
A USER-DRIVEN ANNOTATION FRAMEWORK FOR

SCIENTIFIC DATA

by

Qinglan Li

Bachelor of Engineering, Northern Jiaotong University, 1996

Master of Science, Central Michigan University, 2002

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences

in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2013

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES, DEPARTMENT OF COMPUTER SCIENCE

This dissertation was presented

by

Qinglan Li

It was defended on

June 19th 2013

and approved by

Alexandros Labrinidis, University of Pittsburgh

Panos K. Chrysanthis, University of Pittsburgh

G. Elisabeta Marai, University of Pittsburgh

Christos Faloutsos, Carnegie Mellon University

Dissertation Advisors: Alexandros Labrinidis, University of Pittsburgh,

Panos K. Chrysanthis, University of Pittsburgh

ii

A USER-DRIVEN ANNOTATION FRAMEWORK FOR SCIENTIFIC DATA

Qinglan Li, PhD

University of Pittsburgh, 2013

Annotations play an increasingly crucial role in scientific exploration and discovery, as the amount

of data and the level of collaboration among scientists increases. There are many systems today

focusing on annotation management, querying, and propagation. Although all such systems are

implemented to take user input (i.e., the annotations themselves), very few systems are user-driven,

taking into account user preferences on how annotations should be propagated and applied over

data. In this thesis, we propose to treat annotations as first-class citizens for scientific data by

introducing a user-driven, view-based annotation framework. Under this framework, we try to

resolve two critical questions: Firstly, how do we support annotations that are scalable both from a

system point of view and also from a user point of view? Secondly, how do we support annotation

queries both from an annotator point of view and a user point of view, in an efficient and accurate

way?

To address these challenges, we propose theVIew-base annotation Propagation(ViP) frame-

work to empower users to express their preferences over the time semantics of annotations and

over the network semantics of annotations, and define three query types for annotations. To effi-

ciently support such novel functionality, ViP utilizes database views and introduces new annotation

caching techniques. The use of views also brings a more compact representation of annotations,

making our system easier to scale. Through an extensive experimental study on a real system

(with both synthetic and real data), we show that the ViP framework can seamlessly introduce

user-driven annotation propagation semantics while at the same time significantly improving the

performance (in terms of query execution time) over the current state of the art.

iii

Keywords: User-driven, Annotation, Scientific Data, Scalable Data, Big Data, Annotation Queries,

Caching, DBMS.

iv

TABLE OF CONTENTS

PREFACE .xiv

1.0 MOTIVATION . 1

1.1 Problem Statement. 4

1.2 Using Views . 5

1.3 Contributions and Evaluation. 7

1.4 RoadMap. 7

2.0 SYSTEM MODEL . 9

2.1 Annotation Representation Methods. 9

2.2 System Architecture. .11

2.3 Annotation-object Diagram. .12

2.4 Summary. .13

3.0 RELATED WORK .14

3.1 Annotations .14

3.2 Data Provenance and Annotations. 15

3.3 User-driven Data Management. 16

3.4 Annotation Management Features. 17

3.4.1 Standard Annotation Management Features. 17

3.4.2 User-driven Annotation Management Features. 18

3.5 Social Networks. .19

3.6 Big Data .20

3.6.1 NoSQL Systems. .21

3.6.2 Big Data Computing Services. 21

v

3.6.3 Big Data Sets. .22

3.7 Summary. .22

4.0 THE VIP FRAMEWORK - ANNOTATION POINT OF VIEW 23

4.1 User-driven Time Semantics. .23

4.2 User-driven Network Semantics. 27

4.3 User-driven Access Control on Annotation Views. 29

4.4 User-driven Access Control on Annotation Paths. 31

4.4.1 User-driven Access Control on the Paths. 31

4.4.2 Path Strength/weight Definition and Management. 33

4.5 ViP-SQL Definition - Annotation. 35

4.6 Summary. .37

5.0 THE VIP FRAMEWORK - QUERY POINT OF VIEW 38

5.1 Views and Queries. .38

5.1.1 What Views Do We Have?. 38

5.1.2 What Results Do Users Want?. 39

5.1.3 ViP-SQL Definition - Query . 41

5.2 Query Processing. .42

5.2.1 Query Type I: Query Data with associated Annotations. 43

5.2.1.1 Query Processing. 43

5.2.1.2 Caching to Optimize Annotation Search. 43

5.2.1.3 Cache Replacement Algorithms. 48

5.2.2 Query Type II: Query Annotations with associated data. 51

5.2.3 Query Type III: Query Data and Annotations. 53

5.2.3.1 Keyword Search. 55

5.3 Summary. .61

6.0 THE VIP FRAMEWORK - PROOF OF CONCEPT IMPLEMENTATION 63

6.1 User-driven Time Semantics. .63

6.2 User-driven Network Semantics. 63

6.2.1 Lazy/eager Annotation Propagation Algorithms. 64

6.2.2 Indexing on Annotation Views and Annotation Paths. 64

vi

6.2.3 Cache Management. .65

6.2.4 Private/public Views and Paths Management. 65

6.3 Annotations Management. .66

6.3.1 Inserting Annotations. .66

6.3.2 Deleting Annotations. .66

6.3.3 Implementing Auxiliary Tables. 67

6.4 Working with AstroShelf .67

6.5 Big Data .70

6.5.1 Our Solution. .70

6.6 User Interface. .72

6.6.1 Define Annotations and Annotation Paths. 74

6.6.2 Annotation Browsing and Searching. 76

6.6.3 System Performance Statistics. 77

6.7 Summary. .78

7.0 EVALUATION OF THE VIP FRAMEWORK . 79

7.1 Experimental Setup. .79

7.1.1 Description of Data Set 1 (Figure25, 26, and Table6, 7) 79

7.1.2 Description of Data Set 2 (Table8 and 9) 82

7.1.3 Description of Data Set 3 (Figure27, 28and Table10) 83

7.2 Workload Summary. .89

7.3 Evaluation of Caching Algorithms - Data Set 1. 95

7.3.1 Query Distribution (Figure29, 30, and 31) 95

7.3.2 Indexing (Figure32) .97

7.3.3 Caching Algorithms (Figure33 - Figure52) 97

7.4 Comparison of ViP to MMS - Data Set 2. .106

7.4.1 View-based Annotation Propagation (Figure53, 54, 55and Table18) . . . 106

7.4.2 Annotation Propagation with Caching (Figure56)107

7.5 Evaluation of Network Semantics - Data Set 2.110

7.5.1 User-driven Annotation Paths Propagation (Table19)110

7.6 Evaluation of Access Control on Annotation Views/Paths.110

vii

7.6.1 User-driven Access Control on Annotation Views and Paths (Figure57 -

Figure60) - Data Set 2 .110

7.6.2 Path Strength (Figure61) - Data Set 1 .113

7.7 Evaluation of Scalability - Data Set 3. .113

7.7.1 MovieLens 100k Data Set (Figure63, 62, 64, 65, 66, and 67) 113

7.7.2 MovieLens 1M Data Set (Figure68, 69, 70, and 71)117

7.7.3 MovieLens 10M Data Set (Figure72, 73, 74, and 75)118

8.0 CONCLUSIONS .122

8.1 Contributions. .122

8.2 Future Work .123

8.2.1 Graphical Representation of Annotation Views/Paths.123

8.2.2 Beyond the scope of this thesis. .124

8.3 Broad Impact. .125

9.0 APPENDIX .126

BIBLIOGRAPHY .128

viii

LIST OF TABLES

1 Standard Annotation Management Features Comparison. 17

2 User-driven Annotation Management Features Comparison. 19

3 Comparison of ViP and Social Networks. 20

4 Queries and Results for Figure11 . 33

5 List of Implementations. .78

6 Experimental Environment Setting of Data Set 1. 80

7 Experimental Parameters of Data Set 1. 81

8 Experimental Environment Setting for Data Set 2. 82

9 Experimental Parameters of Data Set 2. 83

10 Experimental Environment Setting of Data Set 3. 84

11 List of Experiments - Query Processing on Data Set 1 and 2. 90

12 List of Experiments - Query Processing on Data Set 3. 91

13 List of Experiments - Eager vs Lazy. 92

14 List of Experiments - Cache Hits. 93

15 List of Experiments - User-driven Features. 94

16 List of Experiments - Path Strength. 94

17 List of Experiments - Public vs Private Views and Paths. 94

18 Query Execution Time with Different Annotation Densities.109

19 Path Propagation for User-driven Network Semantics.110

ix

LIST OF FIGURES

1 View-based Annotation Propagation. 3

2 The ViP System Model . 6

3 Annotation Representation Methods. 10

4 High-level System Architecture. .11

5 ViP Annotation-Object Diagram. .12

6 User-driven Time Semantics. .25

7 View-based Annotation Propagation: Time Semantics. 26

8 View-based Annotation Propagation: Network Semantics (Disjoint). 28

9 View-based Annotation Propagation: Network Semantics (Identical). 29

10 View-based Annotation Propagation: Network Semantics (Overlapping). 30

11 User-driven Annotation Propagation Example. 32

12 Path Strength. .34

13 Path Strength Presentation. .35

14 Views from Annotators and Users. 39

15 Query Type I. .39

16 Query Type II .40

17 Query Type III .40

18 Relational Tables of Cache Operations. 47

19 Keyword Index Structure .56

20 Extended System Architecture. .68

21 DataXS User Interface. .73

22 Registering An Annotation View. 74

x

23 ViP User Interface. .74

24 System Monitoring. .75

25 Data Distribution (500 data items). 81

26 Data Distribution (50,000 data items). 81

27 Ratings Distribution on Movies in the 100k Data Set. 86

28 Annotations Distribution on Ratings in the 100k Data Set. 88

29 Comparison of Different Caching Schemes. 95

30 Uniform and Zipf Distribution (60% data updates and 30% annotation inserts). . . 96

31 Zipf Data Distribution (5% data updates and 2% annotation inserts). 97

32 With or Without Indexing .97

33 The Query Execution Time with Different Caching Algorithms. 98

34 Different Cache Operations When Data Changes. 98

35 The “Eager” vs “Lazy” Annotation Propagation Case I. 98

36 The “Eager” vs “Lazy” Annotation Propagation Case II. 98

37 Different Data Updates Percentages with Eager Propagation. 99

38 Cache Management without Any Updates. 99

39 Cache Management with 5% data Updates - Eager.100

40 Cache Management with 5% data Updates - lazy.100

41 The Query Time vs Cache Management Time - Eager.101

42 The Query Time vs Cache Management Time - Lazy.101

43 The Total Cache Hits of 1,000 Queries. .101

44 The Total Cache Hits of 10,000 Queries. .101

45 Query Time with Different Annotation Views. .103

46 Cache Hits and Annotations Found with Different Annotation Views. 103

47 Query Processing Time Over Time. .103

48 Query Processing Time Over Different Cache Sizes.103

49 Query Processing Time of LFU Algorithm. .104

50 Query Processing Time of LRU Algorithm. .104

51 Query Processing Time of PC Algorithm. .105

52 Query Processing Time of AC Algorithm. .105

xi

53 Query Execution Time. .106

54 Setup Time. .106

55 Query Execution Time with Different Annotation Densities.108

56 Caching Time .109

57 Query Execution Time for Different User Search Conditions.111

58 Annotations Found for Different User Search Conditions.111

59 Query Execution Time with Different Public Annotation View Percentages. 112

60 Query Execution Time with Different Public Annotation Path Percentages. 112

61 Query Processing Time Over Different Path Strengths.113

62 Query Distribution on the 100k Data Set. .114

63 Query Execution Time and Annotations Found in the 100k Data Set. 115

64 Setup Time of the 100k and the 1M Data Set. .116

65 Query Processing of the 100k Data Set with Different Cache Capacities. 116

66 Cache Hits in Queries of the 100k Data Set. .117

67 Processing Time Sequence of Query Trace on the 100k Data Set.117

68 Annotations Distribution on Ratings in the 1M Data Set.118

69 Annotations Distribution on Movies in the 1M Data Set.118

70 Query Processing with Different Cache Capacities of the 1M Data Set. 119

71 Cache Hits in Queries of the 1M Data Set. .119

72 Setup Times of the 10M Data Set. .119

73 Query Traces of the 10M Data Set. .119

74 Query Processing with Different Cache Capacities of the 10M Data Set. 120

75 Cache Hits in Queries of the 10M Data Set. .120

76 The Annotation View-Data Association Matrix - Initial Idea.123

xii

LIST OF ALGORITHMS

1 Direct and Inherited Annotation Search. 44

2 Annotation Search in Cache. .45

3 Cache Management. .46

4 Adding an annotation .58

5 Deleting an annotation. .60

6 Annotation Search. .62

xiii

PREFACE

I would like to express the deepest appreciation to my Advisors: Dr. Alexandros Labrinidis and

Dr. Panos K. Chrysanthis, who have continually supported me throughout all these years. Without

their guidance and persistent help this dissertation would not have been possible. I would also like

to thank all my committee members for their useful comments, remarks and advice. Parts of this

work were joint work with Alex Connor. I appreciate his input and suggestions. Furthermore, I

would like to thank the people who have given me assistance and feedback to complete this thesis.

A special thanks goes to my parents for their endless love and support. Last but not least, I

would like to thank my beloved husband and son, who have supported me throughout the entire

process. I will be grateful forever for your love.

xiv

1.0 MOTIVATION

We are witnessing an explosion of the pace of discovery and innovation in science research, ac-

celerated mostly by the use of information technology in all parts of the process. This is true

across all sciences, from gene sequencing and drug discovery to weather/climate modeling and the

exploration of the Universe.

Without a doubt, data management is playing a pivotal role in scientific exploration, constantly

fueling the high pace of discovery through effective collaboration among scientists. WIRED Mag-

azine, in its July 2008 issue1, goes as far as to pronouncethe end of the scientific method: instead

of formulating hypotheses to be proved later, all scientists have to do today is to simply mine the

petabytes of data at their disposal. Although we do not adopt such an extreme viewpoint, we firmly

believe that in addition to efficiently managing the tsunami of experimental data generated, data

management is extremely useful to scientific discovery, because it facilitateseffective collabora-

tion among scientists. In particular, data management techniques are used to recorddata prove-

nance/lineage[55] and also to supportannotations[30, 25]. Data provenance essentially keeps

track of where the data is coming from (and what transformations it has been through), whereas

annotations enable users to record additional information about the data stored and propagate this

information to all “related” data items.

• Data annotation: annotations (i.e., comments or tags) are associated with data items stored in

a database or distributed data stores, and are propagated along with the data when this data is

used or retrieved as part of queries. Data annotations effectively organize and integrate notes

and thoughts, traditionally recorded in individual scientists’ notebooks, making them easily

sharable among scientists (as well as general users) in a controlled manner.

1http://www.wired.com/wired/issue/16-07,The End of Science, WIRED, 16.07, July 2008.

1

• Data provenance/lineage: data lineage is the sequence of transformations that a given data

item has been through (i.e., recording its “genealogy”). Tracking data lineage (that includes

data sources, transformations and annotations) is crucial for the repeatability and the authen-

tication of scientific discoveries. It also enables the quick and easy identification of derived

works, that need for example to be modified if the data/prior work is updated in the future.

Although such technologies exist today, they are not fully capable to address the needs of

scientists. As the amount of data and the level of collaboration among scientists increases, there

are more needs of capture, curation, storage, search, sharing, analysis, and visualization of large

sets of data. In addition to the increased complexity, the sheer volume of available/generated data

forces a rethinking of traditional data management tools.

The main motivation for this work came from theDataXS project [83, 81, 82, 84, 90, 69],

which was part of the Center for Modeling Pulmonary Immunity (CMPI). The Center was a joint

effort between the University of Pittsburgh, Carnegie Mellon University, and the University of

Michigan, bringing together experimentalists and modelers to study pulmonary immunity in re-

sponse to three bio-defense pathogens (the influenza A virus, Mycobacterium tuberculosis, which

causes TB, and Francisella tularensis, the bacterium responsible for tularemia). The center cap-

italized on a longstanding tradition of collaboration between immunologists and mathematicians

and computer scientists for the purpose of developing mathematical models of the immune system.

The developed data exchange server (DataXS) played a critical role in data sharing, storage, and

communication.

While building DataXS, we have identified a challenge, drawn from the requirements gathering

and from our experience from early prototypes of DataXS. Let us assume (as illustrated in Figure1)

that there are two machines (1 and 2) that belong to the ADMT Lab, and data files are associated

with these machines: Files 1120, 1121, 1122 are already added in the database and File 1123 that

has not been added yet. A user wants to add annotation N to data files that were created between

8/31/06 and 9/15/06 (saying, for example, there was a problem with the calibration of the machine).

Under traditional annotation propagation, only existing files will be associated with annotation N.

We want to find a way to define the target of annotation N to include files that are added later

but still fit the original target of the annotations (i.e., files that were created between 8/31/06 and

9/15/06).

2

Figure 1:View-based Annotation Propagation

In addition to the need to “capture” annotation targets descriptively, instead of enumerating

them, another need we identified has to do withuser-driven annotation management. Such a focus

on the users’ needs can streamline privacy protection and also give the ability to scientists and

general users to bring previously unrelated data together (through user-driven ways of propagating

annotations). Finally, user-driven features can also help users when retrieving data (and associated

annotations).

Solving similar needs to the DataXS project, but for a different domain and with many addi-

tional unique challenges is theAstroShelf project [93, 91, 92, 87, 66], which is targeted to manage

the growing onslaught of astronomical data. Astronomy lacks an easy-to-use and scalable way to

collect and distribute expert information about objects from data sets of tens of thousands to bil-

lions of individual events and objects. Over the next decade, the amount of information available

to the typical astronomer will grow by two orders of magnitude both in raw data size and in the

number of objects. One important component of this project is an annotation framework to enable

linking of observations to specific experiments, models, or other observations. How to manage and

represent the annotations of those large scales scientific data is a big challenge.

Biology and Astronomy are just two examples of sciences where machine-generated data and

metadata become more common-place and the volume of annotations and data items, as well as

annotation views, is becoming enormous. Big data [123] refers to a collection of tools, techniques

and technologies for working with data productively, at any scale. In “Data, data everywhere” of

the Economist 25 February 2010 issue, it is stated that the amount of digital information increases

3

tenfold every five years. By 2013 the amount of traffic flowing over the internet annually will

reach 667 exabytes. A vast amount of that information is shared, and that only adds to the often

complained about “information overload” problem. To solve the problem well, big data must be

seen as more than simply a issue of size; it is an opportunity to find insights in new and emerging

types of data and content, to answer questions that were previously considered beyond our reach.

The work on big data allows correlations to be found to “spot business trends, determine quality

of research, prevent diseases, link legal citations, combat crime, and determine real-time roadway

traffic conditions” [15, 35, 16] among many interesting use cases.

The challenge undertaken in the thesis is how to deal with large-scale data with annotations,

more specifically, how to retrieve and manage data associated with annotations in a quick and

effective way. When considering big data, it takes a lot of effort of evaluation, migration, construc-

tion and integration. However, it should address the existing deficit of traditional applications and

bring more research opportunities.

All in all, through these interesting projects, and by the implementation of a web-based data

exchange server prototype, we were able to identify the technological “gaps” in the current state-

of-the-art and propose to address these as part of this Ph.D. dissertation.

1.1 PROBLEM STATEMENT

We propose to treat annotations as first-class citizens for scientific data management. Towards this,

we propose to address two distinct usage patterns related to the specification and the management

of annotations within a Database Management System (DBMS).

1. Support for annotations that are scalable both from a system point of view and a user point of

view.The first usage pattern that we observed is that big data are the current trend of scientific

data (such as medical data or astronomical data) and general data (such as social media data

or movie data, etc.) Hundreds of thousands of annotations are linked to data, so it is typical

for people to be lost in the sea of annotations. How can a system handle such large-scale data

is an interesting question, and also has practical applications. On the other hand, users want

4

to retrieve information via annotations quickly and accurately. The annotation associated with

data should be the most related, and helpful in understanding the data it is associated with.

2. Support for propagation and querying of annotation in annotator/user-defined ways.The

second usage pattern is that annotators want to specify who can read their annotations, when

to display their annotations, where to propagate their annotations, etc. On the other hand,

users, i.e., those performing the queries, want to express their preference on whose annotations

they want to read (such as users trusting high-rated reviewers’ annotations), how to retrieve

annotations (such as how many levels they want to check, like in a social network, check how

many hops of friend-friend’s comments), or what time period of annotations to search. Such

user-driven preferences (from both the annotator and the querier point-of-view) are critical to

annotation management and querying.

1.2 USING VIEWS

We propose to use the concept ofdatabase views[97, 41] as the building block to implement the

technologies mentioned above. Database views can be used at a high-level to describe the results of

a database query. For example, instead of attaching a comment about mis-calibration to individual

files (and miss files that are added in the future), using views enables the system to record this

annotation in a single location (the view) and to also associate this annotation with files matching

the view definition in the future.

In the example illustrated in Figure1, instead of simply applying annotation N to the individual

files that are initially in the system and meet the description (e.g., 1120, 1121, 1122), we apply it

to thequery or viewthat describes thepropertyfiles that need to have in order to get annotation N.

This allows the system to properly mark File 1123 with annotation N, even if it is added later. This

way, the annotation has been properly propagated to all files, even if they are added later. As we

have discovered, out of order data entry is typical in scientific data management, so such cases are

quite often, and therefore, addressing them would greatly improve the quality of the data stored in

the system.

In this work, we introduce the notion of“view-based annotation propagation”as an alternative

5

Query

Processor

Annotation

Management
Cache DBMS

Statistics

and Analysis

Figure 2:The ViP System Model

way of propagating annotations. The basic idea is that with view-based annotation propagation,

users are specifying a view (i.e., a query) over which annotations should be propagated,now and

in the future. Although the “now” semantics make View-based annotation Propagation (ViP) iden-

tical to Traditional Annotation Propagation (TAP), the “future” semantics is what differentiates

the two. Under TAP, a query would have to be executed again and again for the annotations to

be propagated in the future (while making sure to eliminate duplicates), whereas under ViP the

query only needs to be defined once. Essentially, ViP can be considered as supportingcontinuous

annotation queries.

Using the views concept, our work builds on over three decades of research [77, 76, 78, 129,

62, 60, 33, 73, 68, 61] on view management while providing a novel and clear framework, ViP, for

the management of large-scale annotations and their propagation in an efficient way. Although the

concept of database views is a powerful mechanism, we need a realistic way for users to utilize

views in the proposed ViP framework. Clearly, they are not to be expected to provide annotation

view definitions in SQL, though at the backend we propose to modify standard SQL to support

annotation features.

In our data-sharing platform DataXS, a user can easily specify filtering conditions to locate

certain data items. These filtering conditions are essentially a query (i.e., a view) and can be used

by the ViP framework. As shown in Figure2, the user interface takes the user input and sends the

requests to the Query Processing module, which will forward the operations of annotations and

annotation views, such as insertion, deletion and update, to the Annotation Management module.

The queries are executed as two parts, one part is to retrieve the data items, and the other part is to

6

retrieve the associated annotations. There is a cache to enhance the system performance. Finally,

users will receive the result presented as data + annotation(s). We will discuss more details about

the system model in the next chapter and the user interface in Section6.6.

1.3 CONTRIBUTIONS AND EVALUATION

We present ViP, a novel annotation framework that introduces new annotation definition and prop-

agation methods based on views, utilizes views both as a specification mechanism and as a user-

interface mechanism, and employs caching [20] for improved performance compared to the state

of the art. This research project has both theoretical and practical contributions as follows:

1. based on our experience from real system implementations, we introduce new annotation def-

inition and propagation methods, suitable for scientific data,

2. we introduce ViP-SQL, an SQL-based query language supporting annotation propagation,

3. we introduce user-driven features that enable users to personalize annotation propagation,

4. we introduce the use of views as formal mechanism to implement the new annotation definition

and propagation features and also as a user-interface abstraction,

5. we propose a benchmarking of three types of annotation queries, and discuss the algorithms

needed to manage data and annotations in a scalable way,

6. we utilize techniques such as caching to significantly improve the performance of query exe-

cution over the state of the art,

7. we experimentally evaluate the proposed ViP framework using a real system implementation

with real and simulated workloads.

