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Heterozygous loss of the endothelial-specific transforming growth factor-beta (TGF-β) Type 1 

receptor, activin receptor-like kinase 1 (ALK1), results in the autosomal dominant disorder, 

hereditary hemorrhagic telangiectasia type 2 (HHT2), which is characterized by mucocutaneous 

telangiectasias as well as arteriovenous malformations (AVMs) in the brain, lungs, liver, 

gastrointestinal tract, and spinal cord. As a result, patients suffer from a range of clinical 

symptoms including epistaxis, hemorrhage, and stroke. Using zebrafish, our laboratory has 

demonstrated that AVMs form via a two-step mechanism involving an initial increase in 

endothelial cell number caused by lack of alk1, and then an adaptive response to increased blood 

flow in downstream vessels. This adaptive response involves increased arterial caliber and 

maintenance of normally transient connections between arteries and veins, thereby forming high-

flow AVMs. Furthermore, we have demonstrated that alk1 expression is dependent on blood 

flow, and that lack of flow mimics loss of alk1, suggesting that Alk1 might act downstream of 

blood flow to stabilize arterial caliber. To date, the in vivo ligand and intracellular mediators 

required for flow-dependent, Alk1-mediated endothelial quiescence and AVM prevention remain 

unknown. In this work, I demonstrate that bone morphogenetic protein 10 (Bmp10) is the 
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physiologically relevant Alk1 ligand during zebrafish embryonic development.  Bmp10 paralogs 

are expressed exclusively in the heart, and loss of blood flow affects arterial pSmad1/5/9, cxcr4a, 

and edn1 expression similarly to loss of alk1, even when alk1 expression is restored via a flow-

independent transgene. Together, these data suggest that flow is required not only for alk1 

expression but also to deliver cardiac-derived Bmp10 ligand to arterial endothelial cell Alk1 to 

promote endothelial cell quiescence. Downstream of Bmp10/Alk1, Alk1 kinase activity is 

required to prevent AVMs. However characterization of a pSmad1/5-responsive transgenic 

reporter, Tg(BRE:EGFP), suggests that although phosphorylation of Smad1/5/9 in arterial 

endothelium is clearly dependent on Alk1, pSmad1/5/9 may not activate transcription via a 

canonical mechanism within these cells. In sum, the work presented in this thesis constructs a 

novel blood flow-responsive signaling pathway, suggests novel mechanisms by which Alk1 may 

control gene expression, and finally, describes a new tool for studying Alk1 and BMP signaling 

in vivo. 
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1.0 INTRODUCTION 

 

 

The complexities of the vasculature are dictated by a myriad of factors. In addition to paracrine 

factors from surrounding tissue, the closed circuitry of the vascular network aids in distributing 

endocrine factors that affect endothelial cell behavior. The mechanical forces imparted by blood 

flow also govern gene expression profiles and endothelial cell actions. All of these factors must 

work coordinately to ensure that blood vessels are meeting the body’s ever-changing 

requirements for oxygen and nutrients. 

The work presented in this thesis will focus on a novel pathway in which circulating blood 

provides a heart-derived endocrine factor that binds to a receptor expressed on arterial 

endothelial cells, initiating a signal transduction cascade that mediates flow-dependent vascular 

quiescence and ultimately helps to shape the vascular tree.  

 

1.1 VASCULAR DEVELOPMENT 

1.1.1 Overview of vascular architecture 

Proper formation of the vascular network is critical for supplying oxygen and nutrients to tissues 

to maintain normal physiological function. The basic framework of the vascular tree is 

universally known. Arteries carry oxygenated blood away from the heart, progressively 

decreasing in diameter and leading into highly branched capillaries that provide a large surface 
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area for gas and nutrient exchange with surrounding tissues. Deoxygenated blood is returned to 

the heart via venules and then veins. The lumen of these vessels is lined with endothelial cells, 

which, beyond serving a barrier function by preventing leakage of protein and fluid into 

surrounding tissue, also contribute to hemostasis, vasoconstriction/vasodilation, hormone 

trafficking and other processes. Vascular smooth muscle cells (vSMCs) or pericytes surround the 

endothelial tubes and function in part to control vascular caliber primarily through adrenergic 

receptors. Because the magnitudes of hemodynamic forces imparted by blood flow are 

inextricably linked to heartbeat, arteries must possess a thicker layer of vSMCs (tunica media) 

than veins. Capillaries are minimally covered with support cells known as pericytes, which 

encourage vessel quiescence and regulate endothelial permeability, thereby enabling efficient 

transfer of oxygen and nutrients [for review, see [1]]. This complex network develops during 

embryogenesis through two fundamental processes: vasculogenesis, the de novo formation of 

blood vessels from endothelial cell precursors, and angiogenesis, which involves remodeling as 

well as sprouting of new vessels from existing vessels. Most of our understanding of these two 

processes comes from the study of three important vertebrate model organisms: chick, mouse, 

and zebrafish.  

1.1.2 Developmental model systems in vascular biology  

Historically, avian embryos were the primary developmental model for studying vertebrate 

vascular development because development in ovo provided a distinct advantage over 

mammalian models in terms of accessibility for manipulation and live observation. For example, 

intravascular ink injections can be used to highlight the patent vasculature; chicken-quail 

chimeras can be generated in which quail cells can be unequivocally identified and tracked to 

determine the origin and fate of endothelial cells; and vessel ligations can be performed to assess 
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the effects of hemodynamic forces or hypoxia on vessel development and arterial-venous 

differentiation [2]. These types of experiments led to many of the first descriptions of the 

migration and coalescence of angioblasts during vasculogenesis [3]. More modern developments 

in dynamic image analysis and quantitative assessments have kept avian models an important 

tool in studying vascular development [4]. The chick chorioallantoic membrane also serves as an 

important in vivo model for angiogenesis [5]. 

Mice have served as a valuable mammalian model for studying vertebrate vascular 

development. Whole organism and endothelial specific genetic knockouts have elucidated many 

of the known players in vascular biology, and have served as genetic models for human 

pathologies [6, 7]. In addition, application of histological analysis, immunostaining, and in situ 

hybridization to these models has proven useful in fleshing out the molecular pathways that 

guide the development of different vascular beds [8]. 3-D architecture of the vascular network 

has been exposed with angiography, scanning electron microscopy, and light microscopy of 

vascular casts [9]. Furthermore, time lapse confocal microscopy, Pulsed Doppler, and hetastarch 

injections to increase blood viscosity have all been utilized to dynamically examine blood 

velocities and the effects of hemodynamics [10, 11]. Work with mouse retinal explants provides 

a means to study in vivo vascular development in real time [12]. In addition, multiphoton 

imaging is used with cranial windows to study vascular development in adult mice [13]. 

However, many techniques still rely on sacrificing the embryo and hence can only provide a still 

image of vascular development. 

Zebrafish offer many advantages over mouse and chick in studying vascular 

development. Their size and fecundity make them ideal as a developmental model system. Their 

external fertilization and optical clarity have made possible dynamic in vivo analysis of vascular 
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development from the earliest stages of angioblast differentiation through methods such as 

confocal microscopy and microangiography [14]. External fertilization also provides a means to 

manipulate gene expression from the earliest stage of development through mRNA and DNA 

injections. DNA incorporation into the germ line allows for the creation of transgenic lines 

providing yet another means to monitor changes in the zebrafish vascular tree. Morpholino-

modified antisense oligonucleotides allow for knockdown of translation of specific mRNA 

transcripts [15] and genetic knockouts by homologous recombination are now available with 

Transcription activator-like effector nucleases (TALENs) [16]. In addition, their small size 

allows oxygen to freely diffuse into the embryo allowing them to develop with impaired or 

abrogated circulation for up to 5 days post fertilization [17]. These attributes have allowed for 

large-scale forward genetic screens that have identified key players in vascular development [14, 

18]. Finally, the zebrafish vascular anatomy is so well characterized that vascular mutants are 

readily identified [19].  

1.1.3 Vasculogenesis  

The specification of the earliest endothelial precursors, angioblasts, and their formation into a 

primitive vascular network is termed vasculogenesis, or the de novo synthesis of blood vessels 

[20]. In the zebrafish embryo proper, angioblasts are specified in the lateral plate mesoderm by 

paracrine signals from the underlying endoderm [21]. In the trunk, these angioblasts migrate 

medially and will coalesce to form the first intraembryonic blood vessels, the dorsal aorta and 

cardinal vein.  In the mammalian head, mesodermal angioblasts coalesce to form the perineural 

vascular plexus. On the mammalian yolk sac, endothelial cells differentiate within the perimeter 

of mesodermal blood islands, surrounding primitive erythrocytes, and these blood islands 

connect to form a primitive vascular plexus. Both the perineural and yolk sac vascular plexuses, 
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originally comprised of a honeycomb-like network of similarly sized vessels, will be remodeled 

into a hierarchical pattern of arteries, capillaries, and veins [for review, see [20]]. 

1.1.3.1 Angioblast specification.  

The specification, maturation, and maintenance of endothelial cells require complex interplay 

between many different transcription factors. The Ets family of winged helix-turn-helix  

transcription factors is critical for the earliest stages of endothelial cell specification. Most 

endothelial cell enhancers and promoters contain several conserved Ets binding sites [22, 23] and 

within the human genome, Ets sites are strongly associated with endothelial genes [24]. Mice 

harboring mutations in the Ets family gene Etv2-/- die with no discernible embryonic blood 

vessels or blood islands within the yolk sac, and knockdown of Etsrp in zebrafish leads to early 

defects in vascular development [25-28]. In addition, mRNA injection of constitutively active 

fli1 (an Ets transcription factor) can induce expression of several endothelial-specific markers 

including Vascular Endothelial Growth Factor Receptor 2 (vegfr2) in zebrafish [29]. However, 

no Ets factor is exclusive to the endothelium and Ets-binding sites are not found in all endothelial 

genes [30, 31] suggesting that other factors must work in conjunction or independently of Ets for 

endothelial cell specification. Zebrafish cloche establishes molecular distinction and 

differentiation in a subset of endothelial cells. Although cloche mutants possess a limited number 

of trunk endothelial cells, they have no cranial endothelial cells nor any blood vessels, 

endocardium, or blood cells [18, 32]. Expression of the basic helix-loop-helix (bHLH) 

transcription factor, scl, can rescue cloche mutants suggesting scl falls downstream of cloche in 

differentiation of endothelial cells [32], but many signaling components in angioblast 

specification remain to be uncovered. 
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1.1.3.2 Development of vasculogenic cords  

Isolated mesodermal cells expressing Vegfr2 are classified as angioblasts [33]. Expression of this 

receptor is critical to the organization of the earliest vessel structures, with VEGF ligand acting 

as a powerful chemoattractant encouraging Vegfr2-mediated migration and coalescence. In 

Xenopus, Vegfr2 expressing cells migrate from the lateral plate mesoderm towards high 

concentrations of VEGF at the midline to form the dorsal aorta [34], and avian embryos injected 

with soluble VEGF receptor, which acts as a decoy, show defects in vasculogenesis on the 

injected side [35]. The importance of Vegfr2 is best illustrated in mice in which a single wild 

type allele of Vegfr2 is insufficient and causes death by E8.5-9.5 from failure of early specified 

endothelial cells to form patterned vessels [36].  

1.1.3.3 Lumen formation in vasculogenic vessels  

During vasculogenesis, endothelial cells initially form solid cords of cells that must subsequently 

hollow into tubes. In the dorsal aorta, the process of lumen formation involves repulsion of 

endothelial cells at contacts within the newly formed cords, a change in endothelial cell shape, 

and a rearrangement of endothelial junctions. The process is initiated by expression of de-

adhesive apical proteins coinciding with a translocation of junctions to lateral positions where 

they possess properties of both adherens and tight junctions through expression of vascular 

endothelial (VE)-cadherin and zonula occludens-1 (ZO-1), respectively [37, 38]. The repulsion 

of cells created by the localization of apical proteins is sufficient to begin lumenization, but 

requires additional myosin-dependent retraction of apical surfaces [39]. 
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1.1.4 Angiogenesis  

During development and into adulthood, blood vessels must be able to develop to meet the ever-

changing oxygen and nutritional requirements of the body, and they do so by angiogenesis, 

which involves extensive remodeling and expansion of existing vascular networks. One 

important trigger for angiogenesis is hypoxia, as hypoxic tissues require oxygen delivery through 

blood supply for survival. The hypoxia-activated transcription factor, hypoxia inducible factor- 

1α (HIF-1α), acts to upregulate Vascular Endothelial Growth Factor A (VEGFA) [also known as 

Vascular Permeability Factor (VPF)], which typically serves as an initial cue for a vessel to 

sprout [1]. 

1.1.4.1 Tip cell selection 

Within a quiescent vessel, certain endothelial cells possess enhanced ability to respond to 

environmental VEGFA in part due to increased surface expression of VEGF receptor 2 

(VEGFR2), a receptor tyrosine kinase. These specialized cells, known as tip cells, commence 

migration using filopodial extensions to navigate towards high concentrations of VEGFA. 

Typically, the tip cell will be trailed by a group of proliferating endothelial cells comprising the 

stalk, which will elongate the vessel [40]. Alternatively, as in zebrafish intersegmental vessel 

(ISV) formation, tip cells may both proliferate and migrate [41]. Endothelial cells within a sprout 

dynamically compete for the tip position, with Notch-dependent lateral inhibition controlling 

levels of VEGFR2/VEGFR3 and thereby dictating which cell is best suited to acquire tip cell 

position: tip cells express high levels of Notch ligand, Dll4, whereas stalk cells express high 

levels of Notch receptor, and Notch signaling within stalk cells represses expression of VEGFR2 

and VEGFR3 [42]. Genes of the Notch family encode large transmembrane receptors that 
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interact with membrane-bound ligands of the Delta/Serrate/Jagged family of genes. Ligand 

binding stimulates proteolytic cleavage of the Notch intracellular domain (ICD) which 

complexes in the nucleus with coactivator RBPJ to control target gene expression. VEGFR3 

expression is exclusive to the tip cell position and inhibition of VEGFR3 can suppress 

angiogenic growth completely [43]. dll4 overexpression in zebrafish or mouse embryos can 

cause excessive endothelial cell sprouting that can be partially rescued by inhibition of VEGFR3 

[41, 44]. In zebrafish embryos, downregulation of vegfr3 expression by Notch signaling within 

the stalk is mediated by microRNA- (miR-) 221 [45]. Besides Notch, VEGFR1  also acts to 

antagonize the pro-angiogenic response of VEGFR2. A soluble isoform (sVEGFR1) may act as a 

high affinity decoy receptor, sequestering VEGF ligand and thereby inhibiting angiogenic 

potential. Membrane-bound VEGFR1 (mVEGFR1) also acts to suppress tip cell phenotype at 

least in part through interaction with Notch, as vegfr1 knockdown reduces notch signaling 

components [46]. Abundance of sVEGFR1 is in part dictated by Semaphorin-PexinD1 signaling 

which inhibits angiogenesis through upregulation of sVEGFR1 abundance [47].  

1.1.4.2 Guidance of angiogenic sprouts 

Navigation of growing angiogenic sprouts requires a proper balance of attractive and repulsive 

cues, which can be provided from matrix substrates, cell-cell contacts and soluble factors. As 

mentioned, VEGFA acts as the main soluble factor stimulating polarized filopodial extensions 

from tip cells while ephrinB2/EphB4 cues between endothelial cells encourage directed 

migration of sprouts [1, 48]. Transmembrane Neuropilins (NRP1 and NRP2) serve dual function, 

promoting migration through interaction with VEGFR2/VEGF164 and regulating repulsive cues 

through Semaphorin/PlexinD1 [49]. Supporting a role for Semaphorin/PlexinD1 signaling in 

repulsion, knockdown of plexinD1 in zebrafish or genetic loss in mice leads to aberrant 
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intersegmental sprout outgrowth into somites [50, 51], and SEMA3A can inhibit integrin 

function thereby inhibiting vessel migration [52]. Similarly, the transmembrane endothelial-

specific receptor, Robo4, binds secreted Slit protein and acts to inhibit VEGF induced vascular 

migration, in part through interaction with Unc5b Netrin receptor [53, 54]. Another Netrin 

receptor, Netrin-1, elicits a retraction of filopodial projections [55]. In the adult mouse, Robo4 is 

exclusively expressed in sites of active angiogenesis and areas exposed to hypoxia [56] and 

Robo4-/- mice are viable but display VEGF-dependent hypervascularization in pathological 

settings [57]. In zebrafish, Slit/Robo is a necessary signaling pathway for intersegmental vessels 

(ISVs) sprouting off the dorsal aorta. In both robo4 morphants and robo4-RNA injected 

embryos, ISVs are either truncated or follow an aberrant path off the dorsal aorta, infiltrating the 

somites [58]. (Figure 1) 

1.1.4.3 Lumen formation in angiogenic vessels 

Although vasculogenic vessels such as the dorsal aorta have been shown to lumenize via a cord 

hollowing mechanism [39], there is some debate as to whether angiogenic vessels lumenize by 

cord hollowing, cell hollowing, or a combination of the two mechanisms. Cell hollowing has 

been demonstrated in cultured endothelial cells and the intersegmental arteries of zebrafish and 

involves CDC42/Rac1-dependent pinocytosis and subsequent production of small vacuoles that 

fuse first to form large intracellular vacuoles and then intercellular, longitudinal vacuoles [59, 

60]. A second mode for ISV lumen formation has been proposed that resembles that which takes 

place in larger vessels, where lumen formation occurs extracellularly at an apical pole interface 

between endothelial cells. Adherens junctions localize sialomucins/moesin/F-actin that drive 

separation of endothelial cells, and the process becomes further activated by VEGF-mediated 

activation of ROCK [39]. In the intersegmental vessels of zebrafish, Ve-cadherin and Moesin1 
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contribute to apical/basal polarity and are necessary in driving early separation of two 

endothelial cells [61]. 

1.1.4.4 Angiogenic resolution 

The transformation from actively growing network to functional vascular bed requires the 

cessation of endothelial cell proliferation and migration, as well as stabilization through the 

recruitment of vSMCs and pericytes. Oxygenation of tissue caused by newly formed vessels 

downregulates environmental VEGFA, subsequently leading to a reduction in VEGFR2-

mediated migration [1]. Besides a cessation of growth, new vessels must recruit support cells to 

maintain proper function and cope with hemodynamic stress. Some hypothesize that endothelial 

cells promote differentiation of mural precursor cells from surrounding mesenchyme through 

soluble factors during branching [62]. Tip cells secrete high levels of PDGFB, the ligand for 

pericyte-expressed PDGFRβ, ensuring pericyte coverage over newly formed vessels [40]. Mural 

cell support is clearly a requirement for integrity and quiescence as deletion of Tie-1, Tie-2, Ang-

1, or PDGFRβ, all of which produce deficiency in vSMC and pericyte development or 

endothelial interaction, display vascular hemorrhaging phenotypes [63-66]. (Figure 1) 
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Figure 1: Steps of Angiogenesis 

(A) Tip cells with high expression of VEGFR2 extend filopodial projections towards high concentrations of VEGFA 

ligand, produced in hypoxic tissues through the actions of HIF-1α. (B) Endothelial cells compete for tip cell position 

through lateral inhibition. Tip cells have high expression of Vegfr2/Vegfr3 and Dll4. Stalk cells have high expression 

of Notch and Vegfr1. Repulsive cues between the environment (SEMA3A) and endothelial cells (PlexinD1) serve to 

guide migration. Tip cells secrete PDGFB to promote pericyte attachment through PDGFRβ expression. (C) Oxygen 

provided by new vessels leads to downregulation of Vegf. Pericytes cover newly formed vessels. Endocrine factors 

ANP and Angiotensin I control vasodilation/vasoconstriction respectively. 

1.1.5 The role of blood flow in vessel development 

Prior to lumen formation, the development of the vascular tree is dependent exclusively on cell 

type-specific transcription factors and paracrine molecular pathways, as described. However, 

once vessels have lumenized, endocrine factors and mechanical forces imparted by blood flow 

also come into play. This section will describe the role of endocrine factors in vascular 

development and homeostasis, the mechanistic basis of mechanosensation and 

mechanotransduction in endothelial cells, and the effects of mechanical forces on endothelial cell 

behavior and vascular architecture.  
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1.1.5.1 Endocrine factors in vascular development and homeostasis 

Blood flow is critical in the distribution of endocrine factors that serve to control vessel 

constriction/dilation. Atrial natriuretic peptide (ANP), a potent vasodilator, is released into 

circulation from the atria of the heart in response to high blood pressure [67]. Opposing ANP, 

renin activation of angiotensin I occurs in circulation and serves as a vasoconstrictor [68]. 

Together, these opposing forces provide balance necessary for homeostasis (Figure 1). It is now 

known that even when the vasculature does not require change, vascular quiescence and 

homeostasis require active cellular signaling and must therefore depend on a host of circulating 

factors. Recently, sphingosine-1-phosphate (S1P), a product of erythrocytes and present at 

micromolar concentrations within blood, has been shown to serve as a vascular quiescence factor 

inhibiting VEGFR2 when bound to its endothelial receptor, S1P1R [69]. This is only one 

example however and many factors remain to be uncovered.  

1.1.5.2 Hemodynamic forces in vascular development and homeostasis 

The vasculature is a closed circuit with the heart acting as a pump and the vascular network 

needing to continuously respond to changes in flow and balance mechanical and chemical 

stimuli to maintain homeostasis and prevent disease. The framework of the vasculature subjects 

different regions of the network to different patterns of flow and thus different magnitudes and 

directions of mechanical forces. To maintain proper function, the endothelium has adopted 

means to respond to flow differences including altering of the cytoskeleton and cellular 

realignment, recruitment of vSMCs, and the regulation of gene expression [70]. Blood flow 

exerts a range of biomechanical forces upon the endothelium, including pressure, stretch, and 

shear stress. The best characterized of these forces is shear stress, which is the frictional force 
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that acts tangentially on the apical surface of endothelial cells and is directly proportional to the 

viscosity and velocity of blood but inversely proportional to the radius of the vessel. In straight 

tubes, shear stress is pulsatile and laminar (net forward-directed) and these vascular regions are 

generally quiescent, as characterized by low levels of proliferation, vasodilation, and expression 

of antioxidant and anti-inflammatory genes. If cardiac output and blood flow velocity increase, 

shear stress increases, and vessels dilate to bring shear stress down to a physiological set point. 

Conversely, vessels exposed to low shear forces will become smaller or in extreme cases will 

regress entirely. At the outer wall of bifurcations or the inner walls of curvatures, flow is not 

laminar and shear stress is disturbed (low and/or oscillatory). In these regions, endothelial cells 

mount a transcriptional program favoring proliferation, vasoconstriction, oxidation, and 

inflammation. These latter regions are highly prone to atherosclerosis [for review, see [70]].  

1.1.5.2.1. Effects of laminar shear on vessel development 

Molecularly, the biomechanical forces that blood flow imparts can dictate such diverse 

developmental processes as vascular remodeling, maintenance of arterial-venous identity, and 

collateral vessel formation. Mice with impaired heartbeat possess defects in yolk sac remodeling, 

a result that can be phenocopied by decreasing hematocrit and thus viscosity and shear stress 

[10]. In mammals, the natural rotation of the outflow tract exposes opposite sides of the 

branchial aortic arches to different flow patterns: specifically, rotation results in increased 

hemodynamic force on the left side, leading to regression of the right fourth and retention of the 

left four aortic arch such that the mature aortic arch forms on the left side. Inhibition of outflow 

tract rotation produces random retention and enlargement of aortic arches [71, 72]. The 

mechanical forces of blood flow also guide the hypoxia-independent process of arteriogenesis in 
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which preexisting collateral vessels are recruited to bypass vessels which have been impeded 

[73]. 

1.1.5.2.2 Mechanosensation of shear stress in endothelial cells 

Endothelial cells must possess means by which to sense shear stress and ultimately transduce this 

force into a molecular response. Primary cilia, glycocalyx, and junctional complexes have all 

been implicated as mechanosensors on endothelial cells, transmitting force via the actin 

cytoskeleton to affect changes in gene expression and integrin activation, but whether one or all 

of these mechanisms is active in vivo is unknown. The primary cilium is a nonmotile apical 

appendage that consists of microtubules arranged in a 9+0 pattern, without ciliary dynein. These 

cilia can bend in response to blood flow, thereby opening a calcium channel, consisting of PKD1 

and PKD2, that allows calcium entry into the cell. Genetic deletion of Pkd1 in mice leads to 

vascular fragility in vivo, and primary cilia have been shown to be required for numerous flow 

responses in cultured endothelial cells [74, 75]. However, in mice and chick, primary cilia are 

only detected in atheroprone areas [76, 77], which are sites of disturbed shear stress but not in 

straight tubes that are exposed to pulsatile laminar shear stress where they quickly disassemble in 

response to flow. Furthermore, the primary cilia of human umbilical vein endothelial cells 

(HUVECs) quickly disassemble in response to laminar shear stress [78].  Together, these data 

suggest that primary cilia may be required for sensing of disturbed but not laminar shear stress. 

