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Biological systems are commonly modeled as reaction networks, which describe the system at

the resolution of biochemical species. Cellular systems, however, are governed by events at a

finer scale: local interactions among macromolecular domains. The multi-domain structure

of macromolecules, combined with the local nature of interactions, can lead to a combina-

torial explosion that pushes reaction network methods to their limits. As an alternative,

rule-based models (RBMs) describe the domain-based structure and local interactions found

in biological systems. Molecular complexes are represented by graphs: functional domains as

vertices, macromolecules as groupings of vertices, and molecular bonding as edges. Reaction

rules, which describe classes of reactions, govern local modifications to molecular graphs,

such as binding, post-translational modification, and degradation. RBMs can be trans-

formed to equivalent reaction networks and simulated by differential or stochastic methods,

or simulated directly with a network-free approach that avoids the problem of combinatorial

complexity.

Although RBMs and network-free methods resolve many problems in systems modeling,

challenges remain. I address three challenges here: (i) managing model complexity due to

cooperative interactions, (ii) representing biochemical systems in the compartmental setting

of cells and organisms, and (iii) reducing the memory burden of large-scale network-free sim-

ulations. First, I present a general theory of energy-based modeling within the BioNetGen

framework. Free energy is computed under a pattern-based formalism, and contextual vari-
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ations within reaction classes are enumerated automatically. Next, I extend the BioNetGen

language to permit description of compartmentalized biochemical systems, with treatment of

volumes, surfaces and transport. Finally, a hybrid particle/population method is developed

to reduce memory requirements of network-free simulations. All methods are implemented

and available as part of BioNetGen.

The remainder of this work presents an application to sepsis and inflammation. A

multi-organ model of peritoneal infection and systemic inflammation is constructed and

calibrated to experiment. Extra-corporeal blood purification, a potential treatment for sep-

sis, is explored in silico. Model simulations demonstrate that removal of blood cytokines and

chemokines is a sufficient mechanism for improved survival in sepsis. However, differences

between model predictions and the latest experimental data suggest directions for further

exploration.

Keywords: rule-based modeling, biochemical kinetics, cell signaling, sepsis, inflammation,

hemoadsorption.
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1.0 RULE-BASED MODELING OF BIOCHEMICAL SYSTEMS

This chapter introduces reaction network and rule-based formalisms for modeling the kinet-

ics of biochemical systems. First, I review reaction network formalism for kinetic modeling,

the workhouse of systems modeling. The standard methods for generating trajectories from

network models are presented, including continuous and discrete stochastic methods. Par-

ticular attention will be paid to the limitations of network-based methods in the context of

cell signaling applications. Next, I will present Rule-based modeling as a solution to some of

the limitations of network methods. The connection between rule-based models and reaction

network, via network generation, will be presented. Network-free simulation methods, which

extend simulation capability to massive and infinite networks, will be described. Finally,

limitations of rule-based modeling will be discussed, which provides the starting point for

methodological developments in subsequent chapters.

1.1 SYSTEMS BIOLOGY

If the task of the “omics”, e.g. genomics and proteomics, is cataloging the parts of the cell

and establishing the basic relationships among the parts; then the task of systems biology is

understanding how parts come together to form systems that sense the environment, make

decisions, and regulate the cellular activity [1]. There are two contrasting but complementary

approaches to the task. The first is a data-driven approach, a natural extension of the

“omics”. The data driven paradigm emphasizes high-throughput experiments that collect

data on a whole cell scale, such as microarray expression studies. Statistical analysis and
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machine learning methods are then applied to the data set with the intent of finding patterns

and relationships in the data.

The big-data approach stands in contrast to the mechanistic modeling approach. Mecha-

nistic modeling, a bottom-up approach, has roots in the principles of physics and chemistry.

Mechanistic models begin with only a few parts and the interactions among them and con-

struct formal models based on a biochemical and biophysical understanding of the interac-

tions. The models are analyzed with both qualitative and quantitative methods to determine

the properties of the system. As the small system is understood in isolation, the scope of the

model is expanded to include more of the surrounding context. As the scope of mechanistic

modeling increases, the necessity of reconciling mechanistic models with big-data becomes

apparent. Thus, the two contrasting approaches are complementary in the end. Indeed, a

number of studies that combine high-throughput data with mechanistic models have been

published [2–4]

The holy grail of mechanistic modeling is a complete model of the cell based on biophysical

and biochemistry principles. Much progress has been made towards a complete model of

the cell. A complete genomic and biochemical model of the simple bacterium Mycoplasma

genitalium, published in 2012 [5], demonstrates progress towards this goal. But much work

remains, especially in regards to eukaryotic cells, which are an order of magnitude more

complex than bacteria.

Understanding the behavior of biochemical systems is a difficult task that often confounds

our natural intuition. Simple biochemical circuits are capable of producing a wide variety of

behaviors, such as linear response, step response, oscillations, on-off switching, and so forth

[6]. Predicting the behavior of a system requires knowledge of the mathematical relationships

between the components. Furthermore, two systems with the same mathematical form but

different parameters can behave very differently. For example, a negative feedback amplifier

can become an oscillator with only a change in parameter values. Therefore, it is important

to analyze dynamical systems with quantitative methods rather than relying on intuition.

Nonetheless, there do exist rigorous qualitative analysis methods for dynamical systems.

Uri Alon et al. [7–9] identified a number of regulatory motifs that are capable of specific

kinds of behavior. Although the presence of a motif is not always a sufficient condition for a
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certain behavior, it is often necessary condition. Thus, qualitative methods are a useful tool

when anchored to theoretical underpinnings.

Biochemical systems are non-linear and, as there is no grand theory of non-linear dy-

namics, it is often necessary to rely on numerical simulations of biochemical systems. Com-

putational methods are especially important for large systems with multiple feedback loops

and a variety of network motifs that confound intuition.

1.2 REACTION NETWORK MODELING

The reaction network (RN) is a common formalism for kinetic modeling of biochemical

systems [10]. A reaction network is composed of a set of biochemical species, and a set of

reactions that describe transformations of species from one kind to another, and a propensity

(i.e. rate) function for each reaction. RNs can be interpreted as continuous or discrete

stochastic process. The former can be represented as systems of ODEs and the later as

continuous-time, discrete-state Markov chains. RNs are a workhorse of systems modeling,

with successful applications in cell cycle regulation [11–14], extrinsic apoptosis [15,16], EGF

receptor signaling [17, 18], the MAP kinase cascade [19], inflammation [20–23] and many

more.

RN is best illustrated by example. Consider a simple model of ligand-induced recep-

tor phosphorylation. Let {L, R, LR, LRp} be a set of species representing free ligand, free

receptor, ligand-receptor complex, and phosphorylated ligand-receptor complex. The set of

reactions describes the biochemical interactions among the species: ligand-receptor binding,

and receptor phosphorylation.

L + R
k1+,k1−
� LR

LR
k2→ LRp

LRp
k3→ LR

The species on the left-hand side of a reaction are called reactants and those on the

right-hand side are products. The arrow,→, represents the direction of the reaction (usually
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left to right). A bi-directional arrow,�, indicates that the reaction can be reversed, i.e. the

products will transform into the reactants. The parameters k1+, k2−, etc. are mass-action

rate constants (more on this below).

In the present example there are four reactions (one reversible, and two irreversible). The

first reaction transforms a free ligand L and a free receptor R into a ligand-receptor complex

LR. The reaction is bimolecular since their are two reactants. The reverse reaction does the

opposite: a ligand-receptor complex dissociates into free ligand and free receptor. The third

reaction transforms a ligand-receptor complex into a phosphorylated receptor complex LRp.

This reaction is unimolecular since it has just one reactant. The final reaction is the reverse

of the third. If the mechanism of the forward and reverse reaction is distinct, by convention

the reactions are written separately rather than as single reversible reaction. In this case,

phosphorylation and dephosphorylation are usually accomplished by different enzymes, so

the reactions are written separately.

Note that the names of the species are entirely arbitrary in a RN, so long as distinct

species have distinct names. In the example, the names were chosen to imply the biochemical

role of the species, e.g. the ligand is represented by L. However, the species could be labeled

in a nondescript fashion, such as X1, X2, and so forth. An important implication of this

fact is that the names do not necessarily contain any information about the composition of

the biochemical species. For example, we may infer that LR is a ligand-receptor dimer, but

a species like X2 is a black box. Consistent naming conventions are important for human-

readability. But even the best conventions, unless formalized, are prone to misinterpretation.

1.2.1 Mass-action kinetics

Mass-action kinetics, sometimes mistakenly called the Law of Mass Action, states that the

rate of a reaction is proportional to the product of reactant concentrations (see, e.g. [24]).

Mass-action kinetics can be derived from collision theory under the assumptions of well-

mixed conditions and elementary reaction mechanism, i.e. the reaction occurs in one step.

For this reason, mass-action kinetics are also called elementary kinetics. In the example
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above, mass-action kinetics assigns the following reaction rates:

rate1 = k1+[L][R]

rate2 = k1−[LR]

rate3 = k2[LR]

rate4 = k3[LRp].

Mass-action kinetics are often applied in the continuum limit of large particle concentra-

tions, where rates can be interpreted as a continuous flux of mass through the reaction. But

mass-action principles also apply to discrete systems, where the rate is interpreted as the

probability the reaction will “fire” per unit time. In a seminal 1976 paper, D.T. Gillespie [25]

derived mass-action kinetics for discrete stochastic systems. Gillespie showed that, under

certain assumptions, the probability for a specific set of particles to react via reaction r in

the infinitesimal time interval δt is given by kδt, where k is the per instance rate constant.

The total probability for any set of particles to react is given by the rate constant multiplied

by a combinatorial factor corresponding to the number of distinct reactant sets.

Consider the simple reaction A + B -> C with rate constant k. Let the population

vector ~x = (xA, xB) have number units. Each pair of particles A and B has a probability kδt

of reacting in time δt. Assuming the population vector has number units, there are xAxB

ways to select a pair of reactants. Thus the probability of any pair reacting in the interval

δt is kxAxBδt, corresponding to a total rate kxAxB.

The combinatorial factor is somewhat more complicated when two or more reactants

belong to identical species. Nonetheless, it is still a simple matter of combinatorics. Consider

the reaction A + A -> B. The number of ways to choose a pair of A particles is:(
xA
2

)
=
xA(xA − 1)

2
.

Thus the total reaction rate is:

k
xA(xA − 1)

2
. (1.1)

In limit of large concentrations, the total rate approaches kx2A/2, which is the continuum

mass action rate with constant k/2. There should be no confusion about the origin of the

factor of 2; this is a simple consequence of combinatorics.
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1.2.2 Non-elementary kinetics

Non-elementary reaction rates are common in biological systems models. Non-elementary

rates are appropriate where the reaction models a multi-step mechanism that is either un-

known or unnecessary to model in detail. Michaelis-Menten kinetics, perhaps the best known

non-elementary kinetic rate, describes a two-step enzymatic reaction:

S + E
k+,k−

 ES

kcat→ P + E. (1.2)

The first step is reversible binding of a substrate, S, to enzyme, E. The second step is the

irreversible conversion of substrate to product, P. The Michaelis-Menten mechanism assumes

that the intermediate complex, ES, is in quasi-equilibrium with S and E. Eliminating ES, the

coarse-grain reaction is:

S + E
kcat,kM→ P + E. (1.3)

with reaction rate
kcat[E]tot[S]

kM + [S]
, (1.4)

where [E]tot is the sum of free and bound enzyme, and

kM =
kcat + k−

k+
(1.5)

is the Michaelis constant.

1.2.3 Formal description of reaction networks

Formally, a reaction network is defined by the tuple:

RN |=
(
NS ∈ N, NR ∈ N, ~x ∈ NNs , {~rj, ~pj, fj: NNs → R≥0}Nrj=1,

)
,

where NS is the number of species, NR is the number of reactions, ~x is the species population

vector, and ~rj, ~pj, an fj are the reactant vector, the product vector, and the propensity

function for reaction j. The reactant vector encodes the reactants, with ri,j being the number

of species i consumed per reaction j. The product vector is similarly defined. The propensity

function maps the population vector to the propensity of reaction.
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A reaction event transforms the species population vector by consuming the reactants

and yielding the products. To make this precise, define the stoichiometry vector for reaction

j to be ~sj = ~pj − ~rj. Element si,j of the stoichiometry vector is the net change in the

population of species i due to reaction j:

~x
rj7→ ~x+ ~sj.

The propensity function fj(~x) is the rate of reaction j. The function is usually based on

mass-action kinetics, but in general is any function of the population species vector. The

general form of the mass-action propensity function is given by

fj(~x) = k

NS∏
i=1

rj,i∏
n=1

xi − (n− 1)

n

‖~x‖→∞−→ k

NS∏
i=1

x
rj
i

rj!
, (1.6)

with units per time.

Reaction networks are equivalent to stochastic Petri nets, a formal language for modeling

distributed computing systems [26]. Species correspond to places, reactions to transitions,

stoichiometry matrix to arcs, and species populations to tokens. Thus, formal analysis

techniques for Petri nets are equally applicable to reaction networks.

1.2.4 Simulation as a discrete stochastic system

1.2.4.1 Gillespie’s Stochastic Simulation Algorithm (SSA) The Gillespie direct

method is an algorithm for sampling kinetic trajectories from a discrete chemical reaction

system [25, 27, 28]. In the limit of a well-mixed system, it is an exact sampling method.

Since the method is simple and also important to the field, I will outline the algorithm here.

At each step, a reaction is selected to “fire”. The time until the next reaction is sampled

from the exponential distribution with rate given by the sum of reaction propensities, and

the specific reaction is selected by sampling from the propensity-weighted distribution over

all reactions. The reaction is fired by adding the stoichiometry vector to the population

vector and updating the time. Finally, reaction propensities are updated to reflect the new

population vector. Pseudocode for Gillespie’s direct method is listed in Algorithm 1.
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Algorithm 1: Gillespie’s direct method (SSA)

input..: (~sj, fj)
NR
j=1, list of reactions (stoichiometry vector, propensity fcn)

: ~x = (xi)
NS
i=1, initial species population; t, start time; tend, end time

output: ~x, final species population

foreach j ← 1 . . . NR do

a[j]← fj(~x) compute reaction propensity

atot ←
∑NR

j=1 a[j] compute total propensity

while t < tend do fire next reaction

u1, u2 ← Uniform(0, 1)

∆t← − log(u1)/atot time until next reaction

if t+ ∆t ≥ tend then last

j ← min{k :
∑k

l=1 a[l] > atotu2} select reaction

t← t+ ∆t update time

~x← ~x+ ~sj update species vector

foreach j ← 1 . . . NR do

a[j]← fj(~x) update propensity

atot ←
∑NR

j=1 a[j]
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The computational cost of each reaction event with respect to the number of reactions,

NR, depends on the cost of selecting the next event and updating propensities. The original

direct method selected the next reaction by direct search, an O(NR) cost. The cost of

updating propensities depends on the density of the reaction dependencies. At worst, every

reaction must be updated, leading to O(NR) cost. But if the number of dependencies per

reaction can be bound below some number k, thenO(1) cost can be achieved by implementing

a dependency graph. In either case, the overall cost is O(NR) per reaction event.

Several variants of the direct method have been developed in an effort to reduce the com-

putational cost. Gibson and Bruck [29] developed the “next reaction method”, which relies

on a heap structure for selecting the next reaction and a dependency graph for propensity

updates. The Gibson-Bruck method reduces the asymptotic cost to O(logNR) per event,

assuming that the number of dependencies per reaction is bounded. Slepoy et al. developed

a constant time algorithm by organizing reactions in logarithmic classes of reaction propen-

sities [30]. The method relies on the assumptions that propensities are bounded above and

below by positive values, and the number of dependencies per reaction is bounded.

In practice, Cao et al. found that the direct method, with reactions presorted by propen-

sity, performed better than the the next reaction method or logarithmic classes on typical

reaction networks [31]. Despite the higher asymptotic cost of the direct method, the constant

factor was dominant for “typical” reaction networks considered.

1.2.4.2 Accelerated simulation methods The time cost of an exact stochastic sim-

ulation depends on various factors in addition to the number of reactions. Perhaps most

important is the propensity of the reactions. As the average reaction propensity increases,

the number of events that fire during a fixed time interval also increases. Accelerated meth-

ods have been developed in an attempt to reduce the cost of such simulations. The τ -leaping

method assumes the number of times a reaction fires in a fixed interval τ is Poisson dis-

tributed [32–34]. This approximation holds so long the expected relative change in propen-

sity during the fixed interval is small. The simulation parameter 0 < ε� 1 sets the tolerance

of the approximation. As ε goes to zero, τ -leaping converges to the exact distribution.

τ -leaping is problematic when a rare reaction event leads to a large change (ε) in the
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propensity of other reactions. If this is the case, the τ -leaping assumption breaks down.

Several methods have been developed to attack this situation. Slow-scale SSA divides the

reactions into fast and slow groups [35]. The fast reactions are sampled with τ -leaping

and the slow reactions by exact sampling. The “Partitioned Leaping Algorithm” (PLA)

separates reactions into four regimes: exact stochastic, Poisson distributed, Langevin (SDE),

and continuous (ODE) [36,37]. The partition is computed automatically and adjusts on the

fly if the propensity of a reaction changes during the course of the simulation.

1.2.5 Simulation as a continuous system

In the limit of large concentrations, a reaction network can be interpreted as a system of

ordinary differential equations (ODEs). Consider species i with population xi. The rate of

change of xi is given by the summing over the contributions of all reactions

dxi
dt

=
Nr∑
j=1

si,jfj(~x).

Defining the stoichiometry matrix, S = (si,j), and the vector of reaction propensities, ~f =

(fj)
NR
j=1, this can be written more compactly as a system of ODEs

d~x

dt
= S ~f(~x). (1.7)

This system of (typically) non-linear ODEs can be numerically integrated to generate tra-

jectories. A number of libraries exist for fast, accurate, and robust integration of ODEs,

including SUNDIALS CVODE [38]. ODEs are also amenable to dynamical analysis and

other qualitative, but rigorous, analytic techniques. The XPP software package is a tool

for numerical analysis of ODEs, including facilities for plotting trajectories, nullclines, and

vector fields, as well as bifurcation analysis [39].
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1.3 COMBINATORIAL COMPLEXITY

Proteins involved in signaling, especially in eukaryotic cells, have a modular domain struc-

ture [40–42]. A domain is a component of a protein, often corresponding to a tertiary

substructure, that has a specific function or property. A domain might serve as a site for

protein-protein interaction, covalent modification (e.g. phosphorylation or ubiquitination),

or both. Alternatively, a domain might have catalytic activity, such as a kinase or phos-

photase activity, or anchor a protein in the cell membrane. Signaling proteins are often

composed of multiple domains with different functions. For example, a transmembrane re-

ceptor might consist of an extracellular ligand-binding domain, a transmembrane domain, a

cytosolic kinase domain, and several sites of covalent modification. Domains are modular in

the sense that the function of each domain is retained in the absence of the other domains.

For example, a kinase domain severed from its parent protein will typically retain its cat-

alytic activity. Nonetheless, allostery, i.e. cooperative interactions among protein domains,

often plays an important role in the protein function.

The domain structure of proteins and the local nature of interactions leads to a combi-

natorial explosion in the number of configurations that a signaling complexes can achieve

[43, 44]. To illustrate combinatorial complexity, consider a protein with N phosphorylation

sites. Assuming the sites are independently phosphorylated, the protein has 2N different

configurations. Each configuration corresponds to a species in a reaction network model.

Each species can participate in N different reactions, each corresponding to switching one

of the N sites between the phosphorylated and unphosphorylated state. In total there are

N ·2N reactions in the network. So a relatively simple protein model induces a large number

of species and reactions due to combinatorial complexity.

The above example is contrived, but nonetheless represents a common feature of signaling

networks. Combinatorial complexity arises in a variety of signaling pathways, including

FcεRI signaling [45,46], epidermal growth factor receptor activation [47], p53 [48], G-coupled

protein receptors [49], JAK-family kinases [50], MAP kinase scaffolds [51] and more.

Consider the epidermal growth factor (EGF) receptor. Blinov et al. [52] constructed a

model of EGF receptor activation including 5 proteins, representing a total of 10 domains, 6
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protein-protein interactions, and 3 sites of phosphorylation. Despite the simple parts list, the

reaction network contained 356 distinct species participating in more than 3000 reactions.

Where do all these species come from? It is a simple consequence of combinatorics.

The 5 proteins are ligand (EGF), receptor (EGFR), and three cytosolic proteins (Shc,

Grb2, and Sos). EGF has a single domain for binding EGFR. The receptor has four domains:

an extracellular EGF-binding domain, a receptor dimerization domain, and two sites of

tyrosine phosphorylation. Tyrosine phosphorylation activates binding interfaces for Grb2

and Shc, respectively. Grb2 has two binding domains, one for phosphorylated EGFR and

other for Sos. Shc has an EGFR binding domain and a site of tyrosine phosphorylation and

Grb2 binding. Sos has a single domain for Grb2 binding.

Consider the configurations of individual receptor sites, excluding the dimerization do-

main. The ligand binding site can unbound or bound to EGF (2 states). The Grb2 binding

site can be unmodified, phosphorylated, bound to Grb2, or bound to a Grb2-Sos complex

(4 states). The Shc site can be unmodified, phosphorylated, bound to Shc, phosphorylated

Shc, a Shc-Grb2 complex, or a Shc-Grb2-Sos complex (6 states). The total number of a

configurations for a single receptor is 2 · 4 · 6 = 48. If we consider the dimerized receptor

pairs, after accounting for symmetry, the number of configurations is 48 · (48 + 1)/2 = 1176.

There are also 8 species that do not involve the receptor. In total there are 1232 possible

species! But the model only has 356 due to simplifying assumptions, e.g. only ligand-bound

receptors will dimerize.

In this relatively simple model, a few interactions among multidomain proteins leads

to an explosion in the number of species and reactions in the network. While it is still

theoretically possible to write a network model with any finite number of reactions, it is

difficult in practice to implement a model with more than a few hundred reactions without

relying on automated methods. Furthermore, large network models increase computational

burdens. In the best case, the space complexity of a reaction network is linear in the number

of reactions. But since the number of reactions in a combinatorial system tend to grow

exponentially in the number of protein domains1, the space complexity is exponential in the

number of domains in the model. Thus, a small increase in the biological scope can leads to

1For an example, see the comparison of reaction network size for variants of the FcεRI signaling model [53].
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exponential growth in the network. The time cost of combinatorial systems also tends grows

with the number of reactions, since the assumptions required by constant- and logarithmic-

time algorithms do not typically hold for combinatorial systems. Specifically, the number of

reaction dependencies per reaction grows with the number of reactions.

The combinatorial problem is further exacerbated in systems with branching polymer-

ization. In such systems, the number of possible species is only limited by the number of

particles in the system. But the number of species grows exponentially in the number of

particles. Thus, even a few hundred particles can lead to a network size that exceeds Avo-

gadro’s number. Ligand-induced FcεRI aggregation models prominently feature branching

polymerization that confounds network-based approaches [45, 53].

Combinatorial complexity pushes reaction network methods to the brink and then over

the edge. For such problems, alternative methods are required. Fortunately, the solution

already exists: rule-based languages and network-free simulation.

1.4 RULE-BASED MODELING

Rule-based modeling (RBM) is motivated by the modular domain structure of macro-

molecules and the problem of combinatorial complexity [54]. In RBM, macromolecules are

represented by structured objects that reflect the domain structure of their biological coun-

terparts. Each domain is represented by a node in a graph, called a site or component. Each

site has a type property and an optional state property. Type is a label that describes the

domain represented by the site, e.g. SH2. State is a label that represents a discrete mod-

ification to the site, such as post-translational modification, conformation, etc. Domains

that belong to the same macromolecule are grouped together to form a supernode, called

a molecule or an agent. Each molecule has a type property corresponding to the type of

macromolecule, e.g. EGFR. Noncovalent bonds between macromolecules are represented by

edges between the sites that mediate the protein-protein interaction.

Transformation of macromolecular complexes is governed by reaction rules. A reaction

rule consists of a set of reactant patterns, a set of product patterns, and a rate law. The
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reactant patterns describe molecular motifs that are potential sites of reaction. When a

reaction occurs, the reactant sites are transformed to the configuration described by the

product patterns. The rate law assigns the propensity for each set of reaction sites to

undergo reaction.

Reaction rules are analogous to organic reactions. Consider the esterification of an alcohol

and a carboxylic acid:

R-OH + R′-COOH → R′-COO-R + H20. (1.8)

This reaction scheme produces an ester and a water molecule by reacting an alcohol group

with a carboxylic acid group. This scheme describes a vast number of reactions. R and

R’ represent the unknown portions of the reacting molecules, which are not relevant to the

reaction mechanism. It is sufficient that the first reactant species has an alcohol group and

the second has a carboxylic group. In RBM, reactant patterns play the role of functional

groups. Like an organic reaction scheme, any molecular complex that contains the reactant

pattern motif can participate in the reaction. Thus, a reaction rule efficiently describes a

large class of reactions.

By representing molecular complexes by graphs, and classes of reactions by rules, RBM

goes a long way towards solving the combinatorial problem. Since the graph object retains

information about the composition and structure, the reactions that a species undergoes

can be computed by matching reactant motifs in the molecular structure. Furthermore, the

products of each reaction can be computed by operating on the reactant graphs, e.g. adding

an edge, changing a state, deleting nodes. Therefore, starting from an initial set of species

and reaction rules, it is possible to construct any reachable species by repeated application

of the reaction rules.

1.4.1 Network generation

Network generation is the process transforming a rule-based model into an equivalent reaction

network. Network generation is simple at its core. The reaction rules are applied to the initial

set of species in every possible combination. Products are constructed by transforming the
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reactant graph. Unique products are added to the species set and the process is iterated until

no new species are generated. Network generation usually proceeds under the assumption

that unlimited copies of each initial species are available. Thus, the network is not limited

by the availability of reagents.

It is not always possible to generate a network, since a RBM may encode an infinite

number of species and reactions. For example, a polymerization rule will generate a polymer

species for each possible length, resulting in a countably infinite species set. Conversely,

every finite reaction network can be obtained by network generation applied to some RBM 2.

Therefore, RBM are a superset of finite reaction network models.

Network generation is outlined in Algorithm 2. If more depth is desired, see Appendix B

for further details.

1.4.2 Network-free Simulation

Rule-based models permit compact representation of reaction network models; and, when

the reaction network is not too large, network generation provides access to all the simulation

methods available for reaction networks. But for larger reaction networks (> 103 species,

> 104 reactions), the computational cost of simulating networks becomes prohibitive [53].

In such cases, an alternative approach is required.

Network-free (NF) simulation is an approach that avoids network generation [55]. NF

methods are similar to agent-based approaches in that each molecule in the system is repre-

sented as an individual particle. This stands in contrast to network-based methods, where

molecular entities belonging to the same species are lumped together and represented as a

population variable. NF methods are fundamentally stochastic. Under the RBM formalism,

molecular complexes are represented as graphs; thus, it is possible to identify reactant sites

“on-the-fly” during a simulation. Upon selection of reactant sites, graph transformations are

applied in situ to construct the products.

2A finite reaction network is a RBM where each rule describes exactly one reaction and each molecule
contains zero components. Thus, every reaction network corresponds to a trivial RBM. But it is usually
possible to find a corresponding RBM with fewer rules than reactions.
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Algorithm 2: Network generation algorithm

input..: (~Rr, Tr, kr)NRr=1, a list of rules (reactant patterns, transformation, rate)

: seed species, set of initial species

output: species, set of all species; reactions, set of all reactions

queue ← seed species //a queue of species to process

species ← seed species; reactions ← {}

foreach r ← 1 . . . NR do //initialize rules

foreach p← 1 . . . |~Rr| do

sites[r][p]← {} //sites[r][p] tracks reactant p sites for rule r

while queue is not empty do //generate network

s← next(queue)

foreach r ← 1 . . . NR do //loop over rules

foreach p← 1 . . . |~Rr| do //loop over reactant patterns

Zp ← {all reactant p sites in species s}

foreach (z1, . . . , z|~Rr|) ∈
(
sites[r][1]× . . .× Zp × . . .× sites[r][|~Rr|]

)
do

transform sites z1 . . . z|~Rr| under Tr, obtaining products y1 . . . y|~Pr|

foreach y′ ← y1 . . . y|~Pr| do

if y′ /∈ species then add y′ to species and queue
map each reactant site z1 . . . z|~Rr| to its parent species x1 . . . x|~Rr|

construct reaction: rxn = [x1 + . . .+ x|~Rr|
k→ y1 + . . .+ y|~Pr|]

if rxn /∈ reactions then add rxn to reactions

add sites in Zp to sites[r][p]
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Pseudocode for network-free simulation is listed in Algorithm 3. Network-free simulation

gains efficiency by grouping reactions by rules. At each step of a simulation, the next reaction

rule is selected. Then a reactant set is chosen from among the possible sets for the selected

rule. This strategy is efficient since each potential reactant set has equal probability of

reacting. Therefore, the total propensity of a rule is computed by multiplying the number of

sites for each reactant pattern, and specific reactants are drawn from the uniform distribution

over reactant sites for each reactant pattern. Thus, computing rule propensities and selecting

reactants have constant cost in the number of sites. Therefore, the cost of selecting the next

reaction is linear in the number of reaction rules (worst case) and constant in the number of

reactant sites.

Upon selecting the reactants, the molecules are transformed in place. Transformation

can create or destroy reactant sites, so the list of sites must be updated after each event. If

site lists were calculated from scratch at each step, the algorithm would be quite inefficient.

Fortunately, it is only necessary to update molecules that belong to the same complex as one

of the reactant sites 3. Thus, the time cost of updating site lists is a function of the number

of reactant patterns in the rule, R; the number of molecules on the complexes matching the

reactant patterns; and the total number of reactant patterns in the system, Npatt. If we

assume the number of molecules per complex is bounded by C, then the number of updates

is no more than RCNpatt. With suitable data structures, the cost of adding or removing

items from the site list is constant in the size of the list [56]. Thus, the cost of an update

is no greater than CR
∑Npatt

n=1 Φ(n), where Φ(n) is the cost of checking if a molecule is a

site for reactant pattern n. Since reactant motifs are usually simple, we will assume Φ(n)

is bounded. Likewise, since the number of reactant patterns is usually one or two, we will

assume R is bounded. Under theses assumptions, the total update cost is O(CNpatt), which

is constant in both the number of particles and number of reactions in the network. If we

can also assume C is bounded (a reasonable assumption in non-polymerizing models), then

the cost is O(Nrules). Since the number of rules is typically much less than the number of

reactions, the NF update step scales efficiently in the class of models where the assumptions

3For a large class of models it is sufficient to update molecules within a fixed graph distance of the reactant
site [56].
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Algorithm 3: Network-free simulation algorithm

input..: (~Rr, ~Pr, Tr, kr)NRr=1, list of rules (reactant/product patterns, transform, rate);

: Mols, initial set of molecules; t, start time; tend, end time

output: Mols, final set of molecules

foreach r ← 1 . . . NR do //initialize rules

foreach p← 1 . . . |~Rj| do //initialize reactant site lists

sites[r][p]← (all reactant p sites in Mols)

a[r]← kr
∏|~Rr|

p=1 |sites[r][p]| //rule propensity

atot ←
∑NR

r=1 a[r] //total propensity

while t < tend do //fire next event

u1, u2 ← Uniform(0, 1)

∆t← − log(u1)/atot

if (t+ ∆t ≥ tend) then last

r ← min{j :
∑j

k=1 a[k] > atotu2} //select rule

foreach p← 1 . . . |~Rr| do //select reactant sites

sp ← Uniform(sites[r][p])

if any pair of sites in s1, . . . , s|~Rr| belong to the same complex then
t← t+ ∆t; next

Umols ← {all molecules connected to sites s1, . . . , sp} //molecules to update

remove all sites in molecules of Umols from sites

apply transformation Tr to sites s1, . . . , snR

remove molecules deleted by Tr from Umols

add molecules synthesized by Tr to Umols

foreach r ← 1 . . . NR do

foreach p← 1 . . . |~Rr| do //update site lists

add all reactant p sites found in Umols to sites[r][p]

a[r]← kr ·
∏|~Rr|

p=1 |sites[r][p]|

atot ←
∑NR

r=1 a[r]

t← t+ ∆t
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hold. However, C may grow very large for models with a gel-phase (e.g. trivalent-ligand

bivalent-receptor aggregation [45,53]).

Several implementations of network-free simulators are available, including KaSim [57],

NFsim [53], and DYNSTOCH [58]. NFsim is notable in its support for functional rate

laws that depend on system properties (“global functions”) and local properties of reactants

(“local functions”).

1.4.3 BioNetGen: a rule-based modeling platform

BioNetGen (BNG) is a collection of open-source software tools for specifying, simulating,

and analyzing rule-based models of complex biochemical systems [59–62]. BNG software

reads models written in the BNG language (BNGL), a formal, text-based grammar for

specification of rule-based models. BNG software parses BNGL models and represents them

internally as graph objects. BNG includes tools for network generation and network-based

simulation, including ODE and SSA methods. Alternatively, BNGL models can be exported

for simulation by NFsim, a network-free simulator compatible with BNGL, or VCell, a

biochemical modeling platform with support for detailed spatial representation and PDE

simulation [63–65]

Since material in subsequent chapters extends BNGL, it is important that the reader

develop a familiarity with the syntax before proceeding. This chapter will present the basics

of BNGL syntax and its interpretation as graph objects. This material should provide the

necessary intuition, but further reading may be required for a deeper understanding. To

that end, BNGL syntax is presented in extended Backus-Naur form in Appendix A and the

graph-based formalism underlying BNG is included in Appendix B. For further reading, see

the BioNetGen book chapters [60, 61] or journal publications [59,66].

Although BNGL was chosen as a foundation for this work, it should be straightforward

to generalize methods to other RBM languages. The κ-calculus [67, 68] and the Stochastic

Simulation Compiler (SSC) [69] are closely related to BNGL. The partial network expansion

method (Chapter 4) and energy-modeling approach (Chapter 2) could be readily imple-

mented for these RBM languages.
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1.4.4 Macromolecules as structured objects

The fundamental object in BNGL is the molecule. Molecules are structured objects that con-

tain components. Components have state values (possibly null) and serve as sites for bond

formation. Typically, molecules correspond to biological macromolecules such as proteins,

while components represent protein functional domains. Component states may describe

post-translational modifications, such as phosphorylation, or other properties of the macro-

molecule, such as conformational state.

Molecules are defined through molecule types templates that specify the set of compo-

nents, and the possible state values of those components, that comprise a molecule. For

example, in Blinov et al. [52] the molecule type definition for the epidermal growth factor

receptor (EGFR) is

Egfr(l,r,Y1068∼Y∼pY,Y1148∼Y∼pY) .

This specifies that Egfr molecules have four components: l, r, Y1068, and Y1148. The first

two represent a ligand binding domain and a receptor dimerization domain, respectively.

The other two represent tyrosine residues 1068 and 1148, which are sites of phosphory-

lation [70, 71]. Both Y1068 and Y1148 can exist in two possible states, Y (tyrosine) and

pY (phosphorylated tyrosine). Names of molecule types, components, and states may be as-

signed any arbitrary string of alphanumeric characters [60,61], but conventionally are chosen

to correspond to biological entities.

Molecules can be thought of as instances of molecule types, the difference being that in

molecules a state for each molecular component must be explicitly specified. For example,

Egfr(l,r,Y1068∼pY,Y1148∼Y)

specifies an unligated Egfr monomer with a phosphorylated tyrosine at residue 1068 and an

unphosphorylated tyrosine at residue 1148.

1.4.5 Molecular complexes as graphs

BNGL represents molecular complexes within a hierarchical graph formalism: components

are represented by nodes, molecules are groupings of nodes, and bonds are edges between
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components [66, 72]. Molecules that are connected by bonds between their components are

said to belong to the same complex. Bound components are designated by a shared !LABEL

token following each component in the bond. For example,

Egf(r!0).Egfr(l!0,r!1,Y1068∼pY,Y1148∼Y).Egfr(l,r!1,Y1068∼pY,Y1148∼Y)

specifies a complex comprised of an Egfr dimer and a bound Egf ligand. The Egf ligand is

bound to the first Egfr molecule through a bond, labeled ‘0’, between its r component and

the l component of the Egfr molecule. The two Egfr molecules are bound to each other

through a second bond, labeled ‘1’, between their r components. The ‘.’ symbol specifies

that two molecules are part of the same complex. Molecules that are bound to each other

are necessarily in the same complex but molecules in the same complex need not be bound

directly to each other (e.g., the Egf ligand and the second Egfr molecule).

Two complexes that have the same molecular composition, with the same configuration of

bonds and states, are said to be instances of the same species . More formally, two complexes

are of the same species if their graphs are identical up to a labeled isomorphism [66].

1.4.6 Molecular motifs as subgraphs

Patterns describe structural motifs that may be found within complexes. In BNGL, patterns

are written just like complexes except that components, states, bonds, and molecules that

are not part of the motif are omitted. A pattern is said to match a complex (or species) if

the motif is found within the complex. Note that it is possible for a pattern to match at

multiple places within the same complex. In terms of graphs, a pattern is a subgraph and

a match is a subgraph isomorphism from the pattern into the complex graph [59, 66]. As

an example, the pattern Egfr(l,r) matches each instance of Egfr with unbound l and r

components, including

Egfr(l,r,Y1068∼Y,Y1148∼pY),

Egfr(l,r,Y1068∼pY,Y1148∼pY), and

Egfr(l,r,Y1068∼pY!0,Y1148∼pY).Grb2(SH2!0,SH3),
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where the matches have been underlined. Since the components Y1068 and Y1148 are omitted

from the pattern they can be in any of their allowed states and either bound or unbound.

A pattern may also require that a component be bound without specifying its binding

partner by substituting the bond label with the ‘+’ wildcard (e.g., Egfr(l!+,r)). Similarly,

the bonding state can be specified as irrelevant (either bound or unbound) by using the ‘?’

wildcard (e.g., Egfr(l!?,r)). Finally, if a component is listed but no state is indicated then

the pattern will match the component regardless of state.

Patterns have two primary purposes in BNGL [60,61]: (i) they specify parts of a complex

that are involved in a reaction; (ii) they define the observable outputs (or simply observables)

of a model. The second function is critical for facilitating comparisons between simulation

predictions and experimental observations.

1.4.7 Biochemical reaction rules as graph transformations

Reaction rules (or simply rules) describe classes of reactions that transform the states of

complexes in a system. A rule consists of a set of reactant patterns, a set of product

patterns, a directionality arrow (unidirectional ‘->’ or bidirectional ‘<->’), and a rate law.

The reactant patterns match reaction sites (motifs) within complexes in the system. The

product patterns indicate how the reactant patterns are modified when the rule fires. The

rate law determines the firing rate per set of reactant matches. In terms of graphs, a rule is a

graph transformation with a dynamic rate that determines how frequently the transformation

is applied to each matching subgraph [66].

There are six basic transformations that can be encoded in a BNGL rule: (i) bond

addition, (ii) bond deletion, (iii) state change, (iv) molecule synthesis, (v) molecule deletion,

and (vi) complex deletion. 4 The transformations are implied by the differences between the

reactant and product patterns in a rule. For example, the rule

Egf(r) + Egfr(l,r) -> Egf(r!0).Egfr(l!0,r) k

4Complex synthesis is not considered to be an elemental transformation but rather a composite action
comprised of molecule syntheses and bond additions.
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matches Egf molecules with unbound r components and Egfr molecules with unbound l

and r components. The rate law is of the mass-action type (by default [60, 61]) with a rate

constant k. When the rule fires a bond is formed between the r component of Egf and the

l component of Egfr. We refer the reader to Refs. [60, 61] for further details regarding the

specifics of the BNGL syntax.

1.4.8 Anatomy of a BNGL model file

BioNetGen models are specified within text files having the .bngl extension. Model ele-

ments are specified in blocks delimited by begin and end tags. The entire model specifica-

tion is enclosed within a begin model / end model block and the model specification itself

is contained within six additional blocks: parameters, molecule types, seed species,

observables, functions, and reaction rules. Though not strictly required, it is sug-

gested that these blocks appear in this order. Molecule types, reaction rules, and observ-

ables have been discussed above. Values of rate parameters, initial populations of species,

etc., are listed in the parameters block and can be referenced in any subsequent block.

All initially-populated species and their population levels are specified in the seed species

block. These act as the starting point for network generation in BioNetGen and define the

initial system state for any subsequent simulations. Arbitrary functions of observables can be

defined in the functions block and used in place of rate constants in the reaction rules

block. Two types of functions can be defined: global and local [53,73]. Local functions take

as an argument a reference to a complex or molecule and evaluate observables over that

complex/molecule only. In contrast, global functions evaluate observables over the entire

domain.

Any actions to be performed on the model must be listed after the model specification

(i.e., the end model directive). Common actions include generating a network by iterative

application of the rule set to the set of initial seed species, simulating a network (either deter-

ministically or stochastically), performing a “network-free” simulation, changing or resetting

the values of species populations or rate parameters, reading in a previously-generated net-

work, and exporting the model and/or network in various file formats (e.g., SBML [74],
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M-file [75]). If multiple actions are listed in sequence then each is performed using the fi-

nal system state from the previous action as the initial state for the current action (unless

the system is explicitly reset to the initial conditions). For example, one might run an ini-

tial equilibration simulation in the absence of ligand, then add a dose of ligand and run

a second simulation to investigate the dose-response behavior of the system. We refer the

reader to Refs. [60–62] for further details regarding model specification and action syntax in

BioNetGen.

1.4.9 A Survey of Rule-based Languages and software

A number of rule-based languages, in addition to BNG, are described in the literature. In

this section, I will briefly survey some of these languages.

The κ-calculus is formal RBM language similar to BNGL. In contrast to BNGL, κ does

not natively support identical component types (i.e. sites) within a molecule (i.e. agent).

Furthermore, κ does not formally make the distinction between inter- and intra-molecular

reactions. The simplicity of κ lends itself to formal analysis. In practice, these limitations

are side-stepped by meta-κ, an extension of the language κ language that “compiles” to pure

κ. A network-free simulator, KaSim, is available for simulating κ. Exact model reduction

methods are also available κ models [76].

The Stochastic Simulation Compiler (SSC) is a rule-based language and software plat-

form. SSC generates a reaction network and compiles a custom SSA simulator to achieve

maximum performance [69]. The SSC language is similar to BNGL and κ, but the approach

to reaction rules is somewhat different. In BNGL and κ, graph transformations are inferred

from the differences between reactant patterns and product patterns. This requires a con-

vention for mapping molecules on the reactant side to their counterparts on the product side.

In contrast, SSC rules are specified by a set of reactant patterns and a set of transformations.

Thus, the transformation is explicit, rather than implied. SSC also supports a coarse-grained

representation of compartments and space via sub-volume discretization.

Simmune is a platform for multi-scale simulation of cellular systems [77,78]. At the small

scale, simmune implements rule-based methods for biochemical interactions. Biochemical
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signals are coupled to a coarse-grained, dynamic representation of cellular morphology. Cell

morphology is modeled as a cellular Potts models. Although RBM features in Simmune are

conceptually similar to BNGL and κ, models are specified using a graphical user interface

rather than a text-based language.

BioCham [79] is language for biochemical modeling with string-based formalism. Proteins

are represented by string tokens and complexes are formed by string concatenation. Despite

the formal differences, BioCham is a rule-based language in that reaction rules describe

classes of reactions. Reaction rules are implemented by substring matching and transforma-

tion of the parent string. The BioCham platform implements a number of analytic tools,

including bifurcation analysis and formal verification of temporal logic.

Relatively new to the scene, ML-rules is a multi-level rule-based language [80]. Objects

in ML-rules can be nested arbitrarily to construct systems with multiple levels, such as ex-

tracellular space, cells, and organelles. Object nesting is dynamic and governed by rules that

permit movement between levels, creation of new levels, and fusion of objects on the same

level. ML-rules extends RBM to biological processes such as receptor-mediated endocytosis

and the cell division.

1.5 THE LIMITS OF RULE-BASED MODELING

RBM languages provide a solution to the problem of combinatorial complexity at the level

of model description, while network-free methods resolve the simulation problem. But the

scale of modeling enabled by RBM also introduces new challenges. A few of those challenges,

which provide motivation for the remainder of this work, are presented in this section.

1.5.1 Biochemistry is compartmentalized, RBM 1.0 is not

Biochemistry takes place in the compartmentalized structure of cells. All cells have mem-

branes that separate the outside world from the inside. Eukaryotic cells are further parti-

tioned into cytosol, nucleus, and other organelles. The compartmental structure also exists
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at the level of the organism, which is composed of organs and tissues separated by endothe-

lial and epithelial barriers. Signaling pathways cross multiple levels of cellular structure.

Consider EGF receptor signaling, described earlier. The EGF molecule is present in the

extracellular space, but is detected by a transmembrane receptor. The receptor recruits and

activate proteins in the cytosol. The EGF signal cascades through the MAP kinase path-

way, activating transcription factors that are transported into the nucleus and regulator gene

expression.

Membranes play a key role in cellular biochemistry. In addition to dividing the cell

into compartments, membranes also mediate communication between the compartments via

transmembrane proteins. Membranes also serve as a surface for localizing macromolecules,

which can lead to enhanced reaction rates due to proximity. Despite the importance of

membranes and compartmentalization, the first generation of RBM languages have lim-

ited facilities for representing membranes, or localizing molecules and reactions to specific

compartments 5. This motivates the development of compartmental BNGL (cBNGL), an

extension of BNGL for compartmental modeling (Chapter 3).

1.5.2 The curse of cooperativity

Reaction rules describe a class of biochemical reactions with a common transformation and

rate law. Allostery—energetic cooperativity between distant sites on macromolecules—is a

ubiquitous feature of biological systems [81]. In the presence of cooperativity, reactions that

share a transformation but differ in context will have different rate constants. Thus, it is

not possible to lump such reactions into a single rule. This is the curve of cooperativity: it

is everywhere and it complicates everything.

Consider receptor dimerization reactions in three different contexts.

R + R <-> RR kp1 ,km1

LR + R <-> LRR kp2 ,km2

LR + LR <-> LRRL kp3 ,km3

The reactions describe receptor-receptor binding, but differ in ligand context. If the ligand

binding site is allosterically coupled to the receptor dimerization site, then the rate constants

5Since work on cBNGL was initiated in 2008, a number of additional rule-based languages with compart-
mental features have appeared in the literature, including SSC [69] and ML-rules [80].
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for each reaction will be different. Thus, the reactions cannot be described by a single reaction

rule with a common rate constant6. The situation is further complicated by constraints

among the rates constants introduced by thermodynamics cycles in the reaction network.

For the construction of simple models, cooperativity can be handled manually. But the

problem is exceedingly difficult for large, combinatorially complex models. Energy-based

modeling, a recent development in RBM [49], provides a partial solution by modeling cooper-

ativity directly and constructing contextual rule variations in a principled manner. Building

on this foundation, Chapter 2 presents a general framework and software implementation

for energy-based modeling in BNG.