1.4 ROADMAP

The rest of the dissertation is organized as follows. The next chapter presents the ViP system

model. In Chapter3 we introduce the feature comparison of ViP with the related work. The de-

tails of the proposed annotation framework (User-driven Time semantics and Network Semantics),

7

along with the formal ViP-SQL definition are presented in Chapter4. Three types of queries, along

with annotation management and query processing are discussed in Chapter5. In Chapter6 we

describe the details of implementation, including the user interface and a graphical representation

of server statistics with regards to annotations. The experimental evaluation is conducted and ana-

lyzed in Chapter7, three individual data sets are evaluated from different dimensions. We conclude

our work in Chapter8 and discuss the future plan beyond the scope of this thesis.

8

2.0 SYSTEM MODEL

In this thesis, we defineannotationas anything helpful in understanding data, such as comments,

tags, labels, or experiment results etc. An annotation can be a 100MB size video or audio clip,

or even a bigger size metadata file. We will use a simple example in the following paragraphs to

illustrate how annotations are associated with data.

2.1 ANNOTATION REPRESENTATION METHODS

There are several projects that deal with annotation propagation and management, for example,

DBNotes [25], Mondrian [57], ULDB [23], bdbms [53], and MMS [115].

In DBNotes, every relational table column is associated with one additional annotation column.

This traditional naive method is illustrated in Figure3A. Data itemsd1, d2, ...d4 are listed in the

column of “Data”, while annotations such as “Hail to Pitt”, “Pittsburgh” and “Maryland” are listed

in the column of “Annotations”. If a data item does not come with an annotation, it will be an

empty cell in the annotation column. If a data item has multiple annotations, there will be multiple

duplicated rows for this data item. One can easily realize that this method will be a huge waste of

space when the annotations are sparse.

MONDRIAN uses an improved scheme, of colors and blocks, to present annotations. It as-

sociates one extra annotation column to each relation, plus one shadow column for each attribute

to indicate whether the annotation refers to the respective attribute or not. By separating the data

from the annotation representation, it saves space and keeps tables normalized. Data that has no

annotations (e.g.,d4) will not be addressed in the annotation representation. However, if there is

more than one tuple associated to one annotation, there should be more than one annotation tuple

9

Maryland20874d3

Pittsburgh15260d1

N/A99546d4

Pittsburgh15260d2

Hail to Pitt15260d2

Hail to Pitt15260d1

AnnotationsData

a2d1

a3d3

a2d2

a1d2

a1d1

Anno Map

20874d3

99546d4

15260d2

15260d1

Data

Pittsburgha2

Marylanda3

Hail to Pitta1

Annotations

A. Naïve Method B. Annotation Tables

C. Annotation Views

20874d3

99546d4

15260d2

15260d1

Data

[Maryland] where zip code = 20874v2

[Hail to Pitt, Pittsburgh] where zip
code = 15260

v1

Annotation Views

Figure 3:Annotation Representation Methods

in the annotation representation, like the sets (d1, a1), (d1, a2), (d2, a1), and (d2, a2). Considering

that this method still uses the same structure as the data table to represent annotations, we classify

it as thetraditional naive method.

Other work such as MMS [115] showed significant benefits over the above systems both in

query execution times and storage space usage because of its scheme to treat a query as a value.

There is anannotation tableinstead of additional annotation columns. This method is illustrated

in Figure3B. Data items are listed in the “Data” table, while annotation association relations are

presented in the “Anno Map” table. There is also an annotation metadata table. Clearly, this scheme

reduces the redundant space used by the naive method. Also, it lowers query execution time even

when we consider the cost of updating the annotation index structure and querying additional tables

of metadata. ULDB [23] and bdbms [53] also use annotation tables for annotation storage and

management. It is expected that such schemes outperform traditional methods if the association

between the data and the annotations is not uniformly distributed and it not static.

Annotation tables make annotation representation flexible and scalable. Our framework, ViP,

uses this scheme as well [83]. More than that, in ViP, we treat a view as an annotation registration,

10

DBMS

PostProcessor

Annotation

Register

Path Setup

Manager

Annotation
Query

Processor

Data
Source

DB
Connection

V
iP

-S
Q

L
R

e
s
u

lt

S
Q

L

R
e

s
u

lt w
ith

A
n

n
o

ta
tio

n
s

Cache

A
n

n
o

ta
tio

n
s

R
e

s
u

lt

A
n
n

o
ta

tio
n

Q
u
e

ry

Figure 4:High-level System Architecture

which will be stored in “Annotation Views” tables as shown in Figure3C. In addition to the “Data”

table, the annotations are recorded for certain data items with a defined query value. It is one step

further, compared to the fixed structure of annotation table, as this method makes annotations more

flexible and comprehensive, thus it can present complex condition definitions. We expect that in a

dynamic, constantly evolving environment (both for data and annotations), the cost of maintaining

and querying should be less with ViP compared to previous methods.

2.2 SYSTEM ARCHITECTURE

ViP deploys the architecture shown in Figure4. Queries and Annotation registrations (annotation

definitions) issued from clients are rewritten into SQL queries evaluated by the annotation query

processor, then handled by the annotation register and the path setup manager. They are pushed

forward to a database server with a cache in the middle, which will work to optimize system

11

performance. Annotation tables include annotation registration tables and auxiliary tables. The

resulting annotation set is merged with the regular query results by the postprocessor for matching

and presentation. The processing procedures and methods will be discussed in Section6.3. We

will discuss more details of the system architecture in Section6.4and introduce a simple workflow

for the system. One of our implementation, the DataXS application, “fits” on top of this frame-

work, providing a point-and-click user interface. In Section6.6, there is a demostration of the

functionalities of the ViP framework.

2.3 ANNOTATION-OBJECT DIAGRAM

If we view the proposed the ViP framework from an Entity-relationship (ER) model point of view

[109], then we get the ER diagram of Figure5. Each annotation or object has its own annota-

tion/object ID and content. One annotation may annotate one or multiple objects (data), whereas

one object may have more than one annotation. ViP allows annotations to annotate not only ob-

jects, but also annotations themselves.

aid content

Lineage (implicit, explicit)

annotation object

obj-id content

M
(TO)

N
(FROM)

M N

M N

Figure 5:ViP Annotation-Object Diagram

The data lineageof objects is treated as implicit annotations associated to object/data, and

additionally, it can also be explicitly illustrated by annotation paths. The data provenance is more

complicated as the flow of processing may involve intermediate staging and data transformations

that come from programs external to the DBMS, thus users’ annotations play an important role in

12

understanding data sources. In this thesis, there is no automatic data provenance tracking, instead,

we provide a user-defined way to understand and trace the data lineage and provenance.

2.4 SUMMARY

In this chapter, we briefly reviewed current annotation representation methods, and introduced our

annotation views table as an efficient and compact representation solution. We also presented the

system architecture. Finally we illustrated the ER model of the ViP framework.

13

3.0 RELATED WORK

In this chapter, we discuss the related work in annotations and annotation management, user-driven

data management, social networks, and big data. In addition to introducing their salient features,

we compare them with our ViP framework.

3.1 ANNOTATIONS

In our work, an annotation is being treated as an object, and could be comments, files, or anything

helping to understand the data.

In natural language processing (NLP) [114, 124], annotation could be a useful tool to automat-

ically produce semantic representations. Linguistic annotations corpora will have most basic types

of semantic information annotated according to high-quality schemes (which often involve human

experts or massive crowd-sourcing efforts). Crucially, all individual annotations, although unified,

will be kept separately in order to make it easy to produce alternative annotations of a specific

type of semantic information (word senses, anaphora, etc.) without modifying annotations at other

levels [48].

Compared to NLP, our annotations are more flexible. They could be in a very simple form,

such as a line of plain text, or they could be a set of multiple types of files to describe/explain the

data. There is no restriction on our annotations, either in size or type.

14

3.2 DATA PROVENANCE AND ANNOTATIONS

The problem of provenance (also known as lineage) of data has been studied for many years [119,

30, 45, 44]. Provenance, which means “origin” or “source”, could be used to trace data flow and

in addition, could be used to verify the authenticity of the data source, in which case, it could be

used to explain why and where the data coming into their current status.

In [32, 29], the authors described an approach tracking the user’s actions while browsing source

databases and copying/pasting data into an integrated database, which forms a curated database.

An update log (provenance table) is used to record every operation.

In [39], the authors introduced DBNotes, an annotation management system that attaches notes

to every value in a relation. When a relation is queried, DBNotes propagates the attached notes

to the result of the query in three different schemes:default, default-all, andcustomizedbased on

provenance. As a consequence, the notes associated with a value in the result of a query show

the provenance of the value. This is thewhere-provenanceproblem [31]. Since it addressed the

annotation propagation issue and introduced annotation management for scientific databases, this

work inspired our work on exploring how to attach and propagate annotations with data, according

to user preferences.

The Trio project [19, 23, 107] is a database management system built to address data uncer-

tainty and lineage. The extended query language, TriQL modifies the semantics of SQL to take

uncertainty and lineage into account, and let data, uncertainty, and lineage work together to provide

confidence values for data. Previous projects applied data provenance concepts in web information

gathering and criminal data tracking. It inspired us to use a user-specified confidence threshold in

annotation propagation.

[53, 127] are projects supporting annotations for e-Science data. bdbms is a prototype that

supports annotation and provenance management. The authors discussed annotation storage and

indexing similar to our structure. However, they are not user-driven, and not designed for contin-

uous data, so no annotation will be propagated to future data (i.e., they lack the time semantics

introduced in this thesis). In the survey by Simmhan et al. [112], there are additional related works

in this area, but they follow what we termed in the previous chapter as “traditional annotation

propagation”.

15

More theoretically, [32] explored theside effectsof deletion annotation through propagation,

and [40] discussed propagation analysis of annotations under the key preservation condition for

both theside-effectproblem and theannotation placementproblem. Tan [118] discussed the prob-

lem of containment in queries with annotation propagation. [40] analyzed the complexity of anno-

tation propagation and suggested a key preserving condition on SPJ views.

In this thesis, we consider data provenance as a special kind of annotation and propagate such

annotations accordingly.

3.3 USER-DRIVEN DATA MANAGEMENT

The Advanced Data Management Technologies (ADMT) laboratory at the University of Pittsburgh

[1] has focused on projects related to query processing, data sharing, and annotation management.

A key idea behind the research is to find ways to satisfy user-specific requirements while process-

ing the data efficiently [106, 80, 126, 101, 74, 86, 103, 125, 88, 110, 117, 59, 75, 102, 100, 99, 101].

From sensor nodes deployment, to energy consumption strategy, and from web crawling, to query

scheduling, the goal is to maximize the satisfaction of users over their different quality metrics.

In one such project,User-centric Data Management, users are empowered to specify their pref-

erences for the different dimensions of quality (Quality of Service, Quality of Data, Quality of

Information) through an intuitive, integrated framework and influence resource allocation deci-

sions according to their preferences.

In [72], the authors developed a personalization framework in database systems based on user

profiles. The preference model assigned to each atomic query carries a personal degree of interest,

so the system can calculate a comprehensive interest degree for any query. It inspired our design

of introducing personalization or user-driven views into annotation propagation, with the real life

requirements materializing from the design and implementation of our DataXS prototype. In this

thesis, being user-driven is one of the top priorities for annotation management.

16

3.4 ANNOTATION MANAGEMENT FEATURES

3.4.1 Standard Annotation Management Features

There are many systems that support some of the features that are part of the ViP framework, but

as far as we know, there is no single system that supports all the functionality. For example, most

current systems do not support annotations that are also valid in the future (Table1). The only

exception is MMS [115], which supports future time semantics (i.e., without giving the user the

option to define the time) in an implicit way, but is not explicitly defined. In addition, we propose

explicit user-defined network paths, which will be discussed in Section4.2.

Standard Features DBNotes Mondrian ULDB bdbms MMS ViP

[25] [57] [23] [53] [115] [83, 81]

Annotation Yes Yes Confidence Yes Yes Yes

Provenance Yes Yes Lineage Yes Yes Yes

Time Semantics:

· Implicitly defined No No No No Yes Yes

· Explicitly defined No No No No No Yes

Network Semantics:

· Implicitly defined Limited Limited Limited Limited Yes Yes

· Explicitly defined No No No No No Yes

Propagation Type Eager On-demand On-demand Eager On-demand Both

Annotation Storage Naive Naive x-relations Anno. table q-type A-table

Scalability Small Medium Medium Medium Large Large

Query pSQL Color algebra TriQL A-SQL Predicate ViP-SQL

Table 1:Standard Annotation Management Features Comparison

ViP builds explicit paths for annotation propagation. It also allows users to protect data pri-

vacy on these paths, that is, each user can have private paths to propagate annotations. Although

existing systems support implicit annotation propagation paths, none except for our proposal sup-

ports explicit, user-defined annotation propagation paths (Table1). In Chapter4 we will discuss

these semantics in detail. [58] provided update exchange with mappings and provenance. It is a

17

kind of implicit provenance tracking. The Open Provenance Model (OPM) in [89, 122] proposed

a provenance model, focusing on provenance tracking and management. In this dissertation, we

want to focus on explicit annotation propagation.

ViP aims to support large-scale annotation management. Towards this, ViP employs a hybrid

propagation scheme, while [25, 53] uses eager propagation, and [23, 57, 115] uses an on-demand

scheme. We will discuss the propagation types in more detail in Section6.2.1.

3.4.2 User-driven Annotation Management Features

ViP brings user-driven features in many aspects of annotation management that are not considered

in most related work as shown in Table2. Thevalid time in time semantics is a unique feature

we propose in Section4.1. ViP also enables users to specify the propagation method. In DBNotes

[25], users can specify acustompropagation scheme to bind the source and target tuples while

there is a join operation, so that the annotations that are associated to the source tuples will be

propagated to the target tuples. ViP provides a stronger and more complex scheme, that is the

annotation path, which will be discussed in Section4.2. In the table we use “N/A” to represent a

feature which was not included in the system design, so there is no such comparison available.

Some systems consideraccess controlat the data level, or even at the update authorization

part [53]. Instead, we propose to fully support this feature in a broader domain, on annotations,

annotation views, and annotation paths. This is different than traditional access control, since

access control on annotation views (given user-driven time semantics) and on annotation paths

(given user-driven network semantics) essentially means who can “execute” the annotation propa-

gation mechanism, not the access control on the data itself. We will present this in more detail in

Sections4.3and 4.4.

In [51, 52], the authors continued their work on the bdbms system [53], where they proposed

and modeled a Directed Acyclic Graph (DAG) generated from user-defined dependencies. They

mentioned “snapshot, view and join” as annotation types that inherit different human behaviors.

Similar to the usage patterns mentioned in Chapter1, they found that human actions (more broadly

real world activities) have the concept of “real-world dependencies”. In [50], they evaluated exper-

imentally the performance of HandsOn DB which supported their dependencies theory. Though

18

User-driven DBNotes Mondrian ULDB bdbms MMS ViP

Features [25] [57] [23] [53] [115] [83, 81]

Time Semantics:

· Valid Time N/A N/A N/A N/A No Yes

Network Semantics:

· Propagation Method Yes N/A N/A Limited No Yes

Access Control:

· on Annotations N/A N/A N/A Limited No Yes

· on Annotation Views N/A N/A N/A No No Yes

· on Annotation Paths N/A N/A N/A No No Yes

Table 2:User-driven Annotation Management Features Comparison

they discussed dependencies a lot, they did so mostly from a traditional data provenance and lin-

eage point of view.

3.5 SOCIAL NETWORKS

Social and information networks are a fundamental medium for the spread of information, ideas,

viruses, and behavior. Transmission of infectious diseases, propagation of information, and the

spreading of ideas and influence through social networks are all examples of diffusion. A cascade

graph can be used to represent the “contagion” across the network. As information or actions

spread from one node to other nodes through the social network, a cascade is formed [56, 27, 104,

105]. Although this is somehow similar to the annotation propagation we are proposing in this

thesis, nonetheless, they are different in many other ways.

Existing and widely deployed social networks allow users to annotate all sorts of information

(from photos to web sites) such as Facebook [4], Twitter [11] or MySpace [8]. Annotation works

as an assistant tool to help users understand the data items. However, in the scientific community,

annotation is not only important in understanding the data, but it is also unique in the ability to trace

data provenance, and in addition, propagating annotations to appropriate data, which is useful, but

19

Features ViP Framework Social Networks

[83, 81] [4, 11, 8]

Time Semantics: Yes N/A

Network Semantics: Yes N/A

· Propagation Yes N/A

· Path Strength Yes N/A

Access Control: Yes Yes

· on Data Item Yes Yes

· on Annotation Yes Yes

· The Way to Access (Path) Yes N/A

Table 3:Comparison of ViP and Social Networks

not necessary in social networks.

In social networks, it is usual to build relations from explicit assertions by users that they have

some relation (such as co-authors or friends or follower) with other users or by the implicit evi-

dence of such relation [70, 130]. However, such kind of inference will not suggest to propagate

annotations or to proposeexplicitlymultiple levels of inferences. Along the same lines, data prove-

nance is expressed in the format of links in social networks; it is notexplicitly presented to users.

In summary, we compare our system with social networks1 in Table3.

3.6 BIG DATA

Big data is an important characteristic of scientific data as well as general-purpose data, in our

current information-based economy and way of life. There have been many articles, including in

the popular press, about the challenges and opportunities of Big Data. There are many solutions

that deal with big data challenges, from a data management point-of-view; it is beyond the scope

of this thesis to perform a survey, but for completeness we present a few representative works.

1Social networks are improving everyday; we have the comparison based on the current development and to the
best of our knowledge

20

3.6.1 NoSQL Systems

NoSQL [9], commonly interpreted as“not only SQL”, is a broad class of database management

systems identified by non-adherence to the widely used relational database management system

model. It is defined as the next generation databases mostly addressing some of the points:being

non-relational, distributed, open-source, and horizontally scalable.

NoSQL databases are not built primarily on tables, and generally do not use SQL for data

manipulation. NoSQL database systems are often highly optimized for retrieval and appending

operations and often offer little functionality beyond record storage (e.g., keyvalue stores), making

them especially fit for big data. The reduced run-time flexibility compared to full SQL systems is

compensated by marked gains in scalability and performance for certain data models [120, 108].

Google has developed BigTable [37], which is extensively used in Google’s own operations.

At the same time, Amazon designed Dynamo [46], a proprietary, highly available eventually-

consistent key-value structured storage system. These two leading web applications represent

a trend: the cost-effective management of data behind modern web and mobile applications is

gaining more attention than ever.

3.6.2 Big Data Computing Services

Big data solutions often go hand-in-hand with cloud solutions, which has led to the development

of big data computing and storage services [28]. We list a few representative examples below.

1. Amazon web services [3], a web service that provides re-sizable computing capacity in the

cloud. It fully supports Amazon DynamoDB. Although it makes web-scale computing easier

for developers, it is commercially developed and used.

2. Apache Hadoop [111, 26] is an open-source software for reliable, scalable, distributed com-

puting of large data sets. The Hadoop Distributed File System (HDFS) is a distributed file

system designed to run on commodity hardware. HDFS is highly fault-tolerant and is designed

to be deployed on low-cost hardware. HDFS provides high throughput access to application

data and is suitable for applications that have large data sets. It is free.

3. Google Cloud Platform, provides services such as Big Data Cloud Analytics, Cloud Storage,

BigQuery etc. In 2012, Google released Spanner [42], a scalable, multi-version, globally

21

distributed, and synchronously-replicated database, using atomic clocks and GPS to provide a

time API. It is the successor to BigTable.

3.6.3 Big Data Sets

There are many public big data sets available for research or application purpose. We found some

of them are suitable for ViP framework, such as

• Amazon Public Data Sets [2]

• Twitter social graph [12]

• IMDB Data Sets [5]

• MovieLens Data Sets [7]

In Section7.7, we will discuss some of them in detail, choose one of them to apply in our

evaluation, and enhance the data attributes to have annotation features. The results show that our

framework is working smoothly even with large-scale data sets.

3.7 SUMMARY

In this chapter, we discussed the related projects about annotation, data provenance and user-

driven management. In each case, we introduced other systems’ features as well as our unique

features. We summarized the comparison from two dimensions: Standard Annotation Management

Features and User-driven Annotation Management Features. Finally we discussed current related

technologies such as social networks and Big Data.

22

4.0 THE VIP FRAMEWORK - ANNOTATION POINT OF VIEW

In this chapter, we present the details of our ViP framework from an annotation-point of view, i.e.,

focussing on what happens when annotations are added (or deleted or updated) in our system. We

describe user-driven time and network semantics for annotation propagation in Sections4.1 and

4.2. We propose user-driven access control on annotation views in Section4.3, and on paths in

Section4.4. In each case, we present the corresponding statements for ViP-SQL, our proposal for

a simple extension to SQL that would handle the new semantics. Formal definition of ViP-SQL is

given in Section4.5.

In the following chapter, Chapter5, we discuss the views and queries both from annotators’

and users’ point of view. We also present three types of queries we propose in this framework. A

detailed discussion of algorithms and technique of implementation is given in Chapter6.

4.1 USER-DRIVEN TIME SEMANTICS

One of the usage patterns we observed in our DataXS project was thatexperimental data was al-

most always entered in the database in an order different than the one it was generated. In fact,

even data about the same experiment could be entered at completely different times, since more

than one lab was involved in generating the data (for example, one lab would generate the luminex

data whereas a different lab would produce microarray data for the same tissues). Looking at

annotations, this means that if one wanted to annotate data from a particular experiment with an

observation about the tissues, it wouldnot be enough to do this once, as additional experimental

data may be added into the database later (which would not automatically “inherit” the annotation).

Since users have different understanding/explanations of why/how certain biological process un-

23

fold, it is possible that they also want to personalize the time setting of such annotations (i.e.,

whether they would apply just now, or also in the future), we refer to this feature as “user-driven

time semantics”.

The main idea behind view-based annotation propagation is that we can attach an annotation

to aview, i.e., a query definition that corresponds to a set of data items, instead of individual data

items. If we do not materialize the view, then the annotations will always be properly associated

with the corresponding data items, according to thevalid timeof time semantics.

We propose the concept ofvalid time, which is the validity time interval of anannotation

viewor anannotation path. It allows users to specify what time period they want to associate the

annotations with corresponding data or to propagate the annotations via a certain path.

When we consider the time dimension of annotation propagation, we can easily distinguish

four different cases:

• now, where an annotation is only propagated to data items currently in the database, (e.g., mark

all the data that have been processed until today) - this is the approach taken by the majority of

annotation management systems,

• now + future, where an annotation is propagated to data items currently in the database, and

also to those that are added in the database in the future, (e.g., assume that we have a microarray

scanner which was mis-calibrated on a certain day; when this is first discovered, we want to

be able to annotate all experimental data in the system accordingly, but also do this for all data

that would fall in this category, but are entered in the system later),

• future, where an annotation is only propagated to data items that are added in the database in

the future, (e.g., all the files until today have been fixed, but all files submitted in the future

should be marked accordingly),

• future interval, where an annotation is propagated to data items that are added in the database

in the time interval a user specifies, (e.g., for one week after the Daylight Saving Time show

an annotation that reminds scientists to make sure they have accounted for Daylight Saving

Time in experiment settings). Since it is unrealistic to annotate past query results, the valid

time period starts from now. Future interval will not be marked as a past time period.

The cases above (illustrated in Figure6) present the fourvalid timeuses in user-driven time

24

time

future interval

future

Now + future

now

Figure 6:User-driven Time Semantics

semantics of ViP. This is specified by the user for each annotation and works in tandem with using

database viewsto describe the annotation targets. Using views allows us to declaratively describe

the data to be annotated instead of simply enumerating them. Combined together, we can set, for

example, the valid time for an annotation to be[now,∞), or in a simplified form[now,), which

means that the annotation will be applied to matching items now and also in the future.