The endothelial surface glycocalyx (ESG), a heterogeneous structure of proteoglycans 

and glycosaminoglycans, may work in conjunction with primary cilia and other mechanosensors 

to transduce mechanical signals into cellular responses [79]. The negatively charged components 

of the ESG can capture circulating plasma proteins necessary for signaling. Furthermore, the 
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ESG also provides a barrier on endothelial cells preventing them from experiencing direct shear 

stress and rather creating a torque on the EC surface [79]. Evidence for the ESG providing 

mechanosensory function includes findings that enzymatic degradation of the glycocalyx can 

directly effect production of vasodilatory nitric oxide (NO) and prevent flow dependent 

vasodilation [80]. 

There are several reported examples of vascular receptors acting in complex with 

endothelial cellular adhesion molecules in a ligand-independent manner to control vascular 

patterning in response to flow. Most notably, Vascular Endothelial (VE)-cadherin/ Platelet 

Endothelial Cell Adhesion Molecule (PECAM)/VEGFR2 have been shown to comprise an 

essential flow sensing signaling hub that controls integrin activation. Within this complex, 

PECAM acts to transmit mechanical force through Src activation and VE-cadherin serves as a 

crucial adaptor molecule for VEGFR2 to activate phosphatidylinositol-3-OH kinase (PI(3)K), 

thereby activating integrins [81]. In turn, integrins have been shown to facilitate cell alignment 

and transient induction of NF-κB in response to flow [82]. Loss of either PECAM or VE-

cadherin can abolish this response to flow in endothelial cells [82]. Conversely, transfection of 

PECAM, Ve-cadherin and VEGFR2 can confer flow-responsiveness to non-endothelial cells 

[81]. 

1.1.5.2.3 Mechanotransduction pathways in endothelial cells 

Laminar and disturbed shear stress have differential effects on gene expression and cell behavior 

due in large part to activation of key transcription factors (Figure 2). The zinc finger DNA-

binding Kruppel-like transcription factor 2 (Klf2) has emerged as a key component in mediating 

the effects of pulsatile laminar shear stress and promoting vascular quiescence. In HUVECs, 
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KLF2 expression is upregulated and maintained more than 20-fold when exposed to pulsatile 

laminar shear [83]. In zebrafish, klf2a expression is diminished in no flow, silent heart (sih) 

mutants [84], and murine carotid artery collar models show Klf2 expression is directly related to 

the magnitude of laminar shear stress [84, 85]. Furthermore, Klf2 provides a link between 

arterial shear stress and vasoconstrictive/vasodilatory genes: release of Endothelin-1 (EDN1), a 

vasoconstricitve peptide, from endothelial cells is repressed by laminar shear stress in a Klf2-

dependent manner [85, 86], and endothelial nitric oxide synthase (eNOS), cycloxygenase-2 

(COX-2), and manganese-dependent superoxide dismutase, which generate vasodilatory nitric 

oxide (NO) and prostaglandins and scavenge damaging superoxide, respectively, are all 

upregulated by laminar shear stress in a Klf2-dependent manner [87]. Thus, Klf2 orchestrates a 

gene expression program that promotes a dilated and low-oxidant state, which favors endothelial 

cell quiescence. Surprisingly, however, although Klf2-/- mice die ~E12-E14.5 from high output 

cardiac failure, expression of flow-responsive, klf2-dependent genes, including Edn1 and eNOS, 

is unchanged [88]. This observation may be explained by the fact that the related transcription 

factor, Klf4, may compensate for loss of Klf2. Like Klf2, Klf4 is induced in HUVECs exposed to 

laminar shear and this serves an anti-inflammatory function, with silencing of Klf4 leading to 

decreased eNOS and thrombomodulin [89, 90]. (Figure 2) 

In contrast to laminar shear, areas of disturbed flow (complex geometries, outer wall of 

bifurcations) in which average shear forces are low due to forward-reverse flow cycles are 

characterized by transcriptional profiles that enhance cell turnover and proliferation [91]. This 

genetic profile favors prolonged signaling of pro-inflammatory and proliferative pathways and 

therefore makes areas of disturbed flow more susceptible to atherosclerosis. Constant shear stress 

works in part to deactivate mitogen-activated protein kinase (MAPK) and nuclear factor kappa-
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light-chain enhancer of activated B cells (NF-κB) signaling, which both trigger pro-inflammatory 

and proliferative responses [70]. Pig aortas at regions of disturbed shear display elevated levels 

of MAPK and NF-κB in part due to low expression of negative regulators of these pathways 

[92]. The expression of NF-κB subunits is also enhanced at regions of low shear which primes 

regions of these vessels for inflammatory stimuli [93]. 

Not surprisingly, the pathways activated by steady versus disturbed laminar shear oppose 

one another to maintain vessel homeostasis. Pulsatile shear stress-activated KLF2 may function 

to inhibit activating protein-1 (AP-1) superfamily members by downregulating MAPK signaling 

through upregulation of negative regulator, MAPK phosphatase-1 (MKP-1), and inhibition of 

ATF-2 nuclear localization [94, 95]. Also, KLF2 can sequester essential coactivators for NF-κB, 

thereby limiting inflammatory responses [96]. Differences in shear rate may also induce different 

mechanisms for NF-κB activity with high shear encouraging atheroprotective anti-apoptotic 

targets of NF-κB [97]. 
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Figure 2: Differences in shear are present at vascular bifurcations. 

(A) Cells on the outer wall of bifurcations experience disturbed shear, which favors increased proliferation, 

apoptosis, and vasoconstriction. Endothelial cells exposed to steady laminar shear show reduced proliferation, 

apoptosis, and favor vasodilation. (B) Cells exposed to disturbed shear upregulate pro-inflammatory genes and 

genes that favor proliferation in part through NF-κB and MAPK. Flow sensing cilia may be present in areas of 

disturbed shear. (C) Transcription factor Klf2 is induced by laminar shear and upregulates vasodilatory factors, 

COX-2 and eNOS, which produces prostaglandins, and NO, respectively. 
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1.2 ARTERIOVENOUS MALFORMATIONS 

Vascular malformations are prevalent in approximately 4.5% of the population [98]. Typically, 

they are present at birth and grow in proportion to the individual. Arteriovenous malformations 

(AVMs) consist of high-flow arteries or arterioles that lack an intervening capillary bed and 

instead lead into a tangled web of vessels, or nidus, which feeds directly into a neighboring 

draining vein. This architecture essentially allows high-pressure blood flow to travel from thick-

walled arteries directly into thin-walled veins, creating extreme hemodynamic stress within the 

vein [99]. These fragile improper connections are susceptible to rupture and can lead to a range 

of clinical complications depending on size and location including epistaxis, hemorrhage, and 

stroke. AVMs appear in equal frequency in men and women and have been documented in 

almost every tissue and organ; when they occur in small mucous membrane or cutaneous vessels, 

they are known as telangiectasias [100]. It was originally thought that all AVMs formed during 

development; however it is now widely accepted that these connections can manifest in any 

vessels undergoing active angiogenesis. Some speculate that AVMs may arise due to failed 

regression of arteriovenous connections within primitive vascular plexuses [101, 102]. An 

alternative and currently more widely held explanation is that loss of arterial-venous identity 

leads to loss of artery-vein repulsion and therefore direct arteriovenous connections.  

1.2.1 Arterial-venous specification and AVM development 

Although maintenance of arterial identity requires pulsatile laminar shear stress, the acquisition 

of arterial and venous endothelial cell fate is determined prior to exposure to hemodynamic 

forces. In fact, it has been postulated that improper assignment of arterial and venous identities is 

a critical underlying cause of AVMs (Figure 3).  
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1.2.1.1 Arterial-venous specification  

Arterial specification is dependent on the interplay between sonic hedgehog (Shh), VEGFA, 

Notch, and Ephrin signaling pathways. In zebrafish, Shh from the notochord instructs cells 

within the somites to produce Vegfa, which in turns acts upon endothelial Vegfr2 to enhance 

Notch activity in arterial endothelial cells. Notch activity, in turn, induces expression of ephrinb2 

[103, 104]. In support of this pathway, morpholino knockdown of shh or vegf leads to a decrease 

in arterial markers, ephrinB2 and notch5, whereas venous expression of flt4 expands to arteries 

[104]. A variety of Notch signaling components have been shown to be expressed exclusively in 

arterial cells including receptors Notch1 and Notch4 and ligands Jag1, Jag2, and Dll4 [105-108]. 

Dll4+/- and Notch1-/-/Notch4-/- mouse embryos display reduced arterial ephrinB2 expression and 

axial vessel defects similar to mice harboring mutations in Notch downstream effectors, Hey1, 

Hey2 and Rbpj [109-111]. In zebrafish, notch5 expression is restricted to the dorsal aorta, and 

similar to mouse mutants, notch signaling mutants (mindbomb, mib) lack arterial ephrinB2 

expression, while constitutively active Notch can repress expression of venous markers [103]. 

The zebrafish Hey2 homologue, gridlock (grl) is induced by Notch1 and is essential for 

formation of the dorsal aorta, with morpholino-mediated knockdown of grl causing an expansion 

of venous markers [14, 112, 113]. 

The Eph receptors belong to the largest family of Receptor Tyrosine Kinases (RTKs). 

Both Ephrin (Efn) ligands and Eph receptors are transmembrane proteins with signaling 

capabilities, and cases of both forward and reverse signaling have been documented [114]. 

Generally, Ephrin/Eph interactions lead to cell-cell repulsion via regulation of small GTPases 

that control cytoskeletal dynamics [115]. Efnb2/Ephb4 were the first identified molecular 

discriminators of arterial and venous endothelial cells, with Efnb2 restricted to arteries and 
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Ephb4 restricted to veins [116, 117]. Disruption of either Efnb2 or Ephb4 leads to defects in 

arteries and veins indicative of loss of arterial-venous identity [48, 117]. Endothelial cells do not 

acquire venous identity by default: rather, the orphan nuclear receptor superfamily member, 

NR2F2 (previously known as Coup-TFII), promotes venous identity through downregulation of 

Notch signaling components [118]. In cultured mouse endothelial cells, siRNA-mediated 

knockdown of Nr2f2 leads to an acquisition of arterial cell markers, Notch1, EphrinB2, and Np1 

[119, 120]. Nr2f2-/- embryos die at E10.5 with malformed cardinal veins and mispatterned atria 

and sinus venosus [121].  In summary, both arterial and venous endothelial cells are 

independently specified, and it has been postulated that the repulsive interaction between EfnB2 

and EphB4 is required to prevent direct connections between arteries and veins, or arteriovenous 

malformations (AVMs). 

1.2.1.2 Loss of arterial-venous identity can promote development of AVMs  

One theory for AVM development is that they are caused by loss of arterial-venous identity, 

resulting in a lack of arterial-venous repulsion and thus improper connections between arteries 

and veins. Much of the evidence to support this notion comes from manipulation of Notch 

signaling, which plays a central role in specification of arterial identity. For example, zebrafish 

mindbomb mutants, which are defective in Notch signaling due to impairment of Delta 

internalization, lose expression of arterial markers and develop AVMs [103, 122].  Similarly, 

mice harboring heterozygous mutations in the Notch ligand, Dll4, or homozygous mutations in 

various Notch downstream effectors or targets, including Rbpsuh, Hey1, and Hey2, exhibit 

defective arterial specification and develop AVMs [110, 123]. The AVMs in these Notch 

mutants bear striking resemblance to AVMs seen in Efnb2 [48] and Ephb4 mutants [116, 117], 

further supporting the idea that Notch signaling is required for arterial specification and thus 
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AVM prevention. However, enhanced Notch signaling and arterial specification also can result 

in AVMs. In mice, conditional expression of Notch4 ICD specifically within endothelial cells is 

sufficient to arterialize veins (as characterized by increased Efnb2 expression and increased 

association of vSMCs) and produce AVMs [124]. Interestingly, these AVMs are reversible: 

when transgenic expression of Notch4 ICD is turned off, venous cell fate is restored and AVMs 

resolve [125]. Together, these data indicate that proper Notch regulation is critical for functional 

artery-vein interfaces. 

Like the Notch pathway, members of the SRY-related HMG-box (SOX) family of 

transcription factors are critical in proper demarcation of arteries and veins, and disruption has 

been shown to lead to AVMs. For example, in zebrafish, morpholino-mediated co-knockdown of 

sox7 and sox18, which function redundantly to establish arterial cell fate, produces AVMs 

resembling Notch pathway morphants [126-128]. Similarly, Ragged mutant mice, which harbor 

mutations in Sox18, display enlarged surface capillaries akin to telangiectasias and die by E11.0 

with blood and lymphatic vascular defects [129-131].  Notably, mutations in SOX18 have been 

found in families with the autosomal dominant recessive disorder, hypotrichosis-lymphedema-

telangiectasia (HLT), who exhibit, as the name implies, telangiectasias [132].  

1.2.2 Genetic causes of AVMs 

Although most telangiectasias and AVMs are sporadic, some percentage can be attributed to 

genetic disorders, including HLT (discussed above), capillary malformation-arteriovenous 

malformation (CM-AVM), ataxia-telangiectasia (AT), and hereditary hemorrhagic telangiectasia 

(HHT). Patients with CM-AVM develop arteriovenous fistulae in the capillaries of the skin and 

have been shown to possess mutations in RASA1, which encodes a p120Ras-GAP [133]. This 
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very rare autosomal dominant disorder affects approximately 1 in 100,000 people of northern 

European origin, with prevalence in other populations unknown [100]. The autosomal recessive 

neurodegenerative disorder AT is caused by mutations in the serine/threonine DNA damage 

checkpoint kinase, Ataxia Telangiectasia Mutated (ATM) [134]. Patients with AT display 

locomotor impairment during childhood and develop telangiectasias in the eye typically by age 

eight. Telangiectasias have also been reported in the bladder, skin, lungs, and liver [135]. This 

rare autosomal recessive disorder occurs in approximately 1 in 100,000 people worldwide. HHT 

is actually a family of autosomal dominant disorders affecting approximately 1 in 8,000 people 

worldwide [136], and thus much more prevalent than all of the other genetic causes of 

telangiectasia/AVM combined. My research has focused on better understanding the 

pathophysiology of HHT. 

 

Figure 3: Artery-Vein differentiation and the formation of Arteriovenous Malformations. 
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Arteries (gray vessels) are specified by notochord-derived Sonic hedgehog (Shh) activating somitic VEGFA ligand 

which binds arterial endothelial cell VEGFR2, inducing Notch expression and upregulating EphrinB2 ligand. In 

veins (black vessels), inhibited Notch signaling leads to an increase in EphB4. Capillary beds allow for diffusion of 

oxygen and nutrients into surrounding tissue. Arteriovenous malformations (AVMs) are tortuous fragile connections 

between arteries and veins that possess deficient oxygen and nutrient exchange. Loss of arterial-venous identity may 

trigger AVM formation. 

 

1.3 HEREDITARY HEMORRHAGIC TELANGIECTASIA 

HHT, the most common cause of genetically-based AVMs and telangiectasias, is actually a 

family of disorders caused by mutations in TGF-β superfamily signaling components. HHT 

accounts for 70-80% of pulmonary AVMs in the general population [137], and a lesser but 

significant percentage of brain, liver, spinal cord, and gastrointestinal AVMs. HHT is 

characterized by highly variable age of onset and expressivity, with most HHT patients (~70%) 

experiencing severe and recurrent nosebleeds by age 20. In contrast, gastrointestinal bleeding 

typically affects patients at age 50 or over. Shunting of blood even prior to rupture can cause 

patients to suffer from transient ischemic attack, migraines, and hypoxemia [138-141]. Diagnosis 

is based on the following criteria: 1) epistaxis, 2) oral/dermal telangiectasias, 3) visceral AVMs, 

and 4) family history. Patients who meet three of the above “Curacao Criteria” are diagnosed as 

having HHT [136, 142, 143]. Below, I review the basics of TGF-β signaling and discuss the 

genetics of HHT. Finally, I summarize studies in animal models that have increased our 

understanding of the mechanism by which ALK1 signals in the endothelial cell to prevent 

AVMs, which have served as the foundation of my dissertation research.  
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1.3.1 Overview of TGF−β  family signaling 

In TGF-β signaling, a secreted ligand binds to a complex of two type I and two type II receptors, 

all of which are transmembrane serine/threonine kinases. Ligand binding may be facilitated by 

the presence of a non-signaling type III receptor, either betaglycan or endoglin. Type II and type 

I receptors typically exist as dimers but complex as heterotetramers upon ligand binding, 

allowing phosphorylation and thus activation of the type I receptor by the type II receptor, and 

subsequent type I-receptor mediated phosphorylation of Smad transcription factors. Activated 

Smads form a heterotrimeric complex with the common partner Smad, Smad4, enter the nucleus 

and activate or repress target genes (for review, see [144]). Specificity is imparted by cell-type 

specific coactivators or corepressors guiding Smad-mediated transcription [145]. Additional 

complexity is introduced in several ways: type I receptors can activate Smad-independent 

pathways [146]; Smad proteins can form non-traditional heterotrimeric complexes [145]; Smad 

proteins can play non-transcriptional roles [147]; and Smads may interact with other signaling 

pathways [148]. Below, I elaborate on the BMP arm of TGF-β signaling, which is directly 

relevant to HHT. 

1.3.1.1 BMP ligands  

There are 33 members of the TGF-β superfamily of ligands, including TGF-βs, activins, nodals, 

myostatin, anti-Mullerian hormone (AMH), growth and differentiation factors (GDFs), and Bone 

Morphogenetic Proteins (BMPs). BMP ligands represent the most abundant class of TGF−β 

family ligands, with 20 members. BMP precursor proteins are produced in the cytoplasm as 400-

500 amino acid proteins containing an N-terminal signal peptide necessary for secretion, a 

prodomain, and a C-terminal mature peptide. Mature BMP ligands have seven cysteine residues, 
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with six participating in intrachain disulfide bonds and the seventh forming an additional 

disulfide bond with a second monomer [149]. Prior to secretion, BMPs are cleaved between the 

prodomain and the mature peptide by furin proteases, and the protein is secreted as a noncovalent 

complex consisting of two covalently-linked mature peptides that are noncovalently linked to 

two prodomains (Figure 4).  Some ligands bound to their prodomain (for example, BMP4,5,7,9) 

can be active in solution because of the ability of type II receptors to compete with the 

prodomain for active ligand binding. Conversely, the prodomains of other ligands (for example, 

BMP10) render them inactive [150, 151]. The prodomain bestows structural stability and renders 

ligand active at greater distances [152] and may mediate dimer interactions to extracellular 

matrix molecules, thereby enhancing localization of action [153]. The activity of some BMPs 

can also be regulated through reversible interactions with extracellular antagonists (noggin, 

chordin, DAN) [154].  

 

Figure 4: Processing of BMP ligands. 



  27 

(A) BMP proteins include an N-terminal secretion signal (black box), a prodomain (grey box), and  a C-terminal 

active peptide (white box). (B) Prior to secretion, the signal sequence and the prodomain are cleaved, but the latter 

remains noncovalently bound to the mature peptide. Some BMPs are active when bound to the prodomain, whereas 

others must be released from the prodomain (C).  

1.3.1.2 BMP receptors 

The TGF-β ligands signal through a heterotetrameric complex of two type II receptors and two 

type I receptors (Figure 5) all of which are single transmembrane spanning serine/threonine 

kinases with short cysteine rich extracellular domains [149]. There are seven type I receptors 

(activin receptor-like kinases, or Alk1-Alk7) and five type II receptors [activin type IIA receptor 

(ActRIIA), activin type IIB receptor (ActRIIB), BMPRII, TGFβR2, and anti-mullerian hormone 

type II receptor (AMHRII)]. BMPs are unique amongst TGF-β ligands in that they have the 

capacity to bind independently to either type II or type I receptor first, with choice dictated by 

relative affinity [155]. However, BMPs utilize only specific complexes with either BMPRII, 

ActRIIA, or ActRIIB serving as type II receptor and Alk1, 2, 3, or 6 serving as type I receptor 

[149]. Ligand binding can be facilitated by non-signaling type III receptors which are either 

transmembrane or glycosylphosphatidylinositol-anchored [156]. Upon ligand binding the type II 

receptor transphosphorylates the type I receptor on a conserved Gly-Ser (GS) domain allowing 

downstream transcription factors Smads1/5/9 to dock on the L45 loop of the type I receptor and 

become phosphorylated [145].  
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Figure 5: BMP signaling pathway 

BMP ligands bind to a heterotetrameric complex of type I and type II serine/threonine kinase receptors. Ligand 

binding is facilitated by type III receptor. Type II receptor transphosphorylates the type I receptor leading to 

activation (release from autoinhibitory fold) of receptor Smads (rSmads1/5/9) which complex with co-Smad4 and 

regulate gene expression either at the transcriptional or post-transcriptional level. 

1.3.1.3 BMP-related Smad proteins 

Intracellular signaling by TGF-βs and BMPs is reliant upon Smad proteins. Smad protein family 

members are divided into receptor-regulated (rSmads), inhibitory Smads (iSmads), and the co-

Smad, Smad4. rSmads can be subdivided based on the Type 1 receptors to which they bind. 

rSmads2 and 3 dock with TβRI/ALK5, ActRIB/ALK4, and ALK7 downstream of TGF-β 

binding, whereas rSmads1, 5 and 9 complex with ALK1, ALK2, BMPRIA/ALK3, and 

BMPRIB/ALK6 upon BMP binding. Receptor recognition is governed by the L45 loop of the 

receptor and the L3 loop and α helix 1 (H1) of the Smad protein. Phosphorylation on the MH2 

domain on a conserved SSXS motif [157] releases rSmads from their autoinhibitory fold 
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between MH1 and MH2 domains. Smad4 and two rSmads form a heterotrimer via binding of 

their MH2 domains, and enter the nucleus (Figure 6).  

 

Figure 6: Domain structure of Smad proteins. 

(A) r-Smads are comprised of MH1 and MH2 domains, which function to bind DNA and other Smad proteins 

respectively. The nuclear localization signal (NLS) on the MH1 domain helps target the r-Smad to the nucleus while 

the L3 loop on the MH2 domain is critical for recognition of type I receptor. Phosphorylation of r-Smads occurs on a 

conserved SSXS sequence. (B) co-Smad4 is also comprised of MH1 and MH2 domain with the H3/4 loop on the 

MH2 domain facilitating interactions with r-Smads. 

Once within the nucleus, Smad complexes bind conserved Smad binding elements 

(SBEs, core sequence GTCT); however BMP-activated Smads recognize SBEs weakly and 

require additional GC-rich sequences known as BMP-Responsive Elements (BRE; GGCGCC) 

[158, 159]. GGCGCC palindromes are often 5 bp from GTCT or CGCC, which are bound by the 

r-Smad and co-Smad, respectively [160, 161]. Due to low affinity for these sites, multiple 

binding sites are often needed for effective induction of target genes. More often, these 

complexes rely on other DNA-binding partners to regulate tissue specific transcriptional 

responses [162]. For example, the MH2 domain of Smad1 can bind CREB binding protein 
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(CBP), helping to target to specific promoters [163]. Smads can act to modulate coactivators as 

in the case of Smad1 binding STAT via p300 in modulating expression of GFAP in astroglial 

cells [164]. The Smad MH2 can bind other proteins and work to repress their transcriptional 

function as with the case with Hoxc-8 [165]. R-Smads may also act independently of Smad4 to 

influence the processing of microRNAs through a physical interaction to Drosha by their MH2 

domain and hypothesized selection of microRNAs by their MH1 domain [147, 166] (Figure 5). 

