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ROLE OF HIV-1 VPR ON HOST-CELLULAR FUNCTIONS: CELL-SPECIFIC 

ANALYSIS IN PRODUCTIVELY-INFECTED MACROPHAGES 

Jessica Sparks, M.S. 

University of Pittsburgh, 2013 

ABSTRACT 

Progression of human immunodeficiency virus type 1 (HIV-1) pathogenesis impedes on 

the patient’s ability to combat foreign pathogens by infecting immune cells, a disease commonly 

referred to as acquired immunodeficiency syndrome (AIDS).  In addition to the onset of AIDS, 

HIV-1 is known to cause other health issues over time, including cardiovascular disease, 

premature aging, neurocognitive impairment, and dementia.  The quality of life for HIV-1-

positive patients has drastically increased with the introduction of highly active anti-retroviral 

therapies (HAART).  Though the use of HAART treatments lower the incidence of HIV-1-

associated comorbidities, including dementia, more understanding on HIV-1-associated 

comorbidities is necessary to help further improve the quality of life for HIV-1-positive patients, 

which is of considerable public health significance. 

This study focuses on the role of the HIV-1 accessory protein viral protein R (Vpr) in 

HIV-1 pathogenesis.  Previous studies in our laboratory have established a role for Vpr in HIV-1 

immunopathogenesis and neuropathogenesis, particularly in the modulation of cytokines and 

chemokines, including IL-8 and IL-1β, in monocyte-derived macrophages and dendritic cells.  

These proinflammatory cytokines were additionally found to cause immune dysregulation and 

neuronal injury.  As a result, this study focuses on understanding the origin of these cytokines 

within subpopulations of monocyte-derived macrophages: productively-infected macrophages 

that are actively producing virions and non-productively-infected macrophages, which include 

latently-infected macrophages, uninfected macrophages, and macrophages exposed to virus 
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particles and viral proteins.  In order to distinguish between the two groups, reporter viruses were 

created that are capable of infecting macrophages and expressing the enhanced green 

fluorescence protein (EGFP) upon replication.  Productively-infected macrophages were 

successfully identified from non-productively-infected macrophages by utilizing EGFP 

expression, which allowed for cell-specific analysis of cytokine expression within the 

macrophage subpopulations.  Productively-infected macrophages yielded a decrease in IL-8 and 

IL-1β when infected with Vpr-deficient (∆Vpr) reporter viruses, while non-productively-infected 

and exposed macrophages showed no noticeable difference.  Similarly, a virion association 

defective mutant of Vpr (Vpr-A30L) resulted in lower amounts of IL-8 expression.  These results 

elucidate the distinct role of Vpr in IL-1β and IL-8 expression in the virion-associated forms and 

during de novo synthesis in productively-infected macrophages.  
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1.0  INTRODUCTION 

The current estimation for people worldwide infected with HIV-1 (human 

immunodeficiency virus type 1) is 34 million in 2012 [1].  HIV has been isolated and characterized 

as the causative agent of acquired immune deficiency syndrome (AIDS), a disease which has 

caused a global pandemic that gained momentum throughout the early 1980’s and peaked in the 

late 1990’s [2-4]. HIV-1/AIDS-related research has led to crucial breakthroughs in prolonging the 

life expectancies of HIV-1 -positive individuals:  production and access to highly-active 

antiretroviral therapies (HAART) has played a tremendous role in reducing the mortality rate 

associated with HIV/AIDS.  Though preventative measures have been widely established through 

awareness and safer sexual behaviors, the creation of a successful vaccine or microbicide has yet 

to occur. [5] Since prevention of infection provides the most practical solution to the HIV/AIDS 

pandemic, continued efforts are needed for novel HIV preventative measures. 
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1.1 THE PATHOLOGY OF HIV/AIDS 

1.1.1 HIV infection and clinical progression to AIDS 

HIV targets the host immune cells to establish infection, causing a progressive depletion 

of the immune cells, specifically CD4+ T cells, necessary to fight infection, as well as viral 

propagation through the manipulation of cellular functions that comprise the immune system.  

HIV-1 primarily establishes infection in CD4+ T helper lymphocytes and macrophages.  In the 

following weeks after initial infection, the patient enters acute infection.  During this period, high 

amounts of virus are produced and CD4+ T cell apoptosis is abundant, thus diminishing the 

patient’s CD4+ T cell count.  Viral reservoirs in tissues and lymphoid organs are established during 

the acute phase.  Once the immune response to infection begins, the viral load significantly drops 

to the “viral setpoint” and the CD4+ T cell count begins to rebound, but does not fully recover.   

After the resolution of the acute phase, the patient enters clinical latency, in which the virus 

replicates at very low levels for 8 to 15 years depending on how well the patient respond to therapy.  

Currently, highly active antiretroviral therapy (HAART) is used to lower viral burden and facilitate 

the maintenance of HIV-1 latency.  During this period, drug resistance mutations develop due to 

virus replication in less accessible sites and eventually, the viral load rises and the CD4+ T cell 

count drops.  Once the patient reaches less than 200 CD4+ T cells/mm3, the disease progression 

status is classified as AIDS.  The progression to AIDS indicates that the immune system has been 

severely compromised.  AIDS-related fatalities usually occur through opportunistic infections that 

would be cleared by a healthy immune system [6]. 
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1.2 THE HIV LIFE CYCLE 

1.2.1 Virus entry and establishment of infection 

The human immunodeficiency virus-1 belongs to the Lentivirus genus of the Retroviridae 

family.  HIV-1 virion includes two single-stranded RNA molecules, structural proteins and several 

enzymatic proteins necessary to establish infection.  The capsid of the virion is enveloped with a 

lipid bilayer, which also harbors viral envelope proteins.  HIV infects its target cells through the 

utilization of the surface viral envelope glycoprotein gp120.   gp120 interacts with the CD4 antigen 

that is present on target cells, along with one of two potential chemokine co-receptors:  CXCR4 or 

CCR5.  The interactions between viral gp120 and host CD4 stabilize the virus-host binding to 

allow for the secondary interactions between gp120 and a co-receptor.   These interactions mediate 

a conformational change in the viral transmembrane protein gp41 that allows for membrane fusion 

and capsid entry into the cell [7-10]. 

Once the capsid has entered into the host cytosol, the preintegration complex (PIC) is 

formed.  The PIC is comprised of capsid gag proteins (p24 and matrix proteins), the accessory 

protein viral protein R (Vpr), integrase, reverse transcriptase, and two copies of the single-stranded 

RNA viral genome.  Release of the PIC into the host cytosol begins the process of reverse 

transcription, yielding a double-stranded proviral DNA product that is capable of integration.  The 

PIC moves through the nuclear envelope and enters into the nucleus via active transport through 

the nuclear pore complex.  Once the PIC enters the nucleus, the proviral DNA is integrated into 

the host genome, thus establishing infection and allowing for initiation of virion production [11-

12]. 
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1.2.2 The HIV-1 genome 

The HIV genome is comprised of several essential structural genes (gag, pol, and env), two 

essential regulatory elements (tat and rev), and multiple accessory genes (vif, vpr, vpu and nef).  

These genes are flanked by long terminal repeats (LTRs), which contain the necessary promoters 

and signals to allow for viral gene expression.  These signals include sequences that allow for 

transcription initiation, termination, and poly-adenylation, as well as elements that direct reverse 

transcription. 

 

 

Figure 1. HIV gene organization. 

 

The genomic organization schematic in Figure 1 depicts the reading frames that are 

necessary to produce each of the viral proteins [13].  The largest genes, gag, pol, and env, encode 

for the structural proteins in the virion.  gag transcription results in the Gag polyprotein, which is 

cleaved to produce the capsid (CA), matrix (MA), and nucleocapsid (NC) proteins that encapsulate 

the virion.  pol transcription yields an enzymes with multiple functions, including integrase (IN), 

protease (PR), and reverse transcriptase (RT) with RNase H activity.  env transcription is 

responsible for the envelope protein that resides in the membrane; the transcribed proteins form a 
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heterotrimer that binds to the host CD4 glycoprotein and the chemokine co-receptor for viral entry.  

A gag-pol polyprotein is also produced in low levels, indicated by the presence of pol enzymes in 

the virion structure. 

The regulatory elements, Tat and Rev, are necessary for viral transcription and protein 

translation.  After viral integration, low levels of viral RNA transcripts are initially produced, 

which produces small numbers of Tat.  Tat functions by enhancing the rate and efficiency of viral 

transcription through binding to a RNA hairpin structure at the 5’ end of viral transcripts called 

the trans-activating response element (TAR).  Once bound to TAR, Tat also interacts with RNA 

Polymerase II, thus upregulating polymerase efficiency [14].  The regulatory element Rev controls 

the nuclear export of unspliced and partially spliced viral transcripts, thus regulating the production 

of viral genomes and structural proteins.  In the absence of Rev, viral transcripts remain in the 

nucleus and are fully spliced, only producing Rev, Tat, and the accessory protein Nef.  Rev acts 

by binding to the Rev response element (RRE), a 351-nucleotide RNA sequence encoded within 

the unspliced env gene.  Binding to the RRE exports unspliced and partially-spliced viral 

transcripts into the cytosol prior to complete splicing, allowing for translation of structural proteins 

and viral RNA genome for virion incorporation [15]. 

The HIV accessory genes, including vpu, vpr, vif, and nef, are not absolutely essential for 

infection but play a major role in augmenting infection and replication efficiency.  Briefly, Vpu 

aids in the degradation of CD4 in infected cells; Vpr is present in the preintegration complex and 

regulates nuclear import; Vif interrupts the antiviral activity of the host restriction factor 

APOBEC3G; and Nef also aids in the degradation of CD4, as well as interrupts in cellular signal 

transductions [16]. 
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1.2.3 Viral tropism 

Tropism of HIV-1 limits infection to host cells that express both the CD4 glycoprotein and 

a chemokine co-receptor, CXCR4 or CCR5.  Cells that express these receptors, and are susceptible 

to HIV-1 infection primarily include CD4+ T cells, monocytes, macrophages, and dendritic cells.  

Isolates of HIV-1 display different capabilities of tropism, which can be categorized into three 

groups:  X4-tropic viruses, which are capable of infecting cells expressing the CXCR4 co-receptor; 

R5-tropic viruses, which infect CCR5-expressing cells; and dual-tropic viruses, which can infect 

both CXCR4-expressing and CCR5-expressing cells [17].  R5-tropic isolates are known to 

preferentially infect and establish infection in the asymptomatic phase of disease progression.  

These isolates are highly predominant during acute infection, denoting their importance in 

transmission [17-19]. 

The high mutation rate of reverse transcriptase during viral replication allows for the 

evolution toward CXCR4-tropic viruses as infection progresses.  The affecting mutations primarily 

occur within the env gene, which yields structural changes in gp120 and gp41 that are involved in 

viral tropism evolution [19].  X4-tropic HIV-1 isolates begin to emerge after seroconversion, 

during the progress towards AIDS [20].  The emergence of X4-tropic isolates has been associated 

with higher rates of replication and faster disease progression, correlating with the onset of AIDS 

[21].  The tropism of HIV-1 isolates during in vivo infection does not necessarily utilize CXCR4 

or CCR5 exclusively: Macrophage-tropic (M-tropic) and T cell-tropic (T-tropic) viruses are both 

capable of infecting both CD4+ T cells and macrophages, respectively [22].  Despite the dual-

tropic nature of in vivo infection, co-receptor tropism can be utilized as a general indicator for 

patient disease progression, with approximately 50% of HIV patients progressing to AIDS through 

the emergence of X4-tropic quasispecies [17, 21].  
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1.3 HIV PATHOGENESIS IN MACROPHAGES 

 

1.3.1 Role of macrophages in HIV-1 infection 

Macrophages are monocyte-derived, mononuclear leukocytes that are primarily 

responsible for phagocytosis and antigen presentation, which provides a link between the innate 

and adaptive immune responses.  These cells are not capable of proliferating and primarily reside 

in the tissues after terminal differentiation from monocytes [23].  Differentiation from a monocyte 

into a macrophage increases the cell’s susceptibility to HIV-1 infection, particularly due to 

increased CCR5 expression on the cell surface.  Macrophages play a crucial role in infection 

establishment, maintenance and latency by allowing for viral replication and virion release, thus 

termed “productive” infection [24].   

Infection of macrophages does not lead to the cytopathic and apoptotic effects that are 

characteristic to CD4+ T cell infection, which facilitates a long-lived reservoir for virus 

production.  Several factors are associated with sustained macrophage infection, which lead to the 

noticeable lack of cytopathic effects typically observed in HIV-infected CD4+ T cells [24].  HIV-

infected macrophages express increased levels of NF-ĸB, a transcriptional regulator responsible 

for cytokine production and cell survival.  Increased NF-ĸB levels abrogate the TNF-induced 

apoptosis, which is the archetypal signaling pathway for T cell apoptosis in HIV-1 infection [25].  

Such modulations in NF-ĸB expression may be a direct causation of viral protein interactions in 

macrophages:  Olivetta et al. (2003) concluded that soluble Nef may play a role in the activation 

of NF- ĸB in monocyte-derived macrophages through inhibitory interactions with the endosomal 
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V-ATPase [26], while Niederman et al. (1992) found that Nef participates in the downregulation 

of NF- ĸB expression in CD4+ T cells [27].  Similarly, Ayyavoo et al (1997) determined that Vpr 

regulates NF-κB activity in CD4+ T cells dependent on TCR-mediated activation [28].  

Additionally, Swingler et al. (2007) found that gp120 interactions induced expression of 

macrophage colony-stimulating factor (M-CSF), a pro-survival cytokine that downregulates tumor 

necrosis factor-related apoptosis-inducing ligand (TRAIL) and thus TNF-induced apoptosis [29].  

The prevention of apoptosis in macrophages results in the formation of a long-lasting viral 

reservoir capable of producing infectious virions and facilitates persistent infection in vivo.   

Infected macrophages also contribute to the persistence of HIV-1 by enhancing viral spread 

to bystander cells, as well as increasing viral permissiveness through viral protein expression.  

Macrophages infected with HIV-1 release higher levels of CC-chemokines, particularly MIP-1α 

and MIP-1β, which attract CD4+ and CD8+ T lymphocytes near infection via chemotaxis [30].  

Similarly, macrophages are involved in targeting CD4+ T lymphocytes for viral infection:  

Swingler et al. (2003) determined that the Nef-dependent secretion of soluble CD23 and ICAM 

from HIV-infected macrophages resulted in increased B-cell— T-cell interactions, leading to T-

cell activation and elevated viral permissiveness [31].  Other viral proteins are also capable of 

increasing viral susceptibility:  soluble Vpr has been associated with host permissiveness through 

its interactions with cellular proteins, including the glucocorticoid receptor and the 

p300/transcription factor initiation complex [32].  Such interactions modulate cellular genes, 

which increase the host cell’s susceptibility to HIV. 

Additionally, macrophages play an important role in the maintenance of infection during 

the course of antiviral therapy.  Tissue-resident macrophages are capable of obscuring HIV-1 

replication in sanctuary sites that are poorly penetrated by current anti-HIV pharmacologic agents.  
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This allows for maintained levels of HIV replication and virion release in areas including the 

lymphoid tissues, testis, gut-associated lymphoid tissue, and brain.  The lack of antiviral treatments 

capable of reaching infected sanctuary site-resident macrophages allow for the perpetuation of 

HIV infection in the host [33]. 

 

1.3.2 Importance of cytokine expression in HIV-infected macrophages 

Cytokines are small molecules responsible for alterations in cellular signaling and function 

via autocrine and paracrine mechanisms.  These signaling molecules function by binding to 

corresponding cytokine receptors on the cellular surface, which results in the induction of signal 

transduction pathways and thus results in modulations in gene transcription and activation.  

Cytokines are responsible for the regulation of both innate and adaptive immune responses, as well 

as the maturation, differentiation, and activation of T lymphocytes.  These signaling molecules are 

highly redundant and multifunctional due to the structural similarities of cytokine receptor 

subunits, which allow multiple cytokines of the same family to bind to the same cytokine receptor.  

The term “cytokine” comprises a large group of molecules that are diverse in origin and function, 

including interferons, interleukins, mesenchymal growth factors, the tumor necrosis factor (TNF) 

family, and chemokines.  Chemokines play a unique role in immune responses to an invading 

pathogen:  they act as chemoattractants to induce migration of surrounding immune cells to the 

site of inflammation or infection [34]. 

HIV-1 infection modulates cytokine production in order to promote establishment of 

infection and viral replication.  Since HIV-1 targets cells of the immune system and causes 

persistent infection, HIV infection results in immune activation and thus cytokine production.  In 
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particular, proinflammatory cytokines TNF-α, IL-1β, and IL-6 exhibit increased expression in 

HIV-1 infected PBMC populations [35].   Modulations in cytokines that regulate the T helper 

response have also been observed:  increases in TH2-related cytokines, such as IL-4, IL-5, and IL-

10, and decreases in TH1-related cytokines, including IL-2 and IFN-γ, suggest a role in a regulatory 

switch in immune response upon HIV infection [36-38].  

Conversely, the production of cytokines as an immune response can also suppress or induce 

HIV-1 replication, which is dependent on the tightly-regulated balance of secretion within the 

cytokine network.  Several cytokines are responsible for the modulation of HIV-1 replication and 

have distinct roles in different cell types.  Cytokine effects on HIV replication in monocyte-derived 

macrophages can result in induction, suppression, or bi-functionality, as detailed in Table 1 [39, 

40].   Due to the autocrine and paracrine nature of cytokines, the combination of expressed 

stimulatory or inhibitory cytokines can impact the susceptibility of bystander macrophages to 

infection.  Thus, cytokine-related immune responses play an integral role in the establishment of 

HIV infection and disease progression. 

Table 1. Effects of cytokines on HIV-1 replication in monocyte-derived macrophages.  