Most of the current annotation management frameworks utilizenowtime semantics, propagat-

ing annotations to only existing data items [25, 53, 23, 29, 57]. In contrast, our system supports

valid time in Time Semantics, which we will assume for the rest of this thesis. Only the work in

[115] considers time semantics similar to those presented in this thesis; both approaches use the

concept of database views in their frameworks. However, the approach in [115] does not consider

time semantic in such a user-driven and explicit way.

Motivating Example #1: To properly motivate the need for time semantics, let us assume a

setup like that in our DataXS system, where experimental data are stored in table Experiments and

shared among project participants. Let us assume that a contamination happened in the ADMT

Lab between Oct 1, 2012 and Oct 20, 2012, and we would like to annotate all experimental data

accordingly, withnow + future time semantics. Clearly, if we only attach an annotation to the

files matching the ADMT Lab AND happened Oct 1 - 20, 2012, we will miss all the files that are

potentially added into the DataXS system at a later time, but still meet these conditions. As we

discussed earlier, this is a typical usage pattern, making valid time in time semantics a necessity.

25

D1

Vi{a}

D1{a}

Figure 7:View-based Annotation Propagation: Time Semantics. (Annotationa is associated with

view Vi. Data itemD1 ∈ Vi receives annotationa.)

We can describe such an annotation inViP-SQLas follows:

CREATE ANNOTATION V1 ON Experiments

AS (SELECT ExpID FROM Experiments

WHERE Lab = "ADMT" and Date >= "10/01/12"

and Date <= "10/20/12")

VALUE "ADMT Lab was contaminated between Oct. 1st

& Oct. 20, 2012. Please use data with caution."

VALIDTIME [now,)

Given that annotations are associated with views instead of individual data items, the expected

behavior in cases of modifications is straightforward (Figure7):

• INSERT(data) into VIEW:

if D1 becomes a member of viewVi (either through insertion or an update or a creation of an

annotation view), then it will also be associated with annotationa when it is queried.

• DELETE(data) from VIEW:

if D1 is no longer a member of viewVi (either through deletion or an update), then it will not

be associated with annotationa.

• DELETE(view):

if Vi is deleted, then all the data items that were members ofVi and were associated with

annotationa will no longer be associated with it.

26

4.2 USER-DRIVEN NETWORK SEMANTICS

The second usage pattern that we observed was thatthere exist many relationships, or paths, be-

tween data items that cannot be inferred by the existing database schema. Such paths materialize

because, for example, tissues from multiple, unrelated experiments are processed together, in a sin-

gle assay (for example, on a single plate that needs to be filled up to minimize costs). To address

this, we propose to enable users to specify explicitannotation paths, thus allowing for more “in-

terconnections” among data and knowledge. Annotations should be propagated along these paths,

reaching “related” data items, as specified by users. Since these paths are essentially forming a

network, we refer to this feature as “user-driven network semantics”.

Most annotation-enabled systems propagate annotations along data provenance paths. In other

words, annotations are propagated over existing implicit annotation propagation paths between

source data and derived data (i.e., driven by the database schema and data transformations). Al-

though this can happen over multiple derivation levels, it fails to capture relationships between

data items that do not share a common “ancestry” in the database. As we have witnessed from our

involvement in the CMPI/DataXS project, this happens often in scientific databases.

The ViP framework empowers users to specifyexplicit pathsbetween data items, thus estab-

lishing additional annotation propagation paths. Such explicit paths are defined using views as

follows:

• given a source view,Vs

• given a destination view,Vd

• an explicit annotation propagation pathVs → Vd is defined, such that any annotation that is

added in a member ofVs must be propagated to all members ofVd.

Note that there are no constraints on viewsVs and Vd, which means that they can be disjoint,

overlap, or even be identical.

Continuing from Motivating Example #1, let us assume another example where we have that

the ADMT Lab and the Ross Lab be next to each other, and the ADMT Lab provides the Ross Lab

with tissues for model analysis. As such, there is a need to propagate all annotations regarding

ADMT Lab experiments to the Ross Lab (to properly record, for example, if there has been any

27

D2{b}

Vi

D3{b}

D3

Vj

Figure 8:View-based Annotation Propagation: Network Semantics (Disjoint source/destination).

There exists an annotation propagation path fromVi to Vj. Data itemD2 ∈ Vi has annotationb.

Data itemD3 ∈ Vj receives annotationb.

contamination).

We can describe such an annotation inViP-SQLas follows:

CREATE ANNOTATION V2

ON Experiments

AS (select Date from Experiments

where Lab = "ADMT"

and Treatment = "Influenza A")

TO Experiments

AS (select Date from Experiments

where Lab = "Ross"

and Treatment = "Influenza A")

VALIDTIME [now,)

Considering the general case of using source/destination views to describe explicit paths for

annotation propagation, we can see that such paths essentially form anetwork, hence the need for

user-driven network semantics.

With regards to view membership, we have behavior that is very similar to that in the case of

user-driven time semantics, as presented in the previous section.

With regards to the relation between the source and destination views, we consider the follow-

28

D4{c}

Vi

D5{c}
D5

Figure 9:View-based Annotation Propagation: Network Semantics (Identical source/destination).

There exists an annotation propagation path fromVi to self. Data itemD4 ∈ Vi has annotationc.

Data itemD5 ∈ Vi receives annotationc.

ing cases:

• source and destination views are disjoint (Figure8)

• source and destination views are identical (Figure9)

• source and destination views are overlapping (Figure10)

In the context of metadata management, [115] considered implicit paths from queries to queries,

but they have not considered the full user-driven network semantics as we do in this thesis. In

the context of schema mapping, there are multiple works that consider links of “similar” tables

[85, 38].

We believe it is our unique feature to mark the explicit links between annotation views.

4.3 USER-DRIVEN ACCESS CONTROL ON ANNOTATION VIEWS

We advocate that scientific annotation must have a strong user-driven component. First of all,

much of the data is not public, so appropriate access controls [67] need to be in place for the raw

data, and the annotations on them. Secondly, even for public data, the annotations are often private,

since they reflect additional analysis that is not ready to be made available to all. Thirdly, in many

cases, even the way that raw data are associated (i.e., by specifying explicit paths for annotation

29

D6{aa}

Vk

D7{aa}

D8{aa}
D7

Vl

Vm

D8

Vn

Figure 10: View-based Annotation Propagation: Network Semantics (Overlapping

source/destination). There exists an annotation propagation path fromVk to Vl and another

path fromVm to Vn. Vl andVm overlap. Data itemD6 ∈ Vk has annotationaa. Data itemD7

is a member of bothVl andVm. Data itemD7 receives annotationaa. Data itemD8 receives

annotationaa.

propagation) corresponds to private information that should not be made public. Given all these

reasons, the ViP framework includes multiple user-driven features, as they relate to access control.

We enumerate them next.

1. For data items, the data owner decides who can view the data, the user who sends the query

can select whose data to view.

2. For annotations, the annotator decides who can view the annotation, the user who sends the

query can select whose annotation to view based on the annotator’s reputation/confidence.

3. For annotation views, the annotator decides who can view the annotation view, the user who

sends the query can select whose annotation to view based on the annotator’s reputation/confidence.

This can also be used in conjunction with groups of users.

4. For annotation paths, the annotator decides who can view the annotation propagated by the

path, also if the annotation is allowed to be propagated or not. The user who sends the query

can select how many levels down the network to retrieve annotations based on the annotator’s

reputation/confidence.

We will explain these in detail in the following paragraphs.

30

First of all, we expect there to be access control at the individual data item level. This is mostly

a solved problem, and is handled nicely by relational database management systems. Secondly, we

easily implement access control at the level of individual annotations. In other words, when an

individual data item receives an annotation from a user, the user can specify who can access the

annotation. We support arbitrary user hierarchies (i.e., specific users, groups of users, groups of

groups of users, etc.)

We expect the majority of annotations to happen through views, to take advantage of user-

driven time semantics. In this case, user access controls are also implemented, with the expected

behavior.

4.4 USER-DRIVEN ACCESS CONTROL ON ANNOTATION PATHS

4.4.1 User-driven Access Control on the Paths

One important contribution of the ViP framework is the explicit path functionality (user-driven

network semantics). We support three different user-driven features on annotation paths:

• access control: users would want to control who can take advantage of the explicit annotation

propagation paths that they introduce. This is necessary for two reasons: (a) confidentiality of

paths, i.e., not willing to make relationships between data public; and (b) scalability of paths

from an information absorption point of view, i.e., not everybody is interested in everybody

else’s beliefs on which data is related. This of course means that certain paths will not be

visible to some users.

• HAF on insert: user would like to control the sharing of annotations. When an annotation is

inserted, the ViP framework enables users to specify a Boolean variable, A-HAF, Annotation’s

Hops Allowed to Follow (HAF), to indicate either to propagate the annotation to neighbors or

not. A-HAF = 0 (or false) means the annotator just wants to limit this annotation to data items

specified in the view. A-HAF = 1 (or true) means the annotator allows this annotation to be

propagated.

31

• HAF on query: although ifA → B andB → C implies thatA → C, this may not be

applicable for all cases (i.e., there is information “decay”). In cases of a network of paths

(e.g., as in Figure10), it may not be prudent to exhaustively follow all paths in the network

to propagate annotations. Similarly with theHAF on insert, but in a more specific way, the

ViP framework gives the option to specify (at query time)a maximum number of hops an

annotation can follow. The number of hops starts counting after we follow the first “direct”

path (i.e., in Figure10 the number of hops is 2). We refer to this value as U-HAF (or user

HAF). There is also a system-wide maximum HAF, which we refer to as MAX-HAF. Given

these three parameters (some of which are optional), if A-HAF is true, the maximum number

of hops followedwill be the minimum of the (U-HAF and MAX-HAF), otherwise it is 0:

max number of hops followed = MIN(U −HAF, MAX −HAF)×A−HAF. (4.1)

By setting A-HAF to false (A-HAF = 0) or MAX-HAF to 0, we effectively disable annotation

paths; by setting MAX-HAF to 1, we effectively disable cascading annotation propagation.

Vx Vy

Vz

Before

Vx Vy

Vz

AfterAction

CREATE ANNOTATION V3

ON Vx

VALUE “a1”
VALIDTIME [now,)

FOR USER G3

WITH A-HAF 1

MAX-HAF = 7

{a1, G3, 0} {a1, G3, 1}

{a1, G3, 2}

{a1, G3, 3}

{a1, G3, 3}

{a1, G3, 4}

Figure 11:User-driven Annotation Propagation Example

We illustrate the user-driven semantics of the ViP framework using the example in Figure11.

Figure11/Before has a network of paths; Figure11/Action indicates that an annotation is added

on nodeVx; Figure11/After shows how annotations would be propagated (the third number in the

set corresponds to the number of hops required to reach each node). We see that annotationa1 is

32

propagated toVy within HAF 1 as (a1, G3, 1), and toVz within HAF 4. Clearly, users that neither

belong to groupG3 nor specify a U-HAF high enough will not “see” annotationa1. Besides, if the

A-HAF of a1 is set to 0, even if users specify a high U-HAF, there will still not “see” annotation

a1. The queries and the results are shown in Table4.

Query Result User A-HAF U-HAF Annotation

1 Vy U1 ¬ ⊆ G3 1 3 No a1

2 Vz U3 ⊆ G3 1 3 No a1

3 Vz U3 ⊆ G3 0 5 No a1

4 Vz U3 ⊆ G3 1 5 a1

Table 4:Queries and Results for Figure11

There is a significant amount of related work in personalization, especially in connection with

information retrieval [79, 72]. There is also additional work in user-driven data management,

allowing users to express their preferences on the execution of their queries, such as [75, 126, 101].

However, to the best of our knowledge, this is the first work to address in a unifying framework

all the user-driven features that we proposed as part of ViP, on the specific domain of annotation

management.

4.4.2 Path Strength/weight Definition and Management

We propose to define strong, regular, and weak paths that work with network semantics, e.g., path

−→ [2, 1, 0] can be customized to consider user preferences. Path strength is used to represent the

quality of annotation and path relations. Path strength can be considered as the confidence level

of the annotator about that particular path, i.e., his/her belief of how closely the source and target

views are related. The strength includes two aspects: (1) the annotator’s confidence level of the

relation, (2) the expert quality of the annotator.

We view the path strength idea as analogous to bridges and weight limitations. In Pittsburgh,

there are hundreds of bridges across the area’s rivers. Some of the bridges allow trucks to go

33

through, some bridges may only allow cars and trucks less than four metric tons to go through,

and some small bridges may only allow pedestrians and bikes to go through. Obviously not all

trucks can cross all bridges. Furthermore, if a truck wanted to go over a sequence of bridges, it

should have to adhere to the weight limitations of all bridges in the sequence. In this analogy, a

path is the bridge from a source view to the target view, which is shown in Figure12. Similarly

to vehicles and weight limitations, not all annotations in ViP can be propagated via all paths, but

have to adhere to strength limits.

View A

D1{a}

View B

D2

Path Pn
Annotator: Penny

Path strength: Strong

Path Pm

Annotator: Alex

Path strength: Weak

Figure 12:Path Strength

In Figure12, D1 belongs toVA, andD1 has annotationa associated with it. In the case thata

is 0 hops away fromVA (a is the annotation directly associated toVA), it is considered as a strong

annotation.a will be propagated toVB via Pn andPm, if Alex and Penny are the users who are

allowed to view this annotation. Ifa’s directly associated view is at least 1 hop away fromVA and

it is propagated toVA, a is a weak annotation. It will still be propagated viaPn but not viaPm.

Path Strength Pattern:

As we discussed above, we use a multi-hop pattern to present the path strength, in the format

of (x, y, z), where x presents strong paths, y presents regular paths, and z presents weak paths. It is

shown in Figure13. In the multiple n hops, we use 0 for nonexistent, n for all paths.(n, n, n) means

all strong paths,(0, n, n) means all regular paths,(0, 0, n) means all weak paths, and(1, n, n)

means the paths between the source and the destination, that have one strong hop, and all other

hops are regular.

The total sum of(x, y, z) should be equal to the number of hops. The prior ordered strength

34

S R WS R W

0 x y z

Figure 13:Path Strength Presentation

overwrites the other strength indications. For example, there are 5 hops of the paths, we have

(1, 4, 2) as the path strength, then there is one hop through a strong path, 4 hops through regular

paths, and none weak hop, though the weak path strength has a number of 2.

In the path matrix, we may use individual numbers to present path strengths. 2 presents the

strong path, 1 presents the regular path, and 0 presents the weak path. For example, in the previous

case, we have a path map as1 → 2 → 1 → 1 → 1 to present the path strength and order.

This presentation method could speed up the strength computation and work as a pre-matching

condition.

In our prior work [106, 80], we described a multi-criteria based routing policy that exploits

both the semantics of queries and the state of sensor nodes to improve network service longevity.

We look at routing in sensor networks from this perspective and propose an adaptive multi-criteria

routing protocol. Our algorithm offers automated reconfiguration of the routing tree as demanded

by variations in the network state to meet application service requirements.

In the online annotation path weight define/update environment, how to improve the retrieval

speed while keeping the accuracy (return related annotations associated to data) and completeness

(return full set of related annotations) will be a big challenge. The path strength will play an im-

portant role in route decision, and as a “filter” to improve the query execution. As our strategy with

dynamic routing trees in our prior work, we can consider a multi-criteria, dynamic recomputing,

and adaptive annotation search algorithm, which will be our future work.

4.5 VIP-SQL DEFINITION - ANNOTATION

We formally define the ViP-SQL language by extending the SQL query language as follows.

35

Definition 1: ANNOTATION

CREATE ANNOTATION Annotation-Name

ON (table-name [column-name(s)])

AS (Query)

VALUE object1 [, object2, .. objectn]

[VALIDTIME [start, end]]

[FOR USER user-name(s)]

[WITH A-HAF value]

• VALIDTIME provides a specification of a particular valid time period from start time to end

time. As for particular time semantics,now = [now, now], future = (now,), now+future=

[now,). As forfuture interval, users need to specify a future time period,

• FOR USER, if not specified, the default value is forall users,

• WITH A-HAF, the value is 0 or 1. If not specified, the default value is 1,

• As in general SQL language, a table can be a view.

Definition 2: ANNOTATION-PATH

CREATE ANNOTATION-PATH Annotation-Name

ON (table-name [column-name(s)])

AS (Query1)

TO (table-name [column-name(s)])

AS (Query2)

[VALIDTIME [start, end]]

[FOR USER user-name(s)]

It defines how to setup paths for annotation propagation. The system is transitive, which means

each path will be sorted in topological order.

36

4.6 SUMMARY

In this chapter, we proposed user-driven time semantics and user-driven network semantics for

annotation propagation. We also proposed user-driven access control on annotation views and

annotation paths. Finally, we presented the registration of annotation views and paths in the form

of ViP-SQL.

37

5.0 THE VIP FRAMEWORK - QUERY POINT OF VIEW

After having presented how the ViP framework behaves at annotation time, in this chapter, we

present how the ViP framework handles queries.

5.1 VIEWS AND QUERIES

5.1.1 What Views Do We Have?

There are two type of views from different points of view: annotators and users (i.e., queriers), as

we illustrate in Figure14. First of all, an annotator creates an annotation view as follows:

CREATE ANNOTATION V1 ON Experiments

AS (SELECT ExpID FROM Experiments

WHERE Lab = "ADMT" and

Date >= "10/01/12" and

Date <= "10/20/12")

VALUE "ADMT Lab was contaminated

between Oct. 1st & Oct. 20, 2012.

Please use data with caution."

VALIDTIME [now,)

Secondly, users issue queries to retrieve such information, which is explained in the next sec-

tion. A similar type of query language has been studied in the Meta-SQL system [47].

38

Figure 14:Views from Annotators and Users

5.1.2 What Results Do Users Want?

We classify queries with annotations into the following three types:

Data

Items

Annotation

Views
Annotations

Figure 15:Query Type I

• Type I: Query Data + Browse associated Annotations.

Under this type, a user would primarily issue a query to retrieve data items meeting certain cri-

teria, and the job of the annotation management system would be to identify all the annotations

that are related to the data that was returned to the user. If we assume the order of Data Items

→ Annotation Views→ Annotations, then the type I queries could be viewed as a “forward”

query (Figure15).

39

SELECT [DATA] Exp FROM Experiments

WHERE Lab = "ADMT" and Date >= "09/01/12"

and Date <= "09/20/12"

Data

Items

Annotation

Views
Annotations

Figure 16:Query Type II

• Type II : Query Annotations + Browse associated Data.

Under this query type, a user would issue a query over the stored annotations (e.g., all anno-

tations that contain the substring “TB”) and the annotation management system would need to

retrieve those, plus all the related data items (i.e., that were “connected” with the annotations

returned). Using the same Data Items→ Annotation Views→ Annotations order as before,

query type II would be viewed as a “backwards” query (Figure16).

SELECT ANNOTATION Anno FROM Annotations

WHERE Anno LIKE ’%TB%’

Data

Items

Annotation

Views
Result

Annotations

Figure 17:Query Type III

• Type III : Query Data + Query Annotations.

This query type essentially combines Query Type I and Query Type II, by allowing a search

40

on both the data and on the annotations, and returning the data and annotations that meet the

query criteria, plus all the related annotations (for the data results) and all the related data

(for the annotation results), as illustrated in Figure17. Note here that there are two possible

interpretations of the combined query clause:

• AND-semantics: In this case, we adopt a strict AND semantics, which means that for a

data item or an annotation to be returned, the criteria specified in the original query need to

be met (i.e., Lab=ADMT and Anno contains substring TB). This should essentially return

the same results as if we broke the search query into two parts (one Type I and one Type

II), executed one of the two, and then applied the search conditions for the second.

• OR-semantics: In this case, we adopt a looser set of semantics, which means that for a

data item or an annotation to be returned, the criteria specified in the original query need

to be met OR the result would need to be related to a data item or annotation that meets

the original query criteria. Essentially this would return the same as if the two constituent

Type I and Type II queries were run one after the other and a union of the two results sets

was returned to the user.

It is worth noting that although both flavors of the Type III queries can be decomposed into

multiple Type I and Type II queries, the performance of doing these queries separately will be

dramatically different than the combined, Type III query.

SELECT Exp FROM Experiments,

ANNOTATION Anno FROM Annotations

WHERE Lab = "ADMT" and Anno LIKE ’%TB%’

5.1.3 ViP-SQL Definition - Query

Continuing with the formal definitions of ViP-SQL, we define an annotation query as following:

Definition 3: QUERY

SELECT attribute

FROM (table-name)

SELECT ANNOTATION anno-attribute

FROM (anno-table-name)

41

WHERE (condition)

[WITH U-HAF]

[FOR USER user-name(s)]

where:

• U-HAF (or user HAF) is defined when a query is issued. It means a maximum number of hops

an annotation canfollow.

• A-HAF, a threshold, is defined when the annotation is created, compared to U-HAF, it will

decide either pass the annotation or not.

• MAX-HAF means how many hops the system can propagate annotations, if there exist some

paths. If we set it as infinite, it will be an NP-hard problem, but with a limitation, it should be

traversed within polynomial time complexity.

As for the overall HAF value it is given by the following formula:

HAF = MIN(system MAX−HAF, query−user−specified U−HAF)×annotator−
specified A−HAF .

We also claim there is no cycle in the propagation, once an item has been visited before, we

will stop propagating the current annotation on that path.

• FOR USERis used in the user-driven views: When the annotation is defined, FOR USER

means who will have access to a particular annotation. When a query is issued, FOR USER

means whose annotation(s) this user wants to view.

• User information is retrieved from user profiles automatically. We assume there is a user hier-

archy, that is, users are managed in multiple levels,user groupanduseretc. Each user has own

unique ID and belongs to one or more particular groups.

5.2 QUERY PROCESSING

In this section, we present the algorithms to process query type I, II and III. In subsection5.2.1,

we present a complete set of algorithms for Query type I, including annotation management (in-

sertion, deletion, and update) and cache replacement algorithms (deterministic and probabilistic

42

approaches). We also discuss the operations for two other query types in subsections5.2.2and

5.2.3.

5.2.1 Query Type I: Query Data with associated Annotations

5.2.1.1 Query Processing The ViP framework relies heavily upon the concept ofdatabase

viewsto declaratively describe annotations and annotation paths, thus in query processing, annota-

tion view management is very important. Even if an annotation is associated to a data item directly,

in our implementation, we still register it in the annotation view table, except that it has a direct

data item link in the condition attribute.

We use ViP-SQL to allow users to retrieve regular results with annotations. A query with

annotations is rewritten as standard SQL with preprocessing and postprocessing. Preprocessing

checks the auxiliary table for possible early annotation filtering. If a query result (a data item) is

satisfied by an annotation view’s condition, the annotation query processor will return this annota-

tion, and lookup the annotations associated with the query result, if there are any annotation paths

associated.

The cache is used to optimize system performance. Once there is a query result, the system

will lookup at the cache first, if there is no match (cache miss), then it will lookup in the actual

annotation tables. If there is a cache hit, the system will return the data item with the cached

annotations. We present the pseudo code for the corresponding algorithms in the following.

Searching Associated AnnotationsTo Search the annotations associated with a data item, we

need to search in both directions: its direct annotations (via annotation views) and its inherited

annotations (via annotation paths). The pseudo code is presented in “Algorithm1: Direct and

Inherited Annotation Search”, in the next page.

5.2.1.2 Caching to Optimize Annotation Search If a data tuple is not found in the cache, the

ViP query processor will execute the annotation query and save its annotation query results set into

the cache. If a data tuple is found in the cache, we need to verify if it is still “fresh”. There is a

cross-check of the data with its snapshot, which is taken when the annotation query set is stored

into the cache. It is like a “signature”, including its query condition and value.