1.3.2 Genetics of HHT 

The HHT family of diseases is caused by mutations in various BMP signaling components, and 

all syndromes are autosomal dominant. Currently, there are five genetic loci linked to HHT, with 

three of those being known genes. HHT1 maps to chromosome 9 and is caused by mutations in 

the type III receptor, endoglin (ENG) [167] which facilitates ligand binding to TGF-β family 

receptor s [168]. HHT2 is linked to the heterozygous loss of the TGF-β Type I receptor, activin 

receptor-like kinase 1 (ALK1) on chromosome 12 [169]. Of note, a subset of HHT2 patients will 

develop Primary Pulmonary Hypertension (PPH), a disease linked to the heterozygous loss of the 

TGF-β Type II receptor, bone morphogenetic protein receptor II (BMPRII) [170, 171] and 

characterized not by AVMs but by pulmonary vascular constriction. Mutations in SMAD4, a 

downstream effector of TGF−β signaling, have been linked to Juvenile Polyposis with HHT 

phenotypes [172]. Mutations in ENG, ALK1, and SMAD4 account for 80-87% of HHT cases with 

similar frequency of mutations in ENG and ALK1 (53% and 47%, respectively) [173]. It is also 

important to note that in each of the above cases, HHT results from haploinsuffiency. HHT1 and 

HHT2 are clinically distinguishable, with pulmonary AVMs much more common in HHT1 and 

hepatic AVMs more common with HHT2 [173-175]. The organ-specific nature of these diseases 

is not at all understood but suggests the intriguing possibility that ALK1 and endoglin may not 
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actually function in the same molecular pathway, at least in certain vascular beds. HHT3 has 

been linked to a 5.4 cM disease gene interval on chromosome 5 [176], and HHT4 to a 7-Mb 

region on the short arm of chromosome 7 (7p14) [177]. As causative genes have not yet been 

identified in these locations, it remains to be determined whether these genes also function in 

BMP signaling.  

1.3.3 ALK1 signaling in endothelial cells 

ALK1 is an endothelial cell specific TGF-β type I receptor that is predominantly expressed in 

arteries, with strongest expression during embryonic development and very low expression in 

adult arteries, although areas of active angiogenesis, as in wound healing or in vascular 

pathologies, display increased Alk1 expression [178, 179]. Although ALK1 is clearly required 

for normal vascular development and prevention of AVMs, the role of ALK1 in arterial 

endothelium is not understood. Constitutively active Alk1 (Alk1CA) is able to increase 

proliferation of immortalized mouse endothelial cells, suggesting a role in angiogenic activation 

[180]. Conversely, siRNA-mediated knockdown of ALK1 in human dermal microvascular 

endothelial (HMVEC-d) cells increases proliferation and migration, suggesting a role in 

angiogenic resolution [146]. In vivo systems strengthen the case for ALK1 functioning in 

angiogenic resolution. In zebrafish, alk1 mutant embryos possess supernumerary endothelial 

cells in a subset of cranial arteries and develop arteriovenous malformations (AVMs) [181, 182]. 

Similarly, endothelial deletion of Alk1 in mice causes enlarged arteries and AVM formation 

indicative of Alk1 being required for angiogenic resolution [183].   
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1.3.3.1 ALK1 ligands 

TGF-β1 and TGF-β3 can bind ALK1 in concert with TβRII in cultured endothelial cells and 

trigger phosphorylation of Smad1/5 [180, 183, 184]. However, although mice lacking TGFβ-1 or 

TGFβ-3 possess dilations in the yolk sac vasculature reminiscent of Alk1 or Endoglin null mice, 

they do not develop AVMs [185, 186]. Furthermore, the binding and subsequent activation by 

TGF-β1 and TGF-β3 requires ALK5, which has been shown to be dispensable for in vivo Alk1 

signaling in both mouse and zebrafish models [187]. Further evidence against a role for these 

ligands in ALK1 signaling comes from the fact that neither TGF-β1 nor TGF-β3 produces a 

prolonged phosphorylation of Smad1/5 in cultured endothelial cells [180]. Thus, roles for TGFβ-

1 or TGFβ-3 in ALK1 signaling in vivo seem unlikely. 

Of 29 TGF-β ligands (including TGF-β1 and TGF-β3) tested in BIAcore ALK1 binding 

assays, only BMP9 and BMP10, which are highly related ligands, bind to ALK1 with nanomolar 

affinity [188, 189]. It has also been shown that Bmp9 and Bmp10 have higher affinities for Alk1 

than alternative BMP ligands have for their Type I receptor [149, 190-192]. At the protein level, 

BMP9 and BMP10 are 65% identical and share 16/24 residues that contact ALK1, with an 

additional five being conservatively substituted [193]. Both ligands can suppress HUVEC 

proliferation and migration [194, 195], similarly to ALK1CA. Furthermore, BMP9 and BMP10 

can suppress VEGF and FGF-2 induced angiogenesis in mouse sponge and chick allantois assays 

[196]. However, the role of these ligands in ALK1 signaling in vivo is not clear.  

1.3.3.2 Signaling pathways downstream of ALK1 

Historically, activity of ALK1 has been assessed by pSmad1/5/9 expression or activation of a 

pSmad1/5-responsive reporter, BRE-luciferase. Indeed, both BMP9 and BMP10 as well as 
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ALK1CA can induce pSmad1/5/9 expression in cultured endothelial cells, and siRNA-mediated 

knockdown of ALK1 abrogates the effect of BMP9/10 on pSmad1/5/9 [194-196]. However, the 

necessity of Smad1/5/9 phosphorylation downstream of ALK1 has not been well demonstrated. 

In human dermal microvascular endothelial cells, ALK1 can inhibit cell migration in a 

pSmad1/5/9-independent manner, relying instead on phosphorylation of MAP kinases, including 

p38 and ERK1/2 [146]. In mouse, Tak1 (Map3k7) has been proposed to serve as a mediator of 

the Alk1 signal, with Tak1-/- embryos suffering from yolk sac angiogenesis defects similar to 

Alk1 mutant embryos. Similarly, co-knockdown of tak1 and alk1 in zebrafish produces enlarged 

cranial vessels, although the phenotype is quite dissimilar to that in alk1 mutants [197]. Note that 

co-knockdown of smad5 and alk1 also reportedly produced a vascular phenotype similar to that 

in alk1 mutants, suggesting that both MAPK and Smads may play roles downstream of ALK1 

[182, 197].  

1.3.3.3 Genes regulated downstream of Alk1.  

Although Alk1 is essential to endothelial cell function, few genes have been identified as targets 

of its activity. In cell culture, expression of Inhibitor of differentiation-1 (Id1) is a known readout 

of Alk1 activity, with Alk1 knockdown leading to downregulation of Id1 promoter-driven 

luciferase and ID1 protein expression [194-196]. In mice, Robo4 is upregulated five fold in Alk1 

mutants relative to wild type [54]. Recently, an intracellular transmembrane protein, Tmem100 

has been identified as a target for Alk1 signaling in vivo, with Tmem100 expression diminished 

in Alk1 mutant and Tmem100 mutant mice possessing defects in arterial endothelial cell 

differentiation and vascular morphogenesis reminiscent of Alk1 mutants [183, 198]. Finally, 

Alk1 activation of pSmad1/5/9 may contribute to activation of Notch targets Hey1 and Hey2 to 
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synergistically enhance expression of Notch target genes [199]. Interestingly, downregulation of 

Hrt2/Hey2 is observed in the endothelium of both Alk1 and Tmem100 deficient mice [198]. 

1.3.4 Animal models of HHT 

1.3.4.1 Mouse HHT models 

Alk1 mutant mice die by E11.5 from angiogenic defects, including failure to remodel the primary 

capillary plexus and dilation of large vessels. Alk1+/- mice also develop AVMs like HHT2 

patients [183, 200, 201]. As expected, Alk1 is required cell autonomously within endothelial 

cells, as endothelial-specific deletion of Alk1 in mice leads to reduced pericyte and vSMC 

coverage of brain endothelial cells as well as AVMs in the lungs, brain, and yolk sac [187, 202]. 

Alk1+/- mice also display signs of pulmonary hypertension, including right ventricular 

hypertrophy and increased thickness of pulmonary arterioles reminiscent of Smad9+/- mice and a 

subset of HHT2 patients [171, 203, 204]. Interestingly, postnatal deletion of Alk1 results in AVM 

formation and lethality, while wounding Alk1-deficient dermal vessels can precipitate AVM 

formation [179, 187].  Together, these data indicate that Alk1 contributes to mature vessel 

homeostasis. In the mouse retinal vasculature, blockage of Alk1 signaling via a soluble ligand 

sink, Alk1-Fc, results in increased tip cells and a hypersprouted phenotype [199]. Together, these 

animal models suggest a role for Alk1 in favoring arterial endothelial cell quiescence, with 

questions remaining as to the pathway by which Alk1 dictates endothelial cell behavior.  

1.3.4.2. Zebrafish HHT2 model  

The homozygous alk1 zebrafish mutant, violet beauregarde (vbg), like its mammalian 

counterparts, develops AVMs and serves as a model for HHT2 [182]. alk1 mutants develop an 

enlargement in a subset of cranial arteries proximal to the heart causing increased hemodynamic 
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load, and subsequently precipitating downstream AVMs [181, 182]. Zebrafish alk1 mutants serve 

as a valuable model to dissect AVM development not only for reasons listed at the beginning of 

this chapter, but also because AVMs develop in a predictable, stereotypical fashion, connecting 

either the basal communicating artery (BCA) or basilar artery (BA) to the primordial midbrain 

channel (PMBC) or primordial hindbrain channel (PHBC), respectively. Zebrafish also afford a 

means to dissect the complex relationship between Alk1 and blood flow. Here, I have used the 

alk1 mutant zebrafish model to elucidate the in vivo signaling pathway for Alk1 and provide 

insight as to how Alk1 acts within the endothelium to prevent AVMs. 

1.3.4.3 alk1-positive arteries in zebrafish 

By 1.5 dpf, the vessels affected in alk1 mutants are fully formed and carrying blood flow. Blood 

enters circulation from the bulbus arteriosus in the heart into left and right first aortic arches 

(AA1). From AA1, blood flows caudally into the lateral dorsal aorta (LDA) and rostrally into the 

internal carotid arteries (ICA). The ICA will split at the eye and loop dorsally to form the caudal 

division of the internal carotid (CaDI). The CaDI from either side of the embryo meet dorsally 

and form the basal communicating artery (BCA) which will distribute blood into two posterior 

communicating segments (PCS) before meeting again in the basilar artery (BA) carrying blood 

caudally and distributing blood through the brain through central arteries before being returned 

to the heart via the primordial hindbrain channel (PHBC) (Figure 7A, for review, see [19]). 

The cranial vessels of the zebrafish embryo first arise from angiogenesis from two pairs 

of bilateral clusters, the rostral organizing centers (ROC) and midbrain organizing centers 

(MOC). Both pairs of clusters arise from angioblasts derived from the anterior lateral plate 

mesoderm. Between 14-16s, a subset of endothelial cells from the MOC will give rise to the 
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aortic arches, which will meet the LDA being formed bilaterally from ventral posterior 

extensions of the MOC. Other MOC progenitors will migrate toward the midline where ventral 

anterior extensions will give rise to the primitive ICA. Contributions to the ICA also come from 

posterior extensions from the ROC at 16-18s stage. At the same time, ventral extensions from the 

ROC form the CaDI. Further contributions to the CaDI arise via migration of rostral angioblasts 

that form adhesions once reaching the CaDI (for review, see [205]). 

 

1.5 DISSERTATION AIMS 

To date, although TGF-β1, TGF-β3, Bmp9, and Bmp10 have all been shown to bind Alk1 [180, 

190, 194-196], none have been identified as necessary ligands for Alk1 in AVM prevention. 

Furthermore, the mechanism by which Alk1 signals in endothelial cells has not been defined in 

vivo. Therefore, the Aims of my thesis research were to: 1) define the relevant in vivo Alk1 

ligand(s), and 2) explore the role of phosphorylated Smads1/5/9 downstream of Alk1 signaling. 

Using zebrafish embryos as a model system, I used genetic and embryological approaches to 

systematically test the relevance of putative Alk1 ligands and r-Smad proteins in vertebrate 

embryonic vascular development, and generated a novel Smad1/5-responsive transgenic reporter 

line to further define the role of Smad activation in Alk1 signaling.  
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2.0 CIRCULATING BMP10 ACTS THROUGH ENDOTHELIAL ALK1 TO MEDIATE 
FLOW-DEPENDENT ARTERIAL QUIESCENCE. 

 
 

 

Blood flow plays critical roles in vascular development, remodeling, and homeostasis, but the 

molecular pathways required for transducing flow signals are not well understood. In zebrafish 

embryos, arterial expression of activin receptor-like kinase 1 (alk1), which encodes a TGF-β 

family type 1 receptor, is dependent on blood flow, and loss of alk1 mimics lack of blood flow in 

terms of dysregulation of a subset of flow-responsive arterial genes and increased arterial 

endothelial cell number. These data suggest that blood flow activates Alk1 signaling to promote 

a flow-responsive gene expression program that limits nascent arterial caliber. Here, I 

demonstrate that restoration of endothelial alk1 expression to flow-deprived arteries fails to 

rescue Alk1 activity or normalize arterial endothelial cell gene expression or number, implying 

that blood flow may play an additional role in Alk1 signaling independent of alk1 induction. To 

this end, I define cardiac-derived Bmp10 as the critical ligand for endothelial Alk1 in embryonic 

vascular development, and provide evidence that circulating Bmp10 acts through endothelial 

Alk1 to limit endothelial cell number in and thereby stabilize caliber of nascent arteries. Thus, 

blood flow promotes Alk1 activity by concomitantly inducing alk1 expression and distributing 

Bmp10, thereby reinforcing this signaling pathway that functions to limit arterial caliber at the 

onset of flow. Because mutations in ALK1 cause arteriovenous malformations (AVMs), my 

findings suggest that an impaired flow response initiates AVM development.   
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2.1 INTRODUCTION 

Blood flow imparts mechanical forces and distributes endocrine factors that influence vascular 

development and remodeling and allow maintenance of arterial-venous identity, but the 

molecular pathways that govern these flow-dependent processes are not fully understood [for 

review, see [206]]. Among the physical forces imparted by blood flow, shear stress, the frictional 

force that acts in the direction of blood flow, is the most extensively studied. Laminar shear 

stress induces expression of the transcription factor, KLF2, which coordinates expression of 

numerous flow-responsive genes that promote cell cycle arrest and vasodilation, thereby favoring 

vascular quiescence and conferring atheroprotection [83-85, 207]. In contrast, disturbed (low or 

oscillatory) shear stress activates the transcription factors NF-kB and AP-1, which promote an 

atherogenic response characterized by inflammation and vasoconstriction [208-211]. However, 

the repertoire of flow responses that exist in vivo clearly extends well beyond these pathways. 

Mounting evidence implicates the TGF-β family type I receptor, ALK1, as a key player in a 

flow-responsive signaling pathway that functions independently of KLF2 to promote quiescence 

in nascent arteries. In zebrafish embryos, alk1 is expressed predominantly in arteries proximal to 

the heart, which experience relatively high magnitudes of mechanical forces, and preventing 

heartbeat eliminates alk1 mRNA expression [181]. Furthermore, either loss of blood flow or loss 

of alk1 results in increased expression of cxcr4a, which encodes a pro-angiogenic chemokine 

receptor, and decreased expression of endothelin-1 (edn1), which encodes a vasoconstrictive 

peptide [181]. Both of these genes are flow-responsive in cultured endothelial cells [212, 213], 

suggesting that Alk1 might lie upstream of cxcr4a and edn1 in a mechanosensitive signaling 

pathway. In support of this hypothesis, blood flow-mediated repression of cxcr4a correlates with 
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quieting of endothelial cell protrusive activity in nascent zebrafish arteries [214], and zebrafish 

alk1 mutants, which exhibit abnormally high levels of arterial cxcr4a, develop enlarged arteries 

containing supernumerary endothelial cells, suggestive of failed flow-induced suppression of 

endothelial cell migration or proliferation [181, 182]. Evidence from mice further supports the 

idea that Alk1 functions in a flow-responsive pathway to quiet nascent arteries. In mice, Alk1 is 

expressed predominantly in embryonic arterial endothelial cells, with weak expression in adults 

[215, 216]. However, Alk1 expression can be induced in adult mice during periods of active 

angiogenesis in arterial endothelial cells exposed to high shear stress [215]. Furthermore, recent 

mouse studies have implicated bone morphogenetic protein (BMP) signaling in general or Alk1 

signaling in particular in maintenance of a quiescent endothelial stalk cell fate [199, 217]. 

Together, these data from both mouse and zebrafish support the hypothesis that Alk1 signaling 

mediates flow-dependent arterial endothelial cell quiescence. Notably, alk1 acts independently of 

klf2a in zebrafish [181], suggesting that multiple flow-dependent pathways coordinate in vivo to 

control the activation state of the endothelium. 

Alk1 signaling is critical for normal vascular development and homeostasis in mice and 

zebrafish, with loss of function resulting in embryonic lethality associated with development of 

direct connections between arteries and veins, or arteriovenous malformations (AVMs) [169, 

182, 183, 201]. In humans, ALK1 heterozygosity results in hereditary hemorrhagic telangiectasia 

type 2 (HHT2), a vascular disorder characterized by predisposition to development of 

telangiectases and AVMs [169, 218]. However, despite the clear link between ALK1 signaling 

and AVM prevention, the ALK1 signaling pathway remains poorly defined in vivo. In TGF-β 

family signaling, ligands bind to a heterotetrameric complex of two type II receptors and two 

type I receptors, both of which are serine/threonine kinases. The type II receptors phosphorylate 
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and thus activate the type I receptors, and the type I receptors then phosphorylate receptor-

specific Smad proteins. Phosphorylated Smads complex with the common partner Smad, Smad4, 

enter the nucleus, and, together with a variety of transcription factors, regulate transcription of 

target genes [for review, see [219]]. With respect to ALK1, TGF-β1, TGF-β3, BMP9, and 

BMP10 ligands can induce ALK1-dependent phosphorylation of Smad1, Smad5, and/or Smad9 

(hereafter referred to as Smad1/5/9) and stimulate activity of a phospho-Smad1/5/9 

(pSmad1/5/9)-responsive reporter in cultured endothelial cells [180, 183, 188-190, 194-196, 220, 

221]. However, although TGF-β-mediated activation of ALK1 requires ALK5 (canonical TGF- 

β1 type I receptor) activity in cultured endothelial cells [221], endothelial cell-specific deletion 

of Alk5 in mice or Alk5 inhibition in zebrafish embryos does not affect Alk1 activity [187], 

suggesting that TGF-β subfamily ligands are not relevant to Alk1 signaling in embryonic 

development. In fact, BMP9 and BMP10 are the only TGF-β superfamily ligands that bind to 

ALK1 with high affinity in vitro, and they circulate at physiologically relevant concentrations 

[188, 189, 196, 222]. However, neither Bmp9 [189, 196, 222] nor Bmp10 [223] null mice 

phenocopy Alk1 null mice [183, 201], which present with AVMs. Although the lack of AVMs 

could reflect ligand redundancy, interference with both ligands via blocking antibodies and/or 

ligand traps impairs mouse retinal angiogenesis but does not produce retinal AVMs [199, 222]. 

As such, the identity of the activating ALK1 ligand in vivo has remained elusive. 

In this work, I use zebrafish embryos to demonstrate that Alk1 kinase activity, in addition 

to alk1 mRNA expression, requires blood flow, and I provide evidence that this newly-defined 

role for blood flow stems not from mechanical force but from distribution of the cardiac-derived 

circulating ligand, Bmp10. Taken together, my data define a novel endocrine pathway in which 

circulating Bmp10 binds to endothelial cell Alk1 to induce phosphorylation of Smad1/5/9, which 
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promotes a program of gene expression that limits endothelial cell number within nascent 

arteries in response to blood flow.  Abrogation of this flow response results in enlarged arteries 

and ultimately AVMs.  

 

2.2 RESULTS 

2.2.1 Blood flow is required not only for alk1 expression but also for Alk1 activity 

In 36 hours post-fertilization (hpf) zebrafish embryos, alk1 is expressed predominantly in 

endothelial cells within arteries proximal to the heart: the first aortic arch; the cranialward 

internal carotid artery, caudal division of the internal carotid artery (CaDI), and basal 

communicating artery (BCA); and the caudalward lateral dorsal aortae (Figure 7A).  We 

previously demonstrated that alk1 expression requires blood flow, and that loss of alk1 mimics 

loss of blood flow in terms of changes in expression of cxcr4a and edn1: both alk1 mutants, 

which have high flow through assayed vessels, and cardiac troponin-t2a (tnnt2a) morphants, 

which lack heartbeat and blood flow, exhibit increased cxcr4a expression and decreased edn1 

expression in alk1-expressing cranial arteries at 36 hpf [Figure 7B and [181]].  Given that 

mammalian orthologs Cxcr4 and Edn1 are flow-responsive in cultured endothelial cells [212, 

213], these data suggest that Alk1 might act downstream of blood flow to control expression of 

these mechanoresponsive genes. Accordingly, if Alk1 signaling is sufficient downstream of 

blood flow, then restoration of alk1 in the absence of flow might be expected to rescue 

expression of cxcr4a and edn1. To test this hypothesis, we generated a stable transgenic line, 

Tg(fli1a:alk1-myc), which expresses Alk1-myc in all endothelial cells regardless of the presence 

of blood flow (Figure 8). This transgene restores wild type expression of cxr4a and edn1 during 

embryogenesis (Figure 7B), rescues alk1 mutants to adulthood [n = 23 alk1 mutants of 130 adults 
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from alk1+/-;Tg(fli1a:alk1-myc) incrosses; 71% rate of rescue], and has no untoward effects on 

growth and development. However, flow-independent expression of endothelial cell alk1 fails to 

normalize expression of cxcr4a or edn1 in 36 hpf tnnt2a morphants (Figure 7B). There are two 

plausible explanations for this observation: Alk1 signaling may not be sufficient downstream of 

blood flow to control expression of these genes, or flow may be required for some aspect of Alk1 

signaling in addition to alk1 expression.   
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Figure 7: Restoration of alk1 expression does not rescue cxcr4a and edn1 expression in the absence of blood 

flow. 

(A) Lateral, frontal, and dorsal views of the zebrafish cranial vasculature, 36 hpf. alk1-positive arteries are light 

gray, alk1-negative arteries dark gray, and veins black. Note alk1-positive arteries are closest to the heart. AA1, 

aortic arch 1; BA, basilar artery; BCA, basal communicating artery; CaDI, caudal division of the internal carotid 

artery; ICA, internal carotid artery; LDA, lateral dorsal aorta; PCS, posterior communicating segments; PHBC, 

primordial hindbrain channel; PMBC, primordial midbrain channel. Scale bar, 50 µm. (B) Whole mount in situ 

hybridization for cxcr4a, edn1, and cadherin 5 (cdh5, pan-endothelial control) at 36 hpf in control morphants; alk1-/-; 

alk1-/- embryos in which alk1 expression is restored by a blood flow-independent transgene, fli1a:alk1-myc; tnnt2a 
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morphants; and in tnnt2a;Tg(fli1a:alk1-myc) embryos. Frontal views, dorsal up. Arrows, alk1-positive CaDI. Scale 

bar, 50 µm. 

 

 

Figure 8: Tg(flia:alk1-myc) drives alk1 expression in all endothelial cells independently of flow. 

Immunohistochemistry for myc in 36 hpf Tg(fli1a:alk1-myc) embryos injected with either control or tnnt2a MO. 

Lateral views, anterior left. Scale bar, 200 µm. 

 

To determine whether restoration of endothelial alk1 expression is sufficient to restore 

Alk1 signaling in the absence of flow, I assessed a direct measure of Alk1 activity, 

phosphorylated Smad1/5/9 (pSmad1/5/9). Because alk1 expression is dependent on blood flow 

[181] and immunofluorescent detection of pSmad1/5/9 is dependent on alk1 expression, 

detection of pSmad1/5/9 by immunofluorescence in these arterial endothelial cells should be 

dependent on blood flow. Indeed, pSmad1/5/9 immunofluorescence is not detectable in the 

CaDIs at 24 hpf, prior to the onset of flow through and alk1 expression in these vessels (Figure 

9A), and pSmad1/5/9 epitope is absent at 36 hpf in tnnt2a morphants (Figure 9B) but is robust in 
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sibling controls (Figure 9C). However, restoration of alk1 expression via a fli1a:alk1-myc 

transgene in flow-deprived tnnt2a morphants fails to rescue detection of pSmad1/5/9 by 

immunofluorescence (Figure 9D), whereas endothelial-specific expression of a constitutively 

active (ligand- and type II receptor-independent) form of alk1 via a fli1a:alk1CA-mCherry 

(fli1a:alk1CA-mCh) transgene restores pSmad1/5/9 epitope in the absence of blood flow (Figure 

9E). Taken together, these data suggest that blood flow is required not only for alk1 expression 

but also for some additional aspect of Alk1 activity, such as type II receptor expression and/or 

expression or distribution of Alk1 ligand. 
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Figure 9: Alk1 activity is dependent on blood flow. 

pSmad1/5/9 expression (middle column) in endothelial cells (nuclei marked by fli1a:negfp transgene, left column) at 

24 hpf, prior to blood flow (A); in the absence (tnnt2a morphants, B) or presence (C) of blood flow at 36 hpf; in 

tnnt2a morphants harboring a fli1a:alk1-myc transgene (D); and in embryos harboring a fli1a:alk1CA-mCh transgene 

(E).  Note that Tg(fli1a:alk1CA-mCh) embryos do not have blood flow in these vessels. In merge (right column), 

EGFP-expressing endothelial cell nuclei are green, pSmad1/5/9 immunofluorescence is magenta. Yellow and blue 

arrows point to endothelial cells in the CaDI and BCA, respectively. 2D confocal projections of 50 µm frontal 

sections, dorsal up. Scale bar, 50  µm. 
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2.2.2 bmp10 knockdown phenocopies alk1 mutants 

To investigate the effect of blood flow on Alk1 ligand availability, I first needed to determine the 

physiologically relevant ligand during zebrafish embryonic vascular development. Therefore, I 

assessed vascular gene expression and architecture between 36 and 48 hpf in bmp9 

(ENSDARG00000059173) and bmp10 (ENSDARG00000061769) morphants, and compared 

results to alk1 mutants/morphants. Translation blocking (TB) morpholinos were validated in vivo 

as described in Materials and Methods (Figure 10).  

