir == LOW) { 
    switch (type) { 
      case 1: 
        digitalWrite(dir_1, LOW);                 //CHECK 
        if (digitalRead(brake_1) == LOW){ 
          digitalWrite(brake_1,HIGH); 
          delay(brakeDelay); 
        } 
        analogWrite(PWM_1, speedy); 
      break; 
      case 2: 
        digitalWrite(dir_2, LOW);                 //CHECK 
        if (digitalRead(brake_2) == LOW){ 
          digitalWrite(brake_2,HIGH); 
          delay(brakeDelay); 
        } 
        analogWrite(PWM_2, speedy); 
      break; 
      case 3: 
        digitalWrite(dir_3, LOW);                 //CHECK 
        if (digitalRead(brake_3) == LOW){ 
          digitalWrite(brake_3,HIGH); 
          delay(brakeDelay); 
        } 
        analogWrite(PWM_3, speedy); 
      break; 
    } 
  } 
} 
 
void move_right() { 
        //Serial.println("I'm movin' right");         
        motor(1, LOW, rotate_1_speed); 
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        //get_position(); 
        save_count = 0; 
    if ((newposXinch >= 82 && newposXinch <= 100) || (newposXinch >= 200 && newposXinch <= 210)) { 
        //Serial.println("I'm movin' right in a curve"); //turn off motor 3       
      } 
    else { 
      motor(3, LOW, rotate_3_speed - corr_speed); //subtracting a negative corr_speed == addition 
    } 
} 
void move_left() { 
      //Serial.println("I'm movin' left");             
      motor(1, HIGH, rotate_1_speed); 
      //get_position(); 
      save_count = 0; 
    if ((newposXinch >= 82 && newposXinch <= 100) || (newposXinch >= 200 && newposXinch <= 210)) { 
       //Serial.println("I'm movin' left in a curve"); //turn off motor 3      
      } 
    else { 
      motor(3, HIGH, rotate_3_speed + corr_speed); 
    } 
} 
void move_down() { 
    //Serial.println("I'm movin' down");    
    motor(2,LOW,rotate_2_speed); 
    //get_position(); 
    save_count = 0; 
} 
void move_up() { 
    //Serial.println("I'm movin' up");     
    motor(2,HIGH,rotate_2_speed); 
    //get_position(); 
    save_count = 0; 
 
} 
//void lock_n_save_x() { 
//       //Serial.println("Locked"); 
//      analogWrite(PWM_1, 0); 
//      //analogWrite(PWM_2, 0); 
//      analogWrite(PWM_3, 0); 
//      digitalWrite(brake_1,LOW); 
//      //digitalWrite(brake_2,LOW); 
//      digitalWrite(brake_3,LOW); 
//      if (save_count_x == 0) { 
//            save_position (); 
//            Serial.println("Last position saved"); 
//            save_count_x = 1; 
//      }  
//} 
void lock_x() { 
      analogWrite(PWM_1, 0); 
      //analogWrite(PWM_2, 0); 
      analogWrite(PWM_3, 0); 
      digitalWrite(brake_1,LOW); 
      //digitalWrite(brake_2,LOW); 
      digitalWrite(brake_3,LOW); 
} 
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void lock_y() { 
      //analogWrite(PWM_1, 0); 
      analogWrite(PWM_2, 0); 
      //analogWrite(PWM_3, 0); 
      //digitalWrite(brake_1,LOW); 
      digitalWrite(brake_2,LOW); 
      //digitalWrite(brake_3,LOW); 
} 
//void lock_n_save_y() { 
//       //Serial.println("Locked"); 
//      //analogWrite(PWM_1, 0); 
//      analogWrite(PWM_2, 0); 
//      //analogWrite(PWM_3, 0); 
//      //digitalWrite(brake_1,LOW); 
//      digitalWrite(brake_2,LOW); 
//      //digitalWrite(brake_3,LOW); 
//      if (save_count == 0) { 
//            save_position (); 
//            Serial.println("Last position saved"); 
//            save_count_y = 1; 
//      }  
//} 
 