Cytokine Function Effect on 

replication 

M-CSF Stimulatory Increase 

IL-1α, IL-1β Stimulatory Increase 

IL-6 Stimulatory Increase 

TNF-α, TNF-β Stimulatory Increase 

IFN-α, IFN-β Inhibitory Decrease 

GM-CSF Inhibitory Variable 

IL-10 Inhibitory Decrease 

MIP-1α, MIP-1β, RANTES Inhibitory Decrease 

IL-4 Bifunctional Variable 

IFN-γ Bifunctional Variable 

Compiled from Kedzierska et al, 2003 [39] and Koyangi et al, 1996 [40]. 
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Stimulatory cytokines that facilitate HIV replication have been implicated in the activation 

of the NF-κB pathway, thus leading to the up-regulation of a multitude of cellular genes.  Most 

notably, TNF-α activates NF-κB expression, which significantly increases viral replication via NF-

κB binding sites within the LTR of the HIV-1 genome.  TNF-α binds to two receptors, TNF-R1 

and TNF-R2, which activates the signal transduction pathway responsible for NF-κB expression 

[25].  Increases in TNF-α levels have been observed both in vitro, with HIV-1-infected MDM 

cultures, and in vivo, with HIV-infected patient sera samples [41].  TNF-α is expressed 

constitutively upon HIV-1 infection and has been shown to perpetuate production through an 

autocrine positive feedback loop [42].  

Similarly, IL-1β is a pro-inflammatory cytokine that also increases viral replication.  IL-

1β binds to the interleukin 1 receptor (IL-1R), which leads to the up-regulated transcription of 

TNF-α, IL-6, IFN-γ, and the neutrophil chemoattractants CXCL1 and CXCL2.  IL-1β transcription 

is regulated by NF-κB, NF-IL6/CCAAT enhancer-binding protein (C/EBP), and cAMP response 

element-binding proteins (CREB), and stress-activated protein kinase/c-Jun N-terminal kinase 

(SAPK/JNK), which are activated by HIV infection [43, 44].  Because NF-κB is a regulatory factor 

of IL-1β production, expression of TNF-α and IL-1β forms a positive feedback loop, thus potently 

enhancing HIV replication.  Studies have shown that blocking TNF-α and IL-1β with neutralizing 

antibodies, along with other stimulatory cytokines, leads to a decrease or complete suppression of 

viral replication [45, 46].  

In contrast, inhibitory cytokines are necessary to compensate for the potent enhancement 

of HIV-1 replication by stimulatory cytokines.  The beta-chemokines, MIP-1α, MIP-1β, and 

RANTES, are chemoattractants produced by CD8+ T lymphocytes and macrophages that utilize 

the CCR5 chemokine receptor.  Binding of β chemokines to the CCR5 receptor blocks R5-tropic 
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HIV isolates from entering macrophages and establishing infection [30, 47].  Cocchi et al (1995) 

demonstrated that treatment of MDMs with the β chemokines prevents viral entry and uncoating 

in a dose-dependent manner [48].  In order to circumvent this suppression, viral proteins are known 

to counteract viral suppression through down-regulating inhibitory cytokine expression:  soluble 

Vpr suppresses the production of β chemokines in primary lymphocytes and MDMs, which 

enhances viral replication [49].  Other factors, such as IL-10, primarily act through the direct 

inhibition of stimulatory cytokine production [50]. 

1.3.3 The role of HIV-1 Vpr accessory protein in macrophage infection 

The Vpr accessory protein is a small, 96 amino acid protein that has a molecular weight of 

14 kDa.  Vpr is highly conserved among HIV-1, HIV-2, and simian immunodeficiency virus (SIV).  

As shown in Figure 2, the structure of Vpr contains an N-terminal domain (residues 1-16), three 

alpha helices (residues 17-33; 38-50; 55-77), and a C-terminal domain (residues 78-96), as 

determined by NMR analysis of monomeric Vpr [51, 52].  The folded tertiary structure of Vpr is 

moderately unstable, particularly due to the two patches of exposed hydrophobic residues on alpha 

helices 1 and 3.  Therefore, Vpr undergoes extensive oligomerization and interacts with various 

proteins to obscure its hydrophobic residues from its aqueous surroundings [53, 54].  Vpr exists as 

dimers, trimers, or higher orders of oligomers depending on the concentration, plays a crucial role 

in its ability to function.  Mutational analyses of Vpr have identified specific regions of the Vpr 

structure that are responsible for its numerous functions. 
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Figure 2. The structure of HIV-1 accessory protein Vpr with annotated domains. 

NMR structure as determined by Morellet et al., published with permission [52]. 

 

Currently, there are several known functions of Vpr in the HIV-1 life cycle:  association 

with entering and budding virions, nuclear localization with the pre-integration complex, G2 cell 

cycle arrest, and interactions with viral and host transcription factors for enhanced gene 

transcription.  Vpr is also known to enhance the replication of HIV-1 in macrophages [35].  Studies 

have shown significant replication deficiencies in Vpr-deletion mutants of HIV-1 isolates, but not 

in infected PBMCs or isolated CD4+ T lymphocytes, as analyzed by p24 Gag subunit ELISA 

quantification [55].  Along with the tropic nature of Env, Vpr is an important viral determinant of 

macrophage infection.  Vpr primarily enhances infection in macrophages through its role in 

nuclear transport of the pre-integration complex and viral gene transcriptional enrichment, as an 

early virion associated molecule.  

Establishment of infection with retroviruses typically requires the mitotic breakdown of 

the nuclear envelope for viral integration, thus limiting infection to cells capable of mitotic 

division.  In the case of HIV-1 and other lentiviruses, the viral genome and associated proteins are 

transported into the nuclear envelope for infection in non-dividing cells, such as macrophages.  
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The active nuclear import of the pre-integration complex through the nuclear pore following viral 

entry is significantly mediated by the Vpr-host cellular protein interactions.  Along with the matrix 

(MA) and integrase (IN) proteins, Vpr localizes to the nucleus and interacts with nuclear import 

proteins for nuclear entry.  Unlike MA and IN, Vpr does not contain a canonical nuclear 

localization signal (NLS) and thus works independently of classical nuclear signaling pathways 

[56].  Fouchier et al (1998) has shown that Vpr acts in a karyophilic manner by directly interacting 

with the nuclear pore complex through nucleoporin phenylalanine-glycine repeat regions [57].  

Therefore, Vpr bypasses classical signaling pathways by directly interacting with the nuclear pore 

complex.  The interaction of importin-α with the leucine motif in the first α-helix of Vpr is also an 

important mechanism of Vpr-mediated nuclear translocation [58, 59].  However, Vpr is not 

essential for HIV-1 infection of non-dividing cells: in the absence of Vpr, expression of IN has 

been shown to be sufficient for nuclear import [57].  

Vpr mediates the expression of host cellular genes, including NF-κB, survivin, and the cell 

cycle inhibitor p21/Waf1/Cip1.  Regulation of these host cellular genes by Vpr facilitates enhanced 

viral transcription, mediation of apoptosis and cell survival, and G2 cell cycle arrest in CD4+ T 

cells [60].  Vpr also directly interacts with transcription factors such as the p300 coactivator and 

the transcription factor initiation complex.  Vpr also has the capacity to recruit and bind to the 

glucocorticoid receptor (GR), further promoting cellular gene transcription favorable for infection 

[35].   

Vpr may also utilize these interactions to enhance viral transcription via HIV-1 LTR 

activation.  The LTR contains several elements responsible for transcriptional activation, including 

the glucocorticoid response element (GRE), NF-κB, NF-AT, and a TATA box [61].  Several 

studies have verified that Vpr mediates LTR transactivation by interacting with other activator 
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proteins yet does not directly interact with promoter sequences.  Vpr mediates the activation of 

GRE by binding to p300 and the transcription factor initiation complex and recruiting these 

proteins to the LTR, thus functioning as an adaptor protein [35].  Ayyavoo et al (1997) also showed 

that Vpr-mediated viral replication enhancement in macrophages is partially mediated by the 

glucocorticoid pathway, which was further substantiated by experiments indicating that the GRE 

region within the LTR is transactivated by Vpr [62].  Similar to p300/transcription factor 

recruitment, Vpr-mediated activation of GRE results in enhanced viral expression. 

Additionally, virion association of Vpr is significant for further infection of surrounding 

macrophages, particularly for PIC nuclear translocation and gene transactivation enhancement.  

Vpr binds to the p6 domain of the p55 Gag viral protein, a precursor to the p24 Gag capsid protein.  

This interaction allows for incorporation of Vpr into nascent virions.  Venkatachari et al (2010) 

demonstrated that Vpr oligomerization was necessary for its incorporation into virions.  

Specifically, the mutation of alanine to leucine at the 30th amino acid in the 1st α-helix of Vpr 

(A30L) was shown to abrogate virion oligomerization, Gag p6 interaction, and virion 

incorporation, as indicated by BiFC complementation [63].  Similarly, Jacquot et al (2007) 

indicated that the A30L mutation occurred within the site necessary for nuclear localization, thus 

causing a disruption in Vpr nuclear translocation [64].  These studies corroborate the importance 

of virion association for the function of Vpr in macrophages and establishment of macrophage 

infection. 
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1.3.4 Macrophages and HIV-1-associated neurocognitive disorders (HAND) 

Infiltration of infected macrophages into the brain is largely responsible for HIV-1-

associated neurocognitive disorders (HAND).  HAND primarily occurs as a result of neuronal 

damage and apoptosis, with a range of 18 to 50% loss of neuronal density occurring in patients 

with HAND.  Early in the course of HIV-1 disease progression, infected macrophages may cross 

the blood-brain barrier (BBB) and establish infection within the brain.  These macrophages are 

capable of increasing macrophage infiltration by producing elevated levels of TNF-α, which 

permeabilizes the BBB tissue [65, 66].  Infected infiltrating macrophages cause neuronal damage 

without direct infection of primary neurons and can perpetuate HIV infection by infecting resident 

microglia in the brain.  Pro-inflammatory cytokines and chemokines are secreted from infected 

macrophages, which cause neuronal death and activate bystander microglia and astrocytes.  As a 

result, an increased secretion of neurotoxic substances occurs, including platelet-activating factor 

(PAF), nitric oxide, quinolinic acid, and arachidonic acid.  Soluble viral proteins, including gp120, 

Vpr, and Tat, are also known to be potent neurotoxins, which contribute to neuronal death and the 

onset of HAND in patients [67]. 

 

1.3.4.1    The role of macrophage-derived cytokines in HAND 

 

HIV-induced cytokine expression is highly implicated in the pathogenesis of HIV-

associated neurocognitive disorders, particularly TNF-α and IL-1β.  As previously described, 

TNF-α is significantly responsible for the development of neurocognitive disorders through its role 

in the physical breakdown and permeabilization of the blood-brain barrier.  TNF-α also plays a 
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role in the proliferation and activation of astrocytes, which further increases the permeability of 

the brain and influx of monocytes.  Astrocytic activation also leads to the increased release of Ca2+ 

and glutamate, which facilitates neuronal apoptosis [68].   

In addition to TNF-α expression, IL-1β levels in the cerebral spinal fluid of HIV-1 patients 

has been found to correlate with the presence of neurocognitive disorders, implicating a role for 

IL-1β in HIV-1 neuropathogenesis [46].  IL-1β has also been associated with the pathogenesis of 

other neurocognitive disorders, including Alzheimer’s disease, Parkinson’s disease, multiple 

sclerosis, amyotrophic lateral sclerosis (ALS), and epilepsy [69].  Like TNF-α, IL-1β is thought to 

act by activating astrocytes and other glial cells, contributing to the increased permeability of the 

blood-brain barrier, and monocytic migration.   Both IL-1β and TNF-α are known to be up-

regulated by the neurotoxic substances released by infected microglia, including arachidonic acid 

and PAF [70].   

Other cytokines have been implicated in the neuropathogenesis of HAND in both in vivo 

patient CSF samples and in vitro models: increased levels of IL-6, IL-8, monocyte chemoattractant 

protein 1 (MCP-1), MIP-1α, MIP-1β, and CXCL10 correspond to the onset of HAND [71].  

Increased expression of these cytokines additionally contribute to neuronal injury and the onset of 

neurocognitive dysfunction.  Overexpression of CXCL10 and its receptor CXCR3 has been 

identified in SHIV-encephalitis rhesus macaque models, with CXCL10 co-localization occurring 

with the pro-apoptotic protein caspase-3.  Furthermore, blocking CXCR3 has been shown to 

decrease neuronal injury [72].  Similarly, studies have shown that increased expression of IL-8 

strongly correlated to viral load in CSF samples of patients with HAND.  Expression of these 

cytokines moderately originates from TNF-α and IL-1β:  stimulation of astrocytes with these 
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potent neurotoxic cytokines has been shown to dramatically increase production of IL-6, IL-8, M-

CSF, and GM-CSF [73].  

In addition to TNF-α/IL-1β induction, soluble viral proteins have been widely implicated 

in the stimulation of cytokine-related neuronal injury.  Yeung et al (1995) demonstrated that IL-6 

and TNF-α were upregulated in brain, astrocyte, and macrophage cultures when exposed to 

recombinant gp120, which resulted in neurotoxicity [74].  Shah et al (2010) similarly showed that 

astrocytes transfected with plasmids containing the gp120 gene also upregulated IL-8 expression 

via the NF-κB pathway [75], while Cheung et al (2008) showed IL-1β up-regulation through gp120 

binding to the CCR5 co-receptor and activating the PI3K pathway [76].  HIV-1 Tat has also been 

associated with the up-regulation of neurotoxic cytokines, including TNF-α, IL-6, IL-1β, and IL-

8.  Tat can also directly cause neuronal injury through its interactions with the neuronal cell 

membrane, which causes a significant increase in intracellular Ca2+ levels and the induction of 

caspase-mediated neuronal apoptosis [43].  Similarly, Vpr has also been strongly implicated in the 

indirect mechanisms of neuronal apoptosis.  Vpr is found in significant quantities in HAND-

positive brain tissue samples, specifically within macrophages and neurons [77]. 

Recently, our laboratory (Guha et al, 2012) has identified Vpr as an important modulator 

of neuronal injury through its contribution to neurotoxic cytokine production in macrophages.  

Specifically, Vpr plays a role in the upregulation of the proinflammatory cytokines IL-8 and IL-

1β, which directly contribute to neuronal apoptosis and progression of HAND.  This mediation 

was found to be involved in the activation of the SAPK/JNK pathway in macrophages.  

Additionally, unpublished data from this study suggests that the chemokine CXCL10 also is 

partially regulated by the presence of Vpr in macrophages [44].  Roux et al (2000) have similarly 

found that Vpr modulates the expression of IL-8 through the activation of NF-κB and NF-IL-6 
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promoters in both T-cell and monocytic cell lines [78].  These results suggest that blocking or 

reducing the expression of Vpr may be an approach to decreasing neuronal death and slowing 

HAND progression.   

 

1.3.5 Role of productively infected, exposed and bystander macrophages in HIV-1 

infection 

As previously stated, productive HIV-1 infection of macrophages is essential to viral 

pathogenesis and disease progression.  However, not all macrophages become productively-

infected in vivo or in vitro.  A small fraction of macrophages are capable of producing nascent 

virions for further infection, while the remaining macrophage population may be non-productively 

infected, exposed to soluble viral proteins, or uninfected, as depicted in Figure 4.  Previous studies 

have approximated that 3-15% of in vitro-infected monocyte-derived macrophages were found to 

be capable of producing virions [79].  This fraction of macrophages is substantially responsible 

for the maintenance of the HIV-1 viral reservoir and disease progression. 

 



 20 

 

Figure 3. Schematic of potential outcomes in monocyte/macrophage populations after HIV-1 exposure.  

A small fraction of macrophages are capable of viral replication (green; A).  The rest of the macrophage population 

are uninfected (B), latently infected (C), or exposed to soluble viral proteins without viral genome integration (D). 

 

  

Though the non-productively infected macrophage population does not contribute to viral 

load, macrophages that are latently infected or exposed to soluble proteins may contribute to the 

dysregulated expression of cytokines.  As previously described, soluble viral proteins, including 

gp120, Tat, Nef, and Vpr, can modulate cytokine expression independent of viral genome 

integration [67].  Therefore, several types of viral exposure outcomes contribute to the cytokine 

expression in infected macrophage populations.  This variability may confound or dilute the 

magnitude of cytokine production in overall macrophage populations.  In order to elucidate the 
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role of productive infection in macrophages and to determine the exact percentage of infection, an 

in vitro modeling system in monocyte-derived macrophages is typically utilized.   As described by 

Brown et al (2006), reporter viruses employing a fluorescent element allow for the rapid 

identification and separation of productively-infected cells from bystander cells [79].  

Fluorescence-based separation for analysis of cytokine expression clarifies the roles of 

productively infected and non-productively infected macrophages at the single-cell level.  

Furthermore, cytokine profiling based on fluorescent expression may indicate the expression of 

cytokines by productively-infected macrophages otherwise diluted by total macrophage 

populations. 
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1.4 RATIONALE 

In order to analyze the subpopulations of HIV-1-infected macrophages, an in vitro 

modeling system similar to Brown et al. (2006) was developed [79].  The in vitro modeling system 

utilized reporter viruses with an enhanced green fluorescent protein (EGFP) element as an 

indication of productive infection.  Two macrophage-tropic HIV-1 isolates commonly used in our 

laboratory, YU-2 and AD8, were used in the development of reporter viruses.  As previously 

described, there are several viral determinants of HIV tropism, such as Vpr and Env, which are 

required for establishment of infection in macrophages.   Therefore, chimeric reporter viruses that 

specifically utilize the necessary R5-derived viral proteins are sufficient for macrophage 

productive infection and are capable of productive infection identification. 

In this study, the in vitro modeling system for MDM infection is applied to the analysis of 

cytokine expression and the role of Vpr in cytokine modulation.  As previously explained, our 

laboratory has found a Vpr-mediated upregulation of IL-1β and IL-8 in MDMs at both mRNA and 

protein levels.  Similar data from our laboratory has indicated a Vpr-mediated upregulation of 

CXCL10 at the protein level by ELISA quantification.  These analyses were executed by infecting 

MDMs with HIV-1 YU-2 and YU-2∆Vpr isolates for cytokine analysis [44].  The use of wild-type 

isolates did not allow for the quantification of productively-infected macrophages or identification 

of subpopulations within the infected macrophage culture.   Therefore, the in vitro modeling 

system will be constructed and characterized for use in the identification of subpopulation cytokine 

expression.  This system will also be used to verify the role of Vpr in modulating the expression 

of IL-1β, IL-8, and CXCL10. 