1.5.3 Network-free simulation of large systems is expensive

Network-free (NF) methods enable simulation of models with combinatorially large reaction

networks. But since NF is intrinsically discrete stochastic, each molecule in the system

must be represented individually. Thus, systems with a large number of particles require

proportionally large memory resources. Although seldom a limiting factor for single pathway

models, memory requirements will become prohibitive as the field moves away from single

pathway models toward multi-pathway and whole cell models. Multi-cellular models will

require resources on yet another order of magnitude.

A number of strategies, including multi-scale modeling and model reduction techniques,

can reduce the cost of simulation. However, the potential for reduction in computational

cost of NF simulations has not been fully exploited. This motivates the development of

the Hybrid Particle/Population method in Chapter 4. This method substantially reduces

memory requirements of NF simulations by lumping species with high copy number.

1.5.4 Other limitations not addressed in this dissertation

Although RBM is a powerful and flexible framework, it is not applicable to all types of sys-

tems. RBM represents the connectivity of molecules via edges in a graph. Thus, RBM can be

6 It is possible to describe all three reactions with a single rule if the rate is given by a local func-
tion, an advanced concept introduced by Sneddon et al. [53]. However, local functions will not resolve the
interdependencies among the rates induced by thermodynamic cycles.
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viewed as “topological” modeling since the connectivity of molecules, but not the geometric

relationships, are described. Encoding distance and angles in current RBM frameworks is

impractical, at best. Thus, RBM is inadequate for modeling systems where geometry plays

an important role. For example, although RBM can represent the connectivity of amino acids

in a protein, representing angles and distances required for a molecular dynamic simulation

is not practical. Similarly, it is difficult to represent steric hindrance or rigidity that prevents

certain types of intramolecular bonds. Although future research may integrate RBM with

geometric models, this limitation is not addressed in the present work.

RBM also assumes that the state of a macromolecule can be adequately represented by

a discrete site structure. Thus, The modeling process begins with a choice of the discrete

structure for each macromolecule in the system. This information can be inferred from crys-

tallized structure or other experimental studies; however, at present there is no systemic

method for selecting the site structure. Furthermore, the modeling process may be con-

founded if the sites in the biological entity are not accurately described by a collection of

discrete sites. Although it may be possible to approximate the behavior of a protein with a

finer-grained discrete representation, this approach is both tedious and subject to combina-

torial explosion of influences among the sites. Again, this limitation is left for future work

in the field.
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2.0 MODELING ENERGY: A PATTERN-BASED APPROACH

2.1 MOTIVATION FOR ENERGY-BASED MODELING

A reaction rule in a rule-based model (RBM) encodes a class of reactions that share a common

transformation, such as bond formation or post-translational modification, and a common

rate law. The reactions differ only in the larger context of the reacting complexes, but this

does not influence the rate of reaction. If many reactions can be represented by a single

reaction rule, then the reaction network is highly compressible. The amount of compression

depends on the degree of kinetic homogeneity that the modeler (or the data) is willing to

accept.

The fundamental assumption of RBM is summarized in the maxim: “don’t write, don’t

care”. In other words, if a molecule component does not appear in the reaction rule, then its

state does not influence the rate of reaction. Reaction context is the set of components named

in the rule, but not modified. Reducing the reaction context in a rule typically increases the

number of reactions described by the rule, while reducing the number of kinetic parameters in

the model. Thus, there is a close relationship between reaction context and model complexity.

If a class of reactions with a common rate law can explain the data as well as independent

rate laws, then the common rate law is preferred. Therefore, eliminating reaction context

(as much as the data will allow) is an attempt to follow the principle of Occam’s Razor. In

the language of RBM, if two models explain the data, the one with least reaction context is

preferred.

Unfortunately, reaction context plays a very important role in biophysical models. Al-

lostery, i.e. cooperativity between distant sites on macromolecules, is a common feature

in biological systems. Allostery is mediated by a variety of mechanisms, such as ligand
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binging [82], covalent modification of protein residues [83–85], and conformational state

changes [86, 87]. Allostery is known or postulated to play in role in various biophysical

systems, including hemoglobin/oxygen binding [82], ligand-induced EGF receptor dimeriza-

tion [88], and G-protein coupled receptors [89–91].

Allosteric mechanisms, which are fundamentally related to reaction context, require the

reaction network to be partitioned into finer classes. Consequently, the modeler is forced to

write a large number of related reaction rules with different context and kinetic rates. I will

refer to the complexity induced by reaction context with the term contextual complexity. It

is important to distinguish this from the distinct concept of combinatorial complexity. Com-

binatorial complexity is the explosion of the reaction network size due to combinations of

multi-domain protein interactions, e.g. polymerization, scaffold assemblies, etc. In contrast,

contextual complexity is the explosion in the number of reaction rules required to represent

a reaction network due to reaction context. RBM effectively compresses combinatorially

complex networks so long as contextual complexity is minimal. As contextual complexity in-

creases, the benefits of RBM diminish. Under this reality, is RBM useful modeling paradigm

for systems with cooperative mechanisms?

In this chapter, I will address the problem of contextual complexity by coupling rule-

based modeling with an energy-based formalism. Energy-based approaches were first merged

with RBM by Ollivier et al. [49]. In that work, the authors developed a formalism for

modeling allostery mediated by conformational change. The energy-based approach to RBM,

or EBM for brevity, was later generalized to arbitrary pattern graphs by Vincent Danos et

al. [92, 93]. Under generalized EBM, energy is assigned to patterns, i.e. molecular motifs.

These energy patterns form the basis of a free energy accounting system. Free energy of

species formation, and subsequently the free energy change of a reaction, is computed by

counting free energy motifs in the species and summing the free energy contributions. Given

a set of free energy inequalities, Danos showed that it is a straightforward task to verify that

a kinetic model satisfies those constraints. However, the existence of free energy assignments

that are compatible with a given kinetic model is, in general, undecidable. Nonetheless,

Danos suggested that kinetic models that are compatible with free energy assignments could

be obtained by construction. The Allosteric Network Compiler (ANC) [49] demonstrates the
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construction approach in the limited context of allostery via conformational change.

In this chapter, I develop a general approach to constructing kinetic models that are

compatible with free energy assignments by construction. Under my approach, reaction

rules are decomposed into two components: atomic transformations (i.e. bond formation,

post-translational site modification, etc.) and a set of energy patterns. Energy patterns

refer to motifs in molecular complexes (bonds, states, pairs of bonds, etc.) and form the

building blocks of a free energy accounting system for molecular complexes. Cooperativity

among components, i.e. reaction context, is encoded in the set of energy patterns. Reactions

are generated by applying the atomic transformations to the initial species set (the usual

approach) and then kinetics are derived from the change in free energy of the reaction, as

computed from the energy patterns. This approach has several advantages over traditional

RBM. Most notably, (i) EBM typically requires fewer rules, (ii) rules have less context, and

(iii) the resulting reaction network is guaranteed to satisfy detailed balance. Thus, the EBM

approach is a promising solution to the problem of contextual complexity.

This chapter begins with an simple example of contextual complexity in a familiar

hemoglobin model. Then I will briefly present the theory of free energy and detailed bal-

ance in the context of chemical reaction systems. I then proceed to develop the formal

underpinnings of energy-based modeling, and demonstrate how the approach manages con-

textual complexity and guarantees detailed balance. A motivating example that illustrates

the method will be developed in parallel with EBM. Then I present several advances in

the energy-based approach, beyond the work of Danos and Ollivier; specifically, a general-

ization of energy-based kinetics that permits pure catalysis, and a method for integrating

non-equilibrium processes such as ATP driven reactions. Finally, I present software for EBM

within the BioNetGen platform, which is the major contribution in this chapter.

2.1.1 Contextual complexity: hemoglobin example

Consider a simple model of hemoglobin/oxygen binding. We will treat the hemoglobin

tetramer as a single object with four identical binding sites for oxygen and two conformations,

tense (T) and relaxed (R). We will assume that oxygen can bind to hemoglobin in either tense
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or relaxed conformations, although binding is more favorable in the tense state. Finally, we

assume that hemoglobin exists in an equilibrium of mixed tense and relaxed conformations,

even in the absence of oxygen. This is the Monod-Wyman-Changeaux model of hemoglobin

[82,83].

In the BioNetGen language (BNGL), the molecule types are:

begin molecule types
# Hemoglobin tetramer

Hgb(c∼R∼T,o2,o2,o2,o2)
# Free oxygen

O2(hgb)

end molecule types

where the c component represents the conformational state and the o2 components represent

the oxygen-binding heme group in the Hemoglobin subunits.

The system can be described by seven reaction rules: two for oxygen binding and five

for conformation changes.

begin reaction rules
# binding

Hgb(c∼R,o2) + O2(hgb) <-> Hgb(c∼R,o2!1).O2(hgb !1) kp1 , km1

Hgb(c∼T,o2) + O2(hgb) <-> Hgb(c∼T,o2!1).O2(hgb !1) kp2 , km2

# conformation change

Hgb(c∼R,o2,o2,o2,o2) <-> Hgb(c∼T,o2,o2,o2,o2) kp3 , km3

Hgb(c∼R,o2!+,o2,o2 ,o2) <-> Hgb(c∼T,o2!+,o2,o2,o2) kp4 , km4

Hgb(c∼R,o2!+,o2!+,o2 ,o2) <-> Hgb(c∼T,o2!+,o2!+,o2,o2) kp5 , km5

Hgb(c∼R,o2!+,o2!+,o2!+,o2) <-> Hgb(c∼T,o2!+,o2!+,o2!+,o2) kp6 , km6

Hgb(c∼R,o2!+,o2!+,o2!+,o2!+) <-> Hgb(c∼T,o2!+,o2!+,o2!+,o2!+) kp7 , km7

end reaction rules

The first thing we notice is the five different rules that correspond to the conformational

change from relaxed to tense. Each rule represents the same transformation in different

context. This is an example of contextual complexity. Not only is it tedious to enumerate the

rules, but each contextual variant introduces additional parameters. Although it is tempted

to simply assign the same kinetic rates to each equation, this will effectively decouple oxygen

binding from conformational state, which defeats the purpose of the model. Parameterization

is further complicated by hidden constraints in the set of parameters due to “loops” in the

reaction network. These constraints, required by the principle of detailed balance will be

described in the next section.

To simplify the discussion, I will introduce a shorthand representation for the species in
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the model system. Each hemoglobin species will be represented by a letter describing the

conformational state (R or T) and a number (0, 1, 2, 3, 4) representing the number of bound

oxygen. For example, a hemoglobin tetramer in the tense conformation with two bound

oxygen will be denoted T2. Finally, free oxygen is represented by the letter O2.

The reaction network implied by this rule model contains 11 species and 13 reversible re-

actions. The species are: O2, R0, R1, R2, R3, R4, T0, T1, T2, T3, T4. The reactions

are as follows,

begin reactions

R0 + O2 <-> R1 4*kp1 , km1

R1 + O2 <-> R2 3*kp1 , 2*km1

R2 + O2 <-> R3 2*kp1 , 3*km1

R3 + O2 <-> R4 1*kp1 , 4*km1

T0 + O2 <-> T1 4*kp2 , km2

T1 + O2 <-> T2 3*kp2 , 2*km2

T2 + O2 <-> T3 2*kp2 , 3*km2

T3 + O2 <-> T4 1*kp2 , 4*km2

R0 <-> T0 kp3 , km3

R1 <-> T1 kp4 , km4

R2 <-> T2 kp5 , km5

R3 <-> T3 kp6 , km6

R4 <-> T4 kp7 , km7

end reactions

where the rate constant multipliers are due to the number of free oxygen sites on the

hemoglobin (forward reaction) or the number of occupied heme sites (reverse reaction).

Figure 2.1 shows the possible states of hemoglobin tetramers and the allowed transitions

between states. There are a number of loops in the state transition diagram. As we will see

in the next section, these loops introduce parameter constraints.

2.2 FREE ENERGY PRINCIPLES FOR BIOCHEMICAL SYSTEMS

This section introduces the basics of free energy for biochemical kinetics. The first sec-

tions introduce the concepts of energy, entropy, and free energy for systems in equilibrium.

The discussion is informal with an emphasis on developing an intuition for free energy as

probability. Next, Gibbs’ free energy is presented along with its relationship to reaction

equilibrium in biochemical systems. This leads to the principle of detailed balance, which
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Figure 2.1: State transition diagram for hemoglobin model. Each circle represents a

possible state for a Hemoglobin tetramer. Possible state transitions are indicated by arrows

labeled by the respective equilibrium constants. Although state transitions are bidirectional,

the direction of the arrow indicates the frame of reference for the equilibrium constants.
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places constraints on the parameterization of kinetic models.

This brief introduction to energy, entropy and free energy draws inspiration from Sta-

tistical Physics of Biomolecules by Daniel M. Zuckerman [94], chapter 3 in particular. The

reader is encouraged to read this text if further background on statistical mechanics is re-

quired. For further depth on statistical physics in the context of biochemical systems, the

reader is directed to Chemical Biophysics by Daniel A. Beard and Hong Qian [95].

2.2.1 Energy

Energy is a quantity associated with a specific state of a biochemical system. The energy of a

state is proportional to the logarithm of the probability that the system, at equilibrium, will

be in that state. (The system is at equilibrium if the probability distribution is stationary.)

If x is a state, then:

p(x) ∝ exp
−E(x)

kBT
(2.1)

where E(x) is the energy of the state, kB is the Boltzmann constant, T is the absolute

temperature, and p(x) is the probability of the state. If a system can take on N discrete
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states labeled (s1, s2, . . . , sN), then the partition function for the system is defined to be:

Z =
N∑
n=1

exp
−E(sn)

kBT
. (2.2)

The normalized probability of a state can be obtained from the energy and the partition

function as follows:

p(s) =
1

Z
exp
−E(s)

kBT
. (2.3)

The partition function plays an important role in statistical mechanics, but for purposes here

it is sufficient to view Z as a normalization factor.

Consider a system with N particles, where each can take one of two states (xi ∈ {0, 1}).

Assuming the probability for particle i is independent of particle j, for all i 6= j, the probabil-

ity of system state ~x = (x1, x2, . . . , xN) is given by the product of the individual probabilities:

p(~x) =
N∏
n=1

1

Z
exp
−E(xn)

kBT
=

1

ZN
exp
−
∑N

n=1E(xn)

kBT
. (2.4)

In words, the energy of the system is given by the sum of the energy over the particles.

2.2.2 Entropy

Entropy is a measure of disorder in a system. Consider a box with N particles. Suppose a

molecule can take on two conformations, A and B, with equal probability. Suppose k such

molecules populate our system. The entropy of this system state is proportional to the

logarithm of the number of ways N particles can be arranged so that k have conformation

A and N − k have conformation B. More precisely, the entropy is given by

S = kB log ΩN,k, (2.5)

where S is the entropy, kB is the Boltzmann constant, and Ω is the number of configurations.

The number of configurations, in this case, is given by the the number of ways to choose k

objects from a set of N , i.e.
(
N
k

)
= N !

k!(N−k)! . If k = 0 or k = N , the number of configurations
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is 1 and the entropy is 0. If N and k are sufficiently large, Sterling’s approximation can be

used to estimate the entropy:

S = kB log Ω(N, k) = kB log
N !

k!(N − k)!
= kB (logN !− log k!− log(N − k)!)

≈ kB ((N logN −N)− (k log k − k)− ((N − k) log(N − k)− (N − k)))

= kB

(
N log

N

N − k
+ k log

N − k
k

)
. (2.6)

To find the maximum of the entropy, differentiate by k and solve for the critical points to

obtain
dS

dk
= 0 ⇐⇒ N − k

k
= 1 ⇐⇒ k =

N

2
. (2.7)

Therefore, the entropy of the system is maximized when half the particles have conformation

A and half B. Since our intuition tells us the molecules will be divided about equally between

A and B, we may anticipate that maximizing the entropy has a relationship to most likely

system configurations.

Before moving on, I will introduce some terminology. A macrostate is a subset of all

system microstates that are indistinguishable. In the example above, the microstates of the

system are given by the vectors ~x = (x1, x2, . . . , xN , where xi is the conformation of particle n.

A microstate ~x belongs to the macrostate k if |{i : xi = B}| = k. The microstates belonging

to macrostate k are indistinguishable since, for purposes of well-mixed chemical kinetics, the

identity of the k molecules in configuration B has no effect on the system dynamics.

More generally, a macrostate may be composed of microstates with different energies

(i.e. different probabilities). Then the entropy of a macrostate is given by:

S = −kB
N∑
n=1

pn log pn. (2.8)

where pn is the probability of microstate n. This formulation works even if the microstates

have different energies. But for our purposes, it is usually assumed that each microstate in

the macrostate has the same energy. Note that if all N states have the same probability,

then the above formula reduces to our first definition S = kB log Ω.
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2.2.3 Free energy

Suppose a macrostate X is defined by a set of microstates {x1, x2, . . . , xN}, where the energy

of each microstate is constant: E(xi) = E0. Now we ask what is the probability that the

system state is any of the microstates in X? Or, put another way, what is the probability

that the system belongs to macrostate X? The probability of any microstate is proportional

to exp −E0

kBT
. Since the microstates are disjoint, the probabilities are additive, therefore:

p(X) =
1

Z

N∑
n=1

exp
−E0

kBT
, (2.9)

where Z is the partition function for the set of system microstates. Since the energy of each

microstate is constant, we can rewrite the sum as:

p(X) =
N

Z
exp
−E0

kBT
=

1

Z
exp
−(E0 − kBT logN)

kBT
. (2.10)

Since N is the number of microstates in S, we see that the energy term in the numerator

has been replaced with the quantity E0 − TS(X), where S(X) is the entropy of macrostate

X. This leads to the definition of free energy for a macrostate X where each microstate has

the same energy E0:

F (X) := E0 − TS(X). (2.11)

Thus, the free energy F (X) can be interpreted as the logarithm of the probability that the

system state belongs to the macrostate X.

More generally, the free energy of a macrostate is the expected energy of the system

conditioned on the state belonging to a macrostate X.
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2.2.3.1 Free energy example: isomerization Suppose a system consists of N mole-

cules that take on one of two discrete conformational states, i.e. xn ∈ {A, B}. Let EA and EB

be the energies associated with a molecule is state A and B, respectively. The set of possible

microstate microstates is given by the set {~x ∈ {A, B}N}. The macrostate k is the subset of

microstates where exactly k molecules have conformation B. Recalling that the energy of a

system of particles is given by the sum of the energy of individual molecules, the free energy

of macrostate k is given by:

F (k) = (N − k)EA + kEB − TSk = (N − k)EA + kEB − kBT log Ωk

= (N − k)EA + kEB − kBT log

(
N

k

)
. (2.12)

So we see that the probability of the system being in macrostate k depends on both the

energy of isomerization and the entropy of the system.

2.2.3.2 Difference in free energy is all that matters Suppose macrostates X1, X2,

. . ., XN partition the microstates of a system. Let F1, F2, . . ., FN be the free energy of

the macrostates. We will attempt to show only differences in free energy matter, since

shifting the free energy terms by a constant factor has no effect on the probabilities of the

macrostates. Suppose the free energies are shifted by a constant value C, then:

p(Xi|C) =
exp −(Fi+C)

kBT∑N
n=1 exp −(Fn+C)

kBT

=
exp −C

kBT
exp −Fi

kBT

exp −C
kBT

∑N
n=1 exp −Fn

kBT

=
exp −Fi

kBT∑N
n=1 exp −Fn

kBT

= p(Xi|C = 0). (2.13)

So the probabilities of the macrostates are not altered by a constant shift in free energy.

Consequently, we are free to choose a reference state and arbitrarily set the free energy to

zero.
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Consider the previous example, if the reference state is Sref = (N0, k0) = (1, 0), then the

relative free energy of S = (N, k) is:

∆F (N, k) := F (N, k)− F (1, 0)

=

(
(N − k)EA + kEB − kBT log

(
N

k

))
−
(
EA − kBT log

(
1

1

))
= (N − k)EA + (k − 1)EB − kBT log

(
N

k

)
. (2.14)

Since the reference is arbitrary, we can choose EA such that F (1, 0) = 0. Then ∆F (N, k) =

F (N, k).

The difference in free energy of the macrostate states (N, k) and (N, k + 1) is

∆Fk,k+1 := F (N, k + 1)− F (N, k)

=

(
(N − k − 1)EA + (k + 1)EB − kBT log

(
N

k + 1

))
−
(

(N − k)EA + kEB − kBT log

(
N

k

))
= EB − EA − kBT log

(
k!(N − k)!

(k + 1)!(N − k − 1)!

)
= (EB − kBT log(N − k))− (EA − TkB log(k + 1)) . (2.15)

2.2.3.3 Free energy of formation In the previous section we derived a formula for the

change in free energy when one molecule changes configuration in a system of N particles.

The formula can be divided into two terms, one for the “reactant”, i.e. the molecule in

configuration A prior to the change, and one for the “product”, i.e. the molecule in config-

uration B subsequent to the change. Each term can be interpreted as the free energy cost

of one molecule in that configuration, adjusted for the current quantity of molecules in that

configuration. This motivates the concept of free energy of formation, which is defined to

be:

∆Ff (X) := ∆F ◦f (X) + kBT log(nX/n0), (2.16)

where ∆F ◦f (X) is the standard free energy of formation constant for a species X, nX is the

number of particles of species X, and n0 is a reference quantity for the standard free energy

of formation.
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2.2.4 Gibbs free energy

An NPT system has a fixed number of particles, constant pressure, and constant temperature.

These conditions often apply to biochemical or cell culture experiments, which are typically

performed in a test tube under atmospheric pressure and room temperature. In an NPT

system, free energy takes the form:

∆G := ∆H − T∆S, (2.17)

where S is entropy as before, and H is enthalpy, which is analogous to energy for an NPT

system.

The Gibbs free energy of formation of a species X is defined to be:

∆Gf (X) := ∆G◦f (X)+RT log([X]/c0) = ∆H◦f (X)−RT∆S◦f (X)+RT log([X]/c0), (2.18)

where ∆H◦f (X) is the standard heat of formation, ∆S◦f (X) is the standard entropy, [X] is

the concentration of X, and c0 is a reference concentration. The free energy of formation

can be interpreted as the free energy cost of constructing one unit of species X from atomic

constituents (i.e. the reference) in an NPT system with concentration [X].

The Gibbs’ free energy is perhaps the most important concept in chemical physics: an

NPT system tends towards minimizing the Gibbs’ free energy. Recalling that free energy is

related to the probability of a state, there is an intuitive connection between free energy and

equilibrium. The system prefers to reside in high probability states. Since the free energy is

proportional to the negative of the logarithm of probability, it makes sense that the system

would seek out states with minimum free energy.
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2.2.4.1 Reaction equilibrium The change in free energy due to a reaction is the vital

piece of information required to determine whether a reaction will proceed (on average)

in the forward or reverse direction. If the change is negative, then the reaction proceeds

forward. When the change is zero, the reaction is at equilibrium and has no tendency to

move forward or reverse. A negative change in free energy can be viewed as a “flow” towards

higher probability states. When the change in free energy is zero, then the reaction has

reached a local maximum in the probability distribution.

The change in free energy of a reaction can be calculated by computing the difference

between the free energy of formation of the products and reactants:

∆Grxn =
∑
p

νp
(
∆G◦f (p) +RT log([p]/c0)

)
−
∑
r

νr
(
∆G◦f (r) +RT log([r]/c0)

)
, (2.19)

where p ranges over the products, r ranges over the reactants, and the ν’s are stoichiometric

coefficients.

When reactants and products are at standard concentration c0, the change in free energy

reduces to:

∆G◦rxn =
∑
p

νp∆G
◦
f (p)−

∑
r

νr∆G
◦
f (r). (2.20)

This quantity is called the standard free energy change of the the reaction. Equation 2.19

can be reformulated using the standard free energy change:

∆Grxn = ∆G◦rxn +
∑
p

νpRT log([p]/c0)−
∑
r

νrRT log([r]/c0)

= ∆G◦rxn +RT log

∏
p([p]/c0)

νp∏
r([r]/c0)

νr
. (2.21)

So we see that the change in free energy is a constant and a term that accounts for non-

standard concentrations of reactants and products. The reaction quotient is the ratio of

product and reactant concentrations inside the logarithm:

Q :=

∏
p([p]/c0)

νp∏
r([r]/c0)

νr
. (2.22)
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The reaction is at equilibrium when the change in free energy is zero. Setting the free

energy change to zero, the relationship between equilibrium and Q is

∆Grxn = 0 ⇐⇒ ∆G◦rxn = −RT logQ ⇐⇒ exp
−∆G◦rxn
RT

= Q. (2.23)

So the reaction quotient at equilibrium is related to the standard change in free energy

via the Boltzmann factor. The value of Q at equilibrium is usually denoted by Keq, the

equilibrium constant.

exp
−∆G◦rxn
RT

= Keq. (2.24)

2.2.4.2 Detailed balance At equilibrium, the net flux across each reaction is zero in

an NPT system. This is the principle of detailed balance: the forward rate of each reaction

is balanced with the reverse rate. We will see in this section that satisfying detailed balance

introduces constraints among the equilibrium constants in the reaction network. And as a

further consequence, the kinetics parameters are constrained.

Consider a “loop” of reactions such that the system state after firing the sequence is the

same as the original state. Suppose r1, r2, . . ., rN are a sequence of reactions in an NPT

system, and let ~si be the stoichiometry vector for reaction i. If a sequence of reactions has

the property:
N∑
i=1

~si = ~0, (2.25)

then the reaction sequence forms a loop in the reaction network. If a reaction sequence forms

a loop in the reaction network, then we will see that the change in Gibbs’ free energy due

to firing the reactions is zero.

N∑
i=1

~si = ~0 =⇒
N∑
i=1

∆G◦rxn(i) = 0, (2.26)

where ∆G◦rxn(i) is the standard free energy change of reaction i. In words, Gibbs free energy

is conserved around loops in the reaction network.

Equation 2.26 is a simple consequence of the relationship between the standard change in

free energy and the reaction quotient at equilibrium. For precision, let’s define the reactant

vector ~ri, where the ri,j is the number of species j consumed by reaction i, and the product
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vector ~pi, where pi,j is the number of species j produced by reaction i. The reactant and

product vectors are related to the stoichiometry vector: ~si = ~pi − ~ri. Now let’s consider the

product of the equilibrium constants:

N∏
i=1

Keq,i =
N∏
i=1

∏Ns
j=1([xj]/c0)

pi,j∏
j([xj]/c0)

ri,j
=

N∏
i=1

Ns∏
j=1

([xj]/c0)
pi,j−ri,j =

N∏
i=1

Ns∏
j=1

([xj]/c0)
si,j

=
Ns∏
j=1

([xj]/c0)
∑N
i=1 si,j =

Ns∏
j=1

([xj]/c0)
0 = 1, (2.27)

where Ns is the number of species involved in the reaction loop. So the product of equilibrium

constants around a loop is equal to one. Now let’s use the relation between equilibrium

constants and standard change in free energy:

1 =
N∏
i=1

Keq,i =
N∏
i=1

exp
−∆G◦rxn(i)

RT
⇐⇒ 0 =

N∑
i=1

∆G◦rxn(i). (2.28)

Therefore, the sum of standard change in free energy is zero around any loop in the reaction

network. It also follows that the change in free energy for non-standard concentrations

equals zero. Starting with the change Gibbs’ free energy calculated from the free energy of

formation, we obtain:

N∑
i=1

∆Grxn(i) =
N∑
i=1

Ns∑
j=1

~si,j
(
∆G◦f (j) +RT log([xj]/c0)

)
=

N∑
i=1

Ns∑
j=1

~si,j∆G
◦
f (j) +RT

N∑
i=1

Ns∑
j=1

~si,j log([xj]/c0)

=
N∑
i=1

∆G◦rxn(i) +RT
Ns∑
j=1

(
N∑
i=1

~si,j

)
log([xj]/c0) = 0. (2.29)
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2.2.4.3 Detailed balance in the hemoglobin model The Hemoglobin state transi-

tion digram in Figure 2.1 has 4 simple loops. Each simple loop introduces one additional

constraint on the equilibrium parameters. Since the oxygen binding sites are indepen-

dent given the conformation of Hemoglobin (and concentration of free oxygen), we have

KR01 = KR12 = KR23 = KR34 and KT01 = KT12 = KT23 = KT34. So there are 13 − 6 = 7

equilibrium parameters and an additional 4 constraints due to the loop. Therefore, the

model has 3 free equilibrium parameters. Choosing the free parameters KR01, KRT1, KT01, the

remaining parameters are computed as follow:

KRT1 = KT01KRT0/KR01

KRT2 = K2
T01KRT0/K

2
R01

KRT3 = K3
T01KRT0/K

3
R01

KRT4 = K4
T01KRT0/K

4
R01 (2.30)

2.2.4.4 Elementary kinetics and its connection to detailed balance So far, we

have elaborated the theory for systems at equilibrium. But is this relevant for systems that

are far away from equilibrium? If most biochemical models include processes that are driven

by external energy, e.g. ATP, why should we care about equilibrium principles? The answer

lies in the connection between detailed balance and elementary kinetics, the most common

theoretical model governing the kinetics of chemical reactions.

An elementary reactions is a chemical reaction in which the reactant species interact to

form the products in one step, i.e. there are no intermediate steps in the reaction mechanism.

The kinetic rate of an elementary reaction is given by the product of (i) a microscopic rate

constant, (ii) a combinatorial factor that counts the number potential reactant sets, and

(iii) a path factor describing the number of “reaction pathways” that a set of reactants may

follow. In general, if ~r is the reactant vector, the elementary reaction rate is:

rate = kη

Ns∏
i=1

ri∏
j=1

ni − (j − 1)

j
, (2.31)

where ni is the number of molecules of species i, ri is the reactant stoichiometry of species

i, k is the microscopic rate constant (per unit time), and η is the path factor.
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For example, the bimolecular reaction A + B -> AB k has the elementary rate:

rate = knAnB, (2.32)

where the number of ways to select an A,B pair to react is nAnB. In contrast, the reaction

A + A -> AA k has the elementary rate:

rate = k
nA(nA − 1)

2
, (2.33)

since the number of ways to select an A,A pair is given by
(
nA
2

)
= nA(nA−1)

2
.

Most commonly, bulk rate constants, i.e. per concentration per time for bimolecular

reactions, are reported in the literature. However, a rate constant in “microscopic” units,

i.e. the propensity for an A,B particle pair to interact per unit time in the reactor volume,

is required for discrete stochastic simulations. The microscopic constant is obtained from

the bulk rate constant by dividing by the product of Avogadro’s number and the reactor

volume, NAV .

At equilibrium, the reverse rate balances the forward rate so there is no net flux through

the reaction. Consider the generalized elementary reaction:

Ns∑
i=1

xi
ri →

Ns∑
j=1

xj
pj k+, k− (2.34)

where ~r and ~p are the reactant and product vectors. At equilibrium the forward and reverse

rates are balanced:

k+η+

Ns∏
i=1

∏ri
j=1 ni − (j − 1)

ri!
= k−η−

Ns∏
i=1

∏pi
j=1 ni − (j − 1)

pi!
. (2.35)

Rearranging terms, we obtain:

k+η+
∏

i ri!

k−η−
∏

i pi!
=

∏
i

∏pi
j=1 ni − (j − 1)∏

i

∏ri
j=1 ni − (j − 1)

. (2.36)

For large species counts, the ratio of weighted rate constants is approximately proportional

to the reactant quotient:

(NAV )
∑
i(ri−pi)

k+η+
∏

i ri!

k−η−
∏

i pi!
= (NAV )

∑
i(ri−pi)

∏
i ni

pi∏
i ni

ri
=

∏
i

(
ni

NAV

)pi
∏

i

(
ni

NAV

)ri = Q. (2.37)
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Hence, at equilibrium we have:

Keq = (NAV )
∑
i(ri−pi)

k+η+
∏

i ri!

k−η−
∏

i pi!
. (2.38)

Since the path factor is a constant, the equilibrium constant constrains the ratio of the

elementary kinetic rate constants. Since the product of equilibrium constants around a loop

is one, and the ratio of rate constants is proportional to the equilibrium constant, we have:

1 =
N∏
i=1

Keq,i =
N∏
i=1

(NAV )
∑
j(rj−pj)

ki+ηi+
∏

j ri,j!

ki−ηi−
∏

j pi,j!
=

N∏
i=1

ki+ηi+
∏

j ri,j!

ki−ηi−
∏

j pi,j!
. (2.39)

So even when the system is away from the equilibrium, the elementary rates are constrained

by principles of free energy.

Finally, if the change in free energy around each loop is zero, then detailed balance is

automatically satisfied. For simplicity, absorb the multiplicity and combinatorial factors into

the rate constant. Then for any reaction i in a loop:

k′i−
k′i+

=
1

Keq,i

=
∏
j 6=i

Keq,j =
∏
j 6=i

k′j+
k′j−

=
∏
j 6=i

∏
l nl

pj,l∏
l nl

rj,l
=

∏
l nl

∑
j 6=i pj,l∏

l nl
∑
j 6=i rj,l

=

∏
l nl

ri,l∏
l nl

pi,l

=⇒ k′i+
∏
l

nl
ri,l = k′−

∏
l

nl
pi,l .

(2.40)

2.2.4.5 Methods for satisfying detailed balance Various methods exist for satisfying

detailed balance in reaction networks. Colquhoun et al. [96] presented a method that relies on

finding the minimum cycle basis of the state graph. The computational cost is > O((n+m)3),

where n is the number of undirected edges and m the number vertices [97]. Thus the cost

is prohibitive for large reaction networks found in combinatorial networks. Yang et al. [97]

reduced the cost by identifying the minimal reaction scheme, i.e. the sub-network excluding

energy-driven and irreversible reactions, as well as reactions in acyclic pathways. Szederkenyi

and Hangos developed a polynomial-time method posed as a linear programming task [98].

Gorban and Yablonsky extended detailed balance methods to networks with irreversible

reactions. Danos et al. [99], working in a restricted class of Petri net, provided criterion for

verification of detailed balance in a class of Petri nets.
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The methods above attempt to satisfy or verify detailed balance in a reaction network.

In contrast, the Allosteric Network Compiler (ANC) is a rule-based modeling language with

semantics for allosteric mechanisms [49]. During network generation, kinetic rates are cus-

tomized for each reaction to account for cooperative interactions. Thus, the reactions derived

from a rule are guaranteed to satisfy detailed balance.

2.3 MOTIVATING EXAMPLE

This chapter will develop energy-based modeling in parallel with a model of ligand-induced

receptor dimerization and phosphorylation. Henceforth, we will refer to this as the receptor

activation model. Figure 2.2 shows the contact map for the receptor activation model. A

contact maps shows the molecular domain structure, protein-protein interactions, and po-

tential post-translational modifications. The receptor activation pathway begins with ligand

binding the extracellular domain of the transmembrane receptor. Ligand binding drives the

receptors to form dimers, and the kinase domain of a dimerized receptor trans-phosphorylates

a residue on its partner receptor. Phosphorylation consumes one ATP, however we assume

that the concentration of ATP is held constant in the cytosol. (The receptor is said to be

active when it is phosphorylated.) Finally, a cytosolic phosphotase binds to the phospho-

rylated receptor at catalyzes dephosphorylation, returning the receptor to its inactive form.

The ligand-receptor module is based on the Macdonald-Pike model of cooperativity in EGF

ligand binding and receptor dimerization [88]. The complete model is listed in Appendix C.

The receptor activation model will motivate the methods, illustrating the benefits in

terms of simplified model specification and automatic satisfaction of thermodynamic balance

constraints. The receptor activation EBM is specified by 5 reaction rules (ligand binding,

receptor dimerization, transphosphorylation, phosphotase binding, and dephosphorylation)

and 8 energy patterns. The reaction rules have minimal context, meaning that only the sites

of the reaction center are queried by the rules. The cooperativity between sites, such as the

cooperativity of ligand binding and receptor dimerization, is encoded in the energy patterns.

In contrast, an equivalent plain BNGL model requires 10 reaction rules (not shown).
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Figure 2.2: Contact map of example energy model: receptor activation.
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Not only does the EBM require fewer rules, but each rule has minimal context and thus is

simpler to write and read. Furthermore, 3 thermodynamic balance constraints are implied

by the reaction rules. Whereas the modeler must manage the constraints manually in the

plain BNGL model, these are handled automatically in the energy BNGL model. Managing

thermodynamics constraints is especially challenging for larger models. The reaction network

generated by the energy model, or the equivalent plain BNGL model, includes 50 species

and 316 reactions.

2.4 THE THEORY OF ENERGY-BASED MODELING

In this section, I will develop the theory of energy-based modeling. First, we present a

method of accounting free energy of species by pattern matching. Then the change in free

energy of reactions are computed from the free energy of the reactant and product species.

Next, kinetic parameters are derived from the change in free energy and an activation energy

parameter. Finally, a software implementation in BioNetGen, energy BNGL or eBNGL is

described.

The union of free energy principles and rule-based models was first described by Ollivier,
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et al. [49] and implemented in the Allosteric Network Compiler (ANC). Ollivier’s method was

generalized to arbitrary sources of cooperativity via pattern matching by Danos et al. [93].

The present work builds on this foundation by presenting (i) a general implementation of

energy modeling in BNG, (ii) fully energy-based kinetics, including pure catalysis, (iii) non-

equilibrium processes, (iv) a treatment of ring formation in oligomers.

2.4.1 Free energy accounting: a pattern-based approach

Energy patterns are molecular motifs where free energy is “stored”. For example, free en-

ergy can be stored in a bond, L(r!1).R(l!1); a molecule, ATP(); or a post-translational

site modification, R(y∼P!?); and so forth. Free energy can also be stored in coopera-

tivity between pairs of bonds, L(r!1).R(l!1,d!2).R(d!2); bonds and site modifications,

R(y∼P!1).Ph(s!1); etc. In general, free energy can be stored in arbitrary patterns. Each

energy pattern is associated with a parameter called the standard free energy of pattern for-

mation, or pattern energy for brevity. This parameter quantifies the amount of free energy

required to form 1 unit of the pattern under standard conditions.

Consider a simple system with molecule types A(b) and B(a). Suppose free energy is

stored in the bond motif A(b!1).B(a!1), with the pattern energy ∆G◦f = −45kJ/mol. If

we begin with 1 molar A(b), B(a) and A(b!1).B(a!1), then the free energy cost of forming

A(b!1).B(a!1) is −45 kJ/mol.

2.4.1.1 Computing species free energy The standard free energy of species forma-

tion, or species energy for brevity, quantifies the free energy cost of forming the species from

“atomic” constituents under standard conditions. Most often, our atomic components are

not physical atoms, but rather the smallest unit of resolution in the model. In most cases,

the “atoms” will be individual, unbound and unmodified macromolecules or other simple

molecules like ATP. The species energy is a function of the energy patterns embedded in

the molecular structure of the species. The energy is computed by counting the number of

energy pattern matches in the species then computing the sum over matches weighted by the

corresponding pattern energy. For example, if ∆G◦f (bond) is the pattern energy associated
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Figure 2.3: Energy patterns in example model: receptor activation model.
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with a type of bond, and the bond pattern is found 3 times in the species, then the pattern

contributes 3 ·∆G◦f (bond) units of free energy to the species.

More formally, let (Pn,∆G
◦
f (n))

Np
n=1 be an indexed set of BNGL patterns paired with

pattern energy parameters. Let x be a species and let emb(P, x) be the set of embeddings

of pattern P in the graph representing species x (see Appendix B for more details on graph

formalism). Then the standard free energy of species formation is given by:

G◦f (x) =
N∑
n=1

|emb(Pn, x) | ·∆G◦f (n), (2.41)

where |emb(Pn, x) | is the number of elements in the set of embeddings, i.e. the number time

the motif matches the species.

Figure 2.4 illustrates the process of computing species energy from pattern matches. In

this example, the standard free energy of species formation is computed for a phosphorylated

receptor with bound phosphotase. Three energy patterns are embedded in this species: the

phosphorylated receptor motif (RyP), the receptor-phosphotase motif (R Ph), and phospho-

rylated receptor-phosphotase motif (Rp Ph). Since each energy pattern matches the species

exactly once, the standard free energy of formation is computed by the sum of the pattern

energy parameters weighted by unity: G◦f (Rp) +G◦f (R Ph) +G◦f (RyP Ph).
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Figure 2.4: Species free energy of formation: an illustration.
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Table 2.1 lists energy patterns defined in the receptor activation model. There are several

types of motifs represented in the model. Free energy is stored in three bond motifs: the

ligand-receptor bond, receptor dimerization bonds, and the interaction of the phosphotase

(Ph) with the receptor tyrosine residue. Additionally, energy is stored in the phosphorylated

receptor tyrosine residue and ATP molecules. Finally, free energy is stored in cooperativity

among these motifs: association of a ligand to a receptor dimer, the association of two ligands

to a receptor dimer, and doubly ligated receptor dimers. Figure 2.3 illustrates the energy

patterns contained in the model.

Each energy pattern is associated with a non-dimensional standard free energy of pattern

formation parameter. If ∆G◦f has units of kJ/mol, the unitless parameter is obtained by

dividing by the product of temperature (K) and the Universal Gas Constant (kJ/mol/K).

However, if ∆G◦f has units of kJ/molecule, the Boltzmann constant kB (kJ/K) substitutes

for the Universal Gas Constant.

The reference free energy for the system is the ensemble of “atomized” proteins in the

unbound, unmodified state (L(r), R(l,y 0), Ph(y)) and the ADP() molecule. The free

energy of formation of a species is the difference in energy of the species (as computed from

energy patterns) and its atomic components in the reference state. The ATP() free energy

is with respect to the free energy of ADP().
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Table 2.1: Energy patterns block for receptor activation model.

begin energy patterns
# bond energy

L(r!1).R(l!1) G_LR/RT

R(d!1).R(d!1) G_RR/RT

R(y!1).Ph(y!1) G_RPh/RT

# state energy

R(y∼P!?) G_RyP/RT

# molecule energy

ATP() G_ATP/RT

# cooperativity

R(y∼P!1).Ph(y!1) G_RyP_Ph/RT

L(r!1).R(l!1,d!2).R(d!2) G_LRR/RT

L(r!1).R(l!1,d!2).R(l!3,d!2).L(r!3) G_LRRL/RT

end energy patterns

At minimum, an energy model should define energy patterns for bonds and site mod-

ifications (e.g. conformational change, post-translational site modification, etc.). Energy

patterns are not required for sites in the unbound, unmodified state since this is assumed

to be the reference. If an energy pattern is not defined for a bond or site modification, it

is assumed that the change in free energy is zero with respect to the reference. Usually it

is not necessary to associate an energy pattern with the molecule itself, unless it is con-

sumed or produced during the simulation. For example, free energy can associated with the

high-energy molecule ATP, which is consumed by many enzymatic reactions. (We will later

resolve the dangling issue of non-equilibrium processes such as those that consume ATP.)

In the receptor activation model, ADP() does not require an energy pattern since the free

energy of ATP() is defined relative to ADP().

2.4.1.2 Computing change in free energy due to reaction The change in free

energy due to a reaction is computed from the difference in free energy of the product and

reactant species. If ~rµ, ~pµ are the reactant and product vectors for a reaction µ, then the

standard change in free energy is given by the difference in the standard free energy of
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formation of the reactants and products (see Equation 2.20):

∆G◦f (µ) =
Ns∑
i=1

pµ,i∆G
◦
f (xi)−

Ns∑
i=1

rµ,i∆G
◦
f (xi) =

Ns∑
i=1

sµ,iG
◦
f (xi). (2.42)

where i ranges over species, xi is species i, and ~sµ is the stoichiometry vector.

The free energy change can be reformulated in terms of the change in the pattern matches.

Plugging in Equation 2.41 for ∆G◦f (xi) yields:

∆G◦f (µ) =
Ns∑
i=1

sµ,i

Np∑
j=1

|emb(Pj, xi) | ·G◦f (Pj) =

Np∑
j=1

σµ,jG
◦
f (Pj), (2.43)

where σµ,j =
∑Ns

i=1 sµ,i|emb(Pj, xi) | is the pattern stoichiometry of reaction µ. In words, the

standard change in free energy is a linear combination of pattern energies with coefficients

given by the pattern stoichiometry of the rule.

2.4.1.3 Free energy is conserved around loops in the reaction network Now

we will show that the change in free energy around a loop in the reaction network is zero.

Suppose µ1, µ2, . . . , µNr is a sequence of reactions such that the final system state is the

same as the initial. More precisely, if ~sn is the stoichiometry vector of reaction µn, and∑N
n=1 ~sn = ~0, then it follows that the standard change in free energy around the loop is zero:

Nr∑
n=1

∆G◦f (µn) =
Nr∑
n=1

Ns∑
i=1

sn,i

Np∑
j=1

|emb(Pj, xi) | ·G◦f (Pj)

=
Ns∑
i=1

(
Nr∑
n=1

sn,i

)
Np∑
j=1

|emb(Pj, xi) | ·G◦f (Pj) = 0. (2.44)

Therefore, the pattern-based accounting system guarantees that all loops in the reaction

network conserve free energy. In a later section we will derive kinetic parameters that are

compatible with the change in free energy and show that this procedure guarantees detailed

balance.

53



2.4.2 Energy-based kinetics

The Arrhenius theory of reaction rates postulates that a rate constant has the form

k = C exp
−EA
RT

, (2.45)

where EA is the activation energy and C is a constant. The theory assumes that a high

energy transition state separates the reactant state from the product state. Assuming quasi-

equilibrium between the reactants and the transition state, the reactants occupy the transi-

tion state with probability

p(trans) =
exp (−(∆Gf (reac) + EA)/RT )

exp (−∆Gf (reac)/RT ) + exp (−(∆Gf (reac) + EA)/RT )

=
exp(−EA/RT )

1 + exp(−EA/RT )
. (2.46)

Assuming that the fraction of time spent in the transition state is small, this is approximately:

p(trans) ≈ exp
−EA
RT

. (2.47)

Similar to the Michaelis-Menten equation, we now assume that the rate of reaction is pro-

portional to the fraction of time spent in the transition state. This yields the Arrhenius rate

in Equation 2.45.

Linear transition state theory [100], or linear TST, assumes that the activation energy is

linearly related to the standard change in free energy of a reaction. This assumption leads

an activation energy the following form:

EA := E0 + φ∆G◦rxn, (2.48)

where E0 and φ are free parameters. The parameters may be treated as global or local

to a subset of reactions, depending on the scope of the linear assumption. Ollivier et al.

adopted linear TST for the Allosteric Network Compiler. The scope of φ as a global or local

parameter was explored, and it was observed that a global φ was sufficient for test models

and, as an added benefit, reduced the likelihood of overfitting data. ANC does not explicitly

define the E0, rather this is inferred for each rule from a pair of baseline kinetic parameters,
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k+, k−. Although linear TST restricts the kinetic space, the assumption has been shown to

be adequate for a number of applications, e.g, [101].