float get_X_angle_1 ( ) { 
  int i; 
  float valX = 0; 
  for (i=0;i<3;i++) { 
    valX = valX + analogRead(X_input_1); 
  } 
  valX = (valX/3); //gets the average of 3 counts 
  float volX = ((valX/1024)*4.87); //converts 10bit number into voltage (dependent on Vin) 4.79 on conv. 4.66 on 
usb 
  //Serial.print("VolX_1:"); 
  //Serial.println(volX); 
  float radX = asin((volX - 1.65)/.750); //change base value for 5V 
  float degX1 = radX * 57296 / 1000 ; 
  return degX1; 
} 
float get_Y_angle_1 ( ) { 
  int i; 
  float valY = 0; 
  for (i=0;i<3;i++) { 
    valY = valY + analogRead(Y_input_1); 
  } 
  valY = (valY/3);  
  float volY = ((valY/1024)*4.87); 
  //Serial.println(volY); 
  float radY = asin((volY - 2.30)/.750); //change base value for 5V 
  float degY1 = radY * 57296 / 1000 ; 
  return degY1; 
} 
float get_X_angle_2 ( ) { 
  int i; 
  float valX = 0; 
  for (i=0;i<3;i++) { 
    valX = valX + analogRead(X_input_2); 
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  } 
  valX = (valX/3); //gets the average of 3 counts 
  float volX = ((valX/1024)*4.87); //converts 10bit number into voltage (dependent on Vin) 4.87 on conv. 4.66 on 
usb 
   //Serial.print("VolX_2:"); 
  //Serial.println(volX); 
  float radX = asin((volX - 1.65)/.750); //change base value for 5V 
  float degX2 = radX * 57296 / 1000 ; 
  return degX2; 
} 
float get_Y_angle_2 ( ) { 
  int i; 
  float valY = 0; 
  for (i=0;i<3;i++) { 
    valY = valY + analogRead(Y_input_2); 
  } 
  valY = (valY/3);  
  float volY = ((valY/1024)*4.87); 
  //Serial.println(volY); 
  float radY = asin((volY - 2.30)/.750); //change base value for 5V 
  float degY2 = radY * 57296 / 1000 ; 
  return degY2; 
} 
 
void get_position () { 
    newposX = (myEncX.read())/4; //x4 counting 
    newposY = (myEncY.read())/4; 
    newposXinch = (4*PI/25000)*(newposX); // 100:1 gearhead ratio, 250PPR encoder, 2in Radius wheel 
    newposYinch = (6.299/40000)*(newposY); // 160:1 gearhead ratio, 250PPR encoder, 160mm linear travel to one 
rev 
} 
 
struct config_t 
{ 
    float X; 
    float Y; 
} storage; 
 
void save_position () { 
  storage.X = newposXinch; 
  storage.Y = newposYinch; 
  EEPROM_writeAnything(0, storage); 
    Serial.print("wrote to eeprom (x,y):"); 
    Serial.print("("); 
    Serial.print(storage.X);  //saves position [inch] 
    Serial.print(","); 
    Serial.print(storage.Y);  
    Serial.println(")"); 
} 
 
float getline() { 
  uint8_t idx = 0; 
  char c; 
  char buffer [5]; 
  do 
  { 
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    while (Serial.available() == 0) ; // wait for a char this causes the blocking 
    c = Serial.read(); 
    buffer[idx++] = c; 
  }while (c != 'a' && c != '\r');  
   
  buffer[idx] = 0; 
  return atoi(buffer); 
} 
 
void setup() { 
   
 Serial.begin(9600);  
 Serial.println("Begin Awesome"); 
 mySerial.begin(9600); 
 mySerial.println("Hello, I am the KitchenBot"); 
  
 pinMode(PWM_1,OUTPUT); //Motor 1 PWM -- SDA_1 
 pinMode(PWM_2,OUTPUT); //Motor 2 PWM -- SDA_2 
 pinMode(PWM_3,OUTPUT); //Motor 3 PWM -- SDA_3 
 pinMode(dir_1,OUTPUT); //Motor Direction -- SCL_1 
 pinMode(dir_2,OUTPUT); //Motor Direction -- SCL_2 
 pinMode(dir_3,OUTPUT); //Motor Direction -- SCL_3 
 pinMode(brake_1,OUTPUT); //EM Signal 1 
 pinMode(brake_2,OUTPUT); //EM Signal 2 
 pinMode(brake_3,OUTPUT); //EM Signal 2 
  
 pinMode(forward,INPUT); //joystick input 
 pinMode(right,INPUT); 
 pinMode(backward,INPUT); 
 pinMode(left,INPUT); 
 pinMode(red,INPUT); 
  
 pinMode(Limit_vert_top,INPUT); //Vertical limit proximity switches 
 pinMode(Limit_vert_bottom,INPUT); 
 limit_counter_vert = 0; 
 limit_counter_bottom = 0; 
  
 pinMode(X_input_1,INPUT); //Accelerometer input 
 pinMode(Y_input_1,INPUT); 
 pinMode(X_input_2,INPUT); //Accelerometer input 
 pinMode(Y_input_2,INPUT); 
  
 digitalWrite(brake_1,LOW); // Initialize Failsafe Brake 
 digitalWrite(brake_2,LOW); 
 digitalWrite(brake_3,LOW); 
  