 

Figure 10: bmp9, bmp10, and bmp10-like knockdown their respective targets in vivo. 

Wild type embryos injected at the one-cell stage with 50 pg CMV-driven EGFP constructs modified with 

morpholino binding sites (MoBS) inserted upstream of the ATG, with or without cognate or non-cognate 

morpholinos. Bmp9 MO: 7 ng; bmp10 MO: 20ng; bmp10-like MO, 3 ng. Embryos were observed at ~6 hpf for 

EGFP fluorescence. Scale bar, 500 µm (top two rows) or 250 µm (bottom row). 
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Injection of bmp9TB morpholino had no effect on detection of pSmad1/5/9 by 

immunofluorescence in the 36 hpf CaDI/BCA (Figure 11A) nor any effect on cranial vascular 

architecture at 48 hpf (Figure 11B), but reproducibly generated a venous remodeling defect in 

the tail that was phenocopied by injection of bmp9 splice blocking (SB) morpholino (data not 

shown).  

 

Figure 11: bmp9 knockdown does not phenocopy alk1 mutants. 

(A) pSmad1/5/9 expression (middle column) in endothelial cells (nuclei marked by fli1a:negfp transgene, left 

column) in 36 hpf control and bmp10TB morphants. In merge (right column), EGFP-expressing endothelial cell 

nuclei are green, pSmad1/5/9 immunofluorescence is magenta. Yellow and blue arrows denote endothelial cells in 

the CaDI and BCA, respectively. 2D confocal projections of 50 mm frontal sections, dorsal up. Scale bar, 50 µm. 

(B) Cranial vasculature in 48 hpf control and bmp9 morphant embryos. Endothelial cells are green, red blood cells 

magenta. 2D confocal projections, dorsal views, anterior left, Scale bar, 50 µM 
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In contrast, at 36 hpf, bmp10TB morphant CaDIs/BCAs were enlarged and contained 

supernumerary endothelial cells, a phenotype indistinguishable from alk1 morphants (Figure 

12A,B). Furthermore, in the 36 hpf CaDI/BCA, bmp10TB morphants exhibited severely 

downregulated detection of pSmad1/5/9 by immunofluorescence (17/19, 89%; Figure 12C), 

increased expression of cxcr4a (50/53, 94% Figure 12D), and decreased expression of edn1 

(15/15, 100%; Figure 12D).  These effects were similar to effects observed in alk1 mutants. In 

addition, bmp10TB morphants developed AVMs connecting the arterial system underlying the 

midbrain and hindbrain to adjacent veins, strongly resembling alk1 mutants/morphants (Figure 

12E). However, the bmp10 morpholino-induced AVM phenotype was observed with relatively 

weak penetrance (21/43, 49%; Figure 12F) and low expressivity at a maximum tolerated dose 

(20 ng), suggesting that an additional ligand might be compensating for bmp10 at later time 

points. Examination of the zebrafish genome uncovered bmp10-like (ENSDARG00000045632), 

which is most closely related to bmp10 (64% identity in the active peptide) and likely represents 

a bmp10 paralog that arose during a teleost whole genome duplication [224]. Therefore, I 

knocked down both bmp10-like and bmp10 and assessed the zebrafish vasculature at 48 hpf. 

Injection of bmp10-like morpholino (3 ng) or bmp10TB morpholino (10-15 ng) alone had almost 

no effect on cranial vascular architecture (n = 61 and 47, respectively), whereas co-injection of 

these two morpholinos at these same doses robustly phenocopied alk1 morphants in terms of 

AVM development (122/146, 84%; Figure 12E,F), suggesting a strong genetic interaction. 

Similar results were observed with a bmp10SB morpholino, with no AVMs at 15 ng (n = 48) but 

AVMs upon co-injection with 3 ng bmp10-like morpholino (46/57, 81%). In contrast, co-

injection of bmp9TB morpholino (7 ng) with bmp10TB morpholino (15 ng) failed to elicit AVMs 

(0/29), and co-injection of bmp9TB morpholino (7 ng), bmp10TB morpholino (15 ng), and bmp10-
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like morpholino (3 ng) did not increase percent phenotype (20/31, 65%) beyond combined 

injection of bmp10TB morpholino and bmp10-like morpholino. These results demonstrate that 

bmp10-like acts redundantly with bmp10 and that Bmp10 but not Bmp9 is the critical in vivo 

Alk1 ligand required for arterial quiescence and AVM prevention during zebrafish embryonic 

vascular development.  
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Figure 12: Knockdown of bmp10 phenocopies zebrafish alk1 mutants. 

(A) CaDIs (yellow arrows) and BCA (blue arrows) in 36 hpf Tg(fli1a:mrfp-caax);Tg(fli1a:negfp) embryos injected 

with 20 ng control, 20 ng bmp10TB, or 2.5 ng alk1 morpholino. Endothelial cell membranes are magenta; nuclei are 

green. 2D projections of 10 optical sections (Z-step, 2 mm), frontal views, dorsal up. Scale bar, 50 µm. (B) 

Endothelial cell number in the CaDI/BCA in control, bmp10, and alk1 morphants. n = 7 to 10 in 3 independent 

experiments. Values are mean ± SEM. Student’s t-test: *P<0.001. (C) pSmad1/5/9 expression (middle column) in 

endothelial cells (nuclei marked by fli1a:negfp transgene, left column) in 36 hpf control and bmp10TB morphants. In 

merge (right column), EGFP-expressing endothelial cell nuclei are green, pSmad1/5/9 immunofluorescence is 
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magenta. Yellow and blue arrows denote endothelial cells in the CaDI and BCA, respectively. 2D confocal 

projections of 50 mm frontal sections, dorsal up. Scale bar, 50 µm. (D) Whole mount in situ hybridization for 

cxcr4a, edn1, and cdh5 (pan-endothelial control) at 36 hpf. Frontal views, dorsal up. Arrows point to BCA (up) or 

CaDI (right). Scale bar, 50 µm. (E) Cranial vasculature in 48 hpf Tg(kdrl:gfp);Tg(gata1a:dsRed) embryos injected 

with bmp10TB morpholino (15-20 ng, as indicated), alk1 morpholino (2.5 ng); and/or bmp10-like  morpholino (3 ng). 

Arrows highlight width of BCA; asterisk denotes AVM. Endothelial cells are green, red blood cells magenta. 2D 

confocal projections, dorsal views, anterior left. Scale bar, 50 mm. (F) Quantification of AVM development in 48 

hpf morpholino-injected embryos. n = 43-146. Values are mean ± SEM. Student’s t-test:  *P<0.001; ns, not 

significant:  

2.2.3 bmp10 paralogs are expressed exclusively in the heart  

I have demonstrated that concomitant knockdown of bmp10 and bmp10-like phenocopies alk1 

mutants. bmp10 expression becomes detectable in the heart at 24 hpf and is independent of 

mechanical force (Figure 13).  
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Figure 13: bmp10 and bmp10-like expression is independent of flow. 

(A) Whole mount in situ hybridization for bmp10 and myl7 (myosin light chain 7, previously known as cardiac 

myosin light chain) at 22 and 24 hpf. Lateral views, anterior left. Asterik denotes location of heart. Scale bar, 500 

µm (B) Whole mount in situ hybridization for bmp10, bmp10-like, and myl7 at 36 hpf. in uninjected and tnnt2a 

morphant embryos. Frontal views, dorsal up. Scale bar, 50 µm 
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By 28 hpf, bmp10 is expressed throughout the heart tube, with predominant expression in the 

ventricle at 36 hpf (Figure 14A). By 48 hpf, expression is in both heart chambers but absent from 

the atrioventricular canal (Figure 14A). Double staining for bmp10 mRNA and sarcomeric 

myosin protein revealed that bmp10 is expressed strongly in endocardium but is largely absent 

from myocardium at 36 hpf (Figure 14B). bmp10-like is undetectable in the heart at 28 hpf but is 

expressed at 36 and 48 hpf in distal ventricular myocardium (Figure 14A,B). No additional 

discrete expression domains of either bmp10 or bmp10-like were detected (data not shown). The 

temporal difference in ligand expression suggests that Bmp10-like might compensate for Bmp10 

after 36 hpf, providing a plausible explanation for the observation that knockdown of bmp10 

alone robustly phenocopies alk1 mutants at 36 hpf, but double knockdown of bmp10 and bmp10-

like is required for robust phenocopy at 48 hpf (Figure 12).  Furthermore, these data demonstrate 

that the heart is the most likely source of both Bmp10 and Bmp10-like and suggest that cardiac-

derived Bmp10 ligands might be carried by blood flow to arterial endothelial Alk1.  
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Figure 14: bmp10 and bmp10-like are expressed in the heart. 

(A) Whole mount in situ hybridization for bmp10, bmp10-like, and myl7 (myosin light chain 7, previously known as 

cardiac myosin light chain) at 28, 36, and 48 hpf. Frontal views, dorsal up. Scale bar, 50 µm. (B) Eight-mm sagittal 

sections through the heart of 36 hpf embryos co-stained with bmp10, bmp10-like, or myl7 (purple) and MF20 

(sarcomeric myosin; brown). Scale bar, 25 µm. 
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2.2.4 Circulating Bmp10 acts via Alk1 to limit endothelial cell number in nascent arteries 

Given that bmp10 orthologs are detectable only in the heart in zebrafish (Figure 14) and mouse 

[223, 225] and that Bmp10 circulates in embryonic mouse plasma [222], it stands to reason that 

blood flow may be required to transport Bmp10 to arterial endothelial cell Alk1, explaining why 

restoration of alk1 gene expression alone is insufficient to rescue defects in arterial endothelial 

cell cxcr4a, edn1, and detection of pSmad1/5/9 by immunofluorescence in the absence of flow 

(Figures 7,9). To test this hypothesis, I injected tnnt2a morpholino into Tg(fli1a:alk1-myc) 

embryos, once again generating embryos that lack heartbeat but nonetheless express endothelial 

alk1. At 28 hpf, I injected tracer (phenol red or quantum dots) alone or together with 

recombinant human (rh) BMP10 directly into the base of one CaDI. Note that rhBMP10 can act 

through zebrafish Alk1 to activate BMP responsive element (BRE)-driven luciferase activity in 

transfected C2C12 cells with an EC50 similar to that required for activation of human ALK1 

(Figure 15A). Neither tnnt2a morphant;Tg(fli1a:alk1-myc) embryos injected with tracer alone 

nor rhBMP10 injected siblings lacking Tg(fli1a:alk1-myc) showed detection of pSmad1/5/9 by 

immunofluorescence in the CaDI (0/17, 0/11 respectively) whereas injection with tracer plus 

rhBMP10 induced detection of pSmad1/5/9 by immunofluorescence near the site of injection 

(12/17, 71%; Figure 15B). Furthermore, injection of rhBMP10 into tnnt2a 

morphant;Tg(fli1a:alk1-myc) embryos decreased expression of cxcr4a (13/23, 57%) and 

increased expression of edn1 (14/22, 64%) on the injected side, driving expression of these genes 

toward levels observed in the presence of blood flow (Figure 15C). In addition, similarly 

restoring Alk1 signaling to one CaDI in flow-deprived tnnt2a morphant embryos significantly 

decreased endothelial cell number within the injected CaDI and BCA but not the uninjected 

CaDI, normalizing endothelial cell number in the injected CaDI/BCA to that observed in the 



  57 

presence of blood flow (Figure 15D). Because expression of Cxcr4 and Edn1 can be repressed or 

induced, respectively, by mechanical force in cultured endothelial cells [212, 213], these results 

support the idea that Bmp10/Alk1/pSmad1/5/9 signaling may be critical in transducing a 

mechanical signal into a biochemical response in arterial endothelial cells in vivo. In total, my 

results define a novel blood flow responsive signaling pathway – in which blood flow is required 

for alk1 expression as well as, via circulating Bmp10, Alk1 activity – that is critical for flow-

dependent limitation of endothelial cell number in and therefore caliber of nascent arteries. 

 

 

 



  58 

 

Figure 15: Bmp10/Alk1 lies downstream of blood flow in regulation of pSmad1/5/9, cxcr4a, and edn1. 

(A) BRE:luciferase activity in C2C12 cells transfected with human (h)ALK1, zebrafish (z)alk1, hALK1 kinase dead 

mutant (R411Q), hALK3 (which does not bind BMP10), or Lipofectamine (lipo), and treated with rhBMP10. Data 

are normalized to pTK-Renilla luciferase activity. (B) pSmad1/5/9 expression (middle column) in endothelial cells 

(nuclei marked by fli1a:negfp transgene, left column) of the CaDI of 36 hpf tnnt2a morphants injected with 2 nl of 

10µM rhBMP10 or tnnt2a morphant;Tg(fli1a:alk1-myc) embryos injected directly into the base of the CaDI with 

tracer alone or in combination with 2 nl of 10µM rhBMP10 at 28 hpf. In merge (right column), EGFP-expressing 

endothelial cell nuclei are green, pSmad1/5/9 immunofluorescence is magenta. Yellow arrows point to endothelial 

cells in the injected CaDI. 2D confocal projections of 50 mm frontal sections, dorsal up. Scale bar, 10 µm. (C) 
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Whole mount in situ hybridization for cxcr4a, edn1, and cdh5 (pan-endothelial control) in 36 hpf tnnt2a 

morphant;Tg(fli1a:alk1-myc) embryos injected at 28 hpf into the base of the left CaDI with 2 nl tracer with or 

without 10 mM rhBMP10. Yellow arrow designates injected CaDI, red arrow uninjected CaDI. Asterisk denotes 

injection site. Frontal views, dorsal up; or lateral views, right (uninjected) side or left (injected) side. Scale bar, 50 

mm. (D) 36 hpf Tg(fli1a:negfp)Tg(fli1a:alk1-myc) embryos left uninjected or injected with tnnt2a MO at the one to 

four-cell stage, then injected directly into the base of the right CaDI with tracer alone or in combination with 2 nl of 

10mM rhBMP10 at 28 hpf. Yellow arrow, injected CaDI; red arrow, uninjected CaDI; blue arrow, BCA. 2D 

confocal projections, frontal views, dorsal up. Scale bar, 50 µm. (E) Quantitation of endothelial cell number in the 

right (injected) CaDI, BCA, and left (uninjected) CaDI in embryos described in D. N=10-12 in 2 independent 

experiments. Values are mean ± SEM. Student’s t-test:  *P<0.05; **P<0.001; ns, not significant. 

 

 

2.3 DISCUSSION 

Early embryonic blood vessel development is controlled largely by paracrine signaling 

interactions that orchestrate endothelial cell migration and proliferation and coalescence into 

vascular cords, as well as subsequent angiogenic sprouting that serves to elaborate the primitive 

vascular network. However, once blood vessels form a lumen, biomechanical forces and 

endocrine factors also come into play. In this work, I present evidence that blood flow is critical 

for limiting endothelial cell number within nascent arteries, and that Alk1 acts downstream of 

blood flow in mediating this effect. Furthermore, I demonstrate that blood flow is required not 

only for alk1 expression but also for Alk1 activity, and that the latter requirement is met by 

provision of circulating ligand, Bmp10. Thus, flow-dependent induction of alk1 and distribution 

of ligand synergize to enhance Alk1 activity.  

It is well established that both BMP9 and BMP10 bind ALK1 with high affinity and can 

induce Smad1/5/9 phosphorylation and pSmad1/5/9-dependent transcriptional responses in 
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cultured endothelial cells [188, 194, 196]. However, my work is the first to unequivocally define 

Alk1 ligands in vivo. I have demonstrated in zebrafish that bmp10 paralogs are required for Alk1 

function during embryonic development, whereas bmp9 is dispensable. In contrast, neither Bmp9 

nor Bmp10 mouse nulls exhibit AVMs. Bmp9 null mice live to adulthood without apparent 

vascular abnormalities [222], whereas ventricular hypoplasia and impaired trabeculation but not 

AVMs have been reported in Bmp10 nulls [223]. There are two possible explanations for this 

discrepancy between zebrafish and mice.  First, Bmp9 and Bmp10 may act redundantly in mouse 

embryonic vascular development, reflecting a difference in the spatial and/or temporal ligand 

requirement in mouse versus zebrafish vasculature. Indeed, treatment of Bmp9 null mice with 

Bmp10 blocking antibodies results in early postnatal retinal vascular defects, hinting at 

functional redundancy, although AVMs were not noted in these vessels [222]. Furthermore, like 

rhBMP10, rhBMP9 was effective in restoring detection of pSmad1/5/9 by immunofluorescence 

in the CaDI/BCA in tnnt2a morphant;Tg(fli1a:alk1-myc) zebrafish embryos (data not shown), 

suggesting that Bmp9 and Bmp10 may function redundantly in vivo if available to Alk1 

contemporaneously. In zebrafish, bmp9 is first detected in liver around 48 hpf (C. Mansfield and 

B. Shravage, data not shown) and the liver is first vascularized around 55 hpf [226], supporting 

the idea that Bmp9 is not redundant with Bmp10 between 24 and 48 hpf, the time period during 

which AVMs develop in alk1 mutants [181, 182]. A second possible reason for the discordance 

between mice and zebrafish in terms of definition of Alk1 ligand stems from the fact that slowed 

heartbeat and impaired circulation precede death of Bmp10 mouse nulls at embryonic day (E)9.5-

E10.5 [223]. Thus, it is reasonable to hypothesize that the absence of AVMs in Bmp10 nulls is 

due to the earlier death of Bmp10 nulls versus Alk1 nulls (E10.5-11.5) and/or insufficient 

circulation to precipitate AVM formation, which we have demonstrated to be a flow-dependent 
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process [181]. Because trabeculation in zebrafish does not occur until 60-72 hpf in zebrafish 

[227, 228], it is not surprising that I noted no defects in heart development or function through 

48 hpf in bmp10 or bmp10-like morphants (data not shown). 

In cranial arterial endothelial cells, both blood flow and Bmp10/Alk1 function are 

required for phosphorylation of Smad1/5/9, repression of cxcr4a, and induction of edn1, and 

concomitant restoration of endothelial alk1 expression and injection of Bmp10 normalizes these 

molecular endpoints and restores arterial endothelial cell number in the absence of flow.  These 

data strongly suggest that Alk1 acts downstream of blood flow to limit endothelial cell 

migration, proliferation, and possibly vascular tone and thus limit arterial endothelial cell number 

and vessel caliber. However, changes in expression of cxcr4a and edn1 cannot account for 

defects in vessel architecture resulting from loss of alk1. Although Alk1 signaling can repress 

Cxcr4 or induce Edn1 in cultured endothelial cells [229-231], supporting our in vivo data, 

previous work has demonstrated that increased cxcr4a is not necessary nor is loss of edn1 

sufficient for AVM development [181], and additional work has demonstrated that concomitant 

increase in cxcr4a and loss of edn1 is insufficient to generate AVMs (E. Rochon and B. Roman, 

unpublished). Thus, further work is required to define the molecular mechanisms and cellular 

behaviors that lead to arterial enlargement in the absence of alk1. 

The multifaceted regulation of Alk1 signaling by blood flow is remarkable, with flow 

required for both alk1 expression and Alk1 activity. Given that mammalian Cxcr4 and Edn1 

respond to shear stress and/or cyclic strain in cultured endothelial cells [212, 213], it seems likely 

that Alk1 is important in transducing mechanical force into a biochemical signal in vivo.  

However, the mechanism by which blood flow upregulates alk1 expression is currently 

unknown, and it remains formally possible that the flow-dependence of alk1 expression stems at 
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least in part from a circulating factor. Circulation of ligand clearly contributes to the dependence 

of Alk1 activation on blood flow: blood flow distributes cardiac-derived circulating Bmp10 to 

arterial endothelial cell Alk1, thereby explaining the blood flow-dependence of Smad1/5/9 

phosphorylation in these cells.  However, a recent study reported that mechanical force induces 

Smad1/5/9 phosphorylation in intact mouse endothelium and cultured endothelial cells in a 

ligand-independent manner [232], contradicting my conclusions.  This discrepancy may be 

explained by the fact that ligand-independence in that study was examined via treatment with 

Noggin, which sequesters most BMP ligands, but not BMP9 or BMP10 [233].  Alternatively, 

oscillatory shear stress applied in that study may have different effects on BMP signaling than 

pulsatile laminar shear stress, which acts within zebrafish cranial arteries [234], or the type I 

receptor responsible for oscillatory shear-induced pSmad1/5/9 may not be Alk1.  Further work is 

required to better define the roles of and probe interactions between endocrine factors and 

mechanical force in the regulation of Alk1 signaling. 

In summary, my data demonstrate that blood flow induces alk1 expression and provides 

Bmp10 to arterial endothelial cell Alk1, thereby activating Smad1/5/9 phosphorylation, 

decreasing cxcr4a expression, and inducing edn1 expression.  These changes in gene expression, 

along with changes in expression of yet to be identified genes, serve to dampen angiogenic 

behavior and stabilize arterial endothelial cell number and caliber at the onset of blood flow. 

Taken together with our previous work [181], my data suggest that loss of Alk1 function 

abrogates this important flow response and results in increased nascent arterial caliber, which in 

turn leads to increased hemodynamic forces within downstream arteries. In an attempt to 

normalize these hemodynamic forces, downstream vessels mount an Alk1-independent flow 

response that causes normally transient conduits between this overloaded arterial system and 
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neighboring veins to be retained and enlarged, thereby forming high flow AVMs.  Thus, my 

model suggests that in HHT patients, abrogation of one flow response–due to impaired ALK1 

signaling–leads to activation of an independent flow response that acts to normalize 

hemodynamic forces, ultimately leading to AVMs.  
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3.0 PHOSPHORYLATED SMADS1/5/9 ARE PRESENT AND ACTIVE DOWNSTREAM 

OF ALK1 IN THE ZEBRAFISH ENDOTHELIUM. 

 

Loss of ALK1 results in aberrant endothelial cell behavior and subsequently the formation of 

fragile improper connections between arteries and veins, AVMs. To date, the intracellular 

mediators for ALK1, critical in promotion of vascular quiescence and AVM prevention, remain 

unknown. Here, I demonstrate that pSmads1/5/9 are present and active in alk1-positive arteries 

and that Alk1 activity is necessary and sufficient for their expression. Furthermore, use of a 

phospho-Smad1/5 reporter, Tg(BRE:EGFP), provides preliminary evidence that pSmads1/5/9 

may play a non-canonical role downstream of Alk1. Finally, I show that inhibition of Alk1 

kinase activity produces AVMs reminiscent of alk1 mutants. Taken together, these data reveal 

pSmads1/5/9 to be a readout of Alk1 signaling in vivo during embryonic development, and 

demonstrate that activation may be critical in AVM prevention. 

 

3.1 INTRODUCTION 

In TGF-β signaling, ligand binds to heterotetrameric complexes of type I and type II 

serine/threonine kinase receptors which phosphorylate Smad1, Smad5, and Smad9 (hereafter 

referred to as pSmads1/5/9), allowing them to complex with Smad4, enter the nucleus, and 

regulate expression of downstream genes [235]. The importance of TGF- β signaling in vascular 
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development is highlighted by the HHT family of diseases in which haploinsufficiency of 

coreceptor endoglin (ENG) causes HHT1 [167], haploinsufficiency of Type I receptor, ALK1 

leads to HHT2 [169], and mutations in SMAD4 cause Juvenile Polyposis with HHT phenotypes 

[172].  