The activation energy is typically set with respect to the forward reactions, i.e. the

difference between the transition state energy and the free energy of the reactants. The

activation energy for the reverse reaction is related to the forward reaction as follows:

E−A = E+
A + ∆G◦rxn = E0 + (φ− 1)∆G◦rxn. (2.49)

Plugging the formula for E+
A and E−A into the Arrhenius rate law, we find that the ratio

of forward and reverse rate constants is equal to the Equilibrium constant, as required by

equilibrium principles:

k+
k−

=
C exp (−(E0 + φ∆G◦rxn)/RT )

C exp (−(E0 + (φ− 1)∆G◦rxn)/RT )
= exp

−∆G◦rxn
RT

. (2.50)

Therefore, we find it appropriate to adopt a convention for computing the kinetic rate con-

stants as follows:

k+ = C exp
−(E0 + φ∆G◦rxn)

RT

k− = C exp
−(E0 + (φ− 1)∆G◦rxn)

RT
, (2.51)

where E0 and C are rule-specific parameters with scope of all reactions generated by the

rule, and φ is usually a global system parameter (it may be desirable at times to define

a unique φ for each reaction rule). Since biochemical systems are usually simulated at

constant temperature, we may absorb the constant C into the Boltzmann factor. Letting

E ′0 := E0 −RT logC, we can rewrite the kinetic constants:

k+ = exp

(
−E

′
0 + φ∆G◦rxn

RT

)
k− = exp

(
−E

′
0 + (φ− 1)∆G◦rxn

RT

)
, (2.52)

Consequently, it is usually sufficient to work with the single parameter E ′0 := E0−RT logC

rather than E0 and C individually. We will usually omit the prime from E ′0 since it usually

will not lead to any ambiguity.
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The E0 parameter is interpreted as the activation energy for a reaction where ∆G◦rxn = 0.

The φ parameter is the rate distribution parameter. It determines how changes in ∆G◦rxn

are distributed between the forward and reverse rates. If φ = 1, then the reverse rate is

held constant while the forward rate adjusts to changes in ∆G◦rxn. When φ = 0, the forward

rate is held constant and only the reverse rate changes. At the special value φ = 1/2, the

rate parameters are treated symmetrically, in the sense that
k′+
k+

= k−
k′−

. Furthermore, when

φ = 1/2, E0 can be interpreted as the average of the forward and reverse activation energies:

E+
A + E−A

2
=

(E0 + φ∆G◦rxn) + (E0 + (φ− 1)∆G◦rxn)

2

=
(2E0 + (2φ− 1)∆G◦rxn

2
= E0. (2.53)

The role of φ is illustrated in Figure 2.5. If we draw a line connecting the free energy of the

reactants to the free energy of the reactants, the transition state energy is E0 energy units

above a point on this line set by the parameter φ. By adjusting φ, the transition state is

defined with respect to the reactants, the products, or something in between.

Choosing E0 for a reaction rule may be non-intuitive for a modeler accustomed to kinetic

parameters. It may be more natural to choose a forward rate constant k+0 for the reaction

rule when no additional context is considered (i.e. compute the change in free energy for

the rule, rather than any specific reaction). Letting ∆G◦rule be the standard change in free

energy of the rule, the baseline forward activation energy is E+0
A = E0 + φ∆G◦rule. Thus, we

can choose k+0 and φ and compute E0 as follows:

E0 = −RT log (k+0/C)− φ∆G◦rule. (2.54)

2.4.2.1 The limits of linear transition state theory A key limitation of the linear

transition state assumption is that reactions with the same change in free energy will always

have the same kinetic rate constants:

∆G◦rxn,i = ∆G◦rxn,j

=⇒ E+i
A = E0+φ∆G◦rxn,i = E+j

A =⇒ k+,i = C exp−E+i
A /RT = k+,j. (2.55)
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Figure 2.5: Geometric interpretation of transition state energy. The transition state

energy of a reaction is a function of the free energy change due to the reaction and two

additional parameters E0 and φ. This figure illustrates a geometric interpretation of the

transition state energy. Let the x-axis correspond to a reaction coordinate where 0 is the

reactant state and 1 is the product state. Let the y-axis be the free energy coordinate. A

line is drawn between the points
(
0,∆G◦f (reactants)

)
and

(
1,∆G◦f (products)

)
. The φ

parameter selects a point along this line given by
(
φ,∆G◦f (reactants) + φ∆G◦rxn

)
. Finally,

the E0 parameter sets the “height” of the transition state at a fixed distance above the φ

point, specifically: ∆G◦f (trans) = ∆G◦f (reactants) + φ∆G◦rxn + E0.
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Therefore, pure catalytic effects, where the activation energy is lowered without shifting

the equilibrium, are not permissible within linear TST. For example, consider the reactions

S(a∼0) <-> s(a∼P) kp,km and S(a∼0).E <-> S(a∼P).E b*kp,b*km, where E is an en-

zyme and b > 1. Both reactions have the same equilibrium, but the reaction with enzyme

occurs at a faster rate. Such reaction pairs, generated by the same rule, are not possible

with the linear TST framework.

The Allosteric Network Compiler permits a workaround since the baseline forward and

reverse rate constants are both free parameters for each reaction rule. The modeler writes

two separate rules, one for the uncatalyzed reaction and one for the enzyme catalyzed re-

action, with different baseline kinetic parameters. While serviceable, this approach risks

the integrity of detailed balance in the resulting reaction network. The modeler must verify

that no violations of detailed balance have been introduced in the reaction network. For a

simple model, this will be a straightforward task. But for complex models, it may be quite

challenging.

I propose an alternative approach that is energy-balanced by construction and so avoids

the possibility of violating detailed balance. Let us generalize the baseline energy constant to

a function of the reactants, E0(~r), for the forward reaction, and a function of the products,

E0(~p), for the reverse reaction. Now the forward and reverse rate constants are computed as

follows:

k+ = C exp

(
−E0(~r) + φ∆G◦rxn

RT

)
k− = C exp

(
−E0(~p) + (φ− 1)∆G◦rxn

RT

)
. (2.56)

But we immediately encounter a problem. The ratio of rate constants will not necessarily

equal the equilibrium constant

k+
k−

= exp
−∆G◦rxn + (E0(~p)− E0(~r))

RT
= Keq ⇐⇒ E0(~r) = E0(~p). (2.57)

Consequently, we must restrict E0 to the class of functions that evaluate to the same value

on ~r and ~p. Formally, if NNs is the set of all species vectors for the model system, and ~s is

the stoichiometry vector of the reaction rule, then E0 ∈ {f : NNs → R | f(~y) = f(~y+~s)∀~y}.
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The set of constant functions is a trivial example of such a function. The set of functions

that depends only on the reaction context also satisfies this definition.

Given a reaction rule and a set of pattern-parameter pairs (Pi, Ei)
I
i=1, suppose that none

of the Pi overlaps the reaction center. Then E0 is computed as follows:

E0(~r) =
Ns∑
n=1

I∑
i=1

Ei · |emb(Pi, xn) |. (2.58)

Since the patterns do not overlap the reaction center, it follows that E0(~r + ~s) = E0(~r).

Therefore, this class of activation energy functions is compatible with the reaction equilib-

rium constants.

In eBNG, the baseline activation energy E0 may be set to a constant math expression or

any global or local function (i.e. a function of pattern matches). Prior to network generation,

functions are inspected for overlap with the reaction center. If possible overlap is detected,

network generation is aborted with an error message to the modeler. Thus, the limitations

of linear TST are removed without risk of violating detailed balance1.

See Section 2.5.8.1 for an model system that illustrates local activation energy functions.

2.4.3 Non-equilibrium reactions: adding free energy to the system

While NPT assumptions are applicable to a number of biochemical models, in general this

is a very limiting assumption. Most cellular signaling pathways, such as EGFR, involve

enzymatic reactions that consume energy in the form or ATP. The concentration of ATP

is held approximately constant in the cell by regulatory mechanisms. The production of

ATP is driven by the consumption of energy-rich substrates, e.g. glucose, etc., obtained

from the extracellular environment. At the scale of the test tube, the system is NPT if

we assume reagents are neither added or removed during the experiment. However, it is

impractical to model a system that includes the extracellular environment, nutrient uptake,

central metabolism, and so forth. Instead, the model is usually built on an implicit assump-

tion that the concentration of ATP, ADP, and so forth are held constant by some external

1At time of writing, local and global functions are supported by eBNG, but the check for overlap is not
yet implemented.
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mechanism. Hence, the system under study is not NPT, since an external free energy supply

is continuously pumped into the system.

Is it reasonable then, for models that include an external source of free energy, to enforce

the principle of detailed balance? And if so, how is free energy introduced to the system? A

simple thought experiment demonstrates that detailed balance principles do apply to such

systems, at least under the regime of elementary kinetics. Suppose the cell maintains an

ATP/ADP gradient by consuming energy obtained from the environment. Then imagine

that the cell finds itself starved of nutrients. Eventually, the cell would consume all its

energy reserves and ATP/ADP concentration gradient would be lost. Gradually the cellular

environment would tend toward an equilibrium. When equilibrium is achieved, detailed

balance must be satisfied. Hence, since the parameters are independent of concentration,

the elementary kinetic parameters of the model must satisfy any constraints imposed by

detailed balance.

So we have established that, ideally, elementary kinetic parameters should satisfy detailed

balance constraints, even for models that receive an external supply of free energy. But how

can we model the flow of external free energy into the system? The answer is right before us,

we simply need to make the implicit assumptions explicit. Let us suppose that an external

energy sources establishes a non-equilibrium ratio of a high-energy molecule, e.g. ATP, and

its low energy catabolite, e.g. ADP. Next, write mass-balanced, reversible reaction rules

that explicitly consume the high-energy molecule and produce the low-energy molecule. For

example, consider a phosphorylation reaction that consumes an ATP molecules. Such a

reaction is typically written R(y∼0) <-> R(y∼P) kp,km, with the consumption of ATP

implicit. We will make this assumption explicit by writing the mass balanced equation

R(y∼0) + ATP + H2O <-> R(y∼P) + ADP + Pi kp’,km’. To simplify the example, let

us omit the water and phosphate molecules: R(y∼0) + ATP <-> R(y∼P) + ADP kp’,km’.

The rates of the reaction are given by:

rate+ = k′+[R(y ∼ 0)][ATP]

rate− = k′−[R(y ∼ P)][ADP]. (2.59)
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The rate constants are related to the non-balanced rate constants by the relationship

k+ = k′+[ATP]

k− = k′−[ADP]. (2.60)

Therefore the true equilibrium constant is related to the steady-state constant by:

Kss =
k+
k−

=
k′+[ATP]

k′−[ADP]
=

[ATP]

[ADP]
Keq = rKeq, (2.61)

where r := [ATP]
[ADP]

is the ratio of ATP to ADP. As long as r � 1, the quasi-steady state of

the reaction is far from equilibrium. But eventually r will decrease to equilibrium unless

an external source replenishes the ATP and deplenishes the ADP. This can be achieved by

fixing the concentration of ATP and ADP.

When the external energy consumption is treated implicitly, we find that the product of

equilibrium constants around reaction network loops is no longer unity:

N∏
n=1

k−,n
k+,n

=
N∏
n=1

rnk
′
−,n

k′+,n
=

N∏
n=1

rn

N∏
n=1

Keq,n =
N∏
n=1

rn, (2.62)

where rn is the quotient of concentrations of the implicit reactants and products. Note

that if one ATP is consumed per circuit, this corresponds to external free energy input of

∆G◦f (ATP → ADP) + RT log r per circuit, i.e. the cost of assembling ATP from ADP under

the conditions of r.

In conclusion, non-equilibrium biochemical processes can be implemented in a simple

fashion by (i) writing mass balanced rules, (ii) selecting kinetic parameters that satisfy

detailed balance, and (iii) fixed the concentration of high-energy molecules. In addition to

satisfying thermodynamic constraints, this approach has a few more advantages. First, the

detailed balance constraints eliminate a few free parameters. Second, the amount of free

energy “consumed” by an ATP-driven reaction is limited by the change in free energy of

ATP to ADP conversion. Third, mass balanced equations are true to the spirit of separating

the model from any approximations or coarse-graining prior to simulation. Finally, since

the reactions are reversible, it is possible to drive the reaction in the reverse direction if free

energy change of the reaction becomes negative, this may be important in some processes,

e.g. metabolism.
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2.4.4 Ring closure

There are two general types of binding reactions: bimolecular and unimolecular. A bimolec-

ular binding reaction involves two disconnected complexes forming a new bond to form a

single, larger complex. A unimolecular binding reaction involves a single complex in which

two distant sites form a new bond resulting in a ring structure. In the context of polymer-

ization, a bimolecular binding reaction is a chain elongation, while a unimolecular reaction

corresponds to ring formation. In terms of free energy, these reactions behave differently,

even if the types of binding sites are the same in both cases. Typically the ring closure

reaction is more favorable than chain elongation. This is due to the reduction in entropy

required to form a single complex from two separate complexes. Prior to chain elongation,

two complexes are free to diffuse in the reactor volume; subsequent to binding, the degree

of diffusional freedom is reduces since the position of the complexes has become coupled.

I will attempt to describe the distinction between chain elongation and ring closure using

the definition of free energy. Suppose that the binding reaction can be divided into two steps.

First, the freely diffusing molecules form an encounter complex, i.e. the molecules are close

enough to interact via electrostatic, hydrophobic, or other forces. Let us choose a radius

re and suppose the molecules have formed the encounter complex if the distance between

centers of mass is less than re. The change in free energy due to formation of the encounter

complex is primarily due to the change in entropy. In the second step, the molecules in the

encounter complex transition to the bound complex, i.e. the molecules “snap” together to

form a tight bond. The change in free energy due to the second step is mostly a change of

internal enthalpy and also internal entropy (a reduction of the internal flexibility of molecules

in the encounter complex). The change in free energy of the total reaction is now:

∆G◦elongation = ∆G◦1 + ∆G◦2 = (∆H◦1 − T∆S◦1) + (∆H◦2 − T∆S◦2) . (2.63)

Assuming that the change of enthalpy in step 1 is much less than the other terms, the total

change in free energy is approximately:

∆G◦elongation ≈ − T∆S◦1 + ∆G◦2. (2.64)
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Finally, since the change in entropy in step 1 is proportional to the log of the ratio of effective

volume of the encounter complex Ve = 4
3
πr3e and reactor volume, Vr, we have:

∆G◦elongation ≈ −RT log
Ve
Vr

+ ∆G◦2. (2.65)

This equation states that the chain elongation reaction has one free energy contribution

due to the reduction in degrees of translational freedom, and a second term due to the the

transition from the encounter complex to the bound state. Since Ve < Vr, the change in

entropy is positive (as expected) and increases with the size of the reactor. However, the

second term is independent of the reactor volume.

Let us proceed with the assumption that the change in free energy due to ring formation

is approximated by ∆G◦2, and the free energy change due to chain elongation is the sum of

contributions from forming the encounter complex and bond formation. Thus we arrived at

a relationship between elongation and ring closure:

∆G◦elongation ≈ −RT log
Ve
Vr

+ ∆G◦ring. (2.66)

Of course this is an approximation, but this formulation provides intuition for the relationship

between chain elongation and ring formation.

This leads us to a conundrum. Consider the following model:

begin energy patterns
A(x!1).B(y!1) dG_bond

end energy patterns
begin reaction rules

# bimolecular binding

A(x) + B(y) <-> A(x!1).B(y!1) Arrhenius(E0,phi)

# unimolecular binding

A(x).B(y) <-> A(x!1).B(y!1) Arrhenius(E0,phi)

end reaction rules

The first reaction rule is a type of chain elongation, while the second reaction rule is a ring

formation. Despite the topological difference, reactions generated from both rules will have

the same change in free energy: dG bond. This is an unsatisfying result, and so we must find

another source of free energy to differentiate chain elongation and ring formation. There

are two ways to proceed: add the ring complex to the list of energy patterns, or decompose

the change in free energy for bimolecular reactions into internal and diffusional free energy

changes.
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Let us proceed with the first approach and associate a free energy with ring structures.

Suppose, for example, molecules A and B (above) form a ring structure together with a third

molecule S. We can assign a free energy to the ring motif, with a negative value to promote

stability of the ring structure:

begin energy patterns
A(x!1).B(y!1) dG_bond

A(x!1,s!3).B(y!1,s!2).S(a!3,b!2) dG_ring

end energy patterns

Using the relationship between free energy of chain elongation and ring formation (Equa-

tion 2.66), a first estimation for the free energy associated with the ring is proportional to

the log of the ratio of the reactor volume to the encounter complex volume:

dG ring = RT log

(
Ve
Vr

)
. (2.67)

Since Ve < Vr, it follows that dG ring < 0 and the ring is more stable than the chain.

Based on Equation 2.52, the rate constants for chain elongation are related to those for ring

formation as follows:

k+,elong = k+,ring

(
Ve
Vr

)φ
k-,elong = k-,ring

(
Ve
Vr

)φ−1
. (2.68)

If φ = 1, the unbinding rates for rings and chains are the same. In that case, the entropic free

energy change due to encounter complex formation is absorbed entirely in the forward rate

constant. However, if φ 6= 1, the free energy of forming the encounter complex is distributed

between the forward and reverse rates. Here, the half life of a bond in a ring is different than

that in a chain. If φ < 1, the half life of a bond in a ring is longer than the equivalent bond

in a chain.

There is currently no facility in eBNG for directly associating a free energy change with

the molecularity of a reaction rule.
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2.4.5 Comparison to ANC

The Allosteric Network Compiler (ANC) [49] is a pioneering rule-based platform with formal

handling of allosteric cooperativity. While ANC is the foundation for eBNG, its limitations

are also the motivation for design choices in eBNG. This section outlines the major differences

between ANC and eBNG.

In ANC, cooperativity is modeled by pairwise site interactions within a molecule. Bio-

logically, this is motivated by allosteric mechanisms such as conformational switching and

post-translational modification. From the perspective of energy pattern formalism, this is

equivalent to restricting energy patterns to pairs of sites within a molecules. Thus, ANC

is not a generalized energy-modeling platform. Energy BNG extended the ANC concept to

arbitrary energy patterns. Any molecular motif can be associated with a free-energy term.

Thus it is possible to implement 3rd and higher order cooperativity. Additionally, cooperative

mechanisms can span multiple molecules.

ANC associates independent forward and reverse kinetic constants to each reaction rule.

These constants determine the baseline kinetics, i.e. the reaction rate when no cooperative

modifiers are present. The independent rate constants can be problematic if a model includes

more than one rule involving the same reaction center. In such a model, it is possible that

the choice of rate constants will lead to violations of detailed balance. Thus, ANC cannot

guarantee detailed balance is all cases. Energy BNG eliminates independent rate constants in

favor of an activation energy. Thus, the kinetics of eBNG are entirely posed in the Arrhenius

framework, rather than a mixture of kinetics and linear TST. As a consequence, an eBNG

model is guaranteed to satisfy detailed balance when multiple rules act on the same reaction

center. However, detailed balance can be violated intentionally by mixing traditional BNGL

reaction rules with Arrhenius rate laws. This is useful for implementing energy- driven or

irreversible reactions.

The kinetic modifiers in ANC are equivalent to linear transition state theory. As a con-

sequence, reactions with the same change in free energy will have the same kinetics. Thus,

it is not possible to implement pure catalytic enhancements (i.e. enhanced rate of reac-

tion without a change in equilibrium) unless the uncatalyzed and catalyzed reactions are
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implemented by separate rules. This approach, however, can be dangerous due to the possi-

bility of violating detailed balance. Energy BNG implements catalytic modifiers through the

functional activation energy mechanism. Baseline activation energy is function of the local

reaction context. Thus, enzyme binding, conformational switching, and post-translational

modifications can influence the energy barrier independent of changes in reaction free energy.

2.5 CONSTRUCTING ENERGY-BASED MODELS WITH BIONETGEN

Energy BNG (eBNG) is the software implementation of the theory described in the pre-

vious section. Energy BNG is a superset of the BioNetGen language, hence any feature

of BioNetGen may be included in an eBNG model. However, there is no guarantee that

an energy-based model mixed with plain BNGL will satisfy detailed balance. This section

describes the process of constructing an energy-based model in eBNG using the receptor

activation model (Figure 2.2) as an illustration.

2.5.1 Block structure

An energy-based model, like other BioNetGen models, is specified in a plain text file with

.bngl extension. A model begins with the directive begin model and ends with end model.

The model is composed of a set of blocks, which describe objects of a given type. Each block

starts with the directive begin <blockname> on a new line, followed by a number of object

definitions, and ends with end <block name>. All blocks available in a plain .bngl are

available in energy models. In addition, energy models should include the energy patterns

block. The allowed blocks are, in recommended order: parameters, molecule types,

compartments, seed species, observables, functions, reaction rules, and energy

patterns. Blocks may be omitted if no object of the corresponding type is defined in

the model. At the end of the model, a set of actions may be specified, such as simulate(),

that are performed after the model is parsed by BioNetGen.
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With the exception of the new energy patterns block, the syntax for each block is the

same as plain BNGL. The reader is referred to the BNG book chapters [60, 61] for further

documentation.

2.5.2 Preliminaries

Since energy features were not available prior to BNG-2.2.4, we will require version 2.2.4

or greater for the receptor activation model. This is accomplished by calling the version

action at the beginning of the model.

version("2.2.4")

It is useful to tell BioNetGen the quantity units of the reference concentration for stan-

dard free-energy. BNG is capable of adjusting free-energy parameters for non-standard

conditions using compartment volumes and the number of molecules per quantity unit. For

example, if the reference quantity is 1 mole, there are NA molecules per reference quantity.

If the reference is 1 molecule, there is 1 molecule per reference quantity. The quantity units

are specified by setting the option NumberPerQuantityUnit:

setOption("NumberPerQuantityUnit",6.0221e23)

2.5.3 Model parameters

Model parameters, as well as math expressions derived from parameters, are defined in

the parameters block. An energy model will typically be parameterized with free-energy

parameters, rather than kinetic parameters. But otherwise, the block is no different than a

plain BNGL model. Some of the parameters for the receptor activation model are listed in

Table 2.2. Free-energy parameters will be described later, when energy patterns and reaction

rules are presented.

2.5.4 Compartments

Compartments are recommended, but not required in an energy model. The benefit of

using compartments, even for models with only one compartment, is that eBNGL is able
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Table 2.2: Parameters block for receptor activation model.

begin parameters
# fundamental constants

RT 2.577 # kJ/mol

NA 6.022 e23 # /mol

PI 3.142 # Pi , no units

# Geometry parameters

rad_cell 1e-4 # radius of cell , dm

cell_dens 1e9 # density of cells , /L

width_PM 1e-7 # effective width of membrane , dm

# Compartment volumes

volEC 1/ cell_dens # vol. extracellular space , L

volPM 4*PI*rad_cell ^2* width_PM # virtual vol. of plasma membrane , L

volCP 4/3*PI*rad_cell ^3 # vol. of cytoplasm , L

# initial concentrations

conc_L_0 20e-9 # mol/L

count_R_0 24000 # molecules/cell

conc_Ph_0 10e-9 # mol/L

conc_ATP_0 1.0e-3 # mol/L

conc_ADP_0 0.1e-3 # mol/L

...

end parameters
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Table 2.3: Compartments block for receptor activation model.

begin compartments
EC 3 volEC # extra -cellular space

PM 2 volPM EC # plasma membrane

CP 3 volCP PM # cytoplasm

end compartments

to adjust the free-energy terms for non-standard concentrations. The receptor activation

model has three compartments: extracellular space, plasma membrane, and cytoplasm. The

compartments block for this model is shown in Table 2.3.

2.5.5 Molecule types and seed species

The first step in building an energy model, as is the case for rule-based models in general,

is describing the types of molecules that will populate the system. It is recommended, but

not mandatory, to name each molecule type in the molecule types block. Furthermore, the

domain structure of macromolecules, including binding domains, potential post-translational

modifications, and conformational states, should be described. The procedure for specifying

molecule types is the same for energy models as plain BNGL. The contact map in figure 2.2

shows the domain structure of molecules in the receptor activation model.

Next, the initial population of molecular species is specified in the seed species block.

Each line in the seed species block describes the structure of a molecular species (i.e. species

pattern) and the initial quantity. It is recommended that seed species quantities have units

of molecule counts rather than concentrations. This will permit simulation of the model as

a continuous system (i.e. ODE) or a discrete stochastic system (i.e. SSA).

In the receptor activation example, there are 5 molecule types: the ligand molecule type,

which has a receptor binding domain; the membrane receptor molecule type, with a ligand-

binding domain, a dimerization domain, an a phosphorylation site; a cytosolic phosphotase

(Ph), with receptor interaction site; and ATP and ADP, which are both simple molecules
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Table 2.4: Molecule types block for receptor activation model.

begin molecule types
L(r) # ligand

R(l,d,y∼0∼P) # trans -membrane receptor

Ph(y) # phosphotase

ATP() # ATP

ADP() # ADP

end molecule types

without domain structure. The molecule types block is shown in Table 2.4.

The initial system state is described in the seed species block. In the receptor acti-

vation model, unbound, unphosphorylated transmembrane receptor is placed in the plasma

membrane (PM); unbound phosphotase, ATP, and ADP are placed in the cytoplasm (CP),

and free ligand is placed in the extracellular space (EC). The quantity of each species is

specified with units of molecule counts. The seed species block is shown in Table 2.5.

Observe that ATP and ADP are prefixed by the $ symbol in Table 2.5. The $ symbol

indicates that the quantity of the species in held constant during the simulation. ATP and

ADP quantities are held constant in this model to mimic the cellular environment in which

concentration of ATP and ADP are tightly regulated.

Table 2.5: Seed species block for receptor activation model.

begin seed species
L@EC(r) conc_L_0*NA*volEC

R@PM(l,d,y∼0) count_R_0

Ph@CP(y) conc_Ph_0*NA*volCP

$ATP@CP () conc_ATP_0*NA*volCP # ATP quantity held constant

$ADP@CP () conc_ADP_0*NA*volCP # ADP quantity held constant

end seed species
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Table 2.6: Observables block for receptor activation model.

begin observables
Molecules Lfree L(r)

Molecules Ltotal L()

Molecules Rbound L(r!1).R(l!1)

Molecules Rdimer R(d!1).R(d!1)

Molecules RyP R(y∼P!?)
Molecules Rtotal R()

Molecules RyP_Ph R(y!1).Ph(y!1)

Molecules PhTotal Ph()

end observables

2.5.6 Model outputs: observables

The observables block in an energy model has the same syntax and function as plain

BNGL. Each item in the observables block specifies an output of the model. Observables are

defined by a set of patterns that match species in the system. The value of the observable

is the sum over patterns of all matches weighted by the species population.

The receptor activation model includes a variety of observables, such as free ligand

(LFree), dimerized receptor (Rdimer), and phosphorylated receptor (RyP). Although the to-

tal ligand and receptor are expected to be constant during a simulation, observables Ltotal

and Rtotal are included in order to verify mass conservation in the model. The observables

block for the receptor activation model is listed in Table 2.6.

2.5.7 Energy patterns

Energy patterns and the associated standard free energy of pattern formation parameters

are specified in the energy patterns block. The syntax of each energy pattern is

Pattern Expression

where Pattern is a BNGL pattern graph that describes a molecule motif and Expression

is a parameter name or constant math expression that specifies the standard free energy of

pattern formation. For in-depth discussion on choosing energy patterns, see Section 2.4.1.1.
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2.5.8 Reaction rules

Reaction rules in an energy model are are similar a standard rule, but with a key distinction:

the reactions generated by the rule do not necessarily share the same rate constant. Thus, an

energy-based rule is like a template for reaction rules, where the rate constant for each specific

rule is derived from analysis of the reaction specific context. More specifically, reaction rate

constants are derived from the standard change in free energy of the reaction, along with an

activation energy parameter and rate distribution parameter. These interpretation of these

parameters was discussed in Section 2.4.2.

Energy-based rules have several advantages over plain rules. First, an energy-based

rule provides a mechanism for lumping a set of rules that have the same reaction center.

Consequently, an energy model has fewer rules than an equivalent plain RBM. Second, since

the context is accounted for later, an energy-based rule usually does include any additional

context. This simplifies the process of writing each rule. Finally, the method for computing

change in free energy guarantees that free energy is conserved around loops and detailed

balance is satisfied. In sum, energy-based rules result in a model with fewer rules that are

simple to read and write and satisfy detailed balance constraints.

Energy-based rules are implemented in eBNG by assigning the Arrhenius rate law type.

All energy-based rules (with exceptions for computational efficiency) should be reversible,

since we assume the system has an equilibrium. Unlike a plain BNGL rule, a single Arrhenius

rate law is sufficient for the forward and reverse rule. Consider the following ligand-receptor

binding rule in the receptor activation model.

L(r) + R(l) <-> L(r!1).R(l!1) Arrhenius(phi,E0 LR/RT).

The reactant patterns and product patterns follow the same syntax conventions as all BNGL

rules. This is an energy-based rule since it has the Arrhenius rate law, which is sufficient for

the forward and reverse reactions. Parameters for the Arrhenius rate law will be discussed in

the next section. In consideration of the energy patterns defined for the model, this energy-

based rule encodes three plain reaction rules, each corresponding to a different reaction

context and rate constant.

72



L(r) + R(l,d) <-> L(r!1).R(l!1,d) kp1 ,km1

L(r) + R(l,d!1).R(l) <-> L(r!2).R(l!2,d!1).R(l,d!1) kp2 ,km2

L(r) + R(l,d!1).R(l!2,d!1).L(r!2) \

<-> L(r!3).R(l!3,d!1).R(l!2,d!1).L(r!2) kp3 ,km3

All the rules have the same reaction center: the l site of the receptor binds (or unbinds) the

r site of the ligand. But the rules differ in context: ligand binding an undimerized receptor,

ligand binding an un-ligated receptor dimer, and ligand binding a singly-ligated receptor

dimer. Note that eBNG does not explicitly enumerate the set of reaction rules encoded

by an energy rule; instead, the reactions are generated directly. The task of inferring the

minimal set of reaction rules that are equivalent to the energy-based rule is left for the future.

Reaction rules with elementary or functional rate laws may be mixed with energy-based

rules. However, there is no guarantee that reactions generated by such rules will satisfy

detailed balance. Therefore, it is best to avoid non-energy-based rules unless the reaction

consumes or produces energy external to the model system (e.g. degradation, synthesis,

ATP consuming reactions) and the modeler wishes to treat the reaction outside the free

energy framework. But, as discusses previous, it also possible to naturally integrate energy

consuming rules into the energy framework.

The reaction rules block with the complete set of energy-based rules for the receptor

activation model is listed in Table 2.7. Note that this model is purely energy-based and

therefore detailed balance will be satisfied.

2.5.8.1 Catalytic enhancement via functional activation energy In this section,

I will illustrate a reaction rule that encodes both catalyzed and non-catalyzed reactions. We

will temporarily deviate from the receptor activation example and consider the following

model system:
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begin seed species
S(a∼0∼P,e) S0

E(s) E0

end seed species
begin energy patterns

S(e!1).E(s!1) G_S_E/RT

S(a∼P) G_SaP/RT

end energy patterns
begin observables

Molecules SE S(e!1).E(s!1)

end observables
begin reaction rules

S(e) + E(s) <-> S(e!1).E(s!1) Arrhenius( E1, phi )

S%x(a∼0)x <-> S%x(a∼P) Arrhenius( E2-E2cat*SE(x), phi )

end reaction rules

The second reaction rule describes the site modification S(a∼0) -> S(a∼P). Two reactions

are generated from this rule, an uncatalyzed reaction and an enzyme catalyzed reaction.

S(a∼0,e) <-> S(a∼P,e) Arrhenius( E2 , phi )

S(a∼0,e!1).E(s!1) <-> S(a∼P,e!1).E(s!1) Arrhenius( E2 + E2cat , phi )

Both reactions have the same change in free energy, G SaP/RT. Under linear TST, both

reactions would be assigned the same rate. But the activation energy is defined by a local

function E2+E2cat*SE(x) that queries for the presence of the enzyme. If the enzyme is

present, the activation barrier is lowered by E2cat. Since the enzyme is present on both

sides of the reaction, the local function evaluates to the same value for the reactants and the

products.

2.5.9 Energy parameters

The kinetics of an energy model are derived from three types of parameters: standard free-

energy of pattern formation (for brevity, pattern free-energy), baseline activation energy, and

rate distribution parameters (see Sections 2.4.1 and 2.4.2). The pattern free-energy param-

eters are paired with energy patterns in the energy patterns block. Baseline activation

energy and rate distribution parameters are specified in the Arrhenius type rate laws as-

sociated with each reaction rule. Energy and kinetic parameters for the receptor activation

model are listed in Table 2.8.
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2.5.10 Simulating energy-based models

Energy-based models can be simulated using any of the network-based methods supported

in BioNetGen. Prior to simulation the reaction network must be generated by calling the

generate network action. After network generation, the model system can be simulated as

a continuous, deterministic system with simulate ode; or as a discrete stochastic system

with simulate ssa. Alternatively, a custom model integrator can be exported to MATLAB

as either an m-file script or MEX code by calling writeMfile() or writeMexfile(), respec-

tively. The m-file integrator is implemented via MATLAB’s ode23s integrator, while the

MEX code integrator is based on the SUNDIALS CVODE library. The MEX code integrator is

typically much faster, and is recommended for heavy computational tasks such as parameter

estimation.

Network-free simulators (e.g. NFsim) do not support energy BNGL models. Support for

energy models may be become available in the future; but at present, network-free methods

for energy models do not exist.

2.6 MODEL SELECTION AND CALIBRATION WITH THE ENERGY

LASSO

In the previous section we assumed that the relevant energy patterns were known in advance.

In practice, the structural factors contributing to free energy may not be well understood.

Thus we need a method to select energy patterns and calibrate the associated parameters.

In this section, I present the Energy Lasso, a method for inferring energy patterns from

experimental data.

The reader may recognize this as a model selection problem. Given a base model with-

out cooperative interactions, what set of cooperativity energy patterns provides the best

explanation of the experimental data? Although adding more energy patterns will improve

the fitness of the model, it also introduces extra parameters that increase the likelihood of

overfitting the data. The ideal model includes just enough energy patterns to explain the
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experimental data, but no more.

2.6.1 Selecting energy patterns

Suppose we begin with a set of P energy patterns that could be present in the system. One

approach is to consider all 2P variations of the model corresponding to all subsets of energy

patterns. The Bayes factor is the probability of a model given the experimental data. It

provides the basis for rigorous Bayesian model selection [102, 103]. We could proceed by

computing the Bayes factor for each model variant and choosing the model with the greatest

probability. This approach has been applied to biological systems where the number of

variants under consideration is relatively small [16]. But this computationally intensive

method does not scale well as the number of energy patterns increases. For example, if we

consider 10 energy patterns, then over 1000 Bayes factors must be computed. Clearly, an

alternative is required if we are to consider a large number of energy patterns.

LASSO is a method for simultaneous model selection and parameter calibration [104].

Rather than consider each discrete model variation separately, each possible mechanism is

considered simultaneously. The strength of each mechanism is governed by an associated

parameter. When the parameter is set to zero, the mechanism is effectively absent from

the model. Each parameter has a Laplace prior probability, which is centered on zero and

provides a preference for zero-valued parameters. But the prior also has large tails, which

permits the parameter to deviate far from zero if the data likelihood improves sufficiently.

Thus, the LASSO drives parameters to zero, effectively disabling a mechanism, unless the

experimental data provides strong support for a non-zero value.

To provide more rigor, an overview of Bayesian probability is required. Bayesian parame-

ter estimation begins with Bayes’ rule, which states that the probability that a parameter set

generated a given set of experimental observations is proportional to the product of the prior

probability of the parameters and the likelihood of the experimental observations assuming

the parameter set generated the data:

p(~θ|X) =
p(X|~θ) · p(~θ)

p(X)
, (2.69)
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where ~θ is a vector of model parameters and X is the experimental data.

For LASSO, the prior probability is given by the Laplace distribution:

p(~θ|λ) =
∏
p

exp

(
−|θp|
λ−1

)
, (2.70)

where p is an index that ranges over the number of parameters. The log-posterior probability

then takes the form:

log p(~θ|X,λ) = log p(X|~θ) + log p(~θ|λ)− log p(X|λ). (2.71)

Since the last term is constant with respect to ~θ, the log posterior is proportional to:

log p(~θ|X,λ) ∝ log p(X|~θ)− λ
∑
p

|θp| . (2.72)

So we see the log-likelihood of the data is penalized by a term that depends on the absolute

value of the parameters weighted by λ. Thus, LASSO is also known as L1-regularization,

since it is equivalent to a penalty proportional to the absolute value of parameters.

Given a model and experimental data, the posterior distribution can be sampled by

Markov chain Monte Carlo (MCMC) methods. The Metropolis algorithm [105] is a sim-

ple but effective algorithm for sampling parameters from the posterior distribution. More

sophisticated sampling methods, such as simulated annealing [106, 107] and parallel tem-

pering [108, 109], are often employed since the chain converges towards the stationary dis-

tribution more rapidly in many practical applications. Once the parameter distribution is

obtained, predictions of model behavior with uncertainty estimates can be obtained by sim-

ulating the model with parameter samples from the posterior. Under the combination of

LASSO and Bayesian parameter estimation, important model mechanisms are revealed by

significant differences between the Laplace prior and the posterior distribution of a parame-

ter.
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2.6.2 The energy lasso method

The energy lasso combines energy-based modeling with the LASSO approach to model selec-

tion. The modeler begins with a base model without cooperative interactions. Next, a set of

cooperativities are postulated in terms of energy patterns that refer to two or more molecular

sites. Finally, the model is calibrated to experimental data using the LASSO method, where

Laplace priors are associated with each parameter associated with an energy pattern. The

LASSO selects the energy patterns that are supported by the experimental data. Inspection

of the posterior parameter distributions reveals the important mechanisms. Specifically, an

energy pattern is important if the the posterior distribution has escaped the envelope of the

Laplace prior.

The energy lasso provides a systematic approach to selection of energy patterns and

calibration of parameters that does not depend on the biases of the modeler. Due to the

computational cost of other approaches, a modeler is limited to consideration of a few cooper-

ative mechanisms while others are excluded from the model. If the model output is sensitive

to these choices, the drawn conclusions will incomplete (at best) or invalid (at worst). The

energy lasso, in contrast, permits consideration of a large number of mechanisms and allows

the experimental data to determine which will be included in the final model.

For example, in a model of the EGF receptor, Kholodenko et al. [17] assumed that only

one cytosolic protein can bind a receptor at a time. This is equivalent to a large negative

cooperativity between the simultaneous binding partners. In contrast, Blinov et al. [52]

assumed that binding of intracellular factors occurs independently (i.e. no cooperativity).

Both models made assumptions about the nature of the cooperativity that may influence

the results and conclusions. Under the energy lasso, an energy pattern could be associated

with simultaneous binding patterns and the calibration/selection procedure will determine

whether the cooperativity is present or not.

The energy lasso enables consideration of many cooperative mechanisms and reduces

modeler bias. But it does introduce its own systematic bias via the Laplace prior. Since pa-

rameters are penalized for deviating from zero, the parameter distribution is skewed relative

to the distribution obtained from only the data likelihood. Despite this, the energy lasso
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bias should be preferable to making arbitrary choices about cooperative mechanisms. The

energy lasso is also preferable to calibrating the most complex variant of the model without

regularization, since the abundance of free parameters may lead to overfitting [110].
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Table 2.7: Reaction rules block for receptor activation model.

begin reaction rules
# ligand binding

L(r) + R(l) <-> L(r!1).R(l!1) Arrhenius(phi ,E0_LR/RT)

# receptor dimerization

R(d) + R(d) <-> R(d!1).R(d!1) Arrhenius(phi ,E0_RR/RT)

# Ph binding

R(y) + Ph(y) <-> R(y!1).Ph(y!1) Arrhenius(phi ,E0_RPh/RT)

# trans -phosphorylation

R(d!1).R(d!1,y∼0) + ATP \

<-> R(d!1).R(d!1,y∼P) + ADP Arrhenius(phi ,E0_catRR/RT)

# dephosphorylation by phosphatase

R(y∼P!1).Ph(y!1) \

<-> R(y∼0!1).Ph(y!1) Arrhenius(phi ,E0_catPh/RT)

end reaction rules

Table 2.8: Free energy and activation energy parameters for the receptor activation model.

begin parameters
...

# standard free energy of formation , kJ/mol

G_LR -47.5

G_RR -11.9

G_RPh -41.5

G_RyP 51.1

G_ATP 51.1

G_RyP_Ph 5.9

G_LRR -5.9

G_LRRL -11.9

# baseline activation energy , kJ/mol

E0_LR -11.9

E0_RR -5.9

E0_RPh -17.8

E0_catRR -11.9

E0_catPh 5.9

# rate distribution parameter , no units

phi 0.5

end parameters
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3.0 MODELING COMPARTMENTAL BIOCHEMICAL SYSTEMS

Rule-based modeling (RBM) was motivated by the multi-domain structure of biological

macromolecules and the local nature of interactions. The compartmental topology of the cell,

however, can also have profound effects on the regulation of cellular processes by controlling

both the reactions that can occur and the rate at which they do so. In this chapter we

describe compartmental BNGL (cBNGL), which extends BNGL to enable explicit modeling

of the compartmental organization of the cell and its effects on system dynamics1. By

making localization a queryable attribute of both molecules and species and introducing

appropriate volumetric scaling of reaction rates, the effects of compartmentalization can

be naturally modeled using rules. These properties enable the construction of new rule

semantics that include both universal rules, those defining interactions that can take place

in any compartment in the system, and transport rules, which enable movement of molecular

complexes between compartments.

3.1 INTRODUCTION

Proteins in cellular regulatory systems can interact in a combinatorial number of ways to

generate myriad protein complexes [44]. These interactions, because of the multicomponent

composition of proteins, can be modeled by rules that specify the classes of reactions that

1This chapter is a adapted from a conference proceeding with co-authors Leonard Harris and James
Faeder [111]. My contribution to the work includes design of the language extension, software implemen-
tation, and composition of the draft manuscript. Leonard Harris contributed substantially to manuscript
composition and is co-first-author. James Faeder contributed to design of the language extension, software
implementation, and manuscript revisions.
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can occur and define reaction networks that account comprehensively for the consequences of

protein-protein interactions [54]. The assumption underlying this modeling approach, which

is consistent with the modularity of regulatory proteins [40], is that interactions are governed

by local context, that is, properties of the components of the interacting molecules that are

proximal to the site of interaction. As long as this is the case, rule-based models can achieve

a compact description of a network with a large (even infinite) number of complexes [54].

The complex spatial topology of the cell, however, can also have profound effects on

the regulation of cellular processes by controlling both the reactions that can occur and

the rate at which they do so. Membranes are key players not only because they separate

molecules in different compartments but also because they mediate the flow of material and

information from one compartment to another [112]. Chemical reactions that occur at a

cell membrane also have an enhanced rate because of the drastically smaller volume of the

membrane compartment, a thin fluid layer roughly 100-1000 times smaller than the volume

of the cell [113,114]. The spatial localization of a reacting species in a biochemical network

is thus a critical property that affects its reactivity. A rule-based model of the network must

therefore describe, either implicitly or explicitly, its effects on the constituent reactions. The

main goal of this paper is to describe an extension to an existing rule-based modeling language

for biochemical systems that explicitly represents the topology of cellular compartments, the

localization of species to specific compartments, and the effects of localization on biochemical

reaction rates.

BioNetGen is an open-source software package that provides tools and a language [the

BioNetGen language (BNGL)] for rule-based modeling of biochemical systems [60]. The syn-

tax and semantics of the language are formally rooted in graph theory [66], but the language

itself is simple, intuitive, and accessible to modelers with a wide range of mathematical back-

grounds. BNGL is similar to the κ-calculus, which has also been developed as a language

for rule-based modeling [68]. A review of tools for rule-based modeling can be found in [54],

although a number of new entries have appeared more recently [69,76–78,80,115–117].

BNGL does not currently allow explicit representation of cellular compartments and

does not systematically account for the effects of spatial localization either in the selection

of species that can undergo reactions or in the calculation of reaction rates. The effects of
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localization can be modeled in an ad hoc manner but it obscures the generality of molecular

interactions, may require additional restrictions [such as the include and exclude com-

mands [50]], and may require extensive enumeration of complexes in the rules. In this paper,

we describe an extension of BNGL, which we call compartmental BNGL (cBNGL), that

enables explicit modeling of the compartment topology of the cell and its effects on system

dynamics. We show that by introducing a compartment topology, making localization a

queryable attribute of both molecules and species, and introducing appropriate volumetric

scaling of reaction rates the effects of compartmentalization can be naturally included in a

rule-based model. The outline of the remainder of the chapter is as follows. In Sec. 3.2, we

motivate our introduction of cBNGL with a schematic cell regulatory model that captures

many essential features of intracellular biochemistry. The compartmental extension of BNGL

is then described in Sec. 3.4. In Section 3.5, we summarize the strengths and weaknesses of

cBNGL and compare it to various related approaches.

3.2 A COMPARTMENTAL MODEL OF THE CELL

The function of a signal transduction pathway is to detect an extracellular signal, relay

this information inside the cell, and induce an appropriate change in cell function [112]. In

Figure 3.1, we present a model of receptor-mediated signaling coupled with nuclear transport

and transcriptional gene regulation that highlights the role of compartmental localization

and transport. This example model will be used throughout the chapter to motivate and

illustrate cBNGL.

Signaling is initiated when an extracellular ligand (L) is detected by membrane-localized

receptors (R) that bind the ligand (R1; Fig. 3.1). Because L can bind to itself (R2), ligand-

bound receptors can dimerize (also R2) and be brought inside the cell by endocytosis (R3–5),

a process in which a small region of the plasma membrane is pinched off, forming a small

bubble called an endosome [112]. Localizing a receptor complex to an endosome has the effect

of trapping the ligand and receptor molecules in a small volume, which reduces entropy and

enhances the free energy of binding. Note that during receptor internalization the receptor
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Figure 3.1: A compartmental model of the cell. The model couples simplified processes of

signal transduction, nuclear transport and transcriptional regulation in a single eukaryotic

cell. The system consists of four volume compartments: extracellular (EC), cytosol (CP),

endosomal (EN) and nuclear (NU). These are separated by three membrane surfaces: plasma

(PM), endosomal (EM) and nuclear (NM). The model is presented as a pathway that pro-

ceeds from ligand (L) binding to expression of protein P2. The underlying rule-based model

defines a set of 354 reactions between 78 species. Bonds between molecules are shown as black

lines. Black arrows between species represent reactions. Gray arrow labels correspond to

the rule number that describes the reaction (see model files at www.bionetgen.org/wsc09).

Black integer-valued arrow labels represent reaction stoichiometry (if not equal to unity).

DNA promoters are pictured as a double helix icon.
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complex moves from PM to EM, bound ligands move from EC to EN, and receptor-bound

molecules in CP remain in CP.