Additionally, due to the important role that Vpr plays in macrophage-tropic viral 

replication, YU-2 ∆Vpr infection is significantly replication-deficient in comparison to wild-type 
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YU-2 infection.  This may confound the analysis of Vpr-mediated cytokine expression due to the 

overall low rate of viral replication.  The utilization of functional Vpr mutants capable of 

maintaining viral replication kinetics similar to wild-type Vpr will both confirm the role of Vpr in 

cytokine modulation and identify which Vpr function causes the modulations.  In this study, we 

will analyze the effects of the previously-described Vpr-A30L mutation, which is deficient in 

oligomerization and virion association [63].  The Vpr-A30L mutant does not associate with 

budding virions, but is expressed within infected cells.  Therefore, Vpr-A30L can act as a 

transcriptional regulator upon expression within infected macrophages but is not present during 

early infection events as a virion associated molecules and does not involve in translocation of the 

pre-integration complex after viral entry of non-dividing cells.  Vpr-A30L was chosen based on 

its minimal effects on replication deficiencies in macrophage infection, as well as its functional 

deficiencies that allow for the identification of Vpr-mediated cytokine expression. 
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1.5 HYPOTHESIS 

We hypothesize that the characterization of the YU-2 and AD8 in vitro modeling systems 

for MDM infection will result in infection patterns similar to that of wild-type MDM infections.  

The use of these in vitro modeling systems will accurately identify the subpopulations within 

infected MDM cultures based on fluorescence expression.  Furthermore, we hypothesize that the 

analysis of these subpopulations of infected MDMs for cytokine expression will clarify the roles 

of contribution among exposed bystander and productively-infected macrophages in the 

expression of IL-1β, IL-8, and CXCL10.  The role of Vpr in the expression of these cytokines will 

also be further elucidated based on the analysis of wild-type, ∆Vpr, and A30L mutant infections. 
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2.0  SPECIFIC AIMS 

The following are the specific aims toward elucidating the role of Vpr on host-cellular interactions 

in monocyte-derived macrophages. 

Aim 1: Construct and characterize a macrophage-tropic chimeric reporter virus for cell-

specific analysis in MDMs. 

A. Construct an R5-tropic reporter virus that utilizes fluorescent expression during 

productive infection. 

B. Confirm the tropism and functionality of the reporter viruses through replication 

kinetics and viral protein production. 

C. Characterize the chimeric reporter viruses in relation to parental, non-reporter 

strains through parallel replication kinetics in infected MDMs. 

D. Construct and verify two Vpr mutations within the chimeric reporter viruses: 

deletion of Vpr production (ΔVpr) and production of Vpr-A30L, which is deficient 

in virion-association function. 

Aim 2: Identify the effects of Vpr mutations in host cellular gene expression. 

A. Verify effects of Vpr mutants on inflammatory cytokine/chemokine expression at 

the protein level in harvested supernatants from infected macrophages 

B. Analyze effects of Vpr mutants on cell-specific cytokine/chemokine expression  in 

infected and bystander macrophages 
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3.0  MATERIALS AND METHODS 

3.1.1 Construction of reporter chimeric viruses 

This study aimed to construct a reporter virus capable of infecting macrophages and 

expressing EGFP, which will be utilized for the separation of productively-infected macrophages.  

In order to achieve this, two cloning strategies were devised in the construction of an EGFP-

expressing, R5-tropic virus:  

1. Clone the env-containing region from the neurotropic YU-2 isolate onto the NL4-

3-EGFP-IRES X4-tropic laboratory strain via restriction sites EcoRI and BamHI. 

2. Clone the EGFP-containing region from NL4-3-EGFP-IRES onto the chimeric 

construct pNL(AD8), which contains the R5-tropic AD8 gp120 region within a NL4-3 

background, via restriction sites BamHI and XhoI. 
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Figure 4. Schematic detailing the construction of chimeric reporter proviral plasmids pNL(YU-2) and 

pNL(AD8). 

 

Strategies 1 and 2, as depicted in Figure 4, herein are referred to as pNL(YU-2)-EGFP and 

pNL(AD8)-EGFP, respectively.  In order to construct pNL(YU-2) in Figure 4A, two restriction 

sites were selected at approximately the same location on both pNL4-3-EGFP and YU-2 WT 

within the env region.  EcoRI, a unique restriction site located at 5746 bp on the YU-2 proviral 

plasmid and 5707 bp on the NL4-3-EGFP proviral plasmid, was chosen as the 5’ site of insertion.  

Primers were designed to amplify the env region, including the EcoRI restriction site, and to 

introduce a 3’ site of insertion as the BamHI restriction site.  The BamHI site was introduced at 

8435 bp on the YU-2 insert and previously existed at 8465 bp on the NL4-3-EGFP proviral 

backbone.  The primer sequences utilized for amplification are as follows:   
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Forward:  5’-CTATGAAACTTATGGAGATACTTGGGCAGGAG-3’ 

Reverse:  5’-GATAATTGCTAAGgAtCCATCCACTAATGGACCGG-3’ 

The underlined portion of the reverse primer sequence indicates BamHI restriction site.  

Mismatched nucleotides for BamHI site introduction are shown by lower-case letters.  The YU-2 

env region was amplified by PCR using these primers, ligated into a shuttle vector using 

pcDNA™3.1/V5-His TOPO® TA Expression Kit (Invitrogen), and sequenced by the Sanger 

method for verification.  The YU-2 env insert containing both EcoRI and BamHI restriction sites 

was subcloned into pNL4-3-EGFP.  The resulting proviral construct pNL(YU-2)-EGFP was 

Sanger or capillary sequenced and digested for verification.  

In order to construct a reporter chimeric virus utilizing a second R5-tropic env region, 

pNL(AD8), shown in Figure 4B,  a HIV-1 AD8 macrophage-tropic R5 clone, was obtained through 

the NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH from Eric O. Reed.  The EGFP 

region from pNL4-3-EGFP was subcloned onto pNL(AD8) using the BamHI restriction site, 

located at 8465 bp on both pNL(AD8) and pNL4-3-EGFP, and XhoI restriction site, located at 

8936 bp on both pNL(AD8) and pNL4-3-EGFP.  The resulting proviral construct pNL(AD8)-

EGFP was Sanger sequenced and digested for verification.  

3.1.2 Construction of Vpr mutants in chimeric reporter viruses 

In order to analyze the role of Vpr in HAND-related cytokine expression, two mutations 

were separately introduced onto both R5-utilizing reporter viruses: ∆Vpr and A30L-Vpr, as shown 

in Figure 5. The ∆Vpr mutation was subcloned from the existing pNL4-3∆Vpr, which contains a 

frameshift mutation in the unique AflII restriction site, yielding a truncated Vpr that lacks 

expression.  The fragment excised using restriction sites SphI and EcoRI was used to subclone the 
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∆Vpr mutation onto both pNL(AD8)-EGFP and pNL(YU-2)-EGFP.  Similarly, the A30L-Vpr 

mutation was subcloned from the existing pVpr-A30L, which was constructed as previously 

described [63].  Vpr-A30L is an amino acid substitution from alanine to leucine at 30 a.a., which 

causes a functional defect in Vpr virion association.  Restriction sites SphI and EcoRI were also 

used to subclone A30L-Vpr onto both pNL(AD8)-EGFP and pNL(YU-2)-EGFP. 

 

 

Figure 5. Schematic of Vpr-A30L and ∆Vpr mutation cloning in reporter chimeric viruses. 

3.1.3 Cells 

HEK-293T and TZM-bl cells were maintained at 37°C, 5% CO2 in DMEM (Gibco) 

containing 10% fetal bovine serum (HyClone), 1% L-glutamine (Invitrogen), and 1% 

penicillin/streptomycin (Invitrogen).  U87-CXCR4 and U87-CCR5 cells were similarly 

maintained in DMEM with 15% fetal bovine serum, 1% L-glutamine, and 1% 

penicillin/streptomycin.   
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Monocyte-derived macrophages: Monocyte (CD14+) cells were isolated from healthy 

donors using the Ficoll separation method:  fresh donor blood was layered onto lymphocyte 

separation media and centrifuged at 1800 g at 4°C for 30 minutes.  Peripheral blood mononuclear 

cells (PBMCs) were isolated from the gradient, counted, and washed for further separation.  CD14 

MicroBeads (Miltenyl Biotec) were added to the PBMCs suspended in MACS buffer (PBS pH 

7.2, 0.5% bovine serum albumin, 2 mM EDTA) at a ratio of 100 µl CD14 beads: 100 million 

PBMCs and incubated at 4°C for 30 minutes with occasional mixing.  CD14+ cells were then 

separated from the PBMC suspension using a MACS column and MACS Separator (Miltenyl 

Biotec).  Isolated CD14+ cells were counted and maintained in DMEM containing 10% fetal 

bovine serum, 1% L-glutamine, 1% penicillin/streptomycin, 1 ng/µl sargramostim (recombinant 

granulocyte macrophage colony-stimulating factor [GM-CSF]; Genzyme), and 1 ng/µl 

macrophage colony-stimulating factor (M-CSF; NIH).  CD14+ cells were seeded at 2.0 x 106 cells 

per well in a 6-well tissue culture plate and differentiated for 7 days prior to infection.  Media and 

growth factors were replenished every three days throughout the course of infection. 

3.1.4 Virus production and titration 

HEK-293T cells were transfected by seeding 3.0 x 106 cells in 10 ml media on 10 cm2 

tissue culture-grade plates, which were grown for 24 hours prior to transfection to 75% confluence.   

Thirty minutes prior to transfection, the media was changed to 5 ml per plate.  The cells were then 

transfected with 5 µg of purified plasmid DNA and 15 µl of PolyJetTM transfection reagent 

(SignaGen) diluted in 500 µl DMEM, which was added drop-wise to the plate.  16 hours post-

transfection, the transfected media was removed and 7 ml of fresh media was added for incubation 

for the following 60 hours.  72 hours post-transfection, the supernatants were harvested, 
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centrifuged at 800 g to remove cell debris, and purified using a 0.22µm Steriflip® filter unit 

(Millipore). 

 Virus infectivity was quantified by a TZM-bl assay using the transfected supernatants.  3.0 

x 104 TZM-bl cells were seeded in triplicate in a 96-well plate for 24 hours.  Once the cultures 

reached 90% confluence, the cells were infected with 1:10, 1:100, 1:1000, and undiluted quantities 

of virus and incubated for 6 hours.  After 6 hours, the media was changed and the plate was 

incubated for another 48 hours.  The infected cells were then washed, fixed, and stained with β-

galactosidase substrate for 3-4 hours.  The stained cells were then counted in the optimal well 

(containing 50-150 stained cells) for each replicate and averaged to yield the measure infectivity 

in infectious particles per ml. 

3.1.5 Viral infections and replication kinetics 

U87-CXCR4 and U87-CCR5 infections 

U87-CXCR4 and U87-CXCR5 cells were seeded at 1.5 x 104 cells per well in a 96-well 

plate and incubated for 24 hours prior to infection.  Once the cultures reached 75% confluence, the 

cells were infected with 1:10, 1:100, 1:1000, and undiluted quantities of virus and incubated for 

15-18 hours.  After initial infection, the media was changed and the plated was incubated for 

another 54-57 hours.  72 hours post-infection, the fluorescent cells were then counted in the 

optimal well (50-150 fluorescent cells) for each replicate and averaged to yield the number of 

productively-infected cells per well. 
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MDM infections and replication kinetics 

7 days post-differentiation, monocyte-derived macrophages (MDMs) were washed twice 

with PBS and replenished with cell media.  Purified virus was added based on p24 concentration 

(500 ng p24) or TZM-bl assay results (0.1 MOI) to each well.  The plates were incubated for 15-

18 hours and washed twice with PBS to remove virus inoculum before replenishing with fresh 

media.  MDM cultures were maintained for a 15-day infection course.  Supernatants were 

harvested and centrifuged at 1800 g for 10 minutes on days 0, 3, 6, 9, 12, and 15 post-infection.  

Remaining monocytes were resuspended in 2 ml cell media for media replenishment.  Cumulative 

replication kinetics were established by quantification of p24 viral capsid protein at each time point 

by p24 ELISA (NCI).  At day 15, MDMs were washed twice with PBS and used for intracellular 

staining or immunoblotting. 

3.1.6 Virus and cell lysate immunoblotting 

Infected MDMs were lysed with RIPA buffer (50 mM Tris, 150 mM NaCl, 0.1% SDS, 1% 

NP40, 1% Triton-X 100, and phenylmethanesulfonyl fluoride protease inhibitor [PMSF; Cell 

Signaling Technology, Inc]) for 2 hours at 4°C with shaking.  Cell debris were pelleted by 

centrifugation at 1800 g at 4°C for 10 minutes.  Protein quantification was done via bicinchoninic 

acid colormetric detection using BCA Protein Assay Kit (ThermoScientific).  In order to analyze 

virus replication by immunoblotting, MDM virus supernatant was concentrated.  At day 15 of the 

MDM infection course, 1 ml of MDM supernatant was harvested, purified, and concentrated by 

high-speed centrifugation at 22,000 rpm for 1 hour at 4°C.  Concentrated virus was resuspended 

in 50 µl sample buffer for use in immunoblotting. 
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Forty (40) µg of cell lysate sample and 50 µl of concentrated virus were electrophoresed 

by SDS-PAGE under reducing conditions at 70V for 3.5 hours and transferred to a PVDF 

membrane (Millipore) at 300 mA for 1 hour.  The membrane was blocked for 1 hour at room 

temperature in 5% milk in PBS-T (140 mM NaCl, 3 mM KCl, 10 mM Na2HPO4, 2 mM KH2PO4, 

0.1% Tween 20).  Following blocking, primary antibody diluted in 5% milk in PBS-T was added 

to the membrane for overnight incubation at 4°C with shaking.  The following primary antibodies 

were used in MDM cell lysate immunoblotting: anti-Vpr (1:2000, NIH AIDS Reagent Program, 

Division of AIDS, NIAID, NIH: HIV-1 Vpr (1-50) Antiserum from Dr. Jeffrey Kopp, Cat # 

11836), anti-Nef (1:200, NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH), anti-p24 

(1:500, NIH AIDS Reagent Program, Division of AIDS, NIAID, NIH: Monoclonal Antibody to 

HIV-1 p24 (AG3.0) from Dr. Jonathan Allan), and anti-actin (1:3000, Sigma).  The membranes 

were washed three times in PBS-T for 20 minutes each and incubated with the appropriate 

conjugated secondary antibody diluted in 5% milk in PBS-T for 1 hour at room temperature with 

shaking.  The following secondary antibodies were used: goat-anti-mouse HRP-conjugated 

secondary antibody (1:3000, Cell Signaling) and goat-anti-rabbit HRP-conjugated secondary 

antibody (1:5000, Cell Signaling).  The membranes were then washed with PBS-T three times for 

20 minutes each and then developed using WesternBright ECL HRP substrate kit (Advansta). 

3.1.7 Intracellular staining and flow cytometry 

At day 15 post-infection, MDMs were washed twice with PBS and detached by adding pre-

warmed CellStripperTM (CellGro) to MDMs for incubation on ice for 10 minutes.  The MDMs 

were then incubated at 37°C in CellStripper for 1-2 hours with occasional agitation for complete 

detachment.  Cells were collected into round-bottom tubes, centrifuged at 1200 g for 15 minutes, 
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and resuspended in 250 µl FACS buffer (PBS, 1% bovine serum albumin).  1 µl of GolgiPlugTM 

protein transport inhibitor (BD Biosciences) was added to the cell suspension for incubation at 

37°C for 6 hours.  2 mM EDTA was added for incubation at room temperature for 10 minutes.  

MDMs were then fixed with Cytofix/CytopermTM solution (BD Biosciences) at 4°C for 20 minutes 

and washed twice with FACS buffer.  Cell permeabilization was done by washing MDMs twice 

in 1X Perm/WashTM buffer (BD Biosciences).  MDMs were resuspended in 50 µl 1X Perm/Wash 

buffer and the following antibodies were added:  4 µl Pacific BlueTM anti-human IL-1β antibody 

(BioLegend), 5 µl AlexaFluor 700TM anti-human TNF-α antibody (eBioscience), 5 µl APC anti-

human CXCL10 antibody (BioLegend), and 20 µl PE anti-human IL-8 antibody (BioLegend).  The 

cell suspensions were mixed thoroughly and incubated for 45 minutes at room temperate in the 

dark.  MDMs were then washed twice with 1X Perm/Wash buffer and stored in FACS buffer/1% 

paraformaldehyde solution until analysis. 

Flow cytometric analysis was conducted on the LSRFortessaTM cell analyzer (BD 

Biosciences) using FACSDiva® software (BD Biosciences).  Cells were analyzed based on 

expression of EGFP, and subsequently analyzed by expression of IL-8, IL-1β, CXCL10, and TNF-

α.  Further analysis for polyfunctionality was carried out using FlowJo (Tree Star, Inc.) and 

Simplified Presentation of Incredibly Complex Evaluations (SPICE; NIH). 

3.1.8 Cytokine ELISA quantification 

Harvested supernatants from infected MDMs were evaluated for CXCL10, IL-8, IL-1β, 

and TNF-α production using Human IL-1β/IL-1F2 DuoSet ELISA kit (R&D Systems), Human 

CXCL8/IL-8 DuoSet ELISA kit (R&D Systems), Human CXCL10/IP-10 DuoSet ELISA kit 

(R&D Systems), and Human TNF Elisa kit (BD OptEIATM).  100 µl of capture antibody diluted 
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to 2.0 µg/mL in PBS was added to each well of a 96-well plate and incubated overnight at room 

temperature.  The plate was then washed with wash buffer (0.05% Tween®20 in PBS) three times 

and thoroughly dried.  100 µl of reagent diluent (1% BSA in PBS, 0.2 µm filter sterilized) was 

added to each well as a blocking agent and incubated at room temperature for 1 hour.  Following 

incubation, the plate was washed three times and dried thoroughly, as before.   

Harvested supernatants were diluted to the appropriate amount and added in 100µl volumes 

to the 96-well plate.  Samples for IL-1β analysis were diluted to 1:10, CXCL10 to 1:10, IL-8 to 

1:1000, and TNF-α samples were undiluted.  A seven-point standard curve for each cytokine 

standard was made and added in 100µl volumes to the 96-well plate.  The highest standard 

concentration for each cytokine were as follows:  250 pg/mL for IL-1β, 2000 pg/mL for CXCL10, 

2000 pg/mL for IL-8, and 500 pg/mL for TNF-α.  2-fold serial dilutions from the highest standard 

concentration were completed to establish a seven-point standard curve.  The samples and 

standards were incubated at room temperature for 2 hours.   

The plate was then washed three times and dried thoroughly, as before.  Detection antibody 

was diluted to 20 ng/mL in reagent diluent, added to each well in 100µl volumes, and incubated 

for 2 hours at room temperature.  The plate was then washed three times and dried thoroughly, as 

before.  Streptavidin conjugated to horseradish-peroxidase (HRP) was diluted 1:200 in reagent 

diluent and added in 100µl volumes to each well.  The plates were incubated for 20 minutes at 

room temperature in the dark, washed three times, and dried thoroughly.   