Although cases of HHT clearly indicate Alk1/Endoglin are necessary in endothelial cell 

behavior and AVM prevention, the in vivo intracellular mediators of this signal remain poorly 

understood. pSmads1/5/9 are the best characterized substrates for Alk1 [183]. However, Alk1 

can also signal via phosphorylation of non-Smad substrates, including mitogen activated protein 

kinases (MAPKs) ERK1/2 and p38 [199, 229]. In fact, several lines of evidence suggest that 

pSmad1/5/9 is not required downstream of Alk1 in vivo. For example, Alk1-mediated inhibition 

of migration in human dermal microvascular endothelial cells is reportedly Smad-independent 

[146]. Furthermore, inducible knockout of Endoglin causes retinal AVMs; however, pSmad1/5/9 

expression is unchanged in affected vessels [236]. In support of a role for MAPKs in Alk1 

signaling in vivo, deletion of the TGF-β activated kinase 1 (Tak1) produces mispatterned and 

dilated vessels in the yolk sac and embryo proper including, but not limited to, the dorsal aorta 

which is reminiscent of Alk1 mutant embryos, and tak1 and alk1 knockdown in zebrafish 

synergize to reportedly exacerbate alk1 knockdown phenotypes [197]. In some contexts, Alk1 

may stimulate multiple pathways. In human pulmonary endothelial cells, BMP9/ALK1 

upregulates Edn1 through both Smad1 and p38 MAPK [229], and in zebrafish, smad5 and alk1 

knockdown reportedly synergize to produce vascular malformations, similar to tak1/alk1 

knockdown [197]. Clearly, the intracellular mediators of Alk1 may be context-specific and 

warrant further investigation in vivo. 
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In vivo models demonstrate critical roles for Smad-mediated signaling in vascular 

biology. Smad1-/- and Smad5-/- mouse embryos both die between E9.5-11.5. Smad5-/- mice 

display defective vasculogenesis in the yolk sac, and the dorsal aorta and vitelline vessels of the 

embryo proper are dilated and fragile [237]. Surprisingly, however, endothelial-specific deletion 

of Smad5 does not produce vascular phenotypes [238] although these data could be explained by 

the functional redundancy of Smad1 and Smad9. Smad1-/- mice possess less severe vascular 

phenotypes compared to their Smad5-/- counterparts, with vasculogenesis proceeding normally, 

but do possess disorganized vessels in the allantois prior to death at E10.5 [239]. Smad1 and 

Smad5 double heterozygotes proceed through vasculogenesis, but die by E9.5 with severe 

angiogenic defects characterized by hypersprouting [217]. Smad9-/- mice serve as a model for 

Pulmonary Arterial Hypertension (PAH), with increased proliferation in pulmonary vSMCs 

leading to medial thickening in distal pulmonary vessels [204]. Finally, endothelial deletion of 

Smad4 is embryonic lethal by E10.5 with embryos presenting with reduced capillary vessels, 

narrowed lumens and poor pericyte coverage in the yolk sac and embryo proper [240].  

 Despite these numerous studies implicating an importance for Smad-mediated signaling 

in vascular development, their mode of action, upstream activators, and involvement in Alk1 

signaling remain poorly defined. Recently, reports have shown that pSmad1/5/9 activation can 

promote stalk cell phenotype through interaction with Notch intracellular domain (NICD) [217] 

and that Alk1-mediated pSmads1/5/9 synergizes with Notch signaling components to prevent 

hypervascularization, in part through VEGFR2 inhibition [199]. However, it should be noted that 

none of these Smad mutants present with AVMs that are characteristic of Alk1 mutant embryos 

[181].  
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In the following studies, I provide evidence from zebrafish that pSmads1/5/9 are present 

in alk1-positive arteries during development and that alk1 expression and activity are necessary 

for Smad1/5/9 phosphorylation. I further demonstrate that loss of pSmads1/5/9 correlates with 

AVM development and thus may be required downstream of Alk1. However, I see no pSmad1/5-

mediated transgene expression in alk1-positive arterial endothelial cells, suggesting that if 

pSmads are functioning downstream of Alk1, their mode of action may be via a non-canonical 

pathway. 

 

3.2 RESULTS 

3.2.1 Detection of pSmad1/5/9 by immunofluorescence is dependent on alk1 

To first address whether pSmad1/5/9 was present in alk1-positive arteries, I collected frontal 

sections of 36 hpf wild type embryos and stained for pSmad1/5/9. pSmad1/5/9 is detectable by 

immunofluorescence in the alk1-positive caudal division of the internal carotid artery (CaDI) and 

basal communicating artery (BCA) (n=26/26). In contrast, detection of pSmad1/5/9 is not present 

in alk1 mutant embryos (n=0/17) but restored in these arteries when alk1 is driven under the 

control of an endothelial specific promoter, Tg(fli1a:alk1-myc) (Figure 16, n=11/11) 
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Figure 16: pSmad1/5/9 expression in alk1-Positive Endothelial Cells Depends on alk1. 

pSmad1/5/9 expression (middle column) in endothelial cells (nuclei marked by fli1a:negfp transgene, left column) at 

36 hpf, in wild type (top row), alk1 mutants (middle row), and alk1-/-; Tg(fli1a:alk1-myc) (bottom row) embryos. In 

merge (right column), EGFP-expressing endothelial cell nuclei are green, pSmad1/5/9 immunofluorescence is 

magenta. Blue and yellow arrows point to endothelial cells in the BCA and CaDI respectively. 2D confocal 

projections of 50 µm frontal sections, dorsal up. Scale bar, 50  µm. 

 

Because Alk1 may also signal through the MAP kinase, ERK1/2 [199], I also examined 

diphospho-ERK1/2 (dpERK1/2) expression in wild type and alk1 mutant embryos. Although 

dpERK1/2 is expressed in CaDI and BCA endothelial cells, expression is independent of alk1 

(Figure 17), suggesting that disruption of dpERK1/2 does not lead to enlarged arteries and 

AVMs in alk1 mutants. 
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Figure 17: dpERK expression is not dependent on alk1 expression. 

dpERK expression (middle column) in endothelial cells (nuclei marked by fli1a:negfp transgene, left column) at 36 

hpf, in wild type (top row) and alk1 mutants (bottom row). In merge (right column), EGFP-expressing endothelial 

cell nuclei are green, dpERK immunofluorescence is magenta. Blue arrows point to endothelial cells in the BCA. 2D 

confocal projections of 50 µm frontal sections, dorsal up. Scale bar, 50  µm. 

 

3.2.2 Detection of pSmad1/5/9 by immunofluorescence is dependent on Alk1 activity 

Since detection of pSmad1/5/9 by immunofluorescence is dependent on alk1 expression, I 

reasoned that it would similarly be dependent upon Alk1 kinase activity. To address this 

hypothesis, I treated zebrafish embryos with pharmacological inhibitors of BMP type I receptors, 

LDN-193189 and dorsomorphin [241-244], and assayed arterial pSmad1/5/9 by 

immunofluorescence. Because these inhibitors had not been characterized with respect to 

zebrafish Alk1 inhibition, our collaborator (Dr. Charles Hong, Vanderbilt University) first 

performed in vitro kinase assays to determine their efficacy against Alk1 compared to other 

known targets. LDN-193189 potently inhibited zebrafish Alk1 (IC50 ~13 nM) and Alk2 (IC50 ~41 

nM) but was considerably less effective against vascular endothelial growth factor receptor-2 

(VEGFR2, IC50 ~215 nM). In contrast, dorsomorphin was highly effective against VEGFR2 

(IC50 ~22 nM), moderately effective against Alk2 (IC50 ~148 nM), and minimally effective 
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against Alk1 (IC50 ~484 nM). For my in vivo assays, drug exposure began at 23 hpf, prior to the 

onset of alk1 expression. LDN-193189 exposure resulted in undetectable levels of pSmad1/5/9 

(n = 16, Figure 18) but no change in dpERK1/2 (n = 6, Figure 19), similar to changes observed 

in alk1 mutants (Figures 16). In contrast, treatment with 30 µM dorsomorphin had no effect on 

pSmad1/5/9 (Figures 18) despite causing agenesis of the midline cranial arterial system (data not 

shown) and loss of dpERK1/2 (Figure 19), which are predicted outcomes of VEGFR2 inhibition. 

These results support the idea that the molecular endpoint documented in LDN-193189-treated 

embryos does in fact reflect inhibition of Alk1 kinase activity. These data demonstrate that 

activation of Smad1/5/9  is dependent on Alk1 kinase activity.  
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Figure 18: pSmad1/5/9 expression is dependent on Alk1 activity. 

pSmad1/5/9 expression (middle column) in endothelial cells (nuclei marked by fli1a:negfp transgene, left column) at 

36 hpf, in DMSO, 100 µM LDN-103189, 30 µM Dorsomorphin, treated embryos. In merge (right column), EGFP-

expressing endothelial cell nuclei are green, pSmad1/5/9 immunofluorescence is magenta. Blue and yellow arrows 

point to endothelial cells in the BCA and CaDI, respectively. 2D confocal projections of 50 µm frontal sections, 

dorsal up. Scale bar, 50  µm. 
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Figure 19: dpERK expression is not dependent on Alk1 activity. 

dpERK expression (middle column) in endothelial cells (nuclei marked by fli1a:negfp transgene, left column) at 36 

hpf, in DMSO, 100 µM LDN-103189 (LDN), and 30 µM Dorsomorphin (DM) treated embryos. In merge (right 

column), EGFP-expressing endothelial cell nuclei are green, dpERK immunofluorescence is magenta. Blue arrows 

point to endothelial cells in the BCA. 2D confocal projections of 50 µm frontal sections, dorsal up. Scale bar, 50  

µm. 

3.2.3 Individual smad transcripts are undetectable in alk1-positive arteries 

Immunofluorescence with α-pSmad1/5/9 does not allow deciphering which rSmad or 

combination of rSmads is required downstream of Alk1 in the endothelium. To examine whether 

smad1, smad5, and/or smad9 were present in alk1-positive arteries, I conducted whole mount in 

situ hybridization (WISH) for each of these transcripts at 36 hpf, a time point at which we know 

Alk1 to be active in the endothelium. smad1 and smad9 show discrete expression in many 

domains known to require BMP signaling including the heart, retina, pharyngeal endoderm, and 

trigeminal ganglia. Expression within the alk1-positive CaDI, however, is undetectable (Figure 
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20). In contrast to smad1 and smad9, smad5 is expressed ubiquitously within the head, 

precluding analysis of the cranial vasculature (Figure 20).  

 

Figure 20: smad1, smad5, and smad9 are undetectable in alk1-positive arteries. 

Whole mount in situ hybridization for smad1, smad5, and smad9 at 36 hpf. Top row: Lateral views, dorsal up. 

Bottom row: dorsal views,, anterior left. Arrows point to approximate location of CaDI and BCA in lateral and 

dorsal views, respectively. Scale bar, 50 µm. 

 

To improve detection limits and overcome interference by ubiquitous staining, I 

conducted double fluorescent in situ hybridization (FISH) coupling digoxigenin-labeled smad 

riboprobes with a FITC-labeled kdrl (pan-endothelial marker) riboprobe. Despite detecting both 

smad1 and smad5 transcripts in domains present in WISH (retina, pharyngeal endoderm), smad1 

and smad5 transcripts did not colocalize with kdrl in alk1-positive vessels (Figure 21). However, 

as a positive control, colocalization was obtained with kdrl and the promigratory chemokine 
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receptor, cxcr4a (Figure 21). There are two possible explanations for these results: smad 

transcripts may truly not be present in alk1-positive arteries, or the protocols being used may not 

be adequate to detect low levels of transcripts. Note that double FISH has not yet been performed 

with smad9/kdrl. 

 

Figure 21: smad1 and smad5 are undetectable by FISH in alk1-positive arteries. 

Whole mount double fluorescent in situ hybridization for smad1, smad5, and cxcr4a with kdrl (pan-endothelial 

marker) at 30 hpf. Dorsal views, anterior left. Arrows point to alk1-positive BCA. In all images, kdrl expression is 

green, smad1, smad5, or cxcr4a is magenta. 

3.2.4 pSmad1/5/9 mediated Tg(bre:egfp) expression is undetectable in alk1-positive arteries 

Given that Alk1 knockdown inhibits pSmad1/5 activated BRE-luciferase [194], I reasoned that 

pSmads1/5/9 played transcriptional roles downstream of Alk1 in promoting vascular quiescence. 

In addition, because pSmads1/5/9 immunostaining only provides a snapshot of Alk1 activity 
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during development, I desired a dynamic, live readout of Alk1 activity. To this end, I generated 

an in vivo phospho-Smad1/5/9 reporter, Tg(bre:egfp) [characterization and validation discussed 

in Chapter 4]. If pSmads1/5/9 were acting transcriptionally downstream of Alk1, I expected to 

detect Tg(bre:egfp) expression within alk1-positive arteries. Surprisingly, Tg(bre:egfp) 

expression is undetectable within the alk1-positive BCA of wild type embryos (Figure 22). 

Similarly, alk1 mutants have no detectable Tg(BRE:EGFP) expression in their BCA (Figure 22).  

These results were consistent between two independent transgenic lines generated by different P0 

founders. Furthermore, examination of a BRE-driven transgenic, independently created [245], 

reveals no detectable pSmads1/5/9-driven EGFP in alk1-positive arteries (data not shown).  

 

Figure 22: Tg(bre:egfp) expression is absent in alk1-positive arteries. 

Cranial vasculature of wild type and alk1 mutants at 36 hpf. In all images green is bre-driven EGFP expression, 

magenta is endothelial (fli1a) driven DsRed. Yellow arrows point to alk1-positive basal communicating artery. 

Dorsal views, anterior left. 2D confocal projections. 
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The lack of BRE-driven EGFP in alk1 positive arteries could reflect technical issues. For 

example, at 36 hpf, EGFP may not have had sufficient time to fold and fluoresce at detectable 

levels. However, although Alk1 function is required as early as 32 hpf [181], egfp mRNA is 

undetectable at 36 hpf by WISH (Figure 23A); EGFP protein is undetectable by whole mount 

immunofluorescence at 36 hpf (Figure 23B); and alk1-positive arteries at later timepoints (40-48 

hpf) still lack detectable EGFP expression (Figure 23C). Together, these data indicate that lack 

of expression is not a result of EGFP-folding delay. It remained possible, however, that BRE 

activation was so low as to be undetectable endogenously. Therefore, I intravascularly injected 

the Alk1 ligands, recombinant human (rh)BMP10 and rhBMP9, into Tg(bre:egfp) embryos to 

hyperactivate Alk1 signaling (Figure 24). However, injections failed to induce Tg(bre:egfp) in 

the CaDI or BCA despite inducing ectopic expression in the central arteries and primordial 

hindbrain channel (Figure 24). Since these latter vessels are alk1-negative, rhBMP9 and 

rhBMP10 must be acting through alternative type I receptors. Interestingly, endothelial-specific 

expression of a constitutively active form of Alk1, which requires neither ligand nor Type II 

receptor for activity, produces robust Tg(bre:egfp) expression in all vessels at 36 hpf, including 

the CaDI and BCA (Figure 24), proving that the machinery necessary for BRE activation is in 

fact in place in alk1-positive arteries. Together, these data suggest that BRE-driven transcription 

may not be an in vivo response to Bmp10/Alk1 signaling. Therefore, if phosphorylated 

Smad1/5/9 is in fact required downstream of Alk1 signaling, these Smads may bind non-

traditional enhancer elements or activate an alternative Smad-dependent pathway such as 

miRNA processing in arterial endothelial cells.   
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Figure 23: Tg(bre:egfp) expression is not detectable in alk1-positive arteries at later time points or by in situ 

hybridization or immunofluorescence. 

(A) Whole mount in situ hybridization for gfp at 36 hpf. Scale bar, 50 µm. (B) EGFP expression in 36 hpf wild type 

embryos. In all images, EGFP immunofluorescence is green. White and black arrows point to locations of CaDI and 

BCA. 2D confocal projections. Scale bar, 50 µm. (C) Cranial vasculature of wild type embryos at 40 hpf. In all 

images green is bre-driven EGFP expression, gray is endothelial (fli1a) driven DsRed. Yellow arrows point to alk1-

positive basal communicating artery. Dorsal views, anterior left. 2D confocal projections  
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Figure 24: rhBMP9 and rhBMP10 do not induce Tg(bre:egfp) expression. 

Cranial vasculature of 36 hpf wild type embryos either left uninjected, injected with 2 nL of 10 µM rhBMP9, 

injected with 2 nL of 10 µM rhBMP10, or crossed to Tg(fli1a:alk1CA-mCh). In all images green is bre-driven EGFP 

expression. Magenta is endothelial (fli1a) driven DsRed (A,E), intravascularly-injected Qdots 655 (B-C,F-G), or 

Tg(flia1:alk1CA-mCH) expression (D,H). Top panels: frontal views, dorsal up. White arrows point to locations of 

CaDI and BCA. Bottom panels: dorsal view, anterior left. White and yellow arrows point to basilar artery and 

central arteries respectively. In all images, insets show locations of vessels. 2D confocal projections. 

3.2.5 Inhibition of pSmad1/5/9 partially rescues alk1 mutants 

Regardless of intracellular mechanism of action, I have demonstrated that pSmad1/5/9 

expression is dependent on alk1 expression and Alk1 kinase activity. I reasoned that if 

pSmad1/5/9 are the necessary transducers of the Alk1 signal in AVM prevention, knockdown of 

these critical signal transducers would phenocopy alk1 mutants in AVM formation and 

endothelial cell number. To test this hypothesis, I performed MO knockdown experiments. 

Although injection of Smad1TB MO or Smad5TB MO produced yolk sac extension defects [246] 
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or dorsalized phenotypes [247] respectively and as expected, smad1TB, smad5TB, and smad9TB all 

fail to produce AVMs (Figure 25A). smad1 and smad5 knockdowns also fail to phenocopy alk1 

mutant embryos in terms of increases in endothelial cells comprising the basal communicating 

artery and posterior communicating segments (Figure 25C). One might expect functional 

redundancy between the Smad protein family members; however, coinjection of smad1TB 

/smad5TB did not phenocopy alk1 mutants in AVM formation (Figure 25B) or endothelial cell 

counts (Figure 25C). In fact, contrary to expectations, knockdown of smad1, smad5, or 

smad1/smad5 reduced cell counts in wild type embryos and partially restored alk1 mutant 

embryos to wild type cell numbers (Figure 25C). These surprising results could be attributed to 

developmental defects including dorsalization, which is observed with smad1 and smad5 

knockdown. Injection of 4 ng smad1 or smad5 morpholino produced head necrosis or 

dorsalization respectively, in all injected embryos. Because these developmental defects 

inhibited analysis of cranial vascular architecture, lower doses of morpholinos were used (2 ng) 

for the above experiments. With smaller doses, I cannot ensure that smad1 and smad5 transcripts 

were knocked down fully, and therefore, absence of phenotype may be attributed to residual 

Smad1 or Smad5 activity. Remaining to be seen is whether knockdown of all three smad 

transcripts is required to produce alk1 mutant phenotypes, as they may all act redundantly within 

the endothelium downstream of Alk1 signaling.  
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Figure 25: smad1/smad5/smad9 knockdown does not phenocopy alk1 mutants. 

Cranial vasculature of uninjected, smad1 (2 ng), smad5 (2 ng), or smad9 (4 ng) morphants at 48 hpf. Green is 

endothelial EGFP. Dorsal views, anterior left. (B) Cranial vasculature of 48 hpf uninjected or smad1+smad5 

morphants. In all images green is endothelial nEGFP, magenta is endothelial mRFP. Dorsal views, anterior left. (C) 

Endothelial cell counts of the BCA and PCS at 48 hpf in wild type, alk1+/- , or alk1 mutant embryos injected with 

smad1, smad5, or smad1+smad5 morpholino. N= 1- 9 over 1 experiment. Error bars represent S.E.M. All values are 

not significant relative to standard controls using unpaired student’s t-test. 

Early gastrulation defects caused by smad morpholinos may mask effects on the 

vasculature. Therefore, we treated Tg(kdrl:gfp);Tg(gata1:DsRed) embryos with inhibitors of 

BMP receptor kinase activity, including LDN-193189 and dorsomorphin: both of these drugs 

inhibit numerous BMP receptors and dorsomorphin also inhibits VEGF receptor, but only LDN-

193189 effectively inhibits Alk1 ([243], Charles Hong, personal communication).  Embryos 

were exposed at 23 hpf and the cranial vasculature was evaluated at 48 hpf. Enlarged cranial 
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vessels and AVMs were documented in embryos exposed to LDN-193189 (22/34, 65%; Figure 

26) but not dorsomorphin (n = 30) or DMSO (n = 34). However, dorsomorphin treatment 

resulted in agenesis of the midline vasculature, a predicted outcome of VEGFR2 inhibition, so its 

effect on this system could not be evaluated. Although we cannot rule out the possibility that 

LDN-193189 may diminish Alk1 kinase activity directed against targets other than Smad1/5/9 

[241], the lack of effect of LDN-193189 on dpERK1/2 expression (Figure 19) suggests that 

pSmad1/5/9 is likely required downstream of Alk1 to prevent arterial enlargement and 

development of AVMs.  

As a complementary approach to examining the role of pSmad1/5/9 downstream of Alk1, 

if pSmads1/5/9 were the main intracellular mediators of the Alk1 signal necessary for AVM 

prevention, I hypothesized that smad overexpression may bypass a requirement for Alk1 and 

rescue endothelial cell number in alk1 mutants. To examine this possibility, smad5 mRNA 

(100pg) was injected and endothelial cell number in wild types and alk1 mutants was assessed; 

however, smad5 injection had no effect on the number of endothelial cells comprising the BCA 

and PCS at 34 hpf (Figure 27). Failure to rescue may be attributed to inadequate dosage of 

smad5 mRNA. 100pg of smad5 did not produce ventralized phenotypes. Therefore, additional 

experiments, in which a dose response is performed, would need to be conducted to better study 

whether misexpression of smad5 transcript can rescue alk1 mutants. 
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Figure 26: Inhibition of Alk1 kinase activity phenocopies alk1 mutants. 

Cranial vasculature in 48 hpf Tg(kdrl:gfp);Tg(gata1:dsRed) embryos treated with 0.05% DMSO, 100 µM LDN-

193189, or 30 µM dorsomorphin. Asterisk denotes AVM. Endothelial cells are green, red blood cells magenta. 2D 

confocal projections, dorsal views, anterior left, Scale bar, 50 µm. 

 

 

Figure 27: smad5 misexpression does not rescue alk1 mutant embryos. 

(A) Cranial vasculature of 34 hpf alk1 mutants left uninjected or injected with 100 pg smad5 mRNA. Green is 

endothelial nEGFP, magenta is endothelial mRFP. Dorsal view, anterior left. 2D confocal projections. (B) 
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Endothelial cell counts in wild type, heterozygous, and alk1 mutants, N = 3-6 for each group over 1 experiment. ns, 

not significant by student’s unpaired t-test . *= p<0.05. Error bars represent S.E.M. 

 

3.3 DISCUSSION 

It has long been speculated that pSmad1/5/9 act downstream of Alk1 but that activation may 

depend on cellular context. Given the discrepancy in the literature, however, my results are 

significant in that they are the first to demonstrate that pSmad1/5/9 can serve as a readout for 

Alk1 activity in vivo during embryonic development. Here, I demonstrate that pSmad1/5/9 and 

dpERK1/2 expression are detectable by immunofluorescence in alk1-positive arteries, but only 

pSmad1/5/9 is dependent on alk1 expression and Alk1 kinase activity. Interestingly, absence of 

Tg(bre:egfp) suggests that pSmads1/5/9 act in non-canonical fashion downstream of Alk1. 

Finally, I provide preliminary evidence that Alk1 kinase activity and is required for AVM 

prevention, likely functioning at least in part through Smad1/5/9. 

Bmp9, Bmp10, and Alk1CA can all lead to pSmad1/5/9 activation [194-196] in different 

cellular contexts. However, Alk1 may also trigger activation of MAPKs (dpERK1/2) to control 

endothelial cell behavior [199, 229]. Data presented here suggests an in vivo role for 

pSmads1/5/9 downstream of Alk1 in embryonic vascular development. Conversely, persistent 

expression of dpERK1/2 in alk1 mutants and upon Alk1 kinase inhibition suggests dpERK1/2 is 

not a necessary substrate for Alk1 in vascular development. 