Receptor dimerization brings the cytoplasmic domains of receptors into close proximity,

allowing transautophosphorylation of a tyrosine amino acid by the receptors’ catalytic do-

mains (R6–7). Inactive transcription factor (TF) can bind phosphorylated receptors (R8),

leading to transautophosphorylation of TF in complexes containing receptor dimers (R10–11).

Phosphorylated TF tends to unbind from the complex (R9) and has a high affinity for form-

ing dimers (R12). Dimerized TF forms an active transcription factor that is escorted into

the nucleus, through a nuclear pore, by an importin (Im) molecule (R24, R28). Inside the

nucleus, the TF dimer binds to a promoter on DNA activating transcription of mRNA (R13),

which is transported out of the nucleus to the cytosol (R16) and translated into P1 (R18).

Cytosolic P1 is also escorted into the nucleus by Im (R28), where it binds a second promoter

to activate transcription (R15, R17, R19) and expression (R30) of a second protein (P2).

3.3 REPRESENTING COMPARTMENTS IN PLAIN BNGL

This section will briefly overview BNGL and highlight aspects relevant to compartmental-

izing the reaction network. BNGL has been more thoroughly elsewhere in this document

(Section 1.4.3).

Molecules, the basic building blocks of a BioNetGen model, are declared in the molecule

types block. Molecules may contain components, which represent the functional elements

of molecules and may bind other components, either in the same molecule or another. Com-

ponents may be associated with state variables with a finite set of possible values, each

representing a conformational or chemical state of a component, such as phosphorylation

status. The name of the molecule type is given first followed by a comma-separated list of

its components in parenthesis. The allowed values of state variables are indicated by ‘∼’ fol-

lowed by a value, as in L(r,d,loc∼EC∼EN), which declares a ligand molecule L that contains

a receptor binding component r, a dimerization component d, and a location component loc

that takes on values EC or EN.
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The seed species block defines the species initially present in the system. For example,

the line

L(r,d,loc∼EC) Lig0

specifies that the initial amount of free ligand monomers in EC is Lig0, a model parameter.

Molecular complexes may also be specified, as in

L(r,d!1,loc∼EC).L(r,d!1,loc∼EC),

where a bond linking the d components of each L molecule is indicated by a shared bond

label, !1.

The reaction rules block contains rules that define how molecules interact. A rule is

comprised of a set of reactant patterns, a transformation arrow, a set of product patterns,

and a rate law. A pattern is a set of molecules that select species through a mapping

operation [66]. The match of a molecule in a pattern to a molecule in a species depends only

on the components specified in the pattern (including wildcards), so that one pattern may

select many different species. The ‘+’ operator separates two reactant patterns that must

map to distinct species (i.e., they may not reside in the same complex). The ‘.’ operator

separates molecules that are part of the same species. The transformation arrow may be

either unidirectional (->) or bidirectional (<->). Five basic types of operations are carried

out by the rules in the example system of Sec. 3.2: binding and unbinding of two molecules

through a specified pair of components, transformation of a state variable, synthesis, and

degradation. An example of a binding rule is

R8: R(tf∼pY) + TF(d∼Y,r,loc∼CP) <-> \

R(tf∼pY!1).TF(d∼Y,r!1,loc∼CP) kp R TF/vol CP, km R TF

where the underlined portions identify the reaction center, which is the set of components

modified by the rule. (R8 indicates that this is rule #8 in the BNGL model file.) This rule

specifies that any R molecule containing an unbound, phosphorylated tf component may

bind to a r component of an unphosphorylated TF in CP. Here, the tf component of R is

bound to the r component of TF by the addition of an edge labeled 1, indicated by the two

bond labels (!1) in the products.

86



kp R TF/vol CP and km R TF specify the rate constants in the forward and reverse direc-

tions. (Assuming that the bimolecular rate constant is given in standard units of M−1 s−1,

kp R TF is that value divided by Avogadro’s number.) In this case, the rate constant for

the forward direction is a formula comprised of a bimolecular rate constant divided by the

volume of CP. Parameters in BNGL have no explicitly defined units and bimolecular rate

constants are generally given on a per molecule per cell basis. BNGL supports elementary

(Ele) rate laws as well as two non-elementary types, Michaelis-Menten (MM) and saturation

(Sat) [60].

Several examples are provided in the model files at www.bionetgen.org/wsc09.

3.4 COMPARTMENTAL BNGL

As discussed in Sec. 3.1, compartmental models such as the one in Fig. 3.1 can, in princi-

ple, be modeled using standard BNGL. For example, we have seen in Sec. 3.3 that in order

to specify location in BNGL a component (loc) can be added to the component lists for

molecules. Rules can then be written with the appropriate location states as context for the

interacting molecules. In the common case where identical interactions can take place in

different compartments, this means that multiple versions of the same interaction rule must

be enumerated. Each will differ by only the values of the location labels and, in the case

of bimolecular interactions, by the volume-dependent rate constant. Besides being tedious,

this approach obscures the generality of interactions specified by a rule. In more complex

cases, for example when there are many different ways that a particular molecule can be

tethered to a membrane, the required enumeration will be prone to error; it is exactly such

enumeration that the rule-based approach was developed to avoid. A similar situation can

arise in transport reactions that depend only on the presence of a particular molecule or

component state; a different rule is required for each possible stoichiometry of the trans-

ported complex. In cBNGL, this enumeration is avoided by introducing localization as a

property of both molecules and species, with the localization of a species being a derived

property of the localization of its constituent molecules. Species localization also permits
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restricting the scope of rule application to reactants in the same or adjacent compartments

and the determination of volume-dependent rate constants for bimolecular and higher-order

reactions. The local nature of molecular bonds also imposes natural topological constraints

on complexes. If a molecule is tethered to the plasma membrane, then it cannot be trans-

ported to the nucleus without first breaking the tether. Rule application is restricted to

adhere to these constraints. In the following, we describe cBNGL in detail. The complete

syntax for cBNGL in extended Backus-Naur form is included in Appendix A.

3.4.1 Units

Species counts are assumed to be in population units or moles, not concentrations, in keeping

with standard BNGL [60]. Rate constants for bimolecular reactions, however, are assumed

to be given in units of volume/time2 and Michaelis constants for MM and Sat rules in units of

volume−1 (this assumes that the appropriate factor of Avogadro’s number, NA, is included

in the value, e.g., kbi/NA and KM×NA). This allows for the specification of universal reac-

tion rules that apply across compartments and whose rates are automatically scaled by the

appropriate compartment volume (see Sec. 3.4.5.1).

3.4.2 Compartment topology

Cellular topology, as depicted in Fig. 3.2A, implies that the compartment graph, in which

nodes represent compartments and directed edges represent containership, is a tree (Fig-

ure 3.2B). The structure is essentially the same as the compartment structure used in the

Systems Biology Markup Language (SBML) [118]. Rules for defining compartment topolo-

gies in cBNGL are as follows:

1. A surface compartment must either be an outermost compartment (i.e., no containing

compartment) or be contained by a single volume compartment.

2. A volume compartment must either be an outermost compartment or be contained by a

single surface compartment.

2If molecule counts are considered explicitly, bimolecular rate constants for cBNGL have units of
/time/(#/volume). However, we usually operate under the convention that counts are unitless.
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3. A surface compartment may contain only a single volume compartment.

4. A volume compartment may contain multiple surface compartments.

Compartments in cBNGL are declared in a compartments block analogous to other blocks

used in BNGL (see Sec. 3.3). The syntax of each line in the block is

[index] compartment name dimension volume [containing compartment]

where the square brackets denote optional arguments. compartment name is a standard

BNGL name (see Faeder et al. [60]), dimension is either 2 or 3 depending on whether

the compartment is a surface (e.g., plasma membrane) or a volume (e.g., cytoplasm) and

volume is the compartment volume, in units consistent with those used for bimolecular rate

constants in the parameters block. For a surface compartment, the volume is the product of

the surface area and an effective width, which accounts for the enhancement of a reaction rate

relative to its value in three-dimensional space [113]. containing compartment is the name

of the parent compartment, if applicable (e.g., CP is contained by PM). The full topology

specification for the example system of Sec. 3.2 is shown in Fig. 3.2C.

3.4.3 Molecule location

Each instance of a molecule in cBNGL has a compartment attribute, obviating the need for

the location (loc) components of Sec. 3.3. Ligand molecules, for example, are declared in the

molecule types block of a cBNGL input file as L(r,d). In species, molecules must be given

a location, specified using what we call postfix notation, e.g., L(r,d)@EC, which specifies a

free ligand molecule in EC. Postfix notation may also be used in patterns to specify the

location of a molecule, as in L(r)@EC. This will match ligand molecules in EC with a free r

site.

3.4.4 Species location

Complexes can be built in cBNGL from molecules in the same way as in standard BNGL.

For example, a freely diffusing ligand dimer in EC is specified as

L(r,d!1)@EC.L(r,d!1)@EC.
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  EC  3  vol_EC                # extracellular fluid

  PM  2  sa_PM*eff_width  EC   # plasma membrane

  CP  3  vol_CP           PM   # cytoplasm

  NM  2  sa_NM*eff_width  CP   # nuclear membrane
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end compartments  

Figure 3.2: Compartment topology of cell model in cBNGL (A) Illustration of a

cell model with extracellular (EC), cytoplasmic (CP), nuclear (NU) and endosomal (EN)

volumes and plasma (PM), endosomal (EM) and nuclear (NM) membrane surfaces. (B)

Representation of the compartment topology by a directed graph. Volumes are represented

by circles and membranes by arcs. A directed edge points from C1 to C2 if compartment C1

is immediately outside of compartment C2. (C) cBNGL specification of the topology shown

in B.

Complexes can comprise molecules in adjacent compartments, as in the pattern

L(r!1)@EC.R(l!1)@PM,

but are currently not allowed to span multiple surface compartments. Complexes may then

span, at most, a single surface compartment and its two adjacent volume compartments.

The localization of a species is a global property of a species that is based on the location

of each element comprising the species.

Definition 1 (Species localization).

A species X is said to be localized to a volume compartment V if, and only if, all of the

molecules in X reside in V. Conversely, X is said to be localized to a surface compartment

S if any molecule in X resides in S. Species cannot be formed that span multiple surface

compartments.
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Species can be referenced in cBNGL using a prefix notation that specifies their location in

line with the above definition. For example, the ligand dimer species above can be written

alternatively as @EC:L(r,d!1).L(r,d!1). Prefix and postfix notations can also be used

together, as in

@PM:R(l!3,tf∼pY).L(r!3,d!1)@EC.L(r!2,d!1)@EC.R(l!2,tf∼Y)

where both R molecules are located in PM. More examples of species and patterns in cBNGL

are shown in Fig. 3.3.

3.4.5 Reaction rules

Rules in cBNGL are written using the same basic syntax as in standard BNGL (Sec. 3.3).

The key difference is the possible specification of compartment localization for molecules

or species in the reactant and product patterns. When compartments are omitted a rule is

considered universal, acting on all sets of matching reactants that are in the same or adjacent

compartments. If compartments are specified, we refer to the rule as scope-restricted. In-

corporating compartments into the modeling language also requires the introduction of new

types of rules for modeling compartment-to-compartment transport. Currently, transport

rules are always scope-restricted because both the source and destination compartments

must be specified. Lifting this restriction will require more extensive modification of the

current BNGL syntax.

3.4.5.1 Universal reaction rules The utility of universal rules is that they simplify

the specification of compartmental models. As discussed above, specifying such models in

standard BNGL requires use of location components and enumeration of different versions

of the same rule in different compartments. This is avoided in cBNGL by using universal

rules. In addition, cBNGL automatically applies the restriction that reactants be in the same

or adjacent compartments and applies the correct volumetric scaling to rate constants and

other reaction parameters for bimolecular and higher-order reactions. No scaling is required

for first order reactions. For elementary bimolecular reactions with the rate constant given in

91



    l
   R
 tf~Y

    l
   R
 tf~pY

L
    d

r

L
d   
r

(i)   @EC: L(d!1,r).L(d!1,r)

L
    d

r

(ii)   @PM: R(l!1,tf~Y).L(d!2,r!1)@EC
                  .L(d!2,r!3)@EC.R(l!3,tf~Y)

(iv)   @PM: R(l!+,tf~pY!2).TF(r!2,d~Y)@CP
(iii)   @CP: TF(d~pY!1).TF(d~pY!1)

        r
d~Y
    TF

EC

PM

CP

L
d   
r

d~pY
     TF

TF
  d~pY

    l
   R
 tf~Y 

Figure 3.3: Species and patterns in cBNGL. (i) Species declaration for a ligand dimer

localized in the extra-cellular space (EC) using compartment prefix notation. (ii) Species

declaration of a receptor-dimer complex. The species is localized to the plasma membrane

(PM) but two of the member molecules are in the EC. (iii) A pattern that matches all TF

dimers that are phosphorylated at site d and localized to the cytosol (CP). This pattern

is not a species since components r and im of TF are not declared. (iv) A pattern that

matches complexes localized to the PM containing R and TF with additional context. Site

l is shown as a filled black circle, indicating that R must be bound to some, unspecified

molecule through site l.

92



units of volume/time, the rate constant is divided by the volume of the reactant compartment

with the highest dimension [50,113]. (The obvious generalization for higher-order reactions,

dividing by the product of the N−1 highest-order compartment volumes, is implemented

but its use is not recommended .) Note that volumetric scaling is performed for all rules not

just universal ones.

An example of a universal rule from the cBNGL specification of the compartmental model

in Sec. 3.2 is ligand dimerization:

R2: L(d) + L(d) <-> L(d!1).L(d!1) kp LL, km LL

Figure 3.4A illustrates the six instances of this rule along with the appropriate scaling factors.

Universal rules can also describe the synthesis of molecules, as in

R14: DNA(p1!+) -> DNA(p1!+) + mRNA1() k transcribe

The created molecule is placed is in the same volume as the reactant or, for bimolecular

reactions, in the same volume used for scaling the rate constant (higher-order synthesis

reactions are not currently supported). In the above rule, mRNA1 is placed in the same

compartment as the DNA, which is always NU. Specifying a different localization for mRNA1

would override this behavior.

3.4.5.2 Scope-restricted rules Scope restriction limits application of a rule to species

in a particular compartment through the specification of localization in reactant patterns.

An example of a scope-restricted reaction rule in the compartmental model of Sec. 3.2 is

R11: TF(d∼pY)@CP -> TF(d∼Y)@CP k TF dephos

which specifies that dephosphorylation of transcription factors can only take place in the

cytoplasm, which might be the case if an implicitly modeled phosphatase were localized

there.
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Figure 3.4: Universal rules and transport in cBNGL (A) Six instances of the universal

rule for ligand dimerization. The single rule describes: (i) free ligand dimerization in the

extracellular space (EC) and (ii) in the endosomal space (EN); (iii) free ligands binding to

receptor-bound ligands at the plasma membrane (PM) and (iv) at the endosomal membrane

(EM); and (v) receptor-bound ligand dimerization at PM and (vi) at EM. The rates for the

individual reaction instances are automatically scaled by the volume of the reaction com-

partment (see Sec. 3.4.5.1). (B) Four types of transport reactions. (i) R5: @EN:L -> @EC:L.

Volume-to-volume species transport. Free ligand dimers are recycled from the endosome

to the extracellular space. (ii) R3: @PM:R.R -> @EM:R.R. Surface-to-surface species trans-

port. Receptor-dimer complexes are internalized by endocytosis. Molecules in the dimer

complex are transported along with the dimer. Molecules in PM are transported to EM,

molecules in the adjacent EC are transported to EN and molecules in CP remain in CP. (iii)

R16: mRNA@NU -> mRNA@CP. Single molecule transport. (iv) R29: Im@CP.NP <-> Im@NU.NP.

Molecule transport with cargo. Importin bound to a nuclear pore is transported into the

nucleus along with any bound cargo (specified by MoveConnected keyword; not shown).
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In scope-restricted rules it is possible for a reactant pattern to match a species that upon

application of the rule would create a product that does not match the product pattern. For

example, consider a scope-restricted version of the ligand dissociation rule:

@PM:L(d!1).L(d!1) -> @PM:L(d) + @PM:L(d)

The pattern on the left-hand side matches receptor-ligand complexes that contain either one

or two membrane-bound receptor molecules. Only those containing two receptor molecules,

however, will result in two product species localized to PM after the bond between ligands

is broken. BioNetGen checks that products of rule application match the product patterns,

aborting the application if they do not.

3.4.5.3 Transport rules There are currently four classes of transport rule supported

by cBNGL (see Fig. 3.4B): (i) molecule transport, (ii) cargo-carrying (trafficking) transport,

(iii) volume-to-volume species transport, and (iv) surface-to-surface species transport.

Molecule transport is the simplest of these: the compartment designations of explicitly

specified molecules are changed upon application of the rule. cBNGL allows molecules to

transport volume-to-volume across a surface, volume to adjacent surface, and surface to

adjacent volume. Surface-to-surface molecule transport is not permitted. Application of a

molecule transport rule is rejected if the transport results in a bond that spans non-adjacent

compartments. The rule in the compartmental model of Sec. 3.2 that transports mRNA

from the nucleus to the cytoplasm is

R16: mRNA1@NU -> mRNA1@CP k mRNA to CP

In cargo-carrying transport, movement of a specified molecule causes simultaneous trans-

port of connected molecules that are in the same compartment. Many cellular systems con-

tain molecules that can bind and transport cargo between compartments, and these may bind

a variety of molecules and complexes. In nuclear transport, for example, importin proteins

bind to different protein molecules and escort them through the nuclear pore [112]. This
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type of molecule transport behavior is designated by adding the MoveConnected keyword to

a molecule transport rule, as in the example

R29: Im(fg!1)@CP.NP(fg!1) <-> Im(fg!1)@NU.NP(fg!1) \

k Im cross NP, k Im cross NP MoveConnected

Here, an importin molecule in CP, bound through its fg site to a nuclear pore (NP), is trans-

ported into and out of NU along with its cargo, which can be a TF dimer or a P1. Thus,

the MoveConnected keyword allows one to write a single rule that encompasses all possi-

bilities without enumerating them. A precise description of the effect of a MoveConnected

declaration requires the following definition:

Definition 2 (Compartment-connected component).

For a molecule M in compartment C, the compartment-connected component is the set of all

molecules within the complex X, of which M is a member, that are connected to M by a path

fully contained within C.

Only molecules in the compartment-connected component of the explicitly transported mole-

cule(s) in a rule are co-transported. Molecules that are in the same compartment as the

trafficking molecule but are connected to it through a path that passes through another

compartment are not co-transported. This situation may arise because trafficking molecules

often bind to surface molecules that may already be bound to other molecules in the same

compartment as the trafficking molecule. Species transport rules change the locations of

all molecules within a species rather than just a single molecule. These rules are specified

using prefix compartment notation. Volume-to-volume species transport is straightforward:

the compartment designations for all molecules in the volume-localized species are changed

to the same destination compartment. An example is ligand recycling from EN to EC (see

Fig. 3.4B):

R5: @EN:L -> @EC:L k recycle

Surface-to-surface species transport is more involved because species localized to surfaces

can contain molecules that reside in adjacent volume compartments. These molecules must

be correctly assigned to a new compartment during transport. In cBNGL, surface-to-surface

transport rules map molecules in volume compartments in a manner consistent with endo-
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and exocytosis (see Fig. 3.1). During endocytosis, molecules exterior to the invaginating

membrane move into the newly-formed compartment, whereas molecules interior to the in-

vaginating membrane remain in the same compartment. Surface-to-surface species transport

is defined as follows:

Definition 3 (Surface-to-surface species transport). A species transport rule @S1:P ->

@S2:P, where P is any pattern and S1, S2 are surface compartments separated by volume

compartment V, transports the molecules in the complex that matches P as follows:

1. Molecules located in the originating surface S1 move into the destination surface S2.

2. Molecules located in the volume V remain in V

3. Molecules located in V1 (the compartment adjacent to S1 but not S2) move into compart-

ment V2 (the compartment adjacent to S2 but not S1)

This type of transport is restricted to surface pairs that share an adjacent volume compart-

ment. In the example of Sec. 3.2, receptor endocytosis (internalization) is modeled by the

rule

R3: @PM:Rec.Rec -> @EM:Rec.Rec k R endo

3.4.6 Comparison with BNGL

We have developed both BNGL and cBNGL versions of the compartmental model of Sec. 3.2.

Each produces a network of 78 species and 354 reactions, giving identical numerical results

(data not shown). The BNGL specification requires 45 rules whereas the cBNGL specification

requires 30 rules, with most of the difference coming from the rules for ligand dimerization,

receptor-ligand binding, endosome recycling and nuclear transport. Complete input files for

this model system along with instructions for downloading a cBNGL version of BioNetGen

can be found at www.bionetgen.org/wsc09.
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3.5 DISCUSSION

cBNGL introduces a compartment topology composed of membranes and volumes, a new

molecule property, molecule localization, which ties molecules to a compartment, and a new

global property of species, species localization, which allows queries to determine whether a

species is tethered to a membrane or freely diffusing in solution. The new @ syntax allows

a modeler to construct species and pattern matches in the context of the compartment

topology. The new concepts of species and molecule localization provide a basis for the

construction of new semantics for universal and transport rules.

Universal rules, which do not query localization explicitly, describe reactions that can

occur between any set of matching species that are able to interact. Such rules reflect the

usual biological scenario where the co-localization of reactants is a sufficient condition for

the reaction to proceed. In cases where a reaction occurs in specific locations, the modeler

may scope restrict a pattern in a rule to a single compartment by adding location context.

The compartment to use in scaling of bimolecular reaction rates is determined from the

dimensionality of the reactant compartments: a surface compartment is used only when both

reactants are localized to the membrane; otherwise, the three-dimensional compartment is

used. In both cases the rate is divided by the compartment volume, which naturally yields

a large rate enhancement when both reactants are localized to the membrane [113,114].

Transport rules allow the expression of a wide variety of biological transport phenomena.

Molecule transport enables the description of simple diffusion across a membrane, translo-

cation mediated by a membrane transporter, and insertion of a molecule into a membrane.

Species transport rules allow the transport of an entire species based on a pattern match to

part of the species complex. Volume-to-volume species transport rules allow concise repre-

sentation of biological scenarios where transport across a membrane is facilitated by an escort

molecule. Cargo-carrying transport coupled with a binding reaction at the membrane permits

chaperone mediated species transport with a saturable rate. Surface-to-surface species trans-

port rules allow transport of membrane-bound complexes to and from a contained membrane

compartment in a manner the preserves complex structure and correct topological relation-

ships. A common example of such a process in biology is receptor-mediated endocytosis,
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where an active receptor complex initiates vesicle formation and internalization.

3.5.1 Related work

Formal modeling in cellular systems has focused on three related, but largely disjoint, areas

of biological expression: biochemistry of structured molecules, membrane-mediated biochem-

istry, and dynamic membrane systems. Rule-based modeling languages κ-calculus and BNG

focus on the biochemistry of structured molecules but lack a natural approach to compart-

ments and membranes [60, 68]. The Stochastic Simulation Compiler (SSC), another rule-

based platform, allows static compartments, diffusion between compartments, and modeling

of spatial and geometric effects, but lacks the notion of a membrane [119]. BioCham, a

modeling platform with facilities for model checking, describes biochemistry through rules

over unstructured objects and includes compartments and basic transport [79].

Several platforms have been constructed with a focus on membrane-mediated reactions.

Cytosim, a formal language for describing reactions in the context of a membrane structure,

includes a syntax and rule set that describe integral and peripheral membrane proteins,

membrane recruitment reactions, and transport [120]. Cytosim’s reactions, however, are

limited to transformations of unstructured objects. Little b, a modular framework for bio-

logical modeling, includes rule-based modeling features and static membrane structures [117].

Molecules can be localized to the cytosolic or extracellular face of membranes and interact

with molecules in the adjacent volume. Rules are provided for basic molecular transport reac-

tions. Simmune, a multiscale platform tying rule-based molecular interactions to macroscopic

cell behavior, models cells as a plasma membrane containing cytosolic compartment [115].

Membrane proteins in Simmune may have cytosolic and extracellular domains that inter-

act with the adjoining volumes. While Simmune includes dynamic cell division and death,

the topology of the cell is fixed and cellular models that required nested compartments for

organelles and not handled.

Cardelli pioneered the formal description of dynamic membrane systems with the intro-

duction of Brane Calculi [121, 122], which formally express biological membrane processes,

including division, fusion and phagocytosis, but do not include description of biochemical
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reactions. BioAmbients, based on the stochastic π-calculus and ambients calculus, provides

a language and simulation platform for dynamic compartments with structured molecular

interactions [123]. It thus begins to bridge the biology of membranes and molecules, but

treatment of membrane-mediated biochemistry is lacking. Similarly, Beta Workbench im-

plements dynamic compartments through the abstraction of beta binders, an interface that

wraps a collection of biological processes and controls external communication [116]. Nesting

of beta binders is not permitted, so modeling cells with organelle structures is beyond its

scope.

Recent efforts in the process algebra literature have made considerable progress in merg-

ing rule-based modeling with dynamical membrane systems. Laneve and colleagues [124]

proposed bio-κ, a restricted variant of the κ-calculus combined with syntax and seman-

tics for dynamic membrane reactions. Membranes can contain molecules and interact with

adjacent volumes. While the rule-based capability of bio-κ is limited, the biological ex-

pressivity includes phagocytosis, fusion, fission and molecule translocation. Damgaard et

al. [125] developed C-calculus, which introduces the concept of a channel, a type of bond

that connects topologically related volumes. C-calculus is able to express complex biological

phenomena that combine membrane and molecule interactions, such as clathrin-dependent

vesicle formation. It can also describe chaperone-mediated transport. Though rich in their

expressive capabilities, the primary shortcomings of these approaches are their current lack

of freely-available end-user simulation software.

In Table 3.1, we compare the capabilities of cBNGL with the various modeling approaches

cited above.

Although none of the platforms cover the full range of capabilities, cBNGL has the

advantage of being able to describe a wide variety of biological phenomena associated with

compartmentalization and membranes in a language that is fully compatible with the freely-

available BioNetGen suite of modeling and simulation tools.
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Table 3.1: Comparison of modeling software for compartmental biochemical sys-

tems.

Species Dynamic

Platform Rule-based transport Membranes compartments Software

Beta Workbench [116] X limited X X

bio-κ [124] X X X

BioAmbients [123] X X X

BioCham [79] limited X† X

Brane calculi [121,122] X X

C-calculus [125] X X X X

cBNGL [111] X X X X

Cyto-Sim [120] X X

Little b [117] X X X

Simmune [115] X limited X X

SSC [119] X X

† Allows compartment volumes to change dynamically but cannot create nor delete compartments.
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3.5.2 Limitations

While cBNGL encompasses a wide variety of membrane and transport phenomenon, there are

important limitations. The compartment topology is static, so cell division, vesicle budding

and fusion are not described. Thus, surface-to-surface transport rules capture only the aver-

age rates of molecular transport and not the turnover of individual vesicles. Compartment

volumes are also fixed, so dynamic changes in volume cannot be described. Furthermore,

transport reactions are not universal but tied to specific, named compartments. In a bi-

ological setting, transport typically depends on the presence of specific channels, pores or

transport proteins in the separating membrane rather than the physical properties of the

specific compartments. As a practical matter, we also note that our implementation of cB-

NGL for the particle-based simulation methods referred to in Sec. 3.1 is in progress. Future

work will address each of these issues.
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4.0 HYBRID PARTICLE/POPULATION SIMULATION METHOD

Network-based approaches to modeling and simulating biochemical reaction systems, such

as those based on ordinary differential equations, require enumerating all species and re-

actions that can potentially exist in a system. The applicability of these approaches is

limited, however, by the problem of combinatorial complexity, an explosion in the number of

species and reactions due to protein-protein interactions and post-translational modifications

in biochemical systems. Rule-based modeling (RBM) avoids this problem by representing

molecules as structured objects and encoding their interactions as pattern-based rules. Rule-

based models can, on the one hand, be used to generate fully-enumerated reaction networks

or, alternatively, simulated directly using particle-based kinetic Monte Carlo methods. The

latter “network-free” approach produces exact stochastic trajectories with a computational

cost that is independent of network size. However, memory and run time costs increase

linearly (or worse) with the number of particles being simulated, limiting the size of sys-

tem that can be feasibly handled. Here, we present a hybrid particle/population simulation

method that combines the best attributes of both the network-based and network-free ap-

proaches1. The method takes as input a rule-based model augmented with a user-specified

subset of species to treat as population variables rather than as particles. The model is then

transformed by a process of partial network expansion into a form that can be simulated us-

ing a population-adapted network-free simulator. We have implemented the transformation

method within the open-source rule-based modeling platform BioNetGen and the resulting

1 This chapter is a adapted from a manuscript with co-authors Leonard Harris and James Faeder. My
contribution to the work includes development of the method, software implementation, analysis, and com-
position of the draft manuscript. Leonard Harris and James Faeder contributed to algorithm design and
composition of the final manuscript. The manuscript was under review when this dissertation was deposited.
A preprint is available in the arXiv (http://arxiv.org/abs/1301.6854).
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hybrid model can be simulated using the particle-based simulator NFsim. Benchmark tests

show that significant memory savings can be achieved using the new approach and a mone-

tary cost analysis provides a practical measure of its utility. We also consider the possibility

of applying accelerated-stochastic simulation methods, such as τ leaping, to the population

subnetwork of the hybrid model in order to improve run time efficiency.

4.1 INTRODUCTION

4.1.1 Rule-based modeling

Cell signaling encompasses the collection of cellular processes that sample the extracellular

environment, process and transmit that information to the interior of the cell, and regulate

cellular responses. In a typical scenario, molecules outside of the cell bind to cognate re-

ceptors on the cell membrane, resulting in conformational change or clustering of receptors.

A complex series of protein binding and biochemical events then occurs, ultimately leading

to the activation or deactivation of proteins that regulate gene expression or other cellular

processes.

A typical signaling protein possesses multiple interaction sites with activities that can

be modified by direct chemical modification and by the effects of modification or interaction

at other sites. This complexity at the protein level leads to combinatorial complexity at

the level of signaling networks [44], posing a major barrier to the development of detailed

and comprehensive models using standard approaches that require explicit enumeration of all

species and reactions in a network [44,54,126]. This problem of scalability has motivated the

development of rule-based modeling languages, such as the BioNetGen language (BNGL) [60,

127] and Kappa [67,68], which provide a rich yet concise description of signaling proteins and

their interactions. The biochemical state-space explosion problem is avoided by representing

interacting molecules as structured objects and using rules to encode their interactions. In the

graph-based formalisms of BioNetGen and Kappa, molecules are represented as graphs and

biochemical interactions by graph-rewriting rules. A rule can define either a single reaction
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or a class of reactions that share a common set of transformations (e.g., formation of a bond

between molecules) and system-state requirements (e.g., that one or more components have

a particular covalent modification). Rules are local in the sense that only the properties of

the reactants that are transformed or are required for the transformation to take place affect

their ability to react.

An important characteristic of rule-based models is that they can encode both finite and

infinite reaction networks. If the network is finite and “not too large” then the network

can be generated algorithmically [59–61, 66, 127] and simulated using a variety of network-

based simulation methods (e.g., Refs. [25,37,38]). However, the rule-based methodology also

provides a formalism for simulating models with prohibitively large or infinite state spaces.

Such a “network-free” approach involves representing molecular complexes as particles and

applying rule transformations to those particles at runtime using a kinetic Monte Carlo

update scheme [55,57]. This avoids enumeration of combinatorially-large state spaces because

only the current configuration of the system and its potential transformations are tracked.

As a result, network-free methods can efficiently simulate complex systems beyond the reach

of network-based methods [53, 55, 57]. However, because every molecule in the system is

instantiated, network-free methods may require large amounts of computational memory,

a potential limiting factor for simulating large systems such as the regulatory networks of

a whole cell [5, 128]. A typical eukaryotic cell, for example, contains on the order of 103–

104 protein-coding genes, 104–105 mRNA molecules, and 109–1010 protein molecules [8,129],

along with much larger numbers of metabolites, lipids, and other small molecules. Simulating

a cell at this level of detail using network-free methods would be impractical. There is a

need, therefore, to develop approaches that reduce the memory requirements of network-free

methods.

4.1.2 Computational complexity

Network-based exact-stochastic simulation methods, like Gillespie’s stochastic simulation

algorithm (SSA) [25,27,28], treat species as lumped variables with a counter (i.e., a popula-

tion). Several variants with different time complexities exist. The cost scaling in the number
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of reactions is of special interest for combinatorial models, where the number of reaction can

become very large. The direct method [25] has linear time cost (per event) in the number

of reactions. The Gibson-Bruck “next reaction” method [29] has logarithmic cost under the

assumption that the number of dependencies per reaction is bounded by d. However, d often

increases with the number of reactions. In that case, the scaling is O
(
d logR

)
, where R is

the number of reactions. The logarithmic classes approach [30] has constant cost under the

same assumptions (d is bounded); but when d is not bounded, the scaling is linear in d. The

total time cost per simulation is given by the product of the time cost per event and the

number of events. The number of events depends on the number of reactions, rate constants,

number of particles, and volume. There is no simple generalization, but the total number

of events scales linearly with simulated volume if total concentrations are fixed, i.e. parti-

cle number increases proportionally with volume. For “typical” models, the direct method

with optimizations often outperforms methods with lower asymptotic complexity [31]. The

space cost of SSA methods is either O
(
R
)

if all reactions are updated at each step (direct

method), or O
(
d ·R

)
if a dependency tree is implemented (Gibson-Bruck). Most notable for

our purposes, the space cost is constant in the number of particles.

Network-free methods, on the other hand, have a time complexity that depends on the

number of rules rather than the number of reactions. The time cost per reaction event is

approximately linear in the number of rules [53]. This explains their utility for models that

encode very large or infinite networks with a relatively small number of rules. However, being

exact-stochastic methods themselves, their total time complexity remains linear (or worse for

gel-phase systems [55,130]) as the simulated volume increases (again, total concentrations are

fixed, i.e. the number of particles increases proportionally with the reactor size). Moreover,

since network-free methods represent every molecule in a system as an individual particle, the

space complexity is linear in the number of particles. Thus, the efficient time complexity for

network-free algorithms with respect to network size is gained at the expense of an increase

in space complexity with respect to particle number. This limits the size of system that can

be feasibly simulated using network-free methods. In Table 4.1, we summarize the time and

space complexities of the SSA and network-free algorithms with respect to particle number

and network/rule set size.
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Table 4.1: Time and space complexity for the SSA and network-free algorithms.

Scaling is shown with respect to particle number, P , and number of reactions, R, or rules, R̃.

Time complexity is shown per event. Total time cost of a simulation depends on the product

of cost per event and number of events. The number of events in fixed length simulation

depends on a number of factors, including rate constants, number of particles, and reactor

volume; thus, it is difficult to generalize. Complexity of SSA also depends on d, the average

number of dependencies per reaction. Since d often increases with R in combinatorial models,

the assumptions of logarithmic and constant time algorithms do not always hold.

Particles (P ) Rxns (R) or Rules (R̃)

SSA Time (per event) O
(
1
)

O
(
R
)
a, O

(
d logR

)
b, O

(
d
)
c

SSA Space O
(
1
)

O
(
R
)
d, O

(
d ·R

)
e

NF Time (per event) O
(
1
)
, O
(
P
)
f O

(
R̃
)

NF Space O
(
P
)

O
(
R̃
)

adirect method [25,31]
bGibson-Bruck [29]
clogarthmic classes [30]
dno dependency graph
edependency graph
fpolymerizing systems in gel phase [55,130] (see Figure 4.4B).
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4.1.3 Combining network-based and network-free approaches

The key idea pursued in this work is that memory consumption can be reduced in network-

free simulators by representing large numbers of identical molecular complexes as single vari-

ables with population counters rather than as many individual particles. However, retaining

the ability to address combinatorial complexity requires retaining the particle representation

for complexes that are comprised of many molecules and/or have complex substructures.

Here, we present an approach, termed the hybrid particle/population (HPP) simulation

method, that accomplishes this. Given a user-defined set of species to treat as population

variables, the HPP method partially expands the network around the population species

and then simulates the partially-expanded model using a population-adapted particle-based

method. By treating complex species as structured particles, HPP capitalizes on the near-

constant time complexity with respect to network size characteristic of the network-free

approach. However, for the subset of species treated as population variables, we take advan-

tage of the constant memory requirements of the network-based methods.

The paper is organized as follows. First, we provide brief descriptions of the example

systems and performance metrics that we use to quantify the utility of the new method.

We then present the HPP simulation method, which is the main contribution of this paper.

Results of various performance analyses follow, which demonstrate that significant reductions

in memory usage are possible using the new approach with little effect on simulation run

time. Finally, we conclude with a discussion of the practical consequences of our work and

some possible enhancements to the method.

4.2 METHODS

4.2.1 Example models

We have tested the performance of the HPP method by applying it to four example models,

summarized in Table 4.2 and discussed in further detail below. All of the models are biologi-

cally relevant and are either taken directly from the literature or are based on models that are
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Table 4.2: Summary of example models used to test HPP performance. Number

of particles is for a NFsim simulation of a full cell volume (f=1). Fractional cell volumes as

low as 0.001 and as high as 1 are used in the performance analyses (see below for details).

Particles Population Rules after

Model Rules Reactions Species (f=1) species PNE t end (s)

TLBR [45,53,130] 4 ∞ ∞ 5.3×106 2 9 500

Actin [53,131] 21 ∞ ∞ 1.2×106 2 25 1000

FcεRI [47,53,132] 24 58 276 3744 6.9×106 1 / 6 25 / 38 2400

EGFR [19,52,133] 113 415 858 18 950 2.2×106 29 159 1200

taken from the literature. Complete BNGL model files, as well as HPP (partially-expanded)

versions, are provided as Texts S4–S12 of the supporting information.

4.2.1.1 Trivalent-ligand bivalent-receptor The trivalent-ligand bivalent-receptor

model (TLBR) is a simplified representation of receptor aggregation following multivalent

ligand binding. TLBR has biological relevance to antigen-antibody interaction at the cell

surface, where bivalent IgE-FcεRI receptor complexes aggregate in the presence of multiva-

lent antigen [45]. A theoretical study of the TLBR system was presented by Goldstein and

Perelson [45], who derived analytical conditions for a solution-gel phase transition in terms

of binding equilibrium constants, free ligand concentration, and receptors per cell. A more

recent study considered the effects of steric constraints and ring closure on the solution-gel

phase transition in the TLBR system [130].

Despite its simplicity, the TLBR system experiences a state-space explosion near the

solution-gel phase boundary. A computational study by Sneddon et al. [53] reproduced

the analytical results of Goldstein and Perelson using the BNGL-compliant network-free
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simulator NFsim [53]. Due to large excesses of ligand and receptor under certain conditions,

TLBR is a natural test case for HPP. We simulated the TLBR system using HPP with

free ligand and receptor treated as population species. All simulations were performed with

parameters as defined in Monine et al. [130], which lie within the solution-gel coexistence

region. A cell-scale simulation assumed 1 nl extracellular volume per cell (106 cells/ml) with

8.3 nM ligand and 3×105 receptors per cell. Simulations were performed at fractional cell

volumes, f , ranging from 0.001 to 0.1 with a lumping rate constant k lump= 10 000/s (see

below). Results are shown in Figure 4.4.

4.2.1.2 Actin polymerization Actin polymerization plays a key role in cell morphology

and motility [134, 135]. Roland et al. [131] presented a dynamic model of actin polymeriza-

tion featuring filament elongation by monomer addition, stabilization by ATP hydrolysis,

and severing mediated by actin depolymerizing factor (ADF)/cofilin. Sneddon et al. [53]

presented a rule-based formulation of the Roland et al. model and replicated their results us-

ing NFsim. The model features an excess of actin monomer and ADF molecules. Therefore,

we speculated that substantial memory reduction is possible using the hybrid approach. We

applied HPP to the Sneddon et al. rule-based model of actin dynamics (hereafter referred

to as the Actin model) with actin monomer and ADF treated as population species. A

cell-scale simulation assumed 1 pl intracellular volume with 1 µM actin monomer and 1 µM

ADF/cofilin. Simulations were performed at fractional cell volumes, f , ranging from 0.01 to

1 with a lumping rate constant k lump=10 000/s. Results are shown in Figure 4.5.

4.2.1.3 FcεRI signaling FcεRI is a membrane receptor that binds IgE antibodies. Sig-

naling through FcεRI regulates basophilic histamine release in response to IgE antibody-

antigen interaction [136]. Faeder et al. [46,47] developed a rule-based model of FcεRI receptor

assembly and activation in which receptor dimerization/clustering is mediated by chemically

cross-linked IgE, which serve as multivalent ligands. Dimerized receptors are also transpho-

sphorylated, leading to Syk and Lyn recruitment and phosphorylation. Sneddon et al. [53]

presented several extensions of the Faeder et al. model, including the gamma2 variant with
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two γ phosphorylation sites. Particle-based NFsim simulations of the gamma2 model were

found to be substantially faster than network-based SSA simulations.

Due to the excess of free ligand, the HPP method was applied to the gamma2 model to

reduce memory consumption. The method was applied with two different sets of population

species. In the first case, only free ligand was treated as a population species (FcεRI:1).

In the second, cytosolic Lyn and all four phosphorylation states of cytosolic Syk were also

treated as populations (FcεRI:6). A cell-scale simulation assumed 1 pl intracellular volume

with 1 nl extracellular space per cell (106 cells/ml), 10 nM ligand, and 4×105 receptors per

cell. Simulations were performed at fractional cell volumes, f , ranging from 0.001 to 0.1

with a lumping rate constant k lump=10 000/s. Results are shown in Figure 4.6.

4.2.1.4 EGFR signaling A model of signaling through the epidermal growth factor

receptor (EGFR), beginning with ligand binding and concluding with nuclear phospho-ERK

activity, was constructed by combining three existing models: (i) a rule-based model of

EGFR complex assembly [52]; (ii) a Ras activation model [133]; (iii) a pathway model of

Raf, MEK and ERK activation [19]. Ras activation was coupled to the EGFR complex

assembly by treating receptor-recruited Sos as the Ras GEF. Activated Ras was coupled to

the Raf/MEK/ERK cascade through RasGTP-Raf binding and subsequent phosphorylation

of Raf. Parameters for the combined model were obtained from the respective models.

However, parameters governing Ras-GEF (i.e., Sos) activity had to be changed from their

original values [133] in order to account for the known GEF-mediated activation of Ras [137].

Specifically, we used KM,GDP =KM,GTP =1.56×10−7 M and D=1000 (unitless).

Free EGF and Raf-, MEK-, and ERK-based species were treated as population species

in the hybrid variant. Ras-based species were also treated as populations except for those

that include a Sos molecule. A cell-scale simulation assumed 0.94 pl cytosolic and 0.22 pl

nuclear volume, with 0.94 pl extracellular space, 10 nM ligand, and 4×105 receptors per

cell. Simulations were performed at fractional cell volumes, f , ranging from 0.01 to 1 with

a lumping rate constant k lump=100 000/s. Results are shown in Figure 4.7.

111



4.2.2 Performance metrics

HPP was evaluated for peak memory use, CPU run time, and accuracy as compared to

particle-based NFsim simulations. For models where network generation is possible (FcεRI

and EGFR), comparisons were also made to SSA simulations (as implemented in BioNetGen

[60]). All benchmarks were performed on a 2 × Intel Xeon E5520 @ 2.27 GHz (8 cores, 16

threads, x86 64 instruction set) with 74 GB of RAM running the GNU/Linux operating

system. To ensure that each process had access to 100% of the compute cycles of a thread,

no more than 12 simulations were benchmarked simultaneously. In all cases, reported results

are based on ≥7 independent simulation runs.

4.2.2.1 Peak memory Peak memory usage was evaluated by peak virtual memory al-

location reported by the operating system with the command: cat /proc/<PID>/status.

For all benchmark models, peak memory was achieved early in the simulation and remained

steady throughout (data not shown).

4.2.2.2 CPU run time CPU run time was evaluated using clock time as a metric. Clock

time was recorded using the Time::HiRes Perl module. Run time included initialization as

well as the simulation phase. Partial network expansion for HPP simulations was a one time

cost, typically a few seconds, and was not included in the benchmark.

4.2.2.3 Accuracy Simulation accuracy was quantified using several approaches. For all

models, the total number of reaction firings was recorded for each simulation run (firings

of population-mapping rules were subtracted from the total in HPP simulations). Based

on 40 independent samples each of NFsim and HPP (and SSA for the FcεRI model), we

tested the null hypothesis that none of the methods produce a larger number of firings under

the Mann-Whitney U test [138, 139]. Distributions were visualized as box plots showing

minimum values, maximum values, and quartiles.

For the TLBR and Actin models, equilibrium distributions for key observables were also

compared. These include the number of receptor clusters in the TLBR model and the length
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of actin polymers in the Actin model. 10 000 samples were collected over 100 000 seconds of

simulated time. Distributions were compared by binning samples (20 bins) and performing

a two-sample chi-squared test [140]. For the FcεRI and EGFR models, trajectories for

key observables were collected from 40 simulation runs each. Moving averages and 5–95%

frequency envelopes were plotted for sampling windows of 10 s. Due to complications of

autocorrelation, a statistical test was not applied to the dynamic trajectory comparison.

Instead, the results were plotted for inspection by eye.

4.2.3 Software implementation

HPP and NFsim simulations were run using NFsim version 1.11, which is available for

download at http://emonet.biology.yale.edu/nfsim. All simulations (SSA included)

were invoked through BioNetGen version 2.2.4, which implements the hybrid model gen-

erator and is distributed with NFsim 1.11 (see Refs. [60, 61] and Secs. S3.1.5 and S4.1 of

Text S1 for details on running simulations with BioNetGen). NFsim and BioNetGen source

code are available at http://code.google.com/p/nfsim and http://code.google.com/

p/bionetgen, respectively. The most recent implementation of the hybrid model generator

can be found in the BioNetGen-2.2.4-stable distribution (see generate hybrid model()

in the BNGAction.pm module at http://code.google.com/p/bionetgen/source/browse/

bng2/Perl2/BNGAction.pm). Additional documentation for BioNetGen can be found at

http://bionetgen.org.

4.3 RESULTS

4.3.1 A hybrid particle/population simulation approach

In this section, we first present an algorithm for transforming a rule-based model into a

partial-network system. We then describe a population-adapted network-free simulation

protocol that can be applied to that system. We refer to the combination of these meth-

ods as the hybrid particle/population (HPP) simulation method. The basic work flow is
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Figure 4.1: Basic workflow of the HPP simulation method. Given a rule-based model

and a user-specified set of population-mapping rules (which define the population species),

partial network expansion (PNE) is performed to generate a hybrid version of the original

model. The hybrid model is then passed to the population-adapted version (1.11 or later)

of the network-free simulator NFsim, which generates the time-evolution trajectories for all

observable quantities specified in the original model.
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provided in Figure 4.1. The transformation method has been implemented within the open-

source rule-based modeling package BioNetGen [60, 61, 127] and the resulting hybrid model

can be simulated using version 1.11 (or later) of the network-free simulator NFsim [53]. The

reduction in computational memory requirements offered by HPP is an important step to-

wards the practical simulation of systems approaching the size and complexity of a whole

cell [5, 128].