3,3’,5,5’-tetramethylbenzidine (TMB) substrate was prepared using the TMB Substrate 

Reagent kit (BD OptEIATM) by combining equal amounts of Substrate Reagent A and Substrate 

Reagent B.  100µl volumes were added to each well and incubated for approximately 20 minutes 

at room temperature in the dark, or until the appropriate level of color detection has occurred.  50µl 
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of 2 N H2SO4 was added to stop the reaction.  Color intensity was measured using the ELx800 

Absorbance Microplate Reader (Bio-Tek) and KCJuniorTM analysis software (Bio-Tek).  Seven-

point standard curves were assembled based on known concentrations and experimental 

absorbances.  Linear trend lines were used to create an equation for calculating cytokine amounts 

in pg/mL (R2 ≥ 0.900).  Experiments were repeated across four separate donors, excluding TNF-α 

(due to undetectable levels in collected supernatants). 

3.1.9 Microscopy 

Cell-specific tropism fluorescence microscopy 

Coverslips were added to a 6-well tissue culture plate and seeded with 1.5 x 104 U87MG-

CD4/CCR5 or U87MG-CD4/CXCR4 cells.  Cultures were incubated for 15-18 hours to 90% 

confluency, then infected with 0.1 MOI virus.  15-18 hours after infection, the cells were washed 

twice with PBS and replenished with media.  After 72 hours of infection, the cells were fixed with 

4% paraformaldehyde for 20 minutes at room temperature, washed twice with PBS, and stained 

with DAPI for 5 minutes.  The cells were washed twice with PBS and mounted onto slides with 

gelvatol, then imaged with Olympus IX71 inverted fluorescent microscope.  Overlay images were 

composited using GNU Image Manipulation Program (GIMP). 

 

MDM infection fluorescence microscopy 

 15 days post-infection, MDMs were washed twice with PBS and imaged with Olympus 

IX71 inverted fluorescent microscope for brightfield and EGFP expression analysis.  Overlay 

brightfield/green fluorescence images were composited using SPOT Advanced Modular Imaging 

Software for Microscopy (Diagnostic Instruments, Inc.).   
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3.1.10 Statistical Analysis 

Statistics were performed using Graphpad Prism® software (GraphPad Software, Inc.).  

Comparisons of samples were attempted using a two-sided Student’s t-test using a significance 

level of p<0.05. 
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4.0  RESULTS 

4.1 AIM 1:  CONSTRUCTION AND CHARACTERIZATION OF A MACROPHAGE-

TROPIC CHIMERIC REPORTER VIRUS FOR CELL-SPECIFIC ANALYSIS IN 

MONOCYTE-DERIVED MACROPHAGES (MDM) 

4.1.1 Verification of sequence homology in proviral chimeric reporter constructs 

As previously discussed, the utilization of reporter viruses for in vitro MDM infection 

provides a clear analysis of the subpopulations within infected MDM cultures.  Two reporter 

viruses were chosen for analyses and construction, as described in Section 3.1.1:  pNL(YU-2)-

EGFP and pNL(AD8)-EGFP.  Both constructs require restriction site-based fragment insertion that 

could interrupt viral protein sequences.  To ensure that the R5 env cloning would not shift or 

interfere with the reading frame of downstream viral proteins, sequences were compared between 

the parental and reporter chimeric virus plasmids.  The viral proteins that could be interrupted by 

reporter cloning included Vpr, Vif, gp41, Rev, Tat, and Nef.  The sequence of each viral protein 

was assessed for potential reading frame interferences using SerialCloner 2.6.1 (SerialBasics), as 

represented in Figure 6.   

The sequences of viral proteins were also compared among pYU-2, pNL4-3-EGFP, and 

pNL(AD8) to determine the degree of variation between HIV-1 isolates.  The analyzed sequences 

were compiled from sequencing data previously collected in our laboratory.  As expected, Env has 

a high degree of variability between YU-2, AD8, and NL4-3 isolates, which is primarily due to its 

inherent diversity to infect multiple target cell types.  Vpu was also highly variable among the 
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selected isolates since it is notably non-functional in the YU-2 isolate.   In order to retain the 

highest degree of similarity to wild-type R5-tropic isolates, the non-functional vpu sequence was 

included in the R5-env cloning of pNL(YU-2)-EGFP. 

 

 

Figure 6. Sequence comparisons show no interruption in chimeric viral proteins in reporter virus cloning.   

Representative sequence comparison of two viral proteins interrupted during proviral cloning, Vpr (A) by pNL(YU-

2)-EGFP cloning and Nef (B) by pNL(AD8)-EGFP cloning.  

 

 

 The chimeric Vpr protein assembled in the pNL(YU-2)-EGFP construct contains a portion 

of pNL4-3-EGFP vpr (amino acids 1 to 62) and a portion of YU-2 vpr (amino acids 63 to 96), as 

shown in Figure 6A.  Sequence analysis was performed in order to confirm that the NL4-3 portion 

of chimeric vpr did not drastically differ from YU-2 vpr, which is known to function correctly in 

macrophage infection.  Four differences in amino acids were found prior to the start of chimeric 

reporter virus cloning: H15Y, R28S, P37I, and G41N.  None of these amino acid substitutions are 

associated with significant changes in Vpr function, as determined from the Los Alamos National 
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Laboratory HIV Epitope Variant and Escape Mutation Database (www.hiv.lanl.gov).  

Additionally, no frameshift changes were identified prior to chimeric cloning.  Similarly, the nef 

region within the pNL(AD8)-EGFP construct was analyzed for changes in amino acids or 

frameshift alterations occurring after the site of the EGFP-IRES-Nef element insertion.  Chimeric 

Nef contains a portion from pNL(AD8) (amino acids 1 to 9) and a portion from pNL4-3-EGFP 

(amino acids 10 to 206).  No changes were identified in the sequence analysis between pNL4-3 

and pNL(AD8) within the nef region. 

 

4.1.2 Confirmation of the chimeric reporter virus construction 

In order to generate R5-tropic reporter viruses for further experiments, two cloning 

strategies were utilized:  YU-2 env region insertion into the X4-tropic pNL4-3-EGFP reporter 

construct and EGFP insertion into the R5-tropic pNL(AD8) construct (see Figure 4 for 

illustration).  Briefly, the EcoRI – BamHI region of pYU-2 was amplified and ligated into pNL4-

3-EGFP for pNL(YU-2)-EGFP construction.  This insertion was confirmed by restriction digest 

with BamHI and EcoRI for insertion release from the proviral reporter construct, as shown in 

Figure 7A.  The expected band sizes of the subsequent fragments were approximately 2.7 kb and 

13.4 kb for the insert and proviral fragment, respectively.   
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Figure 7. pNL(YU-2)-EGFP and pNL(AD8)-EGFP cloning yielded correct isolates.   

Restriction digests were used to confirm the insertion of YU-2 env into NL4-3-EGFP (A) or the insertion of the EGFP-

IRES reporter element into pNL(AD8) (B).  Asterisks indicate the isolate was positively verified by both restriction 

digest and sequencing. 

 

 

Similarly, the BamHI – XhoI region of pNL4-3-EGFP was isolated and ligated into 

pNL(AD8) for pNL(AD8)-EGFP construction.  Restriction digest analysis with BamHI and XhoI 

yielded a release of the ligated insert, as shown in Figure 7B.  The released insert was measured at 

approximately 1.7 kb and the proviral fragment was measured at 14.4 kb, as expected.  Restriction 

digest analysis revealed four correct clones for pNL(YU-2)-EGFP construction and seven clones 

for pNL(AD8)-EGFP.  Further confirmation with Sanger sequencing determined that two 

pNL(YU-2)-EGFP isolates contained the R5-tropic env insert, while all seven pNL(AD8)-EGFP 

isolates contained the correct EGFP element insertion.  Two isolates from each construct were 

chosen for further verification: pNL(YU-2)-EGFP clones 5A and 7B, as well as pNL(AD8)-EGFP 

clones 2 and 11. 
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4.1.3 Characterization of chimeric reporter virus tropism in U87 cell lines 

Following the successful construction of chimeric reporter viruses, the resulting constructs 

were evaluated for EGFP expression in the producer cell line, HEK 293T cells, by transient 

transfection.  All reporter virus clones were capable of EGFP expression upon transfection, as 

observed by fluorescence microscopy (data not shown).  However, the capacity to express the 

EGFP reporter element upon infection, rather than transfection, of cells must be established.  In 

order to verify that the constructed reporter viruses contained a functional Env region capable of 

R5-tropic infection, CCR5 co-receptor utilization was examined.  U87 glioblastoma cell lines 

expressing one of the two HIV-1 co-receptors (U87-CD4-CCR5 and U87-CD4-CXCR4) were 

infected with reporter virus for viral tropism identification, as depicted in Figure 8.   

 

 

Figure 8. Chimeric reporter viruses NL(YU-2)-EGFP and NL(AD8)-EGFP preferentially utilize the CCR5 co-

receptor for HIV-1 infection.   
U87-CCR5 and U87-CXCR4 cells were infected with NL(YU-2)-EGFP (A, B), NL(AD8)-EGFP (C, D), and NL4-3-

EGFP (E, F).  EGFP expression is indicated by green fluorescence, DAPI nuclei staining is indicated by blue 

fluorescence.  The average number of fluorescent cells per well are shown in (G). 
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Upon infection in U87-CD4-CCR5 cells, both NL(YU-2)-EGFP and NL(AD8)-EGFP 

showed high levels of fluorescent expression, indicative of successful productive infection 

(Figures 8A, 8C).  In contrast, infection in U87-CD4-CXCR4 cells, both reporter viruses yielded 

minimal to no EGFP expression (Figures 8B, 8D).  As expected, the X4-tropic NL4-3-EGFP 

laboratory strain, which was used as the proviral backbone for reporter cloning, yielded high levels 

of productive infection in U87-CD4-CXCR4 cells and no infection in U87-CD4-CCR5 cells 

(Figures 8E, 8F).  Collectively, this indicates that the chimeric reporter viruses were successfully 

altered from the X4 tropism of the original NL4-3-EGFP isolate to R5 tropism (Figure 8G).  

Additionally, EGFP production from infected U87 cells, rather than transiently transfected 293T 

cells, confirms that expression occurs upon viral integration.  Therefore, successful EGFP 

expression indicates a true productive infection.   

 

4.1.4 Confirmation of chimeric reporter virus functionality in primary MDMs 

After confirming tropism and EGFP reporter expression as an indicator for productive 

infection, chimeric reporter virus infections were characterized in primary MDMs.  Reporter 

viruses were assessed for EGFP expression, viral protein expression, and replication competence.  

As previously described, production of EGFP is crucial for MDM subpopulation analysis and 

quantification of infected cells.  Differentiated macrophages from a healthy donor were infected 

with four separate clones of reporter viruses:  NL(YU-2)-EGFP 5A, NL(YU-2)-EGFP 7B, 

NL(AD8)-EGFP 2, and NL(AD8)-EGFP 11.  Reporter virus infections were assessed for the 

maintenance of EGFP expression after virus exposure. 
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Figure 9. Chimeric reporter viruses infect monocyte-derived macrophages via CCR5 co-receptor utilization 

and express EGFP upon viral replication.   

Differentiated MDMs were infected with NL(YU-2)-EGFP 5A and 7B (A, B), as well as NL(AD8)-EGFP 2 and 11 

(C, D), with NL4-3 exposure (E) as a control.  Infected and exposed MDMs were imaged at 7 d.p.i. 

 

As shown in Figure 9 (A through D), the selected reporter clones successfully infected 

primary MDMs.  EGFP expression was observed by three days post-infection; amplification of 

EGFP over time provided a crude marker for the spread of infection to surrounding macrophages.  

As expected, exposure of primary MDMs to the X4-tropic NL4-3-EGFP laboratory virus yielded 

no EGFP with no effects on cellular morphology (Figure 9E).  EGFP expression allowed for a 

rapid visual estimation of infectivity, which was used to determine which reporter clone better 

reflected the true infection rates in macrophages.  Overlays between fluorescent imaging (green) 

and brightfield imaging provided an assessment for cell morphology and EGFP expression.  As 

such, NL(YU-2)-EGFP 7B (Figure 9B), and NL(AD8)-EGFP 11 (Figure 9D) were chosen for 

further experimentation. 
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  In addition to EGFP expression, sufficient levels of viral proteins within infected 

macrophages is also indicative of successful MDM infection.  Furthermore, the insertion of the 

YU-2 env region in NL(YU-2)-EGFP and the insertion of the EGFP element in NL(AD8)-EGFP 

may alter viral protein production.  The viral protein Nef was of particular interest, as its gene is 

located downstream of cloning sites in both constructs, as shown by the schematic depicted in 

Figure 10A.   

 

Figure 10. Verification of viral proteins expression from chimeric reporter viruses in infected MDMs.  

The production of viral protein Nef was assessed due to its downstream location from both chimeric reporter cloning 

sites (A).  Immunoblotting of lysed primary MDMs collected 14 d.p.i. for HIV-1 Nef, p24, and actin as a loading 

control (B). 

 

In order to ensure that cloning did not introduce frameshift mutations that would cause 

issues in downstream production, viral protein expression was measured by immunoblots from 

lysed infected primary MDMs, as shown in Figure 10B.  The Gag capsid protein p24 serves as a 

measure of viral particle production.  Its precursor protein, p55, is also detected by the anti-p24 

antibody.  The results indicate that each clone from both reporter constructs successfully produce 
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the 27 kDa viral protein Nef and the 24 kDa capsid protein p24.  The NL4-3-exposed and 

uninfected MDMs expectedly produced no detectable levels of either viral protein, despite the 

presence of sufficient amounts of cellular protein.  Collectively, these results demonstrate that the 

chimeric cloning in both reporter viruses had no effect on downstream viral protein expression.  

Both NL(YU-2)-EGFP and NL(AD8)-EGFP are capable of viral protein expression necessary for 

viral replication. 

The expression of secreted p24 capsid protein in released viral particles was also analyzed 

by ELISA quantification.  Secreted p24 from infected cells serves as a measurement of viral 

replication.  Increasing p24 levels over time, denoted as replication kinetics, indicate that 

macrophages are continuously producing and releasing new virus particles.  Viral replication is a 

crucial attribute of true productive infection, which is capable of promoting viral spread.  HIV-1 

is capable of infecting macrophages by macropinocytosis and endocytosis of surrounding virus 

particles, including X4-tropic viruses [80].  However, this type of infection is inefficient and does 

not reflect the in vivo infection patterns.  Similarly, endocytosis-based infections do not yield 

equivalent amounts of p24 production as productively-infected cells.  In order to ensure that the 

macrophages are replication-competent and productively-infected, replication kinetics were 

assessed for the chimeric reporter viruses in primary MDMs.  

 



 47 

 
Figure 11. Chimeric reporter viruses NL(YU-2)-EGFP and NL(AD8)-EGFP are replication-competent in 

MDMs. 

Cumulative p24 replication kinetic curves were assembled based on p24 ELISA quantifications of harvested 

supernatants from infected MDMs at days 0, 3, 6, 9, 12, and 14.    

 

As shown in Figure 11, each clone from both reporter constructs were capable of infecting 

and producing continuous amounts of p24 over the course of 14 days.  Particularly, each reporter 

virus replicates at a higher level than the X4-tropic NL4-3-EGFP.  Since X4-tropic viruses are 

capable of low levels of replication in MDMs via endocytosis-based infection, the higher levels of 

p24 production from the reporter viruses indicate a productive infection through CD4/CCR5 

receptor utilization.  Though both reporter constructs are replication-competent, both NL(AD8)-

EGFP isolates produce higher levels of virion production than the NL(YU-2)-EGFP isolates.  

Similar to the fluorescence analysis, isolates NL(AD8)-EGFP 11 (yellow line) and NL(YU-2)-

EGFP 7B (green line) were chosen for further experimentation based on their efficient virion 

production rates.  From this donor, NL(AD8)-EGFP 11 maximally accumulated 306.1 pg/mL of 

p24 capsid protein by 14 days post-infection, while NL(YU-2)-EGFP 7B accumulated 238.6 

pg/mL p24 protein by 14 days post-infection. 
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4.1.5 Characterization of chimeric reporter viruses in comparison to parental 

strains 

Since the chimeric reporter viruses are partially derived from R5-tropic viruses that have 

been well-characterized in macrophage infection, p24 replication kinetics were compared between 

the chimeric reporter viruses and their respective parental strains.  For the YU-2-enveloped 

reporter virus, the YU-2 wild-type isolate was used as a comparison.  For the AD8-enveloped 

reporter virus, the NL(AD8) clone was used for comparison.  Similar replication kinetics between 

chimeric reporter isolates and parental strains would strongly suggest that the infectivity and 

replication efficiency of these viruses are also similar. 

 

 
 
Figure 12. Chimeric reporter viruses NL(YU-2)-EGFP and NL(AD8)-EGFP replicate similarly to their 

respective parental isolates in MDMs.   

Cumulative p24 replication kinetic curves were assembled based on p24 ELISA quantifications of harvested 

supernatants from infected MDMs at days 0, 3, 6, 9, 12, and 15.   
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The results demonstrated that both chimeric reporter viruses replicate at similar rates to 

their respective parental strains, as shown in Figure 12.  In all four donors, the wild-type YU-2 

isolate (light blue, dashed line) replicated at a slightly higher rate than NL(YU-2)-EGFP (light 

blue, solid line).  Similarly, the NL(AD8) parental clone (yellow, dashed line) had marginally 

higher replication rates than NL(AD8)-EGFP (yellow, solid line) in three of the four donors.  

However, these differences are negligible and do not suggest any deficiencies in viral replication.   

As previously observed in reporter virus replication kinetics, the AD8-enveloped viruses 

consistently replicated more efficiently than the YU-2-enveloped viruses.  By 14 days post-

infection, AD8-enveloped viruses show up to a two-fold increase in p24 production in comparison 

to YU-2-enveloped viruses, as represented in Donor #79 (12C).  However, minimal differences 

were seen in Donor #72 (12B) at 14 days post-infection.  The maximum p24 accumulation during 

the course of infection was averaged at 334.35 pg/mL for NL(AD8)-EGFP and 226.9 pg/mL for 

NL(YU-2)-EGFP.   