Throughout development, different r-Smad protein locations and expression levels vary 

widely, indicating that although in some cellular contexts they may be functionally redundant, in 

others they may serve unique functions [248]. In zebrafish, although Smad1 and Smad5 each 
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contribute to zebrafish dorsal-ventral patterning, their expression is regulated independently of 

one another, and smad1 can rescue bmp2b mutants whereas smad5 cannot [249]. The 

endothelium of mouse embryos possesses high Smad5 protein levels but weak Smad1 protein 

levels [248], and Smad1 is not upregulated in Smad5 mutants [237]. My early attempts to 

decipher which Smad was responsible for Alk1 signaling proved unsuccessful. Expression of 

smad1 was undetectable at 36 hpf in alk1-positive arteries perhaps corroborating lack of 

detectable endothelial Smad1 protein in E15 mouse embryos [248]. Ubiquitous expression of 

smad5 inhibited analysis of the cranial vasculature; however FISH results suggest that like 

smad1, smad5 may be absent. Whether smad9 is present in alk1-positive endothelial cells 

remains unclear; WISH results were inconclusive, and double FISH has not yet been performed. 

Because pSmad1/5/9 antibody recognizes Smad1, Smad5, and Smad9 on equivalent 

phosphorylated sites (Ser463/465), immunofluorescence prohibits us from discerning which of 

the Smad protein family members is responsible for transducing the Alk1 signal. However, 

immunofluorescence coupled with smad knockdown experiments may serve useful. Neither 

smad1 nor smad5 knockdown seems to affect pSmads1/5/9 staining (data not shown), but 

besides the potential for functional redundancy, we may also not be able to achieve sufficient 

knockdown due to early developmental defects. 

It remains plausible that detection limits may explain the failure to detect Tg(bre:egfp) 

expression in alk1-positive arteries of wild type embryos. However, I neither detected basal 

Tg(bre:egfp) nor could I induce expression with intravascular injection of rhBMP10. Others have 

shown that complexed BMP10 can induce Alk1 activity during postnatal retinal vascularization 

without activating a pSmad1/5 BRE-reporter [222]. Together, these data allow for the 

speculation that pSmad1/5/9 are acting independent of transcription within the endothelium, 
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perhaps at a post-transcriptional step. Indeed, roles for pSmad1/5/9 have been demonstrated in 

the processing of microRNAs [147]. Alternatively, my results may imply that pSmad9 is the 

main mediator of the Alk1 signal as pSmad9 has been shown to be less effective in activating the 

BRE-reporter [250]. 

LDN-193189 is able to inhibit detection of pSmad1/5/9 by immunofluorescence and 

induce AVM formation but does not affect dpERK1/2 expression. These results make it seem 

plausible that pSmad1/5/9 activation downstream of Alk1 is necessary, at least in part, in AVM 

prevention. Despite this finding, weak phenocopy and confounding evidence from morpholino 

knockdown experiments make additional experiments, to test the necessity and sufficiency of 

Smads downstream of Alk1, vital. Failure of smad morphants to phenocopy alk1 mutant embryos  

could be attributed to several confounding factors. First, high doses of smad5 morpholino 

severely dorsalizes the embryo (> 2 ng) [[251] and data not shown], meaning utilized doses may 

not have been sufficient to generate vascular phenotypes. Second, earlier developmental defects 

may mask later effects on the vasculature. Finally, Tg(bre:egfp) embryos show robust 

pSmad1/5/9 activity within the heart [245, 252], deletion of Smad5 causes defects in the 

myocardium [238], and smad1/smad5 morphants and LDN-193189 treated embryos possess 

weak heart beats, suggesting that the resultant weak circulation may not be sufficient to 

precipitate AVMs, which we have shown to be dependent on flow [181]. Similarly, cell counts 

were collected at 48 hpf, a time point at which increases in endothelial cell number in alk1 

mutants are exacerbated by flow [181] again suggesting that failure to phenocopy may be 

attributed to poor circulation. While poor circulation is a plausible explanation, it also remains 

possible that smad9 may functionally compensate for loss of smad1/smad5, and knockdown of 

all three Smad proteins is necessary to achieve AVMs. It should be noted, however, that Smad5-/- 
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mice do not show compensatory increase in Smad1 [253]. Weak penetrance of LDN-193189 may 

also be partially attributed to its off-target effects [VEGFR2, IC50~ 215 nM], globally inhibiting 

angiogenesis and subsequently AVM formation. It should be noted however, that I did not detect 

loss of vessels or inhibition of ISV sprouting and therefore, inhibition of VEGFR2 signaling by 

LDN-193189 seems unlikely. 

My results prove pSmads1/5/9 are an in vivo marker of Alk1 activity. Taken together 

with my previous data, these results place pSmads1/5/9 downstream of blood flow, Bmp10, and 

Alk1 in mediating a necessary pathway in promoting vascular quiescence. The exact roles for 

pSmads1/5/9 downstream of Bmp10/Alk1, whether they may be transcriptional or post-

transcriptional, remain to be uncovered but may provide interesting examples of unique 

functions in endothelial cell biology. 
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4.0 DYNAMIC ANALYSIS OF BMP-RESPONSIVE SMAD ACTIVITY IN LIVE 
ZEBRAFISH EMBRYOS 

 

 

Bone morphogenetic proteins (BMPs) are critical players in development and disease, regulating 

such diverse processes as dorsoventral patterning, palate formation, and ossification.  These 

ligands are classically considered to signal via BMP receptor-specific Smad proteins 1, 5, and 9. 

To determine the spatiotemporal pattern of Smad1/5/9 activity and thus canonical BMP signaling 

in the developing zebrafish embryo, I generated a transgenic line expressing EGFP under the 

control of a BMP responsive element. EGFP is expressed in many established BMP signaling 

domains and is responsive to alterations in BMP type I receptor activity and smad1 and smad5 

expression.  This transgenic Smad1/5/9 reporter line will be useful for determining ligand and 

receptor requirements for specific domains of BMP activity, as well as for genetic and 

pharmacological screens aimed at identifying enhancers or suppressors of canonical BMP 

signaling. 

 

4.1 INTRODUCTION 

Bone morphogenetic proteins (BMPs), which are members of the transforming growth factor-β 

(TGF-β) ligand superfamily, play numerous roles in development and disease.  For example, in 

vertebrate development, BMP signaling is required for dorsoventral axis formation and ventral 

cell fate specification during gastrulation, tailbud and somite formation, cardiomyocyte 
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differentiation, pharyngeal arch development, dorsal retina specification, and upper lip and palate 

fusion, among other processes [247, 254-264].  Furthermore, disruption of BMP signaling is 

associated with several human diseases, including pulmonary arterial hypertension, hereditary 

hemorrhagic telangiectasia, and fibrodysplasia ossificans progressiva [265-268].  While this 

diverse family of more than 20 ligands has been studied in many different contexts, discoveries 

of functional redundancies, promiscuous receptor binding, and non-canonical downstream 

effector activation have complicated elucidation of the molecular nature of BMP signaling 

pathways in specific developmental processes and disease states.  

BMPs and other members of the TGF-β superfamily bind as homo- or heterodimers to a 

heterotetrameric complex consisting of two type II receptors and two type I receptors, both of 

which are serine/threonine kinases [269].  Ligand binding facilitates receptor complex formation, 

allowing the constitutively active type II receptor to phosphorylate the type I receptor within a 

glycine- and serine-rich (GS) motif.  The now-active type I receptor then phosphorylates Smad 

proteins at a C-terminal SSXS motif [157].  Phosphorylation releases these receptor-specific 

Smads (R-Smads) from an autoinhibitory fold [270], allowing them to heterodimerize with the 

common partner Smad, Smad4, translocate to the nucleus, and, in concert with coactivators and 

corepressors, regulate transcription of target genes [271].  

Typically, TGF-β, nodal, and activin ligands complex with type I receptors (Alk4, Alk5, 

or Alk7) that phosphorylate Smads 2 and 3.  In contrast, BMPs complex with type I receptors 

(Alk1, Alk2, Alk3, or Alk6) that phosphorylate Smads1, 5, and 9.  The specificity of type I 

receptor/Smad interaction is governed by the type I receptor L45 loop, and the L3 loop and a-

helix1 within the Smad C-terminal MH2 domain [272-276].  More recently, TGF-β has been 

shown to induce Smad1/5 phosphorylation in many different cell types [180, 277-282], whereas 
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BMP9 has been shown to induce Smad2 phosphorylation in endothelial cells [283].  In some 

cases, these seemingly non-canonical responses are actually dependent on canonical type I 

receptor/Smad interactions, with TGF-β inducing the formation of mixed complexes containing 

both Smad2/3- and Smad1/5-specific type I receptors [221, 278].  However, in other cases, these 

responses seem to rely instead on novel activities of type I receptors, with Smad1/5-specific 

receptors phosphorylating Smad2, and Smad2/3-specific receptors phosphorylating Smad1/5 

[279, 280, 283].   These findings challenge the notion of type I receptor Smad specificity and 

introduce further complexity into TGF-β family signaling pathways. 

Phosphorylated R-Smad/Smad4 complexes regulate gene expression by binding to 

specific sequences within DNA and recruiting co-activators or co-repressors.  While the 

specificity of DNA binding is not fully understood, it is clear that TGF-β-responsive Smads and 

BMP-responsive Smads activate different sets of genes.  For example, phosphorylated Smad3 

(pSmad3)/Smad4 binding to Smad Binding Elements (SBEs; GTCT) in the plasminogen 

activator inhibitor-1 (PAI-1) promoter is required for TGF-β-induced gene expression, and SBE 

multimers, in concert with a minimal promoter, confer responsiveness to TGF-β [284].   In 

contrast, pSmads1, 5, and 9 can, in concert with Smad4, induce expression of inhibitor of 

differentiation-1 (Id1) via binding to specific sites in its promoter [250, 285].  A so-called BMP 

responsive element (BRE) containing two regions of the mouse Id1 promoter (-1052 to -1032; -

1105 to -1080), ligated together and arranged as an inverted repeat, confers BMP responsiveness 

to a minimal promoter [285].  However, pSmad1/Smad4 can also regulate gene expression 

independently of canonical BMP responsive elements, either by binding directly to noncanonical 

cis elements [286] or by interacting with non-Smad transcription factors to mediate gene 

expression through their cognate cis elements [287, 288].  
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BMP signaling is negatively regulated at multiple levels, including ligand sequestration 

by soluble antagonists such as chordin and noggin; competition between R-Smads and inhibitory 

Smads (Smads 6 and 7) for binding to type I receptors or to Smad4; phosphatase-mediated 

dephosphorylation of type I receptors and R-Smads; ubiquitination and degradation of type I 

receptors, R-Smads, and Smad4; phosphorylation of Smads at sites other than the SSXS motif; 

and availability of nuclear co-activators and co-repressors [289].  Therefore, while BMP ligand, 

BMP receptor, and Smad expression patterns are informative, expression of pathway 

components cannot be equated with BMP activity.  To better localize canonical BMP activity 

during development, BMP reporter mice have been generated that express β-galactosidase or 

GFP under the control of a BRE [250, 290, 291].   These models define sites of Smad1/5/9-

mediated transcription in developing mice, including the dorsal optic vesicle, midbrain and 

hindbrain, anterior branchial arches, forelimb bud, heart, and tail mesenchyme at E9.5; and 

forebrain, snout, trigeminal ganglia, dorsal root ganglia, gut, kidney, liver, lung, heart, 

vasculature, skin, and limb at later stages.  Generally, these domains correspond to the presence 

of pSmad1/5.  To our knowledge, these models have not been exploited to determine ligand or 

receptor dependence of these activity domains, nor have they been used to identify novel genes 

or small molecules that impinge upon BMP signaling. 

To expand the repertoire of models available for studying BMP signaling in vivo, I 

generated a transgenic zebrafish Smad1/5/9 reporter line using the BRE, in concert with a 

minimal promoter, to drive expression of EGFP.  Tg(bre:egfp) embryos express EGFP in 

multiple domains known to require BMP activity, and EGFP expression is responsive to both 

activation and inhibition of Smad1/5 phosphorylation, suggesting that EGFP expression 

faithfully reports BMP activity.  Because zebrafish embryos are externally fertilized, transparent, 
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and undergo rapid embryogenesis, this zebrafish BMP reporter line will allow mapping of 

endogenous BMP signaling over the course of development in live animals.  Furthermore, 

because they are amenable to embryonic manipulations such as overexpression and knockdown, 

they can be used to define ligand-, receptor-, and Smad-dependence of different activity 

domains.  Finally, Tg(bre:egfp) embryos can be used in genetic and chemical screens to identify 

novel players that either enhance or inhibit BMP signaling, either globally or in specific 

domains.  These attributes may allow discovery of small molecules with specificity for particular 

ligands, receptors, or Smads involved in BMP signaling, providing finely-tuned tools for probing 

specific developmental processes and targeting specific BMP-related diseases. 

 

 

4.2 RESULTS 

4.2.1 Generation of transgenic zebrafish lines expressing EGFP under the control of a BRE 

We assembled a DNA construct containing a BRE upstream of an adenovirus minimal e1b 

promoter and carp b-actin transcriptional start site [292], followed by EGFP coding sequence 

and a polyA signal.  This construct, flanked by Tol2 transposon arms [293, 294], was injected 

along with transposase mRNA into one-cell stage zebrafish embryos.  Transient expression was 

observed in many structures that proved positive in stable transgenics (detailed below), whereas 

injection of a similar construct lacking the BRE was silent (data not shown).  I identified 13 P0 

founders, which ranged in germline transmission rates from 3-92%.  Careful examination of two 

independent F1 lines, Tg(bre:egfp)pt509 and Tg(bre:egfp)pt510,  revealed identical patterns of 

EGFP expression, suggesting that expression domains are not reflective of the genomic context 

of the insertion.  



  92 

4.2.2 bre:egfp expression correlates with many established domains of BMP activity 

EGFP expression is first faintly detectable in the tailbud of developing Tg(bre:egfp) embryos at 

the 6 somite (6s) stage (12 hours post-fertilization or hpf; Figure 28a).  While expression in this 

domain is weak at 6 somites, it is quite strong in the tailbud and has extended into the developing 

tail somites by the 12s stage (15 hpf; Figure 28b).  The presence of BMP activity in the tailbud 

and somites correlates with expression of smad1 and smad9 and presence of pSmad1/5/9 in 

zebrafish, and corroborates the established role for BMP signaling in zebrafish tailbud and 

somite development [295-297].   A second early expression domain in 12s Tg(bre:egfp) embryos 

resides in the presumptive myeloid progenitor domain, just caudal to the eye (Figure 28b).  By 

the 18s stage (18 hpf; Figure 28c), EGFP-positive myeloid cells can be seen migrating bilaterally 

away from their origin.  Expression in this domain corroborates the established requirement for 

smad1 in zebrafish macrophage and granulocyte development [246].  

By 1 day post-fertilization (dpf), BRE activity has expanded to many new domains 

(Figure 28d), including the heart (Figure 28g-i).  At this time, the entire endocardium is strongly 

EGFP-positive, colocalizing with fli1a-driven dsRed expression in both the atrium and ventricle 

(Figure 28g-g’’). Sparse expression is also evident in the myocardium, which surrounds the 

endocardium (Figure 28g, g’).  By 2 dpf, this expression pattern has inverted, with EGFP 

expressed most strongly in myocardial cells, as evidenced by colocalization with myosin light 

chain 7 (myl7)-driven nuclear-dsRed, and more weakly in endocardial cells, as evidenced by 

minimal colocalization with fli1a-driven dsRed (Figure 28e, h-h’’).  Between 2 and 3 dpf (data 

not shown), expression wanes in the endocardium to nearly undetectable levels and coalesces 

within the myocardium to the level of the atrioventricular canal, persisting in this pattern until at 

least 4 dpf (Figure 28f, i-i’’).  bre-driven transgene expression in mice [290] and pSmad1 
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expression in chick [298] have been reported in both endocardium and myocardium, and 

expression in these domains corroborates known roles of BMP signaling in endocardial cushion 

formation [299, 300], cardiomyocyte survival [301], and cardiomyocyte-specific tbx20 

expression [286]. 

Moving posteriorly from the heart, another strong domain of bre-driven EGFP expression 

is encountered in ventrolateral regions of the pharyngeal arches at 1 dpf (Figure 28d, j, j’).  At 

this time, no segmentation is evident, whereas by 2 dpf, segmentation delineates ventrolateral 

regions of each pharyngeal arch (Figure 28e, k, k’).  By 3 dpf (not shown), pharyngeal 

expression is no longer bilateral but instead has coalesced at the ventral midline, with expression 

persisting in this midline domain until at least 4 dpf (Figure 28f, l-l’’’).  Closer examination 

reveals two distinct EGFP expression domains within the ventromedial pharyngeal arches.  One 

domain surrounds and is closely apposed to the ventral aorta (Figure 28l’-l”), and is likely 

vascular smooth muscle, which first appears in this region around 3-4 dpf [302].  The second, 

segmented domain is more ventral and likely corresponds to the medial basihyal and 

basibranchial/hypobranchial cartilages (Figure 28l’’’). Pharyngeal arch expression correlates 

with reported expression of bre-driven GFP in mouse pharyngeal arches [250] and corroborates 

the established role of BMP signaling in development of zebrafish pharyngeal arches [260]. 

bre-driven EGFP is expressed in the dorsal retina at 1 dpf (Figure 28d, m, m’), but is no 

longer detectable by 2 dpf (Figure 28e)  This expression domain corroborates the established 

requirement for GDF6a (BMP-13)-mediated signaling in zebrafish dorsal retina specification 

[264].  Just caudal to the eyes, the trigeminal ganglia also express EGFP at 1 dpf (Figure 28m, 

m’’), with expression intensifying over the course of the day and persisting until at least 4 dpf.  

In mice, dorsal trigeminal neuron identity requires cell-autonomous BMP activity [303], 
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supporting my observation that only dorsal axonal projections emanating from this ganglion 

report pSmad1/5-mediated EGFP expression in zebrafish.  Additional anterior domains of BRE-

mediated EGFP expression at 1 dpf include the pineal gland/epiphysis (Figure 28d, n), which lies 

at the midline of the dorsal diencephalon and functions as a circadian pacemaker; and the ventral 

diencephalon, or hypothalamic rudiment (Figure 28d, o).  Expression in these domains is also 

transient, waning during day 2.  While I could find no published role for BMP signaling in the 

pineal gland, this structure is known to express id1, the gene from which the BRE was derived, 

in rat and zebrafish [304, 305].  Furthermore, BMP signaling is known to be required for 

hypothalamic patterning in chick embryos [306].  Thus, these two domains would be expected to 

report pSmad1/5 activity.  

In the trunk and tail of 1 dpf Tg(bre:egfp) embryos, EGFP is expressed in the most 

ventral aspect of the embryos, including the mesenchyme underlying the yolk extension and the 

forming common kidney/gastrointestinal opening, the cloaca (Figure 28d, p, p’).  Cloacal 

expression wanes over the course of the day, decreasing from a peak around the 26-28 somite 

stage (22-23 hpf).   Interestingly, cloacal expression re-appears at 3-4 dpf (Figure 28f, q, q’).  

Expression timing correlates with connection of the kidney tubules (28 somites) and gut tube (4 

dpf) to this common opening, and supports the established role of BMP signaling in cloacal 

development [307].  Also in the trunk, EGFP continues to be expressed in the somites through 4 

dpf (Figure 28d-f, r, r’).  While the intensity of EGFP expression in this domain decreases 

between 1 and 2 dpf, expression increases between 2 and 3 dpf and remains strong in most 

embryos at 4 dpf.  The somitic expression domain is the most variable domain in 

Tg(bre:egfp)pt510, with approximately 90 and 70% showing intermediate to strong somite 

expression at 1 and 4 dpf, respectively.  
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bre-driven EGFP expression continues at 2 dpf in the heart, pharyngeal arches, trigeminal 

ganglia, pineal gland, hypothalamus, and somites, as described above.   In addition, clear 

expression is now evident in the developing mouth opening, or stomodeum, within the first 

pharyngeal arch (Figure 28s).  The dorsoanterior expression domain of the stomodeum 

represents the maxillary process, whereas the ventroposterior expression domain of the 

stomodeum represents the mandibular process, which together delineate the forming mouth 

opening.  Weaker expression is also seen in an adjacent horseshoe-shaped, slightly more dorsal-

anterior domain that follows the contours of the ventral diencephalon (Figure 28s).  The 

maxillary and mandibular processes thin along the dorsoventral axis and elongate along the 

left/right axis by 4 dpf to form the mouth opening (Figure 28t).  Interference with BMP signaling 

results in cleft lip and cleft palate in mice, suggesting a critical conserved role for BMP-mediated 

pSmad1/5 activity in oral cavity development [261]. 

At 2 dpf, bre-driven EGFP expression is also strong in the pectoral fin bud, at the base of 

the fin as well as at the apical ectodermal ridge (Figure 28e, u).  This expression domain is 

substantiated by the requirement for BMP signaling through the type I receptor, Alk8 

(homologous to mammalian ALK2), in pectoral fin development [308].  Additionally, strong 

EGFP expression is apparent in many cells in the median fin fold, particularly in the ventral 

region (Figure 28e, v).  These cells have a dendritic appearance similar to that described for  

neural crest-derived mesenchymal cells that give rise to fin rays, or lepidotrichia [309].  Finally, 

several spinal cord neurons are EGFP-positive at 2 dpf (Figure 28w).  Cell bodies are positioned 

approximately at the midline, midway along the dorsoventral axis of the spinal cord, and axons 

extend bidirectionally, parallel to the anterior/posterior axis.  Pectoral fin, median finfold, and 

spinal neuron bre-driven EGFP expression domains persist until at least 4 dpf. 
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Figure 28: Developmental profile of pSmad1/5/9-mediated transcriptional activity in Tg(bre:egfp)pt510 

embryos. 

In all images, green represents bre-driven EGFP expression. Magenta represents endothelial expression of 

Tg(fli1ep:dsRedEx)um13 or myocardial expression of Tg(-5.1myl7:nDsRed2)f2, as noted below. g–r, h’, h’’, l’’’: 
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Fluorescence/transmission overlays. a–f: Macro images. a: Six somites. Arrows point to tailbud. b: Twelve somites. 

Arrow points to myeloid progenitors. c: Eighteen somites. Asterisks denote eyes; arrows point to myeloid cells. d–f: 

Embryos at 1 (d), 2 (e), and 4 (f) dpf. Lettered arrows denote expression domains highlighted in correspondingly 

lettered panels below. g–w: 2D projections of confocal Z-series, except h’, h’’, i’’, and l’’, which represent single 

optical sections extracted from the corresponding Z-series. Magnification, 400x. g–g’’: Heart at 1 dpf. Asterisk 

denotes eye. g’ and g’’ are matched substacks showing EGFP/fli1ep:dsRedEx (overlay) and fli1ep:dsRedEx 

expression, respectively. Arrows denote endocardium. h–h’’: Heart at 2 dpf. h’ and h’’ are matched optical sections 

of EGFP/ fli1ep:dsRedEx/-5.1myl7:nDsRed2 (overlay) and fli1ep:dsRedEx/-5.1myl7:nDsRed2. Arrows denote 

endocardium; arrowheads denote myocardium. i–i’’: Heart at 4 dpf. i’ and i’’ show overlays of EGFP with 

fli1ep:dsRedEx, 2D projection and single optical section, respectively. j–j’: Pharyngeal arches, 1 dpf. Asterisk 

denotes eye. k,k’: Pharyngeal arches, 2 dpf. l–l’’’: Pharyngeal arches, 4 dpf. l’, l’’: Overlays of EGFP with 

fli1ep:dsRedEx, 2D projection, and single optical section, respectively. l’’’: Substack of image shown in l. m–m’’: 

Dorsal retina (m’) and trigeminal ganglion (m’’), 1 dpf. n: Pineal gland, 1 dpf. o: Hypothalamus, 1 dpf. p, p’: 

Ventral mesenchyme and cloaca (arrow), 2 dpf. q, q’: Cloaca, 4 dpf. Arrows delineate cloacal opening. r, r’: 

Somites, 1 dpf. s: Stomodeum, 2 dpf. Asterisk, presumptive mouth opening; arrows, maxillary process; arrowhead, 

mandibular process. t: Stomodeum, 4 dpf. Asterisk, open mouth; arrows, maxillary process; arrowhead, mandibular 

process. u: Pectoral fin bud, 2 dpf. v: Mesenchymal cells of the median finfold (arrows), 2 dpf. w: Spinal cord 

neurons (arrows), 2 dpf. Spinal cord is bracketed. a: Dorsoposterior view, posterior down. b, d–g, j, k, m, p–r, u–w: 

Lateral view, anterior left, dorsal up. c: Dorsal view, anterior left. h, i, l: Ventral view, anterior left, left up. n: Dorsal 

view, left to the right. o: Frontal view, left to the right. s, t: Frontal view, left up. a, atrium; v, ventricle; y, yolk. 