 EEPROM_readAnything(0, storage); 
 newposXinch = storage.X; 
 newposYinch = storage.Y; 
 newposX = 4*((newposXinch*25000)/(4*PI)); 
 newposY = 4*((newposYinch*40000)/(6.299)); 
 myEncX.write(newposX); //writes position [tick counts] 
 myEncY.write(newposY); 
 Serial.print("Initial read from eeprom (x,y):"); 
 Serial.print("("); 
 Serial.print(newposXinch); 
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 Serial.print(","); 
 Serial.print(newposYinch); 
 Serial.println(")");  
 save_count = 1; 
  
 auto_motion_x = LOW; 
 auto_motion_y = LOW; 
 X_in = 0; 
 Y_in = 0; 
  
 blinkLED(LED,3,333); 
 Serial.println("End Setup"); 
} 
 
void loop() { 
  get_position(); 
  angleXavg = ((get_X_angle_1()+get_X_angle_2())/2); 
  angleYavg = ((get_Y_angle_1()+get_Y_angle_2())/2);   
  if (angleXavg > angleX_max) { 
    angleXavg = angleX_max; 
  } 
  else if (angleXavg < -angleX_max) { 
    angleXavg = -angleX_max; 
  } 
  //corr_speed = (max_corr_speed/angleX_max)*abs(angleXavg); 
  corr_speed = (max_corr_speed/angleX_max)*(angleXavg); 
  //Serial.println(angleXavg); 
  //angleY = get_Y_angle(); 
  //Serial.print("X angle is: "); 
  //Serial.println(angleX); 
  //delay(250); 
  //Serial.print("Y angle is: "); 
  //Serial.println(angleY); 
  //delay(250); 
   
   
  if (mySerial.available()) { 
    incomingByte = mySerial.read(); 
    Serial.print("I received: "); 
    Serial.println(incomingByte, DEC); 
  } 
   
  if (Serial.available()) { 
    xy_input_flag = Serial.read(); 
    if (xy_input_flag == 'A') { 
      Serial.println("Type desired X position:");       //MUST type int followed by lowercase 'a' 
      while(!Serial.available()); 
      X_in = getline(); 
      Serial.println(X_in); 
      Serial.println("Type desired Y position:"); 
      while(!Serial.available()); 
      Y_in = getline(); 
      Serial.print(Y_in); 
      auto_motion_x = HIGH; 
      auto_motion_y = HIGH; 
    } 
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  } 
   
if (auto_motion_x == HIGH) { 
  //goto (xin, yin) 
  //Serial.println("Ready to Auto X"); 
  if (newposXinch < (X_in - accuracy_threshold/2)) { 
    move_right(); 
    get_position(); 
    //Serial.println("auto right"); 
  } 
  if (abs(newposXinch - X_in) <= accuracy_threshold) { 
    Serial.println("Auto X finished"); 
    save_count = 0; 
    lock_x(); 
    delay(100); 
    auto_motion_x = LOW; 
  } 
  if (newposXinch > (X_in + accuracy_threshold/2)) { 
    move_left(); 
    get_position(); 
  } 
} 
if (auto_motion_y == HIGH) { 
  //Serial.println("Ready to Auto Y"); 
  if (newposYinch < (Y_in - accuracy_threshold/2)) { 
    move_down(); 
    get_position(); 
    //Serial.println("auto down"); 
  } 
  if (abs(newposYinch - Y_in) <= accuracy_threshold) { 
    Serial.println("Auto Y finished"); 
    save_count = 0; 
    lock_y(); 
    delay(100); 
    auto_motion_y = LOW; 
  } 
  if (newposYinch > (Y_in + accuracy_threshold/2)) { 
    move_up(); 
    get_position(); 
  } 
} 
   
   
if (incomingByte == 10) { 
      analogWrite(PWM_1, 0); 
      analogWrite(PWM_2, 0); 
      analogWrite(PWM_3, 0); 
      digitalWrite(brake_1,LOW); 
      digitalWrite(brake_2,LOW); 
      digitalWrite(brake_3,LOW); 
      delay(2000); 
      myEncX.write(0); 
      newposXinch = 0;    
      save_position(); 
      save_count = 1; 
      //stop robot 
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      Serial.println("At X home by dishwasher - please wait"); 
      delay(1000); 
      incomingByte = 11; 
} 
 