43

Algorithm 1 Direct and Inherited Annotation Search
proceduresearchassociatedannotationTi:

find direct associatedannotationTi

find dependentassociatedannotationTi

returnTi.annotationQueryResult

procedurefind direct associatedannotationTi:

Let A← searchin AnnotationAttribute table(Ti.table,Ti.col)

for each annotationAj in A do

compareconditionparameter (Aj, Ti)

if matchthen

addAj.id to Ti.annotationQueryResult

end if

end for

procedurefind dependentassociatedannotationTi:

Let H← searchin InhertanceDefinition table(Ti.table,Ti.col)

for eachHj in H do

Let R← find recordsin associatedtable(Hj.inheritancerule)

Let R column← Hj.inhertancethroughrule.attribute

for each recordRm in R do

searchassociatedannotation(Rm.R column)

end for

end for

44

The two strategies we considered areimmediate delete (eager)andincremental insert/update

(lazy). The cache hit algorithm is presented in “Algorithm2: Annotation Search in Cache”, and

the cache management algorithm is presented in “Algorithm3: Cache Management”. While in the

Notification mode (an eager strategy), whenever a record is updated in the database, the system

will update the cache. It is illustrated as a part of “Algorithm3: Cache Management”.

Algorithm 2 Annotation Search in Cache
procedurehit cachingTi:

Let Tj ← searchin cacheindex(Ti.table,Ti.col,Ti.id)

if Tj is foundthen

compare(Ti.data,Tj.datasnapshot)

if matchesthen

hit-counter++

returnTj.CachedAnnotationQueryResult

end if

return false

end if

There are four alternatives in our solution:

• lazy strategy with cache size = 0

• lazy strategy with cache size = n, n is a number between 0 to full memory size

• lazy strategy with cache size = infinite

• eager strategy with cache size = infinite

We will evaluate these alternatives in Chapter7 and report the experimental results.

Cache Management will take no action if adata itemis inserted, deleted, or updated in the

database. However, whenever anannotation registrationis updated/inserted, our system will up-

date the cache appropriately. If an annotation registration is removed, our system will remove its

related entries from the cache as well.

The cache operations are illustrated below with the internal cache structure organized as is the

table shown in Figure18.

45

Algorithm 3 Cache Management
procedure insert into cacheTi:

if cache is fullthen

evict as ViP-LFU algo (or other cache replacement algorithms)

end if

insertTi to cache

save a snapshot of data referred byTi

procedureafter annotationdeleteTi:

Let R← cached AnnotationQueryResult

while R.table =Ti.table and R.id =Ti.id do

delete R

end while

procedureafter recordupdateTi:

if working in Notification modethen

Let R← cached AnnotationQueryResult

while R.table =Ti.table and R.id =Ti.id do

delete R

end while

end if

46

D2

D1

DataID

D2

D1

DataID

V3

V2

V1

ViewID

t3

t2

t1

TimeStamp

V3

V2

V1

ViewID

t3

t2

t1

TimeStamp

a3

a2

a1

AnnoID

keyword3

keyword2

keyword1

Content

a3

a2

a1

AnnoID

keyword3

keyword2

keyword1

Content

a1

a3

a1

a1

AnnoID

tc4

tc3

tc2

tc1

TimeStamp

D2

D1

D1

D1

DataID

V1

V3

V2

V1

ViewID

a1

a3

a1

a1

AnnoID

tc4

tc3

tc2

tc1

TimeStamp

D2

D1

D1

D1

DataID

V1

V3

V2

V1

ViewID

Data Annotation View Annotation

Cache

Figure 18:Relational Tables of Cache Operations

Cache Operation When Data Changes in The Database:

• Insert a data item:NO action

• Delete a data item:

– Regular: NO action

– Eager: Invalidate the data entries in the cache

• Update a data item:NO action

Cache Operation When Data Is Retrieved:

• No match in the cache:Retrieve the associated annotations, then save the annotation set into

the cache

• Match is found in the cache:Compare the timestamptcache of the annotation view which the

data item associated with, with the timestamp of the annotation viewtview. If tcache >= tview,

the content is still “fresh”. Otherwise, we need to retrieve annotations in the annotation view

table. For those views added aftertcache, check the condition of views, if the data item satisfies

the condition, retrieve the related annotations.

Cache Operation When Annotation View Changes:

• Insert an annotation view:Insert the timestamp in the annotation view table

• Update an annotation view:Update the timestamp of the annotation view

47

• Delete an annotation view:Remove the related entries in the cache

There is another option, namely to delay cache storing if there are frequent updates happening

to the annotations. It is similar to theForced Delayre-computation algorithm in [18].

5.2.1.3 Cache Replacement Algorithms As is typically the case, users’ experience highly

depends on the query response time, which in turn mainly depends on the efficiency and precision

of the materialized view cache. The ideal situation is that the cache has exactly the data items

and the annotations associated with them. However, this is difficult to achieve since (1) the cache

capacity is limited (2) data and annotation views are frequently updated.

In general, cache algorithms (also called cache replacement algorithms or replacement poli-

cies) are optimizing instructions/algorithms that the operating system, a computer program, or a

hardware-maintained structure can follow to manage a cache of information stored on the com-

puter [113]. When the cache is full, the algorithm must choose which items to discard to make

room for the new ones. LRU (Least Recently Used) and LFU (Least-Frequently Used) are two

classic and popular algorithms. We identify representative cache replacement algorithms from

previous works and map them into equivalent solutions to fit our system. Next we propose our

own algorithm as an alternative in order to achieve better performance and, as a result, higher user

satisfaction.

Assume the cache consists of N data objects and their annotation sets. The entire data set is

denoted asD = {dk|0 ≤ k ≤ N}. We assume that data objects are independent of each other and

they are independently updated.

We partition the space of cache replacement algorithms into two categories,Deterministic

ApproachesandProbabilistic Approaches, which we present in more detail next.

Deterministic Approaches to Cache Replacement:

In deterministic approaches, we assign apriority for the replacement of each data item in a

deterministic way, and order the data items in a priority queue. When we schedule the cache

replacement, we pick the data item with the highest score from the priority queue to replace. We

consider eight deterministic approaches to cache replacement, as follows.

1. Least Recently Used (LRU):discards the least recently requested items first. This algorithm

48

requires keeping track of the timestamp of each data item when it is accessed.

Pri(Ri) =
1

Ren(i)
(5.1)

where Ren(i) is the last accessed time stamp of the data itemi.

2. Least Frequently Used (LFU-ORIG): the traditional LFU algorithm (which we refer to as

LFU-ORIG) counts how often an item is needed. Those that are used least often are discarded

first. Deterministically, the more accesses that have been accumulated, the higher priority that

this data needs to be maintained in the cache.

3. ViP-LFU: in this thesis, we propose a hybrid solution: we keep two counters: one is for the

access frequency, the other is for the last access timestamp. If there is a tie situation, we prefer

to keep the data item which was accessed most recently. In addition, we utilize a tumbling

time window for taking advantage of locality. We call this algorithm “ViP-LFU ” or “ LFU ”

for short, which is simple, but efficient, as we will show in the experimental evaluation and

compare it with other algorithms.

Pri(RD) =
1

ACC(Di)
(5.2)

where ACC(Di) is the access of the data itemD during the given time windowi

ACC(Di) = α× AccNum(Di) + (1− α)× ACC(Di−1) (5.3)

whereAccNum(Di) is the number of accesses of the data itemD during the given time win-

dow i. We use aging for the previous accesses of the data item and use an aging factorα equal

to 0.8.

4. Update-Count-based Deterministic (UCD):correspondingly, the more updates on the data

item, the higher priority for it to be replaced.

Pri(Ri) = Upa(i) (5.4)

where Upa(i) is the number of updates applied on the data item i.

49

5. Annotation Cost (AC): in [34], the GreedyDual-Size algorithm associates a value H with each

cached page p, by setting H tocost/sizewherecost is the cost of bringing the document, and

sizeis the size of the document in bytes. In this thesis, we assume the size of each data entry

in the cache is uniform, rather we focus on the cost of bringing the data item and associated

annotations into the cache.

Pri(Ri) =
1

AC(i)
(5.5)

where AC(i) is the time to retrieve all annotations associated to the data itemi.

6. Annotation Size Cost (ASC):in addition, we consider the annotation size associated with the

data item. If there are two data items needing the same amount of time to retrieve, we will pick

the one with fewer annotations to kick off.

Pri(Ri) =
Size(i)

AC(i)
(5.6)

whereSize(i) is the number of annotations associate to the data itemi, and AC(i) is the time

to retrieve all annotations.

7. Popularity with Cost (PC): in addition to the cost, we include the popularity of the data item

into consideration.

Pri(Ri) =
1

AC(i) ∗ ACC(i)
(5.7)

where AC(i) is the time to retrieve all annotations associated to the data itemi and ACC(i) is

the number of accesses of the data item.

8. Update Popularity Cost (UPC):we extend the criteria to also include the number of updates.

Pri(Ri) =
Upa(i)

AC(i) ∗ ACC(i)
(5.8)

where Upa(i) is the number of updates applied on the data itemi, AC(i) is the time to retrieve

all annotations associated to the data itemi, and ACC(i) is the number of accesses.

50

Probabilistic Approaches to Cache Replacement:

In probabilistic approaches, we assign aprobability on each data item. When we schedule the

replacement, we randomly select one data item by following the assigned probabilities.

1. Popularity-based Probabilistic (AFP): intuitively, the more accesses on one data object, the

more chances there are that it should be maintained in the cache. Correspondingly, we calcu-

late access frequencies on each data item. The probability is then determined by the access

frequencies of the data items.

P (Ri) =

∑
i∈D ACCi

ACCi

(5.9)

whereACCi is the number of accesses of the data item i.

2. Update-Frequency-based Probabilistic (UFP):one hypothesis is that frequently updated

data items should not be kept in the cache. Under this belief, we calculate update frequencies

for each data item, and assign the priority score from these update frequencies accordingly. We

will pick the data item with the highest probability score to replace.

P (Ri) =
UPDi∑
i∈D UPDi

(5.10)

whereUPDi is the number of updates happened on the data item i, andD is the data set.

Many of the above algorithms were adapted from traditional data caching; we implemented all

of them in a way more appropriate for the context of this thesis and experimentally compare the

performance of these algorithms in Chapter7.

5.2.2 Query Type II: Query Annotations with associated data

Another useful type of queries is one that includes conditions on the annotations and retrieves the

annotations that match, along with all associated data items. We refer to this as a Type II query.

One trivial solution is to handle this in a way that is essentially symmetric to what we did with

Type I queries. First of all, let the users specify the keywords or criteria about the annotations.

51

Once the annotations have been found, match the annotation views registration, thus retrieve the

data items as described in the annotation view table. However, to implement this solution we would

need to have the annotation views bematerialized, which brings a lot of challenges. In that case,

each annotation view may keep the keyword and data items it associates to, but the maintenance

cost maybe high, although the retrieval time will be reduced significantly.

There are multiple ways that annotations can be associated with data. We discuss (1) Direct

Annotations on Data, (2) Annotations on views, and (3) Annotation Paths, in the following.

1. Direct Annotations on Data

• What happens when an annotation is added:

• [simple solution:] insert an annotation into the annotation table; no update on the anno-

tation table when a data item is inserted

• [advanced solution:] update index on annotations, add the annotation into the cache if

needed

• What happens when searching annotations:

• [simple solution:] query the annotation, get results from keyword matching; and then

look up in the data table, match the annotation with the data item

• [advanced solution:] add an index on annotations, cache annotation associated with data

items. It is similar as the solution in query type I, but in a reverse way.

2. Annotations on Views

• What happens when an annotation is added:

• [simple solution:] insert annotation into annotation view table; no update on annotation

table when a data item is inserted

• [advanced solution:] update caching table when data or annotation is inserted (invalidate

certain contents in the cache with the expired timestamp, in the eager strategy)

• What happens when searching annotations:

• [simple solution:] query the annotation, get results from the SQL execution (result 1);

retrieve the data table to find data item(s) satisfying the annotation view condition; return

result 1 with related data item(s)

• [advanced solution:] 1. add indexing on certain attributes,

52

2. cache annotations,

3. Extension: find the overlapping ranges, e.g., having a partial match with a keyword

(1) find which view definitions are applicable (need to be fast)

(2) find which data items are part of specific view definitions (can be a regular query -

materialized views)

3. Annotation Paths

• What happens when an annotation is added:

• [simple solution:] insert annotation into annotation view table; insert annotation path in

to the annotation path table; no update on annotation table when a data item is inserted

• [advanced solution:] update the index and the cache table (invalidate certain contents in

the cache with the expired timestamp, in the eager strategy)

• What happens when searching annotations:

• [simple solution:] it is an option for users to view additional annotations since the query

is an exact match of annotation keywords, or more complicated, the exact match of the

annotation view definition. There is also the inheritance of annotation views, if applicable.

Users have the option to view additional related annotations, thus find the associated data

items.

5.2.3 Query Type III: Query Data and Annotations

As we did in the previous section, we summarize the solutions for query type III next, according

to the three different ways of annotation association.

1. Direct Annotations on Data

• What happens when an annotation is added:

• [simple solution:] insert an annotation into the annotation table; no update on annotation

table when a data item is inserted

• [advanced solution:] update the index both on data items and annotations

• What happens when searching annotations:

• [simple solution:] it is a join or union of the data result set with the annotation result set,

according to AND-semantics or OR-semantics, which we discussed in Section5.1.2

53

• [advanced solution:] add indexing on both data attributes and annotation attributes, make

a hybrid cache (data and annotations)

2. Annotations on Views

• What happens when an annotation is added:

• [simple solution:] insert annotation into annotation view table; no update on annotation

table when a data item is inserted

• [advanced solution:] update the caching when data or annotation is inserted (invalidate

certain contents in the cache with the expired timestamp, in the eager strategy)

• What happens when searching annotations:

• [simple solution:] query the data item, get results from SQL execution (result 1); query

the annotations, get result 2; match result 1 with result 2

• [advanced solution:] add indexing on both data attributes and annotation view attributes,

make a hybrid cache (data, annotations, and queries), keyword search

3. Annotation Paths

• What happens when an annotation is added:

• [simple solution:] insert annotation into annotation view table; insert annotation path

into the annotation path table; no update on annotation table when a data item is inserted

• [advanced solution:] update index and caching table (invalidate certain contents in the

cache with the expired timestamp, in the eager strategy)

• What happens when searching annotations:

• [simple solution:] query annotation, join with the results from query type I.

Step 1: match query on annotation with the annotation view definitions,

Step 2: run query on data and get results,

Step 3: compare the query results with a subset of the view definitions, that is, Type 3 =

Type 2 + Type 1

• [advanced solution:] indexing on multiple attributes, caching (data, annotation views and

queries), rewriting annotation view queries, group local queries together, pre-matching,

keyword search etc.

54

5.2.3.1 Keyword Search Keyword search has been studied extensively in the literature, in-

cluding keyword search in databases. We propose to utilize well-established techniques and use

indexing which takes advantage of the structure of annotation views in our system.

Let us assume that we have a Type III query on both data and annotations, and that if executed

independently, the query on data will generate a set of related annotations (Set A) and the query

on annotations (which is often a keyword-based search) will generate a different set of annotations

(Set B). The proper result of the original type III query should return the intersection of sets A and

B, which will refer to as C.

One (naive) approach of computing C involves finding the set of data items that answer the

query, then finding their related annotations (Set A) and then finding the annotations out of Set A

that contain the desired keywords. Although this approach avoids computing all of Set B, it still

could be a costly proposition. Another (still naive) approach of computing C, takes the opposite

route: first identify the set of all annotations that match the query on annotations (i.e., compute

Set B), and then only keep the annotations whose related data items satisfy the conditions for the

query on data.

In either case, the desired set isC; but in both cases the smaller ofA andB must be searched in

its entirety. To eliminate the need to search extraneous annotations, and only search the subsetC,

our proposed solution will index each annotation view in the system with the keywords contained

in annotations to it and that propagate to it. As one must search these views as a graph to find

annotations on the data items in a query’s result set, one would ideally be able to prune sub-graphs

where no annotation to any view in that sub-graph matches the keyword search.

This is still sub-optimal, though, as a particular view may produce many annotations. Although

the pool of keywords contained in these annotations may contain all of the search keywords, there

may not be any annotation that contains all of the desired keywords. Because of this, every anno-

tation on such a view must be examined. In the worst case, every annotation in the setA would be

searched while the setC is empty. Suppose now that one knew that for any view, the first half of

the annotations on that view and propagated to that view contained a set of keywords and that the

other half of those annotations contained a different set of keywords. One would then potentially

be able to prune half of the annotations on and propagated to such a view.

In this way one can construct a tree-like keyword index for each view. This index will be called

55

theannotation term provenance graph, or ATP graph:

Definition 1. Let W be a set

V × A ⊆ W

where each element inW represents a node on theannotation term provenance graphG(W,E).

Any child of anyw ∈ W will by definition have more terms in common with any of its siblings

than with any of its cousins. Letρ : V → W be a function that maps views to nodes in the ATP

graph. Each view will be mapped to the node that represents all terms used in annotations on that

view and preceding views. Letα : W → A be a function that maps nodes in the ATP graph to

annotations. LetT be a set of terms used in annotations, defined as

T =
⋃
a∈A

Ta

Let H be a hash function

H : V × T × Z+ → Z+

Let h(v, t, λ) ≥ 1 for all v andt wheret is a term of an annotation on a view exactlyλ hops before

v.

W
 id
 aid
 vid

E
 pid
 cid

K
 wid
 keyword

Figure 19:Keyword Index Structure

W maps internal nodes to annotations and views in Figure19. K maps nodes to keywords, E

defines the keyword inheritance edges.

56

Whenadding an annotation, we start atρ(v) and greedily explore the child with the most

terms in common. When we encounter a node with more terms in common than any of its children,

we pair the new node with that node. We then explore up and add the new terms to each ancestor

node within HAF views. Pseudo-code for the process is given as algorithm4.

Theorem 1. Algorithm4 will run in expected time equal toO(|S|bHAFmaxlg2(K)), whereS is

the set of views to annotate,b is the maximal branching factor ofG(V, E), HAFmaxis the maximal

number of edges to propagate over andK is the maximal number of annotations on any view.

Proof. One can observe that the first, outermost for-loop iterates over every member ofS, thus

requiring O(|S|) time. Within this loop, the ATP graph starting atρ(s) is explored top-down

for each members ∈ S. Because the terminal nodes of the sub-graph to be explored map to

annotations ons, and because there can be at mostK annotations on any view or data item, and

because the sub-graph has a bounded out-degree, this takes time equal toO(lg(|K|)), and the outer

for-loop takes time equal toO(|S| lg(|K|)).
The while loop will operate on nodes in the ATP graph starting with those added to the bound-

ary by the for loop. As we know over how many views an annotation can propagate (HAFmax) and

the maximal number of internal nodes under any view (O(K)), if we know the maximal out-degree

of all the views (b) then we can determine an upper bound for the while loop’s runtime. Because

there are|S| starting nodes, there will be up to|S|bHAFmax views that need to be explored.

Corollary 1. In the worst case, algorithm4 will run in time equal toO(lg(K)|V |) whereK is the

maximal number of annotations on any view andV is the complete set of views.

Whendeleting an annotationfrom a set of views and data items, we must determine which

views and items have been annotated and for each of those, which node in the ATP maps to the

annotation. We then delete these nodes and follow the edges of the ATP graph while removing the

annotation’s keywords from each node in the ATP graph that is HAF views or fewer away from the

original item (Algorithm5).

57

Algorithm 4 Adding an annotation
Require: views V , annotationsA, items to annotateS, annotationa, adjacency listG(W,E),

inverted adjacency listF (W,E−1), hash functionH

procedureadd an annotation:

A← A ∪ a

Let explored← ∅
for eachs ∈ S do

Let w0 ← ρ(s), l← −1, wp ← w0, wc ← ∅
for w ← Fw0, w 6= ∅, w ← wnextdo

if LCS(Ta, Tw) > l then

l← LCS(Ta, Tw), wc ← w

end if

end for

while LCS(Ta, Twc) ≥ LCS(Ta, Twp) do

temp← wc

for w ← Fwp, w 6= ∅, ∀v[ρ(v) = w → v = s], w ← wnextdo

if LCS(Ta, Tw) > l then

l← LCS(Ta, Tw), wc ← w

end if

end for

wp ← temp

end while

F ← F ∪ {wm, wn}, G← G ∪ {wm, wn}
Fwn ← ∅, Gwn ← {wm}
Fwm ← {wc, wn}, Gwm ← {wp}
Fwp ← (Fwp − wc) ∪ wm, Gwc ← (Gwc − wp) ∪ wm

Let α(wn)← s, boundary← wn, exploredwn
← 1, hopswn

← 0

end for

58

Algorithm 4 (Continued)

while boundary6= ∅ do

Let u← boundary0

boundary← boundary− boundary0

Let λ← hopsu

if λ < HAFmax then

for Eacht ∈ Ta do

h(u, t, λ)← h(u, t, λ) + 1

end for

for w ← Gu, w 6= ∅, w ← wnextdo

if ¬exploredw then

boundary← boundary∪ w, exploredw ← 1

if ∃v[ρ(v) = u], λ + 1 < HAFmax then

hopsw ← λ + 1

else if∀v[ρ(v) 6= u] then

hopsw ← λ

end if

end if

end for

end if

end while

59

Algorithm 5 Deleting an annotation
Require: views V , annotationsA, items to remove annotation fromS, annotationa, adjacency

list G(W,E), inverted adjacency listF (W,E−1), hash functionH

proceduredelete an annotation: Let explored← ∅
for eachs ∈ S do

Wc ← α−1(s)

for Eachwc ∈Wc such thatρ−1(s) is an ancestor ofwc in G do

for Eachwx ∈ Fwc do

Gwx ← (Gwx − wc) ∪Gwc

end for

F ← F − {wc, wp}, G← G− {wc, wp}
end for

end for

while boundary6= ∅ do

Let u← boundary0, boundary← boundary− boundary0, λ← hopsu

if λ < HAFmax then

for Eacht ∈ Ta do

h(u, t, λ)← 1

end for

for w ← Gu, w 6= ∅, w ← wnextdo

if ¬exploredw then

boundary← boundary∪ w, exploredw ← 1

if ∃v[ρ(v) = u], λ + 1 < HAFmax then

hopsw ← λ + 1

else if∀v[ρ(v) 6= u] then

hopsw ← λ

end if

end if

end for

end if

end while

60

Theorem 2. In the worst case, algorithm5will run in expected time equal toO(|S|bHAFmaxlg(K)),

whereS is the set of views to remove annotations from,b is the maximal branching factor of

G(V, E), HAFmaxis the maximal number of edges to propagate over andK is the maximal num-

ber of annotations on any view.

Corollary 2. In the worst case, algorithm5 will run in time equal toO(lg(K)|V |) whereK is the

maximal number of annotations on any view andV is the complete set of views

Theannotation searchis proposed in Algorithm6.

Theorem 3. Algorithm6 will run in expected time equal toO(L) whereL is the number of anno-

tations those match the search criteria.

5.3 SUMMARY

In this chapter, we introduced three query types, and discussed the solutions and algorithms for

each query type. We proposed to use caching to optimize the annotation search, in addition, we

proposed ten cache replacement algorithms adapted from our experience and related work.

61

Algorithm 6 Annotation Search
Require: views V , annotationsA, keywords K, search viewsV ′, inverted adjacency list

F (W,E−1), hash functionH

proceduresearch:

Let explored← ∅, boundary← ∅, hops← ∅, r← ∅
for Eachv ∈ V ′, ∀ω ∈ K[h(v, ω, 0) ≥ 1] do

Let exploredv ← 1, hopsv ← 0, boundary← boundary∪ v

end for

while boundary6= ∅ do

Let u← boundary0

boundary← boundary− boundary0

Let λ← hopsu

if ∀ω ∈ K[ω ∈ Tu], α(u) ∈ A, λ < HAF then

r← r ∪ α(u)

end if

for w ← Fu, w 6= ∅, w ← wnextdo

if ¬exploredw, ∀ω ∈ K[h(u, ω, λ)] ≥ 1] then

boundary← boundary∪ w

hopsw ← λ + 1

if ∃v[ρ(v) = w], λ + 1 < HAF then

exploredw ← 1

else if∀v[ρ(v) 6= w] then

hopsw ← λ

end if

end if

end for

end while

62

6.0 THE VIP FRAMEWORK - PROOF OF CONCEPT IMPLEMENTATION

To fully address the two problems introduced in our motivation examples in Chapter1 and Chap-

ter 4, we have proposed the ViP framework whose details were presented in Chapter2, Chapter4,

and Chapter5. In this chapter, we present some of the implementation details as they relate to the

prototypes/proof-of-concept demos that we have built, which realized the different features of the

ViP framework.