Though NL(AD8)-EGFP could be selected for further experimentation based on its 

replication efficiency, the NL(YU-2)-EGFP reporter clone contains a larger portion of R5-tropic 

viral genes, which maintains its significance by reflecting a true macrophage infection.  Therefore, 

both constructs are chosen for further Vpr analysis:  NL(AD8)-EGFP, which contains Vpr from 

the NL4-3 laboratory strain, and NL(YU-2)-EGFP, which contains a chimeric Vpr primarily 

reflecting the YU-2 isolate. 
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4.1.6 Construction and characterization of Vpr mutants in chimeric reporter 

viruses 

As previously stated, two mutations were separately chosen for Vpr analysis using chimeric 

reporter viruses:  Delta (∆) Vpr, which is a non-functional truncation of Vpr that does not 

contribute to macrophage infection, and Vpr-A30L, which is a structurally and functionally 

deficient form of Vpr that results in a loss of virion association and oligomerization, respectively.  

The HIV-1∆Vpr virus results in a functional and structural loss of Vpr, which leads to a loss in 

Vpr-mediated enhanced viral replication in macrophages.  As previously described, Vpr-deficient 

strains of R5-tropic HIV-1 isolates result in significant decreases in viral replication [55].  In order 

to circumvent replication deficiencies of HIV-1∆Vpr, a Vpr mutant was chosen that resulted in a 

structural association and functional deficit yet expressed in the infected cells only. .  Since the 

Vpr-A30L mutation still results in the expression of Vpr, this mutant is not limited in the infected 

cell replication yet lacks the functions associated during early phase of infection as virion 

associated molecule. 
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Figure 13. EGFP expression in primary MDMs reveal distinct productive infection patterns among Vpr 

mutants.   
Differentiated MDMs from Donor 78 were infected with NL(YU-2)-EGFP WT (A), ∆Vpr (B), and Vpr-A30L (C), as 

well as NL(AD8)-EGFP WT (A), ∆Vpr (B), and Vpr-A30L (C).  Infected MDMs were imaged at 14 d.p.i.  Overlay 

images were compiled from green fluorescence imaging and brightfield imaging. 

Both Vpr mutants were separately cloned onto pNL(YU-2)-EGFP and pNL(AD8)-EGFP 

background, as described in Section 3.1.2 (see Figure 5 for illustration).  The resulting four 

mutants, pNL(YU-2)-EGFP∆Vpr, pNL(YU-2)-EGFP-VprA30L, pNL(AD8)-EGFP∆Vpr, and 

pNL(AD8)-EGFP-VprA30L, were packaged in HEK 293T cells for virus production using 

transfection.  All mutants were capable of EGFP expression in HEK 293T cells, with 

approximately 90% transfection efficiency (data not shown).   

Wild-type and mutant viruses from both constructs were used for infections in primary 

MDMs for analysis of EGFP expression patterns in Donor 78, as shown in Figure 13.  Both 

NL(YU-2)-EGFP (Figures 13A-13C) and NL(AD8)-EGFP (Figures 13D-13F) shown similar 
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patterns between wild-type, ∆Vpr, and A30L constructs.  Wild-type reporter viruses seemed to 

yield the highest amount of productive infection, while the ∆Vpr viruses expectedly resulted in 

minimal levels of productive infection.  Interestingly, the A30L mutant viruses showed a near 

recovery in EGFP expression, indicating an increased efficiency in productive infection in 

comparison to the ∆Vpr mutants.  Collectively, these comparisons indicate that the A30L mutation 

successfully circumvents the replication deficiencies seen in the ∆Vpr mutation.
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Figure 14. Quantification of EGFP expression confirms productive infection patterns of wild-type, ∆Vpr, and 

Vpr-A30L constructs. 

EGFP expression was further confirmed and quantified by flow cytometry, as shown by Donor 79 as a representative 

figure (A through F).  The EGFP quantification of all donors (G) confirmed the productive infection patterns 

previously seen.  NL4-3-exposed and uninfected MDMs were used as controls for auto-fluorescence. 
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The expression of EGFP similarly allows for direct quantification of productively-infected 

cells, as depicted in Figure 14 (also see Appendix).  Each reporter construct was used in 

macrophage infections and analyzed for the proportion of infected macrophages that express 

EGFP, as represented in 14A-14F for Donor #79.  Interestingly, NL(YU-2)-EGFP A30L had a 

higher percentage of productively-infected cells than wild-type NL(YU-2)-EGFP in Donor #79.  

These inconsistencies suggest that there is a high level of donor variability in infection patterns 

between wild-type and A30L replication efficiencies in MDMs.  WT/A30L replication patterns 

seemingly rely on a multitude of host factors, which vary from donor to donor.  However, mean 

expression levels of EGFP expression across four donors (Figure 14G) indicate that wild-type 

reporter constructs generally have a higher infectivity (8.1% EGFP+ in NL(YU-2)-EGFP WT, 

9.3% EGFP+ in NL(AD8)-EGFP WT) in comparison to A30L-Vpr reporter constructs (7.7% 

EGFP+ in NL(YU-2)-EGFP A30L, 6.2% EGFP+ in NL(AD8)-EGFP A30L).  Though EGFP 

quantification does accurately represent infection patterns among reporter constructs, it does not 

fully verify the functionality of Vpr mutants. 

 In order to further confirm that both the ∆Vpr and A30L constructs properly function, viral 

protein expression was evaluated by immunoblotting.  Because the Vpr-A30L mutation is deficient 

in virion association, infected cells will produce Vpr but it will not associate with budding virions 

for further infection.  Therefore, Vpr should be present within infected cells, but not within released 

virions.  The ∆Vpr mutation, which does not produce Vpr, should result in a lack of Vpr in both 

infected cells and released virions.   
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Figure 15. Expression of viral proteins in virus particles and infected cells from infected MDM cultures.   

p24 and Vpr expression levels were analyzed in virus particles from harvested supernatants and in cell lysates from 

infected MDMs.   
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As depicted in Figure 15, immunoblot comparisons of reporter virus constructs indicate 

that both the ∆Vpr and A30L mutations produce the expected viral protein expression patterns in 

primary MDMs.  Constructs were assessed for expression of the p24 capsid protein and Vpr.  As 

expected, both wild-type clones (lanes 1 and 4; Figures A and B) produced sufficient amounts of 

p24 and Vpr in harvested supernatants and cell lysates.  In contrast, the ∆Vpr mutants (lanes 2 and 

5; Figures A and B) yielded levels of p24 in both released virions and infected cells.  This is 

corroborated by the minimal fluorescent expression found in infected MDMs and well-

characterized replication deficiencies in macrophages.  Vpr production was minimal in both 

released virions and infected cells, particularly in comparison to wild-type expression.   

Remarkably, the A30L mutants (lanes 3 and 6; Figures A and B) produced similar levels 

of p24 to wild-type reporter constructs in both virus and cell lysates, indicative of a full recovery 

in replication kinetics.  Immunoblotting revealed that Vpr production within cells infected with 

the A30L mutants was present, but reduced in comparison to wild-type production levels.  Vpr 

was minimally present in harvested supernatants.  As such, both ∆Vpr and Vpr-A30L mutants 

express viral proteins as expected, which confirms their functionality in primary MDM infections. 

Furthermore, the replication kinetics of each reporter virus was evaluated for additional 

verification of replication patterns, as shown in Figure 16.   As previously described, replication 

kinetics curves were assembled based on p24 ELISA quantifications for each reporter construct.  

Primary MDMs were isolated from four independent donors to characterize the replication kinetics 

of NL(AD8)-EGFP viruses (yellow) and NL(YU-2)-EGFP viruses (blue).   
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Figure 16. Vpr mutations in chimeric reporter viruses demonstrate distinct replication kinetics patterns in 

primary MDMs.   
Cumulative p24 replication kinetic curves were assembled based on p24 ELISA quantifications of harvested 

supernatants from infected MDMs at days 0, 3, 6, 9, 12, and 14.  NL(AD8)-EGFP (yellow) and NL(YU-2)-EGFP 

(green) are compared among wild-type (solid line), ∆Vpr (dashed line), and Vpr-A30L (dotted line). 

 

 

 

In each donor, the ∆Vpr mutant viruses in each reporter construct (dashed lines) replicated 

at a consistently lower rate than the wild-type and Vpr-A30L viruses.  However, the comparison 

of replication rates between Vpr-A30L and wild-type viruses varied across donors, which is 

consistent with the productive infection quantification seen in Figure 14G.  As shown in Donor 

#78, the Vpr-A30L viruses in both constructs replicated at a noticeably higher rate than their 

respective wild-type counterparts.  However, NL(YU-2)-EGFP WT displayed a higher replication 

rate in comparison to NL(YU-2)-EGFP A30L in Donor #79, while the NL(AD8) constructs 

remained consistent from Donor #78.   Donors #80 and #82 depicted both wild-type constructs 
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with higher replication rates than both Vpr-A30L constructs.  The donor-specific variations in 

A30L and wild-type replication patterns mimic the results found in quantification of EGFP 

production, thus supporting the fact that replication rates correlate to infectivity. 

4.1.7 Aim 1 Summary 

The focus in this aim was to construct and characterize a macrophage-tropic reporter 

reporter virus for use in the cell-specific analysis of macrophage subpopulations that are exposed 

or productively-infected for further analyses.  Two chimeric constructs were used in this study:  

NL(YU-2)-EGFP, which utilizes the R5-tropic YU-2 envelope region, and NL(AD8)-EGFP, 

which utilizes the AD8 gp120.  Both of these constructs are capable of expressing EGFP upon 

productive infection in MDMs and provide an accurate assessment for infectivity.  NL(YU-2)-

EGFP and NL(AD8)-EGFP allow for expression of viral proteins and can replicate efficiently in 

macrophages.  These chimeric reporter viruses also replicate similarly to their parental strains, 

indicating a similar pathogenesis to their wild-type counterparts in macrophages. 

 In order to study the effects of Vpr on host-cellular function and cytokine expression, two 

Vpr mutants were separately introduced onto the reporter viruses: ∆Vpr and Vpr-A30L.  Both 

mutations were verified by sequence analysis, restriction digest analysis, and Vpr immunoblotting.  

As expected, the ∆Vpr mutation caused significant drops in replication efficiency, as corroborated 

by the low amounts of p24 detected by immunoblotting.  The Vpr-A30L mutation yielded 

surprising yet inconsistent results:  in some donors, the Vpr-A30L constructs replicated at higher 

rates than the wild-type constructs, though donor variability seems to play a significant role in the 

determination of these replication rates. 



 59 

4.2  AIM 2:   EFFECTS OF VPR ON HOST CELLULAR GENE EXPRESSION 

In the previous aim, an in vitro modeling system was constructed and established for further 

analysis in infected macrophage subpopulations.  The construction of chimeric reporter viruses 

were utilized as markers for productive infection based on fluorescently-tagged viral constructs.  

Thus, the subpopulations separated based on this modeling system include productively-infected 

macrophages, through the presence of green fluorescence, and non-productively-infected 

macrophages, through the absence of fluorescence.  The non-productively-infected macrophage 

subpopulation includes uninfected, latently-infected, and exposed cells.   Fluorescence-based 

separation allows for a multitude of analyses, including cytokine production, transcriptome 

profiling, and microRNA analysis. 

As previously discussed, our laboratory recently identified Vpr as a modulator for IL-1β 

and IL-8 expression in macrophages, which directly induces neuronal injury.  Guha et al. (2012) 

utilized wild-type R5-tropic viruses (YU-2) for macrophage infections and analyzed for cytokine 

and chemokine production in harvested supernatants.  Results from that study indicate that YU-2 

∆Vpr-infected macrophages yielded significantly lower IL-8 and IL-1β levels than YU-2 wild-

type-infected macrophages, which was further confirmed by the analysis of signaling pathways 

responsible for IL-8 and IL-1β production.  In addition to IL-8 and IL-1β modulation, the previous 

study also determined that CXCL10 may also be regulated by Vpr.  However, significance in 

CXCL10 expression was only identified at the protein level, but not the RNA level.  Though it 

was not found to be significantly modulated by Vpr in the previous study, TNF-α will also be 

analyzed due to its implication in neuronal injury. 

In Aim 2, we intend to verify that the fluorescently-tagged chimeric reporter viruses are 

capable of producing similar patterns of cytokine expression among wild-type and ∆Vpr constructs 
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as were established by Guha, et al.  Similarly, A30L-Vpr is used for a replication-competent, 

functional-deficient analysis of the impact of Vpr on cytokine analysis.  Furthermore, production 

of IL-1β, IL-8, CXCL10, and TNF-α will be analyzed at the protein level as a comparison between 

productively-infected macrophages and non-productively-infected macrophages, as separated by 

EGFP expression from reporter viruses.   

4.2.1 Verification of the role of Vpr on cytokine expression in chimeric reporter 

viruses 

In order to verify that the Vpr mutant reporter viruses behaved similarly to the wild-type 

and ∆Vpr viruses utilized in the study previously described, ELISAs for IL-1β, IL-8, CXCL10, 

and TNF-α were performed on harvested MDM supernatants infected with mutant reporter viruses.  

In particular, IL-1β, IL-8, and CXCL10 expression was previously found to be significantly 

decreased during HIV-1 infection using YU-2 ∆Vpr in comparison to YU-2 wild-type.  Similar 

patterns in cytokine expression for chimeric reporter virus infections are verified using NL(YU-

2)-EGFP wild-type and ∆Vpr, as well as NL(AD8)-EGFP wild-type and ∆Vpr.  Additionally, 

A30L reporter constructs were investigated for cytokine expression patterns in relation to wild-

type and ∆Vpr levels.   

As depicted in Figures 17 through 20, cytokine expression levels reveal distinct patterns 

among wild-type, ∆Vpr, and Vpr-A30L constructs.   Uninfected macrophages were also analyzed 

for basal-level expression of cytokines.  Cytokine expression levels were evaluated in four separate 

donors infected with each chimeric reporter virus.  Each donor is shown individually due to the 

high variability in numerical quantifications across donors.  Cytokine production was evaluated at 

days 3, 6, 9, 12, and 15 for Donors 78 and 79.  An additional timepoint at day 0, indicating the 
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time at which virus-containing media was removed, was taken for Donors 80 and 82 to evaluate 

for cytokine expression during viral exposure. 

As described earlier, CXCL10 expression was previously found to be upregulated by Vpr 

through protein quantifications, but not RNA analysis. CXCL10 expression patterns among wild-

type, ∆Vpr, and Vpr-A30L constructs were variable, as shown in Figure 17.  Donor 78 showed a 

slight decrease in CXCL10 expression in both ∆Vpr constructs (top two panels), with no difference 

noticeable difference between wild-type, Vpr-A30L, and uninfected macrophages.  Donor 79 

revealed the most visible difference among Vpr mutants, with ∆Vpr and uninfected secretions 

yielding similarly low levels.  Again, wild-type and Vpr-A30L infections secreted similar amounts 

of CXCL10 during the course of infection.  Donors 80 and 82 yielded similar results, with 

moderate downregulation of CXCL10 in ∆Vpr mutants.  However, wild-type and Vpr-A30L 

infections showed mixed patterns, with Vpr-A30L occasionally reaching higher CXCL10 

concentrations than wild-type, as seen in the NL(YU-2)-EGFP constructs for Donor 80.  Generally, 

CXCL10 production among reporter virus infections peaked at 9 days post-infection, with 

maximal production levels peaking at 30,000 pg/mL in Donors 78 and 79. 
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Figure 17. CXCL10 production by chimeric reporter virus infections, including wild-type (WT), ∆Vpr (-R), 

and A30L, over time.   
CXCL10 secretion levels were quantified by ELISA (in pg/mL) from harvested supernatants at days 0, 3, 6, 9, and 15 

post-infection.  Macrophages were isolated from four healthy donors (Donors 78, 79, 80, and 82) and infected with 

NL(YU-2)-EGFP WT, ∆Vpr, and A30L (left column) or NL(AD8)-EGFP WT, ∆Vpr, and A30L (right column).  Wild-

type production levels are marked in red, ∆Vpr production levels in blue, and A30L production levels in green.  

Uninfected macrophages were evaluated for basal-level CXCL10 production (NT, in black). 
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Similarly, IL-1β and IL-8 production levels were analyzed for expression patterns among 

wild-type, ∆Vpr, and Vpr-A30L constructs.  As previously determined, ∆Vpr results in a drastic 

decrease in both IL-1β and IL-8 expression, as shown in Figures 18 and 19.  IL-1β expression was 

particularly downregulated in ∆Vpr constructs, which largely follows the basal-level expression 

of uninfected macrophages (Figure 18).  Across all four donors, ∆Vpr maximally reaches 166.48 

pg/mL of IL-1β at 3 days post-infection in the NL(YU-2)-EGFP construct, in comparison to 

1212.62 pg/mL and 1033.73 pg/mL in wild-type and Vpr-A30L constructs, respectively.  IL-8 

expression also follows moderate patterns of downregulation among ∆Vpr constructs (Figure 19).  

This strongly suggests that the role of Vpr in IL-8 and IL-1β is verified in the chimeric reporter 

virus constructs.   

However, the use of A30L-Vpr constructs in IL-8 and IL-1β cytokine analysis yields 

variable results in comparison to wild-type, as seen in CXCL10 expression patterns.  Surprisingly, 

Vpr-A30L infections generally peaked at higher levels in IL-1β expression than wild-type 

infections, excluding Donors 79 and 82 in the NL(AD8)-EGFP constructs.  In contrast, IL-8 levels 

in Vpr-A30L were generally lower than wild-type expression levels (as seen in Donors 79, 80, and 

82 from Figure 19). 
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Figure 18. IL-1β production by chimeric reporter virus infections, including wild-type (WT), ∆Vpr (-R), and 

A30L, over time.  
IL-1β secretion levels were quantified by ELISA (in pg/mL) from harvested supernatants at days 0, 3, 6, 9, and 15 

post-infection.  Macrophages were isolated from four healthy donors (Donors 78, 79, 80, and 82) and infected with 

NL(YU-2)-EGFP WT, ∆Vpr, and A30L (left column) or NL(AD8)-EGFP WT, ∆Vpr, and A30L (right column).  

Wild-type production levels are marked in red, ∆Vpr production levels in blue, and A30L production levels in green.  