For convenience, we will adhere in this paper to the BNGL syntax, which is summarized

in Section 1.4.3 of the introductory chapter. A complete description of the syntax and

semantics of BNGL can be found in Refs. [60, 61, 111]. For the theoretical foundations of

BioNetGen see Ref. [66] and Appendix B.

4.3.1.1 Population species and population-mapping rules Given a rule-based

model, the first step in the HPP approach is to select a subset of species to treat as “lumped”

population variables. Currently, this is left as a task for the modeler (an optimal strategy
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for selecting species for population lumping is a topic for future research; see “Discussion”).

Generally speaking, however, species that maintain a large population throughout the du-

ration of the simulation are good candidates. It is also best to choose species that contain

only a small number of components and/or participate in only a few reaction rules, since

the time complexity of the simulation algorithm is strongly correlated with the size of the

expanded rule set (Table 4.1). A receptor with many phosphorylation and binding sites,

for example, is usually best treated as a particle because treating it as a population species

would require enumerating a large number of species and reactions through partial network

expansion (Section 4.3.1.2).

The next step is to map each (structured) species selected for lumping to an associated

unstructured species, which we refer to as a population species . Population species differ

from standard BNGL species in that they possess a property, called a count, which records

their current population. The mapping is accomplished using a population-mapping rule,

which follows the same syntactic conventions as a standard BNGL rule. For example,

Egf(r) -> pop Egf() k lump

maps the unbound EGF ligand Egf(r) to the unstructured population species pop Egf().

The rate parameter here is termed the lumping rate constant. The basic idea is that during

the course of a simulation complexes may dissociate and release instances of structured

species that have been selected for lumping, Egf(r) in this case. The population-mapping

rules gather these instances back up into the population species. The lumping rate constant

thus determines how long these unlumped particles persist in the system. Its value should

ideally be set to infinity as the HPP method is formally exact only for an infinite lumping rate.

However, if infinity is not an option in the network-free simulator being used (currently it is

not in NFsim) then setting it to a value that is “large” with respect to the model dynamics

will suffice (see Figs. 4.4–4.7, panels C and D). Note that the action of the above rule is to

delete the Egf(r) molecule and increment by one the counter of the pop Egf() molecule

(only a single instance of a population species ever exists in the simulation environment).

115



4.3.1.2 Partial network expansion The ultimate goal of the HPP method is to re-

place in the simulation environment large numbers of indistinguishable particles with small

numbers of lumped objects containing population counters (the population species), thus

significantly reducing memory usage. In order to accomplish this without losing information

regarding the dynamics of the system, we must partially expand the rule set until all reac-

tions in which the population species appear as reactants are enumerated. We refer to this

procedure as partial network expansion (PNE).

The PNE algorithm is comprised of three basic steps, applied to each reaction rule in a

model:

1. For each reactant pattern, identify all matches of the pattern into the (structured) species

selected for lumping. Also collect a self-match of the reactant pattern unless it equals a

species selected for lumping (see below).

2. Derive an expanded set of rules by applying the original rule to all possible combinations

(the Cartesian product) of the reactant pattern matches collected in step 1.

3. For each derived rule, replace each reactant and product pattern that equals a species

selected for lumping with its unstructured population counterpart.

The result is an expanded rule set consisting of three general types of rules: (i) particle rules,

comprised of reactant patterns that exclusively match particles; (ii) mixed particle/popula-

tion rules, which operate on a mixture of particles and population species; (iii) pure pop-

ulation reactions , which operate exclusively on population species. The expanded rule set

has the property that every possible action of the original rules on the population species is

enumerated while actions on particle objects remain pattern-based (i.e., non-enumerated).

A formal basis for the PNE algorithm, with pseudocode, is provided in Appendix E.

Note that the set of particle rules in the expanded rule set is just the set of reaction

rules in the original model, less those that exclusively match structured species selected for

lumping. This is a consequence of excluding self-matches in Step 1 of the PNE algorithm for

reactant patterns that equal structured species selected for lumping. The reason why this is

done is that, for large k lump, there will almost never exist any instances of the structured

species in the system. As mentioned above, the role of the population-mapping rules is to
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gather instances of structured species selected for lumping up into the population species.

A large value of k lump means that this will be accomplished almost instantaneously. As

such, rules involving those reactant patterns need not be retained since they will (essentially)

never fire. Removing them decreases the size of the partially-expanded rule set and improves

the efficiency of the method. Note, however, that for the sake of completeness we have

implemented an “exact” PNE method in BioNetGen (version 2.2.3 or later) that retains all

of the self-matches and, hence, gives exact results for any value of k lump (see Appendix F

for instructions on how to call this method). For a select number of examples, we have

confirmed that both methods give statistically identical results for sufficiently large k lump

and that the exact method is less efficient (data not shown).

PNE is best illustrated through an example. In Figure 4.2, we present a simple rule-

based model of receptor activation (for brevity, parameters, initial populations, and output

observables are omitted; see Appendix G.1 for the complete model in BNGL format). The

model includes a ligand, L, its cognate receptor, R, and three cytosolic proteins, A, B, and C,

that are recruited to the phosphorylated receptor. The 16 rules (six unidirectional and five

reversible), describing ligand-receptor binding, receptor phosphorylation/dephosphorylation,

and protein recruitment, encode a reaction network comprised of 56 species and 287 reactions.

In applying the HPP method, eight species are selected for lumping: free ligand, free A, B and

C, and complexes of A, B and C that exclude the receptor. Receptor complexes are treated

as particles because there are many possible receptor configurations (48 total).

In Figure 4.3, a step-by-step application of PNE to rule 11f (forward) of Figure 4.2 is

presented. First, both reactant patterns are matched to the structured species selected for

lumping. Reactant pattern 1 has one match, while reactant pattern 2 has two. Note that

since neither reactant pattern exactly equals a species (i.e., is isomorphic to one) the self

match (identity automorphism) is added to the reactant match list in both cases. This is re-

quired for generating mixed particle-population rules, where one reactant is an unstructured

population species and a second is a structured particle.

Next, the rule is applied to each possible reactant set (the Cartesian product of the

reactant match lists). This results in a set of six derived rules. The structured species are

then replaced in these rules by their associated unstructured population species, resulting in
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Figure 4.2: Simple receptor activation model in BNGL format. Abridged; see Ap-

pendix G.1 for the complete model.

Molecule Type Description

1 L(r) extracellular ligand

2 R(l,a∼0∼P,b∼0∼P) membrane receptor with two phosphorylation sites

3 A(r,b∼0∼P) cytosolic molecule (recruits to phosphorylated receptor)

4 B(r,c) cytosolic molecule (recruits to phospho-receptor or phospho-A)

5 C(b) cytosolic molecule (binds to B)

Reaction Rule Rate constant(s) Description

1 L(r) + R(l) <-> L(r!1).R(l!1) kp1,km1 receptor-ligand binding

2 L(r!1).R(l!1,a∼0) -> L(r!1).R(l!1,a∼P) k2 site a phosphorylation

3 L(r!1).R(l!1,b∼0) -> L(r!1).R(l!1,b∼P) k2 site b phosphorylation

4 R(a∼P) -> R(a∼0) k3 site a dephosphorylation

5 R(b∼P) -> R(b∼0) k3 site b dephosphorylation

6 R(a∼P) + A(r) <-> R(a∼P!1).A(r!1) kp4,km4 phosphorylated R binding A

7 R(b∼P) + B(r) <-> R(b∼P!1).B(r!1) kp5,km5 phosphorylated R binding B

8 B(c) + C(b) <-> B(c!1).C(b!1) kp6,km6 B and C binding

9 R(a∼P!1).A(r!1,b∼0) -> R(a∼P!1).A(r!1,b∼P) k7 recruited A phosphorylation

10 A(b∼P) -> A(b∼0) k8 A dephosphorylation

11 A(b∼P) + B(r) <-> A(b∼P!1).B(r!1) kp9,km9 phosphorylated A binding B

Population-mapping rules:

Structured species Population species Lumping rate constant

1 L(r) -> P1() k lump

2 A(r,b∼0) -> P2() k lump

3 A(r,b∼P) -> P3() k lump

4 A(r,b∼P!1).B(r!1,c) -> P4() k lump

5 A(r,b∼P!1).B(r!1,c!2).C(b!2) -> P5() k lump

6 B(r,c) -> P6() k lump

7 B(r,c!1).C(b!1) -> P7() k lump

8 C(b) -> P8() k lump
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Figure 4.3: Partial network expansion (PNE) applied to Rule 11f of Figure 4.2.

Reaction rule: A(b∼P) + B(r) -> A(b∼P!1).B(r!1) kp9

Description: “Bind component sites b∼P and r”

1: Find Reactant Pattern (RP) Matches

Matches to RP 1 Population species Matches to RP 2 Population species

1 A(b∼P) identity automorphism 1 B(r) identity automorphism

2 A(r,b∼P) P3() 2 B(r,c) P6()

3 B(r,c!1).C(b!1) P7()

2: Rule Expansion: Apply rule to each reactant set in the Cartesian product of reactant matches

1 A(b∼P) + B(r) -> A(b∼P!1).B(r!1) kp9

2 A(b∼P) + B(r,c) -> A(b∼P!1).B(r!1,c) kp9

3 A(b∼P) + B(r,c!1).C(b!1) -> A(b∼P!2).B(r!2,c!1).C(b!1) kp9

4 A(r,b∼P) + B(r) -> A(r,b∼P!1).B(r!1) kp9

5 A(r,b∼P) + B(r,c) -> A(r,b∼P!1).B(r!1,c) kp9

6 A(r,b∼P) + B(r,c!1).C(b!1) -> A(r,b∼P!2).B(r!2,c!1).C(b!1) kp9

3: Rule Rewriting: Substitute structured species graphs with unstructured population species

1 A(b∼P) + B(r) -> A(b∼P!1).B(r!1) kp9

2 A(b∼P) + P6() -> A(b∼P!1).B(r!1,c) kp9

3 A(b∼P) + P7() -> A(b∼P!2).B(r!2,c!1).C(b!1) kp9

4 P3() + B(r) -> A(r,b∼P!1).B(r!1) kp9

5 P3() + P6() -> P4() kp9

6 P3() + P7() -> P5() kp9
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one pure particle rule (the original rule), three mixed particle/population rules, and two pure

population reactions. Including the population-mapping rules, the hybrid model contains a

total of 42 rules, more than the original 16 but significantly fewer than the 287 reactions of

the fully expanded network. The complete partially-expanded HPP model for this system

can be found in Appendix G.2.

4.3.1.3 Population-adapted network-free simulation Since an HPP model is prop-

erly a rule-based model, network-free simulation algorithms are readily adapted to the HPP

method by the addition of: (i) a population count property for each molecule object; (ii)

a transformation that performs population increments and decrements; (iii) a method for

calculating population-weighted propensities (rates). The population-weighted propensity

of an expanded rule R̃µ is given by the formula

aµ =
kµ
sµ

Mµ∏
r=1

(
X∑
x=1

ρ(x)ηµ,r(x)

)
, (4.1)

where kµ is the rate constant, sµ is the symmetry factor (see Ref. [60, Note 4.21 ]), Mµ is

the number of reactant patterns in the rule (i.e., the molecularity), X is the total number of

complexes in the system, ρ(x) is the population of complex x (unity in the case of particles),

and ηµ,r(x) is the number of matches of reactant pattern r into complex x.

Note that in the case of symmetric population reactions [e.g., pop A() + pop A() ->

A(a!0).A(a!0)], the possibility of a null event must be calculated in order to prevent self

reactions. This is accomplished by rejecting the event with probability 1/ρ(x). Furthermore,

since population species have zero components, if complex x is a population species and

ηµ,r(x) = 1 (can only equal 0 or 1), then ηµ,r(y) = 0 for all y 6= x. This property is useful

because it guarantees that a reactant pattern matches either particles or population species

exclusively, never a mixture of both. Thus, once a rule has been selected to fire, the particles

to participate in that rule can be selected from a uniform distribution rather than from a

population-weighted distribution.
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Figure 4.4: HPP performance analysis for the TLBR model. (A) peak memory usage

(left : absolute, right : relative to NFsim); (B) CPU run time (left : absolute, right : relative to

NFsim); (C) number of reaction events fired during a simulation (f=0.01); (D) equilibrium

distribution of number of clusters (f=0.01).
1

(A)

(B)

(C) (D)

121



Figure 4.5: HPP performance analysis for the actin polymerization model. (A) peak

memory usage (left : absolute, right : relative to NFsim); (B) CPU run time (left : absolute,

right : relative to NFsim); (C) number of reaction events fired during a simulation (f=0.01);

(D) equilibrium distribution of actin polymer lengths (f=0.01).
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Figure 4.6: HPP performance analysis for the FcεRI signaling model. (A) peak

memory usage (left : absolute, right : relative to NFsim); (B) CPU run time (left : absolute,

right : relative to NFsim); (C) number of reaction events fired during a simulation (f=0.01);

(D) time courses (means and 5–95% envelopes; f = 0.01) for γ-phosphorylated receptor

(top) and receptor-recruited, α-phosphorylated Syk (bottom). SSA time courses are virtually

indistinguishable and have been omitted for clarity.
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Figure 4.7: HPP performance analysis for the EGFR signaling model. (A) peak

memory usage (left : absolute, right : relative to NFsim); (B) CPU run time (left : absolute,

right : relative to NFsim); (C) number of reaction events fired during a simulation (f =

0.05); (D) time courses (means and 5–95% envelopes; f = 0.05) for activated Sos (top) and

phosphorylated ERK (bottom). Due to high computational expense, SSA statistics were not

collected in (C) and (D).
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4.3.2 Performance analyses

4.3.2.1 Peak memory use and CPU run time Figures 4.4–4.7, panels A, show ab-

solute and relative (with respect to NFsim) peak memory use as a function of cell fraction,

f , for all models considered. We see that in all tested cases HPP requires less memory than

NFsim. For NFsim, we see the expected linear relationship (Table 4.1) between peak mem-

ory use and system size (see below). For HPP, peak memory use also scales linearly but with

a smaller slope. This is expected because as the system size increases a portion of the added

particles, and hence memory cost, is always absorbed by the population subnetwork. We

also see that the relative memory benefits of HPP go to zero at the smallest cell fractions.

This is because opportunities for compression decrease as species populations approach zero.

In cases where network generation is possible (FcεRI, Figure 4.6A; EGFR, Figure 4.7A),

we see for the SSA the expected constant relationship between memory usage and system

size (Table 4.1). The SSA also requires more memory than both NFsim and HPP for all

cell fractions considered. This is due to the high memory cost of the dependency update

graph [31] (standard in SSA implementations), which scales with the product of the number

of reactions in the network and the average connectivity per reaction.

Note that, for NFsim, the second-to-last points in the absolute memory usage plots

(panels A, left) actually lie slightly above the linear trend in all cases. This is due to the fact

that memory is allocated in NFsim in logarithmically growing intervals (a common approach

in software design) up to a threshold, after which allocation occurs in intervals of a constant

size. Basically, at the second-to-largest volumes memory allocation is still in the logarithmic

phase, where greater excesses of memory are likely to be allocated (the largest volumes are

in the constant phase). To address this, we have rerun simulations for all models at all

cell fractions using a custom compiled version of NFsim that allocates memory in smaller

intervals. The data confirm that the memory scaling for NFsim with system size is in fact

linear (data not shown).

Figures 4.4–4.7, panels B, show absolute and relative (with respect to NFsim) CPU run

times as a function of cell fraction. Generally speaking, HPP and NFsim run times are

comparable in all cases, indicating that the reductions in memory use seen in Figs. 4.4–
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4.7, panels A, are not achieved at the cost of increased run times. In fact, HPP is slightly

faster than NFsim in most cases. This is because operations on population species (e.g.,

increment/decrement) are less costly than the graph operations applied to particles (e.g.,

subgraph matching). Also note in Figure 4.4B the expected quadratic relationship between

run time and system size for the TLBR model (Table 4.1), which is due to the solution-gel

phase transition [55, 130]. In Figs. 4.6B and 4.7B, we see that the SSA is slower than both

NFsim and HPP for all cell fractions considered. The difference is most pronounced at small

cell fractions and is much more significant for EGFR than for FcεRI. This is as expected since

previous work [53] has shown that network-free methods significantly outperform network-

based stochastic methods when population levels are small and network sizes are large (the

EGFR network is significantly larger than the FcεRI network; Table 4.2).

Finally, we see in Figure 4.6B that the CPU run time increases as we increase the number

of species treated as populations in the FcεRI model, even though the memory usage remains

constant (Figure 4.6A). This is interesting because it suggests that the FcεRI:1 variant, with

free ligand as the only population species, is near-optimally lumped for the cell fractions

considered. Evidently, the population levels of the lumped cytosolic Lyn and Syk species

in the FcεRI:6 variant never get large enough to provide significant memory savings (any

savings that are achieved are offset by the additional mixed rules and reactions added to the

rule set).

4.3.2.2 Accuracy Figures 4.4–4.7, panels C, show distributions of the number of reac-

tion firings per simulation run for each of the simulation methods considered. For all models,

the distributions, as illustrated by box plots, are similar for NFsim, HPP, and SSA (the latter

for FcεRI only; Figure 4.6C). The two-sided Mann-Whitney U test [138, 139] was unable to

reject the null hypothesis at the 5% significance level for all models (TLBR: p=0.25; Actin:

p= 0.90; FcεRI: p= 0.27; EGFR: p= 0.07), providing strong evidence that HPP produces

statistically identical numbers of reaction firings to both NFsim and SSA.

Figures 4.4–4.7, panels D, compare distributions obtained from NFsim and HPP simu-

lations of all models. In Figure 4.4D, we show equilibrium distributions of the number of

receptor clusters in the TLBR model (f = 0.01). In Figure 4.5D, equilibrium distributions
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of polymer lengths in the Actin model are shown (f = 0.01). In both cases, we could not

reject the null hypothesis of the equivalence of the NFsim and HPP distributions (TLBR:

p= 0.50; Actin: p= 0.66). In Figure 4.6D, time courses for γ-phosphorylated receptor and

receptor-recruited, α-phosphorylated Syk are shown (f=0.01). In Figure 4.7D, time courses

for membrane-recruited (active) SOS and nuclear phospho-ERK are presented (f = 0.05).

Although we did not perform any statistical tests, visual inspection of the trajectories shows

that in all cases the NFsim and HPP results are virtually identical.

4.4 DISCUSSION

We have presented a hybrid particle/population simulation approach for rule-based models

of biological systems. The HPP approach is applied in two stages (Figure 4.1): (i) trans-

formation of a model into an equivalent hybrid form by partially expanding the network

around a selected set of population species; (ii) simulation of the transformed model using

a population-adapted network-free simulator. The method is formally exact for an infinite

population lumping rate constant, but can produce statistically exact results in practice

provided that a sufficiently large value is used (Figs. 4.4–4.7, panels C and D). As currently

implemented, the primary advantage of the HPP method is in reducing memory usage dur-

ing simulation (Figs. 4.4–4.7, panels A). Importantly, this is accomplished with little to no

impact on simulation run time (Figs. 4.4–4.7, panels B).

4.4.1 Monetary cost analysis

In order to frame our results within a real-world context, we have estimated the cost of simu-

lation based on hourly rates of on-demand instances on the Amazon Elastic Compute Cloud

(EC2). In Figure 4.8, we show the hourly cost (per “effective compute unit”) of simulation

as a function of required memory per simulation (details of the calculation can be found in

Appendix D). Also included in the plot are values for HPP (0.3 GB), NFsim (2.1 GB), and

SSA (22.0 GB) simulations of the EGFR model at cell fraction f=1 (Figure 4.7A).
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Figure 4.8: Cost of running simulations on the Amazon Elastic Compute Cloud

(EC2). The minimum cost as a function of memory requirement was calculated based on

January 2012 pricing of all Standard , High-CPU , and High-Memory EC2 instances [141].

Also included are values for NFsim, HPP, and SSA simulations of the EGFR model at cell

fraction f=1.
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The EC2 offers various “instance types” with different CPU and memory resources,

including High-CPU and High-Memory varieties. Our calculations show that below 1.82 GB

of required memory High-CPU instances are the most cost effective. Above this threshold

High-Memory instances are the better option. We see that the HPP simulation falls below

this cutoff while both NFsim and SSA lie above. There is a quantifiable benefit, therefore,

to reducing memory usage in this case. HPP simulations on the EC2 would be ∼2.5 and

∼33 times less expensive than NFsim and SSA, respectively (HPP is slightly faster than

NFsim and significantly faster than SSA; see Figure 4.7B). The whole-cell EGFR model

thus provides a tangible illustration of the benefits of reducing memory load for dynamic

simulations of large biochemical models, approaching the scale of a whole cell.

These benefits are further accentuated by the fact that common model analysis tech-

niques such as parameter estimation (e.g., Ref. [142]), sensitivity analysis (e.g., Ref. [143]),

and statistical model checking (e.g., Ref. [144]), typically entail running a large number

(thousands or more) of independent simulation trials. These trials can be distributed across
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a computer cluster and run independently, which is efficient because there is little need for

interprocess communication. However, typical hardware configurations have a fixed num-

ber of processor cores with a large, common pool of memory. If each independent process

consumes a large amount of memory, then it may be impossible to fully utilize each CPU

core. Reducing memory requirements can thus also improve the effective use of cluster and

cloud-based computing resources.

Finally, realistic simulations of whole-cell dynamics require accounting for the highly

crowded and inhomogeneous environment of the cell interior. A common approach is to dis-

cretize a system into multiple well-mixed subvolumes, with reactions taking place within, and

diffusion occurring between, each subvolume [145, 146]. However, doing so can significantly

increase the number of objects (species, reactions, rules, etc.) that must be represented and

retained in memory during the course of a simulation. The ability to reduce memory usage

is thus of particular value in the case of spatial simulations as well. We expect that HPP can

be successfully applied to spatial models without modification and can provide several-fold

reductions in memory use without substantial impact on run time.

4.4.2 Future directions

We have shown that peak memory use for HPP scales linearly with system size with a

slope that is smaller than for NFsim (Figs. 4.4–4.7, panels A). Moreover, when network

generation is possible, HPP memory use at the system sizes considered is significantly less

than for SSA, which has approximately constant scaling (Figs. 4.6A and 4.7A). However,

the linear scaling of HPP and constant scaling of SSA means that with further increases in

the system size there will invariably come a point where HPP memory use exceeds that of

SSA. Intuitively, we understand that this is because species that are rare at small volumes,

and hence chosen to be treated as particles, become plentiful at large volumes. Since we

require that population species be selected a priori , there is no way to address this problem

currently without intervention by the user.

We propose to develop an enhanced version of HPP that tracks the populations of particle

species and automatically lumps them into population species when their number exceeds a
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certain threshold. PNE would be performed every time a new species is lumped, meaning

that the memory load would never exceed that of the fully-expanded network. In Figure 4.9,

we provide a qualitative sketch of how the memory usage of such an “automated HPP”

(aHPP) method would scale with system size for a model with a finite network. Included

for comparison are HPP, NFsim, and SSA scalings as well. For infinite networks (such as

TLBR and Actin), we expect aHPP memory use to scale somewhere between constant and

linear (no worse than HPP) at large volumes, depending on the model.

Furthermore, the cost analysis of Figure 4.8 illustrates that if, in addition to reducing

memory usage, simulation run times can be decreased, then even greater monetary benefits

are possible. There has been much research into methods for accelerating stochastic sim-

ulations of chemical reaction networks. These include τ leaping [28], originally proposed

by Gillespie [32] and improved upon by Gillespie and others [33, 34, 37, 147–151]. The HPP

method provides a unique opportunity for the application of τ -leaping approaches because,

unlike in pure particle-based methods, there exists a partial network of reactions that act

on population species. We believe that it would be relatively straightforward to integrate

a τ -leaping method into the HPP by applying it exclusively to the population subnetwork

while retaining the network-free approach in the particle-based component. We have re-

cently implemented a τ -leaping variant in BioNetGen, known as the partitioned-leaping

algorithm [37], and are actively working on integrating it with the HPP.

Importantly, the integrated τ -leaping/HPP method will involve calculating different time

steps for the particle and population subcomponents of the system and setting the global time

step, τ , to the smaller of the two. As such, if the fastest dynamics in the model are contained

within the particle-based component, then accelerations in the population subnetwork will

be limited. However, if the fast dynamics are due to the presence of a large population

of identical particle species (i.e., suboptimal lumping), then automated lumping, i.e., via

aHPP, could alleviate the problem. This further emphasizes the value of the proposed aHPP

method. Optimizing both memory usage and speed of simulation will not only decrease the

time to results but will impact, in a tangible way, the cost of doing computational research.
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Figure 4.9: Memory use vs. simulated volume for different simulation methods,

including a hypothetical “automated HPP” (aHPP). For finite networks, aHPP mem-

ory use plateaus once the entire reaction network has been generated. For infinite networks,

the scaling at large volumes should fall somewhere between constant and linear (no worse

than HPP) depending on the model.
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5.0 APPLICATION: SEPSIS AND HEMOADSORPTION TREATMENT

Sepsis is a serious illness characterized by the combination of infection and systemic inflam-

mation. Hemoadsorption (HA) is an experimental treatment for sepsis in which the patient’s

blood is circulated through a device packed with porous beads that adsorb a range of small

molecules, including inflammatory cytokines. HA has been shown to be effective at improv-

ing survival in a rat model of sepsis [152, 153]; however, the mechanism of efficacy remains

uncertain. In this chapter, I present models of sepsis and HA and attempt to elucidate a

casual mechanism for treatment efficacy1.

I proposed a causal mechanism for improved survival of sepsis with HA treatment. The

hypothesis supposes that inflammatory mediators produced at the site of infection escape

into the circulation, where they are transported to distant organs. Distant organs become

inflamed, leading to widespread neutrophil recruitment and a reduction in circulating neu-

trophil levels. Lower circulating levels reduces availability of neutrophils at the site of in-

fection. Consequently, the infection is not adequately suppressed, eventually resulting in

death. HA prevents this cascade by removing inflammatory mediators from the blood, re-

ducing systemic inflammation and preventing the drop in circulating neutrophils. Higher

circulating levels leads to improved recruitment to the site of infection and promotes clear-

ance of pathogen.

To determine the plausibility of the hypothesis, I developed a compartmental rule-

based model of sepsis and HA (sepsis model 1, Section 5.3). The model includes three

organ compartments, peritoneum, blood, and other tissue, that are populated by pathogen,

1Models and analysis presented in this chapter were developed under the supervision of Gilles Clermont
and Robert S. Parker. Experimental work was performed by our collaborators in the laboratory of Dr. John
Kellum. The statistical analysis herein is my own and may differ slightly from any experimental publications
that result from their work.
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macrophage, neutrophils. A pro-inflammatory cytokine and its inhibitor regulate the re-

cruitment of neutrophils, which eliminate the pathogen. The HA device is modeled as a

first-order removal of cytokine from the blood compartment. A set of parameters was iden-

tified for which HA treatment rescues the in silico animal from septic death. Simulations

predicated that HA efficacy was associated with improved circulating neutrophils levels,

lower systemic neutrophil recruitment, and increased neutrophil recruitment to the site of

infection.

Drawing on these simulation results and other lines of evidence, experimental collab-

orators devised a set of experiments to measure inflammatory mediators and white blood

cells in the lung, blood, and peritoneal compartment of septic rats. Experiments indicated

that HA leads to significantly reduced neutrophil infiltration in the lung and, although the

difference did not reach a significance threshold, increased recruitment to the peritoneum.

Contrary to our simulations, circulating neutrophils were not depleted in sham animals, nor

increased with HA treatment.

Since experimental results did not support a drop in circulating blood neutrophils, the

original hypothesis was modified. Based on input from experimental colleagues, I hypothe-

sized that the ratio of local to systemic chemokine was the key driver for neutrophil recruit-

ment. Reduction of chemokines in the blood via HA increases the ratio, leading to better

recruitment to the site of infection and improved survival. At the same time, lower levels of

blood cytokines reduces systemic inflammation and contributes to improved survival.

To test the modified hypothesis, I formulated a model that incorporates the chemokine

ratio mechanism (sepsis model 2, Section 5.5) and calibrated to experimental data. Simula-

tions predict that HA leads to a short-term drop in circulating cytokines and chemokines,

which rebound to normal levels within a few hours. Despite the fast rebound, the effect on

neutrophil recruitment was sufficient to rescue the in silico animal from a septic death tra-

jectory. However, the model was unable to reproduce the increase in peritoneal neutrophils

observed in laboratory experiments. Thus, I conclude that while the chemokine ratio hy-

pothesis is a plausible mechanism for improved survival with HA, further laboratory and

modeling work is required to elucidate the biological mechanisms underlying sepsis and HA

treatment.
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5.1 SEPSIS AND INFLAMMATION: AN INTRODUCTION

Inflammation is the body’s natural and essential response to infection and trauma. Inflam-

mation recruits an innate immune response to fight off infection and initiates the adaptive

immune response [154]. Macrophage cells reside in tissues and serve as sentinels. Macrophage

detect pathogen and cellular damage signals through surface receptors that are complemen-

tary to conserved bacterial proteins (such as LPS) and host proteins associated with cell

damage [155]. Upon detection, macrophage secrete a variety of pro-inflammatory cytokines

and chemoattractants into the local interstitial space. TNF and interleukin-1 (IL-1) are two

important pro-inflammatory cytokines. TNF and IL-1 alert nearby cells to the presence of

danger.

Pro-inflammatory signals trigger changes in the local vasculature. Nearby blood vessels

dilate and become more permeable. This physiological change increases blood flow and in-

creases the influx of proteins that target pathogen. Endothelial cells, which express receptors

for TNF and IL-1, begin to express neutrophils adhesion molecules [156]. Neutrophils are

a white blood cell that circulates in the blood stream [157]. Neutrophils express molecules

that bind to activated endothelial cells, causing the neutrophil to roll slowly along the vessel.

Chemokines, including (IL-8), trigger tight binding of neutrophils to the endothelium. After

tight binding, neutrophils migrate into the inflamed tissue following chemokine signals.

After migration, neutrophils bind pathogen via surface receptor, and then internalize

and digest the pathogen (a process called phagocytosis). Neutrophils also release a variety

of toxic chemicals into the interstitium that inhibit bacterial growth, but also cause damage

to local tissues. Tissue damage may lead to further inflammation (positive feedback), but

also triggers anti-inflammatory events to minimize host damage.

Pro-inflammatory signals trigger a subsequent wave of anti-inflammatory signals. TNF,

for example, binds to receptors expressed on macrophage and activates the production of the

potent anti-inflammatory IL-10 [158]. IL-10 binds to receptors on a variety of cells, including

macrophage, and inhibits the production of pro-inflammatory signals. This negative feedback

plays an important rule in limiting inflammation.
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5.1.1 Sepsis

Properly regulated inflammation is localized to the site of infection and trauma. Due to

infection in the blood or other pathological conditions, acute inflammation can become

systemic, spreading throughout the body. Sepsis, a systemic inflammatory response triggered

by infection, is one such pathology [159]. An estimated 751,000 incidents of severe sepsis

occur annually in the United States with 51% of cases receiving treatment in the ICU and

28.6% mortality [160]. Severe sepsis may lead to the failure of multiple organ systems

[160,161]. The cascade of organ failures may occur even while the infection is suppressed by

antibiotics, demonstrating that uncontrolled inflammation is destructive to organ tissues.

The mainstay of sepsis treatment has been source control, antibiotic treatment, fluid

resuscitation and organ support. Recent recommendations added very few additional op-

tions to this therapeutic approach [162]. Numerous attempts at controlling the ill effects

of the inflammatory response in sepsis using immunomodulation such as anti-inflammatory

treatments (e.g. anti-TNF antibodies, low dose corticosteroids, etc.) have largely failed

to improve patient outcome despite promise in pre-clinical trials; hence, there is ongoing

controversy as to the merit of immunomodulation in severe sepsis [162, 163] and reticence

to pursue development of interventions based on simple rationales. An opportunity exists

for model-based intervention design in sepsis and other complex diseases where standard

approaches have not delivered expected advances.

5.1.2 Cecal-Ligation and Puncture: animal model of sepsis

Cecal-ligation and puncture (CLP) is a laboratory model of clinical sepsis [164]. The cecum

of an animal, typically a rodent, is surgically ligated and punctured with a needle [165]. The

punctured cecum initiates a polymicrobial infection in the peritoneal cavity of the animal,

leading to sepsis, shock, and typically death [166]. CLP has been described as the “gold

standard” of animal sepsis models, although sensitivity to the parameters of the procedure

result in poor reproducibility if the protocol is not performed consistently [166].

135



5.1.3 Hemoadsorption: a potential treatment for sepsis

Hemoadsorption (HA) is a blood purification treatment that has been shown to improve

short term survival in septic rat models [152, 153]). A portion of the septic animal’s blood

is circulated through an ex vivo circuit including the HA device: a column packed with

small adsorptive beads. Key inflammatory cytokines responsible for the propagation of the

inflammatory response, including TNF, interleukin(IL)-6, and IL-10, are captured by the

device [152]. A calibrated model of cytokine capture was presented by DiLeo et al. [167,168]

There is preliminary evidence [169] that existing HA devices directly interact with circulating

WBCs, the distal effectors of systemic inflammation. Research is ongoing to characterize the

specific nature of the interaction between the HA device and subpopulations of WBCs.

5.2 MODELING INFLAMMATION, A SURVEY

The complexity of the inflammatory response, and the lack of clinical progress in treating

sepsis, make it an ideal candidate for systems modeling. A survey of inflammation modeling

approaches is presented here, with a focus on host-pathogen models of acute inflammation.

5.2.1 Equation models

The simplest models of sepsis are abstract representations of pro and anti-inflammatory feed-

back loop as small systems of ordinary differential equations [20,21,23]. These abstract mod-

els reproduce multiple physiological outcomes observed in clinical sepsis, including healthy

resolution, septic death, and aseptic death. Though useful for theoretical purposes, calibra-

tion to experimental data is not possible since biological observables are not represented in

the model.

Phenomenological models of inflammation with variables corresponding to biological en-

tities have been constructed using larger systems (8-18 equations) of ODEs [22, 170]. The

inclusion of biological observables provides a quantitative connection between the model

and biology that is not possible with abstract models. The mathematical form is based on
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heuristics, often Michaelis-Menten or Hill-type functions, inferred from biological relations

reported in the literature. Model parameters are calibrated to experimental measurements

obtained in vivo. This type of model is useful for engineering applications, such as process

control, where calibration and efficient simulation are required. The number of parameters

in these models is large compared to the available in vivo data. Integrating supplemental

data from in vitro or in vivo experiments would be ideal, but the phenomenological nature

of these models limits the applicability of data obtained under different experimental con-

ditions. ODE models are amenable to dynamic analysis techniques, but typically restricted

to a few parameters of interest.

The ODE models described above do not represent spatial aspects of sepsis. Sepsis,

however, is a process that occurs in the context of a complex physiological space. To re-

flect this fact, a course-grained representation of organ physiology was implemented in a

compartmental ODE model of acute inflammation presented by Reynolds [171]. The model

represents organs as well-mixed compartments connected by a vascular compartment. Cell

migration and cytokine diffusion are included as mathematical transport terms that link

compartments. The coarse representation of space sacrifices spatial detail to obtain rapid

simulations. The Reynolds model inspired the compartmental model presented later in this

chapter (Sec. 5.3).

Compartmentalized ODEs can be written by hand, but the task becomes tedious as the

number of compartments increase. Reactions are typically common to many or all compart-

ments, requiring the modeler to write similar equations repeatedly. This avoid the tedious

and error-prone process of writing compartmentalized ODEs, the compartmental model can

be specified with a set of universal reaction rules and a compartmental topology. Then the

reaction network can be algorithmically constructed via the network generation algorithm.

Compartmental BNGL, presented in Chapter. 3, is one such framework for compartmental

rule-based modeling [111].
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5.2.2 Agent-based models

Agent-based models (ABM) are a common choice for modeling spatial phenomenon. IN con-

trast to ODE models, which lump populations into a single variable, agent models represent

members of the population as individuals, i.e. agents. ABMs are useful for simulating sys-

tems where the state space dimensionality is too large for network based simulation methods.

A typical agent simulation includes a 2-D or 3-D space in which agents move about. One or

more cell types are represented as agents, each with its own list of instructions that define

motion and other cell behaviors. Additionally, background layers may be implemented to

simulate biochemical gradients. Simulations are typically implemented with a fixed-time step

sequence rather than exact stochastic methods. ABMs have been used to study acute in-

flammation [172], the formation of diabetic foot ulcers [173] and the formation of granulomas

in tuberculosis [174].

ABMs have disadvantages in certain situations. Spatial simulations are often burdened

by tedious computations of diffusion and agent movements. If spatial details are not the

primary concern of the model, this computational overhead may be unsatisfactory. Agent

models are fundamentally stochastic; therefore multiple simulations are required to determine

the average behavior of the model and its variance. This compounds the computational

burden, especially during parameter estimation and sensitivity analysis. ABM, which lacks

the concept of a bond, cannot represent complexes of agents unless the modeler defines an

agent class for each possible complex. This is a severe limitation when modeling systems

with combinatorial possibilities for binding configurations (e.g. signal transduction).

5.2.3 Discrete-state models

Discrete-state models are simple and often useful for qualitative modeling. A set of discrete

variables represent biological entities or behaviors, e.g. phosphorylated protein, or cell mi-

gration. In a two-state model, a 0 value indicates that the biological referent is inactive, e.g.

transcription factor is not activated, while a value of 1 indicates activity, e.g. the transcrip-

tion factor is active. The state of each variable is computed by a logical formula in terms of

influencing variables. Discrete state models can be simulated, without further specification,
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using an iterative update scheme. These models can encode dynamic behaviors typical of

equation models, including bistability and oscillations. But the connection to continuous

time is tenuous. Discrete-state modeling has been applied to a variety of biological phenom-

ena. Thakar et al. [175], for example, constructed a boolean model of host-level inflammation

that was able to reproduce a number of qualitative observations.

The Kauffman-Glass [176] treatment uses a discrete-state model to induce a piecewise

linear system (PLS) with continuous dynamics. This scheme requires a set of threshold

parameters, and kinetic parameters for each partition of state-space. Dynamics are linear

in each partition, but the kinetic parameters switch when the trajectory crosses a partition

boundary. The PLS approach handles continuous variables and time in a more natural way

than discrete models, but at the expense of additional parameters.

5.3 A RULE-BASED MODEL OF SEPSIS WITH HEMOADSORPTION

Two experiments reported in the literature motivated the development of a compartmental

model of sepsis. Kellum and colleagues studied the efficacy of extra-corporeal blood purifi-

cation via a hemoadsorption (HA) device for the treatment of sepsis in a CLP rat model. In

the study, rats were subjected to CLP and either received 4 hours of HA treatment beginning

18 hours post CLP or sham treatment with an empty cartridge. HA treated animals had a

higher survival rate and lower levels of circulating cytokines in comparison to sham treated

animals [152,153]. Despite the efficacy of HA treatment, it is unclear why cytokine capture

improves survival. The authors propose that broad-spectrum filtration of cytokines reduces

systemic inflammation and the risk for multiple organ dysfunction and death.

In a second study, Alves-Filho et al. compared cytokine levels and neutrophil recruitment

in lethal and sublethal models of peritoneal sepsis in rats. The study found that lethal

sepsis, in comparison to sublethal sepsis, is associated with increased levels of circulating

cytokines, increased neutrophil recruitment to the lung, and decreased neutrophil counts in

the peritoneum [177].

Building on the work of Alves-Filho et al., I developed a mechanistic hypothesis for the
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efficacy of HA treatment. In response to CLP, high levels of cytokines are produced and

spill over from the site of infection into the blood. High levels of cytokines in the blood lead

to poor neutrophil recruitment to the site of infection and high levels of system neutrophil

recruitment. The immediate effect of HA treatment is a reduction of cytokine levels in the

blood. Following the logic of Alves-Filho, this restores neutrophil recruitment to the site of

infection and minimizes systemic recruitment. Thus, clearance of the infection is improved

while damage to organs from systemic inflammation is minimized.

The hypothesis as stated so far is incomplete, as the link between high levels of cy-

tokine and reduced recruitment to the site of infection is unclear. There are several possible

hypotheses, but I proceeded with perhaps the simplest hypotheses: excess cytokine in the

blood activates endothelium systemically, leading to wide-spread, non-specific neutrophil

recruitment to tissue and depletion of circulating neutrophils. Due to lower levels of circu-

lating neutrophils in the blood, fewer neutrophils are available for recruitment to the site of

infection.

5.3.1 Model construction

In order to test the hypothesis, I developed a model of sepsis with blood, peritoneum and

“other tissue” compartments. These three compartments are the minimum required to repre-

sent infection and systemic inflammation: a site of infection, distant tissues that may become

inflamed, and the blood circulation, which transports mediators between tissues. The central

focus of the model is recruitment of neutrophils from the blood to inflamed tissues and the

subsequent elimination of pathogen by phagocytosis. Recruitment is mediated by cytokines

produced in response to pathogen and the endothelial cells activated by those cytokines. I

assume that the adaptive immune response is not relevant on the time scale of experiments

(3 days) and may be excluded from the model.

This model, titled sepsis model 1, is summarized in Figure 5.1. The model is constructed

in compartmental BNGL (cBNGL), a rule-based language. Tissues are represented by com-

partments, while cells and signaling molecules are treated as agents in those compartments2.

2I will use the term agent throughout this section since the usual BNGL terminology, i.e. molecule, is
confusing in this context.
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Sepsis model 1 is composed of 27 reaction rules, corresponding to a reaction network with

134 species and 545 reactions. The model has a total of 27 free parameters. Reaction

rules are depicted graphically in Figure 5.2 and the complete BNGL source code is listed in

Appendix H.1.

5.3.1.1 Compartments The model consists of three organs: blood, peritoneum, and

other tissue. Each organ is represented by a 3-dimensional compartment in cBNGL: B,

P, and T, respectively. The peritoneum and other tissue are separated from the blood by

endothelial layers, which are represented by 2-dimensional compartments: eP and eT. The

peritoneal compartment is the site of bacterial infection, while other tissue represents an

organ that is free of active infection but may be affected by systemic inflammation. For

example, other tissue may represent the lung. The model assumes that infection is contained

in the peritoneum and does not spread to the blood or other tissue.

The volume of the organ compartments are constant during the simulation. The volume

of blood in a 250g rat is about 14 ml and, assuming hematocrit of .45, the plasma volume

is 7.8 ml. The effective volume of the peritoneum and other tissue are set by tunable

parameters. The surface area of each endothelial layer is proportional to the volume of the

respective organ compartment.

Compartments are assumed to be well-mixed. Although organs are in fact heterogeneous

and diffusion limited, the well-mixed assumption is reasonable since (i) available data is not

spatially resolved and (ii) every subvolume of an organ is close to the blood supply and

thus similarly coupled to the blood compartment. Other modelers have chosen to apply the

well-mixed assumption in similar contexts.

5.3.1.2 Agents The model is populated by four types of cells: pathogen, tissue macro-

phage, endothelial cells, and neutrophils. Each cell type is represented by a BNGL agents:

Path, Mphage, Endo and Neutr. The behavior of each agent is governed by a set of rules,

described in the next section. The components of each cell type represent sites for cell-cell

interaction, ligand binding sites, or physiological states (such as activated or inactive. The

agent type block (i.e. “molecule types”) is listed below.
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Figure 5.1: Schematic of sepsis model 1. The agents are macrophage, Mphage (M); endothelial

cells, Endo (E); neutrophils, Neutr (N); bacterial pathogen, Path (P); pro-inflammatory

cytokine, IL1 (C); and IL-1 receptor antagonist, IL1ra (A). See Section 5.3.1 for a complete

description of the model.
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Figure 5.2: A complete list of rules for sepsis model 1, depicted graphically. Each rule is

composed of a set of reactant patterns on the left-hand side and the product patterns on

the right-hand side. Reversible rules are indicated with a double arrow. If a component of

an agent is not shown in the reactant pattern, then the state of that component does not

influence the reaction.
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begin molecule types
Path(ph) # pathogen

Mphage(p) # macrophage

IL1(b) # ligand (IL1)

IL1ra(b) # receptor antagonist (IL1ra)

Neutr(p,e) # neutrophil

Endo(n,a∼0∼1∼2,r,r,r) # endothelial cell

end molecule types

Pathogen are restricted to the peritoneal compartment, where the infection is initiated

at t = 0 with a dose pathogen. The Path agent contains one component ph that serves as a

site for cell-cell interaction between the pathogen and phagocytic host cells.

Tissue macrophage, represented by the Mphage agent, are present in the peritoneum and

other tissue, but absent from the blood. The total concentration of Mphage is constant during

model simulations. Mphage has one component, p, that serves as site for cell-cell interaction

with pathogen.

Endothelial cells, Endo, reside in the endothelial barriers of the peritoneum and other

tissue. Like tissue macrophage, the total surface concentration is held constant during the

simulation. The agent type for endothelial cells is Endo(a∼0∼1∼2,n,r,r,r). The a site

represents the activation state of the endothelial cell. A state value of 0 represents inactive,

1 represents activating, and 2 represents a fully activated cell. The n component serves as

a site for cell-cell interaction with neutrophils in the blood. Endothelial cells only interact

with neutrophils after activation by IL1 [178]. The r site represents a surface receptors that

binds IL1 and IL1ra. The cell contains 3 receptor sites, which permits a graded response

depending on the level of ligand saturation. Endothelial activation is initiated when at least

two receptor sites are occupied by IL1. A endothelial cell, in fact, contains thousands of

receptors, but it is not feasible to represent the cell in this detail.

Neutrophils, Neutro, initially populate the blood compartment, which contains a source

of neutrophil. Unlike other cells in the model, neutrophils can migrate to other compart-

ments. The neutrophil molecule type is Neutr(p,e), where p is a site for cell-cell interaction

with Path and e is a site for cell-cell interaction with Endo cells.

The model contains two small signaling molecules: Interleukin-1, IL1, and its receptor

antagonist, IL1ra. Interleukin-1 is pro-inflammatory cytokine that mediates the activation

of endothelial cells [179]. IL-1ra binds to the same receptor as IL-1 and blocks signaling [180,
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181]. The agent types are IL1(b) and IL1ra(b), where b is the site for receptor binding. IL1

and IL1ra can reside in the peritoneum, blood, and other tissue. Both molecules can “leak”

between the compartments, which is the primary mechanism for the spread of inflammation

in the model. Although, in fact, a large number of cytokines and chemokines organize

the inflammatory response, I chose to focus on a single pro-inflammatory mediator and

its anti-inflammatory receptor antagonist. This choice was made for two reasons. First, the

network of interactions among mediators is complex and not fully understood. Consequently,

calibrating a model with multiple cytokines and chemokines would not be possible without

a large amount of data. Second, since the model is exploratory, a single pro-inflammatory

mediator and its anti-inflammatory partner may serve as an abstract representation of the

complete pro/anti-inflammatory circuitry.