6.1 USER-DRIVEN TIME SEMANTICS

We proposed the concept ofvalid timein Section4.1; this was one step beyond the original imple-

mentation in the prototype, which at the time only supportednow, future, now+futuresemantics.

Our solution: We extend the current implementation to fully support valid time, that is, pro-

vide the function offuture interval time semantics. We performed a large-scale experiment to

evaluate the new function, verified that it is correct and complete in the entire spectrum of work-

loads and environmental settings.

6.2 USER-DRIVEN NETWORK SEMANTICS

We focused on providing as many features of the ViP framework as possible, while providing good

overall system performance. There are several issues we wanted to explore. We discuss the issues

about performance in Sections6.2.1, 6.2.2, and 6.2.3; while the issues about providing all of

ViP’s features are discussed in Section6.2.4.

63

6.2.1 Lazy/eager Annotation Propagation Algorithms

ViP employs a variant oflazyor on-demandpropagation of annotations. In the case of annotation

views and paths, this scheme has the advantage to retrieve annotations in one batch instead of

having to eagerly propagate annotations to individual data items. This is also a very compact

representation method. However, the system may perform better in eager propagation in some

cases, depending on the actual annotation and data distribution and also on query patterns.

Related Work: EagerandLazy (on-demand)annotation propagations have been studied in

many papers such as [25] [128]. In the lazyapproach, a query is generated and executed to retrieve

associated annotations only when needed. It is very popular in data lineage tracing [44]. In the

eagerapproach, the provenance and annotations of data are carried along with data when they

are being transformed. Thus, annotations are immediately available in the output, by the cost of

space and time spent in the process. In most available systems, DBNotes [25] follows the eager

propagation method, while MMS [115] is following the on-demand scheme.

Our Solution: We enhance the existing annotation propagation algorithms by allowing the

system to select between lazy and eager annotation propagation schemes, and finding the switching

point. The adaptive adjustment to get a hybrid propagation scheme is part of our future work. We

consider this problem as “when” to switch.

6.2.2 Indexing on Annotation Views and Annotation Paths

Related Work: There are a lot of research projects that use indexing on time series, biological

sequences, and databases. The traditional mechanisms are B+ tress and hash tables. Beyond that,

space-partitioning trees such as kd-tree [24] or SBC-Tree [49] have been applied for biological

data.

Our Solution: We want to take advantage of current indexing algorithms, and mainly focus

on annotationindexing more thandata indexing. Clearly, we cannot only put indexes on data

attributes, we want to use indexing techniques on user-driven features such as users/user groups

or public/private views and paths, i.e., have these features as a first-priority “filter” to speed up

annotation retrieval.

64

6.2.3 Cache Management

Our Solution: Another algorithm to explore is dynamic cache adjustment. Currently we use a

modified LRU (Least Recently Used) + LFU (Least Frequently Used) caching algorithm (ViP-

LFU), and use two levels of counters to keep track of cached annotation sets. That is, we put the

first order on cache item’s used frequency, and the second order on visited time (as was described

in Algorithm 5.2).

An annotation query has the unique feature that it is closely associated to data, so any annota-

tion update, and even data changes will affect annotation result sets. As such, simple time window

or aging scheme does not work well in this situation. We want to design an effective cache man-

agement for annotations. We consider such problem as “when” to cache. One step further, we

want to analyze the most promising caching annotation set from historical data, thus adjust the

“hot” cache content. We consider this problem as “what” to cache.

6.2.4 Private/public Views and Paths Management

Users want to set annotation views or annotation paths as public or private in their preferences, in

other words, an annotation view or an annotation path could be visible to different users in multiple

granularities.

Related Work: Privacy preserving methods are a hot topic in networks, including sensor/wireless

network [36], social networks [71], or network commerce [94] etc. It is not until recently that an-

notation and provenance management have gained attention into this area, but most projects are

limited to access authorization such as [71].

Our Solution: we propose to add user preference setting so that each user can setup his/her

annotation views and annotation paths as public or private. For private paths, users can specify

the access user or user groups, all paths will be public as the system’s default setting. That is,

the owner or authorized users of a view or a path will have the privilege to make such data public

to certain users or user groups. Note that this differs from traditional access control on the data

objects because we are talking aboutannotation viewsandannotation paths, i.e., the methods of

how the data should be propagated, not thedata, being set as pubic/private.

In summary, we propose to grant users more access control privileges on data, annotations,

65

annotation views, and annotation paths. In Section4.4.2, we also proposed a set of methods for

path strength/weight definition and management. In this way, we provide a solution to specify the

numeric indicator of how strong annotators’ confidence on the path is, and at the same time, users

can specify the strength level they want to retrieve via annotation paths. It is another interesting

research point, we consider this problem as “how” to retrieve.

6.3 ANNOTATIONS MANAGEMENT

6.3.1 Inserting Annotations

The ViP framework is illustrated in Figure4. ViP-SQL queries are rewritten automatically into

SQL queries evaluated by the annotation query processor, then recorded by the annotation register

and the path setup manager. They are sent to the DBMS and the resulting annotation set is merged

with the regular query results by the postprocessor for matching and presentation.

We start with registering annotations. Explicit annotations could be a string or a file; while

implicit annotations include annotation views and annotation paths. If it is an annotation view,

the annotation register is responsible for insertion, deletion and updating. If it is an annotation

path, the path setup manager will update the auxiliary table to record the path source and target,

with path query conditions. Obviously, sorting views or detecting the view containment problem

[118] [40] [32] may bring significant computation and time complexity. To simplify the problem

setting, we assume that the network formed by the annotation paths forms adirected acyclic graph,

when ordered. All views are sorted by topological order to build a hierarchy/dependency tree, thus

guarantee the correctness and completeness of the annotation propagation.

6.3.2 Deleting Annotations

When deleting an annotation from a set of views and data items, in the lazy annotation propagation

method, removing annotations or annotation views from the annotation registration table finishes

the process. If there is an annotation path affected, and either the source or the target is removed,

the path will be removed. In the eager annotation propagation method, we must determine which

66

views and items have been annotated and remove the annotation from each one of those. For

example, in the keyword search index, which node in the ATP that maps to an annotation, we need

to delete the mapped nodes and follow the edges of the ATP graph while remove the annotation’s

keywords from each node in the ATP graph that is HAF views or fewer away from the original

item.

There is one more point to be mentioned: we do not optimize annotation paths automatically,

that is, if there is a path from annotation A to B, and there is another path from annotation B to C,

we do not merge them into A to C automatically. If we want to optimize to build a multiple-hop

path, we must record the intermediate annotation views and hops, if the middle node(s) is removed,

the whole path will be removed from the register.

6.3.3 Implementing Auxiliary Tables

It is quite natural to use auxiliary tables storing the attributes of the annotation views. Like MMS

[115], ViP also uses auxiliary tables to store annotation view conditions, which will work as filters

to prune unrelated annotation lookups. However, MMS uses Q-indexes (index on queries, which

is similar to views in ViP) to maintain indexes on the Q-values (query values), and as such for each

data changes all related index tables need to be updated. Unlike MMS, we use caching to improve

the performance of computing annotations. The reason is that for the index to be useful, it would

need to be efficiently updateable when data and annotations are inserted, deleted and updated;

therefore, such index maintenance may require a high cost in space and time. In addition, from the

usage pattern we observed in our DataXS project, data updates happen more often than annotation

views/paths updates, in which case MMS would require a lot of Q-value updating. Thus ViP relies

on caching instead of indexing.

6.4 WORKING WITH ASTROSHELF

ViP [83], together with AstroShelf [93] and CONFLuEnCE [91], deploys a user-driven framework,

for large amounts of scientific data. In ViP, we propose to associate annotations with object/data, a

67

set of objects, or annotations. We treat a view as an annotation registration (annotation definitions),

which will be specially handled in the system. Once queries and annotation registrations defined

by users via AstroShelf are forwarded to ViP, they are rewritten into SQL queries evaluated by the

annotation processor, then sent to the annotation management module, and finally pushed to the

DBMS. There is a cache between the annotation management module and the DBMS to expedite

the processing time. To maximize the system processing speed, we are considering using an In-

memory database (IMDB).

To work with CONFLuEnCE, the ViP framework processes continuous annotations and queries

as events. There is an event reporting module pushing annotation changes (insert, delete, or up-

date) to the system monitoring module for pub/sub notification. Our extended system overview is

shown in Figure20.

Figure 20:Extended System Architecture

68

A simple workflow in the system is illustrated as following:

1. Using the SkyView of AstroShelf User Interface, users can define annotations, annotation

views, and annotation paths associated with areas of interests in the sky. The annotated ob-

ject may be arbitrary points, areas, group of areas etc. The ViP framework enables users to

specify explicit paths between two or multiple annotations views, thus establishing additional

annotation propagation paths. All these annotations are registered into the annotation register

in the Data Storage of the ViP framework.

To present revisions on annotation values or discussions between users on annotation values,

annotations on annotation can be recorded. The original annotations will be treated as special

data objects in the annotation table.

2. Using SkyView, users can issue queries on certain data in the sky map. AstroShelf will send

a request to ViP. The annotation query processor will look up the annotation table and search

all related annotation views effective in the valid time period. If there are any annotation paths

enabled, all related data items would be retrieved according to the path depth limits specified

by annotators and users. The query results will be sent back to SkyView, users can view it by

sorting or filtering different conditions such as time or distance.

3. If users register for event notification in the SkyView, all annotation insertion/deletion/updating

associated with their interested annotation object (views) will be notified to their browsers or

emails, SMS etc. The system may recommend annotations updates to those users who may be

interested according to their profiles.

In the Astroshelf collaboration platform, the ViP framework manages adding annotations and

queries on annotations according to client requests. It works in the same way as CONFLuEnCE

interacts with Astroshelf. To adjust the ViP framework to work with the Astroshelf collaboration

platform, there are a couple of challenges:

1. Merge the stand-alone ViP framework with the whole system.

69

2. CONFLuEnCE manages continuous workflows, so the annotation service will work with con-

tinuous annotations, which is in the future work of the ViP framework.

The combined platform will be evaluated with experiments in two parts: the stand-alone ver-

sion and the one integrated into the Astroshelf collaboration platform. The stand-alone ViP can

handle big data sets, so that it could be used for stress testing the system performance, while the

integrated annotation engine may implement all functions as proposed, and thus demonstrate the

benefit of a hybrid system.

6.5 BIG DATA

Scalability Problem: The advances in computing technology (Moore’s Law, cheap and vast stor-

age, increases in network bandwidth, etc.) are creating a greater need for efficient processing of

large-scale data, especially in scientific research. The volumes of annotations and data items should

be handled in a scalable way, as well as annotation views/annotation paths from users’ definitions

and queries. We are focusing on how to deal with large-scale data and annotations, how to retrieve

and manage data associated with annotations in a quick and effective way. It is challenging to think

big, it is also beneficial to bring big data into the system.

6.5.1 Our Solution

We have summarized related work about big data in Section3.6. To extend our work to address

the high levels of scalability required for Big Data, there will be, but not limited, several areas to

take care of, as listed below.

• Store the data according to relation/similarity/local feature. We keep track of user preferences

and data/query scheme, and identify the data and query pattern. It may also include partial

matching patterns. We group similar items together, store the data locally (i.e., “close” to each

other when they are “similar”). In other words, we want to “engineer” locality in the system.

70

• Build up indexes (such as BTree, B+Tree, RTree etc.) on data items and annotations, keep

related items close, that is, when we search, find the closet answer first, then expand the search

on global domain. In other words, we want to take advantage of the locality.

• Caching. The distributed memory caching system, such as Memcached [6, 54], is intended

for use in speeding up dynamic web applications by alleviating database load. The application

objects include YouTube [13] and Facebook [4]. It is a good choice in terms of scalable perfor-

mance. Besides, for the data set and views, we can find the overlapping components and cache

them in memory to improve the query processing.

In addition, we also propose in the extended ViP framework to deploy distributed data stores,

such as BigTable, and configure indexed data mapping for large-scale data.

Our choices: we explore three choices: partition cache, map cache to a big-data/cloud-ready data

structure, and integrated caching, which we elaborate on next.

• Partition cache

If we treat each cache entry as a bucket, there could be several related data or annotation items

stored in one bucket. A cache can be distributed in terms of both storage and retrieval, in favor

of processing speed.

• Map cache to a big-data/cloud-ready data structure

We map the cache to a distributed structure, with a unique key using which, we can retrieve any

cache item in a global environment in a fast way. With existing big data computing services,

we do not need to worry about management of such a cache, even in a big scale.

The problem is how togenerate a unique keyin such large-scale, distributed environment.

When Twitter moved away from MySQL and towards Cassandra, the engineers needed a new

way to generate id numbers. They designed Snowflake [14, 10], a network service for gener-

ating unique ID numbers at high scale with some simple guarantees. There are minimum 10k

IDs per second per process and the response rate is 2ms (plus network latency). For high avail-

ability within and across data centers, machines generating IDs should not have to coordinate

71

with each other. As a result of a large number of asynchronous operations, in-order delivery

cannot be guaranteed. However, the id numbers will be k-sorted [21, 65] within a reasonable

bound (10’s of ms), thus meeting our need perfectly.

System Clock Dependency:NTP is used to keep users’ system clock accurate. Non-monotonic

clocks, i.e., clocks that run backwards, are not supported. If the user clock is running fast and

NTP tells it to repeat a few milliseconds, the ID generator will wait until a time that is after the

last time generate an ID.

• Integrated caching

Keeping more things in main memory, possibly using a system such as Memcached (Key-value

cache in RAM) is another alternative. We may utilize this in our caching scheme, to work with

our existing algorithms. There is a comparison of in-memory vs in-disk tables, a reverse-index

of data sort vs regular index structures, or big index table. All these comparisons are interesting.

The answers may come from a combined effort taking ideas from several existing solutions.

There could be different solutions (databases and caching scheme) for data items and annotation

views. We could like to explore this in our future work.

6.6 USER INTERFACE

To answer the challenges we introduced in Chapter1, in addition to the work we proposed above,

we want to provide a user-friendly interface and a graphical representation of server statistics with

regards to annotations, to help users understand the ViP framework [95, 96].

In our data-sharing platform DataXS, a user can easily specify filtering conditions to locate

certain data items. These filtering conditions are essentially a query (i.e., a view) and can be

used by ViP. This functionality enables users to specify views using a point and click interface

(Figure21); these views can then be trivially used to implement all the functionality of the ViP

framework.

72

Figure 21:DataXS User Interface

We want to highlight the following three aspects of the ViP framework, as was implemented

in conjunction with the DataXS prototype:

• the user interface as well as functionality of the ViP framework, on top of the DataXS platform.

• the performance of the system (through carefully selected statistics at different aggregation

granularities), and

• the “behind-the-scenes”aspect of the system, through a graphical representation. This tool

will enhance the users’ understanding of how the ViP framework works, and would help them

understand the existing “connections” among (annotated) data.

There are three different aspects of the ViP framework’s user interface that we want to present:

• DefineThe ability to add annotations and annotation paths in an intuitive way through a point-

and-click interface, as shown in Figure21and Figure22.

• SearchThe ability to browse and search annotations, as shown in Figure21and Figure23.

• View The ability to view appropriate statistics for all data items and annotations (including

annotation views and annotation paths) in our system via a graphical representation, as shown

in Figure24.

We briefly describe each of these tasks in the next paragraphs. It should be noted that all

of these are inherently interactive (everything is done via a user-interface), dynamic (users will

immediately see the results of their actions), and can provide additional insight.

73

Figure 22:Registering An Annotation View

6.6.1 Define Annotations and Annotation Paths

The ViP framework relies heavily upon the concept ofdatabase viewsto declaratively describe

annotations and annotation paths1. Clearly, users are not expected to provide view definitions in

SQL. In our data sharing platform (DataXS), a user can easily specify filtering conditions to locate

certain data items. Additionally, users have the option ofsavinga particular query (i.e., set of

filtering conditions) and storing it as atab in the system, thus enabling them to rerun the query again

1The MMS system [115] advocated the use of views for metadata management; our system is targeting annota-
tions (i.e., a special case of metadata), but on the other hand is significantly extending their proposal with additional
semantics (i.e., valid time, network semantics, etc.)

Figure 23:ViP User Interface

74

Figure 24:System Monitoring: number of queries (top left), number of annotations (top right),

number of cache hits (bottom left) to illustrate the cache behavior, query time (bottom right) to

illustrate the system performance

75

in the future with just a single click instead of having to specify all the filtering conditions from

scratch. In other words, this functionality enables users to specifyviewsusing a point and click

interface (Figure21); we refer to this as the “Save View” function in DataXS. This functionality

can be trivially used to support the user-driven time and network semantics for the ViP framework.

We develop a feasible method for users to specify their requirements for the ViP framework.

The following ways of adding annotations (i.e., definingannotation views) are provided:

• A set of filtering conditions is used in its entirety (exact match); this is similar to the “Save

View” tab functionality that exists in our system already.

• If the set of conditions are not enough to adequately describe the properties of the data to be

annotated, then we will allow the user to provide additional constraining predicates (typically

a date range).

• To also support a simplified interface, we will also enable the user to just specify the list of data

items to annotate (i.e., enumerate).

We also showcase the definition of explicit annotation paths, by providing the aboveview

definitionabilities as a two-step process (for defining thefromand theto “nodes” of the annotation

path).

Finally, in addition to defining annotation views, we should be able to add annotations di-

rectly to data items (which could, in turn, trigger annotation propagation across pre-established

annotation views or annotation paths).

6.6.2 Annotation Browsing and Searching

The default behavior of the ViP framework (and that required by the participants in our CMPI

project) is to show the annotations along the associated data items, when the data items are shown

as part of a result of a query (or other browsing function of the system). We call this thebrowse

annotationsmode, as the annotations are retrieved through their association to data items.

Another possible retrieval mode for annotations is through direct search, which we call the

search annotationsmode. In this mode, users specify search parameters against the set of anno-

tations recorded in our database, for example,get all annotations that a specific user made (and

are public)or get all annotations that have the word “miscalibration” in them. The ViP frame-

76

owrk would then produce the appropriate annotations, but also generate the data items that are

associated with the annotations returned. We believe this feature really promotes annotations as

first-class citizens in our system.

6.6.3 System Performance Statistics

One important aspect of the ViP framework is the ability to show, with appropriate statistic and

graphical representations, a “behind-the-scenes” view of the relationships between data and anno-

tations. In order to do so, we will produce a graphical representation that will display appropriate

statistics for all data items in our system (e.g., number of view definitions each data item belongs to,

which is called the “interconnections of data”). This would allow us to illustrate what is happening

upon insertion/deletion of an annotation view or an annotation path or a data item. Additionally,

if there is a data item entered into the system, the user should be informed about any annotation

attached according to current valid views.

In addition to illustrating the semantics of the ViP framework, one important aspect that we

plan to illustrate is the performance of the system. Since caching was a major part to the efficiency

of the ViP framework, illustrating the inner actions of how caching works (i.e., when there was a

cache hit and when there was a miss) could prove very interesting. It enhances the user’s under-

standing of what is happening “behind the scenes” in the ViP framework and at the server. One

such example is shown in Figure24.

77

6.7 SUMMARY

Section Features Algorithms Implementation Evaluations Future Work

6.1 Time Valid Time Future Interval Table15

Semantics

6.2.1 Network Lazy/eager Annotation Lazy/eager Table13 “when” to switch

Semantics Propagation

6.2.2 Network Annotation Indexing Indexes Figure32 “filter” for

Semantics retrieval

6.2.3 Network Cache Management ViP-LFU Table14 “what” to cache

Semantics

6.2.4 Network Private/public Views User Table17 “how” to retrieve

Semantics Path Strength Preference Table16

6.3 Anno. mgmt. Insert/delete Anno. Anno. Tables Table11, 12 optimization

6.4 With Integrated System Stand-alone Future work Integration

AstroShelf ViP

6.5 Big Data Local Storage Future work Future work

(scalability) Indexing

Cache Partition

Cache Mapping

Integrated Caching

6.6 User Using Views Figures23, 22 N/A Improvement

Interface Figure24

Table 5:List of Implementations

78

7.0 EVALUATION OF THE VIP FRAMEWORK

We have implemented the ViP framework as a Ruby on Rails application that interfaces to a

MySQL database in Linux OS. To demonstrate that the proposed framework can support all as-

pects of the technologies described in previous chapters, we evaluated the ViP framework with

three different data sets, which were gathered from real data with simulated annotations, users,

or query workloads to be able to scale our experiments to desired levels and to fully evaluate the

proposed annotation features. In the following sections, we will discuss the experimental setting,

the data sets, and the experimental results separately.

7.1 EXPERIMENTAL SETUP

In this section, we introduce the experimental setting of each data set, including system parameters,

data set attributes, annotation traces, and query traces.

7.1.1 Description of Data Set 1 (Figure25, 26, and Table6, 7)

System: We used ruby 1.9.1, with RubyGems 1.3.6 and Rails 2.3.5. The experimental setting is

stated in Table6.

Data Sets:We gathered data from our DataXS prototype. To test the scalability, we enlarged the

data set using Zipf distributions. The experimental parameters are shown in Table7.

Annotation Traces: There are two types of annotations registered: annotation view and annotation

path. Annotation viewis a query with static annotation associated to it;annotation pathis the

establishment of an annotation(s) propagation link from one annotation view to another annotation

79

Software Version

CentOS Linux Release 6.0 (Final)

Kernel Red Hat 4.4.4-13

Ruby 1.9.1

RubyGems 1.3.6

Rails 2.3.5

MySQL 6.0

Table 6:Experimental Environment Setting of Data Set 1

view. We generated annotation registrations using two different Zipf distributions: one to identify

how many annotation views a data item should participate in, and another one to determine how

many data items a particular annotation view should contain, which we also call it “data footprint”.

In order to control the data update effect on cache performance, we simulated insertion, dele-

tion, and update both on data items and annotation views. There is a pre-defined annotation regis-

tration phase before each experiment starts. We varied the percentages of different operations such

as data insertion or annotation view update compared to its pre-defined data range.

Query Traces: We generated queries with Zipf distribution on both (1) data tuples the query

associates with (see Figure25 and 26), and (2) data tuples the annotation associates to. Query

conditions vary from 1 to 4 joins. All queries are read-only. Query time is measured in milliseconds

unless otherwise indicated. Cost in the AC (algorithm5.5) is measured by the actual system

processing time.

Measure Criteria: The metric we use to compare the algorithm is thequery execution time. Each

experimental result is measured as the average query time of 1,000 runs unless otherwise indicated,

such as “total query execution time”.

80

Parameter Value

Data Tuples [500 50,000]

Queries [1,000 10,000]

Annotation Views [1,000 50,000]

Data Update Frequency [0%, 60%]

Annotation View Update Frequency[0%, 30%]

Annotation Insertion Frequency [0%, 30%]

Annotation Deletion Frequency [0%, 20%]

Annotation Propagation (eager, lazy)

Data Verification by (timestamp, value)

Table 7:Experimental Parameters of Data Set 1

Data Distribution

0

50

100

150

200

250

300

350

400

450

500

1 62 123 184 245 306 367 428 489 550 611 672 733 794 855 916 977

Query Trace

D
a
ta

 I
D

Figure 25:Data Distribution (500 data items)

Data Distribution

0

5000

10000

15000

20000

25000

30000

35000

40000

45000

50000

1 753 1505 2257 3009 3761 4513 5265 6017 6769 7521 8273 9025 9777

Query Trace

D
a
ta

 I
D

Figure 26: Data Distribution (50,000 data

items)

81

7.1.2 Description of Data Set 2 (Table8 and 9)

System:The experimental setting is stated in Table8.