 

4.2.3 Temporal correlation between pSmad1/5/9 expression and bre-driven EGFP 

fluorescence   

Because EGFP takes time to fold and fluoresce and is a stable protein [310], the temporal pattern 

of EGFP fluorescence in Tg(bre:egfp) embryos would not be expected to precisely reflect the 

temporal activity of pSmad1/5/9.  To gauge the offset between pSmad1/5/9 activity and 

transgene expression, I assessed pSmad1/5/9 expression, egfp mRNA expression, and EGFP 
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fluorescence in the dorsal retina, a relatively transient EGFP expression domain, between 10 and 

38 hpf (Figure 29).  pSmad1/5/9 expression first appears in the dorsal retina at 12 hpf, egfp 

mRNA at 14 hpf, and EGFP fluorescence at 16 hpf, demonstrating an approximately four hour 

delay between the appearance of pSmad1/5/9 and EGFP fluorescence.  A similar delay was seen 

in the trigeminal ganglia (Figure 29) and heart (data not shown) and in other zebrafish transgenic 

studies [311].  By 28-30 hpf, pSmad1/5/9 and egfp mRNA are barely detectable in the dorsal 

retina, while EGFP fluorescence disappears between 36 and 38 hpf (Figure 29).  Thus, EGFP 

perdures in this domain for approximately eight-to-ten hours after pSmad1/5/9 is lost.  While this 

perdurance is short compared to other published work demonstrating EGFP stability in vivo on 

the order of a day or even weeks [312], nearly all bre-driven EGFP expression domains are 

either dynamic or transient, suggesting that in these domains, EGFP is either less stable than 

previously described or that cell turnover is high. 
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Figure 29: Temporal relationship between pSmad1/5/9 activity and EGFP fluorescence in Tg(bre:egfp) 

embryos. 

Embryos were collected every 2 hr between 10–18 hpf and 28–38 hpf and assayed for pSmad1/5/9 via 

immunofluorescence (a–k), 100×; egfp mRNA via in situ hybridization (a′–k′), 80×; and EGFP fluorescence (a′′–

k′′), 80×. Results demonstrate a 4-hr delay between pSmad1/5/9 expression and EGFP fluorescence, and an 8–10-hr 

perdurance of EGFP after pSmad1/5/9 is lost. Green indicates bre-driven EGFP expression, 80× magnification. 

White arrows, dorsal retina; yellow arrows, trigeminal ganglia. All images lateral view, anterior left. 
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4.2.4 bre:egfp transgene expression is responsive to changes in Smad1/5/9 phosphorylation   

While EGFP expression in Tg(bre:egfp) embryos correlates well with known domains of BMP 

activity, I sought to further validate this model by manipulating phosphorylation of BMP-

responsive Smads and assaying effects on EGFP expression.  In shield stage Tg(bre:egfp) 

embryos, I can only faintly and variably detect EGFP via fluorescence or in situ hybridization, 

though pSmad1/5/9 is detectable by immunohistochemistry (Figure 30a-c).  However, injection 

of one- to two-cell embryos with 5 pg mRNA encoding a constitutively active form of the 

zebrafish BMP type I receptor, Alk1 (Alk1CA), induces EGFP expression at shield stage, as 

visualized by fluorescence and by in situ hybridization, correlating with a marked increase in 

nuclear-localized pSmad1/5/9 (Figure 30d-f).  In contrast, injection of up to 100 pg mRNA 

encoding a constitutively active form of the zebrafish TGF-β type I receptor, Alk5 (Alk5CA), fails 

to induce bre:egfp transgene expression or phosphorylation of Smad1/5/9 (Figure 30g-i), 

consistent with this receptor’s established propensity to phosphorylate Smad2/3.  
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Figure 30: Expression of the bre:egfp transgene is responsive to changes in BMP type I receptor signaling. 

Embryos were left uninjected (a–c) or injected with 5 pg alk1CA mRNA (d–f) or 100 pg alk5CA mRNA (g–i) at the 

one- to two-cell stage and assayed at shield stage (6 hpf). a, d, g: Expression of bre-driven EGFP fluorescence in 

live embryos. b, e, h: Expression of bre-driven egfp mRNA assayed by in situ hybridization. c, f, i: Expression of 

pSmad1/5/9 assayed by immunofluorescence. Inset in f is pSmad1/5/9 (green)/DAPI (magenta) merge. Lateral 

views, animal pole up, dorsal right. Original magnification 80x except inset, 200x. 

 

To further confirm that bre:egfp transgene expression is dependent upon BMP signaling, 

I treated embryos at tailbud stage (10 hpf) with 10 µM dorsomorphin, a small molecule that 

inhibits BMP type I receptor-mediated Smad1/5/9 phosphorylation [313].  Treatment at this time 
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avoids dorsalization resulting from treatment prior to gastrulation, allowing me to assess 

transgene expression during organogenesis.  Dorsomorphin treatment reduced EGFP expression 

in all domains at 1 dpf, most notably in the retina, hypothalamus, heart, pharyngeal arches, 

somites, and cloaca (Figure 31e, f, i-r and Table 1), without greatly affecting general morphology 

(Figure 31a, b).  Furthermore, treatment with 10 µM DMH1, a more potent dorsomorphin analog 

that, unlike dorsomorphin, does not affect vascular endothelial growth factor receptor (VEGFR) 

activity [242], essentially eliminated EGFP expression in all domains (Figure 31c, g), whereas 

treatment with 200 µM SB-431542, an Alk4/5/7 inhibitor, had no effect on EGFP expression 

(Figure 31d, h).  Taken together with alk1CA overexpression studies, these results demonstrate 

that the bre:egfp transgene is indeed specifically responsive to pSmad1/5/9, and not pSmad2/3. 
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Figure 31: Expression of the bre:egfp transgene is globally downregulated by small molecule inhibition of 

BMP type I receptor-mediated Smad phosphorylation. 

Embryos were treated with either 0.5% DMSO (a, e, i, k, m, o, q); 10 µM dorsomorphin (DM) (b, f, j, l, n, p, r); 10 

µM DMH1 (c, g), or 200 µM SB-431542 (SB) (d, h) between 10 and 24 hpf and imaged shortly after washout. In all 

images, green indicates bre-driven EGFP expression. Brightfield (a–d) and fluorescent (e–h) images, lateral view, 

anterior left, 80x magnification. i–r: 2D projections of confocal Z-series showing EGFP and transmission overlays, 

400x magnification. Expression domains shown include (i, j) retina; (k, l) hypothalamus (arrow); (m, n) heart 

(asterisk) and pharyngeal arches (arrow); (o, p) somites; and (q, r) cloaca (arrow). i, j, m–p: Lateral view, anterior 

left. k, l: Frontal view, left is right. q, r: Ventral view, anterior left. 
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4.2.5 bre:egfp transgene expression is decreased by knockdown of smad1 or smad5 

To further analyze the dependence of bre-driven EGFP on smad1 and smad5 , I knocked down 

expression of each of these genes in zebrafish embryos using translation blocking morpholino-

modified antisense oligonucleotides (morpholinos).  Injection of 4 ng smad5 morpholino 

severely dorsalized embryos [C4 phenotype [314]], precluding later analysis (Figure 32).  

Injection of 2 ng smad5 morpholino resulted in slight tail truncations but had little effect on 

EGFP expression in most domains at 1 dpf, with substantial decreases observed only in the 

somites and moderate to minimal decreases in dorsal retina and cloaca (Figure 32 and Table 1).  

These results demonstrate that bre-driven EGFP expression in somites, retina, and cloaca is most 

sensitive to smad5 levels.  However, since knockdown in these experiments is incomplete, I 

cannot make strong conclusions regarding the role of smad5 in other bre-driven EGFP 

expression domains.  

 

Figure 32: smad5 knockdown down-regulates bre:egfp transgene expression primarily in somites. 

Embryos were injected with 2 ng standard control morpholino (a, d, f), 2 ng smad5 morpholino (b, e, g), or 4 ng 

smad5 morpholino (c) at the one- to two-cell stage and imaged at 1 dpf. In all images, green indicates bre-driven 

EGFP expression. Brightfield (a, b, c) and fluorescent (d, e) images, lateral view, anterior left, 80× magnification. f, 
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g: 2D projections of confocal Z-series showing somites, EGFP, and transmission overlays, 400× magnification. 

Lateral views, anterior left. 

 

In contrast to the limited effect of smad5 knockdown on organ-specific bre-driven EGFP 

expression, smad1 knockdown dampened EGFP expression in many domains (Figure 33 and 

Table 1).  Injection of 2 ng smad1 morpholino resulted in moderate to substantial decreases in 

transgene expression in the dorsal retina (Figure 33e, f) and hypothalamus (Figure 33h, i) at 1 

dpf, and the stomodeum (Figure 33k, l) and pectoral fin (Figure 33n, o) at 2 dpf.  These affected 

domains correlated well with the presence of smad1 transcripts (Figure 33g, j, m, p).  EGFP 

expression in smad1 morphants was also substantially decreased in the cloaca at 1 dpf, and 

somites and median finfold at 2 dpf (Table 1).  However, these expression domains did not 

correlate well with smad1 mRNA expression, likely due at least in part to EGFP perdurance 

(Figure 29).   Additional domains showing minimal decreases in EGFP fluorescence included the 

heart, pharyngeal arches, pineal gland, and somites at 1 dpf; and the pharyngeal arches at 2 dpf 

(Table 1).  The inability of smad1 knockdown to completely abrogate EGFP expression in any 

domain suggests either incomplete knockdown or a partial redundancy with smad5, which is 

nearly ubiquitously expressed, and/or smad9, which is expressed in the majority of EGFP-

positive domains [295].  While it is possible that combined smad1/5 knockdown might severely 

decrease bre-driven EGFP expression in many domains, I could not test this possibility because 

severe developmental defects precluded analysis (data not shown).  
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Table 1: Sensitivity of bre:egfp expression to manipulation of Smad1/5 activity and expressiona 

aEGFP expression in individual embryos was subjectively scored by two independent observers as strong (3), 

moderate (2), weak (1), or not expressed (0), and scores averaged within control (0.5% DMSO for comparison to 10 

mM dorsomorphin; 2 ng standard control morpholino for comparison to 2 ng smad1 and smad5 morpholinos) and 

experimental groups. Average scores for experimental groups are expressed as percent of control. Sensitivity to 

treatment was gauged as substantial (++, < 65% of control), moderate (+, 65–80% of control), minimal (+/-, 80–

90% of control), or unaffected (-, > 90% of control). n 1/4 24 per group for dorsomorphin treatment; 17 per group 

for smad5 morpholino at 1 dpf; 27 per group for smad1 morpholino at 1 dpf; and 24 per group for smad1 MO at 2 

dpf. Results are qualitatively reflective of 3–5 additional independent experiments. NA, not assessed. 
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Figure 33: smad1 knockdown downregulates bre:egfp transgene expression in smad1-expressing domains. 

Embryos were injected with 2 ng standard control morpholino (a, c, e, h, k, n) or 2 ng smad1 morpholino (b, d, f, i, l, 

o) at the one- to two-cell stage. In all images, green indicates bre-driven EGFP expression. Brightfield (a, b) and 

fluorescent (c, d) images, 1 dpf, lateral view, anterior left, 80_ magnification. Note defects in yolk extension (arrow) 

in smad1 morphant (b) versus control embryo (a). e, f, h, i, k, l, n, o: 2D projections of confocal Z-series showing 

EGFP and transmission overlays, 400x magnification. g, j, m, p: Expression of smad1 mRNA assayed by in situ 

hybridization. Expression domains shown include (e–g) dorsal retina (brackets), 1 dpf; (h–j) hypothalamus (arrow), 

1 dpf; (k–m) stomodeum (arrows), 2 dpf; and (n–p) pectoral fin (arrows), 2dpf. e–g, n, o: Lateral view, anterior left. 

h–j: Frontal view, left is right. k–m: Ventral view, anterior up. p: Dorsal view, anterior left. 
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4.3 DISCUSSION 

I have generated a stable transgenic zebrafish line, Tg(bre:egfp), which reports pSmad1/5-

mediated transcriptional activation in vivo.   Support for this assertion includes a correlation 

between EGFP expression domains and published requirements for BMP signaling in 

development of these same cells or tissues; demonstrated sensitivity to modulation of BMP type 

I receptor activity; and demonstrated correlation with smad1 expression and sensitivity to smad1 

knockdown.  Because BMP signaling is negatively regulated at multiple levels – for example, 

dephosphorylation of receptors and Smads, I-Smad interference with type I receptor/Smad 

binding or R-Smad/Smad4 binding, and Smad binding to co-repressors – expression patterns of 

BMP receptors and Smads cannot accurately predict sites of BMP-mediated transcriptional 

activity [289].  My Tg(bre:egfp) line overcomes this limitation inherent in the analysis of simple 

expression patterns by directly reporting pSmad1/5-mediated transcriptional activity, and can 

therefore be used as a tool to define cells that respond to BMP signals over the course of 

development.  It should be noted that phosphorylated BMP R-Smad/Smad4 complexes can 

regulate gene expression independently of canonical Bre sites, either by binding directly to 

unrelated cis elements [286] or by interacting with non-Smad transcription factors to mediate 

gene expression through their cognate cis elements [287, 288].  However, the mouse Id1-derived 

BRE used to generate my transgenic reporter line is pSmad1/5-responsive in vitro and in vivo in 

many different cell types [194, 250, 285, 290, 291] and is postulated to require no additional 

transcription factor binding partners for activity [290].  Therefore, while EGFP expression in my 

Tg(bre:egfp) line may not reflect endogenous binding and activation of “canonical” Bre sites, it 
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should report the presence of all nuclear phosphorylated BMP R-Smad/Smad4 complexes, 

regardless of which cis-acting element is being activated within each domain in vivo. 

Transgene expression in Tg(bre:egfp) embryos is observed primarily within domains with 

reported requirements for BMP signaling.  For example, EGFP is expressed in the dorsal retina, 

the specification of which requires GDF6a (BMP-13)-mediated Smad1/5 phosphorylation within 

retinal cells [264].  And EGFP is expressed in the forming mouth opening or stomodeum, likely 

reflecting a requirement for BMP signaling in lip development, as has been previously 

demonstrated in mice [261].  However, the role of BMP signaling in other EGFP-positive 

domains is less clear.  For example, to our knowledge, a requirement for BMP-induced Smad1/5 

activity in pineal gland development or function has not been reported, although this structure is 

known to express the Smad1/5-responsive gene, id1 [304], as well as bmp2a [295].  Similarly, 

while I observe strong EGFP expression in putative osteogenic mesenchymal cells in the median 

finfold, I could find no reports of a requirement for BMP signaling specifically within these 

cells.   Thus, I have defined two previously unidentified domains in which BMP signaling is 

active during zebrafish embryonic development.  Given that Tg(bre:egfp)pt509 and 

Tg(bre:egfp)pt510 showed identical EGFP expression patterns, and that EGFP expression in nearly 

all domains was decreased by dorsomorphin treatment or smad1 or smad5 morpholino injection 

and eliminated (at 1 dpf) by DMH1 treatment, it is highly unlikely that  expression domains 

reflect insertional artifacts or expression via cryptic enhancers within our bre:egfp  construct.  

The only domain that I cannot say with certainty is not artifactual is the 2 dpf spinal cord 

neurons, which was not affected by smad1 morpholino but not assayed in drug or smad5 

morpholino experiments because of dorsalized phenotypes.    
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While bre-driven EGFP expression was observed in many anticipated domains in my 

transgenic line, some structures were unexpectedly negative, despite convincing evidence in the 

literature for a role for BMP signaling in specification and/or function.  For example, while 

smad5 is clearly required for gastrulation [247, 315] and pSmad1/5/9 is detectable ventrally in 

shield stage embryos, bre-driven EGFP expression was undetectable in this domain.  Also, while 

the BMP type I receptor, Alk1, is expressed exclusively in particular arteries in zebrafish 

embryos and loss of function results in enlarged vessels and arteriovenous malformations [182], I 

could not detect EGFP expression in alk1-positive vessels (data not shown).  Finally, BMP 

signaling during somitogenesis promotes pronephric cell fates and inhibits blood and vascular 

differentiation [316], but I could not detect EGFP expression in the posterior lateral or 

intermediate mesoderm or their derivatives (data not shown).  These examples highlight the 

limitations of this transgenic reporter approach.  The lack of detection of EGFP in the ventral 

region of shield stage embryos is likely due to the fact that temporal transgene expression 

patterns do not precisely reflect endogenous BMP activity due to delayed EGFP fluorescence 

(Fig. 27).  In domains in which the effectors of BMP signaling are less clear, the reasons for the 

lack of EGFP expression could be manifold.  Because the BRE used to drive transgene 

expression may not efficiently report pSmad9/Smad4-mediated gene expression [250], it is 

possible that Smad9 is the major effector in unexpectedly negative domains.  Alternatively, these 

cells may engage non-traditional Smad pathways downstream of receptor activation.  For 

example, TGF-β binding to a non-canonical receptor complex containing both Smad1/5-specific 

and Smad2/3-specific type I receptors can generate mixed pSmad1/pSmad2 complexes [278]; 

BMP9, acting through Alk1, can activate Smad2 phosphorylation [283]; and ligand-induced R-

Smad activation can enhance microRNA processing in a Smad4-independent, post-
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transcriptional manner [147].  None of these pathways results in BRE activation.  Another 

possible explanation for the lack of EGFP expression in established BMP activity domains is that 

Smad-independent pathways might relay signals downstream of BMP type I receptors.  For 

example, in endothelial cells, Alk1 may signal at least in part through MAP kinases [146, 197].  

Finally, as BMP signaling can both activate and repress transcription, it is possible that co-

repressors present within these unexpectedly negative domains prevent pSmad1/5-mediated 

bre:egfp transactivation.  For example, a pSmad1/5-responsive element derived from the 

Xenopus laevis Vent2 promoter can mediate heterologous gene activation or repression, 

depending on the presence of trans-acting co-activators or co-repressors [317].  However, other 

reports suggest that pSmad-mediated transcriptional repression occurs in a non-BRE-dependent 

manner [318, 319], which could not account for the lack of bre-driven EGFP expression in 

anticipated domains.  

In summary, I have generated and validated a transgenic zebrafish line that reports 

pSmad1/5-mediated transcriptional activation.  Using genetic approaches, this BMP reporter line 

can be used to define ligand, receptor, and Smad requirements within individual BMP signaling 

domains, as we demonstrated using smad1 morpholinos. Furthermore, these fish can be used to 

screen for small molecule modulators of BMP signaling, as I demonstrated using dorsomorphin 

and DMH1, or to screen for genetic modulators of BMP signaling.  Besides the obvious 

advantages of screening for BMP inhibitors in an intact animal model, the Tg(bre:egfp) line 

affords the possibility of uncovering novel drugs with particular BMP ligand or BMP receptor 

specificity – based on effects within select expression domains –  in a single, high content assay.  

These drugs could prove useful in targeting specific disorders of BMP signaling. 
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5.0 SUMMARY AND FUTURE DIRECTIONS 

 

 

The work presented in this thesis lends considerable insight into how Alk1 functions in normal 

arterial development and why pathway dysregulation causes AVMs in cases of HHT. Previous 

work in the lab had shown that Alk1 was critical in prevention of AVMs, alk1 was dependent on 

flow, and loss of flow phenocopied alk1 mutants in endothelial cell number increase and 

dysregulation of target genes [181, 182]. Here, I expanded upon these findings and the current 

knowledge in the field in several meaningful ways: I identified Bmp10 as the in vivo ligand for 

Alk1 in zebrafish vascular development; I showed that the requirement for flow in Alk1 

signaling stems from circulation of cardiac-derived Bmp10; and I defined detection of 

pSmad1/5/9 by immunofluorescence as a readout for Alk1 activity in vivo. Altogether, I 

constructed a novel blood flow-responsive signaling pathway, involving Bmp10, Alk1, and 

pSmads1/5/9, and demonstrated its involvement in the regulation of flow-responsive genes, 

arterial quiescence, and prevention of deleterious AVMs (Figure 34). Furthermore, I have 

generated and described a zebrafish pSmad1/5/9-responsive transgenic reporter, Tg(bre:egfp). 

Examination of Tg(bre:egfp) has spawned interesting questions as to the role of pSmads1/5/9 

downstream of Alk1 in the endothelium. Moreover, this transgenic line provides the scientific 

community a novel means to study dynamic BMP signaling in vivo, identify inhibitors/activators 

of BMP signaling cascades, and describe previously unidentified roles for BMP signaling during 

development and pathogenesis.  
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The work in this thesis significantly enhances our understanding of Alk1 signaling but 

also provides many avenues for future research. The mechanisms that initiate and maintain 

bmp10 and alk1 expression in the heart and endothelium, respectively, remain to be determined. 

What triggers Bmp10 release into circulation and how do alternatively processed forms affect 

Alk1 activity? What governs the requirement for Bmp9 versus Bmp10 in different vascular beds 

and what does this mean for HHT? In addition, although I have demonstrated pSmads1/5/9 to be 

activated downstream of Alk1, whether this signal is necessary and sufficient for vascular 

development and AVM prevention requires further examination. 

 

Figure 34: Proposed pathway for Bmp10 and Alk1. 

Blood flow is necessary for alk1 expression within the endothelium and also for carrying endocardial-derived 

Bmp10 to the Alk1 receptor. Bmp10 and Alk1 are both necessary for activating Smads1/5/9 and for the upregulation 
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of vasoconstrictive edn1 and downregulation of the pro-migratory chemokine receptor cxcr4a. Altogether this 

pathway functions to promote vascular quiescence upon the onset of blood flow. 

 

5.1 BMP10 COORDINATES WITH ALK1 TO MEDIATE VASCULAR QUIESCENCE 

This work is the first to demonstrate that Bmp10 is the only physiologically relevant ligand for 

Alk1 during zebrafish embryonic development. bmp10 knockdown phenocopies alk1 mutants in 

AVM formation, endothelial cell number, and pSmad1/5/9 loss of expression. Conversely, bmp9 

knockdown had no effect on alk1-positive vessels suggesting that Bmp9 is not required for Alk1 

signaling during early zebrafish embryonic development. In support of my data, Bmp9 is not 

detectable in mouse plasma until E12.5 [320] while Alk1-/- embryos die by E10.5 . This may 

suggest that similar to in zebrafish, Bmp10 may be the only necessary in vivo ligand for Alk1 

during early mouse development. I do not discount a role for Bmp9 in Alk1 signaling entirely. 

Indeed, many have shown Bmp9 capable of inducing Alk1.  Similarly, I found rhBMP9 could 

restore Alk1 activity in the absence of flow, similar to rhBMP10, demonstrating that indeed 

Bmp9 is clearly a necessary in vivo ligand for Alk1, which may function, in different 

spatiotemporal milieus.  

I show that the source of Bmp10 during embryogenesis is the heart. Expression within 

the heart is not unique to bmp10 as Bmp2 and Bmp4 have both been described as present within 

this domain. Bmp2 and Bmp4 both show reduced atrial expression in mouse cobblestone 

mutants, which have defective cilia, implicating mechanical force in their induction [321]. In 

contrast, although first detectable within the heart at 24 hpf, upon onset of circulation, neither 

bmp10 nor its paralog, bmp10-like, are dependent on flow in either expression level or 
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localization to the heart. The expression domains of bmp10 and bmp10-like are fascinating in 

that they mimic expression of Tg(bre:egfp) in which we detect endocardial expression at 1 day 

(similar to bmp10) and myocardial expression at 2 days (similar to bmp10-like). Whether this 

similarity in Tg(bre:egfp) expression indicates an involvement of alternative BMPs, or 

Bmp10/Bmp10-like themselves, in activation and maintenance of bmp10 and bmp10-like 

expression levels, through pSmads1/5/9, remains to be seen. 

Although not required for expression, heart contraction may stimulate release of Bmp10 

ligand into the bloodstream. In mice and humans, other sources for Bmp9 and Bmp10 are the 

liver and lungs, respectively [320, 322]. It will be interesting to see how Bmp9 and Bmp10 

protein enter circulation from their respective sources of production. Additional work will also 

need to be done to understand how Bmp10-like enters circulation from the myocardium and 

whether localization differences in bmp10 and bmp10-like imply functional differences between 

the two proteins outside of vascular development. 