5.3.1.3 Rules The complete set of agent rules for the sepsis model are depicted in Figure

5.2. I will describe the rules for each agent type in the model.

Pathogen grow according to a logistic rate law. Logistic growth is implemented with two

rules: one describing pathogen growth via cell division at a rate proportional the pathogen

population, and a second describing population pressure. Pathogen are captured and elimi-

nated by local macrophage and neutrophils (described later).

# pathogen rules

Path(ph) -> Path(ph) + Path(ph) sP_P # growth

Path(ph) + Path(ph) -> Path(ph) dP_P # population pressure

The total quantity of tissue macrophage is held constant during the simulation. Tissue

macrophage irreversibly bind pathogen according to a second-order process and eliminate

the pathogen at a first order rate. While bound to pathogen, macrophage produce cytokines

in the local compartment.

# macrophage rules

Path(ph) + Mphage(p) -> Path(ph!1). Mphage(p!1) bMP

Mphage(p!1). Path(ph!1) -> Mphage(p!1). Path(ph!1) + IL1(b) sL_M

Path(ph!1). Mphage(p!1) -> Mphage(p) dP_M

The total quantity of endothelial is held constant during a simulation. The receptor

sites on endothelial cells bind reversibly to IL1 and IL1ra ligand in the peritoneal or tissue

compartment adjacent to the the endothelial layer. Binding follows a bimolecular rate law
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and each receptor site has identical kinetics. When receptor IL1 site occupancy is two or

greater, endothelial cells enter the delayed activation state in a first order rate. (IL1 does

not contribute to activation and thus acts as a competitive inhibitor.) Once in the delayed

activation state, the endothelial cell becomes activated at a first order rate. Activated

endothelial cells bind irreversibly to neutrophils in the blood compartment according to a

bilinear rate law and mediated neutrophil migration into tissue. Activated cells return to

the inactive state at a first order rate.

# endothelial rules

IL1(b)@P + Endo(r) <-> IL1(b!1)@P.Endo(r!1) bLE , uLE

IL1(b)@T + Endo(r) <-> IL1(b!1)@T.Endo(r!1) bLE , uLE

IL1ra(b)@P + Endo(r) <-> IL1ra(b!1)@P.Endo(r!1) bLE , uLE

IL1ra(b)@T + Endo(r) <-> IL1ra(b!1)@T.Endo(r!1) bLE , uLE

Endo(a∼0,r!1,r!2). IL1(b!1). IL1(b!2) \

-> Endo(a∼1,r!1,r!2). IL1(b!1). IL1(b!2) aE_L # activation , step 1

Endo(a∼1) -> Endo(a∼2) aE # activation , step 2

Endo(a∼2) -> Endo(a∼0) dE # deactivation

Endo(n,a∼2) + Neutro(e)@B -> Endo(n!1,a∼2). Neutro(e!1)@B bEN

Endo(n!1) @eP.Neutro(e!1)@B -> Endo(n)@eP + Neutro(e)@P tN_E

Endo(n!1) @eT.Neutro(e!1)@B -> Endo(n)@eT + Neutro(e)@T tN_E

Neutrophils are produced in the blood compartment at a constant rate. As above,

neutrophil bind irreversibly to activated endothelial cells according to a bilinear rate law.

Neutrophils bound to endothelial cells migrate into the adjacent compartment under a first

order rate law. Since neutrophils only bind to endothelial cells from the blood compartment,

neutrophil trafficking is one-way from blood to peritoneum or other tissue. Neutrophils bind

to pathogen in the local compartment under a bilinear rate law, and, as above, the pathogen

are eliminated in a first order rate after binding. Neutrophils decay in a first order rate

that is constant and independent of compartment. Neutrophil that have migrated to the

peritoneum or other tissue produce IL1ra in the local compartment at a first order rate.

# neutrophil rules

Path(ph) + Neutro(p,e) -> Path(ph!1). Neutro(p!1,e) NP

Path(ph!1). Neutro(p!1) -> Neutro(p) dP_N

Neutro@P -> Neutro@P + IL1ra(b)@P sA_N

Neutro@T -> Neutro@T + IL1ra(b)@T sA_N

0 -> Neutro(p,e)@B sN_B

Neutro -> 0 dN DeleteMolecules

IL1 is produced at a first order rate by macrophage that are bound to pathogen. IL1

“leaks” between peritoneum and blood, and between other tissue and blood in a first order
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rate proportional to surface area of the relevant endothelial barrier. Forward and reverse rates

are constrained such that equal concentrations are achieved in adjacent compartments at

equilibrium. In the blood, cytokine is eliminated at a first-order rate to model the elimination

of cytokine by the kidney, liver and other mechanisms. As above, cytokine in the peritoneum

and other tissue bind reversibly to receptor sites on endothelial cells.

IL1ra is produced at a first order rate by neutrophils in the peritoneum and lung com-

partment. As with IL1, IL1ra leaks between the peritoneum and blood, and between other

tissue and blood in a first order rate proportional to surface area of the relevant endothelial

barrier. IL1ra in the peritoneum and other tissue binds irreversibly to receptor sites on

endothelial cells, but does not active endothelial cells. IL1ra, like IL1 is eliminated in the

blood according to a first order rate law.

#IL1 , IL21ra rules

IL1(b)@P <-> IL1(b)@B tL_PB , tL_BP # IL1 leak P<->B

IL1(b)@T <-> IL1(b)@B tL_TB , tL_BT # IL1 leak T<->B

IL1ra(b)@P <-> IL1ra(b)@B tL_PB , tL_BP # IL1ra leak T<->B

IL1ra(b)@T <-> IL1ra(b)@B tL_TB , tL_BT # IL1ra leak T<->B

IL1(b)@B -> 0 dL # IL1 blood elim.

IL1ra(b)@B -> 0 dL # IL1ra blood elim.

5.3.2 Calibration and simulation

5.3.2.1 CLP protocol Cecal-ligation and puncture (CLP) was simulated by initializing

the model system with a non-zero quantity of pathogen in the peritoneum at time zero.

The severity of was adjusted by increasing or decreasing the quantity of initial pathogen at

time zero. Pathogen is assumed to be contained in the peritoneum during the course of the

simulation.

5.3.2.2 HA protocol HA treatment was modeled as a first-order cytokine (IL1 and

IL1ra) elimination rate in the blood compartment. Although HA treatment in the labora-

tory was limited to a 4 hour regimen, simulations were performed under the assumption of

continual HA. Given a typical HA flow of 0.8 ml/min [153] and hematocrit of .45, the rate

of plasma flow through the device is about 26.4 ml/hr. Assuming 7.8 ml of plasma in a 250g

rat [182], the flow rate per unit plasma is 3.38 /hr. The cytokine capture efficiency of the
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HA device is known to drop in a time-dependent fashion [167, 168], but 100% capture was

chosen as a first approximation suitable for this exploratory work. Since the natural half-life

of cytokine in the blood is on the order of 30 minutes [183] (elimination rate 1.4 /hr), the

HA device increases the elimination of cytokine by about two to three fold.

5.3.2.3 Calibration Parameters were based on estimates obtained in experimental liter-

ature, where available. Remaining parameters were selected from physiologically-reasonable

ranges. The complete set of parameter values are listed in the model in Appendix H.1. The

model was based on a 250g rat with 74.2 ml of interstitial fluid, including 7.8 ml of blood

plasma [182]. Of the non-plasma interstitial fluid, 7.8 ml were assigned to the peritoneal

fluid, P, and the remaining to other tissue T. Concentration units were arbitrary units /ml

for cells, and pM for IL-1 and IL-1ra. Based on a pharmacokinetic study of TNF−α in rats

that reported half-life in the range of 15-23 minutes [183], baseline elimination rate of IL-1

and IL-1ra were set to 1.4 /hr. IL-1 and IL-1ra dissociation constants were 150 pM [180].

Neutrophil decay rate corresponded to a half-life of 12 hours, since neutrophil life span was

reported to be 8 hours in the blood and longer in tissues [184]. Pathogen capture rate per

neutrophil was about 12 /hr for the pathogen doses simulated. Upon capturing a pathogen,

phagocytosis completes with half-life of 15 minutes. Macrophage/pathogen interaction pa-

rameters were set to the same values as neutrophil/pathogen parameters. Pathogen growth

rate corresponded to a doubling-time of 4 hours.

5.3.2.4 Simulation The reaction network of the cBNGL model generated in BioNetGen

version 2.2.4. The reaction network was then translated to a system of ODEs via the

BioNetGen writeMexfile() method and integrated with SUNDIALS CVODE 2.6.0 using

the stiff solver option. Subsequent analysis was performed in MATLAB.

5.3.2.5 Model outcomes For a given severity of CLP, P0, and blood cytokine elim-

ination, dL, a simulation was classified as non-lethal if the concentration of pathogen fell

below 1 a.u./ml prior by day 7 post-CLP and remained below that threshold through day

10. Otherwise the simulation was classified as lethal. For the selected parameter set, an
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aseptic lethal condition, i.e. pathogen falls returns to zero while inflammation remains high,

was not observed. Hence there was no need to define an aseptic lethal group.

5.3.3 Model simulation results

Sepsis model #1 was simulated with increasing initial pathogen dose to reproduce the re-

sults Alves-Filho et al. reported for lethal and sublethal sepsis. Neutrophil recruitment and

cytokine levels versus initial pathogen dose are shown in Figure 5.3. Panel A shows max-

imum neutrophil recruitment to the peritoneum and other tissue, and the minimum level

of circulating neutrophils during the course of a 7 day simulated septic event. Peak neu-

trophil recruitment to the peritoneum occurs at pathogen dose P0 ≈ 300 a.u./ml, and then

decreases slightly as pathogen increases towards the lethal threshold at P0 = 1638 a.u./ml.

Panel B shows the maximum cytokine concentration in the peritoneum, blood, and other

tissue over the course of the simulation. Cytokine levels increased in all organ compart-

ments with increasing pathogen dose, until cytokine levels plateau at the lethal threshold.

Simulated results for both cytokine and neutrophils agree qualitatively with experimental

measurements obtained in lethal and sublethal murine CLP models [177]. However, the

reduction in peritoneal neutrophils in lethal versus sublethal sepsis was about 4-fold in ex-

periments, but only about 15% in sepsis model 1. This suggests that additional mechanisms,

such as defective neutrophil rolling and adhesion [177], may be play an important role in the

observed results. Nonetheless, model results indicate that circulating neutrophil depletion is

a possible contributor to decreased peritoneal neutrophil recruitment in lethal sepsis.

Next, sepsis model 1 was simulated with increasing blood cytokine elimination rate in or-

der to explore the effect of HA treatment on neutrophil recruitment, cytokines, and survival.

Neutrophil recruitment and cytokine levels versus blood cytokine elimination rate are shown

in Figure 5.4. All simulations were performed with initial pathogen dose P0 = 1638a.u./ml.

Baseline blood cytokine elimination rate was dL = 1.4/hr, corresponding to a natural half-life

of 30 minutes in the blood. HA was simulated by increasing the blood cytokine elimination

rate. Panel A shows maximum neutrophil recruitment to the peritoneum and other tissue,

and minimum level of circulating neutrophils, versus the blood cytokine elimination rate as a
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A B

lethal thresholdlethal threshold

Figure 5.3: Neutrophil recruitment and IL-1 increases in the peritoneum and other tissue,

while levels of circulating neutrophils decrease, as initial pathogen dose, P0, increases. (A)

Maximum neutrophil recruitment to peritoneum, max NP , maximum neutrophil recruitment

to other tissue, max NT , and minimum circulating neutrophils, min NB. (B) Maximum

interleukin-1 in peritoneum, blood, and other tissue. Blood cytokine elimination rate was

fixed at dL = 1.4 /hr. The lethal threshold (dashed line) is the value of P0 above which the

simulation is lethal.
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fraction of baseline dL/dL0. Neutrophils recruited to the peritoneum increase, while recruit-

ment to other tissues decreases, as the blood cytokine elimination rate increases. Due to a

reduction in systemic neutrophil recruitment, the pool of circulating neutrophils maintains

a higher level with increasing elimination rate. The increase in neutrophil recruitment in

the peritoneum is a consequence of higher levels of circulating neutrophils. Panel B shows

maximum cytokine levels in the peritoneum, blood, and other tissues. In all cases, maximum

cytokine levels decrease with increasing blood cytokine elimination rate, with a large drop

in cytokine levels near the lethal threshold. Note that the pathogen dose is lethal when the

fractional elimination rate falls below 1.

These results show that an increase in blood cytokine elimination is a possible mecha-

nism for improved survival in septic animals treated with an HA device. Figure 5.5 shows

pathogen and peritoneal neutrophil trajectories for various blood cytokine elimination rates

with a fixed initial pathogen dose, P0 = 1638 a.u./ml. In panel A, the pathogen trajectory

tends towards zero for higher elimination rates, but tends to a lethal outcome for lower elim-

ination rates. Panel B shows that peritoneal neutrophil recruitment increases with higher

elimination rates, demonstrating the mechanism for improved pathogen elimination. Finally,

Figure 5.6. shows the minimum lethal pathogen dose as a function of the blood cytokine elim-

ination rate. The lethal pathogen dose is monotonic increasing for the range of elimination

rates simulated.

Together, these results demonstrate that the hypothesized HA mechanism is sufficient

to explain the improved survival of HA treated animals, increased neutrophil recruitment to

the peritoneum, and recruitment to other tissues. The model predicts that this mechanism

is predicated on a decrease in the level of circulating neutrophils.

5.4 FROM THE LABORATORY: ORGAN-SPECIFIC DATA

The simulation results presented above, along with other lines of evidence [177, 185], moti-

vated experimental collaborator Zhi-Yong Peng, et al., working in lab of Dr. John Kellum, to

measure white blood cell, chemokine, and cytokine levels in the blood, lung and peritoneum
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Figure 5.4: Neutrophils and IL-1 vs. Blood Cytokine Eliminate Rate. Neutrophil

recruitment to the peritoneum and levels of circulating neutrophils increase, while recruit-

ment to other tissues decreases, with an increase in the rate of blood cytokine elimination.

Improved recruitment to the lung is a consequence of higher levels of circulating neutrophils,

which is in turn a consequence of lower cytokine levels in other tissue. (A) Maximum

neutrophil recruitment to peritoneum, max NP , maximum neutrophil recruitment to other

tissue, max NT , and minimum circulating neutrophils, min NB. (B) Maximum interleukin-

1 in peritoneum, blood, and other tissue. Blood cytokine elimination rate is expressed as

a fraction of the baseline rate, dL0 = 1.4 /hr. All simulations performed with P0 = 1638

a.u./ml. The lethal threshold (dashed line) is the value of dL/dL0 above which the simulation

is lethal.
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BA

Figure 5.5: Increasing the blood cytokine elimination rate, dL, rescues an otherwise lethal

simulation. Improved pathogen elimination is a consequence of improved neutrophil re-

cruitment to the peritoneum with higher dL. (A) Pathogen trajectories and (B) peritoneal

neutrophils for various blood cytokine elimination rates. Blood cytokine elimination rate is

expressed as a fraction of the baseline rate, dL0 = 1.4 /hr. All simulations performed with

P0 = 1638 a.u./ml.

baseline

Figure 5.6: The minimum lethal pathogen dose increases with blood cytokine elimination

rate, dL.
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of rats subjected to CLP and treated with either HA or a sham device. I will briefly describe

their methods and results here. Male Sprague-Dawley rats (450-500g) were subjected to a

“less-lethal” CLP protocol [153]. At 18 hours post-CLP, animals received either HA or sham

treatment for 4 hours. The HA device was a 1 ml cartridge containing CytoSorb polymer

beads, with flow rate 0.8-1.0 ml/min. Blood was drawn at 18, 22 and 72 hours after CLP.

Animals were sacrificed at 72 hours and fluid was sampled from the lung by bronchoalveolar

lavage (BAL) with 15 ml of saline, and peritoneal fluid (PF) by aspiration of the peritoneal

cavity with 30 ml of saline. A panel of cytokines and chemokines was measured via multiplex

Luminex assays. White blood cells (WBC) were isolated in BAL and PF and the percent

polymorphonuclear leukocytes (PMN) and monocytes were assessed by flow cytometry. PMN

were also isolated and counted directly in PF and blood at 72 hours. Bacteria culture was

obtained from PF and blood samples at 72 hours. Further details of the experiments were

reported at Critical Care Congress [186] and a manuscript is in preparation.

All measurements were log transformed prior to computing mean and standard error.

Measurements below the detection limit of the assay were replaced with numbers drawn

from a uniform distribution over [LDL/2,LDL], where LDL is the lower detection limit.

Statistical significance was assessed by two-sample Student’s t-test with threshold p = 0.05.

5.4.1 Experimental results

IL-6, TNF-α, IL-10, and MCP1 were significantly lower in the blood at 72 hours in HA

versus sham treated animals (Figure 5.7). Surprisingly, none of the assayed cytokines and

chemokines were statistically different at the 22 hour time point that coincides with the

end of HA treatment. Cytokines and chemokines tended to be lower in HA at the 22 hour

time point, but the difference was not statistically significant. A similar result was obtained

in a second study [187]. As expected, there was no statistical difference in cytokines and

chemokines at the 18 hour time point coinciding with the start of HA.

IL-6, IL-10, CXCL1 (KC), MCP1, and MIP2 were significantly lower in BAL samples

at 72 hours in HA versus sham treated animals (Figure 5.7). Cytokines and chemokines in

PF tended to be higher in HA treated animals, but the difference was not significant. These
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results suggest that inflammation in the lung, but not the peritoneum, is reduced in the HA

treated animals.

The ratio of cytokines and chemokines in the PF and BAL to the blood was computed

and tested for differences between HA and sham treated animals. The ratio of IL-6, IL-10,

CXCL1, and MIP2 in PF to blood was significantly increased at 72 hours in HA treated versus

sham animals. The ratio of IL6 and MCP1 in BAL to blood was significantly decreased, while

the same ratio of TNF-α was significantly increased. Some evidence suggests the difference

in chemokine concentration between tissue and blood is an important factor in recruitment

of WBC to inflamed tissue [185].

Since measurements of cytokines and chemokines were very noisy, and since the trends

across them were similar, the data was standardized and lumped to determine the overall

trend in the data. Each cytokine and chemokine was standardized by its mean and stan-

dard deviation across all time points and organs. The standardized data for all cytokines

and chemokines was lumped. Mean and standard error of the lumped data was then com-

puted for each time point and tissue. Figure 5.7, lower right panel, shows the lumped

cytokine/chemokine data. Lumped cytokine/chemokine was significantly lower in BAL and

blood samples at 72 hours in HA versus sham treated animals. No statistical difference

was observed at the 22 hour time point, although the mean value was lower in HA treated

animals.

PMN counts in BAL were significantly lower in HA versus sham treated animals (Figure

5.8). PMN counts in the blood and PF were higher in HA treated animals, although the

difference was not statistically significant. Monocytes counts in PF were significantly higher

in HA treated animals, but not statistically different in blood or BAL. These results suggest

that WBC recruitment to the peritoneum is preserved or increased somewhat in HA treated

animals, while systemic recruitment is reduced. Since circulating WBC are not different

between sham and HA treated animals, it appears that depletion of circulating WBC is not

an important factor in HA device efficacy.

Bacterial culture in the PF and blood at 72 hours was not significantly different in HA

and sham treated animals (Figure 5.8), though average bacterial counts in the PF were

higher in sham versus HA. Bacterial counts in the blood were on the order of 102-103 /ml
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Figure 5.7: Experimental measurements: cytokine and chemokine measurements obtained

from a CLP rat model with HA or sham treatment. Blood was sampled at 18, 22 and 72

hours post CLP (B18,B22,B72). Measurements in the lung (BAL) and peritoneal fluid (PF)

were obtained at 72 hours post CLP. Data was log transformed prior to analysis. Mean and

standard error are shown. Asterisk indicates a significant p-value (0.05) under the Student’s

t-test. Data for each cytokine and chemokine was standardized and then averaged to show

the overall trend (lower right).
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Figure 5.8: Experimental measurements: neutrophil and bacteria cells counts obtained from

a CLP rat model with HA or sham treatment. Measurements were obtained 72 hours post

CLP in the lung (BAL), peritoneal fluid (PF) and blood (B72). Data was log transformed

prior to analysis. Mean and standard error are shown. Asterisk indicates a significant p-value

(0.05) under the student’s t-test.

compared to 106-107 /ml in PF.

Put together, the organ-level data shows that HA treatment decreases systemic inflamma-

tion as measured by cytokines, chemokines, and neutrophil recruitment. This is accompanied

by sustained or increased response at the site of infection, the peritoneum.

5.4.2 Comparison to sepsis model 1

Some of the model 1 predictions were validated by experiment, but others were not sup-

ported. The model predicted a decline in cytokines and neutrophils in tissues distant to the

site of infection in HA treated animals. This was confirmed by experiment, which found

significantly lower neutrophil counts, cytokines levels, and chemokine levels in BAL. The

model also predicted an increase in neutrophils and a drop in cytokines in PF for HA versus

sham. Experiments failed to find a significant difference in neutrophil counts, cytokines or

chemokines in PF, although the average counts were higher in HA. Since the model predicted

a small change in PF neutrophils, it is not surprising that the difference was not statistically
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significant. However, it is difficult to reconcile the model prediction of decreased PF cy-

tokines with experimental measurements that favor an increase. Therefore, I conclude that

the model failed to predict the PF cytokine response to HA treatment.

Model analysis suggested that improved pathogen clearance in HA was a consequence

of a partial reversal of circulating neutrophil depletion. Experimental data did not support

circulating neutrophil depletion or a difference in circulating levels between HA and sham

treated animals. Circulating neutrophils and monocytes in the blood were not significantly

different between HA and sham. Although baseline neutrophil counts were not measured,

levels of circulating neutrophils were in the range reported in healthy animals [182]. There-

fore, experiments did not support the proposed mechanism.

Surprisingly, experiments failed to detect a statistically significant difference in cytokines

or chemokines at the 22 hour time point. The 22 hour time point coincides with the ter-

mination of HA treatment. Since it is known that the HA device captures cytokines and

chemokines, it was expected that HA treated animals would have significantly lower levels

of cytokines and chemokines immediately following treatment. Since this was not the case,

it is unclear how HA treatment leads to reduced systemic inflammation and improved long

term survival. It is possible that cytokines and chemokines are moderately lower, but statis-

tical significance was not achieved due to a high signal to noise ratio in experimental assays.

Alternatively, an unmeasured inflammatory mediator may be responsible for the efficacy

of HA [187]. It is also possible that a mechanism other than capture of soluble signaling

molecules is responsible, e. g. the HA device changes the phenotype of WBCs by some

unknown mechanism.

In conclusion, sepsis model 1 predicted the response to HA treatment in the lung, but

failed to predict other features. Furthermore, a key component of the proposed mechanism—

reversal of circulating neutrophil depletion—was not supported by data. Therefore, model

1 must be rejected and modified.
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5.5 A CALIBRATED MODEL OF SEPSIS WITH HEMOADSORPTION

The mechanism of sepsis model 1 was based on a hypothesis that depends on depletion of

circulating neutrophils in sham treated animals that is partially reversed by HA treatment.

Since experiments did not support either the depletion of neutrophils or a significant dif-

ference between HA and sham, the model was deemed to be inadequate. Therefore, a new

model, based on a new hypothesis, was required.

The foundation of sepsis model 2 is the hypothesis that the ratio of local chemokine

levels to systemic levels (e.g. blood) is the key driver of neutrophil recruitment. Under this

hypothesis, reducing chemokine levels in the blood via HA treatment increases the ratio

of PF chemokines to blood chemokines. Consequently, neutrophil recruitment to the site

of infection is improved. The importance of the ratio of local to systemic chemokines was

reported by Call, et al. [185], while Dr. John Kellum proposed it as a potential mechanism

for the efficacy of the HA device. For brevity, we will refer to this as the chemokine ratio

hypothesis.

This chemokine ratio hypothesis is promising, on one hand, since it does not rely on

depletion of circulating neutrophils. It is less promising, on the other hand, since it depends

on the reduction of blood chemokines by the HA device. Experiments did not identify a

statistically significant difference in any of the measured blood chemokines at the time point

immediately following HA treatment (22 hours). Therefore it is questionable whether the HA

device is able to change the chemokine ratio as required. It is possible that the HA device

does reduce blood chemokines, but the difference is modest and thus difficult to achieve

statistical significance. Alternately, cytokines and chemokine levels might rebound quickly

after termination of treatment. If this is the case, then survival in the CLP must be sensitive

to a temporary decrease in the chemokine ratio. I hoped to determine if this explanation

was feasible by constructing a model that implements the ratio hypothesis.

Sepsis Model 2 was constructed to take advantage of the organ-level data obtained from

CLP experiments. The model was constructed with three compartments representing the

blood, PF, and lung. The compartments were populated by bacteria, macrophage, neu-

trophils, and a cytokine/chemokine. Since the data available is sparse (three time points in
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the blood, one in the lung, one in PF), I attempted to construct the simplest model suit-

able for testing the ratio hypothesis. As a consequence of this design choice, only a single

abstract molecule was chosen to represent the battery cytokines and chemokines measured.

This choice was thought to be reasonable since the sparsity of the data suggests that cal-

ibrating a more model complex model would inevitably lead to overfitting. Furthermore,

the experimental data reveals a similar quantitative trend for the cytokines and chemokines

measured (see Figure 5.7, lower right panel). Measured cytokines and chemokines were

standardized by mean and standard deviation and then lumped according to time point and

compartment to establish the quantitative values for the abstract cytokine/chemokine agent.

5.5.1 Model construction

An overview of Sepsis model 2 is shown in Figure 5.9. The model was constructed with the

principles described above. To summarize: (1) neutrophil recruitment is driven by the local

to systemic chemokine ratio, (2) circulating neutrophils are not depleted, (3) experimentally

measured species are the basis for the model, and (4) the model is kept as simple as possible.

The model was specified as a rule-based model in compartmental BioNetGen language [111].

The model consists of 3 compartments and 5 agents, whose dynamics are governed by 16

rules. The corresponding reaction network has 11 species and 20 reactions. The model

required 22 parameters, of which 7 are fixed prior to calibration (depending on the model

variant). The model is described in detail in the following sections. The complete BNGL

model is listed in Appendix H.2.

5.5.1.1 Compartments The model is composed of three compartments: peritoneum,

P; blood, B; and lung, L. The compartments are assumed to be well-mixed, as was the case in

Model 1. The endothelium is not explicitly represented in this model, instead traffic across

the endothelium is represented by phenomenological terms. It is assumed that pathogen are

isolated to the peritoneum. The model is based on a 500g rat with 15.6 ml of plasma [182].

The BNGL compartments block is below.
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Figure 5.9: Schematic of sepsis model 2. The model has three compartments: peritoneal

fluid (PF), blood (B), and lung (L). Compartments are populated with pathogen, Path (P);

macrophage, Mphage (M); neutrophils, Neutr (N); and a lumped chemokine/cytokine, Cyto

(C). Circles represent agents, boxes are constant inputs or forcing functions, arrows show

mass transfer or regulation.
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begin compartments
B 3 vB # blood

P 3 vP # peritoneum

L 3 vL # lung

end compartments

5.5.1.2 Agents Model compartments are populated by five types of agent: a pathogen

source, CLP; pathogen, Path; macrophage Mphage; neutrophils Neutro, and the abstract

cytokine/chemokine Cyto. The CLP agent has two states, s∼0 and s∼1. CLP is initialized

in state s∼0 (potential), progresses to s∼1 (active pathogen source), and is then eliminated

(CLP wound closes). Path is initialized at zero and is restricted to compartment P during

simulations. Mphage are present in compartments P and L, with their populations fixed

during simulation. Neutro are initially populated in compartment B, where the population

is held constant, but can migrate into P and L in response to Cyto. The BNGL “molecule

types” block, which defines the agents, is listed below:

begin molecule types
CLP(s∼0∼1) # pathogen source

Path() # pathogen

Cyto() # cytokine/chemokine

Mphage () # tissue macrophage

Neutro () # neutrophil

end molecule types

5.5.1.3 Rules CLP agents, which are a source of Path, are initialized in compartment P.

The CLP agent progresses through 2 stages and is then eliminated from the system. Elimi-

nation of CLP represents closure or “healing” of the wound. A two-stage process was chosen

to achieve a longer time course than the exponential decay of a single-stage process.

Path are introduced to the peritoneum by active CLP, i.e. state s∼1, and grow according

to a logistic rate law. Path are eliminated via phagocytosis by local Mphage and recruited

Neutr, where the rate is linear in Mphage and Neutr and saturable in Path. The model

assumes pathogen are contained in compartment P, i.e. the infection is local and does not

progress to bacteremia. BNGL rules governing CLP and Path dynamics are listed below.

Note that PathP, which appears in the logistic growth rate, is a BNGL observable that

counts Path@P, i.e. pathogen in the peritoneal compartment.
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# CLP and pathogen rules

CLP(s∼0) -> CLP(s∼1) dclp # CLP progression

CLP(s∼1) -> 0 dclp # CLP wound closure

CLP(s∼1) -> CLP(s∼1) + Path kpclp # pathogen source

Path -> Path + Path kp*(1-( PathP/vP)/pmax) # logistic growth

Mphage + Path -> Mphage pn/(xpn + Path/vP) # phagocyt. by Mphage

Neutro + Path -> Neutro kpn/(xpn + Path/vP) # phagocyt. by Neutro

Mphage populations are fixed during the simulation, so there are no rules describing their

population dynamics. Mphage produce Cyto according to a second-order Hill function that

depends on two terms: local Path and Neutr. Cyto production in response to Neutr is a

surrogate for the inflammatory response to tissue damage caused by neutrophil activity, such

as the release of radical oxygen species. The rationale for coarse-graining this process was

the lack of experimentally measured intermediates.

Cyto “leaks” between the tissue compartments and the blood according to a first order

rate law. The forward and reverse leak rates are constrained such that concentrations in

neighboring compartments are equalized at equilibrium. Cyto is eliminated in the blood and

tissue according to a first order rate law. Separate rate constants are specified for elimination

in the blood, where the liver and kidney actively remove cytokine and chemokines, and

tissue. Elimination rate in the blood can be enhanced by extracorporeal methods, e.g. HA

treatment. The rules governing cytokine dynamics are listed below (PathP, NeutroP, and

NeutrL are observables the count Path@P, Neutr@P, and Neutr@L, respectively).

# cytokine rules

Mphage@P -> Mphage@P + Cyto@P f1() # cytokine prod.

Mphage@L -> Mphage@L + Cyto@L f2()

Cyto@P <-> Cyto@B kcBT , kcBT*vP/vB # cytokine transport

Cyto@L <-> Cyto@B kcBT , kcBT*vL/vB

Cyto@P -> 0 dcT # cytokine elim.

Cyto@B -> 0 dcB

Cyto@L -> 0 dcT

# where:

f1() = kc/mT0 *(( PathP/vP/xcp )^2 + (NeutroP/vP/xcn )^2) \

/(1 + (PathP/vP/xcp)^2 + (NeutroP/vP/xcn )^2)

f2() = kc/mT0*( NeutroL/vL )^2/(( xcn^2 + NeutroL/vL)^2)

Neutr initially populate compartment B, where the population is fixed. Neutr migrate

to compartments P and L in response to local Cyto; however, migration is inhibited by the

presence of Cyto in compartment B. The rate function for recruitment is linear in tissue Cyto
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and inhibited in the denominator by Cyto in B. An additional constant term incB appears

in the denominator to prevent divergence to infinity at CytoB = 0. Neutr are eliminated

at a first-order rate that is independent of compartment. The BNGL rules for neutrophil

dynamics are listed below.

# neutrophil dynamics

Neutro@B -> Neutro@P f3p() # recruitment to Peritoneum

Neutro@B -> Neutro@L f4p() # recruitment to Lung

Neutro -> 0 dn # neutrophil death

# where:

f3() = (knc*incB/xnc )*( CytoP/vP)/( incB + (CytoB/vB))*vP/(nB0*vB)

f4() = (knc*incB/xnc )*( CytoL/vL)/( incB + (CytoB/vB))*vL/(nB0*vB)

An alternative model considered the possibility that the HA device captures blood neu-

trophils in addition to cytokines and chemokines. Ex vivo studies found that HA filters

neutrophils from blood [169], though this has not yet been observed in vivo. Since blood

neutrophil capture would have no effect if the population is fixed, a source of neutrophils in

the blood was added to the model and the population was permitted to vary dynamically.

The source is regulated by negative feedback which helps to stabilize circulating neutrophil

levels during inflammation. The variant of the model with blood neutrophil dynamics is

labeled sepsis model 2′.

# blood neutrophil source , sepsis model 2’

0 -> Neutro@B dn*nB0*(1 + nBfbk *(1 - (NeutroB/vB)/nB0))

5.5.2 Calibration and simulation

5.5.2.1 CLP protocol CLP was modeled by an abstract CLP agent placed in the peri-

toneal compartment of the sepsis model. The CLP agent was initialized at t = 0 to 1 a.u./ml

(a.u.=arbitrary unit) in state s∼0. The parameters dclp and kpclp, the CLP progression and

Path source rate constants, were treated as free parameters and calibrated. Since the sever-

ity of CLP in vivo depends on the number of punctures and the gauge of the needle [188],

the initial value of CLP was adjusted to produce more or less severe sepsis in silico.

5.5.2.2 HA protocol HA was modeled as a first order elimination of the lumped cy-

tokine/chemokine, Cyto, from the blood compartment. HA was initiated 18 hours post-CLP
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by increasing the blood Cyto elimination rate, dcB, and then terminated after 4 hours of

treatment by reseting dcB to baseline. HA supplemented the elimination rate by 1.69/hr,

which was computed under the assumption of a 0.8 ml/min flow rate, 0.45 hematocrit, 15.6

ml of plasma, and 100% capture rate.

5.5.2.3 Calibration The model was calibrated to experimental data presented in sec-

tion 5.4. Data was log-transformed prior to further analysis. Mean and standard error

were computed for bacteria and PMN for each time point and tissue. Each cytokine (IL-6,

TNF, IL-1β, IL-10) and chemokine (KC, MIP1, and MCP2) was standardized against its

mean and standard deviation across all time points and tissues. Standardized cytokines and

chemokines were then lumped together at each time point and location prior to calculation

of mean and standard error. Path, Neutr, and Cyto were respectively calibrated to bacteria,

PMN, and lumped cytokines/chemokines. In total, calibration data consisted of 2 species

(Neutr,Cyto) at 3 time points in B, 3 species (Path,Neutr,Cyto) at 1 time point in PF, and

2 species (Neutr,Cyto) at 1 time point in L.

Since the data was sparse (18 points) compared to the number of free parameters (15), a

Bayesian approach was chosen for calibration. Under the Bayesian approach, parameters are

sampled from the posterior distribution of parameters. Model predictions are then computed

as averages over the ensemble of model predictions generated from the parameters sets. The

key idea is that if many parameter sets explain that data well, then the predictions should

be based on the average across all those parameter sets. This approach has been successfully

applied to a variety of biological modeling problems [16,189,190].

Since model parameters are positive and range over orders of magnitude, all parameters

were log-transformed (base 10) prior to calibration. To reduce the likelihood of overfitting,

independent Laplace priors were defined for each free parameter. Laplace priors are the

Bayesian equivalent of L1-regularization (i.e. LASSO) [104]. Location parameters of the

Laplace distributions, µp, were based literature ranges, if available, and biological intuition

otherwise. A single scale parameter, b = 0.088, was selected for all parameters by running

trial calibrations with various scales and choosing the maximum scale that did not permit

large trajectory oscillations (evidence of overfitting). This corresponds to an L1 penalty
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of λ = 11.4. In addition to Laplace prior, some parameters were restricted to biologically

feasible ranges. Table 5.1 lists the model parameters, units, and prior distributions.

The log-prior probability for Laplace priors was computed by the formula:

logP
(
~θ
)

=

NP∑
p=1

−|θp − µp|
b

, (5.1)

where NP is the number of parameters.

Sham and HA trajectories were generated for each parameter set ~θ. Simulated tra-

jectories were log transformed prior to comparison with calibration data. Concentrations in

compartments P and L were “diluted” to achieve consistency with experimental methods (PF

was aspirated with 30 ml saline, BAL was performed with 15 ml saline). Log-likelihood was

computed as summation over time and location of the weighted square difference between

model trajectory and calibration data:

logL(~θ|X,Σ) =
∑
t

∑
i

−
(

log yt,i(~θ)− xt,i
)2

2σt,i2
, (5.2)

where yt,i(θ) is the model state of output i at time t, and xt,i and σt,i are the mean and

standard error of the log experimental data for output i at time t.

The unnormalized log-posterior probability was computed by the sum of the log-prior

and log-likelihood for sham and HA treatments:

logP (~θ|X,Σ) ∝ logL(~θ|X,Σ, sham) + logL(~θ|X,Σ,HA) + logP (~θ). (5.3)
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Table 5.1: Parameter values, ranges, and priors for sepsis model 2.

parameter units value/distribution/range notes

vP ml 15.6 interstitial volume of P
vB ml 15.6 plasma volume of B (500 g rat) [182,191])
vL ml 15.6 interstitial volume of L
mT0 103/ml 102 init. Mphage [192]
B0 103/ml 3.6× 103 init. Neutr@B [182]
CLP0 a.u./ml 1 init. CLP (arbitrary unit)
dclp /hr log-Laplace(.12, b) CLP progression rate
kpclp 103/hr log-Laplace(5× 103, b) Path arrival rate due to CLP

kp /hr log-Laplace(.12, b) Path growth rate [193]
pmax 103/ml 106 maximum Path

kpn /hr log-Laplace(3, b) phagocytosis, max [193]
xpn 103/ml log-Laplace(103, b) phagocyt., half-max Path [193]
kc /ml/hr log-Laplace(6, b) Cyto production, max
xcp 103/ml log-Laplace(103, b) Cyto production, half-max Path

xcn 103/ml log-Laplace(103, b) Cyto production, half-max Neutro

dcT /hr log-Laplace(.347, b) Cyto elim. in P, L [194]
.029 < θ < .116

dcB /hr log-Laplace(1.109, b) Cyto elim. in B [183]
.69 < θ < 2.77]

kcBT /hr log-Laplace(.347, b) Cyto transport rate [194]
.116 < θ < 1.39

dn /hr log-Laplace(.058, b) Neutro death rate [184]
.029 < θ < .116

knc 103/hr/ml log-Laplace(300, b) Neutro migration, max
xnc /ml log-Laplace(1, b) migration, half-max Cyto

incB /ml log-Laplace(1, b) migration, half-max Cyto@B inhibition
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5.5.2.4 Dynamic behavior constraints In addition to Laplace priors, parameters were

constrained to regions where certain dynamical behaviors are satisfied. These behaviors were

deemed to be biological necessities, and thus parameter sets that did not produce those

behaviors were excluded from the calibration.

The local tissue macrophage should be sufficient to clear a small dose pathogen insult

without recruiting neutrophils from the circulation. Mathematically, this behavior is guar-

anteed by showing that the Path-Mphage subsystem is stable at Path = 0, Mphage = mT0 .

Since the population of Mphage is fixed, I need only demonstrate that Path = 0 is a fixed

point and the derivative of Path is negative at 0. This is guaranteed if the inequality holds:

kp <
kpn ·mT0

xpn
,

where kp is the pathogen growth rate, kpn is the maximum rate of pathogen elimination per

macrophage, mT0 is the concentration of tissue macrophage, and xpn is the concentration

of Path for half-maximum elimination rate.

The local macrophage response should also be insufficient to restrain pathogen growth

(without aid of neutrophils) for sufficiently large source of of pathogen. If this were not the

case, then neutrophil recruitment would be unnecessary. Mathematically, this is guaranteed

by showing that there exists a pathogen source rate such that the derivative of Path is always

increasing if Neutro is held at zero. This holds if:

kpclp > kpn ·mT0 ,

where �kpclp is the source of pathogen due to CLP. Note that for this calculation I have

assumed CLP is fixed at 1.

The positive feedback mechanism between Neutro and Cyto should have two stable

fixpoints when Path and Cyto@B are fixed at zero. The low fixed point corresponds to the

resting state of the inflammatory system. The high fixed point represents a self-reinforcing

inflammation that can persist in the absence of infection [20, 23, 195]. It is straightforward

to show that the Neutro-Cyto subsystem always has a stable fixed point at zero. Since the
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fixed point equation is cubic equation, it either has 1 or 3 real solutions. Existence of 3

solutions is guaranteed if the nullclines have a non-zero crossing, which is guaranteed if:

2xcn <
kc

dcT

knc

xnc · dn

Phase-plane analysis shows that if 3 fixpoints exist, then the upper fixed point is stable and

the middle fixed point is a saddle. Thus the inequality is sufficient to guarantee bistability.

Since HA improves survival in laboratory experiments, the calibrated model should also

“rescue” trajectories on an otherwise lethal course. This property was enforced heuristically

since an analytic condition for rescue is unknown. In HA simulations Path@P, Cyto@P and

Neutr@P must fall below ∼ 20% of peak experimental values by day 7 and ∼ 5% by day

10. This qualitative constraint is more questionable than the previous constraints since HA

survival in the laboratory was not complete.

5.5.2.5 Sampling the posterior parameter distribution Samples were generated

from the posterior parameter distribution using a variant of the Metropolis algorithm [105,

196]. The Metropolis algorithm, which belongs to the class of Markov chain Monte Carlo

(MCMC) methods, generates a chain of parameter samples whose distribution converges to

the correct posterior distribution [197, 198]. Briefly, at each step of the algorithm a new

sample is generated from a proposal distribution. The proposal sample is accepted based

on the ratio of its posterior probability to that of the previous sample. This ratio can be

computed from the unnormalized posterior probability, which is straightforward calculation.

If the ratio is greater than 1, the proposal is automatically accepted. Otherwise, the sample

is accepted with a probability given by the ratio. If the proposal is rejected, the original

sample is retained. The algorithm may be viewed as probabilistic hill-climbing: the chain

tends to climb towards regions of higher probability, but there is a chance of moving back

down to explore areas of low probability.

The parallel tempering method was used to generating parameter samples [108, 109].

Parallel tempering is a variant of the Metropolis that runs several MCMC chains in parallel

with different “temperatures”. Temperature is a parameter that determines strictness in

accepting less probable samples. In a high-temperature chain, relative probability is less
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important and the entropy, or “width”, of the parameter distribution dominates. At lower

temperatures, the relative probability becomes more important. Periodically the parallel

MCMC chains attempt to exchange samples. The exchange probability is based on the

product of the difference in log-probability and difference in inverse temperature. Since

the different chains are exploring the distribution at different resolutions and exchanging

information, the parallel tempering algorithm tends to converge more rapidly to the true

distribution.

Parallel tempering was performed with 4 chains and 25 Metropolis steps between at-

tempts at swapping chains. The proposal distribution was Gaussian with diagonal covariance

matrix. During a burn-in phase of 125,000 steps, the proposal step size and temperature

chains were adjusted periodically to improve step and swap acceptance rates. The target ac-

ceptance rate was 24%. After the burn-in phase, step size and temperature were fixed. The

auto-adjust procedure tended to produce good acceptance rate (data not shown). Following

burn-in, 5 million steps were performed. Samples were thinned to 1 in 25 steps, for a total of

200,000 samples. Parallel tempering with auto-adjust was implemented in MATLAB. Code

is available to the public at http://code.google.com/p/ptempest/.

5.5.2.6 Simulation The reaction network was generated in BioNetGen version 2.2.4.

The reaction network was subsequently translated to a system of ODEs via the BioNetGen

writeMexfile() action and integrated with SUNDIALS CVODE 2.6.0 [38] using the stiff

solver option. Absolute and relative tolerances for integration were 10−6 and 10−7, respec-

tively. Subsequent analysis was performed in MATLAB.

5.5.2.7 Trajectory classification Model trajectories were classified as septic lethal,

aseptic lethal, or sublethal based on the concentration of Path@P, Cyto@P, and Neutro@P at

day 21. To define the threshold, trajectories were generated from 500 parameter sets drawn

from the posterior distribution, with initial CLP ranging from .5–1.5 a.u./ml and either

sham or HA treatments at 0–1.6 ml/min. Histograms of Path@P, Cyto@P, and Neutro@P

at day 21 revealed two prominent modes: high and low Path@P. These were labeled sep-

tic lethal and non-septic. The non-septic group was composed of a major mode with
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low Cyto@P,Neutro@P; and a minor mode with moderate Cyto@P,Neutro@P. These modes

were labeled non-lethal and aseptic lethal. Thresholds discriminating between the modes

were selected by inspection: Path@P > 106 /ml for septic lethal; Neutro@P > 35 /ml and

Path@P < 106 /ml for aseptic lethal; and Neutro@P < 35 /ml and Path@P < 106 /ml for non-

lethal. For subsequent analysis, septic lethal and aseptic lethal trajectories were combined

into a single lethal category.

5.5.3 Model simulation results

Sepsis model 2 was calibrated to experimental data using Bayesian methods. Distributions

of model trajectories were visualized by sampling parameters for the posterior distribution,

simulating the trajectories, and then plotting the median trajectory along with the 16th and

84th percentiles. The distributions of sham and HA trajectories are shown in Figure 5.10a.

In HA simulations, pathogen trajectories returned to a low level by the end of the simulation,

as required during calibration. In contrast, sham distributions were a mixture of pathogen

trajectories that either return to a low level or grow out of control. Thus, the postulated

HA mechanism is plausible rationale for improved survival in the simulated cohorts.

While HA is able to rescue simulated animals from septic death, the quality of the model

fit is poor. CytoP and NeutrP were elevated in HA versus sham experiments at 72 hours,

but in model fits the HA trajectory is lower than sham. CytoL and NeutrL were elevated

in HA versus sham at 72 hours in both model and experiment, however the quantitative fit

between model and experiment is poor.

The poor fit was surprising since the number of experimental data points (18) is sparse

in comparison to the number of free parameters (15). This suggests that the model structure

may be an insufficient representation of the biological process. However, it is important to

note that measurements were very noisy, and differences between CytoP, NeutrP in HA and

sham did not reach the level of significance.

To assess whether poor fits were due to the strength of the Laplace prior, calibrations

were performed with prior distributions of varying width. The λ parameter controls the

prior strength; a smaller value tends yields better fits but also increases the likelihood of
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(a) sepsis model 2: base

(b) sepsis model 2′: blood neutrophil dynamics and capture

Figure 5.10: Trajectory distributions for sepsis model 2. Median trajectories and 16th and

84th percentiles are shown for HA (blue) and sham (red).
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overfitting. Trajectories from calibrations with λ=5.7, 7.1, and 9.5 showed oscillatory be-

havior, a symptom of overfitting. Thus, I concluded that λ = 11.4 was necessary to control

overfitting.