Software Version

CentOS Linux Release 6.0 (Final)

Kernel Red Hat 4.4.4-13

Ruby 1.8

RubyGems 0.9.4

Rails 2.0.2

MySQL 6.0

Table 8:Experimental Environment Setting for Data Set 2

Comparison Systems:For comparison purposes, we chose the latest and the most related work:

MMS [115]. In their work, they already discussed the comparison among MMS, DBNotes [25] and

MONDRIAN [57]. MMS showed significant benefits over those systems both in query execution

times and storage space usage. In [115], the experimental results showed that MMS reduced

the redundant space used in DBNotes and MONDRIAN, also, it decreased the query execution

time even with the cost of updating the Q-index structure and querying additional tables with

metadata. Our system works similarly to MMS in the way that there is an annotation table instead

of additional annotation columns. Thus, it is expected our system will perform similarly to MMS

compared to DBNotes and MONDRIAN if the association between the data and the annotations is

explicit and static.

Features Evaluated:In this work, we focused on implicit annotations, i.e., annotation propagation

through annotation views and paths. Since both ViP and MMS can accommodate future tuples and

use views to specify annotation registration, we compared our system with MMS mainly in terms

of query execution time. Of course, there are additional features that ViP supports and MMS does

not (such as the user-driven network semantics). In these cases, we performed a sensitivity study

with only our framework.

Data Sets:We gathered the data from the original data set of DataXS [83]. To test the scalability,

82

we enlarged the data set with uniform random and Zipf distributions. The experimental parameters

are set as shown in Table9.

Parameter Value Parameter Value

Data tuples 300,000 Queries 1,000

Annotation views [1, 50,000] Users [1, 100]

Annotation paths [1, 2,500] Path Depth [1, 10]

Table 9:Experimental Parameters of Data Set 2

Annotation TracesThere are two types of annotations registered:annotation viewandannotation

path. Annotation view is a query with static annotation(s) associated to it; annotation path is

the establishment of annotation(s) propagation from one annotation view to another annotation

view. We generated annotation registrations with Zipf distribution on (1) data the annotation is

associated to (2) data footprint which is the number of the data tuples an annotation is associated

to. Annotation traces include annotation insertion and update.

Query TracesWe generated queries with Zipf distribution on (1) data tuples the query is associated

with (2) query arrival sequence. Query conditions vary from 1 to 4 joins. All queries are read-only.

Query execution time is measured in milliseconds unless otherwise indicated.

7.1.3 Description of Data Set 3 (Figure27, 28and Table10)

System: The following experiments were conducted locally in the ADMT lab. The server was

equipped with 4 Intel(R) Xeon(R) 3.00GHz CPU processors, and total memory of 16GB. The oper-

ating system is CentOS Linux release 6.0 (Final distribution) and Linux version 2.6.32-71.el6.x8664

(Red Hat 4.4.4-13, kernel version). The ruby version is ruby 1.9.3, with RubyGems 2.0.3 and Rails

3.2.13. The experimental setting is summarized in Table10. For more information, please refer to

Chapter9.

Data Sets:We reviewed two popular data sets: the IMDB data sets [5] and the MovieLens data

sets [64, 7].

83

Software Version

CentOS Linux Release 6.0 (Final)

Kernel Red Hat 4.4.4-13

Ruby 1.9.3

RubyGems 2.0.3

Rails 3.2.13

MySQL Ver 14.14 Distrib 5.1.67

Table 10:Experimental Environment Setting of Data Set 3

The IMDB data setsare available via alternative interfaces, plain text data files, Unix com-

mand line search programs, or an IMDB API (a lightweight web service (REST interface) which

provides an easy way to access the IMDB data).

IMDB has a huge collection of data. In a single movies.list file (updated till March 1, 2013), it

includes 2,446,056 movie entries. The movie list is formatted as follows:

movie title | year

Argo (2012) 2012

It takes a lot of effort to prepare the data, including the following steps:

• Data Integration: integrate movie titles, actors/actresses, year, genre, rating from different

source files.

• Data Cleaning: the data we have collected are not clean and may contain errors, missing values,

noisy or inconsistent data. For example, there are foreign characters on movie titles, as well

as unformatted characters that are hard to process in the query. We need to get rid of such

anomalies.

• Data Transformation: we need to aggregate data, if there are duplicate entries. We also need to

associate annotations with movie titles, actors/actresses etc.

The MovieLens data setswere provided by the GroupLens Research group. It includes the

84

movie rating information. The data sets were collected over various periods of time, depending on

the size of the set. There are three sizes of data sets.

• MovieLens 100k - Consists of 100,000 ratings (1-5) from 943 users on 1682 movies.

• MovieLens 1M - Consists of 1 million (1,000,209) anonymous ratings from 6,040 users on

3,883 movies.

• MovieLens 10M - Consists of 10,000,054 ratings and 95580 tags from 71,567 users on 10,681

movies.

The user rating table has the following schema:

user id | movie id | rating | timestamp

196 242 3 881250949

The movie information table has following schema:

movie id | movie title | release date | video release date

|IMDb URL | unknown | Action | Adventure | Animation

|Children’s | Comedy | Crime | Documentary | Drama

| Fantasy |Film-Noir | Horror | Musical | Mystery

| Romance | Sci-Fi |Thriller | War | Western

There are two ways used in the data set to present the movie information:

1::Toy Story (1995)::Adventure|Animation|Children|Comedy|Fantasy

-OR-

1|Toy Story (1995)|22-Nov-1995|29-Oct-1996|

http://us.imdb.com/M/t...|0|0|0|1|1|1|0|0|0|

0|0|0|0|0|0|0|0|0|0

The user information table has following schema:

user id | age | gender | occupation | zip code

--

1 |24 |M |technician |85711

85

MovieLens 100K Data Set Ratings Distribution

0

100

200

300

400

500

600

700

5
0

1
9
6

2
7
4

2
4
0

1
9
8

4
7
8

3
0
5

5
2
5

6
1
6

8
8
6

5
5
2

9
4
3

6
4
1

4
5
7

5
3
2

1
2
0
4

1
2
9
1

3
9
7

8
0
3

1
3
7
9

1
1
6
4

5
9
4

8
5
0

1
6
0
2

1
3
4
5

1
6
2
5

1
3
2
9

Moive ID

R
a
ti

n
g

 F
re

q
u

e
n

c
y

Figure 27:Ratings Distribution on Movies in the 100k Data Set

The frequency of ratings on a movie item has been illustrated in Figure27. As expected, it

follows a Zipf distribution.

Because of the data availability and data integration reasons, we decided to choose the Movie-

Lens data set as our experimental data. Based on the user, movie, and rating information, our

system synthetically generated annotation, annotation views, and annotation paths on this data set

to complete the evaluation. The data set in this experiment is static, that is, no update or insertion

or deletion during the query process. Similarly, the annotation views in this experiment are static

too, and are predefined before the query starts processing.

Annotation views: our datagen program generates annotations from certain age/gender/occupation/area

of users on certain movie genres at certain time periods or on a specific movie. The attributes are

movie genre, user age, user occupation, user zip code, or rating time period. Below are some

annotation examples:

1. Rating with ID 3 has an input error.

2. Users who are between 25 to 40 are likely to overrate Sci-Fi movies.

3. Users who lived in the northeast and rated movies at the end of October 2012 (October 22,

2012 - October 31, 2012) may not have had enough time to watch movies because of hurricane

Sandy.

86

4. Movie “The Mummy (1999)” had a gross box office income of $155,247,825 in the USA

market.

5. Movie “The Mummy Returns (2001)” had a gross box office income of $202,007,640 in the

USA market.

6. Movie “The Scorpion King (2002)” is a spinoff of “The Mummy Returns (2001)”. You could

also call it a prequel, since it takes place before the events of that film.

Annotation 1 is a simple form of annotation, and annotation 2 and 3 are examples of annotation

views. Since Movie “The Mummy (1999)”, “The Mummy Returns (2001)”, and “The Scorpion

King (2002)” were made by same production crew and cast, in storyline and details they are related

to each other, we may setup annotation path from annotation 4 to 5, and from 5 to 6, thus all

annotation associated with movie “The Mummy (1999)” could be propagated to “The Mummy

Returns (2001)” and “The Scorpion King (2002)”, if within appropriate access control limits. Our

assumption is viewers who are interested in the movie “The Mummy Returns (2001)” may also

want to know information about its prequel. In fact, that would be something that the production

crew of the three movies would establish, when they add information about the movies. Also worth

noting is that this annotation path ability is possible without relying on to the database schema (i.e.,

even if there is no attribute to mark “prequels”).

An example of the frequency of annotations on ratings has been plotted in Figure28. In this

case, we simulated 100 critics annotating ratings with 90% annotation view on the movie release

date condition and 10% on the movie genre attribute. It was randomly generated following Zipf’s

law [132, 131, 17]. The simplest case of Zipf’s law is a “1/f function”. Given a set of Zipfian

distributed frequencies, sorted from most common to least common, the second most common

frequency will occur 1/2 as often as the first. The third most common frequency will occur 1/3 as

often as the first. Thenth most common frequency will occur 1/n as often as the first. Over fairly

wide ranges, and to a fairly good approximation to discrete numbers, many natural phenomena

obey Zipf’s law.

Pareto law [22, 63] is given in terms of the cumulative distribution function (CDF), i.e., the

number of events larger than x is an inverse power ofx : P [X > x] = x−k, where k is the Pareto

distribution shape parameter.

Given a random variate U drawn from the uniform distribution on the unit interval (0, 1], the

87

Annotations on Ratings

0

100

200

300

400

500

600

700

800

900

1000

2
8

2
0

0

7
3

3
0

0

1
5

6
0

0

3
7

7
0

0

2
4

7
0

0

5
9

0
0

3
2

1
0

0

3
1

0
0

2
0

3
0

0

8
4

1
0

0

4
1

1
0

0

9
9

2
0

0

3
8

6
0

0

8
9

5
0

0

7
3

5
0

0

3
0

3
0

0

8
6

4
0

0

1
4

9
0

0

4
8

9
0

0

8
4

3
0

0

8
8

7
0

0

4
0

3
0

0

8
2

2
0

0

Rating ID

N
u

m
b

e
r

o
f

A
n

n
o

ta
ti

o
n

s

Figure 28:Annotations Distribution on Ratings in the 100k Data Set

variable T given by

T =
xm

U1/α
(7.1)

is Pareto-distributed.xm is the (necessarily positive) minimum possible value of the random vari-

able. In the case of simulated query trace with Pareto distribution, we set Pareto indexα = 1.161

to approximate the “80-20 law” [98].

We support annotations on annotations, as it has been implicitly implemented in the system.

From rating’s point-of-view, an annotation on its rating value is a direct annotation; from a movie’s

point-of-view, its ratings can be seen as its annotations, thus annotations on its ratings areannota-

tion on annotation. Of course, we also support explicit annotations on annotations, for example,

one user puts an annotation on one piece of rating, another user may put his/her annotation on that

annotation respectively.

88

7.2 WORKLOAD SUMMARY

In this section, we summarize the workloads by the different experiments that were part of our

extensive evaluation of the ViP framework.

In Section7.1, we summarized our experiment setup in Table6 and Table7 for the first data

set, Table8 and Table9 for the second data set, and Table10 for the third data set. The detailed

software packages of the running environment is listed in Chapter9.

We present data, annotations and annotation views/paths parameters and query processing re-

sults, including figures index, algorithms, measured attributes(Y axis), varies attributes(X axis),

and current status, in Table11 and Table12 for all three data sets. We compare Eager vs Lazy

annotation propagation methods in Table13, all of them are evaluated on Dataset-1 with testing

case2. Table14 presents results of cache hits, in some test cases we include the query trace over

time to highlight more interesting behaviors. On the other hand, Table16 presents path strength

results. Public vs private views and paths are illustrated in Table17, while Table15 presents

user-driven features.

All of the workload summary can be found in experimental results on data set 1, 2, and 3. It

shows that our proposed framework is realistic, functional, and improving the system performance.

Finally, we also listed some test cases as part of our future work.

89

Fig Workload Algorithms What Measured(Y) What Varies(X)

53 300000 Data ViP Query Time AViews=

50000 AViews vs MMS [1000,50000]

1000 Queries

100 Users

2500 APaths

[=Dataset-2] [=Case1]

54 Dataset-2 Case1 Setup Time AViews=

[1000,50000]

55 Dataset-2 Case1 Query Time Query Trace

over Time

56 Dataset-2 ViP-LFU Query Time AViews=

[1000,50000]

Table18 Dataset-2 Case1 Query Time Anno Density=

[40%, 200%]

31 50000 AViews ViP - (LRU, Query Time Zipf AnV Dis

50000 Data LFU, UCD,

5% Dupdate AC, PC, UPC,

2% Ainsert noCache)

10000 Queries Lazy

[=Dataset-1] [=Case2]

29 Dataset-1 Case2 Query Time Unif AnV Dis

30 60% Dupdate vs

30% Ainsert Zipf AnV Dis

Table 11:List of Experiments - Query Processing on Data Set 1 and 2

90

Fig Workload Algorithms What Measured(Y) What Varies(X)

63 100,000 Data ViP-LFU Query Time Cache [on,off]

1000 AViews Anno Found

1000 Queries

100 Users

[=Dataset-3]

64 Dataset-3 ViP-LFU Setup Time Data = [100k, 1M]

65 Dataset-3 ViP-LFU Query Time Cache Capacities=

[0%, 100%]

[=Case3]

67 Dataset-3 ViP-LFU Query Time Query Trace

over Time

70 Dataset-3 ViP-LFU Query Time Case3

1,000,000 Data

72 Dataset-3 ViP-LFU Setup Time Data Imported vs

10,000,000 Data Anno Registration vs

Query Generation

74 Dataset-3 ViP-LFU Query Time Case3

10,000,000 Data Query Pattern

Table 12:List of Experiments - Query Processing on Data Set 3

91

Fig Workload Algorithms What Measured(Y) What Varies(X)

34 Dataset-1 Case2 Query Time D-Eager vs

D-No Action

33 Dataset-1 Case2 Query Time Eager

No Dupdate vs

No Ainsert Lazy

35 Dataset-1 Case2 Query Time Eager

vs Lazy

36 Dataset-1 Case2 Query Time Eager

60% Dupdate vs

30% Ainsert Lazy

37 Dataset-1 Case2, Eager Query Time Dupdate %

38 Dataset-1 Case2, Eager Cache Mana. Time No Update

39 Dataset-1 Case2, Eager Cache Mana. Time 5% Dupdate

40 Dataset-1 Case2, Lazy Cache Mana. Time 5% Dupdate

41 Dataset-1 Case2 Query Time Management Time

Eager vs Query Time

vs Extra Cost

42 Dataset-1 Case2 Query Time Management Time

Lazy vs Query Time

45 Dataset-1 LFU Query Time AViews = (100, 1000,

Eager 5000, 10000)

TBD x% Dupdate Case2 Query Time Eager

y% Ainsert crossover point vs

Lazy

Table 13:List of Experiments - Eager vs Lazy

92

Fig Workload Algorithms What Measured(Y) What Varies(X)

43 Dataset-1 Case2 Cache Hits Lazy vs Eager

1000 Queries

44 Dataset-1 Case2 Cache Hits Lazy vs Eager

46 Dataset-1 LFU Cache Hits AViews = (100, 1000,

Eager Anno Found 5000, 10000)

47 Dataset-1 Case2 Query Time Query Trace

Eager over Time

48 Dataset-1 LFU Query Time Cache Size = (0, 20,

Eager 100, 200, Inf)

49 Dataset-1 ViP-LFU Query Time Query Trace

Eager over Time

50 Dataset-1 ViP-LRU Query Time Query Trace

Eager over Time

51 Dataset-1 ViP-PC Query Time Query Trace

Eager over Time

52 Dataset-1 ViP-AC Query Time Query Trace

Eager over Time

66 Dataset-3 ViP-LFU Cache Hits Case3

71 Dataset-3 ViP-LFU Cache Hits Case3

75 Dataset-3 ViP-LFU Cache Hits Case3

Query Pattern

TBD x% Dupdate Case2 Query Time Cache Sizes

y% Ainsert crossover point

Table 14:List of Experiments - Cache Hits

93

Fig Workload Algorithms What Measured(Y) What Varies(X)

57 Dataset-2 ViP-LFU Query Time User Criteria

58 Dataset-2 ViP-LFU Anno Found User Criteria

Table19 Dataset-2 ViP-LFU Query Time Path Hops

Anno Found

Table 15:List of Experiments - User-driven Features

Fig Workload Algorithms What Measured(Y) What Varies(X)

61 Dataset-1 ViP-LFU Query Time 10%(W)-(R)-(S)

TBD x% (W)eak Path Case2 Query Time Path Strength

y% (R)egular Path crossover point Percentages

z% (S)trong Path

Table 16:List of Experiments - Path Strength

Fig Workload Algorithms What Measured(Y) What Varies(X)

59 Dataset-2 ViP-LFU Query Time Percentage of

Public Views

60 Dataset-2 ViP-LFU Query Time Public Paths

TBD x% View ViP-LFU Query Time Public Views

crossover point Percentages

TBD y% Path ViP-LFU Query Time Public Paths

crossover point Percentages

Table 17:List of Experiments - Public vs Private Views and Paths

94

7.3 EVALUATION OF CACHING ALGORITHMS - DATA SET 1

In this section we present our evaluation of the different caching algorithms, using data set 1 which

was described in Section7.1.1.

7.3.1 Query Distribution (Figure 29, 30, and 31)

Query Distributions (60-30, lazy)

0

20

40

60

80

100

120

140

160

180

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Uniform Zipf

Figure 29:Comparison of Different Caching Schemes

In our optimization scheme, caching plays a major factor to improve system performance. We

described it in Section5.2.1.2. So in the first experiment, we compared the query times of uniform

and Zipf query distribution under different cache replacement algorithms. The results are shown

in Figure29. The results presented in this thesis were acquired as the average value from multiple

repeated experiments with random synthetic data generated as appropriate. We present results with

7 different cache maintenance algorithms:

• LRU (Algorithm 5.1)

• ViP-LFU (Algorithm 5.2)

• UCD (Algorithm 5.4)

• AC (Algorithm 5.5)

• PC (Algorithm 5.7)

95

Cache Replacement Algorithms (Uniform Distribution, 60-30)

0

20

40

60

80

100

120

140

160

180

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
(m

s
)

Total Query Time (ms) Cache Management Time (ms)

(a) Uniform Distribution - 60/30

Cache Replacement Algorithms (ZipF Disbribution, 60-30)

0

10

20

30

40

50

60

70

80

90

100

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
(m

s
)

Total Query Time (ms) Cache Management Time (ms)

(b) Zipf Distribution - 60/30

Figure 30:Uniform and Zipf Distribution (60% data updates and 30% annotation inserts)

• UPC (Algorithm 5.8)

• No Cache

In both distributions, LRU and ViP-LFU outperform all other algorithms, We report the break-

down of query time and cache management time (i.e., overhead) in Figure30 and Figure31 re-

spectively. Figure30 has 60% data update frequency and 30% annotation insertion frequency,

under uniform and Zipf query trace distribution. It is clear that it takes longer time to retrieve the

data and annotations under uniform query trace distribution (scale of (0, 180ms) in Figure30(a)

vs scale of (0, 100ms) in Figure30(b)). Since the Zipf distribution can highlight the difference

between algorithms more precisely, for the rest of the evaluation we used a Zipf query distribution

unless otherwise indicated. In Figure31, we present more results of the query times at 5% data

update frequency and 2% annotation insertion frequency. The cache management time is reduced

dramatically since the data update and annotation insertion operations are much less in this test

case than the operations in previous test case (Figure30). Regardless of the test case, the no-cache

scheme always takes the longest retrieval time.

96

Cache Replacement Algorithms (ZipF Disbribution, 5-2)

0

10

20

30

40

50

60

70

80

90

100

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Total Query Time (ms) Cache Management Time (ms)

Figure 31:Zipf Data Distribution (5% data up-

dates and 2% annotation inserts)

Index vs No-index

51.5

52

52.5

53

53.5

54

54.5

55

55.5

56

56.5

LFU LRU

Algorithms

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

No-index Index

Figure 32:With or Without Indexing

7.3.2 Indexing (Figure32)

Adding an index on an important attribute will improve the overall query time. For example, in

the 5% data update situation, we compared the query time with and without index (B-trees) on the

timestamp attribute in the annotation registration table. The cache was maintained with the lazy

annotation propagation method. The result is shown in Figure32and we can see a clear advantage.

For the rest of the evaluation we used indexed attributes unless otherwise indicated.

7.3.3 Caching Algorithms (Figure33 - Figure 52)

First of all, we tested the effect of different caching schemes as evaluated by the total query execu-

tion time. The result is shown in Figure33.

There are two ways to implementeager annotation propagation, one is to apply data and

annotation changes in the actual data and annotation view tables. For each data or annotation

change, all related data and index tables will be updated. It is obvious that it takes a lot of effort

and may not be necessary for the queries. The other method is to apply changes in the cache

that stores the existing query results. It is an on-demand method to store the query result, plus an

“eager” approach to apply annotation changes in the cache, if there are any. In this thesis, we call

97

Eager vs Lazy Propagation (No Update)

0

10

20

30

40

50

60

70

80

90

100

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Lazy Eager

Figure 33: The Query Execution Time with

Different Caching Algorithms

Cache Management with 5% Update, 10000 Queries

0

100

200

300

400

500

600

700

800

900

LFU AC PC UPC No Cache

Algorithms

T
o

ta
l

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Data change - Eager Propagation Data change - No Action

Figure 34: Different Cache Operations When

Data Changes

Eager vs Lazy Propagation (5-2)

0

10

20

30

40

50

60

70

80

90

100

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Lazy Eager

Figure 35:The “Eager” vs “Lazy” Annotation

Propagation Case I

Eager vs Lazy Propagation (60-30)

0

10

20

30

40

50

60

70

80

90

100

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

lazy eager

Figure 36:The “Eager” vs “Lazy” Annotation

Propagation Case II

98

Different Data Update Percentages with

Eager Propagation, 1000 Queries

0

10

20

30

40

50

60

70

80

90

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

30% Update 5%Update No Update

Figure 37:Different Data Updates Percentages

with Eager Propagation

Cache Management without Update, Eager

0

10

20

30

40

50

60

70

80

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
(m

s
)

Query Time (ms) Cache Management Time (ms)

Figure 38: Cache Management without Any

Updates

this method “eager annotation propagation”, and use it in all experimental evaluations.

When the annotation views have been inserted into the database, there are two strategies to

update the cache, one is “eager”: to propagate the changes into the cache as soon as possible, so

when the query comes, there will be less query time. Of course, the cache maintenance time will

be increased. The second scheme is to handle the update in a “lazy” fashion. When the annotation

views have been inserted, the system will have assigned the appropriate timestamp. When there is

a query coming and a cache hit generated, the system needs to verify the correctness of the cache

content by examining the recently inserted annotation views with the newer timestamp. This trade-

off between lazy and eager is shown in Figure35. At a dynamic situation with more updates and

insertions, the query time is shown in Figure36.

We tested two cache operation schemes when data changes:No actionorEager propagation, as

discussed in Section5.2.1.2. The result is shown in Figure34. We tested in different configurations,

eager data propagation always performs better than the “lazy” (No action) scheme since the eager

method removes nonexistent data from the cache to save cache space, thus avoiding unnecessary

or inaccurate evictions once the cache is full. For the rest of the evaluation we used eager data

propagation scheme unless otherwise indicated.