Uninfected macrophages were evaluated for basal-level IL-1β production (NT, in black).   
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Figure 19. IL-8 production by chimeric reporter virus infections, including wild-type (WT), ∆Vpr (-R), and 

A30L, over time.   
IL-8 secretion levels were quantified by ELISA (in pg/mL) from harvested supernatants at days 0, 3, 6, 9, and 15 post-

infection.  Macrophages were isolated from four healthy donors (Donors 78, 79, 80, and 82) and infected with NL(YU-

2)-EGFP WT, ∆Vpr, and A30L (left column) or NL(AD8)-EGFP WT, ∆Vpr, and A30L (right column).  Wild-type 

production levels are marked in red, ∆Vpr production levels in blue, and A30L production levels in green.  Uninfected 

macrophages were evaluated for basal-level IL-8 production (NT, in black).   
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Figure 20. TNF production by chimeric reporter virus infections, including wild-type (WT), ∆Vpr (-R), and 

A30L, over time.   
TNF secretion levels were quantified by ELISA (in pg/mL) from harvested supernatants at days 0, 3, 6, 9, and 15 post-

infection.  Macrophages were isolated from four healthy donors (Donors 78, 79, 80, and 82) and infected with NL(YU-

2)-EGFP WT, ∆Vpr, and A30L (left column) or NL(AD8)-EGFP WT, ∆Vpr, and A30L (right column).  Wild-type 

production levels are marked in red, ∆Vpr production levels in blue, and A30L production levels in green.  Uninfected 

macrophages were evaluated for basal-level TNF production (NT, in black). 

 

 

Expression levels of TNF-α were also analyzed in the Vpr mutant chimeric reporter viruses 

for Donors 78 and 79, depicted in Figure 20.  As previously found by Guha et al. (2012), Vpr does 

not regulate TNF-α expression in protein or RNA production in the absence of a secondary signal.   

Therefore, TNF-α serves as an appropriate negative control for Vpr-mediated cytokine analysis in 

the context of viral infection.  As expected, no differences in TNF-α levels were detected among 

wild-type, ∆Vpr, and Vpr-A30L infections.  Furthermore, low levels of TNF-α were produced 

among infected macrophages at the assessed time points, with maximal levels only reaching 

approximately 40 pg/mL.  Both donors showed similar expression patterns between infected and 
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uninfected macrophage supernatants.  Similar results have been previously seen in our laboratory 

using monocyte-derived macrophages.  As such, earlier time points may be necessary to detect 

increased, HIV-1-mediated TNF-α production. 

 

4.2.2 Cell-specific analysis of productively-infected and non-productively-infected 

monocyte-derived macrophages for expression of CXCL10, IL-8, IL-1β, and TNF-α 

Following the analysis of secreted cytokines in macrophage supernatants, the contribution 

of cytokine production of different macrophage subpopulations in cytokine production was 

assessed.  Specifically, productively-infected macrophages and non-productively-infected 

macrophages were assessed for their individual cytokine expression patterns.  In order to analyze 

macrophage subpopulations for expression, both EGFP expression and intracellular cytokine 

staining were utilized.  In contrast to the overall production of cytokine secretion as determined by 

ELISA, this method allows for cell-specific analysis of cytokine production.   

As represented in Figure 21 by the gating strategy, macrophages were run through a flow 

cytometer and gated using a forward scatter vs. side scatter plot (FSC vs SSC).   Since macrophages 

are large cells with characteristic pseudopodia, the expected forward scatter values for true 

macrophages are also large, as represented in the top panel of Figure 21.  The gated macrophage 

population was then further separated based on EGFP expression, as shown by the FITC vs 

“Count” histogram in Figure 21.  Two peaks were separated based on EGFP expression: a peak 

below 103 FITC intensity, termed EGFP-negative, and a peak above 103
 FITC intensity, termed 

EGFP-positive. 
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Figure 21. Representative gating strategy for cell-specific cytokine analysis of productively-infected and non-

productively-infected MDMs.   
After 14 days post-infection, infected macrophages were detached and stained for intracellular IL-8, IL-1β, CXCL10, 

and TNF-α.  EGFP production, as analyzed by FITC quantification, was used as a marker for productive infection.  

Macrophage populations were separated based on EGFP expression and separately analyzed for cytokine expression 

(pink = EGFP-negative, green = EGFP-positive). 
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Following EGFP expression-based gating, each subpopulation (EGFP-negative and EGFP-

positive) were further analyzed for cytokine expression, as represented in the bottom panel of 

Figure 21.  Both subpopulations were analyzed for expression of CXCL10, IL-8, IL-1β, and TNF-

α simultaneously.  A stringent gating strategy (above 104 intensity) was utilized to minimize basal-

level expression patterns, especially in the non-productively-infected macrophage subpopulation.  

As depicted, the EGFP-positive histogram (green) and EGFP-negative histogram (pink) were used 

to differentiate between subpopulations.  From this analysis, the percentage of cytokine-positive 

cells for each cytokine were assessed.  In order to ensure an accurate measurement of cytokine 

expression, a minimum of 100 cytokine-positive cells were necessary for percentage calculations.  

Due to the inefficient infectivity of NL(AD8)-EGFP ∆Vpr, EGFP-positive subpopulation cytokine 

expression could not be assessed. 

 In order to assess modulations in cytokine expression among reporter virus constructs, the 

percentage of expression-positive cells for each cytokine were assessed for three donors in both 

NL(YU-2)-EGFP and NL(AD8)-EGFP constructs.  Cell-specific analyses were classified into 

EGFP-positive, or productively-infected macrophages, and EGFP-negative, or non-productively-

infected macrophages, as demonstrated in Figures 22 and 23, respectively.  However, high levels 

of donor variability, as previously seen in infectivity and ELISA quantification results, restrict 

statistical analyses in cytokine regulation.  More donors are needed for statistical relevance. 

 As shown in Figure 22, the EGFP-positive subpopulation was analyzed for the expression 

of CXCL10, IL-8, IL-1β, and TNF-α in both NL(YU-2)-EGFP and NL(AD8)-EGFP constructs.  

Among productively-infected macrophages, NL(YU-2)-EGFP ∆Vpr shows a mean decrease in the 

number of cytokine-positive cells (27.5%) from NL(YU-2)-EGFP wild-type (43.8%) in IL-8.  
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Similarly, a slight decrease was also seen in IL-1β, 67.9%-positive in wild-type and 43.2%-positive 

in ∆Vpr.  However, very little differences were seen in CXCL10 and TNF-α production between 

wild-type and ∆Vpr.  Comparisons among NL(AD8)-EGFP wild-type and ∆Vpr could not be 

determined due to the low number of cytokine-positive cells in each donor.   

 

 

 

Figure 22. Cell-specific analysis of cytokine expression levels of IL-8, IL-1β, CXCL10, and TNF-α for 

productively-infected macrophage subpopulations.   

Macrophages were infected with NL(YU-2)-EGFP wild-type (WT), NL(YU-2)-EGFP ∆Vpr (–R), NL(YU-2)-EGFP 

A30L, NL(AD8)-EGFP wild-type (WT), NL(AD8)-EGFP ∆Vpr (–R), or NL(AD8)-EGFP A30L and cultured for 14 

days.  Cytokine expression levels were analyzed using intracellular staining and flow cytometry in macrophages 

subpopulations capable of EGFP expression.  Percentage of cells positive for cytokine expression were used for the 

calculation of standard deviation and median.  Expression was analyzed across three donors:  Donor #79 (red), Donor 

#80 (purple), and Donor #82 (blue).    
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The comparison between Vpr-A30L and wild-type in both NL(YU-2)-EGFP and 

NL(AD8)-EGFP constructs yielded similar results.  Among productively-infected cells, Vpr-A30L 

produced similar levels of IL-1β, CXCL10, and TNF-α when compared to wild-type infection in 

both constructs, revealing a recovery in cytokine expression.  Productively-infected cells infected 

with Vpr-A30L virus (20.1% IL-8-positive in YU-2, 23.4% IL-8-positive in AD8) expressed lower 

levels of IL-8 than wild-type infections (43.8% IL-8-positive in YU-2, 38.6% IL-8-positive in 

AD8).  When compared to NL(YU-2)-EGFP ∆Vpr infection (27.5% IL-8-positive), the NL(YU-

2)-EGFP A30L infection (20.1% IL-8-positive) yielded lower amounts of IL-8 production, as well.  

However, this pattern of expression is also revealed in ELISA quantifications, as shown in Figure 

19. 

 Additionally, cytokine expression was also analyzed in the non-productively-infected 

macrophage subpopulations in Figure 23.  As expected, the median percentages of cytokine-

positive cells in the non-productively-infected macrophage group (Figure 23) are typically lower 

than those of the productively-infected macrophage group (Figure 22).  However, there are no 

noticeable variations among ∆Vpr mutant infections in the EGFP-negative subpopulation in 

comparison to wild-type infections.  Similarly, there are no noticeable trends among Vpr-A30L 

mutant infections in comparison to wild-type infections.  Interestingly, the comparison of NL4-3-

exposed macrophage populations to uninfected macrophage populations revealed that viral 

exposure results in a slight increase in cytokine expression, despite the absence of productive 

infection and viral replication by 15 days-post infection. 
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Figure 23. Cell-specific analysis of cytokine expression levels of IL-8, IL-1β, CXCL10, and TNF-α for non-

productively-infected/exposed macrophage subpopulations.   

Macrophages were infected with NL(YU-2)-EGFP wild-type (WT), NL(YU-2)-EGFP ∆Vpr (–R), NL(YU-2)-EGFP 

A30L, NL(AD8)-EGFP wild-type (WT), NL(AD8)-EGFP ∆Vpr (–R), or NL(AD8)-EGFP A30L and cultured for 14 

days.  Cytokine expression levels were analyzed using intracellular staining and flow cytometry in macrophages 

subpopulations without EGFP expression.  Percentage of cells positive for cytokine expression were used for the 

calculation of standard deviation and median.  Expression was analyzed across three donors:  Donor #79 (red), Donor 

#80 (purple), and Donor #82 (blue).    
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4.2.3 Aim 2 Summary 

The focus of this aim is to utilize the constructed chimeric reporter viruses and their Vpr 

mutants, ∆Vpr and Vpr-A30L, for inflammatory factors expression analysis.  Specifically, the 

cytokines analyzed were chosen based on a previous study related to Vpr-mediated cytokine 

expression in neuronal injury: CXCL10, IL-8, IL-1β, and TNF-α.  In this study, ∆Vpr mutants 

within the NL(YU-2)-EGFP and NL(AD8)-EGFP constructs had lower expression patterns in IL-

8, IL-1β, and CXCL10, which is consistent with previous data.  This successfully verifies that the 

chimeric reporter constructs produce similar expression patterns in relation to Vpr-regulated 

cytokine modulation.  Additionally, infections with the Vpr-A30L mutant virus generally yielded 

a recovery or increase in cytokine production in comparison to wild-type, which indicates that the 

Vpr-A30L virion association mutation is not sufficient for the downregulation of Vpr-mediated 

expression of cytokines. 

Furthermore, cytokine expression was analyzed by utilizing the separation of productively-

infected macrophages and non-productively-infected macrophages.  Analysis of productively-

infected macrophages revealed that the productively-infected macrophage population of NL(YU-

2)-EGFP ∆Vpr infections yielded lower levels of IL-8 and IL-1β production in comparison to 

NL(YU-2)-EGFP wild-type.  This confirms the function of Vpr in IL-8 and IL-1β expression and 

further suggests that Vpr-regulated cytokine expression is not replication-dependent.  Moreover, 

productively-infected macrophages infected with Vpr-A30L viruses depict lower expression 

patterns of IL-8, which may indicate a role for virion association in IL-8 upregulation. 



 74 

5.0  DISCUSSION 

HIV-1 macrophage infection plays a crucial role in the establishment of a viral reservoir 

and the maintenance of infection.  One of the mechanisms attributed to HIV-1 induced immune 

dysregulation is selective inhibition of the cytokine network in monocytes, macrophages, and 

dendritic cells, which eventually alters immune function. HIV-1-infected dendritic cells, subjected 

to exposure of different types of viral factors, differentially regulate Th1 and Th2 cytokine 

production to impair host protective antiviral immunity and facilitate viral replication. Studies have 

shown that Vpr selectively suppresses the production of cytokine IL-12 but not IL-6 upon CD40L 

stimulation [82-84]. The downregulation of inflammatory cytokines by HIV-1 Vpr+ virus-exposed 

or -infected dendritic cells and upregulation of IL-10 found in our recent studies further confirm 

the role of this protein in host cytokine dysfunction [81]. Although signaling pathways directing 

the maturation of dendritic cells have been delineated by different groups, there is no clear 

indication which particular cascade is predominantly deregulated during HIV-1 induced dendritic 

cell function.  

Different studies showed different patterns of alteration of cytokine profiling during HIV-

1 infection. Although not much work has been done to detail the role of different HIV-1-derived 

factors in the regulation of cytokine production, studies from our laboratory and others have shown 

that Vpr as a soluble protein or as a virion-associated molecule inhibits IL-12 production from 

both DC and PBMC upon specific stimulation conditions [93-95]. Interestingly, TNF-α production 

was shown to enhance in the presence of Vpr upon a second signal by primary myeloid-derived 

target cells [96-98]. In case of plasmacytoid dendritic cells (pDCs), Vpr diminishes IFN-γ 
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production [99]. It will be interesting to see in the future how different viral proteins interact to 

regulate the cytokine network during HIV-1 infection and influence the course of infection.  

Among a multitude of functions in disease progression, macrophages and microglia 

contribute to the viral invasion and neuronal injury associated with HIV-1-associated 

neurocognitive disorders (HAND).  Recently, our laboratory has determined that the HIV-1 

accessory protein viral protein R (Vpr) mediates the expression of IL-1β and IL-8, which in turn 

caused neuronal injury and contributed to HIV-1-associated neurocognitive disorders.  Together 

these studies further support the notion that HIV-1 Vpr alters the host cellular cytokine/chemokine 

expression in host cells. However, it is not clear whether de novo synthesized and/or virion-

associated Vpr contribute to host cellular transcription in a synergistic or additive manner. 

This study aims to further elucidate the role of Vpr in cytokine expression in monocyte-

derived macrophages through the use of cell-specific analysis. The utilization of cell-specific 

analysis in this study is based on the construction of a fluorescent-tagged reporter virus capable of 

macrophage infection.   Fluorescence utilization allows for the separation of productively-infected 

cells from non-productively-infected cells.  This modeling system for infection identification has 

been successfully implemented in several other studies [79, 100].  Furthermore, these studies 

utilized chimeric reporter viruses with macrophage-tropic envelope regions, thus substantiating 

the reliability and likeness of the constructed reporter viruses to wild-type isolate infections.  

Though fluorescent-tagged wild-type isolates would be the most desirable reporter virus, several 

HIV-1 isolates, including HIV-1 YU-2, are particularly difficult to manipulate via cloning due to 

the flanking genomic DNA sequences, as well as a lack of proper sequence information of the 

parental clone. 



 76 

Ideally, productively-infected cells and non-productively-infected cells each behave 

similarly to the establishment of infection, which creates a homogenous subpopulation of cells 

with similar responses to infection upon fluorescent separation.  Therefore, cell-specific analysis 

of these subpopulations allows for the elucidation of pathogenesis in productively-infected cells 

and the understanding of exposure in bystander cells.  As previously described, bystander cells are 

known to be affected by surrounding soluble viral proteins, including gp120, Tat, and Vpr.  These 

soluble viral proteins can transactivate host transcriptional factors, thus altering the transcriptional 

profile of non-productively-infected macrophages.  Specifically, Vpr is known to transactivate a 

wide array of host promoters and transcription factors, such as SAPK/JNK, NF-κB, and p300 [28, 

101].  Studies have shown that soluble Vpr are capable of host transcriptional activation, which 

influence bystander macrophage characterization.  However, the data collected in this study 

showed little visible difference among non-productively-infected macrophages exposed to wild-

type and ∆Vpr viruses.   The overall exposure of non-productively-infected macrophages to 

soluble proteins may not have been uniformly substantial enough to detect any variability across 

mutants. 

In this study, two particular Vpr mutations were used in the analysis of Vpr-mediated 

cytokine expression in relation to HAND development: ∆Vpr, which results in both a functional 

and structural deficiency of Vpr in pathogenesis, and Vpr-A30L, which results in de novo synthesis 

in the infected cells and deficiency in virion-association function.  The ∆Vpr mutation was 

previously used by Guha et al. (2012) in the YU-2 ∆R isolate for similar functional analyses [44].  

The use of YU-2 ∆R resulted in a significant drop in viral replication, which further complicated 

the functional analysis of Vpr.  Though ∆Vpr showed a significant downregulation of IL-1β and 

IL-8 expression in relation to the wild-type isolate, the lower replication kinetics of ∆Vpr raised a 



 77 

question:  is the downregulation of IL-8 and IL-1β in ∆Vpr infection a result of deficient Vpr 

function, or is it a result of the lower viral replication associated with ∆Vpr infection?  This study 

aimed to clarify this issue by specifically isolating productively-infected macrophages in ∆Vpr 

infections for cytokine production analysis.   

As earlier described, NL(YU-2)-EGFP ∆Vpr infections supported the previous findings:  

Vpr mediates the expression of IL-1β and IL-8 in productively-infected macrophages.  However, 

the previous study also determined that CXCL10 may be Vpr-mediated at the protein level, though 

no significant modulations were found at the RNA level.  Further analyses in this study determined 

that though there was a moderate downregulation of CXCL10 in overall cytokine quantifications 

for ∆Vpr infections, there was no visible difference in CXCL10 production in productively-

infected macrophages.  This suggests that CXCL10 may be downregulated in ∆Vpr infections due 

to the deficiency in replication kinetics and not the deficiency in functionality.  Although no 

previous studies exist on the correlation between Vpr and CXCL10 expression, Si et al. (2002) 

determined that CXCL10 expression was dependent on viral replication in microglial cells, thus 

suggesting a confounding issue for CXCL10 expression in ∆Vpr infection analyses [102]. 

Furthermore, TNF-α expression was measured as a negative control in this study, 

particularly because previous studies in our laboratory have found no significant Vpr mediation 

for TNF-α.  However, diminutive amounts of TNF-α were observed in each donor.  Expression of 

TNF-α for in vitro experiments typically requires induction from external sources outside of viral 

infection, such as LPS-TLR ligand stimulation.  Because this study is solely interested in virus-

host interactions without external induction, LPS stimulation was never conducted.  TNF-α 

amounts are found in high amounts during in vivo infection, primarily thought to be induced by 

surrounding stimulants.  Some increases in TNF-α expression may occur during entry and 
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establishment of infection in monocyte-derived macrophages; however, this would require hourly 

timepoints that were not the focus of this study. 