Distributions of parameter energy (unnormalized log-posterior), log-prior, and log-likeli-

hood are shown in Figure 5.11a. Energy is the negative sum of log-prior and log-likelihood.

The most probable log-likelihood was ∼ 58, while the most probable log-prior was ∼ 52.

Although log-likelihood is somewhat smaller than log-prior, the similarity in magnitude

shows that the prior plays a large role in the posterior distribution. Since reducing the prior

strength leads to oscillation, this suggests that more data points are desirable.

Marginal posterior parameter distributions (λ = 11.4) are shown in Figure 5.12a. The

Laplace prior is plotted along with the posterior histogram to reveal differences. Several pos-

terior distributions drifted away from the prior, demonstrating the importance of these pa-

rameters in achieve a good fit. Key parameters include xcp and xcn (pathogen and neutrophil

concentration corresponding to half-maximum cytokine production), dcB (blood cytokine

elimination rate), dn (neutrophil death rate), kp (pathogen growth rate), kpn (pathogen

elimination rate due to neutrophils), kc (max cytokine production rate), and knc (cytokine

concentration corresponding to half-maximum neutrophil recruitment). Parameters that

were less important for obtaining a good fit include kpclp (pathogen source due to CLP),

xpn (pathogen population corresponding to half-maximum elimination rate), dcT (tissue

cytokine elimination rate), kcBT (cytokine transport rate between blood and tissue), and

incB (blood cytokine concentration corresponding to half-maximum inhibition of neutrophil

recruitment).

The posterior distribution dclp is bimodal, revealing two distinct CLP progressions (fast

and slow) that fit the data with more-or-less equal quality. Figure 5.13 compares the trajec-

tory distributions of the slow and fast CLP progressions. The primary difference is observed

the PathP trajectory. PathP peaks at higher levels in fast versus slow CLP. A comparison

of marginal posterior parameter distributions for fast and slow progression CLP is shown in

Figure 5.14.

Efficacy of HA treatment was evaluated in silico by plotting percent lethality versus CLP

severity, CLP0, for sham treatment and HA treatment with varying degree of intensity. HA
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(a) sepsis model 2, original
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(b) sepsis model 2′, blood neutrophil dynamics and capture

Figure 5.11: Distribution of parameter fitness for sepsis model 2. Total energy (log-posterior)

and its log-likelihood and log-prior components are shown.
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(a) sepsis model 2: base

(b) sepsis model 2′: blood neutrophil dynamics and capture

Figure 5.12: Marginal posterior parameter distributions for sepsis model 2 and 2′. Line plots

show the Laplace prior. Parameters values are plotted on a log scale (base 10).
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(a) slow progression CLP

(b) fast progression CLP

Figure 5.13: Comparison of trajectory distributions for slow and fast CLP progression.
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Figure 5.14: Comparison of marginal posterior parameter distributions for slow and fast

CLP progression. Line plots show the Laplace prior. Parameters values are plotted on a log

scale (base 10).
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intensity was adjusted by increasing the flow rate through the device (0.4 - 2.0 ml/min).

Percent lethality was computed by drawing N = 500 parameter sets from the posterior

sample distribution and classifying the resultant trajectories as lethal or sublethal. The

results are shown in Figure 5.15a.

Percent lethality, as predicted by the model, is very sensitive to CLP severity near

CLP0 = 1 a.u/ml and insensitive otherwise. At baseline CLP severity, a 2% change in

severity increases lethality from under 10% to over 90%. This is illustrated in Figure 5.15

by a shaded red box. Experiments have demonstrated that CLP lethality is sensitive to

variables such as the needle gauge and the number of punctures. However, the experimen-

tal sensitivity appears to be much lower than model sensitivity. Ebong et al. [188] found

that 18-, 21-, and 25-gauge punctures induce 100%, 50%, and 5% lethality, respectively. A

21-gauge needle has a cross-sectional area 2.5-fold large than 25-gauge needle. Assuming

that CLP severity is linearly related to cross-sectional area of the puncture, this suggests

that a 2-fold increase in severity increases the lethality by about 50%. Hence, the extreme

sensitivity of lethality to to CLP (at baseline CLP0 = 1) is not supported by experiment.

HA treatment (0.8 ml/min) improves the 50% lethal dose (LD50) from 1 a.u./ml to

1.03 a.u./ml, an increase of 3% (Figure 5.15). Doubling the HA flow rate to 1.6 ml/min

further increases the LD50 to 1.06 a.u/ml, a 6% increase. Lethality is sensitive to HA only

in a narrow range of CLP severity from 0.97 to 1.1. Thus, efficacy of HA is not robust

in the model. In contrast, laboratory experiments suggest that improved survival with HA

treatment is robust in a rats subjected to CLP [153,186]. Thus, the model failed to replicate

the robust response to HA that has been observed in the laboratory.

5.5.3.1 Neutrophil dynamics and capture Since sepsis model 2 fits were not sat-

isfactory, an alternate model was considered. The alternative model, labeled sepsis model

2′, includes blood neutrophil dynamics. Additionally, the HA device captures circulating

neutrophils in addition to cytokine and chemokines. Model 2′ was calibrated using the same

methods described previously.

Trajectory distributions for model 2′ are shown in Figure 5.10b. Blood neutrophil levels

dropped during HA, but promptly rebounded to normal levels. Infection and inflammation
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(a) sepsis model 2: base

(b) sepsis model 2′: blood neutrophil dynamics and capture

Figure 5.15: Predicted lethality versus CLP severity with and without HA treatment. Per-

cent lethality is plotted against CLP severity, CLP0, for sham treatment (0 ml/min) and

HA treatment of variable intensity (0.4-2.0 ml/min). Shaded box shows values of CLP0

corresponding to 10% and 90% lethality with sham treatment.
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in the median sham treated animal resolved to a healthy state, in contrast to model 2 where

the median sham trajectory led to septic death. Otherwise, trajectory distributions are

qualitatively similar to model 2 and have the same shortcomings. Specifically, CytoP and

NeutroP levels are lower in HA versus sham, while experiments display the opposite trend.

CytoL and NeutroL are lower in HA versus sham, as shown in experiments, but do not fit

experimental data well.

Efficacy of HA treatment was evaluated, as before, by plotting percent lethality versus

CLP severity for sham and a range of HA intensities (0.4-2.0 ml/min). Results are shown in

Figure 5.15. Lethality is very sensitive to CLP severity in a narrow range near CLP0 = 1,

increasing from 10% to 90% lethality with only a 3% change in severity (shaded red box),

and insensitive otherwise. HA treatment at 0.8 ml/min improves survival in a narrow range

from CLP0 = 0.99 to 1.05 and is ineffective elsewhere. Thus, HA is not a robust treatment in

model 2′. As discussed above, laboratory experiments indicate that lethality is less sensitive

to changes in CLP severity and HA efficacy is more robust than predicted by model.

Distributions of parameter energy, log-prior, and log-likelihood are shown in Figure 5.11b.

Average energy and negative log-likelihood for model 2′ is higher than model 2. Therefore,

since model 2′ also has one more free parameter, model 2 is the preferred model in terms of

fitness and number of parameters.

5.6 DISCUSSION

I constructed models of sepsis with hemoadsorption treatment in order to understand the

causal mechanism for improved survival observed in experiments. The first model (Sec-

tion 5.3) implemented a mechanism wherein systemic cytokines activated endothelial cells,

leading to widespread neutrophil recruitment, depletion of circulating pools, and inadequate

neutrophil recruitment to the site of infection. By removing cytokines from the circulation,

HA reduced systemic recruitment, leading to improved circulating neutrophil levels, higher

recruitment to site of infection, and clearance of pathogen. In preliminary work, a set of

parameters were identified where HA treatment rescued the in silico animal from a lethal
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outcome. The model predicted higher peak neutrophils in the peritoneum, reduced neu-

trophil and cytokine levels in the lung, and higher circulating neutrophils in HA treated

animals.

Experimental collaborators collected organ-specific data from septic rats with HA or

sham treatment. As predicted, cytokines and neutrophil counts were significantly lower at

72 hours in the lung of HA versus sham animals. Cytokines in the blood at 72 hours were

also significantly lower in HA treated animals. However, there was no statistical differ-

ence between circulating neutrophils, peritoneal neutrophils, and peritoneal cytokines in HA

versus sham treated animals. Since experiments did not support a key component of the

mechanism, i.e. a substantial drop in circulating neutrophils in sham treated animals, the

first model was rejected.

A second model (Section 5.5) was constructed with an alternative hypothesis for HA

efficacy. In the second model, neutrophil recruitment was dependent on the ratio of local

to systemic chemokines. The HA device removes chemokines from the blood, increasing the

ratio, and improving neutrophil recruitment to the site of infection. The model was calibrated

to experimental data using Bayesian methods. Trajectory distributions were plotted and

demonstrated improved survival in HA treated animals. HA treatment led to a reduction

in inflammatory mediators in the blood and neutrophils in the lung and blood at 72 hours.

Nonetheless, the model fit was poor. Notably, inflammatory mediators and neutrophils in

the peritoneum were lower in HA than sham, despite experimental measurements suggesting

the opposite trend.

Sensitivity analysis found that the model lethality is very sensitive to CLP at a critical

threshold and otherwise insensitive. Similarly, HA treatment was effective over a small range

of CLP severity and otherwise ineffective. These results stand in contrast to laboratory

studies that show lethality increases gradually with the gauge of the puncture needle [188]

and that improved survival is a robust feature of HA.

Since the second model did not adequately reproduce experimental measurements, I

analyzed the regulatory structure of the model in search of an explanation. Figure 5.16

shows the regulatory interactions and feedback loops in sepsis model 2. HA treatment has a

negative influence on Cyto@B (step 1). Since Cyto@B negatively influences Neutro, the short-
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term effect of HA on neutrophil recruitment is positive (step 2a). At the same time, reduction

of Cyto@B reduces the positive influence on Cyto@P and Cyto@L (step 2b). Neutro and Cyto

participate in a positive feedback loop that acts as bistable switch. Increased Neutro pushes

the switch towards the elevated inflammation state, while reduced Cyto pushes the switch

toward rest. In lieu of quantitative analysis, the net effect of Cyto@B on the bistable switch

is indeterminate (step 3).

Suppose the net effect of reduced CytoB is an increase in Neutr and Cyto levels relative to

sham. If the increase is too large, the system becomes trapped in the elevated inflammation

state, a lethal outcome. Since HA improves survival, this cannot be the case. So the

system must stay in the basin that returns to rest in the absence of pathogen. An increase in

Neutro exerts a negative influence on Path (step 4), and Path levels decline relative to sham.

Reduced pathogen lowers the positive regulation of Cyto (step 5) and, assuming the boost in

Neutro was sufficient to put Path on downward trend, the Cyto-Neutr switch begins a return

to rest (step 6). This sequence of events leads to improved survival, as desired. Cyto and

Neutr are temporarily elevated during step 3, but improved pathogen clearance accelerates

the return to rest at steps 4-6. Therefore, the regulatory structure of the model does not

support a long term increase in peritoneal inflammation, unless the elevated inflammation

state is reached.

Alternatively, assume the net effect of reduced CytoB is a short-term decrease in Neutr

and Cyto levels relative to sham. If the system is approaching the elevated inflammation

state, this effect may push the system back into the rest basin. This would lead to improved

survival, but also to reduced Neutr and Cyto in PF. Again, the model does not permit a

long term increase in Neutr and Cyto due to HA treatment.

There is only one scenario where the model supports a long term increase of Neutr and

Cyto in HA relative to sham. This is case where the sham trajectory is tending towards

healthy resolution, but a short term increase in Neutr and Cyto due to HA pushes the

system into the elevated inflammation state. Since HA increases lethality in this case, it is

not compatible with reports of improved survival with HA.

In experiments, NeutrP and CytoP were elevated in HA compared to sham at 72 hours.

This is more than 2 days after HA treatment ends. Since the model regulatory structure
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Figure 5.16: Regulatory influences in sepsis model 2 and the mechanism of HA.

Positive influences are indicated by red arrows, negative influences by blue bars. Feedback

loops are shown with dotted arrows and bars. Numbered influences show the influence of

HA flowing through the system (see main text). HA negatively influences CytoB (1). Since

CytoB has a positive influence on Cyto, but a negative influence on Neutr, the net effect on

the Cyto-Neutr positive feedback loop is uncertain (3). If the net effect is positive, it cannot

be so strong as to push the system to the elevated inflammation state (since HA improves

survival). The resultant increase in Neutr negatively influences Path (4) and, in turn, the

positive regulation of Cyto by Path is reduced (5) and the system tends towards rest (6).

Alternatively, if the net effect of HA on Cyto-Neutr is negative, the system can be rescued

from an elevated inflammatory state and pushed into the basin of rest. In either case, the

Cyto and Neutr will be elevated for only a short period of time.
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does not support a long-term increase in Neutr and Cyto in HA, model 2 is an improbable

explanation for the data (improbable in the sense that the range of parameters where the

short-term effects last for 2+ days is likely to be be vanishingly small).

It is worth noting that experimental measurements differences between HA and sham in

PF did not reach the level of significance. So it is conceivable, but unlikely, that NeutrP

and CytoP levels are indeed somewhat lower in HA at the 72 hour time point. Confirmatory

experiments would determine if the first experimental results are reliable.

Nonetheless, discrepancies between experimental data and models suggest that further

work is needed to understand sepsis and HA. Alternative mechanisms should be considered.

For example, Alves-Filho, et al. found evidence that chemokine receptors are downregulated

on neutrophils in severe sepsis via a TLR2 dependent mechanism [199]. However, it is

unclear why HA treatment would impact TLR2 signaling. It may also prove useful to include

macrophage dynamics or independent pro- and anti-inflammatory cytokines, but calibrating

such a complex model to sparse and noisy data is questionable. Development of less-invasive

assays (permitting higher time resolution sampling) with lower noise should be a priority for

both modelers and experimentalists.
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APPENDIX A

BNGL SYNTAX

This appendix presents BNGL syntax, including comparments and energy patterns, in Ex-

tended Backus-Naur Form (EBNF). EBNF symbols are summarized in Table A1. The BNGL

specification listed here is a guideline, and not necessarily authoritative.

Comments are initiated by the # character and continue to the end of the line. Line

continuation is signified by \, which must be the last non-whitespace character on the line.

The following specification assumes that comments and line continuations have been handled

in preprocessing. Optional white space is also omitted from the syntax to improve clarity.

The following non-terminals are not defined below, but the standard definitions may be

assumed: Letter, Digit, Real, PositiveInteger, NaturalNumber (0, 1, . . .), and String.

Table A1: Summary of symbols in Extended Backus-Naur Form

description symbol

definition =

concatenation ,

termination ;

alternation (or) |

optional [ ... ]

one-or-more { ... }
terminal string " ... "

comment (* ... *)
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# BNGL syntax with compartments and energy patterns

# (Extended Backus -Naur Form)

WS = {" "|"\t"};

NewLine = {"\n"};

Name = Letter , [{ Letter|Digit|"_"}];

State = "∼",(Letter|Digit),[{ Letter|Digit|"_"}] | "∼?";
Bond = "!",{ Digit} | "!?" | "!+";

Tag = "%",( Letter|Digit),[{ Letter|Digit|"_"}];

Compartment = "@",Name;

LineLabel = {Digit},WS | Name ,":",[WS];

ComponentType = Name , [{"∼",State }];

Component = Name , [{"∼",State | "!",Bond | "%",Tag}];

MoleculeType = Name , ["(", [ComponentType , [{",", ComponentType }]], ")"];

Molecule =

Name , [{Tag|Compartment }], ["(" ,[ Component ,[{",", Component }]] ,")"]

| Name , ["(",[ Component ,[{",", Component }]],")"] , [{Tag|Compartment }];

SimpleMolecule = Name , [{Tag|Compartment }], ["()"]

| Name , ["()"] , [{Tag|Compartment }];

PatternMods = {"$" | "{ matchOnce }"};

PatternQuantifier = (" <"|" <="|"=="|" >="|" >") , NaturalNumber;

Pattern = "0"

| [{Tag|Compartment } ,(":"|"::")] , [PatternMods],

Molecule , [{".", Molecule}], [PatternQuantifier ];

Species = "0"

| [{Tag|Compartment } ,(":"|"::")] , [$], Molecule , [{"." , Molecule }];

SimpleSpecies = [{Tag|Compartment } ,(":"|"::")] , SimpleMolecule;

RuleModifier =

"DeleteMolecules" | "MoveConnected" | "TotalRate"

| "exclude_reactants ","(", PositiveInteger ,Pattern ,[{",", Pattern }] ,")"

| "include_reactants ","(", PositiveInteger ,Pattern ,[{",", Pattern }] ,")"

| "exclude_products ","(", PositiveInteger ,Pattern ,[{",", Pattern }] ,")"

| "include_products ","(", PositiveInteger ,Pattern ,[{",", Pattern }] ,")";

RateLaw =

MathExpression

| "Sat","(", MathExpression ,",",MathExpression ,")"

| "MM","(", MathExpression ,",",MathExpression ,")"

| "Hill","(", MathExpression ,",",MathExpression ,",",MathExpression ,")"

| "Arrhenius ","(", MathExpression ,",",MathExpression ,")";
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(* optional whitespace is permitted in definitions below this point*)

UniRule = Pattern ,[{"+" , Pattern}], "->",Pattern ,[{"+" , Pattern}],

WS ,RateLaw ,[{WS ,RuleModifier }];

RevRule = Pattern ,[{"+" , Pattern}],"<->",Pattern ,[{"+" , Pattern}],

WS ,RateLaw ,",",RateLaw ,[{WS,RuleModifier }];

Rule = UniRule | RevRule;

PopulationMap =

Species , "->", SimpleSpecies , WS , RateLaw ,, [{WS ,RuleModifier }];

Reaction = NaturalNumber ,[{",", NaturalNumber }],

WS , NaturalNumber ,[{",", NaturalNumber }],

(Real|Real ,"*", Name);

Observable =

(" Molecules "|" Species"), WS , Name , WS , Pattern , [{",", Pattern }];

Group = Name , WS , [NaturalNumber ,"*"] , NaturalNumber ,

[{",", [NaturalNumber ,"*"], NaturalNumber }];

MathExpression = Real | Id | "(", MathExpression ,")"

| UnaryOperator ,MathExpression

| MathExpression ,BinaryOperator ,MathExpression

| Id ,"(" ,[ MathExpression , [{",", MathExpression }]] ,")";

ParameterDefn = Id, (WS|"=") , MathExpression;

FunctionDefn =

Id , ["(", [Name ,[{",", Name}]], ")"], (WS|"=") , MathExpression;

Args = Real | String | Args ,",",Args;

| "{", Name ,"=>",Args , [{",", Name ,"=>",Args}], "}"

| "[", (Real|String), [{",", (Real|String )}], "]";

Option = Name , "(",[ Args ] ,")" ,[";"];

Action = Name , "(",[ Args ] ,")" ,[";"];

(* block defintions *)

ParameterBlock = "begin parameters", NewLine ,

{[ LineLabel], ParameterDefn , NewLine},

"end molecule types", NewLine;

MoleculeTypeBlock = "begin molecule types", NewLine ,

{[ LineLabel], MoleculeType , NewLine},

"end molecule types", NewLine;

CompartmentBlock = "begin compartments", NewLine ,

{ [LineLabel], Compartment , WS, ("2"|"3") ,

WS, MathExpression , [WS, Name], NewLine },

"end comparments types", NewLine;
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SpeciesBlock = "begin seed species ", NewLine ,

{[ LineLabel], Species , WS , MathExpression , NewLine},

"end seed species ", NewLine

| "begin species ", NewLine ,

{[ LineLabel], Species , WS , MathExpression , NewLine},

"end seed species ", NewLine;

ObservableBlock = "begin observables", {NewLine},

{[ LineLabel], Observable , NewLine},

"end observables", NewLine;

GroupBlock = "begin groups", NewLine ,

{[ LineLabel], Group , NewLine},

"end groups", NewLine;

EnergyPatternBlock =

"begin energy patterns", NewLine ,

{[ LineLabel], Pattern , [WS], MathExpression , NewLine},

"end energy patterns", NewLine;

FunctionBlock = "begin functions ", NewLine ,

{[ LineLabel], FunctionDefn , NewLine},

"end functions ", NewLine;

ReactionRuleBlock = "begin reaction rules ", NewLine ,

{[ LineLabel], Rule , NewLine},

"end reaction rules ", NewLine;

ReactionBlock = "begin reactions", NewLine ,

{[ LineLabel], Reaction , NewLine},

"end reactions", NewLine;

PopulationMapBlock = "begin population maps", NewLine ,

{[ LineLabel], PopulationMap , NewLine},

"end parameters", NewLine;

ActionBlock = "begin actions", NewLine ,

{[ LineLabel], Action , NewLine},

"end actions", NewLine;

Block = ParameterBlock | MoleculesTypeBlock | CompartmentBlock

| SpeciesBlock | ObservableBlock | GroupBlock

| EnergyPatternBlock | FunctionBlock | ReactionRuleBlock

| ReactionBlock | PopulationMapBlock | ActionBlock;

Model = [{ Option}],

( {Block}

| "begin model", NewLine ,

{Block}

"end model", NewLine

),

[{ Action }];
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APPENDIX B

GRAPH-BASED FORMALISM FOR BIONETGEN

Here, I present the graph-theoretic formalism of rule-based modeling in BNGL. This material

is adapted from a previous graph-based description of BNGL by Blinov et al. [66] and also

draws inspiration from the κ-calculus graph formalism of Winskel and co-workers [200]. The

formalism of Blinov et al. is oriented towards a population-based approach. The terminology

of the present work diverges to some degree in order to support a particle-based perspective.

Although similar to κ, BNGL requires a distinct formalism since BNGL: (i) permits

multiple identical components in a molecule, and (ii) makes a formal distinction between

inter- and intra-molecular reactions via the + and . symbols.

B.1 PATTERN GRAPHS

Pattern graphs are objects that describe substructures, or “motifs,” within molecular com-

plexes. Similar to the concept of a functional group in organic chemistry, a pattern graph

specifies a molecular motif, or moiety, that participates in a characteristic class of reac-

tions. Any instance of a pattern graph within a complex will participate in its characteristic

reaction without regard to the composition and structure of the surrounding complex.

Definition 4 (Pattern Graph). Given a countable index set I, a set of type labels ΩT , and
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a set of state labels ΩS, a pattern graph is defined by the tuple:

P |= (M ⊂ I, C ⊂M × I, B ⊂ C × C±, type : M ∪ C → ΩT , state : C → ΩS ∪ {∅, ?})

where M is the set of molecules, C is the set of components, B is the set of component

bonds (edges), C± = C ∪{+,−} is the set of components augmented with the non-specific

bond wildcard ‘+’ and the null bond ‘−’, type is a function that assigns a type label to

each molecule and component, and state is a function that assigns a state label to each

component (‘∅’ is the null state and ‘?’ is the unspecified state wildcard). Furthermore,

P satisfies the following: (i) at most one bond per component; (ii) bonds are undirected; (iii)

no self bonds. The set of all pattern graphs is denoted by P.

Each component in C is contained by a unique molecule in M . If c = (m,n) ∈ C, then

component c is contained by molecule m. Components can be thought of as the nodes of

the pattern graph, bonds as edges between nodes, and molecules as groups of components.

Definition 5 (Connected Pattern Graph). A pattern graph P is connected if every pair

of molecules in the pattern graph is connected by a sequence of component bonds.

B.1.1 Example: representation of a BNGL pattern as a pattern graph

Consider the BNGL pattern

L(r!1).R(l!1,a∼P).

Let us represent this pattern formally as a pattern graph. We begin by assigning a unique

index to each molecule (from left to right) and a unique ordered pair of indices to each

component (also from left to right), where the first element of the pair is the index of the

molecule containing the component:

L1(r(1,1)!1).R2(l(2,1)!1,a(2,2)∼P).

Now we can write the corresponding pattern graph tuple P = (M,C,B, type, state), where
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M = { 1, 2 }

C = { (1,1), (2,1), (2,2) }

B =
{ (

(1, 1), (2, 1)
)
,
(
(2, 1), (1, 1)

)
,
(
(2, 2),−

) }
type = { 1 7→ “L”, 2 7→ “R”, (1,1) 7→ “r”, (2,1) 7→ “l”, (2,2) 7→ “a” }

state = { (1,1) 7→ ∅, (2,1) 7→ ∅, (2,2) 7→ “P” }

Note that the bond from component r to component l appears in B twice, once for each

ordering of the components. This is simply a convention for indicating that the bond is

undirected. It is also clear that P is a connected pattern graph because molecules L and R

are connected through this bond.

B.2 COMPLEX GRAPHS AND ENSEMBLES OF COMPLEXES

A complex graph, or simply a complex , is a pattern graph that defines an assembly of

connected molecules with a precise configuration of bonds and states. While a general

pattern graph describes parts of a molecular complex, a complex graph describes a complete

instance of a molecular complex. In other words, there is no ambiguity, such as unspecified

state (‘?’) or non-specific bond (‘+’) wildcards.

Definition 6 (Complex Graph). A complex graph is a connected pattern graph where: (i)

every component state is defined (no state wildcards); (ii) every component has a null bond

or a proper bond (no bond wildcards).

The state of a model system is described by an ensemble of complexes.

Definition 7 (Ensemble of Complexes). An ensemble of complexes is a finite set of disjoint

complexes.

Intuitively, an ensemble of complexes is a “particle-based” representation of a system, where

each particle corresponds to a distinct molecule in one of the complexes.
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B.3 PATTERN GRAPH ISOMORPHISM AND SPECIES

It is useful to define the notion of equivalence of pattern graphs. We will say that two pattern

graphs are equivalent, or isomorphic, if they have the same composition and structure.

Definition 8 (Pattern Graph Isomorphism). Pattern graphs x and y are isomorphic, writ-

ten x ∼= y, if there exists a one-to-one and onto map φ of molecules and components in

x to those in y that preserves the following properties: (i) graph structure; (ii) component

containership; (iii) type; (iv) states. A mapping with these properties is called an isomor-

phism.

Since isomorphism is an equivalence relation on the set of complexes, we can partition any

ensemble into classes of isomorphic complexes, which we call species . This partition is useful

because all complexes within a class have the same composition and structure and, therefore,

each member has the same reaction motifs and propensities to participate in reaction rules.

Definition 9 (Species). Given a complex graph y, the species [y] is the set of all complexes

that are isomorphic to y. The set of all species is denoted by S.

Though [y] is properly a set, it can be represented by any complex y′ ∈ [y].

If X is an ensemble of complexes, then a similar but distinct concept is that of the

species [y] with respect to X, written [y|X]. This is the subset of complexes in X that are

isomorphic to y, i.e., {x ∈ X | x ∼= y}. The population of a species with respect to an

ensemble X is the number of complexes in [y|X], i.e., ρ([y|X]) = |{x ∈ X | x ∼= y}|. Thus,

a species with respect to an ensemble can be represented by a complex and a population

attribute: [y|X] ≡ (y, ρ([y|X])). The set of all species with a population attribute is denoted

S† = S×N≥0. Under this notation, an ensemble of complexes X can be represented by a set

of species with population counters,

S(X) = {(s, ρ([s|X])) : s ∈ X/∼=},

where X/ ∼= is the quotient set of X by ∼=.

We may choose to dispense with the reference to X entirely and directly represent a

system as a species ensemble.
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Definition 10 (Species Ensemble). A species ensemble S is a set of species with population

counters. More precisely,

S ⊂ {(s,Ns) | s ∈ S, Ns ∈ N≥0} .

If (s,Ns) ∈ S, then we will abuse notation slightly and write s ∈ S and define ρ(s) =

Ns. In contrast to an ensemble of complexes, a species ensemble is a “population-based”

representation of a system since complexes belonging to the same species are lumped together

into a single object.

B.4 EMBEDDINGS OF PATTERN GRAPHS

An embedding, or “pattern match,” is a map from a pattern to an instance of that pattern

within a complex or, more generally, another pattern.

Definition 11 (Embedding). Given patterns p and q, an embedding of p in q is a one-

to-one mapping φ from the molecules and components of p into those of q that preserves

the following properties: (i) graph structure compatibility; (ii) component containership;

(iii) type; (iv) state compatibility. The non-specific bond ‘+’ is compatible with any bond

except the null bond ‘-’. The unspecified state wildcard ‘?’ is compatible with any state.

An embedding of pattern p in pattern q is denoted by φp,q. If X is an ensemble of complexes,

then emb(p,X) is the set of all embeddings of pattern p into the complexes of X. Similarly,

the set of embeddings from pattern p into any other pattern graph is denoted by emb(p,P).

Embeddings of a pattern graph into a species, e.g., φ ∈ emb(p, s), where s ∈ S, should be

interpreted as embeddings into the pattern graph representing the species.

It is often useful to refer to the pattern graph or species that contains the specific instance

of an embedding. We call this the target of the embedding.

Definition 12 (Target). Given an embedding φ, the target of φ, written targ(φ), is the

pattern graph or species that contains the image of φ.
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B.5 REACTION RULES

A reaction rule represents a class of potential transformations on an ensemble of complexes.

Definition 13 (Reaction Rule). A reaction rule is defined by the tuple

r |=
(

(Rv)
V
v=1, (Pw)Ww=1, ψ, k

)
,

where V is the number of reactant patterns, W is the number of product patterns, (Rv)

are the reactant pattern graphs, (Pw) are the product pattern graphs, ψ is the component

correspondence map, and k is the propensity,1 which may be given by a non-negative

real number or function.

The reactant pattern graphs describe motifs in complexes where a reaction event may occur.

The product patterns describe the structure at the site of the motif subsequent to transfor-

mation under the action of the rule. The component correspondence map is a one-to-one,

partial mapping of molecules and components in (Rv) to those of (Pw) that satisfies several

properties (see below). The propensity k is defined such that k·dt is the probability for

each rule instance (described next) to undergo transformation in the next infinitesimal time

interval dt [25, 28]. In addition to a simple non-negative constant, the propensity may be a

function of the ensemble of complexes (a “global function”), the target of a reactant pattern

embedding (a “local function”), or both (a “composite function”) [56].

The component correspondence map, ψ, defines how molecules and components in the

reactant patterns correspond to those in the product patterns. The map is partial because a

subset of molecules and components may be deleted or synthesized by the action of the rule.

If a reactant molecule is not in the domain of ψ, dom(ψ), then the molecule and its components

are deleted. Similarly, if a product molecule is not in the image of ψ, im(ψ), then the molecule

and its components are synthesized. The differences in the bond and state configurations

1The traditional definition of the “propensity” is as the product of a constant, c, and a combinatorial
factor , h(X), which is a function of the system state X and represents the number of different ways in which
specific instances of the reactant species can react [25, 28]. Here, we are dispensing with the combinatorial
factor and using the term “propensity” to refer to a constant or function that is analogous to c in the
traditional definition. We sometimes refer to this quantity as an “instance rate.” Note that from a particle-
based perspective, each complex can be thought of as a unique species with a unit population, i.e., h(X)=1.
Thus, our definition of the propensity is simply a special case of the traditional definition.
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of corresponding components imply a set of pattern graph transformations. For example, if

two components in the reactant patterns do not share a bond edge but the corresponding

components in the product patterns do, then a “bond addition” transformation is implied

by the rule.

Definition 14 (Component Correspondence Map). Given reactant patterns (Rv)
V
v=1 and

product patterns (Pw)Ww=1, a component correspondence map ψ is a one-to-one, partial

mapping from the molecules and components of (Rv) to those of (Pw),

ψ :
⋃
v

(MRv ∪ CRv) →
⋃
w

(MPw ∪ CPw) ,

that satisfies the following properties: (i) molecules map to molecules and components map

to components; (ii) types are preserved; (iii) molecule substructures are preserved; (iv) no

new wildcards appear in the product graphs.

It is useful to define the notion of the “reaction center” of a rule, which is the subset of

molecules and components in the reactant patterns that are modified by the action of the

rule.

Definition 15 (Reaction Center). The reaction center of a rule r, written RC(r), is the

subset of reactant molecules not in the domain of ψ (deleted molecules) plus the subset of

reactant components in the domain of ψ where the corresponding product component: (i) is

bound if the reactant component is unbound; (ii) is unbound if the reactant component is

bound; (iii) has a different state than the reactant component.

Conversely, molecules and components in the reactant patterns of a rule that are not within

the reaction center are called the “reaction context.” In BNGL, the reaction context repre-

sents additional conditions necessary for a transformation encoded in a rule to take place. By

convention, the reaction context does not contribute to the propensity of a rule, i.e., multiple

matches to the context does not increase the value of the propensity (multiple matches to

the center does). As such, it is necessary to equate embeddings where the images of the

reaction center are the same even if the context differs.
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Definition 16 (Embedding Equivalence). Given a rule r, with reaction center RC(r), the

embeddings φ, φ′ ∈ emb(Rv,P) are equivalent with respect to RC(r) if φ|RC(r ) = φ′|RC(r ), where

φ|RC(r ) is the restriction of the embedding map φ to the molecules and components in RC(r).

The equivalence class of embedding φ with respect to RC(r) is written [φ]. When the context

is clear, we will usually omit reference to RC(r). Furthermore, since the embedding class is

represented by any of its members, we will usually omit the square braces. Note that all

embeddings in an equivalence class have the same target. The set of all equivalence classes

of embeddings of pattern R is denoted by emb(R,P)/ RC(r).

In order to apply the transformation(s) encoded by a reaction rule, it is necessary to

have an embedding of each reactant pattern into a target. A rule instance is a collection of

embedding classes, one for each reactant pattern, whose targets can be transformed by the

action of a rule.

Definition 17 (Rule Instance). Given reactant patterns (Rv)
V
v=1, a rule instance is a tuple

of embedding classes ([φv]) ∈
∏V

v=1 emb(Rv,P)/ RC(r).

The targets of a rule instance are denoted by the tuple targ(([φv])) = {targ(φv)}Vv=1. Note

that the targets are not necessarily distinct.

The action of a rule is defined by an operator that maps rule instances to products.

The products are constructed by transforming the embedding targets according to the graph

operations implied by the differences between the reactant patterns and the product patterns

via the component correspondence map.

Definition 18 (Action of a Rule on a Rule Instance). Given a rule r with reactant patterns

(Rv)
V
v=1, the action of r is given by an operator that maps rule instances to tuples of products,

r[ ] :
V∏
v=1

emb(Rv,P)/ RC(r) → (P)<∞,

where (P)<∞ is the set of finite sequences of pattern graphs (although sometimes the pattern

graph is the representative of a species).

The details of this operator are beyond the scope of the present work (see Sec. 3.1 of Bli-

nov et al. [66] for a discussion within the context of network generation). It is sufficient for
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our purposes to simply state that we have a unique operator that maps rule instances to

products.

It may seem awkward that the action of a rule maps embeddings to products rather than

targets to products. However, this distinction is important because the same targets may be

transformed into different products depending on the specific embedding into those targets.

Thus, the action of a rule depends on both the targets and the embeddings, but since the

targets are implicit in the choice of embeddings it is unnecessary to explicitly mention them

in the definition. Also note that the number of products produced by the action of a rule is

not necessarily equal to the number of product patterns in the rule. This is generally rectified

by a post-action rejection step. For example, during network generation BioNetGen rejects

all reactions generated from a rule that violate the product-side molecularity of that rule [60]

(see below for further discussion).

If the targets of a rule instance belong to an ensemble of complexes, then we can naturally

define the action of the rule on the ensemble. The instance targets are removed from the

ensemble and replaced by the products generated by the action of the rule on the instance.

Definition 19 (Action of a Rule on an Ensemble of Complexes). Given an ensemble of

complexes X, a rule r, and a rule instance (φv) ∈
∏

v emb(Rv, X)/ RC(r), the action of r on

X through (φv), written r[(φv)](X), is

X 7→ (X \ targ((φv))) ∪ r[(φv)],

where r[(φv)] is the action of r on (φv).

The action of a rule on a species ensemble S is defined similarly except that targets and

products belonging to the species in S are handled by modification of the population counter

rather than set deletion and addition.

Definition 20 (Action of a Rule on a Species Ensemble). Given a species ensemble S, a

rule r, and a rule instance (φv) ∈
∏

v emb(Rv, S)/ RC(r), the action of r on S through (φv) is

S 7→{
(s,N ′s) | s ∈ S,N ′s = Ns −

∣∣{v ∈ {1 . . . Vr} |targ(φv) = s}
∣∣+
∣∣{w ∈ {1 . . .Wr} | pw = s}

∣∣}
where (pw) are the products of the action r[(φv)].
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Given an ensemble of complexes X, the set of all rule instances for rule r in X is defined

to be

rinst
(
r,X

)
=

V∏
v=1

emb(Rv, X)/ RC(r).

This set, along with the rule action operator r[ ], encapsulates every possible transformation

on an ensemble of complexes by a reaction rule, and forms the basis for the NF simula-

tion approach [53, 55, 56]. The set of all rule instances for a species ensemble S is defined

analogously.

A few notes about rule instance propensities. The propensity of a rule instance is the

probability of the rule acting on the instance in the infinitesimal time interval dt. There are

several factors that determine this probability: (i) kr, the propensity of the rule; (ii) the

symmetry factor of the rule; (iii) the targets of the rule instance; (iv) the products of the

action. The symmetry factor of a rule is a positive constant associated with the intrinsic

symmetry of the reactant and product patterns of the rule. Its computation is the beyond

the scope of this document (see Blinov et al. [66] for a discussion). The targets of the rule

instance influence the propensity in two ways. First, the targets of the embeddings must be

distinct complexes, i.e., the set of targets must have the same molecularity as the rule. If

the targets are not distinct then the propensity is zero. Second, if the rule propensity is a

local function (see Sneddon et al. [53]), then the local structure of the target can influence

the propensity. The products can also influence the propensity, but only as a post-action

rejection. While it can be shown that the products, in an aggregate sense, always contain

embeddings of the product patterns, there is no guarantee that the products will have the

same molecularity as the product patterns. After the products are constructed by the action

of the rule, the molecularity of the products can be compared to that of the rule. If the

molecularity is different, then the products are rejected and the targets restored. Since

compliance with product molecularity is handled as a rejection step, the propensity of a rule

instance is actually an upper bound on the true propensity.
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Definition 21 (Propensity of a Rule Instance for an Ensemble of Complexes). Given a rule

r with propensity kr and symmetry constant sr, an ensemble of complexes X, and a rule

instance (φv), the propensity of the rule instance is

a
(
(φv)

)
=
kr
sr

V∏
v=1

max

{
0, 1−

∑
j<v

δ(φj, φv)

}
,

where δ(φj, φv) = 1 if targ(φj) = targ(φv) and 0 otherwise.

Similarly, for a species ensemble,

Definition 22 (Propensity of a Rule Instance for a Species Ensemble). Given a rule r with

propensity kr and symmetry constant sr, a species ensemble S, and a rule instance (φv), the

propensity of the rule instance is

a
(
(φv)

)
=
kr
sr

V∏
v=1

max

{
0, ρ(targ(φv))−

∑
j<v

δ(φj, φv)

}
.

Note that the propensity of a rule instance for an ensemble of complexes is just a special

case of this definition [i.e., ρ(targ(φv)) = 1 if targ(φv) is a complex x ∈ X].

B.6 BNGL MODELS

An observable defines a measurable output of a model system. Observables are composed

of a set of pattern graphs, each corresponding to a molecular motif that is detectable by an

experimental assay [60].

Definition 23 (Observable). An observable is defined by the tuple

O |=
(
name, type ∈ {“Molecules”, “Species”}, (Pv)Vv=1

)
,

where name is a label for the observable, type is a property that determines how the observable

is calculated, and (Pv) is a tuple of pattern graphs.
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The population of an observable is a measure of the number of embeddings of the pattern

graphs within the system. The type of the observable, “Molecule” or “Species”, determines

the method of computing the population (see Faeder et al. [60]). For an ensemble of com-

plexes X, the population of an observable is

ρ(O|X) =


∑V

v=1 |emb(Pv, X)| : type = “Molecules”

∑
x∈X H

(∑V
v=1 |emb(Pv, x)|

)
: type = “Species”

,

where H(z) = 1 if z ≥ 1 and 0 otherwise. Similarly, for a species ensemble S,

ρ(O|S) =


∑

s∈S ρ(s)
∑V

v=1 |emb(Pv, s)| : type = “Molecules”

∑
s∈S ρ(s)H

(∑V
v=1 |emb(Pv, s)|

)
: type = “Species”

.

A BNGL model completely specifies a dynamic system, including the initial system

configuration, the reaction rules that govern the dynamics, and a set of observables that

define the outputs of the system.

Definition 24 (Model). A BNGL model is defined by the tuple

M |= (seed species, observables, reaction rules) ,

where seed species is a subset of S† that specifies the initial state of the model system,

observables is a set of observables, and reaction rules is a set of reaction rules that

govern the dynamics of the system.

In practice, a BNGL model may also include parameters, molecule types (component-level

type graphs), and function definitions [60], but we will omit these here for simplicity. Note

that while seed species are always specified by a species ensemble in a model, the represen-

tation within a simulator may be as an ensemble of complexes (particle representation), a

species ensemble (population representation), or a hybrid ensemble (see below).
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APPENDIX C

RECEPTOR ACTIVATION MODEL

The complete receptor activation model, used as an illustration of energy modeling (Chap-

ter 2), is listed here. The model file is also included in the Models2 subfolder of BioNetGen

distribution 2.2.4.

# Receptor activation model for energy BNGL

begin model

# requires BioNetGen version >= 2.2.4

version ("2.2.4")

# Quantities have units in moles , so set this to Avogadro ’s Number

setOption (" NumberPerQuantityUnit " ,6.0221 e23)

begin parameters
# fundamental constants

RT 2.577 # kJ/mol

NA 6.022 e23 # /mol

PI 3.142 # Pi , no units

# Geometry parameters

rad_cell 1e-4 # radius of cell , dm

cell_dens 1e9 # density of cells , /L

width_PM 1e-7 # effectice width of membrane , dm

# Compartment volumes

volEC 1/ cell_dens # vol. extracellular space , L

volPM 4*PI*rad_cell ^2* width_PM # virtual vol. of plasma membrane , L

volCP 4/3*PI*rad_cell ^3 # vol. of cytoplasm , L

# initial concentrations

conc_L_0 20e-9 # mol/L

count_R_0 24000 # molecules/cell

conc_Ph_0 10e-9 # mol/L

conc_ATP_0 1.0e-3 # mol/L

conc_ADP_0 0.1e-3 # mol/L

# standard free energy of formation , kJ/mol

G_LR -47.5

G_RR -11.9
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G_RPh -41.5

G_RyP 51.1

G_ATP 51.1

G_RyP_Ph 5.9

G_LRR -5.9

G_LRRL -11.9

# baseline activation energy , kJ/mol

E0_LR -11.9

E0_RR -5.9

E0_RPh -17.8

E0_catRR -11.9

E0_catPh 5.9

# rate distribution parameter , no units

phi 0.5

end parameters
begin compartments

EC 3 volEC # extracellular space

PM 2 volPM EC # plasma membrane

CP 3 volCP PM # cytoplasm

end compartments
begin molecule types

L(r) # ligand

R(l,d,y∼0∼P) # trans -membrane receptor

Ph(y) # phosphotase

ATP() # ATP

ADP() # ADP

end molecule types
begin seed species

L@EC(r) conc_L_0*NA*volEC

R@PM(l,d,y∼0) count_R_0

Ph@CP(y) conc_Ph_0*NA*volCP

$ATP@CP () conc_ATP_0*NA*volCP # ATP quantity held constant

$ADP@CP () conc_ADP_0*NA*volCP # ADP quantity held constant

end seed species
begin observables

Molecules Lfree L(r)

Molecules Ltotal L()

Molecules Rbound L(r!1).R(l!1)

Molecules Rdimer R(d!1).R(d!1)

Molecules RyP R(y∼P!?)
Molecules Rtotal R()

Molecules RyP_Ph R(y!1).Ph(y!1)

Molecules PhTotal Ph()

end observables
begin energy patterns

# bond energy

L(r!1).R(l!1) G_LR/RT

R(d!1).R(d!1) G_RR/RT

R(y!1).Ph(y!1) G_RPh/RT

# state energy

R(y∼P!?) G_RyP/RT

# molecule energy

ATP() G_ATP/RT

# cooperativity
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R(y∼P!1).Ph(y!1) G_RyP_Ph/RT

L(r!1).R(l!1,d!2).R(d!2) G_LRR/RT

L(r!1).R(l!1,d!2).R(l!3,d!2).L(r!3) G_LRRL/RT

end energy patterns
begin reaction rules

# ligand binding

L(r) + R(l) <-> L(r!1).R(l!1) Arrhenius(phi ,E0_LR/RT)

# receptor dimerization

R(d) + R(d) <-> R(d!1).R(d!1) Arrhenius(phi ,E0_RR/RT)

# Ph binding

R(y) + Ph(y) <-> R(y!1).Ph(y!1) Arrhenius(phi ,E0_RPh/RT)

# trans -phosphorylation

R(d!1).R(d!1,y∼0) + ATP \

<-> R(d!1).R(d!1,y∼P) + ADP Arrhenius(phi ,E0_catRR/RT)

# dephosphorylation by phosphtase

R(y∼P!1).Ph(y!1) \

<-> R(y∼0!1).Ph(y!1) Arrhenius(phi ,E0_catPh/RT)

end reaction rules
end model

# generate reaction network ..

generate_network ({ overwrite =>1})

# simulate ODE system to steady state ..

simulate ({ method=>"ode",t_end=>12, n_steps =>120,atol=>1e-3,rtol=>1e-7})
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APPENDIX D

THE MONETARY COST OF SIMULATION MEMORY

We assume that each simulation is run on one virtual core (with possibly more than one

simulation running per core) and there is no memory sharing among simulations. Let I be

an Amazon EC2 instance type, mI the total instance memory, vI the number of virtual cores

in the instance, uvI the number of compute units per virtual core, CI the cost of the instance

per unit time, and N the number of simultaneous simulations running on an instance. For

each configuration pair (I, N), with N ∈{1, 2, . . .}, we will compute the cost (per unit time)

per “effective” compute unit (ECU). We will then obtain the minimum cost by finding that

(those) configuration(s) (multiple instances may have the same cost) with the lowest cost

under the constraint that the instance(s) has (have) sufficient memory to run N simulations.

Under our assumption that a simulation is run on one virtual core, the average number of

compute units available per simulation is the minimum of the number of compute units per

core and the total number of compute units divided by the number of running simulations,

us(I, N) = uvI ·min {1, vI/N} .

The number of ECUs is the number of running simulations multiplied by the average number

of compute units per simulation,

ε(I, N) = N · us(I, N) = uvI ·min {N, vI} .

Note that the number of ECUs is equal to the total number of compute units if N ≥ vI

and less if N <vI . The intuition here is that if the memory required per simulation limits
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the number of simulations that can be run simultaneously on an instance to fewer than the

number of virtual cores, then we must treat the instance as if it had fewer virtual cores since

some cannot be utilized.