We want to analyze how the eager and lazy annotation propagation schemes work in the cache,

99

Cache Management with 5% Update, Eager

0

10

20

30

40

50

60

70

80

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
(m

s
)

Query Time (ms) Cache Management Time (ms)

Figure 39: Cache Management with 5% data

Updates - Eager

Cache Management with 5% Update, Lazy

0

10

20

30

40

50

60

70

80

LRU LFU UCD AC PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
(m

s
)

Query Time (ms) Cache Management Time (ms)

Figure 40: Cache Management with 5% data

Updates - lazy

so we gathered the information of query time at different data update situations in Figure37, under

the eager scheme. It is reasonable that when less data is updated, the query times are reduced,

though in different cache replacement algorithms, the performance varies. We also measured the

cache management time vs query time at 5% data update case, with the eager scheme in Figure39,

with the lazy scheme in Figure40, and without any annotation updates with the eager scheme in

Figure38. UCD, UPC, and PC algorithms take considerable time to manage the cache, so their

performance in terms of query time is worse than that of the other algorithms. The lazy scheme

does not update the cache until the query time, so its cache management time is ignorable.

When we introduce updates both on annotation views and data, there is the tradeoff between

query time and cache management time. The cache processing times were measured under both

strategies, and are shown in Figure41 and Figure42. The cache management time is the time

to verify if there is a cache hit and retrieve related annotations to the data item. The extra time

spent on cache is the time purely spent on cache maintenance such as cache update or eviction

computation. In this set of experiment, if we put all kinds of operation time on one bar, it means

we count the individual time separately, the total processing time should be the sum of all kinds

of operation. For example, in Figure41, the total query processing time = query time + cache

management time + extra cache management time.

100

Cache Management with 5% Update, Eager, 10000 Queries

0

100

200

300

400

500

600

700

800

900

Infinite LRU LFU AC AFP PC UPC NoCache

Algorithms

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Query Time(ms) Cache Management Time(ms) Extra Cache Management Time(ms)

Figure 41:The Query Time vs Cache Manage-

ment Time - Eager

Cache Management with 5% Update, Lazy, 10000 Queries

0

100

200

300

400

500

600

700

800

900

LRU LFU AC AFP PC UPC NoCache

Algorithms

T
o

ta
l

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Query Time(ms) Cache Management Time(ms) Extra Cache Management Time(ms)

Figure 42:The Query Time vs Cache Manage-

ment Time - Lazy

Cache Hits with 5% Update, 1000 Queries

0

100

200

300

400

500

600

700

800

LRU LFU UCD AC PC UPC

Algorithms

T
o

ta
l
C

a
c

h
e

 H
it

s

Series1 Series2

Figure 43: The Total Cache Hits of 1,000

Queries

Cache Hits with 5% Update, 10000 Queries

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

UCD LFU LRU AC AFP PC UPC Infinite

Algorithms

T
o

ta
l
C

a
c

h
e

 H
it

s

Eager Lazy

Figure 44: The Total Cache Hits of 10,000

Queries

101

The cache hits vary according to the different algorithms, data distribution, and query patterns.

We illustrate two results from 1000 queries and 10,000 queries at 5% data update and 2% annota-

tion insertion accordingly, in Figure43 and Figure44. The eager scheme always has more cache

hits since it takes extra time to update cache items before the queries.

In the case of different number of annotation views, we compared the query times and cache

management times with 100, 1000, 5000, and 10000 annotation views in Figure45. It is the total

query time and total cache management time under 10,000 queries in seconds, to make it look

more clearly, in the total node found and the number of cache hits in Figure46, we used a log

scale. Even with exponential annotation view increase, our system handles it gradually.

We compared the query times of different algorithms on 10,000 queries in Figure47. To make

the figure simple and clear, we gathered query points at a step of 100 to represent the whole query

trace. The optimal case is the infinite cache, other than that, LFU and LRU has fast query times,

while AC and PC take longer times. To explore it in a more detailed study, the query time series for

the LFU algorithm with different cache sizes is illustrated in Figure48. It is obvious that infinite

cache or bigger cache sizes speed up the query processing while the system with smaller cache

sizes takes a longer query time since it requires extra time to manage the cache (such as cache

replacement). In next Figure49, Figure50, Figure51, and Figure52, we illustrated the query

time series of each individual algorithm over 1000 queries. PC (Figure51) and AC(Figure52)

algorithms have less cache hits, thus the overall query time is longer than LFU (Figure49) and

LRU (Figure50) algorithms, which supports and explains the previous result.

102

Cache Management with 5% Update, 10000 Queries

0

200

400

600

800

1000

1200

1400

1600

1800

2000

10000 5000 1000 100

Annotation Views

T
o

ta
l

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

s
e
c
)

Query Time(ms) Cache Management Time(ms) Extra Cache Management Time(ms)

Figure 45:Query Time with Different Annota-

tion Views

Cache Management with 5% Update, 10000 Queries

1

10

100

1000

10000

100000

1000000

10000 5000 1000 100

Annotation Views

T
o

ta
l

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 -

L
o

g
a
ri

th
m

ic
 (

s
e
c
)

Cache Hits Total Annotations Found

Figure 46:Cache Hits and Annotations Found

with Different Annotation Views

 Eager 10000 Queries

0

20

40

60

80

100

120

1 7 13 19 25 31 37 43 49 55 61 67 73 79 85 91 97

Queries (STEP = 100)

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

LFU

LRU

PC

AC

Infinite

Figure 47:Query Processing Time Over Time

Different Cache Size, query = 10000

0

20

40

60

80

100

120

1 6 11 16 21 26 31 36 41 46 51 56 61 66 71 76 81 86 91 96

Queries (STEP = 100)

Q
u

e
ry

 E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

cache size=200 cache size=infinite cache size=20 cache size=100

Figure 48: Query Processing Time Over Dif-

ferent Cache Sizes

103

LFU Eager 1000 Queries

0

2000

4000

6000

8000

10000

12000

1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

5
0

5

5
3

3

5
6

1

5
8

9

6
1

7

6
4

5

6
7

3

7
0

1

7
2

9

7
5

7

7
8

5

8
1

3

8
4

1

8
6

9

8
9

7

9
2

5

9
5

3

9
8

1

Queries

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Figure 49:Query Processing Time of LFU Algorithm

LRU Eager 1000 Queries

0

20

40

60

80

100

120

140

160

180

1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

5
0

5

5
3

3

5
6

1

5
8

9

6
1

7

6
4

5

6
7

3

7
0

1

7
2

9

7
5

7

7
8

5

8
1

3

8
4

1

8
6

9

8
9

7

9
2

5

9
5

3

9
8

1

1
0

0
9

Queries

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Figure 50:Query Processing Time of LRU Algorithm

104

PC Eager 1000 Queries

0

50

100

150

200

250

300

350

1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

5
0

5

5
3

3

5
6

1

5
8

9

6
1

7

6
4

5

6
7

3

7
0

1

7
2

9

7
5

7

7
8

5

8
1

3

8
4

1

8
6

9

8
9

7

9
2

5

9
5

3

9
8

1

1
0

0
9

Queries

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Figure 51:Query Processing Time of PC Algorithm

AC Eager 1000 Queries

0

20

40

60

80

100

120

140

160

180

1

2
9

5
7

8
5

1
1

3

1
4

1

1
6

9

1
9

7

2
2

5

2
5

3

2
8

1

3
0

9

3
3

7

3
6

5

3
9

3

4
2

1

4
4

9

4
7

7

5
0

5

5
3

3

5
6

1

5
8

9

6
1

7

6
4

5

6
7

3

7
0

1

7
2

9

7
5

7

7
8

5

8
1

3

8
4

1

8
6

9

8
9

7

9
2

5

9
5

3

9
8

1

1
0

0
9

Queries

Q
u

e
ry

 E
x

e
c

u
ti

o
n

 T
im

e
 (

m
s

)

Figure 52:Query Processing Time of AC Algorithm

105

7.4 COMPARISON OF VIP TO MMS - DATA SET 2

In this section, we compare our proposed ViP framework to the state-of-the-art, MMS, using data

set 2 which was described in Section7.1.2.

7.4.1 View-based Annotation Propagation (Figure53, 54, 55and Table18)

To test our proposed system with other systems, we compared the query execution time of our sys-

tem, ViP, with MMS. It is the latest and the most related work (introduced in Section7.1.2). Both

systems retrieved the same annotations associated with the same queries. In our first experiment,

we varied the total number of annotation registrations (Figure53). ViP always outperformed MMS

due to its caching. With more annotation views registered, ViP gained more benefit. In the case of

50,000 annotation views registered, ViP took about 25% less time, proving that ViP works better

for large numbers of annotation views.

Query Execution Time (per Query)

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1000 5000 10000 20000 30000 40000 50000

Annotation Registration

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

ViP

MMS

Figure 53:Query Execution Time

Setup Time with Different Registered Annotation Views

0

200

400

600

800

1000

1200

1400

1600

1800

2000

1000 5000 10000 20000 30000 40000 50000

Annotation Registration

S
e

tu
p

 T
im

e
 (

m
s

)

ViP

MMS

Figure 54:Setup Time

We also measured the confidence interval of the result to make sure they are statistically signif-

icant. In the case of 1,000 queries with 50,000 annotation views, the 95% confidence interval for

ViP mean query execution time (ms) is(1468.06∓ 7.36) = (1460.7, 1475.42); the 95% confidence

interval for MMS mean query execution time (ms) is(1878.91∓ 4.05) = (1874.86, 1882.96). The

106

results presented in the thesis were acquired as the average value from 1000 repeated experiments

with random parameter settings. Due to the limited space, not every confidence interval is listed

here; all results were similar to this experiment.

In all experiments, we started with 80% annotation view and path insertions. While the query

traces were being executed, the remaining 20% of the annotation registrations were uniformly

distributed over the experiment time period. We assume each query or annotation registration op-

eration is atomic. The query execution time includes (1) data query execution time, (2) annotation

lookup time, (3) cache lookup time if cache is used, and (4) cache management time. The setup

time includes (1) data insertion time, (2) annotation registration time, and (3) cache setup time.

The setup times per query for both systems are shown in Figure54. Although ViP took extra time

to manage the cache, the overhead is negligible compared to the gain from the query execution

time.

In the next set of experiments, we investigated the effect of various annotation densities, which

is the percentage of data associated with annotation views. In Figure55, 1000 queries were plotted

in each subfigure to display the various query execution times. The density was changed from

50% to 200%, and the query execution time increased accordingly. In these figures, a vertical line

corresponds to a cache hit on all annotations the query expects to return. We found in the extremely

dense case, which is 200% in Figure55(d), that ViP had so many cache hits, that the overall query

execution time was reduced significantly. The detailed summary of average query execution time

is presented in Table18. Again, ViP works better in large scale of annotation views because of

its optimized scheme. For fairness, we used 10% annotation density, which is the least beneficial

setting for ViP, in all other experiments.

7.4.2 Annotation Propagation with Caching (Figure56)

The cache management time was insignificant compared to the query execution time, shown in

Figure 56. The number of annotation views varied from 1,000 to 50,000. Even with 50,000

annotation views, the cache management time is just about 3% in query execution time. As the

previous experiment results, we used ViP-LFU cache replacement algorithm in the test cases.

107

Query Execution Time (50% annotation)

0

500

1000

1500

2000

2500

1 58 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970

Query ID

T
im

e
 (

m
s

)

ViP MMS

(a) Query Execution Time of 50% Annotation
Density

Query Execution Time (100% annotation)

0

500

1000

1500

2000

2500

1 59 117 175 233 291 349 407 465 523 581 639 697 755 813 871 929 987

Query ID

T
im

e
 (

m
s

)

ViP MMS

(b) Query Execution Time of 100% Annotation
Density

Query Execution Time (150% annotation)

0

500

1000

1500

2000

2500

1 58 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970

Query ID

T
im

e
 (

m
s

)

ViP MMS

(c) Query Time Execution of 150% Annotation
Density

Query Execution Time (200% annotation)

0

500

1000

1500

2000

2500

1 58 115 172 229 286 343 400 457 514 571 628 685 742 799 856 913 970

Query ID

T
im

e
 (

m
s

)

ViP MMS

(d) Query Execution Time of 200% Annotation
Density

Figure 55:Query Execution Time with Different Annotation Densities

108

Percentage 40% 50% 60% 70% 80% 90% 100% 150% 200%

MMS Time 1804.81 1808.66 1812.50 1867.94 1878.02 1895.5 1928.8 1979.9 2178.7

(ms)

ViP Time 1471.38 1419.73 1445.81 1499.44 1394.39 1386.3 1484.2 1483.8 1250.9

(ms)

Table 18:Query Execution Time with Different Annotation Densities

Cache Maintenance Time vs Overall Execution Time

0

200

400

600

800

1000

1200

1400

1600

1000 5000 10000 20000 30000 40000 50000

Annotation Registration

T
im

e
 (

m
s

)

Execution Time excludes Caching Management Caching Management Time

Figure 56:Caching Time

109

7.5 EVALUATION OF NETWORK SEMANTICS - DATA SET 2

In this section, we present experimental results from our evaluation of network semantics in the

ViP framework, using data set 2 which was described in Section7.1.2.

7.5.1 User-driven Annotation Paths Propagation (Table19)

One of the unique features of the ViP framework is the user-driven network semantics, which was

presented in Section4.2. We conducted a set of experiments where we varied the U-HAF limits

(hops allowed to follow). The results is presented in Table19. It is obvious that with deeper hops

search, more annotations got matched and more time was needed to retrieve them. Nonetheless,

ViP increased the query execution time only gradually.

Path Hop(s) 1 2 3

Time (sec) 10.1445 11.1853 13.5833

Annotations Found 269 278 289

Table 19:Path Propagation for User-driven Network Semantics

7.6 EVALUATION OF ACCESS CONTROL ON ANNOTATION VIEWS/PATHS

In this section, we present experimental results of our experimental evaluation of the user-driven

access control features of the ViP framework.

7.6.1 User-driven Access Control on Annotation Views and Paths (Figure57 - Figure 60) -

Data Set 2

Access control on annotation views and paths was proposed in Sections4.3 and 4.4. Not only

users may issue queries to express their search preferences, but users can also specify public/private

110

Query Execution Time for Different User Search Conditions

570

580

590

600

610

620

630

1 2 3 4 5 6 7 8 9

Number of Months to Search

E
x
e
c
u

ti
o

n
 T

im
e
 (

m
s
)

Figure 57:Query Execution Time for Different User Search Conditions

annotation views when they register the annotations. The first set of experiments ondata set 2, in

Figure57 and Figure58 illustrates how the different search coverage affected the query execution

times and the number of annotations found. The most restrictive user-specified condition dropped

down the query execution time as well as the annotations associated.

On the other hand, Figure59 and Figure60 present the query execution times with differ-

ent percentages of public annotation views and annotation paths. In these cases, the remaining

“private” annotation views and paths were uniformly distributed among all users. The query exe-

cution time almost dropped linearly as the public annotation views decreased; however, it dropped

faster when the public annotation paths were decreased. Since annotation paths have the transitive

Annotations Found for Different User Search Conditions

0

20

40

60

80

100

120

140

160

180

1 2 3 4 5 6 7 8 9

Number of Months to Search

A
n

n
o

ta
ta

io
n

s
 F

o
u

n
d

Figure 58:Annotations Found for Different User Search Conditions

111

property, once the dependent views are not visible, it may speed up the query execution time ex-

ponentially. This essentially works like a first priority “filter” to reduce the query search time. In

general, we expect such user-driven features to have a compound effect if used together, dramati-

cally reducing query execution times, if taken advantage of, as ViP does.

Query Execution Time of Annotation Views For Users

0

200

400

600

800

1000

1200

1400

1600

1800

2000

MMS 100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Percentage of Public Views

T
im

e
 (

m
s

)

Figure 59:Query Execution Time with Different Public Annotation View Percentages

Query Execution Time of Annotation Paths For Users

0

2

4

6

8

10

12

100% 90% 80% 70% 60% 50% 40% 30% 20% 10%

Percentage of Public Paths

T
im

e
 (

s
e

c
)

Figure 60:Query Execution Time with Different Public Annotation Path Percentages

112

7.6.2 Path Strength (Figure61) - Data Set 1

In Section4.4.2, we proposed an approach to consider path strengths. In Figure61, we compared

the processing time with different path strengths. We made a slight adjustment, the strength format

is given as W(eak)-R(egular)-S(trong), a reversed order compared to Figure12. When we have

more strong paths, more annotations will be propagated via the paths, thus we have more annota-

tions found, and therefore the query processing time is increased also.

Query Execution Time with Different Path Strengths

0

2

4

6

8

10

12

14

10%-10%-80% 10%-20%-70% 10%-30%-60% 10%-40%-50% 10%-50%-40% 10%-60%-30% 10%-70%-20% 10%-80%-10%

Path Strength

Q
u

e
ry

 T
im

e
(s

e
c
)

Figure 61:Query Processing Time Over Different Path Strengths

7.7 EVALUATION OF SCALABILITY - DATA SET 3

In this section, we present experimental results with non-scientific data sets, namely movie data,

which are typically used in personalization and recommendation system studies. These datasets,

allow us to evaluate the scalability of our proposed ViP framework. We used data set 3 which was

described in Section7.1.3.

7.7.1 MovieLens 100k Data Set (Figure63, 62, 64, 65, 66, and 67)

We measured the query execution time (in seconds), the number of annotations found, the annota-

tion and data setup time, and the cache hits, if the cache is on. The results presented were acquired

113

as the average value from multiple repeated experiments.

In all experiments, we simulated 100 critics annotating ratings on the movie release date and

the genre attributes. These critics have various confidence values. The annotations on ratings were

generated with the Zipf distribution. Approximated to “80-20 law”, most (such as 80%) annota-

tions are on certain (such as 20%) ratings of movies.

Query Distribution on the 100k Data Set

0

2

4

6

8

10

12

14

4
4

2

1
1

8
6

1
0

6
1

1
0

5

6
1

9

6
8

6

1
6

8

3
8

1
6

4

2
6

1

5
4

8

6
9

3

9
9

6
1

7

2
2

3
2

5

6
4

7

8
9

5
7

0

2
4

7
1

9

3
4

1
3

8

3
6

8

7
8

8
7

1
1

7
8

5
0

7
3

4

9
6

3
7

1

7
5

0
3

6

Rating ID

Q
u

e
ry

 F
re

q
u

e
n

c
y

Figure 62:Query Distribution on the 100k Data Set

Query Trace:

There are two scenarios for generating query traces. The first one is that queries are randomly

picked and are uniformly distributed over all ratings and movies. A more realistic workload is

one that we have the “hot spot” scenario, which means most (such as 80%) queries are on certain

(such as 20%) topics, that is, viewers want to read comments or annotations of latest movies, or

some “hot” movies. This approaches human behavior more naturally, and makes sense to users. In

the later experiments we used such distribution scenario to generate query traces. Unless claimed

otherwise, the query trace has 1,000 individual queries. The frequency of queries on ratings is

illustrated in Figure62. In the case of 1,000 and 5,000 queries which are “hot spot” distributed,

the query processing time is presented in Figure63(a)and the total number of annotations found

is presented in Figure63(b). It is expected that the query processing with a cache works faster

114

Query Processing of the 100k Data Set

0

2

4

6

8

10

12

1000 5000

Number of Queries

A
v

e
ra

g
e

 Q
u

e
ry

 P
ro

c
e

s
s

in
g

 T
im

e
 (

s
)

Cache Off Cache On

(a) Query Processing in the 100k Data Set

Annotations Found in the 100k Data Set

343019

1691300

343019

1691300

0

200000

400000

600000

800000

1000000

1200000

1400000

1600000

1800000

2000000

1000 5000

Number of Queries

T
o

ta
l
N

u
m

b
e

r
o

f
A

n
n

o
ta

ti
o

n
s

 F
o

u
n

d

Cache Off Cache On

(b) Annotations Found in the 100k Data Set

Figure 63:Query Execution Time and Annotations Found in the 100k Data Set

than the query processing without a cache. In the case of 5,000 queries, there are more repeated

queries, the gap between cache on and off is enlarged. For comparison purposes, in all experiments

of this data set, we fixed the query trace, that is, every test case with the same query trace returned

the same amount of total annotations found, no matter if it is with cache on and off (such as

Figure63(b)), and no matter what the cache capacity is.

Query Processing Time:

We assume each query or annotation registration operation is atomic. The query execution

time includes (1) data query execution time, (2) annotation lookup time, (3) cache lookup time,

if the cache is used, and (4) cache management time. The setup time includes (1) data insertion

time, (2) annotation registration time, and (3) cache setup time. A summary of the setup time is

presented in Figure64.

In Figure63(a)and 63(b), when the cache was on, the cache size was set to 30% of the query

requirements. In this thesis,cache capacitymeans the percentage of cache size vs the query trace

size. We varied the cache capacity from 10% to 100% (infinite cache), the average query times

are presented in Figure65. The query process time decreases dramatically from cache off to 10%

cache capacity, then decreases gradually, once it reaches 70% cache capacity, the benefit increase

115

Data and Annotations Setup Time

204.65

6360.25

0

1000

2000

3000

4000

5000

6000

7000

the 100k Data Set the 1M Data Set

Data Sets

T
im

e
 (

s
)

Figure 64:Setup Time of the 100k and the 1M

Data Set

Query Processing of the 100k Data Set

0

1

2

3

4

5

6

No

cache

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cache Capacity

A
v

e
ra

g
e

 Q
u

e
ry

 P
ro

c
e

s
s

in
g

 T
im

e
 (

s
)

Average Query Processing Time (s) Average Cache Management Time (s)

Figure 65:Query Processing of the 100k Data

Set with Different Cache Capacities

is less and less. In the case of a cache hit, the processing will be faster compared to a regular

query. As such, we explored the cache hits under difference cache capacities. The results are

shown in Figure66. We usedCache Hits Percentageto present the ratio of cache hits over the

total number of queries. In general, the bigger the cache capacity, the faster the query processing

will be. However, when it reaches a certain point, the cache hit rate will not be increased. In this

test case, after 70% cache capacity, the cache hits percentages are almost the same. It means the

system meets the need of the maximum capacity, after that, no gain we can get from increasing the

cache size.

The query execution also depends on the cache management time. In some cases, the overhead

of cache management may reduce the query efficiency, and the data distribution and query pattern

affect the cache efficiency greatly. In summary, the query processing time is affected by the data

distribution, the annotation distribution, and the query trace distribution.

To explore the behavior of every query, we plotted the query time over time. In Figure67,

there are two series of query processing, one with cache capacity of 30% while the other one at

75%. In the bigger cache capacity case, there are more cache hits, and the overall query processing

time is decreased.

116

Cache Hits of the 100k Data Set

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

No

cache

10% 20% 30% 40% 50% 60% 70% 80% 90% 100%

Cache Capacity

C
a

c
h

e
 H

it
s

 P
e

rc
e

n
ta

g
e

Figure 66:Cache Hits in Queries of the 100k

Data Set

Query Processing Time of 1000 Queries

-2

0

2

4

6

8

10

12

14

16

18

1

4
4

8
7

1
3

0

1
7

3

2
1

6

2
5

9

3
0

2

3
4

5

3
8

8

4
3

1

4
7

4

5
1

7

5
6

0

6
0

3

6
4

6

6
8

9

7
3

2

7
7

5

8
1

8

8
6

1

9
0

4

9
4

7

9
9

0

Query ID

T
im

e
 (

s
)

cache capacity = 30% cache capacity = 75%

Figure 67:Processing Time Sequence of Query

Trace on the 100k Data Set

7.7.2 MovieLens 1M Data Set (Figure68, 69, 70, and 71)

In this set of data, we loaded “heavier” annotations, that is, a data item is associated with more

annotations according to annotation views. Compared to the 100k data set, each rating comes with

annotations between [212, 923], in current testing case, each rating comes with 500∼ 800 anno-

tations. The annotation distribution is illustrated in Figure68. We also gathered the information

of annotation frequency on movies, which is presented in Figure69. The annotations associated

with each movie vary between [0, 68,793]. In this set of experiments, each query comes with 2 to

4 unions on attributes such as movie id, creation date, or viewer id etc, while in the 100k test case

we tested queries on the movie id attribute. The total number of annotations found is 811,020, the

average time of retrieving each annotation varies from 0.01s to 0.017s. In the case without cache,

the time is 0.023s. In the 100K data sets, the total number of annotations found is 343,019, the

average time of retrieving each annotation varies from 0.01s to 0.013s. In the case without cache,

the time is 0.015s. Since the average annotation retrieval time includes the time to process the

query and combine result sets for the query, it is understandable that this test case, which has more

operations, takes slightly more time than the 100K test case.