Once within circulation, do Bmp10/Bmp10-like circulate in an active or inactive form? In 

newborn mice, 60% of Bmp9 circulates in an active cleaved form while 40% circulates in an 

inactive uncleaved form [320]. Inactive circulating ligand could serve several purposes. First, 

uncleaved peptide may bestow structural stability, allowing ligand to circulate longer under 

harsh flow conditions. Alternatively, the prodomain may confer an additional level of regulation, 

becoming released only in areas that possess the appropriate proprotein convertases needed for 

processing [152]. Circulation of Bmp9/Bmp10 attached to their respective prodomains may also 

underscore a requirement for Type III receptor, endoglin, in ligand processing which I will 

describe below.  
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In certain contexts, the prodomain can provide necessary contacts between ligand and 

ECM [150]. In this regard, endoglin may serve as a necessary scaffold for binding the 

prodomains of the “inactive” circulating ligand. Although Bmp9 and Bmp10 may function 

redundantly in certain spatiotemporal milieus, it is interesting to note that the prodomain-bound 

form of Bmp9 can still activate Alk1 because of competitive displacement by Type II receptor 

[150], while Bmp10 requires prodomain release for full activity. Necessity for Endoglin may 

therefore stem from its ability to remove the prodomain of Bmp10 within vascular beds exposed 

to high levels of inactive Bmp10. If this is the case, then vascular beds exposed to Bmp9 would 

be less reliant on Endoglin expression. In humans, BMP10 is expressed exclusively in the right 

atrium feeding pulmonary circulation [322]. Therefore, the lung vasculature may be more 

dependent on BMP10 and thus more dependent on Endoglin. Indeed, the pulmonary vasculature 

is most affected in HHT1 patients, who harbor mutations in  Endoglin [137]. 

5.2 ALK1 INITIATION AND MAINTENANCE 

Recent results in the lab suggest that alk1 may in fact be a target of its own activity with 

diminished alk1 in alk1 mutants and bmp10 morphants (E. Rochon, J. Donovan). Furthermore, 

expression of alk1 is dynamic, with temporary cessation of flow triggering transient drops in 

alk1 expression (M. Schubert, J. Donovan). Coupled with my findings that Bmp10/Alk1 

provides a link between flow and flow-responsive genes, these data suggest that persistent 

Bmp10/Alk1 is required for alk1 maintenance in response to flow. It remains to be determined 

however, what first initiates alk1 expression. We have shown that alk1 is unchanged with 

knockdown of flow-responsive transcription factor, klf2a, however we cannot rule out the 

possibility that there is functional compensation by zebrafish klf2b, an alternative Klf 

transcription factor, or another laminar shear-responsive pathway. In support of our findings 
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however, in cultured immortalized mouse endothelial cells, Alk1 expression is not responsive to 

shear stress [323]. It is plausible that alk1 expression may be induced by an oscillatory shear 

program and then rely on Bmp10/Alk1 signaling for maintenance in the face of laminar shear. 

Recently, pSmads1/5/9 were shown to be induced in endothelial cells in vivo and in vitro in 

response to oscillatory shear stress [324], suggesting perhaps, that their activity may preface alk1 

expression, but then become sustained by Alk1 in response to laminar shear.  

We can also not rule out potential dependency on another Type I receptor for alk1 

expression. In human aortic ECs (HAECs), ALK1 expression is stimulated by high density 

lipoprotein (HDL) induced ALK2/BMPRII/SMAD1 signaling [325], and in BAECs, ALK1 is 

regulated by both BMP2 and BMP4, suggesting roles for alternative Type I receptors in ALK1 

induction [326]. BMP2 and BMP4 have also been shown to be induced in endothelial cells in 

response to oscillatory shear stress [327] and bmp4 is expressed in the zebrafish heart prior to 24 

hpf [328]. All of this evidence suggests the possibility of another program in which an alternative 

BMP/receptor complex primes the endothelium for laminar shear by initiating Alk1 expression. 

We have not examined alk1-positive arteries for expression of other Type I receptors or 

pSmad2/3 activity. However, quantification of my pSmad1/5/9 data suggests some residual 

expression, even in alk1 mutants, suggesting that indeed, another receptor cannot be discounted.  

 

5.3 THE ROLE OF SMADS IN ALK1 SIGNALING 

In this thesis, I demonstrate that pSmad1/5/9 is present in alk1-positive arteries and is dependent 

on bmp10, alk1, and Alk1 activity. This finding is significant given the discrepancy in the 

literature showing Alk1 dependence on pSmads1/5/9 to be variable based on cellular context [for 
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examples, see [146, 196, 197]]. I also show that proposed Alk1 signal mediator, MAPK 

(dpERK1/2), expression is independent of alk1 and therefore, not responsible for AVM 

development in alk1 mutants. Although pSmad1/5/9 expression is dependent on alk1 expression 

and Alk1 kinase activity in alk1-positive arteries, whether this signal is necessary and sufficient 

and the mode of action for these Smad proteins remains to be uncovered.  

pSmads1/5/9 is diminished in alk1 mutants and bmp10 morphants. Furthermore, 

inhibition of Alk1 kinase activity abolishes pSmad1/5/9 detection, but surprisingly, produces 

AVMs with little penetrance and expressivity. Given these data, a major question remaining to 

be answered is whether Smad activation is necessary and sufficient downstream of Alk1 in AVM 

prevention. Decrease in endothelial cell number and morphology in alk1-arteries in smad 

morphants would argue against a role for Smad1 and Smad5 however this may be attributed to 

earlier developmental defects and poor circulation caused by impairment of heart beat. As an 

alternative means of addressing Smad-involvement we have begun generating fluorescently-

tagged smad1CA, smad5CA, and smad9CA constructs driven under the control of an endothelial 

specific promoter. Constitutively active Smads are generated by substituting aspartic acid 

residues (DVD) in place of serine (SVS) at the carboxyl-terminus thereby preventing 

autoinhibition [329]. In theory, if pSmads1/5/9 are sufficient downstream of Alk1, then 

constitutively active forms of these proteins will rescue endothelial cell number and AVMs in 

alk1 mutants. Although we have successfully generated the constitutively active Smad middle 

entry clones [pME, gateway cloning], fluorescent tags render constructs inactive (fail to 

ventralize embryos). Future work will need to be aimed at exploring alternative construct 

options.  
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As a complementary approach, endothelial driven smad4DN should phenocopy alk1-/- 

embryos. There are limitations to this approach however, as pSmad1/5 controlled processing of 

microRNAs is reportedly Smad4 independent [147] and rSmads2/3 and MAPKs may also 

function through Smad4 [330]. With this in mind, although it may serve as an important tool in 

beginning to understand Smads in vascular function, absence of phenotype may simply indicate a 

non-transcriptional role for pSmads1/5/9 and therefore, not dismiss them as necessary signaling 

components for Alk1. Alternatively, the formation of AVMs will not fully rule out the possibility 

for alternative signaling pathways intersecting with Smad4 controlled processes. 

Although results clearly indicate Smad1/5/9 is phosphorylated downstream of Alk1, we 

do not detect pSmad1/5/9 mediated Tg(bre:egfp) expression in alk1-positive arteries. These data 

suggest that pSmads1/5/9 may act in non-canonical fashion in this system. pSmads function as 

heterotrimers with two r-Smads and Smad4 [149]. In dorsoventral patterning however, BMP 

heterodimers can bind heteromeric Type I complexes allowing for formation of mixed TGF-

β/BMP Smad complexes which bind sequences without a traditional BRE [331] and in HPAECs, 

BMP9 can induce Smad2 phosphorylation through Alk1 [283]. Although we have helped to 

show that Alk5 is dispensable to Alk1 signaling in mouse and zebrafish [187] we cannot fully 

discount the actions of another receptor, or the possibility that mixed Smad heterotrimers may 

form and activate non-canonical sites. 

Lack of Tg(BRE:EGFP) may also be attributed to pSmads1/5/9 acting independently of 

transcription and rather controlling gene expression at the post-transcriptional level through the 

processing of micro-RNAs as they have been shown to do in pulmonary arterial smooth muscle 

cells (PASMC) [147]. Many microRNAs have been identified to be endothelial-specific, and 

they comprise a complex network balancing angiogenic states [332]. The embryonic lethality of 
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mouse Dicer mutants has been attributed to angiogenic defects and knockdown of Dicer in 

HUVECs reduces proliferation and cord formation in part through miR-221/222 targeting of c-

Kit and other receptors [332-334]. micro-RNAs also serve as a critical hub between 

hemodynamics and angiogenesis. In zebrafish, mir-126 is activated downstream of Klf2a to 

promote VEGF signaling [335]. Since I have identified Bmp10/Alk1 as a novel blood flow-

responsive signaling pathway, it remains possible that, like Klf2a, it may serve in part to activate 

pSmads1/5/9 and therefore target mi-RNAs to specific gene sets necessary in controlling 

vascular quiescence. If true, this would provide many additional questions including which 

microRNAs are necessary downstream of Alk1, how do they interact with Smads and control 

processing/target selection, and which genes do they regulate to control endothelial cell 

behavior? Dissecting the microRNA network may be critical to our understanding of Alk1 and 

vascular quiescence. 

Non-transcriptional roles for BMPs also include stimulation of early cellular responses 

controlling cell polarity and migration independent of transcriptional pathways. Bmp-2 induces 

rapid activation of cortical protrusions via actin filament rearrangements in mouse myoblast 

C2C12 cells by activation of Cdc42 and PI3K [336]. Although in this example BMP2 induces 

migration, dynamic control of cytoskeletal dynamics independent of transcription by BMPs 

provides another plausible mechanism of action for Bmp10/Alk1/pSmads1/5/9 outside 

transcription. The ability to inhibit filopodial extensions would also help to explain why loss of 

Alk1 can trigger hypersprouting and increased tip cell phenotype at the expense of stalk cells in 

mouse retinal explants [199]  

If instead we are limited by detection and pSmads1/5/9 are indeed activating traditional 

transcriptional profiles that favor quiescence, what then guides specific Smad-mediated 
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responses? During hematopoietic regeneration and ESC differentiation, Smad occupancy is 

guided by a set of master transcription factors, Oct4, Myod1, and PU.1[337, 338]. An intriguing 

possibility in the case of Alk1 is that Smads could be recruited by master transcription factors 

that mediate flow response, such as a Klf transcription factor. In this case, the external signal of 

flow would direct flow responsive transcription factors to open chromatin, thereby exposing 

Smad binding elements (SBE). Alternatively, Smads could bind directly to these master 

regulators, which could guide them in specific regulatory pathways. 

Regardless of whether they are regulated at the transcriptional or post-transcriptional 

level, identification of gene sets regulated by Bmp10/Alk1/pSmads1/5/9 and necessary for 

arterial cell quiescence is of utmost interest. Here, I have shown that two genes, cxcr4a and edn1, 

previously known to be responsive to changes in flow, rely on Bmp10/Alk1/pSmads1/5/9 to 

mediate this flow response. We have shown however that neither mutations in cxcr4a or edn1 

can rescue AVMs in alk1-/- mutants [181] implying many additional genes remain to be 

identified. Identification of additional targets downstream of Bmp10/Alk1/pSmads1/5/9 will 

provide potential targets for HHT treatment and enhance our understanding of Alk1 function in 

the endothelium.  

 

5.4 ALK1 AND CANCER 

The constructed pathway in this thesis may also aid our understanding of Alk1 signaling in 

pathological settings such as cancer. Tumors above 2-3 mm require the process of angiogenesis 

to meet their oxygen and nutrient requirement [339] The expression of ALK1 is diminished in 

adult arteries, but is upregulated in tumor blood vessels of the prostate, skin, thyroid, kidney, 
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ovary, lung, pancreas, and kidney [178, 340]. Recent work has shown that application of a 

chimeric protein (Alk1-Fc), which serves as a sink for Alk1 ligands, can reduce tumor size and 

vascularization [178]. Co-treatment with Alk1 and VEGF (i.e. bevacizumab) antibodies can also 

limit angiogenesis and tumor growth in mouse and human cell culture models [340]. An 

enhanced understanding of Alk1 signaling may lead to more targeted therapies inhibiting Alk1-

mediated vasculariation of tumors. 

5.5 SUMMARY 

In summary, endothelial specific type I receptor, Alk1, binds circulating Bmp10 and signals 

through pSmads1/5/9 to promote vascular quiescence. This novel pathway serves as a critical 

response to blood flow and is ultimately responsible for preventing arteriovenous malformations. 

Knowledge gained during the course of my thesis work may ultimately lead to treatments for 

patients with HHT. 
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6.0 MATERIALS AND METHODS 

 

6.1 ZEBRAFISH LINES AND MAINTENANCE 

Adult zebrafish (Danio rerio) were maintained according to standard protocols (Westerfield, 

1995). When appropriate, embryo medium was supplemented with 0.003% phenylthiourea 

(PTU) (Sigma, St. Louis, MO, USA) at 24 hours post-fertilization (hpf) to prevent melanin 

synthesis. Mutant line alk1y6 and the alk1y6 genotyping assay have been described [182]. 

Transgenic lines Tg(fli1a:negfp)y7, Tg(kdrl:gfp)la116, Tg(gata1a:DsRed)sd2, and Tg(fli1a.ep:mrfp-

CAAX)pt505 have been described [181, 182, 341, 342]. To drive wild type alk1 in endothelial 

cells, we generated ptol-fli1a.ep:alk1-myc by Gateway cloning (Invitrogen, Carlsbad, CA, USA), 

recombining pDESTtol2pA2 [343]with p5E fli1a.ep [344], pME-alk1, and p3E-MTpA [343]. To 

drive ligand- and type II receptor-independent constitutively active alk1 [182] in endothelial 

cells, we generated ptol-fli1a.ebs:alk1CA-mCherry, recombining pDESTtol2pA2, p5E fli1a.ebs 

(fli1a Ets binding site, kind gift from N. Lawson, University of Massachusetts Medical School), 

pME alk1CA, and p3E mCherry-pA [343]. These constructs were co-injected with transposase 

mRNA [293] into one-cell embryos to generate Tg(fli1a.ep:alk1-myc)pt516, referred to as 

Tg(fli1a:alk1-myc), and a series of P0 founders for Tg(fli1a.ebs:alk1CA-mCherry), referred to as 

Tg(fli1a:alk1CA-mCh). The constitutively active alk1 transgene causes severe vascular defects 

and is embryonic lethal. 
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6.2 MORPHOLINO KNOCKDOWN 

Splice blocking (SB) and translation blocking (TB) morpholino-modified antisense 

oligonucleotides (GeneTools, Philomath, OR, USA) were generated. Morpholino sequences are 

shown below (Table 2). 

  

Target Sequence (5’-3’) 
alk1 ATCGGTTTCACTCACCAACACACTC 
Bmp9SD CTCTTTTGTGTACTCACCCTGAAC 
Bmp9TB GGAGCAAATGTCCTACGCGCCACAT 
bmp10SD AGGAAAATATGCAGTTACCTTCATT 
bmp10TB AAAAGTGATTTCTGCTACCAGCCAT 
bmp10-likeTB GCAGCAGAGAATCAGCCATGACTGC 
smad1 TAACAATTTAGCCACGCTCACCTGG 
smad5 ACATGGAGGTCATAGTGCTGGGCTG 
smad9 CATCGTGAGACGGGTTGATTTTAAA 
standard CCTCTTACCTCAGTTACAATTTATA 
tnnt2a CATGTTTGCTCTGATCTGACACGCA 
 

Table 2: Morpholino sequences. 

Morpholino sequences (5’-3’) generated to target their respective targets for the experiments in these 

studies. 

6.3 MORPHOLINO VALIDATION 

For TB morpholinos, (bmp9, bmp10, bmp10-like) efficacy and specificity were evaluated by 

injecting into one-cell embryos CMV-driven EGFP DNA containing morpholino binding sites 

upstream of the initiator methionine, with or without cognate or non-cognate morpholino, and 

assessing EGFP expression at ~ 6 hpf. 

 



  125 

6.4 IN SITU HYBRIDIZATION 

Digoxigenin-labeled riboprobes (Roche, Indianapolis, IN, USA) for cdh5, cxcr4a, edn1, and 

myl7 have been described previously [181, 345]. Zebrafish bmp10 was amplified from cDNA 

using 5’-ACCACAGCTGAACTCCGACT-3’ and 5’-TCCACACTTGGCCACTACCATT-3’, 

and bmp10-like using primers 5’-CGCAATGAAGCACCAGAGTA-3’ and 5’-

CCGTCCACTGTCTCTCATCA-3’. Both fragments were cloned into pCRII-TOPO 

(Invitrogen). Whole mount in situ hybridization was performed as described [182]. PCR-

amplified fragments of smad1 and egfp were inserted into pCRII-TOPO (Invitrogen) and 

plasmids used to generate digoxigenin-labeled antisense riboprobes (DIG RNA Labeling Kit, 

Roche). 

 

6.5 IMMUNOHISTOCHEMISTRY AND IMMUNOSTAINING 

Immunohistochemistry was performed using primary antibodies MF20 at 1:200 (sarcomeric 

myosin, Developmental Studies Hybridoma Bank, Iowa City, IA, USA) or 9E10 at 1:200 (myc, 

Covance, Princeton, NJ, USA), biotinylated horse anti-mouse IgG at 1:200, ABC reagent 

(Vector Laboratories, Burlingame, CA), and 3,3’-diaminobenzidine (Sigma, St. Louis, MO, 

USA). Embryos were photographed using an MVX-10 MacroView microscope and DP71 

camera (Olympus America, Center Valley, PA, USA). For sections, embryos were embedded in 

JB4 (Polysciences, Warrington, PA, USA), sectioned at 8 µm, and imaged using an Olympus 

BX51 microscope and DP71 camera.  Images were compiled with Adobe Photoshop CS2 version 

9.0.2 (Adobe Systems, San Jose, CA, USA). 
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For immunofluorescence, embryos were fixed in 4% paraformaldehyde in PBS overnight at 4oC, 

embedded in 4% NuSieve GTG agarose (Lonza, Rockland, ME, USA), and sectioned at 50 µm 

with a VT1000S vibratome (Leica Microsystems, Buffalo Grove, IL, USA). Rabbit anti-

phospho-Smad1/5/9 (also known as anti-phospho-Smad1/5/8; 9511, Cell Signaling Technology, 

Beverly, MA, USA) was used at 1:100, mouse anti-dpERK1/2 (Cell Signaling Technology, 

Beverly, MA, USA) at 1:200, goat-anti-mouse Alexa Fluor 568 at 1:200, and goat-anti-rabbit 

Alexa Fluor 647 at 1:200. Sections were mounted with Vectashield HardSet mounting medium 

(Vector) and imaged with an Olympus Fluoview 1000 confocal microscope outfitted with a 

UPFLN 40x oil immersion objective, with scan speed 244 Hz. Two-dimensional projections 

were generated from Z-series (1 mm steps) using MetaMorph 7.7 (Molecular Devices, 

Sunnyvale, CA, USA). Images were pseudocolored and colocalization highlighted using 

MetaMorph’s “boost colocalization” function.  

 

6.6 MICROINJECTION OF rhBMP9 AND rhBMP10 

Embryos were anesthetized in 160 mg/ml tricaine (Sigma) and embedded in 1% NuSieve GTG 

agarose in 30% Danieau/PTU. Two nl of phenol red/KCl buffer or Qtracker 655 non-targeted 

quantum dots (Invitrogen) with or without 10 µM rhBMP10 or rhBMP9 protein (R&D Systems, 

Minneapolis, MN, USA) were injected into the base of one caudal division of the internal carotid 

artery (CaDI) at 28 hpf. Embryos were either imaged live for cell counts (see below) or fixed at 

36 hpf and assayed by immunofluorescence or in situ hybridization as described above. 
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6.7 LIVE CONFOCAL IMAGING 

For live imaging, embryos were anesthetized in 160 mg/ml tricaine (Sigma) and inserted into 

500 µm troughs in 2% SeaKem LE agarose (Lonza)/30%Danieau. Z-series (0.5 - 2 mm steps) 

were collected using a TCS SP5 multiphoton/confocal microscope (Leica Microsystems, 

Wetzlar, Germany) outfitted with an APO L 20x/1.00 water immersion objective, non-descanned 

detectors, and spectral detectors.  EGFP was excited with a Mai Tai DeepSee Ti:Sapphire laser 

(Newport/Spectra Physics, Santa Clara, CA, USA) at  900 nm, whereas dsRed and mCherry were 

excited with a 561 nm diode. Scanning was performed either with a point scanner (400 Hz) with 

4x frame averaging or resonant scanner (8000 Hz) with 16x line averaging. Projections were 

generated using MetaMorph and endothelial cell numbers counted as described (Corti et al., 

2011).  

 

6.8 C2C12 TRANSFECTION AND LUCIFERASE ASSAYS 

On the day prior to transfection, C2C12 cells were seeded at 4x104 cells/well in 24-well plates. 

Cells were washed once with Optimem I (Invitrogen) and incubated in Optimem I for 2 hr. All 

wells were transfected with Lipofectamine (2 µl/well; Invitrogen) in complex with BRE-

luciferase (400 ng/well) and pRL-TK (40 ng/well). In plasmid test wells, 400 ng/well of either 

pcDNA3-hALK1; pcDNA3-hALK1(R411Q), a kinase-dead mutant; pcDNA3-hALK3-HA, or 

pCS2-zALK1 were also added. After 4 hours, lipoplexes were removed and DMEM containing 

10% FBS and antibiotic-antimycotic solution (Invitrogen) added for 24 hr. Cells were washed 

twice with serum-free DMEM+antibiotic and incubated for 21 hr, then treated for 21 hr with 0.1-

3000 pg/ml rhBMP9 or rhBMP10 (R&D Systems, Abingdon, UK). Cells were then lysed and 
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assayed for Firefly and Renilla luciferase activities using the Dual-Glo® Luciferase Assay kit 

(Promega, Southampton, UK) according to the manufacturer’s instructions. Firefly luciferase 

activities were normalized to the Renilla control. Data were normalized as percentage responses 

using GraphPad Prism (San Diego, CA, USA) and EC50 values calculated. Plasmids were 

obtained as follows: BRE-luciferase, P. ten Dijke (LUMC, Leiden, Netherlands); pcDNA3-

hALK1 and pcDNA3-hALK1(R411Q), R. Trembath (King’s College London, London, UK); and 

pcDNA3-hALK3-HA, K. Miyazono (University of Tokyo, Tokyo, Japan). 

 

6.9 GENERATION OF Tg(bre:egfp) 

 Multisite Gateway cloning (Invitrogen) was used to generate a bre:egfp construct.  The BRE is a 

synthetic palindromic sequence derived from fusing distinct regions of the mouse Id1 promoter 

[285]. The Bre was released from BRE:luc [285] by NheI digest; ends were filled in using Klenow; 

and the blunt product was ligated into the SnaBI  site in the 5’ entry clone, p5E-basprom, just 

upstream of a minimal adenovirus e1b promoter and carp b-actin start site [292, 344].  This clone 

was then recombined with pME-egfp , p3E-pA, and pdesttol2pA2 from the Tol2 kit [343] via 

standard Multisite Gateway procedures (Invitrogen).  Twenty-five pg of the resulting clone, ptol2-

bre:egfp,  was injected into one-cell stage embryos along with 25 pg transposase mRNA to effect 

transposon-mediated transgenesis [293].  Embryos were sorted for EGFP expression and raised to 

adulthood.  Founders were identified by incrossing followed by outcrossing to 

Tg(fli1ep:dsRedEx)um13, which expresses dsRed specifically in endothelial cells [344, 346].  

Thirteen Tg(bre:egfp) founders were identified, and two F1 lines (pt509, pt510) were established 

from two independent founders. The BRE sequence is as follows: 5’- 
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CTAGCTCAGACCGTTAGACGCCAGGACGGGCTGTCAGGCTGGCGCCGCGGCGCCAGC

CTGACAGCCCGTCCTGGCGTCTAACGGTCTGAGCTAG-3’ 

 

6.10 mRNA SYNTHESIS 

 pCS2+ constructs containing constitutively active zebrafish alk1 and alk5, or smad5 [182, 187] 

were used to synthesize capped sense mRNA using SP6 polymerase (mMessage mMachine, 

Ambion). 

 

6.11 DRUG EXPOSURES 

To inhibit type I receptor-mediated Smad phosphorylation, embryos were dechorionated and 

exposed to 0.5% DMSO (vehicle control), 10-30 µM dorsomorphin (BMP type I receptor 

inhibitor; Calbiochem), 10 µM DMH1 (BMP type I receptor inhibitor; gift of Dr. Charles Hong, 

Vanderbilt University),  200 µM SB-431542 (TGF-b type I receptor inhibitor; Tocris), or 100 

µM LDN-193189 (BMP type I receptor inhibitor; gift of Dr. Charles Hong, Vanderbilt 

University) beginning at either 10 hpf for Tg(bre:egfp) experiments or 23 hpf for 

antibody/phenocopy experiments.  Exposure to 10 µM dorsomorphin or 5 µM DMH1 beginning 

at the one-cell stage resulted in severe dorsalization [313], whereas 100 µM SB-431542 resulted 

in cyclopia [187], demonstrating that these drugs work as expected in our hands. 
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