The cost (per unit time) per ECU for a given configuration is then the cost of the instance

divided by the number of ECUs,

C(I, N) =
CI

ε(I, N)
=

CI
uvI ·min {N, vI}

.

For a given configuration, the memory available per simulation is

m(I, N) = mI/N.

Assuming that each simulation run requires ms units of memory, the minimum cost per

ECU is obtained by finding the lowest configuration cost under the constraint that the

configuration has sufficient memory available,

Cmin(ms) = min
all (I,N)

{C(I, N) : ms ≤ m(I, N)} .

We need only consider N ≤ vI when searching for the minimum cost because ε(I, N) is

constant (= uvIvI) for N ≥ vI . Cmin(ms) has been calculated considering all Amazon EC2

Standard , High-CPU , and High-Memory instance types [141] and plotted in Fig. 8 of the

main text. The configuration(s) associated with the minimum cost is (are) simply the set

χ(ms) = {(I, N) : C(I, N) = Cmin(ms) ∧ ms ≤ m(I, N)} .

Example: The Amazon EC2 High-Memory Double Extra Large instance has four virtual

cores with 3.25 compute units each, 34.2 GB of total memory, and a cost of $1.00/hr (January

2012 on-demand pricing, Linux operating system) [141]:

vI = 4,

uvI = 3.25,

mI = 34.2,

CI = 1.00.
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The number of compute units available per simulation is

us(I, N) = 3.25 ·min {1, 4/N} ,

and the number of ECUs is

ε(I, N) = 3.25 ·min {N, 4} .

This gives a cost per ECU of

C(I, N) =
1.00

3.25 ·min {N, 4}
,

with memory availability per simulation of

m(I, N) = 34.2/N.

For this instance type, we show in Fig. D1 the minimum effective cost, CImin(ms), versus

memory per simulation, ms. Up to ms = 8.6 GB it is possible to run four simultaneous

simulations at a cost of ∼$0.08/ECU-hr. We can run three simulations at ∼$0.10/ECU-

hr for 8.6 < ms ≤ 11.4 GB, two simulations at ∼$0.15/ECU-hr for 11.4 < ms ≤ 17.1 GB,

and one simulation at ∼$0.31/ECU-hr for 17.1<ms ≤ 34.2 GB. Above ms = 34.2 GB we

obviously cannot run any simulations because the memory requirement exceeds the total

memory available in the instance.
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Figure D1: Minimum cost of effective compute unit vs. memory required. Results

are shown for the Amazon EC2 High-Memory Double Extra Large. Effective compute units

is the product of compute units per core and available CPU cores, less any idle cores due to

insufficient memory.
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APPENDIX E

FORMAL BASIS FOR HPP METHOD

E.1 FORMAL BASIS FOR THE PARTIAL NETWORK EXPANSION

(PNE) ALGORITHM

E.1.1 Hybrid ensembles

HPP simulation requires the notion of a hybrid ensemble. A hybrid ensemble is a parti-

cle/population representation of a system, since part of the system is represented as individ-

ual particles and the remainder as lumped populations.

Definition 25 (Hybrid Ensemble). A hybrid ensemble is the pair (X,S), where X is an

ensemble of complexes and S is a species ensemble.

For convenience, if (X,S) is a hybrid ensemble and x ∈ X, then we define ρ(x) = 1. The

action of a rule on a hybrid ensemble is defined by combining Defs. 19 and 20.

Definition 26 (Action of a Rule on a Hybrid Ensemble). Given a hybrid ensemble (X,S),

a rule r, and a rule instance (φv) ∈
∏

v emb(Rv, X ∪ S)/ RC(r), the action of r on (X,S)

through (φv) is

X 7→
(
X \ targ((φv))

)
∪
(
r[(φv)] \ S

)
,

S 7→
{

(s,N ′s) | s ∈ S,

N ′s = Ns −
∣∣{v ∈ {1 . . . Vr} : targ(φv) = s}

∣∣+
∣∣{w ∈ {1 . . .Wr} : pw = s}

∣∣}
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where (pw) are the products of the action r[(φv)].

The set of all rule instances for a hybrid ensemble (X,S) is defined analogously to that for

an ensemble of complexes,

rinst
(
r,X ∪ S

)
=

V∏
v=1

emb(Rv, X ∪ S)/ RC(r).

The propensity of a rule instance for a hybrid ensemble is the same as defined in Def. 22.

Finally, the population of an observable for a hybrid ensemble (X,S) is just the sum of the

observable counts for the complexes and the species, i.e.,

ρ(O|X,S) =



∑V
v=1 |emb(Pv, X)|+

∑
s∈S ρ(s)

∑V
v=1 |emb(Pv, s)|

: type = “Molecules”

∑
x∈X H

(∑V
v=1 |emb(Pv, x)|

)
+
∑

s∈S ρ(s)H
(∑V

v=1 |emb(Pv, s)|
)

: type = “Species”

.

E.1.2 Child rules and rule restriction

A reaction rule r′ is said to be a child of reaction rule r if the rule instances of r′ are

a subset of those of r and the action of r′ is equivalent to r on that subset. In formal

terms, there must be a rule instance (φv) ∈
∏

v emb(Rv, R
′
v) and a tuple of embeddings

(φw) ∈
∏

w emb(Pw, P
′
w). Furthermore, it must follow that the component correspondence

maps commute, i.e. φ′ ◦ ψ(x) = ψ′ ◦ φ(x) for all x ∈ dom(ψ), where φ and φ′ are the unions

of the respective embeddings. A child rule can be constructed from the pairing of a rule r

with a rule instance (φv). The child rule has reactant patterns given by the targets of (φv)

and product patterns constructed by the action of the rule on the instance.
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Definition 27 (Restriction of a Rule by a Rule Instance). The child rule induced by the

restriction of rule r by a rule instance (φv) is defined to be

r|(φv) =
(
targ((φv)) , r[(φv)], ψ

′, kr
)
,

where r[(φv)] are the products of the action of r on (φv) and ψ′ is obtained from a single

pushout of φ and ψ (see Refs. [66, 201]). In general, the targets may be species or pattern

graphs.

Given a parent rule p, child rules r and r′ are equivalent if the reactant patterns are

isomorphic, the product patterns are isomorphic, and the component correspondence maps

commute with the isomorphisms.

Definition 28 (Child Rule Equivalence). Child rules r and r′ are equivalent, written r ∼= r′,

if the reactant patterns are isomorphic via mappings (φv), the product patterns are isomorphic

via mappings (φ′w), and the following hold:

• φ(dom(ψ)) = dom(ψ′) ,

• ∀z ∈ dom(ψ) : ψ′ ◦ φ(z) = φ′ ◦ ψ(z),

where φ and φ′ are the unions of the embedding maps.

The class of all child rules equivalent to r is denoted by [r]. The equivalence relation partitions

the set of child rules into classes. If R is a set of child rules, then the set of all equivalence

classes in R is denoted R/∼=. Child rules in the same class can be treated as a single entity

with a multiplicity factor that ensures that the propensity of the class is equal to the sum

of the individual propensities. A proof is beyond the scope of this document.

E.1.3 Population-mapping rules

A species is “unstructured” if it is represented by a complex consisting of a single molecule

that contains no components. Given a set of structured species S and a set of unstructured

species U , where the types in U do not overlap with those in S, an “unstructured representa-

tion” of the species in S is a one-to-one mapping λ : S → U . In the population-adapted NF

simulator, complexes belonging to an unstructured species can be treated as a population
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(a species ensemble) rather than as individual particles (an ensemble of complexes). Thus,

structured species can be treated as populations if an unstructured representation is pro-

vided and the reaction rules are partially expanded so that the dynamics of the unstructured

species are equivalent to those of the structured counterpart. This process is accomplished

by the PNE algorithm.

Prior to performing PNE, the modeler defines a set of population-mapping rules . Each

mapping in an unstructured representation implies a population-mapping rule, and con-

versely a set of population-mapping rules implies an unstructured representation. Formally,

a population-mapping rule is a reaction rule that matches complexes belonging to a single

species and transforms them into the unstructured representation.

Definition 29 (Population-mapping rule). Given an unstructured representation λ : S → U ,

a population-mapping rule for species s ∈ S is a reaction rule

ls |=
(

(s), (λ(s)), ∅, klump

)
,

where klump ≥ 0 is the “lumping rate constant.”

E.1.4 The PNE algorithm

Network expansion is the process of enumerating all of the specific reactions (at the res-

olution of species) implied by a set of reaction rules. The rule set produced by the PNE

algorithm is a partial network expansion in the sense that the reactions are enumerated only

with respect to the population species. Interactions among particles and between particles

and population species are encoded by a set of child rules derived from the original rule set.

Thus, there are three types of reaction rules among the set of children: (i) rules that govern

the interaction of particles; (ii) mixed particle-population rules that govern the interaction

of particles and population species; (iii) population reactions that govern the interactions

among population species. Rules of type (i) are just duplicates of the original reaction rules.

Rules of type (iii) are proper reactions since each reactant pattern matches exactly one

species. Rules of type (ii) and (iii) together encapsulate every possible interaction among

the population species and between population species and reactant motifs within particles.
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In this sense, PNE is a hybrid of network-based and network-free methods: particles inter-

act within an NF framework, populations interact within a network-based framework, and

particle-population interactions are handled in a hybrid manner. Pseudocode for the PNE

algorithm is presented as Algorithm 4. The method takes as input a BNGL model and a

set of population-mapping rules and returns a model with a partially expanded rule set (an

HPP model) that is dynamically equivalent to the original model for sufficiently large klump

(or for any klump if the “exact” option is selected; see Algorithm 4).

When the HPP model is loaded into the population-adapted NF simulator, all of the

unstructured species in U are represented as a species ensemble (i.e., as populations). The

structured species, however, are represented as an ensemble of complexes X (i.e., as parti-

cles). Therefore, the system representation is a hybrid ensemble (X,U †). The propensities

for rule instances are computed according to Def. 22. However, rule instances in which two or

more reactant patterns have the same target are given the same propensity as other instances

and then rejected in a post-sampling step. Furthermore, at simulation runtime, population-

mapping rules serve the practical purpose of matching unlumped particles belonging to a

population species, deleting the particle, and incrementing the population counter of the

corresponding unstructured representation. Runtime lumping is required since the PNE

algorithm is not guaranteed to identify every possible way that particle-particle or particle-

population events can yield a product belonging to the set of population species (e.g., through

complex dissociation). However, PNE does enumerate every way that a population species

can participate in a reaction as a reactant.

E.2 EQUIVALENCE OF THE PNE RULE SET AND THE ORIGINAL

RULE SET

We claim that PNE yields a system that is equivalent to the original model system in the

sense that for any ensemble of complexes the rule set generated by PNE encompasses the

same set of rule instances. We will outline a proof for the basic case where symmetry can

be ignored.
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Algorithm 4: Partial Network Expansion

input : model, a BNGL model (Def. 24); klump, a lumping rate constant
λ : S → U , unstructured representation of the species in S (Sec. E.1)

output: hpp model, the output model

// Transform seed species in S into the unstructured representation
foreach (s′, ns′) ∈ model.seed species do

if s′ ∈ S then
add (λ(s′), ns′) to hpp model.seed species

else
add (s′, ns′) to hpp model.seed species

foreach s ∈ S do
if @(s′, ns′) ∈ hpp model.seed species such that s′ ∼= s then

add (λ(s), 0) to hpp model.seed species

// Reformulate observables (Def. 23) in terms of unstructured representation
foreach (name, type, (Pv)) ∈ model.observables do

(P ′
v) = (Pv) if type = “Molecules” then
foreach pair s ∈ S, Pv ∈ (Pv) do

add |emb(Pv, s)| copies of λ(s) to (P ′
v)

else
foreach s ∈ S do

if ∪vemb(Pv, s) 6= ∅ then
add λ(s) to (P ′

v)

add (name, type, (P ′
v)) to hpp model.observables

// Expand reaction rules (Def. 13) around the species in S
foreach r :=

(
(Rv), (Pw), ψ, k

)
∈ model.reaction rules do

// 1: Gather reactant pattern embeddings foreach Rv ∈ (Rv) do
if @s ∈ S such that s ∼= Rv OR if “exact” method is desired then

add idRv,Rv to embeddings[v] // i.e., add the identity map of the reactant pattern

add emb(Rv, S)/ RC(r) to embeddings[v] // Def. 16

// 2: Construct a child rule for each rule instance in the Cartesian product of embeddings

foreach rule instance (φv) ∈
∏V

v=1 embeddings[v] do // Def. 17(
(R′

v), (P ′
w), ψ′, k

)
:= r | (φv) // Def. 27

// 3: Replace instances of structured population species with unstructured counterparts
foreach R′

v ∈ (R′
v) do

if ∃s ∈ S such that s = R′
v then // equality is required!

substitute λ(s) for R′
v

foreach P ′
w ∈ (P ′

w) do
if ∃s ∈ S such that s ∼= P ′

w then // isomorphism is sufficient here
substitute λ(s) for P ′

w

add
(

(R′
v), (P ′

w), ψ′, k
)
to child rules

// Compute equivalence classes of child rules (Def. 28) and add to hpp model
add (child rules/∼=) to hpp model.reaction rules

// Add population-mapping rules (Def. 29)
foreach s ∈ S do

add
(

(s), (λ(s)), ∅, klump

)
to hpp model.reaction rules
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Let X be an ensemble of complexes and r a rule with reactant patterns R1, R2, . . . , RN .

Furthermore, let s be a set of “structured” species, u be a set of “unstructured” species,

and m : s → u be a one-to-one correspondence of structured species in s and unstructured

species in u. Each unstructured species in u is complex consisting of a single molecule, whose

type is not in the original model, that has no components.

Suppose Xpo ⊆ {x ∈ X : ∃s ∈ s such that x ∼= s} ⊆ X, and let Xpa = X \ Xpo. let

H = (Xpo, Ss(Xpa) be the representation of X as a hybrid ensemble. In words, Xpo is a

subset of the complexes in X that will be represented by an ensemble of species, and Xpa is

the subset of complexes represented as an ensemble of complexes. Take note that we have

not assumed that all complexes belonging to species in s are in Xpo.

We begin by partitioning the set of rule instances of r in X into the various classes

of particle-particle interactions, particle-population interactions, and population-population

interactions. To be precise, let (Yn)Nn=1 ∈
∏N

n=1{Xpa, Xpo} and define the subset of rule

instances where embedding n targets a complex in Yn

rinst(r; (Yn)) =
{(

(φn), kr∆
(
(φn)

))
: ∀n (φn ∈ emb(Rn, Yn))

}
.

Observe that the subsets rinst
(
r; (Yn)

)
partition the set of rule instances since:⋃

(Yn)∈
∏N
n=1{Xpa,Xpo}

rinst
(
r; (Yn)

)
= rinst

(
r,X

)
and

(Yn) 6= (Zn) =⇒ rinst
(
r; (Yn)

)
∩ rinst

(
r; (Zn)

)
= ∅.

Since the general notation is tedious, let us illustrate with a bimolecular reaction rule

(which is also the first interesting case):

rinst
(
r,X

)
= rinst

(
r; (Xpa, Xpa)

)
∪ rinst

(
r; (Xpa, Xpo)

)
∪ rinst

(
r; (Xpo, Xpa)

)
∪ rinst

(
r; (Xpo, Xpo)

)
=
{(
φ1, φ2, k∆

(
(φ1, φ2)

))
: φ1 ∈ emb(R1, Xpa) , φ2 ∈ emb(R2, Xpa)

}⋃
{(
φ1, φ2, k∆

(
(φ1, φ2)

))
: φ1 ∈ emb(R1, Xpo) , φ2 ∈ emb(R2, Xpa)

}⋃
{(
φ1, φ2, k∆

(
(φ1, φ2)

))
: φ1 ∈ emb(R1, Xpa) , φ2 ∈ emb(R2, Xpo)

}⋃
{(
φ1, φ2, k∆

(
(φ1, φ2)

))
: φ1 ∈ emb(R1, Xpo) , φ2 ∈ emb(R2, Xpo)

}
.
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Notice that the the first term corresponds to rule instances among particles in Xpa, the second

and third terms correspond to mixed interactions among particles in Xpa and populations

of Xpo, and the the fourth term corresponds to interactions among populations in Xpo.

Next, let us group rule instances by the species of the target complexes in Xpo:

rinst
(
r,X

)
= . . . ={(
φ1, φ2, k∆

(
(φ1, φ2)

))
|φ1 ∈ emb(R1, Xpa) , φ2 ∈ emb(R2, Xpa)

}⋃
⋃
s∈s

{
(
φ1, φ2, k∆

(
(φ1, φ2)

))
|φ1 ∈ emb(R1, [s|Xpo]) , φ2 ∈ emb(R2, Xpa)}

⋃
⋃
s∈s

{
(
φ1, φ2, k∆

(
(φ1, φ2)

))
|φ1 ∈ emb(R1, Xpa) , φ2 ∈ emb(R2, [s|Xpo])}

⋃
⋃
s1∈s

⋃
s2∈s

{
(
φ1, φ2, k∆

(
(φ1, φ2)

))
|φ1 ∈ emb(R1, [s1|Xpo]) , φ2 ∈ emb(R2, [s2|Xpo])},

recalling that emb(Rn, [s|Xpo]) is the set of embeddings from Rn into any complex x ∈ Xpo

such that x ∼= s.

And now we further partition the rule instances by the specific embeddings:

rinst
(
r,X

)
= . . . =

{(φ1, φ2, kδ) : φ1 ∈ emb(R1, Xpa) , φ2 ∈ emb(R2, Xpa)}
⋃

⋃
s∈s

⋃
φ1∈emb(R1,s)

⋃
x1∈Xpo

{(ids,x1 ◦ φ1, φ2, kδ) : φ2 ∈ emb(R2, Xpa)}
⋃

⋃
s∈s

⋃
φ2∈emb(R2,s)

⋃
x2∈Xpo

{(φ1, ids,x2 ◦ φ2, kδ) : φ1 ∈ emb(R1, Xpa)}
⋃

⋃
s1∈s

⋃
φ1∈emb(R1,s1)

⋃
x1∈Xpo

⋃
s2∈s

⋃
φ2∈emb(R1,s1)

⋃
x2∈Xpo

{(ids1,x1 ◦ φ1, ids2,x2 ◦ φ2, kδ)} ,

where ids,x is the map from the complex representing species s into complex x (which belongs

to s) induced by an isomorphism of s and x.
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Next, we can reformulate our rule instances in terms hybrid rule instances of r in the

hybrid ensemble representation, H = (Xpa, S(Xpo)):

rinst
(
r,X

)
= . . . ≡{(

φ1, φ2, kη
(
φ1, φ2

))
: φ1 ∈ emb(R1, Xpa) , φ2 ∈ emb(R2, Xpa)

}⋃
⋃

s∈S(Xpo)

⋃
φ1∈emb(R1,s)

{
(
φ1, φ2, kη

(
φ1, φ2

))
: φ2 ∈ emb(R2, Xpa)}

⋃
⋃

s∈S(Xpo)

⋃
φ2∈emb(R2,s)

{
(
φ1, φ2, kη

(
φ1, φ2

))
: φ1 ∈ emb(R1, Xpa)}

⋃
⋃

s1∈S(Xpo)

⋃
φ1∈emb(R1,s1)

⋃
s2∈S(Xpo)

⋃
φ2∈emb(R2,s2)

{
(
φ1, φ2, kη

(
φ1, φ2

))
}.

Recall that if s is a species, then emb(R2, s) is the set of embeddings into a representative

complex for species s, and not the set of embeddings into all complexes belonging to species

s. The population of complexes belonging to species s is factored into the η function.

The reader may have noticed that we have a set of hybrid rule instances, but we have

not specified the corresponding hybrid rules. Now we equate each of the above hybrid rule

instance with the equivalent hybrid rule that generates those instances.

rinst
(
r,X

)
= . . . ≡

rinst
(
r|(idR1 , idR2), H

)⋃
⋃
s∈s

⋃
φ1∈emb(R1,s)

rinst
(
r|(φ1, idR2), H

)⋃
⋃
s∈s

⋃
φ2∈emb(R2,s)

rinst
(
r|(idR1 , φ2), H

)⋃
⋃
s1∈s

⋃
φ1∈emb(R1,s1)

⋃
s2∈s

⋃
φ2∈emb(R2,s2)

rinst
(
r|(φ1, φ2), H

)
.

Regrouping terms, we find the the hybrid rules are generated from the restriction of rule r

by bundles in the cartesian product of two embedding sets

rinst
(
r,X

)
= . . . ≡

rinst
(
r|(φ1, φ2), H

)
:

φ1 ∈ {idR1}
⋃
s1∈s

emb(R1, s1) , φ2 ∈ {idR2}
⋃
s2∈s

emb(R2, s2)

}
.
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The embedding sets are precisely those used in the first step of PNE: the identity embedding

of the reactant pattern in itself along with every embedding of the reactant pattern in the

structured population species.

Therefore, the PNE rule set given by hybrid rules{
r|(φ1, φ2) : φ1 ∈ {idR1}

⋃
s1∈s

emb(R1, s1) , φ2 ∈ {idR2}
⋃
s2∈s

emb(R2, s2)

}
,

operating on the hybrid ensemble H, is equivalent to the orignal rule r operating on the

ensemble of complexes X.

The final step of PNE is substituting instances of structured population species in reac-

tion rules with the corresponding unstructured species. Since the map between structured

and unstructured representations is one-to-one and onto, there is no loss of fidelity due to

sustitution of one for the other.

E.2.1 The lumping rate constant and exactness of PNE

The above proof does not assume that all complexes with species in s belong to Xpo. Conse-

quently, the HPP simulation is equivalent to the network-free simulation even if the lumping

rate is finite. However, equivalence does depend upon inclusion of all particle-particle and

particle-population rules. As noted in the main text, PNE excludes such rules from the

final set if the reactant pattern is isomorphic to a population species. This is done for prag-

matic reasons, since those rules add extra overhead to the simulation. If the lumping rate

is sufficiently large, lumpable particles are rapidly converted to the population form and the

results are sufficiently accurate to appear statistically identical. This being the case, we felt

the overhead of extra rules was a greater burden than a slight loss in accuracy. If loss in

accuracy is a concern, the lumping rate may be set to an infinite value, i.e. instantaneous

lumping.
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APPENDIX F

GENERATING AND SIMULATING HPP MODELS WITH BNG/NFSIM

From a BioNetGen user’s perspective, once a set of species has been selected for lumping,

converting a standard BNGL model into an HPP model requires only two additional steps.

First, the population-mapping rules (see “Population species and population-mapping rules”

in the main text) must be specified within a population maps block of the BNGL model

file. Note that this is the only place where the population species should be specified, they

should not be included in the molecule types or seed species blocks (Sec. 1.4.8). The

lumping rate constant should be set to a large value (NFsim does not currently support

infinite rates) and can be specified either as a number or as a reference to a parameter in

the parameters block.

Next, the generate hybrid model() action must be invoked after the model specifica-

tion. Arguments are passed to generate hybrid model() in a comma-separated list enclosed

by curly braces and each argument/value pair has the form argument=>value. Allowed ar-

guments are:

• overwrite=>0/1: Disable/enable automatic overwriting of any existing hybrid model

(default: 0).

• execute=>0/1: Disable/enable execution of actions after generation of hybrid model

(default: 0).

• verbose=>0/1: Disable/enable verbose output during hybrid model generation (default:

0).
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• suffix=>"string": Set the HPP model suffix to value of “string” (default: “hpp”).

• actions=>["action1","action2",. . .]: Define a list of actions (as strings) to be in-

cluded at the end of the HPP model file.

• exact=>0/1: Disable/enable exact mode (default: 0); BioNetGen 2.2.3 or later.

A call to generate hybrid model() instructs BioNetGen to generate and write the HPP

model to the file [model] [suffix].bngl, where [model] is the original BNGL filename and

[suffix] is “hpp” by default and can be changed by the user using the suffix argument.

In generating the HPP model, BioNetGen automatically appends all of the population

species defined in the population maps block to the original molecule types block, each

followed by a population keyword to distinguish it as a population type. The seed species

block is modified by replacing any structured species selected for lumping with their pop-

ulation species counterparts. The model observables are also modified to account for the

introduction of the population species, which is straightforward. Observables are collections

of one or more patterns [60, 61]. Therefore, each structured species selected for lumping is

matched against each pattern in each observable and if a match is found then the associated

population species is added to the observable list. Finally, PNE is performed to obtain the

expanded rule set, to which the population-mapping rules are appended in the reaction

rules block. A before-and-after illustration of this process can be seen by comparing the

original (Text S2) and partially-expanded (Text S3) versions of the simple receptor activation

model considered in “Partial network expansion” and Figs. 2 and 3 of the main text.

If execute=>1 is passed to generate hybrid model(), BioNetGen will additionally per-

form any actions on the HPP model that are listed in the actions argument. For ex-

ample, a NFsim simulation can be run through BioNetGen by calling the simulate nf()

action [61,62], e.g.,

generate_hybrid_model({execute=>1, \

actions=>["simulate_nf({t_end=>10,n_steps=>100})"]}).

Alternatively, a XML encoding of the HPP model can be obtained by invoking the

writeXML() action:

generate hybrid model({execute=>1,actions=>["writeXML()"]}).
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This allows NFsim simulations to be run in standalone mode (see Refs. [53, 73]). Note that

NFsim version 1.11 or later is required to run HPP simulations.
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APPENDIX G

HPP ILLUSTRATIVE EXAMPLE, COMPLETE BNGL SOURCE

G.1 ORIGINAL MODEL

## recAct_example.bngl

##

## Simple model for illustration of HP/P method.

##

## This model is a simplified variant of the EGF receptor

## activation model published in:

## ML Blinov , JR Faeder , B Goldstein , WS Hlavacek.

## "A network model of early events in epidermal growth factor

## receptor signaling that accounts for combinatorial complexity ."

## BioSystems 83, 136 -151 (2006).

begin model
begin parameters

# fraction of cell , no units

f 0.10

# Avogadro ’s number , /mol

NA 6.0221 e23

# Volume , liters

V 1e-12*f

# initial species counts

L0 500e-9*NA*V

R0 100e-9*NA*V

A0 100e-9*NA*V

B0 100e-9*NA*V

C0 100e-9*NA*V

BC0 100e-9*NA*V

# rate constants , units /s

kp1 10e6/(NA*V)

km1 1.0

k2 1.0

k3 1.0

kp4 10e6/(NA*V)
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km4 1.0

kp5 10e6/(NA*V)

km5 1.0

kp6 10e6/(NA*V)

km6 1.0

k7 1.0

k8 1.0

kp9 10e6/(NA*V)

km9 1.0

# population lumping parameter

klump 10000

end parameters
begin molecule types

L(r) # ligand molecule

R(l,a∼0∼P,b∼0∼P) # transmembrane receptor

A(r,b∼0∼P) # cytosolic mediator A

B(r,c) # cytosolic mediator B

C(b) # cytosolic mediator C

end molecule types
begin seed species

L(r) L0

R(l,a∼0,b∼0) R0

A(r,b∼0) A0

B(r,c) B0

C(b) C0

B(r,c!1).C(b!1) BC0

end seed species
begin observables

Molecules LR L(r!1).R(l!1)

Molecules Rp R(a∼P!?) R(b∼P!?)
Molecules Ap A(b∼P!?)
Molecules RC R(b∼P!1).B(r!1,c!2).C(b!2),\

R(a∼P!1).A(r!1,b∼P!2).B(r!2,c!3).C(b!3)
# total counts (conserved)

Molecules Ltot L()

Molecules Rtot R()

Molecules Atot A()

Molecules Btot B()

Molecules Ctot C()

end observables
begin reaction rules

# ligand receptor binding

L(r) + R(l) <-> L(r!1).R(l!1) kp1 , km1

# ligand induced receptor phosphorylation

L(r!1).R(l!1,a∼0) -> L(r!1).R(l!1,a∼P) k2

L(r!1).R(l!1,b∼0) -> L(r!1).R(l!1,b∼P) k2

# receptor dephosphorylation

R(a∼P) -> R(a∼0) k3

R(b∼P) -> R(b∼0) k3

# phosphorylated receptor binding A

R(a∼P) + A(r) <-> R(a∼P!1).A(r!1) kp4 , km4

# phosphorylated receptor binding B

R(b∼P) + B(r) <-> R(b∼P!1).B(r!1) kp5 , km5

# B binding C
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B(c) + C(b) <-> B(c!1).C(b!1) kp6 , km6

# bound A phosphorylation

R(a∼P!1).A(r!1,b∼0) -> R(a∼P!1).A(r!1,b∼P) k7

# A dephosphorylation

A(b∼P) -> A(b∼0) k8

# phosphorylated A binding B

A(b∼P) + B(r) <-> A(b∼P!1).B(r!1) kp9 , km9

end reaction rules
begin population maps

L(r) -> P1() klump

A(r,b∼0) -> P2() klump

A(r,b∼P) -> P3() klump

A(r,b∼P!1).B(r!1,c) -> P4() klump

A(r,b∼P!1).B(r!1,c!2).C(b!2) -> P5() klump

B(r,c) -> P6() klump

B(r,c!1).C(b!1) -> P7() klump

C(b) -> P8() klump

end population maps

end model

## model actions ##

saveConcentrations ()

# simulate NF

setParameter ("f" ,0.01)

resetConcentrations ()

simulate_nf ({ suffix=>"nf",t_end=>40, n_steps =>120,gml = >1000000 , verbose =>1})

# generate hybrid particle/population model and simulate

setParameter ("f" ,0.01)

resetConcentrations ()

generate_hybrid_model ({ overwrite=>1,verbose=>1,execute=>1,\

actions =>[" simulate_nf ({ t_end=>40,n_steps =>120,\

gml = >1000000 , verbose = >1})"]})

# generate reaction network and simulate SSA

generate_network ({ overwrite =>1})

setParameter ("f" ,0.01)

resetConcentrations ()

simulate_ssa ({ suffix=>"ssa",t_end=>40, n_steps = >120})

G.2 HPP MODEL

# recAct_example_hpp.bngl

#

# Created by BioNetGen 2.2.3

substanceUnits (" Number ")

begin model
begin parameters

f 0.01

NA 6.0221 e23

V 1e-12*f
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L0 (500e-9*NA)*V

R0 (100e-9*NA)*V

A0 (100e-9*NA)*V

B0 (100e-9*NA)*V

C0 (100e-9*NA)*V

BC0 (100e-9*NA)*V

kp1 10e6/(NA*V)

km1 1.0

k2 1.0

k3 1.0

kp4 10e6/(NA*V)

km4 1.0

kp5 10e6/(NA*V)

km5 1.0

kp6 10e6/(NA*V)

km6 1.0

k7 1.0

k8 1.0

kp9 10e6/(NA*V)

km9 1.0

klump 10000

end parameters
begin molecule types

A(r,b∼0∼P)
P5() population

P7() population

P2() population

P1() population

B(r,c)

P6() population

C(b)

P3() population

R(l,a∼0∼P,b∼0∼P)
P8() population

P4() population

L(r)

end molecule types
begin observables

Molecules LR L(r!1).R(l!1)

Molecules Rp R(a∼P!?), R(b∼P!?)
Molecules Ap A(b∼P!?), P3(), P4(), P5()

Molecules RC R(b∼P!1).B(r!1,c!2).C(b!2), \

R(a∼P!1).A(r!1,b∼P!2).B(r!2,c!3).C(b!3)
Molecules Ltot L() P1()

Molecules Rtot R()

Molecules Atot A() P2() P3() P4() P5()

Molecules Btot B() P4() P5() P6() P7()

Molecules Ctot C() P5() P7() P8()

end observables
begin species

P1() L0

R(a∼0,b∼0,l) R0

P2() A0

P6() B0
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P8() C0

P7() BC0

P3() 0

P4() 0

P5() 0

end species
begin reaction rules

Rule1_v1: P1() + R(l) -> L(r!1).R(l!1) kp1

Rule1r_v1: L(r!1).R(l!1) -> P1() + R(l) km1 DeleteMolecules

Rule2_v1: L(r!1).R(a∼0,l!1) -> L(r!1).R(a∼P,l!1) k2

Rule3_v1: L(r!1).R(b∼0,l!1) -> L(r!1).R(b∼P,l!1) k2

Rule4_v1: R(a∼P) -> R(a∼0) k3

Rule5_v1: R(b∼P) -> R(b∼0) k3

Rule6_v1: R(a∼P) + A(r) -> A(r!1).R(a∼P!1) kp4

Rule6_v2: R(a∼P) + P2() -> A(b∼0,r!1).R(a∼P!1) kp4

Rule6_v3: R(a∼P) + P3() -> A(b∼P,r!1).R(a∼P!1) kp4

Rule6_v4: R(a∼P) + P4() -> A(b∼P!1,r!2).B(c,r!1).R(a∼P!2) kp4

Rule6_v5: R(a∼P) + P5() -> A(b∼P!1,r!2).B(c!3,r!1).C(b!3).R(a∼P!2) kp4

Rule6r_v1: A(r!1).R(a∼P!1) -> R(a∼P) + A(r) km4

Rule7_v1: R(b∼P) + B(r) -> B(r!1).R(b∼P!1) kp5

Rule7_v2: R(b∼P) + P6() -> B(c,r!1).R(b∼P!1) kp5

Rule7_v3: R(b∼P) + P7() -> B(c!1,r!2).C(b!1).R(b∼P!2) kp5

Rule7r_v1: B(r!1).R(b∼P!1) -> R(b∼P) + B(r) km5

Rule8_v1: B(c) + P8() -> B(c!1).C(b!1) kp6

Rule8_v2: P4() + P8() -> P5() kp6

Rule8_v3: P6() + P8() -> P7() kp6

Rule8r_v1: B(c!1).C(b!1) -> B(c) + P8() km6 DeleteMolecules

Rule8r_v2: P5() -> P4() + P8() km6

Rule8r_v3: P7() -> P6() + P8() km6

Rule9_v1: A(b∼0,r!1).R(a∼P!1) -> A(b∼P,r!1).R(a∼P!1) k7

Rule10_v1: A(b∼P) -> A(b∼0) k8

Rule10_v2: P3() -> P2() k8

Rule11_v1: A(b∼P) + B(r) -> A(b∼P!1).B(r!1) kp9

Rule11_v2: A(b∼P) + P6() -> A(b∼P!1).B(c,r!1) kp9

Rule11_v3: A(b∼P) + P7() -> A(b∼P!1).B(c!2,r!1).C(b!2) kp9

Rule11_v4: P3() + B(r) -> A(b∼P!1,r).B(r!1) kp9

Rule11_v5: P3() + P6() -> P4() kp9

Rule11_v6: P3() + P7() -> P5() kp9

Rule11r_v1: A(b∼P!1).B(r!1) -> A(b∼P) + B(r) km9

Rule11r_v2: P4() -> P3() + P6() km9

Rule11r_v3: P5() -> P3() + P7() km9

MapRule0: L(r) -> P1() klump

MapRule1: A(b∼0,r) -> P2() klump

MapRule2: A(b∼P,r) -> P3() klump

MapRule3: A(b∼P!1,r).B(c,r!1) -> P4() klump

MapRule4: A(b∼P!1,r).B(c!2,r!1).C(b!2) -> P5() klump

MapRule5: B(c,r) -> P6() klump

MapRule6: B(c!1,r).C(b!1) -> P7() klump

MapRule7: C(b) -> P8() klump

end reaction rules
end model

## model actions ##

simulate_nf ({t_end=>40, n_steps =>120,gml = >1000000 , verbose =>1})
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APPENDIX H

SEPSIS MODELS, COMPLETE BNGL SOURCE

H.1 SEPSIS MODEL 1

# Sepsis Model #1, BNGL format

version ("2.2.3")

begin model
begin parameters

# compartment volumes. See "the Laboratory Rat". Sharp , et al. 1998.

# 250 g rat , extracell. fluid: 74.2 ml (incl. plasma), plasma: 7.8 ml

volB 7.8 # ml

volP 7.8 # ml

volT 58.6 # ml

# initial conecentrations

P0 2000 # arbitrary units (a.u.)/ml

M0 50 # a.u./ml

E0 50 # a.u./ml

N0 500 # a.u./ml

# pathogen

sP_P 0.168 # pathogen growth rate , /hr

maxP 1e5 # max pathogen , a.u./ml

dP_P sP_P/maxP # pathogen competition , /(a.u./ml)/hr

# macrophage/pathogen

bMP 0.006 # path -macro binding rate , /(a.u./ml)/hr

sL_M 7.98 # IL1 production by macroph , pmol/hr/a.u.

dP_M 2.76 # path. elimination rate , after binding , /hr

# neutrophil/pathogen

bNP 0.006 # path -neutr binding rate , /(a.u./ml)/hr

dP_N 2.76 # path. elimination rate , after binding , /hr

sA_N 6.0 # IL1ra production by neutro., pmol/hr/a.u.

# neutrophil source/death

sN_B 30.0 # source of neutrophils in blood , a.u./hr

dN 0.06 # decay rate of neutr. /hr

# IL1 ,IL1ra receptor binding

bLE 0.0046 # IL1 -IL1R binding rate , /pM/hr (Kd = 150pM)
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uLE 0.70 # IL1 -IL1R unbinding rate , /hr

# endothelial cells

aE_L 600. # endo. activation rate , step 1, /hr (fast)

aE 0.348 # endo. activation rate , step 2, /hr (slow)

dE 0.174 # rate of endo. de-activation , /hr

# neutrophil recruitment

bEN 0.00498 # endo -neutr binding rate , /(a.u./ml)/hr

tN_E 4.14 # migration rate , /hr

# cytokine "leak" between tissues to blood

tL_PB 1.4 # transport rate IL1 ,IL1ra from P to B, /hr

tL_TB tL_PB # transport rate IL1 ,IL1ra from P to B, /hr

tL_BP volP/volB*tL_PB # transport rate IL1 ,IL1ra from B to P /hr

tL_BT volT/volB*tL_TB # transport rate IL1 ,IL1ra from B to T /hr

# cytokine elimination

dL 1.4 # elimination rate IL1 ,IL1ra , /hr

end parameters
begin compartments

B 3 volB # blood

eP 2 volP /10 B # peritoneal endothelium

P 3 volP eP # peritoneum

eT 2 volT /10 B # tissue endothelium

T 3 volT eT # tissue

end compartments
begin molecule types

Path(ph) # pathogen

Mphage(p) # macrophage

IL1(b) # ligand (IL1)

IL1ra(b) # receptor antagonist (IL1ra)

Neutro(p,e) # neutrophil

Endo(n,a∼0∼1∼2,r,r,r) # endothelial cell

end molecule types
begin seed species

@P: Path(ph) P0*volP

@P: Mphage(p) M0*volP

@T: Mphage(p) M0*volT

@eP: Endo(n,a∼0,r,r,r) E0*volP

@eT: Endo(n,a∼0,r,r,r) E0*volT

@B: Neutro(p,e) N0*volB

end seed species
begin observables

Molecules Path_P @P:Path()

Molecules Neutr_P @P:Neutro ()

Molecules Neutr_B @B:Neutro ()

Molecules Neutr_T @T:Neutro ()

Molecules IL1_P @P:IL1(b)

Molecules IL1_B @B:IL1(b)

Molecules IL1_T @T:IL1(b)

Molecules IL1ra_P @P:IL1ra(b)

Molecules IL1ra_B @B:IL1ra(b)

Molecules IL1ra_T @T:IL1ra(b)

Molecules Act_Endo_P @eP:Endo(a∼2)
Molecules Total_Endo_P @eP:Endo()

Molecules Act_Endo_T @eT:Endo(a∼2)
Molecules Total_Endo_T @eT:Endo()
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end observables
begin reaction rules

# logistic pathogen growth

Path(ph) -> Path(ph) + Path(ph) sP_P

Path(ph) + Path(ph) -> Path(ph) dP_P

# macrophage binding P, cytokine prod., and phagocytosis

Path(ph) + Mphage(p) -> Path(ph!1). Mphage(p!1) bMP

Mphage(p!1). Path(ph!1) -> Mphage(p!1). Path(ph!1) + IL1(b) sL_M

Path(ph!1). Mphage(p!1) -> Mphage(p) dP_M

# neutrophil binds P and phagocytoses

Path(ph) + Neutro(p,e) -> Path(ph!1). Neutro(p!1,e) NP

Path(ph!1). Neutro(p!1) -> Neutro(p) dP_N

# neutrophils secrete IL1ra after migration

Neutro@P -> Neutro@P + IL1ra(b)@P sA_N

Neutro@T -> Neutro@T + IL1ra(b)@T sA_N

# source and decay of neutrophils

0 -> Neutro(p,e)@B sN_B

Neutro -> 0 dN DeleteMolecules

# binding of IL1 ,IL1ra to endothelial cells

IL1(b)@P + Endo(r) <-> IL1(b!1)@P.Endo(r!1) bLE , uLE

IL1ra(b)@P + Endo(r) <-> IL1ra(b!1)@P.Endo(r!1) bLE , uLE

IL1(b)@T + Endo(r) <-> IL1(b!1)@T.Endo(r!1) bLE , uLE

IL1ra(b)@T + Endo(r) <-> IL1ra(b!1)@T.Endo(r!1) bLE , uLE

# activation/deactivation of endothelial cells

Endo(a∼0,r!1,r!2). IL1(b!1). IL1(b!2) \

-> Endo(a∼1,r!1,r!2). IL1(b!1). IL1(b!2) aE_L

Endo(a∼1) -> Endo(a∼2) aE

Endo(a∼2) -> Endo(a∼0) dE

# binding of neutrophils to activated endothelium

Endo(n,a∼2) + Neutro(e)@B -> Endo(n!1,a∼2). Neutro(e!1)@B bEN

# migration of neutrophils across enothelium

Endo(n!1) @eP.Neutro(e!1)@B -> Endo(n)@eP + Neutro(e)@P tN_E

Endo(n!1) @eT.Neutro(e!1)@B -> Endo(n)@eT + Neutro(e)@T tN_E

# leaking IL1 ,IL1ra to blood

IL1(b)@P <-> IL1(b)@B tL_PB , tL_BP

IL1(b)@T <-> IL1(b)@B tL_TB , tL_BT

IL1ra(b)@P <-> IL1ra(b)@B tL_PB , tL_BP

IL1ra(b)@T <-> IL1ra(b)@B tL_TB , tL_BT

# elimination of IL1 ,IL1ra from blood

IL1(b)@B -> 0 dL

IL1ra(b)@B -> 0 dL

end reaction rules
end model

H.2 SEPSIS MODEL 2

# Sepsis Model #2A, BNGL format

# Neutrophil recruitment is linear in tissue cytokine

# with inhibition by blood cytokine

version ("2.2.3")

begin model
begin parameters
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# volume params

vP 15.6 # ml , interstitial volume , Peritoneal compartment

vB 15.6 # ml , plasma volume , Blood compartment

vL 15.6 # ml , interstitial volumne , Lung compartment

# init conditions

mT0 1e2 # 10^3/ml , resident macrophage in tissue

nB0 4.5e3 # 10^3/ml , baseline circulating neutrophils

CLP0 1 # a.u./ml , initial CLP condition

# CLP healrate

dclp 0.12 # /hr , CLP progression rate

# pathogen params

kpclp 4200 # 10^3/hr , source of pathogen from CLP

kp 0.174 # /hr , pathogen growth parameter

pmax 1e6 # 10^3/ml , maximum pathogen (logistic form)

kpn 3 # /hr , max elimination rate of pathogen (per neutrophil)

xpn 1e3 # 10^3/ml , conc. of pathogen resulting in half -max elim.

# cytokine params

kc 6 # /ml/hr , max production of cytokine

xcp 1e3 # 10^3/ml , conc. of pathogen for half -max cytokine prod.

xcn 1e3 # 10^3/ml , conc. of neutro. for half -max cytokine prod.

dcT 0.36 # /hr , cytokine elimination rate in tissue

dcB 1.0 # /hr , elimination rate in blood

kcBT 0.36 # /hr , cytokine transport rate between blood to tissue

# neutrophil params

dn 0.06 # /hr , death rate of neutrophils

knc 300 # 10^3/hr/ml , max neutrophil migration (/ml of tissue)

xnc 1 # /ml , conc. of tissue cytokine for half -max neutr. migr.

incB 1 # /ml , conc. of blood cytokine for

# half -max inhibition of neutrophil migr.

end parameters
begin molecule types

Path()

Cyto()

Mphage ()

Neutro ()

CLP(s∼0∼1)
end molecule types
begin compartments

B 3 vB # blood

P 3 vP # peritoneum

L 3 vL # lung

end compartments
begin seed species

Path@P 0

Cyto@P 0

Cyto@B 0

Cyto@L 0

Mphage@P mT0*vP

Mphage@L mT0*vL

Neutro@P 0

$Neutro@B nB0*vB

Neutro@L 0

CLP@P(s∼0) CLP0*vP

end seed species
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begin observables
Molecules PathP Path@P

Molecules CytoP Cyto@P

Molecules CytoB Cyto@B

Molecules CytoL Cyto@L

Molecules CLP CLP@P(s∼1)
Molecules NeutroP Neutro@P

Molecules NeutroB Neutro@B

Molecules NeutroL Neutro@L

end observables
begin reaction rules

# CLP "healing"

CLP(s∼0) -> CLP(s∼1) dclp

CLP(s∼1) -> 0 dclp

# source of pathgoen

CLP(s∼1) -> CLP(s∼1) + Path kpclp

# logistic growth

Path -> Path + Path kp*(1-( PathP/vP)/pmax)

# phagocytosis by resident phagocytes

Mphage + Path -> Mphage kpn/(xpn + PathP/vP)

# phagocytosis by recruited phagocytes

Neutro + Path -> Neutro kpn/(xpn + PathP/vP)

# cytokine production (due to Pathogen presence or Neutrophil activity)

Mphage@P -> Mphage@P + Cyto@P \

kc/mT0 *(( PathP/vP/xcp )^2 + (NeutroP/vP/xcn )^2) \

/(1 + (PathP/vP/xcp)^2 + (NeutroP/vP/xcn )^2)

Mphage@L -> Mphage@L + Cyto@L \

kc/mT0*( NeutroL/vL )^2/(( xcn^2 + NeutroL/vL)^2)

# cytokine "leak" into blood compartment

Cyto@P <-> Cyto@B kcBT , kcBT*vP/vB

Cyto@L <-> Cyto@B kcBT , kcBT*vL/vB

# cytokine elimination

Cyto@P -> 0 dcT

Cyto@B -> 0 dcB

Cyto@L -> 0 dcT

# neutrophil recruitment

Neutro@B -> Neutro@P \

(knc*incB/xnc)*( CytoP/vP)/( incB + (CytoB/vB))*vP/(nB0*vB)

Neutro@B -> Neutro@L \

(knc*incB/xnc)*( CytoL/vL)/( incB + (CytoB/vB))*vL/(nB0*vB)

# neutrophil elimination

Neutro -> 0 dn

end reaction rules
end model
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