if (incomingByte == 01) {   
      analogWrite(PWM_1, 0); 
      analogWrite(PWM_3, 0); 
      digitalWrite(brake_1,LOW); 
      digitalWrite(brake_3,LOW); 
      delay(2000); 
      myEncX.write(2600000); 
      newposXinch = ((4*PI/25000)*(2600000))/4; 
      save_position(); 
      save_count = 1; 
      //stop robot 
      Serial.println("At X home by fridge - please wait"); 
      delay(1000); 
      incomingByte = 11; 
} 
 
if ((digitalRead(Limit_vert_top) == HIGH) && (limit_counter_vert == 0)) { 
      analogWrite(PWM_1, 0); 
      analogWrite(PWM_2, 0); 
      analogWrite(PWM_3, 0); 
      digitalWrite(brake_1,LOW); 
      digitalWrite(brake_2,LOW); 
      digitalWrite(brake_3,LOW); 
      delay(2000); 
      myEncY.write(0);  
      newposYinch = 0;      
      save_position(); 
      save_count = 1; 
      //stop robot 
      Serial.println("At Y vertical home by track - please wait"); 
      delay(1000); 
      limit_counter_vert = 1; 
} 
 
if ((digitalRead(Limit_vert_bottom) == HIGH) && (limit_counter_bottom == 0)) {                
      analogWrite(PWM_1, 0); 
      analogWrite(PWM_2, 0); 
      analogWrite(PWM_3, 0); 
      digitalWrite(brake_1,LOW); 
      digitalWrite(brake_2,LOW); 
      digitalWrite(brake_3,LOW); 
      delay(2000); 
      myEncY.write(500000); 
      newposYinch = (6.299/40000)*(500000); 
      save_position(); 
      save_count = 1; 
      //stop robot 
      Serial.println("At Y vertical home by base - please wait"); 
      delay(1000); 
      limit_counter_bottom = 1; 
} 
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if (digitalRead(Limit_vert_top) == LOW) { //reset the limit counter 
  limit_counter_vert = 0; 
} 
if (digitalRead(Limit_vert_bottom) == LOW) { //reset the limit counter 
  limit_counter_bottom = 0; 
} 
   
if ((digitalRead(forward) == HIGH) && (digitalRead(right) == LOW) && (digitalRead(backward) == LOW) && 
(digitalRead(left) == LOW)) { 
        move_up(); 
        get_position(); 
        auto_motion_x = LOW; //stops auto motion 
        auto_motion_y = LOW; //stops auto motion 
  } 
else if ((digitalRead(forward) == LOW) && (digitalRead(right) == HIGH) && (digitalRead(backward) == LOW) 
&& (digitalRead(left) == LOW)) { 
        move_right(); 
        get_position(); 
        auto_motion_x = LOW; //stops auto motion 
        auto_motion_y = LOW; //stops auto motion 
  } 
else if ((digitalRead(forward) == LOW) && (digitalRead(right) == LOW) && (digitalRead(backward) == HIGH) 
&& (digitalRead(left) == LOW)) { 
         move_down(); 
         get_position(); 
        auto_motion_x = LOW; //stops auto motion 
        auto_motion_y = LOW; //stops auto motion 
  } 
else if ((digitalRead(forward) == LOW) && (digitalRead(right) == LOW) && (digitalRead(backward) == LOW) 
&& (digitalRead(left) == HIGH)) {    
         move_left(); 
         get_position(); 
        auto_motion_x = LOW; //stops auto motion 
        auto_motion_y = LOW; //stops auto motion 
  } 
else if (digitalRead(red) == HIGH) {     
    Serial.println("SAFETY DELAY for 5sec"); 
        auto_motion_x = LOW; //stops auto motion 
        auto_motion_y = LOW; //stops auto motion 
    delay(5000); 
    save_count = 0; 
  } 
 else { 
       if ((auto_motion_x == LOW) && (auto_motion_y == LOW)) { 
          lock_x(); 
          lock_y(); 
         if (save_count == 0) { 
           //delay(100); 
            save_position (); 
            Serial.println("Last position saved"); 
            save_count = 1; 
           }            
       } 
    } 
} 
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APPENDIX E 

PROTOTYPE FOCUS GROUP 

 

Figure 51: Focus group 1 whiteboard priority ranking 
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Figure 52: Focus group 2 whiteboard priority ranking 

 

Figure 53: Focus group 3 whiteboard priority ranking 
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E.1 PROTOTYPE FOCUS GROUP QUESTIONNAIRE 
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