In addition to confirming the reliability of ∆Vpr infections, the Vpr-A30L virion 

association defective mutant was also analyzed for any role in cytokine expression.  Vpr-A30L 

viruses cannot associate with budding virions, thus not allowing for effect during early infection 

phase (before de novo synthesis) or association with the pre-integration complex in further 

infections.  Other studies utilizing A30L have determined that Vpr-A30L fails to oligomerize, does 

not concentrate at the nuclear envelope, and cannot function in G2 cell cycle arrest in proliferating 

CD4+ T cells [63, 64].  However, these studies were completed using transfection methods with 

Vpr mutant plasmids to understand Vpr-A30L function.  This study aimed to understand the effects 

of virion association mutations in Vpr during the different phases of infection life cycle. 

Interestingly, the Vpr-A30L mutation resulted in replication kinetics that were similar to 

wild-type viruses in monocyte-derived macrophages.  Though Vpr-A30L lacks important 

functions for macrophage infection, including virion/PIC association, nuclear envelope 

concentration, and oligomerization, it remains competent in viral replication.  This may be 

explained by the fact that Vpr-A30L remains within macrophages throughout the course of 

infection, leading to a more concentrated amount of Vpr within the cell than in wild-type 

infections.  Therefore, Vpr-A30L may interact more extensively with viral and host transcription 

factors within the nucleus, due to its absence in virion packaging.  Theoretically, this would result 

in an enhanced level of viral copies and would lead to a higher infectivity, despite deficiencies in 

Vpr functionality.  More analyses of Vpr-A30L subcellular localization and transactivation during 

the course of infection would be needed to substantiate this observation. 
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Because infections with Vpr-A30L mutant viruses have not previously been carried out, its 

effects in HIV-1 viral pathogenesis are generally unknown.  In this study, we aimed to understand 

if virion association was necessary for the expression of cytokines that were previously established 

to be Vpr-mediated.  Such mutational analyses have previously utilized to understand the structure-

function relationship of Vpr, and have previously elucidated key protein-protein interactions 

responsible for Vpr functionality [103].  Therefore, the expression of IL-8, IL-1β, and CXCL10 

were analyzed in Vpr-A30L infections.  As corroborated by ELISA cytokine quantifications and 

cell-specific analysis in monocyte-derived macrophages, virion association may play a role in the 

Vpr mediation of IL-8 expression.  This narrows the potential functions of Vpr that may affect IL-

8 expression to virion association, nuclear envelope concentration, or oligomerization.  Because 

Vpr-mediated IL-8 expression has been previously shown to occur through p38 and SAPK/JNK 

signaling pathways, virion association may play a role in the activation of this pathway and may 

be structurally involved in Vpr-mediated binding to the IL-8 promoter region [44, 104].   

This study additionally sought to identify the macrophage subpopulation responsible for 

the expression of Vpr-mediated cytokines, including IL-8 and IL-1β.  Though non-productively-

infected macrophages did produce moderate amounts of these cytokines, Vpr-mediated expression 

was particularly evident in productively-infected macrophages.  This strongly implicates Vpr in 

the pathogenesis and development of HAND, since IL-8 and IL-1β are well-known 

proinflammatory mediators involved in neurocognitive disorders.  Furthermore, IL-8 and IL-1β, 

along with several other cytokines, have been previously found to have common transcription 

factor binding sites within their promoters, potentially resulting in a Vpr-transcription factor 

interaction to mediate the expression of these cytokines [44]. 
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5.1 CONCLUSIONS 

This study sought to elucidate the role of Vpr in cytokine expression in monocyte-derived 

macrophages, in relation to HIV-1-associated pathogenesis, disease progression and 

comorbidities.  In order to further analyze the effects of Vpr on HIV-1 macrophage pathogenesis, 

reporter viruses were constructed in order to analyze macrophage subpopulations based on HIV-1 

productive infection through the utilization of EGFP expression.  Results from this study suggest 

that Vpr does play a role in the expression of IL-8 and IL-1β in productively-infected macrophages, 

which leads to immune dysfunction and neuronal injury.  Furthermore, the virion association 

function of Vpr may specifically be involved in the Vpr-mediated expression of IL-8. 
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6.0 FUTURE DIRECTIONS 

The current study utilized macrophage-tropic reporter viruses capable of EGFP expression, 

which was constructed by cloning the R5-tropic env region from YU-2 and AD8 HIV-1 isolates 

onto a EGFP-tagged, X4-tropic laboratory virus. Comprehensive confirmation and 

characterization was completed to ensure that viral replication in primary macrophages with 

reporter viruses were similar to wild-type isolate infections.  Additional portions of macrophage-

tropic viral genes could be cloned onto the chimeric reporter viruses to further strengthen its 

likeness to wild-type isolates.  Though EGFP reporter cloning into the wild-type YU-2 isolate has 

already been extensively attempted, this method could be repeated in order to obtain the most 

accurate macrophage infection and pathogenesis.  An emphasis on stabilizing the proviral 

construct during cloning in competent E. coli cells, particularly during the transformation of large 

and unstable plasmids, is necessary.  

The Vpr-A30L mutant used in Aim 2 was chosen for this study based on its relevance in 

macrophage infections, particularly in virion association functions.  Further structure-function 

mutations may be chosen to identify specific Vpr interactions and its role in cytokine production.  

Previous findings in our laboratory have found that mutations, such as ∆Q44, also affect Vpr’s 

ability to associate with budding virions [63].  Similarly, this study has also defined other Vpr 

structure-function mutations that would be significant in macrophage infection: nuclear 

localization mutants, such as R36W, may elucidate the correlation between the Vpr structure-

function relationship and Vpr-mediated cytokine expression [103].  

As previously stated, donor variation remains an important issue within this study.  In order 

to reach statistical significance in cytokine measurement, particularly in cell-specific analysis, 



 82 

more donor replicates are needed.  Typically, using primary cells from individual donors, 

approximately 8 donors are used in order to accurately determine significance.  Variable infectivity 

quantifications, as seen by EGFP expression across four donors, correlate to the discrepancies 

observed across donors in ELISA quantifications.  Additionally, the primary cells from each donor 

respond differently to infection and thus express different levels of cytokines, as seen by 

intracellular staining and ELISA quantifications. 
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APPENDIX 

INFECTIVITY OF REPORTER CONSTRUCTS BASED ON EGFP EXPRESSION 



 84 

BIBLIOGRAPHY 

1. UNAIDS: UNAIDS report on the global AIDS epidemic. 2012. 

2. Barré-Sinoussi, F., J.C. Chermann, F. Rey, et al., Isolation of a T-Lymphotropic 

Retrovirus from a Patient at Risk for Acquired Immune Deficiency Syndrome (AIDS). 

Science, 1983. 220(4599): p. 868-871.  

3.  Gallo, R.C., P.S. Sarin, E.P. Gelmann, et al., Isolation of Human T-Cell Leukemia Virus in 

Acquired Immune Deficiency Syndrome (AIDS). Science, 1983. 220(4599): p. 865-867. 

4. U.S. Department of Health and Human Services: A timeline of AIDS. 2011. 

5. Cohen, S.M., Hellmann, N., Levy, J.A., et al., The spread, treatment, and prevention of 

HIV-1: evolution of a global pandemic. J. Clin. Invest., 2008. 118(4): p. 1244-1254. 

6. U.S. Department of Health and Human Services: Stages of HIV. 2009. 

7. Wilen, C.B., J.C. Tilton, and R.W. Doms, Molecular mechanisms of HIV entry. Adv. Exp. 

Med. Biol., 2012. 726: p. 223-42. 

8. Dalgleish, A.G., P.C. Beverley, P.R. Clapham, et al., The CD4 (T4) antigen is an essential 

component of the receptor for the AIDS retrovirus. Nature, 1984. 312: p. 763-767. 

9. Deng, H., Liu, R., Ellmeier, W., et al., Identification of a major co-receptor for primary 

isolates of HIV-1. Nature, 1996. 381: p. 661-666. 

10. Coakley, E., Petropoulos, C.J., Whitcomb, J.M. Assessing chemokine co-receptor usage in 

HIV. Curr Opin Infect Dis., 2005. 18(1): p. 9-15. 

11. Bowerman, B., Brown, P.O., Bishop, M.J., et al., A nucleoprotein complex mediates the 

integration of retroviral DNA. Genes & Development, 1989. 3: p. 469-478. 



 85 

12. Bukrinsky, M.I., Sharova, N., Dempsey, M.P., et al., Active nuclear import of human 

immunodeficiency virus type 1 preintegration complexes. Proc. Natd. Acad. Sci. USA, 

1992. 89: p. 6580-6584. 

13. Los Alamos National Laboratory: Landmarks of the HIV genome. 2012. 

14. Wei, P., Garber, M.E., Fang, S-M., et al., A novel CDK9-associated C-type cyclin interacts 

directly with HIV-1 Tat and mediates its high-affinity, loop-specific binding to TAR RNA. 

Cell, 1998. 92: p. 451-462. 

15. Blissenbach, M., Grewe, B., Hoffmann, B., et al., Nuclear RNA Export and Packaging 

Functions of HIV-1 Rev Revisited. J Virol, 2010. 84(13): p. 6598-6604. 

16. Malim, M.H., Emerman, M., HIV-1 accessory proteins—ensuring viral survival in a 

hostile environment. Cell Host Microbe, 2008. 3(6): p. 388-398. 

17. Este, J.A., Telenti, A., HIV entry inhibitors. The Lancet, 2007. 370(9581): p. 81-88. 

18. Van’t Wout, A.B., Kootstra, N.A., Mulder-Kampinga, G.A., et al., Macrophage-tropic 

variants initiate human immunodeficiency virus type 1 infection after sexual, parenteral, 

and vertical transmission. J. Clin. Invest., 1994. 94: p. 2060-2067. 

19. Mosier, D.E., How HIV changes its tropism: evolution and adaptation? Curr Opin HIV 

AIDS, 2009. 4(2): p. 125-130. 

20. Moyle, G.M., Wildfire, A., Mandalia, S., et al., Epidemiology and predictive factors for 

chemokine receptor use in HIV-1 infection. J Infect Dis, 2005. 191(6): p. 866-872. 

21. Connor, R.I., Sheridan, K.E., Ceradini, D., et al., Change in co-receptor use correlates with 

disease progression in HIV-1-infected individuals. J. Exp. Med., 1997. 185: p. 621-628. 



 86 

22. Goodenow, M.M., Collman, R.G., HIV-1 coreceptor preference is distinct from target cell 

tropism: a dual-parameter nomenclature to define viral phenotypes. J. Leuko. Bio., 2006. 

80(5): p. 965-972. 

23. Gordon, S., Taylor, P.R., Monocyte and macrophage heterogeneity. Nature, 2005. 5: p. 

953-964. 

24. Carter, C.A., Ehrlich, L.S. Cell biology of HIV-1 infection of macrophages. Annu. Rev. 

Microbiol., 2008. 62: p. 425-443. 

25. Herbein, G., Gras, G., Khan, K.A., et al., Macrophage signaling in HIV-1 infection. 

Retrovirology, 2010. 7(34): p. 1-13. 

26. Olivietta, E., Percario, Z., Fiorucci, G., et al., HIV-1 Nef induces the release of 

inflammatory factors from human monocyte/macrophages: involvement of Nef endocytotic 

signals and NF-kappa B activation. J. Immunol., 2003. 170(4): p. 1716-1727. 

27. Niederman, T.M., Garcia, J.V., Hastings, W.T., et al., Human immunodeficiency virus type 

1 Nef protein inhibits NF-kappa B induction in human T cells. J. Virol., 1992. 66(10): p. 

6213-6219. 

28. Ayyavoo V., Mahboubi A., Mahalingam S., et al., HIV-1 Vpr suppresses immune 

activation and apoptosis through regulation of nuclear factor kappa B. Nat Med., 1997. 

3(10): p. 1117–1123. 

29. Swingler, S., Mann, A.M, Zhou, J. et al., Apoptotic Killing of HIV-1–Infected Macrophages 

Is Subverted by the Viral Envelope Glycoprotein. PLoS Path., 2007. 3(9). 

30. Fantuzzi, L., Belardelli, F., Gessani, S., Monocyte/macrophage-derived CC chemokines 

and their modulation by HIV-1 and cytokines: A complex network of interactions 

influencing viral replication and AIDS pathogenesis. J. Leuko. Biol., 2003. 74: p. 719-725. 



 87 

31. Swingler, S., Brichacek, B., Jacque, J.M., et al., HIV-1 Nef intersects the macrophage 

CD40L signalling pathway to promote resting-cell infection. Nature, 2003. 424(6945): p. 

213-219. 

32. Kogan, M., Rappaport, J., HIV-1 Accessory Protein Vpr: Relevance in the pathogenesis of 

HIV and potential for therapeutic intervention. Retrovirology, 2011. 8(25). 

33. Saksena, N.K., Wang, B., Zhou, L., et al., HIV reservoirs in vivo and new strategies for 

possible eradication of HIV from the reservoir sites. HIV AIDS (Auckl), 2010. 2: p. 103-

122. 

34. Nicod, L.P., Cytokines: an overview. Thorax, 1993. 48: p. 660-667. 

35. Fauci, A.S., Host factors and the pathogenesis of HIV-induced disease.  Nature, 1996. 384: 

p. 529-534. 

36. Klein, S.A., Dobmeyer, J.M., Dobmeyer, T.S., et al., Demonstration of the Th1 to Th2 

cytokine shift during the course of HIV-1 infection using cytoplasmic cytokine detection on 

single cell level by flow cytometry. AIDS, 1997. 11(9): p. 1111-1118. 

37. Clerici, M., Shearer, G.M., A TH1  TH2 switch is a critical step in the etiology of HIV 

infection. Immunology Today, 1993. 14(3): p. 107-111. 

38. Peterson, J.D., Herzenberg, L.A., Vasquez, K., et al., Glutathione levels in antigen-

presenting cells modulate Th1 versus Th2 response patterns. Proc. Natl. Acad. Sci. USA, 

1998. 95: p. 3071-3076. 

39. Kedzierska, K., Crowe, S.M., Turville, S., et al., The influence of cytokines, chemokines 

and their receptors on HIV-1 replication in monocytes and macrophages. Rev. Med. Virol., 

2003. 13: p. 38-56. 



 88 

40. Koyanagi, Y., O’Brien, W.A., Zhao, J.Q., et al., Cytokines Alter Production of HIV- 1 from 

Primary Mononuclear Phagocytes. Science, 1998. 241(4873): p. 1673-1675. 

41. Duoek, D.C., Roederer, M., Koup, R.A., Emerging concepts in the immunopathogenesis 

of AIDS. Annu. Rev. Med., 2009. 60: p. 471-484. 

42. Kast, R.E., Feedback between glial tumor necrosis factor-alpha and gp120 from HIV-

infected cells helps maintain infection and destroy neurons. Neuroimmunomodulation, 

2002-2003.  10(2): p. 85-92. 

43. Yang, Y., Wu, J., Lu, Y., Mechanism of HIV-1-TAT Induction of Interleukin-1b from 

Human Monocytes: Involvement of the Phospholipase C/Protein Kinase C Signaling 

Cascade. J. Med. Virol., 2010. 82: p. 735-746. 

44. Guha, D., Nagilla, P., Redinger, C., et al., Neuronal apoptosis by HIV-1 Vpr: contribution 

of proinflammatory molecular networks from infected target cells. J. Neuroinflammation, 

2012. 9(1): p. 138. 

45. Molina, J-M., Scadden, D.T., Byrn, R., et al., Production of Tumor Necrosis Factor a and 

Interleukin 1β by Monocytic Cells Infected with Human Immunodeficiency Virus. J. Clin. 

Invest., 1989. 84: 733-737. 

46. Kreuzer, K.A., Dayer, J.M., Rockstroh, J.K., et al., The IL-1 system in HIV infection: 

peripheral concentrations of IL-1β, IL-1 receptor antagonist and soluble IL-1 receptor 

type II. Clin. Exp. Immunol., 1997. 109: p. 54-58. 

47. Kedzierska, K., Crowe, S.M., The Role of Monocytes and Macrophages in the 

Pathogenesis of HIV-1 Infection. Current Medicinal Chemistry, 2002. 9: p. 1893-1903. 



 89 

48. Cocchi, F., DeVico, A. L., Garzino-Demo, A., et al., Identification of RANTES, MIP-1 

alpha, and MIP-1 beta as the major HIV-suppressive factors produced by CD8+ T cells. 

Science, 1995. 270: p. 1811-1815. 

49. Muthumani, K., Kudchodkar, S., Papasavvas, E., et al., HIV-1 Vpr regulates expression 

of beta chemokines in human primary lymphocytes and macrophages. J. Leukoc. Biol., 

2000. 68(3): p. 366-372. 

50. Kootstra, N.A., van’t Wout, A., Huisman, H.G., et al., Interference of interleukin-10 with 

human immunodeficiency virus type 1 replication in primary monocyte-derived 

macrophages. J. Virol., 1994. 68(11): p. 6967-6975. 

51. Wecker, K., N. Morellet, S. Bouaziz, et al., NMR Structure of the HIV-1 Regulatory 

Protein Vpr in H2O/trifluoroethanol. Comparison with the Vpr N-terminal (1-51) and C-

terminal (52-96) domains. European Journal of Biochemistry, 2002. 269(15): p. 3779-

3788. 

52. Morellet, N., S. Bouaziz, P. Petitjean, et al., NMR Structure of the HIV-1 Regulatory 

Protein VPR. Journal of Molecular Biology, 2003. 327(1): p. 217-227. 

53. Barnitz, R.A., Chaigne-Delalande, B., Bolton, D.L., et al., Exposed Hydrophobic 

Residues in Human Immunodeficiency Virus Type 1 Vpr Helix-1 Are Important for Cell 

Cycle Arrest and Cell Death. PLoS One, 2011. 6(9). 

54. Bolton, D.L., Lenardo, M.J., Vpr Cytopathicity Independent of G2/M Cell Cycle Arrest in 

Human Immunodeficiency Virus Type 1-Infected CD4+ T cells. J. Virol., 2007. 81(17): p. 

8878-8890. 



 90 

55. Connor, R.I., Chen, B.K., Choe, S., et al., Vpr is Required for Efficient Replication of 

Human Immunodeficiency Virus Type 1 in Mononuclear Phagocytes. Virology, 1995. 

206: 935-944. 

56. Popov, S., Rexach, M., Zybarth, G., et al., Viral protein R regulates nuclear import of the 

HIV-1 pre-integration complex. The EMBO Journal, 1998. 17(4): p. 909-917. 

57. Fouchier, R.A., Meyer, B.E., Simon, J.H., et al., Interaction of the Human 

Immunodeficiency Virus Type 1 Vpr Protein with the Nuclear Pore Complex. J. Virol., 

1998. 72(7): p. 6004-6013. 

58. Jenkins, Y., McEntee, M., Weis, K., et al., Characterization of HIV-1 Vpr Nuclear 

Import: Analysis of Signals and Pathways. J. Cell Biol., 1998. 143(4): p. 875-885. 

59. Vodicka, M.A., Koepp, D.M., Silver, P.A., et al., HIV-1 Vpr interacts with the nuclear 

transport pathway to promote macrophage infection. Genes & Development, 1998. 12: p. 

175-185. 

60. Le Rouzic, E., Benichou, S., The Vpr protein from HIV-1: distinct roles along the viral 

life cycle. Retrovirology, 2005. 2(11). 

61. Vanitharani, R., S. Mahalingam, Y. Rafaeli, et al., HIV-1 Vpr Transactivates LTR-

Directed Expression through Sequences Present within −278 to −176 and Increases 

Virus Replication in Vitro. Virology, 2001. 289(2): p. 334-342. 

62. Ayyavoo, V., Mahalingam, S., Rafaeli, Y., et al., HIV-1 Viral Protein R (Vpr) regulates 

viral replication and cellular proliferation in T cells and monocytoid cells in vitro. J. 

Leukoc. Biol., 1997. 62: p. 93-99. 



 91 

63. Venkatachari, N.J., Walker, L.A., Tastan, O., et al., Human immunodeficiency virus type 

1 Vpr: oligomerization is an essential feature for its incorporation into virus particles. 

Virology, 2010. 7: p. 1-11. 

64. Jacquot, G., Le Rouzic, E., David, A., et al., Localization of HIV-1 Vpr to the nuclear 

envelope: Impact on Vpr functions and virus replication in macrophages. Retrovirology, 

2007. 4(84). 

65. Fiala, M., Looney, D.J., Stins, M., et al., TNF-alpha opens a paracellular route for HIV-1 

invasion across the blood-brain barrier. Mol Med., 1997. 3(8): p. 553-564. 

66. Gendelman, H.E., Lipton, S.A., Tardieu, M., et al., The neuropathogenesis of HIV-1 

infection. J. Leuko. Biol., 1994. 56: p. 389-398. 

67. Kaul, M., Garden, G.A., Lipton, S.A., Pathways to neuronal injury and apoptosis in HIV-

associated dementia. Nature, 2001. 410: p. 988-994. 

68. Aloisi, F., Care, A., Borsellino, G., et al., Production of Hemolymphopoietic Cytokines 

(IL-6, IL-8, Colony-Stimulating Factors) by Normal Human Astrocytes in response to IL-

1β and tumor necrosis factor-α. J. Immunol., 1992. 149: p. 2358-2366. 

69. Basu, A., Krady, J.K., Levison, S.W., Interleukin-1: A Master Regulator of 

Neuroinflammation. J. Neuroscience Research, 2004. 78: p. 151-156. 

70. Xing, H.Q., Hayakawa, H., Izumo, K., et al., In vivo expression of proinflammatory 

cytokines in HIV encephalitis: an analysis of 11 autopsy cases. Neuropathology, 2009. 

29: 433-442. 

71. Kelder, W., McArthur, J.C., Nance-Sproson, T., et al., Beta Chemokines MCP-1 and 

RANTES are Selectively Increased in Cerebrospinal Fluid of Patients with Human 



 92 

Immunodeficiency Virus-Associated Dementia. Annals of Neurology, 1998. 44(5): p. 

831-835. 

72. Sui, Y., Potula, R., Dhillon, N., et al., Neuronal Apoptosis Is Mediated by CXCL10 

Overexpression in Simian Human Immunodeficiency Virus Encephalitis. Am. J. Pathol., 

2004. 164(5): p. 1557-1566. 

73. Zheng, J.C., Huang, Y., Tang, K., et al., HIV-1-infected and/or immune-activated 

macrophages regulate astrocyte CXCL8 production through IL-1β and TNF-α: 

Involvement of mitogen-activated protein kinases and protein kinase R. J. 

Neuroimmunology, 2008. 200: p. 100-110. 

74. Yeung, M.C., Pulliam, L., Allan, S., The HIV envelope protein gp120 is toxic to human 

brain-cell cultures through the induction of interleukin-6 and tumor necrosis factor-α. 

AIDS, 1995. 9(2). 

75. Shah, A., Kumar, A., HIV-1 gp120-mediated increases in IL-8 production in astrocytes 

are mediated through the NF-κB pathway and can be silenced by gp120-specific siRNA. 

J. Neuroinflammation, 2010. 7(96). 

76. Cheung, R., Ravyn, V., Wang, L., Signaling Mechanism of HIV-1 gp120 and Virion-

Induced IL-1β Release in Primary Human Macrophages. J. Immunol., 2008. 180(10): p. 

6675-6684. 

77. Pomerantz, R.J., Effects of HIV-1 Vpr on Neuroinvasion and Neuropathogenesis. DNA 

and Cell Biology, 2004. 23(4): p. 227-238. 

78. Roux, P., Alfieri, C., Hrimech, M., et al., Activation of Transcription Factors NF-κB and 

NF-IL-6 by Human Immunodeficiency Virus Type 1 Protein R (Vpr) Induces Interleukin-

8 Expression. J. Virol., 2000. 74(10): p. 4658-4665. 



 93 

79. Brown, A., Zhang, H., Lopez, P., et al., In vitro modeling of the HIV-macrophage 

reservoir. J. Leukoc. Biol., 2006. 80: p. 1127-1135. 

80. Liu, N.Q., Lossinsky, A.S., Popik, W., et al., Human Immunodeficiency Virus Type 1 

Enters Brain Microvascular Endothelia by Macropinocytosis Dependent on Lipid Rafts 

and the Mitogen-Activated Protein Kinase Signaling Pathway. J. Virol., 2002. 76(13): p. 

6689-6700. 

81. Granelli-Piperno, A., Golebiowska, A., Trumpfheller, C., et al., HIV-1-infected monocyte-

derived dendritic cells do not undergo maturation but can elicit IL-10 production and T 

cell regulation. Proc Natl Acad Sci USA, 2004. 101(20): p. 7669-7674. 

82. Ma, X., Montaner, L.J., Proinflammatory response and IL-12 expression in HIV-1 

infection. J Leukoc Biol, 2000. 68(3): p. 383-390. 

83. Smed-Sorensen, A., Lore, K., Walther-Jallow, L., et al., HIV-1-infected dendritic cells up-

regulate cell surface markers but fail to produce IL-12 p70 in response to CD40 ligand 

stimulation. Blood, 2004. 104(9): p. 2810-2817. 

84. Mirani, M., Elenkov, I., Volpi, S., et al., HIV-1 protein Vpr suppresses IL-12 production 

from human monocytes by enhancing glucocorticoid action: potential implications of Vpr 

coactivator activity for the innate and cellular immunity deficits observed in HIV-1 

infection. J Immunol,  2002. 169(11): p. 6361-6368. 

85. Muthumani, K., Desai, B.M., Hwang, D.S., et al. HIV-1 Vpr and anti-inflammatory 

activity. DNA Cell Biol, 2004. 23(4): p. 239-247. 

86. Majumder, B., Janket, M.L., Schafer, E.A., et al., Human immunodeficiency virus type 1 

Vpr impairs dendritic cell maturation and T-cell activation: implications for viral immune 

escape. J Virol, 2005. 79(13): p. 7990-8003. 



 94 

87. Mahalingam, S., Meanger, J., Foster, P.S., et al., The viral manipulation of the host cellular 

and immune environments to enhance propagation and survival: a focus on RNA viruses. 

J Leukoc Biol, 2002. 72(3): p. 429-439. 

88. Ramshaw, I.A., Ramsay, A.J., Karupiah, G., et al., Cytokines and immunity to viral 

infections. Immunol Rev., 1997. 159: p. 119-135. 

89. He, L., Terunuma, H., Hanabusa, H., et al., Interleukin 18 and interleukin 1beta production 

is decreased in HIV type 1-seropositive hemophiliacs but not in HIV type 1-seropositive 

nonhemophiliacs. AIDS Res Hum Retroviruses, 2000. 16(4): p. 345-353. 

90. Torre, D., Speranza, F., Martegani, R., et al., Circulating levels of IL-18 in adult and 

paediatric patients with HIV-1 infection. AIDS, 2000. 14(14): p. 2211-2212. 

91. Almeida, M., Cordero, M., Almeida, J., et al., Abnormal cytokine production by circulating 

monocytes and dendritic cells of myeloid origin in ART-treated HIV-1+ patients relates to 

CD4+ T-cell recovery and HCV co-infection. Curr HIV Res,  2007. 5(3): p. 325-336. 

92. Fantuzzi, L., Conti, L., Gauzzi, M.C., et al. Regulation of chemokine/cytokine network 

during in vitro differentiation and HIV-1 infection of human monocytes: possible 

importance in the pathogenesis of AIDS. J Leukoc Biol., 2000. 68(3): p. 391-399. 

93. Biancotto, A., Grivel, J.C., Iglehart, S.J., et al. Abnormal activation and cytokine spectra 

in lymph nodes of people chronically infected with HIV-1. Blood, 2007. 109(10): p. 4272-

4279. 

94. Venkatachari, N.J., Majumder, B., Ayyavoo, V. Human immunodeficiency virus (HIV) 

type 1 Vpr induces differential regulation of T cell costimulatory molecules: direct effect 

of Vpr on T cell activation and immune function. Virology, 2007. 358(2): p. 347-356. 



 95 

95. Majumder, B., Venkatachari, N.J., O'Leary, S., Ayyavoo, V. Infection with Vpr-positive 

human immunodeficiency virus type 1 impairs NK cell function indirectly through cytokine 

dysregulation of infected target cells. J Virol., 2008. 82(14): p. 7189-7200. 

96. Liu B, Li Z, Mahesh SP, et al. Glucocorticoid-induced Tumor Necrosis Factor Receptor 

Negatively Regulates Activation of Human Primary Natural Killer (NK) Cells by Blocking 

Proliferative Signals and Increasing NK Cell Apoptosis. J Biol Chem., 2008. 283(13): p. 

8202-8210. 

97. Majumder, B., Venkatachari, N.J., Schafer, E.A., et al., Dendritic cells infected with vpr-

positive human immunodeficiency virus type 1 induce CD8+ T-cell apoptosis via 

upregulation of tumor necrosis factor alpha. J Virol., 2007. 81(14): p. 7388-7399. 

98. Nakamura, T., Suzuki, H., Okamoto, T., et al. Recombinant Vpr (rVpr) causes 

augmentation of HIV-1 p24 Ag level in U1 cells through its ability to induce the secretion 

of TNF. Virus Res., 2002. 90(1-2): p. 263-268. 

99. Henoch Hong, B.N., Schubert, U., Ballmaier, M., et al., HIV-1 Vpr Inhibition of 

Plasmacytoid Dendritic cell derived type I interferon and impairment of pDC-NK cell 

crosstalk in vitro. 15th Conference on Retroviruses and Opportunistic Infections, 2008. 

100. Terahara, K., Yamamoto, T., Mitsuki, Y., et al., Fluorescent Reporter Signals, EGFP, 

and DsRed, Encoded in HIV-1 Facilitate the Detection of Productively Infected Cells and 

Cell-Associated Viral Replication Levels. Frontiers in Microbiology, 2011. 2: p. 280. 

101. Felzien, L.K., Woffendin, C., Hottiger, M.O., et al., HIV transcriptional activation by the 

accessory protein, VPR, is mediated by the p300 co-activator. Proc. Natl. Acad. Sci. 

USA, 1998. 95: p. 5281-5286. 



 96 

102. Si, Q., Kim, M.O., Zhao, M.L., et al., Vpr- and Nef-dependent induction of 

RANTES/CCL5 in microglial cells. Virology, 2002. 301(2): p. 342-353. 

103. Hadi, K.H., Disease Progression in HIV-1 and the Role of Polymorphisms in the Vpr 

Gene. University of Pittsburgh, 2012. 

104. Noorbakhsh, F., Ramachandran, R., Basby, N., et al., MicroRNA profiling reveals new 

aspects of HIV neurodegeneration: caspase-6 regulates astrocyte survival. The FASEB 

Journal, 2010. 24: p. 1799-1812. 


	TITLE PAGE
	COMMITTEE PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	Table 1. Effects of cytokines on HIV-1 replication in monocyte-derived macrophages.

	LIST OF FIGURES
	Figure 1. HIV gene organization.
	Figure 2. The structure of HIV-1 accessory protein Vpr with annotated domains.
	Figure 3. Schematic of potential outcomes in monocyte/macrophage populations after HIV-1 exposure.
	Figure 4. Schematic detailing the construction of chimeric reporter proviral plasmids pNL(YU-2) and pNL(AD8).
	Figure 5. Schematic of Vpr-A30L and ΔVpr mutation cloning in reporter chimeric viruses.
	Figure 6. Sequence comparisons show no interruption in chimeric viral proteins in reporter virus cloning.
	Figure 7. pNL(YU-2)-EGFP and pNL(AD8)-EGFP cloning yielded correct isolates.
	Figure 8. Chimeric reporter viruses NL(YU-2)-EGFP and NL(AD8)-EGFP preferentially utilize the CCR5 co-receptor for HIV-1 infection.
	Figure 9. Chimeric reporter viruses infect monocyte-derived macrophages via CCR5 co-receptor utilization and express EGFP upon viral replication.
	Figure 10. Verification of viral proteins expression from chimeric reporter viruses in infected MDMs.
	Figure 11. Chimeric reporter viruses NL(YU-2)-EGFP and NL(AD8)-EGFP are replication-competent in MDMs.
	Figure 12. Chimeric reporter viruses NL(YU-2)-EGFP and NL(AD8)-EGFP replicate similarly to their respective parental isolates in MDMs.
	Figure 13. EGFP expression in primary MDMs reveal distinct productive infection patterns among Vpr mutants.
	Figure 14. Quantification of EGFP expression confirms productive infection patterns of wild-type, ΔVpr, and Vpr-A30L constructs.
	Figure 15. Expression of viral proteins in virus particles and infected cells from infected MDM cultures.
	Figure 16. Vpr mutations in chimeric reporter viruses demonstrate distinct replication kinetics patterns in primary MDMs.
	Figure 17. CXCL10 production by chimeric reporter virus infections, including wild-type (WT), ΔVpr (-R), and A30L, over time.
	Figure 18. IL-1β production by chimeric reporter virus infections, including wild-type (WT), ΔVpr (-R), and A30L, over time.
	Figure 19. IL-8 production by chimeric reporter virus infections, including wild-type (WT), ΔVpr (-R), and A30L, over time.
	Figure 20. TNF production by chimeric reporter virus infections, including wild-type (WT), ΔVpr (-R), and A30L, over time.
	Figure 21. Representative gating strategy for cell-specific cytokine analysis of productively-infected and non-productively-infected MDMs.
	Figure 22. Cell-specific analysis of cytokine expression levels of IL-8, IL-1β, CXCL10, and TNF-α for productively-infected macrophage subpopulations.
	Figure 23. Cell-specific analysis of cytokine expression levels of IL-8, IL-1β, CXCL10, and TNF-α for non-productively-infected/exposed macrophage subpopulations.

	PREFACE
	1.0 INTRODUCTION
	1.1 THE PATHOLOGY OF HIV/AIDS
	1.1.1 HIV infection and clinical progression to AIDS

	1.2 THE HIV LIFE CYCLE
	1.2.1 Virus entry and establishment of infection
	1.2.2 The HIV-1 genome
	1.2.3 Viral tropism

	1.3 HIV PATHOGENESIS IN MACROPHAGES
	1.3.1 Role of macrophages in HIV-1 infection
	1.3.2 Importance of cytokine expression in HIV-infected macrophages
	1.3.3 The role of HIV-1 Vpr accessory protein in macrophage infection
	1.3.4 Macrophages and HIV-1-associated neurocognitive disorders (HAND)
	1.3.4.1 The role of macrophage-derived cytokines in HAND

	1.3.5 Role of productively infected, exposed and bystander macrophages in HIV-1 infection

	1.4 RATIONALE
	1.5 HYPOTHESIS

	2.0 SPECIFIC AIMS
	3.0 MATERIALS AND METHODS
	3.1.1 Construction of reporter chimeric viruses
	3.1.2 Construction of Vpr mutants in chimeric reporter viruses
	3.1.3 Cells
	3.1.4 Virus production and titration
	3.1.5 Viral infections and replication kinetics
	3.1.6 Virus and cell lysate immunoblotting
	3.1.7 Intracellular staining and flow cytometry
	3.1.8 Cytokine ELISA quantification
	3.1.9 Microscopy
	3.1.10 Statistical Analysis

	4.0 RESULTS
	4.1 AIM 1: CONSTRUCTION AND CHARACTERIZATION OF A MACROPHAGE-TROPIC CHIMERIC REPORTER VIRUS FOR CELL-SPECIFIC ANALYSIS IN MONOCYTE-DERIVED MACROPHAGES (MDM)
	4.1.1 Verification of sequence homology in proviral chimeric reporter constructs
	4.1.2 Confirmation of the chimeric reporter virus construction
	4.1.3 Characterization of chimeric reporter virus tropism in U87 cell lines
	4.1.4 Confirmation of chimeric reporter virus functionality in primary MDMs
	4.1.5 Characterization of chimeric reporter viruses in comparison to parental strains
	4.1.6 Construction and characterization of Vpr mutants in chimeric reporter viruses
	4.1.7 Aim 1 Summary

	4.2 AIM 2: EFFECTS OF VPR ON HOST CELLULAR GENE EXPRESSION
	4.2.1 Verification of the role of Vpr on cytokine expression in chimeric reporter viruses
	4.2.2 Cell-specific analysis of productively-infected and non-productively-infected monocyte-derived macrophages for expression of CXCL10, IL-8, IL-1β, and TNF-α
	4.2.3 Aim 2 Summary


	5.0 DISCUSSION
	5.1 CONCLUSIONS

	6.0 FUTURE DIRECTIONS
	APPENDIX: INFECTIVITY OF REPORTER CONSTRUCTS BASED ON EGFP EXPRESSION
	BIBLIOGRAPHY