The query processing time is presented in Figure70. In the 100% cache capacity case, it

117

Annotations Distribution on the 1M Dataset

0

100

200

300

400

500

600

700

800

900

1000

4
E

+
0

5

8
E

+
0

5

1
E

+
0

5

8
E

+
0

5

3
E

+
0

5

8
E

+
0

5

4
E

+
0

5

6
E

+
0

5

1
E

+
0

5

5
E

+
0

5

9
E

+
0

5

6
E

+
0

5

2
E

+
0

5

6
E

+
0

5

1
E

+
0

6

9
E

+
0

5

3
E

+
0

5

5
E

+
0

5

6
E

+
0

5

6
E

+
0

5

4
E

+
0

5

3
6

0
0

0

1
E

+
0

5

Rating ID

A
n

n
o

ta
ti

o
n

s
 F

re
q

u
e

n
c

y

Figure 68:Annotations Distribution on Ratings

in the 1M Data Set

MovieLens 1M Data Set Annotations Distribution

0

10000

20000

30000

40000

50000

60000

70000

80000

2
6

0

3
9

1
6

5

2
2

4

3
4

4

4
4

4
1

4
0

5

3
1

4

2
8

1

4
2

1

4
5

8 8

5
7

4
1

6

3
2

0

3
4

7

2
0

1

1
4

8

1
1

4

1
3

8

Movie ID

A
n

n
o

ta
ti

o
n

 F
re

q
u

e
n

c
y

Figure 69:Annotations Distribution on Movies

in the 1M Data Set

has the shortest query time, while in the case of no cache, it has the longest query time. On the

other hand, the cache management time is decreased as the cache capacity increases, though the

difference is insignificant, but the gap between no cache and cache is relatively significant. The

cache hits increase as the cache capacity increases (Figure71), after 60% - 70% cache capacity,

the performance is the same, which means there is a saturation point.

7.7.3 MovieLens 10M Data Set (Figure72, 73, 74, and 75)

In this data set, the ratings table has 10,000,054 records, which took 73,097.9s,(i.e., about 20.3hours)

to load into the database. The setup times are presented in Figure72. Compared to data load time,

the annotation view registration takes insignificant time, which is one of the advantages of our

scheme. In this experiment we used the fixed query trace, where each query comes with 2 to 4

unions. In multiple runs, the total number of annotations found is 128,900. The number of annota-

tions associated with a data item is moderate compared to previous test cases. Each rating comes

with about 50∼ 350 annotations. The average time of retrieving each annotation varies from 0.01s

to 0.012s. In the case without cache, the time is 0.013s.

We evaluated our proposed framework using two different query traces. The first query trace

118

Query Processing of the 1M Data Set

0

2

4

6

8

10

12

14

16

18

20

no
 c

ac
he 5% 10

%
15

%
20

%
25

%
30

%
35

%
40

%
45

%
50

%
60

%
70

%
80

%
90

%
10

0%

Cache Capacity

T
im

e
 (

s
)

Average Query Processing Time Average Cache Management Time

Figure 70: Query Processing with Different

Cache Capacities of the 1M Data Set

Cache Hits of the 1M Data Set

0.0%

5.0%

10.0%

15.0%

20.0%

25.0%

n
o
 c

a
ch

e
5
%

1
0
%

1
5
%

2
0
%

2
5
%

3
0
%

3
5
%

4
0
%

4
5
%

5
0
%

6
0
%

7
0
%

8
0
%

9
0
%

1
0
0
%

Cache Capacity

C
a

c
h

e
 H

it
s

 P
e

rc
e

n
ta

g
e

Figure 71: Cache Hits in Queries of the 1M

Data Set

MovieLens 10M Data Set Setup Time

73097.9

40.6 1177.38

0

10000

20000

30000

40000

50000

60000

70000

80000

Ratings Reading Annotation Views

Registration

Query Trace Generation

Operation

T
im

e
 (

s
)

Figure 72:Setup Times of the 10M Data Set

Query Distribution on the 10M Data Set

0

2

4

6

8

10

12

1

3
3

6
5

9
7

1
2

9

1
6

1

1
9

3

2
2

5

2
5

7

2
8

9

3
2

1

3
5

3

3
8

5

4
1

7

4
4

9

4
8

1

5
1

3

5
4

5

5
7

7

6
0

9

6
4

1

6
7

3

7
0

5

7
3

7

Rating ID

Q
u

e
ry

 F
re

q
u

e
n

c
y

Query Pattern 80:20 Query Pattern 90:10, Stacked Line

Figure 73:Query Traces of the 10M Data Set

119

Query Processing of the 10M Data Set

0

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

1.8

2

no cache 15% 30% 50% 75% 100%

Cache Capacity

A
v

e
ra

g
e

 Q
u

e
ry

 P
ro

c
e

s
s

in
g

 T
im

e
 (

s
)

Avg Query Time of Pattern 80:20 Avg Query Time of Pattern 90:10

Avg Cache Time of Pattern 80:20 Avg Cache Time of Pattern 90:10

Figure 74: Query Processing with Different

Cache Capacities of the 10M Data Set

Cache Hits of the 10M Data Set

0

0.05

0.1

0.15

0.2

0.25

0.3

no cache 15% 30% 50% 75% 100%

Cache Capacity

C
a

c
h

e
 H

it
s

 P
e

rc
e

n
ta

g
e

Query Pattern 80:20 Query Pattern 90:10

Figure 75: Cache Hits in Queries of the 10M

Data Set

randomly picked 80% of queries from the “hot spot” pool (it is called “Query Pattern 80:20”) while

the second one chose 90% of queries from the pool, which is called “Query Pattern 90:10”. The

two query traces are presented in Figure73. The figure uses the stacked line chart type, which

means the query pattern 90:10 has query frequency varied from 6 to 1, while the query pattern

80:20 has a query frequency [1, 5].

In Figure74, the average query processing times are presented with different cache capacities.

In Figure75, the cache hits are illustrated. It is reasonable that if there are more queries from the

“hot spot” pool, there is a bigger possibility that the query result is cached, thus the overall query

processing time is reduced and the cache hit rate is increased. In the case of no cache, the query

processing time is the slowest, although the cache management cost is zero.

There is one more observation, in this experiment, “Query Pattern 90:10”without cache takes

1.9s average query processing time while “Query Pattern 80:20”without cache takes 1.83s. The

possible reason is that there are 128,900 annotations found in the test case of “Query Pattern

80:20”, while there are 130,550 annotations found in the test case of “Query Pattern 90:10”. More

annotations in the results means there are more retrieval operations. Nonetheless, in the test case

with cache, the average query processing of “Query Pattern 90:10” takes less time than “Query

Pattern 80:20”. There is a bigger chance to take advantage of the caching scheme, thus the query

120

time is reduced, and the gap between the query time of two patterns increases as the cache capacity

increases.

121

8.0 CONCLUSIONS

In this chapter, we conclude the thesis and present some initial ideas for extensions of the work, as

part of future work.

8.1 CONTRIBUTIONS

ViP works as an annotation framework for large-scale data, which effectively addresses the ques-

tions generated from the usage patterns we observed and which we discussed in Chapter1, namely,

1. support for annotations that are scalable both from a system point of view and a user point

of view,

2. support for propagation and querying of annotations in annotator/user-defined ways.

We reached our goals as follows:

1. we introduced new annotation definition and propagation methods,

2. we introduced ViP-SQL, an SQL-based query language supporting annotation propagation,

3. we introduced user-driven features, such as time semantics and network semantics, to enable

users to personalize annotation propagation,

4. we introduced the use of views as a formal mechanism to implement the new annotation defi-

nition and propagation features,

5. we proposed three types of annotation queries, and discussed the corresponding algorithms,

6. we utilized techniques such as caching and proposed cache replacement algorithms to signifi-

cantly improve the performance of query execution,

122

7. we experimentally evaluated the ViP framework using a real system implementation with real

and synthetic data sets to cover the entire spectrum of workloads and environmental settings.

We believe this work would further lead to new techniques that process annotations associated

with large-scale data in a accurate and efficient way, as well as enable further the managing data-

driven scientific discoveries.

8.2 FUTURE WORK

8.2.1 Graphical Representation of Annotation Views/Paths

This section discusses some ideas for possible extensions of the ViP framework, as part of future

work.

data items

annotation

views

V10

Figure 76:The Annotation View-Data Association Matrix - Initial Idea

As discussed in Section6.6, our approach is to provide alternateviewsof the same informa-

tion, allowing the users to explore the entire “space” of annotations. One such view is illustrated

in Figure76 as an initial idea. Thex axis enumerates all data objects, whereas they axis enumer-

ates all annotation view definitions. Position(x, y) has an entry if data objectx “matches” view

definitiony. Clearly, not all positions will be filled, although we do expect to see some patterns. A

nearly-complete vertical line indicates that the particular data object participates in all annotation

123

view definitions. Similarly, a nearly-complete horizontal line would indicate that a particular an-

notation view definition would encompass all data objects (for example, such as the one forV10).

Seeing patterns like that will enable users to better understand the implications of the annotation

views/paths definitions.

In general, we believe this graphical annotation views/paths monitor can help users to under-

stand the annotations (space) for a particular database. We expect such a monitor to behighly

interactiveand to allow the users to see changes over time.

8.2.2 Beyond the scope of this thesis

In Chapters6 and 7 we proposed a benchmark for evaluating an annotation model and system

consisting of three annotation query types: Type I: Query Data + Browse associated Annotations

(Section5.2.1), Type II: Query Annotations + Browse associated Data (Section5.2.2), and Type

III: Query Data + Query Annotations (Section5.2.3). We have extensively discussed and evaluated

the query type I. The evaluation of the other two query types is beyond the scope of this thesis,

nonetheless, we plan to continue work on the implementation and evaluation of these additional

types of queries.

In Section6.2, we discussed the problem of “when” to switch between eager and lazy annota-

tion propagation methods, “when” to cache annotation result sets, “what” to cache, and “how” to

retrieve annotations, annotation views and paths. In Section4.4, we brought the idea of a multi-

criteria, dynamic recomputing, and adaptive annotation search algorithm, considering annotation

path strengths. We want to explore each of our original questions with a more in-depth analysis.

There are some issues we have not covered in this thesis, such asconcurrency controlin an-

notation management, andsynchronizationin semantics. In the user-driven network semantics,

how to avoid repeated path propagation is an open issue, it can be converted into the classic algo-

rithm problem, Euler path [43]. In addition, supporting continuous annotations was discussed in

Section6.4, and that would be an additional extension. We want to explore such problems as part

of our future work, as well as applying this work into different domains such as social networks,

information propagation or business workflow monitoring systems.

Big dataandNoSQL databasesare topics receiving a lot of attention lately, and were briefly

124

mentioned in this thesis. Current relational databases may not work with large-scale data as fast

as NoSQL databases. We have evaluated our ViP framework on MySQL, the most popular open

source relational database. In the future, we want to extend our work to more types of databases,

such asgraph databases[121, 116]. One such example is Neo4j, an open-source NoSQL graph

database. Its embedded, disk-based, fully transactional Java persistence engine stores data struc-

tured in graphs rather than in tables. Due to its graph data model, Neo4j is claimed to be highly

agile and “blazing” fast. For connected data operations, Neo4j runs “a thousand times faster than

relational databases”. We would like to see how our work merges with such new technology.

8.3 BROAD IMPACT

In this thesis, we aimed to solve two problems: (1) support annotations that are scalable both from

a system point of view and also from a user point of view, and (2) support annotation queries both

from an annotator point of view and a queries/user point of view. With tens of thousands of anno-

tations appearing in scientific data, these problem are critical not only to manage the annotations

efficiently but also to take care of users’ preferences as the first priority.

Our main goal in this thesis was to bring a high performance solution to the questions and

challenges we observed and discovered. In addition, we wanted to propose a new way to process

and manage annotations and the querying with associated data, both for scientific data and general-

purpose data. We believe our contributions have achieved those goals and will promote annotation

management to a higher level, making it applicable more broadly and exhibiting better performance

than the previous state of the art.

125

9.0 APPENDIX

Ruby Gems included by the bundle:

• actionmailer (3.2.13)

• actionpack (3.2.13)

• activemodel (3.2.13)

• activerecord (3.2.13)

• activeresource (3.2.13)

• activesupport (3.2.13)

• arel (3.0.2)

• builder (3.0.4)

• bundler (1.3.5)

• coffee-rails (3.2.2)

• coffee-script (2.2.0)

• coffee-script-source (1.6.2)

• erubis (2.7.0)

• execjs (1.4.0)

• hike (1.2.2)

• i18n (0.6.1)

• journey (1.0.4)

• jquery-rails (2.2.1)

• json (1.7.7)

126

• libv8 (3.11.8.17)

• mail (2.5.3)

• mime-types (1.22)

• multi-json (1.7.2)

• polyglot (0.3.3)

• rack (1.4.5)

• rack-cache (1.2)

• rack-ssl (1.3.3)

• rack-test (0.6.2)

• rails (3.2.13)

• railties (3.2.13)

• rake (10.0.4)

• rdoc (3.12.2)

• ref (1.0.4)

• sass (3.2.7)

• sass-rails (3.2.6)

• sprockets (2.2.2)

• therubyracer (0.11.4)

• thor (0.18.1)

• tilt (1.3.7)

• treetop (1.4.12)

• tzinfo (0.3.37)

• uglifier (2.0.1)

127

BIBLIOGRAPHY

[1] The Advanced Data Management Technologies laboratory at the university of pittsburgh.
http://db.cs.pitt.edu/group/home.

[2] Amazon Public Data Sets. http://aws.amazon.com/datasetss.

[3] Amazon Web Services. http://aws.amazon.com/.

[4] Facebook. http://www.facebook.com.

[5] IMDB Data Sets. http://www.imdb.com/interfaces.

[6] Memcached. http://memcached.org/.

[7] MovieLens Data Sets. http://www.grouplens.org/node/73.

[8] MySpace. http://www.myspace.com.

[9] NoSQL databases. http://nosql-database.org/.

[10] Snowflake. https://github.com/twitter/snowflake.

[11] Twitter. https://twitter.com/.

[12] Twitter Social Graph. http://an.kaist.ac.kr/˜haewoon/release/
twitter_social_graph .

[13] YouTube. http://www.youtube.com/.

[14] Announcing snowflake. http://engineering.twitter.com/2010/06/announcing-snowflake.
html, Jun 2010.

[15] Data, data everywhere. The Economist, February 2010.

[16] What Technology-Assisted Electronic Discovery Teaches Us About The Role Of Humans In
Technology Re-Humanizing Technology-Assisted Review. Forbes, 2012.

[17] Lada Adamic. Zipf, power-laws, and pareto - a ranking tutorial. http://www.hpl.hp.com/
research/idl/papers/ranking/ranking.html.

128

http://an.kaist.ac.kr/~haewoon/release/twitter_social_graph
http://an.kaist.ac.kr/~haewoon/release/twitter_social_graph

[18] Brad Adelberg, Ben Kao, and Hector Garcia-Molina. Database support for efficiently main-
taining derived data. InProc. of the 5th International Conference on Extending Database
Technology (EDBT), pages 223–240, 1996.

[19] Parag Agrawal, Omar Benjelloun, Anish Das Sarma, Chris Hayworth, Shubha Nabar, Tomoe
Sugihara, and Jennifer Widom. Trio: A system for data, uncertainty, and lineage. InProc.
of the 32nd International Conference on Very Large Data Bases (VLDB), 2006.

[20] Rafael Alonso, Daniel Barbara, and Hector Garcia-Molina. Data caching issues in an infor-
mation retrieval system.ACM Transactions on Database Systems (TODS), 15(3):359–384,
1990.

[21] T. Altman and Y. Igarashi. Roughly sorting: sequential and parallel approach.Journal of
Information Processing, 12(2):154–158, Jan 1989.

[22] Barry C. Arnold.Pareto Distributions. International Co-operative Publishing House, 1983.

[23] Omar Benjelloun, Anish Das Sarma, Alon Y. Halevy, and Jennifer Widom. ULDBs:
Databases with uncertainty and lineage. InProc. of the 32nd International Conference on
Very Large Data Bases (VLDB), pages 953–964, 2006.

[24] Jon Louis Bentley. Multidimensional binary search trees used for associative searching.
Communication ACM, 18(9):509–517, 1975.

[25] Deepavali Bhagwat, Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. An an-
notation management system for relational databases. InProc. of the 30th International
Conference on Very Large Data Bases (VLDB), pages 900–911, 2004.

[26] Dhruba Borthakur. The hadoop distributed file system: Architecture and design. InThe
Apache Software Foundation, pages 1–14, 2007.

[27] D. Boyd, S. Golder, and G. Lotan. Tweet, tweet, retweet: Conversational aspects of retweet-
ing on twitter. InProc. of the 43rd Hawaii International Conference (HICSS), pages 1–10,
2010.

[28] Randal E. Bryant, Randy H. Katz, and Edward D. Lazowska. Big-data computing: Creating
revolutionary breakthroughs in commerce, science, and society. pages 1–7, 2008.

[29] Peter Buneman, Adriane Chapman, and James Cheney. Provenance management in curated
databases. InProc. of the 2006 ACM SIGMOD international conference on Management of
data, pages 539–550, 2006.

[30] Peter Buneman, Sanjeev Khanna, Keishi Tajima, and Wang-Chiew Tan. Archiving scientific
data.ACM Transaction Database System, 29(1):2–42, 2004.

[31] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. Why and where: A characterization
of data provenance. pages 316–330, 2001.

129

[32] Peter Buneman, Sanjeev Khanna, and Wang-Chiew Tan. On propagation of deletions and
annotations through views. InProc. of the Symposium on Principles of database systems
(PODS), 2002.

[33] Peter Buneman, Shamim Naqvi, Val Tannen, and Limsoon Wong. Principles of program-
ming with complex objects and collection types.Theoretical Computer Science, 149(1):3–
48, 1995.

[34] Pei Cao and Sandy Irani. Cost-aware www proxy caching algorithms. InProc. of the 1997
USENIX Symposium on Internet Technology and Systems, pages 193–206, 1997.

[35] Cat Casey and Alejandra Perez.E-Discovery Special Report: The Rising Tide of Nonlinear
Review. Hudson Global, July 2012.

[36] Haowen Chan and A. Perrig. Security and privacy in sensor networks.Computer,
36(10):103–105, Oct 2003.

[37] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach, Mike
Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A distributed
storage system for structured data. InProc. of the Seventh Symposium on Operating System
Design and Implementation (OSDI’06), pages 1–14, November 2006.

[38] Laura Chiticariu and Wang Chiew Tan. Debugging schema mappings with routes. InProc.
of the 32nd International Conference on Very Large Data Bases (VLDB), 2006.

[39] Laura Chiticariu, Wang-Chiew Tan, and Gaurav Vijayvargiya. DBNotes: a post-it system for
relational databases based on provenance. InProc. of the 2005 ACM SIGMOD international
conference on Management of data, pages 942–944, 2005.

[40] Gao Cong, Wenfei Fan, and Floris Geerts. Annotation propagation revisited for key preserv-
ing views. InProc. of the 15th ACM international conference on Information and knowledge
management (CIKM), pages 632–641, 2006.

[41] Thomas M. Connolly and Carolyn E. Begg.Database Systems: A Practical Approach to
Design, Implementation, and Management. Addison-Wesley, 4 edition, 2005.

[42] James C. Corbett, Jeffrey Dean, Michael Epstein, Andrew Fikes, Christopher Frost, JJ Fur-
man, Sanjay Ghemawat, Andrey Gubarev, Christopher Heiser, Peter Hochschild, Wilson
Hsieh, Sebastian Kanthak, Eugene Kogan, Hongyi Li, Alexander Lloyd, Sergey Melnik,
David Mwaura, David Nagle, Sean Quinlan, Rajesh Rao, Lindsay Rolig, Yasushi Saito,
Michal Szymaniak, Christopher Taylor, Ruth Wang, , and Dale Woodford. Spanner:
Google’s globally-distributed database. InProc. of the Tenth Symposium on Operating Sys-
tem Design and Implementation (OSDI’12), pages 1–14, October 2012.

[43] Thomas H. Cormen.Introduction to Algorithms. MIT Press, 2001.

[44] Yingwei Cui and Jennifer Widom. Practical lineage tracing in data warehouses. InProc. of
the international conference on Data Engineering (ICDE), pages 367–378, 2000.

130

[45] Yingwei Cui and Jennifer Widom. Lineage tracing for general data warehouse transforma-
tions. InVLDB Journal, pages 471–480, 2001.

[46] Giuseppe DeCandia, Deniz Hastorun, Madan Jampani, Gunavardhan Kakulapati, Avinash
Lakshman, Alex Pilchin, Swaminathan Sivasubramanian, Peter Vosshall, and Werner Vo-
gels. Dynamo: Amazons highly available key-value store. InProc. of the Symposium on
Operating Systems Principles (SOSP’07), pages 205–220, 2007.

[47] Jan Van den Bussche, Stijn Vansummeren, and Gottfried Vossen. Meta-SQL: Towards prac-
tical meta-querying.Information System, 30(4):317–332, 2005.

[48] Julien Deriviere, Thierry Hamon, and Adeline Nazarenko. A scalable and distributed nlp
architecture for web document annotation.Lecture Notes in Computer Science), 4139:56–
67, 2006.

[49] M. Y. Eltabakh, W.-K. Hon, R. Shah, W. Aref, and J. S. Vitter. The sbc-tree: An index
for run-length compressed sequences. InProc. of the 11th International Conference on
Extending Database Technology (EDBT), March 2008.

[50] Mohamed Eltabakh, Walid Aref, Ahmed Elmagarmid, and Mourad Ouzzani. Handson db:
Managing data dependencies involving human actions. Technical report, WORCESTER
POLYTECHNIC INSTITUTE, Computer Science Department, 2012.

[51] Mohamed Y. Eltabakh, Walid G. Aref, and Ahmed K. Elmagarmid. A database server for
next-generation scientific data management. InProc. of the Twelfth International Confer-
ence on Data Engineering (ICDE) Workshops, pages 313–316, 2010.

[52] Mohamed Y. Eltabakh, Walid G. Aref, Ahmed K. Elmagarmid, Yasin N. Silva, and Mourad
Ouzzani. Supporting real-world activities in database management systems. InProc. of the
Twelfth International Conference on Data Engineering (ICDE), pages 808–811, 2010.

[53] Mohamed Y. Eltabakh, Mourad Ouzzani, and Walid G. Aref. bdbms – a database manage-
ment system for biological data. InProc. of the 3rd Biennial Conference on Innovative Data
Systems Research (CIDR), January 2007.

[54] Brad Fitzpatrick. Distributed caching with memcached.Linux J., 2004(124):1 – 5, August
2004.

[55] J. Nathan Foster, Todd J. Green, and Val Tannen. Annotated XML: Queries and provenance.
In Proc. of the Symposium on Principles of database systems (PODS), 2008.

[56] Maksym Gabielkov and Arnaud Legout. The complete picture of the twitter social graph.
In Proc. of the CoNEXT Student’12, pages 19–20, December 2012.

[57] Floris Geerts, Anastasios Kementsietsidis, and Diego Milano. Mondrian: Annotating and
querying databases through colors and blocks. InProc. of the 22nd International Conference
on Data Engineering (ICDE), page 82, 2006.

131

[58] Todd J. Green, Grigoris Karvounarakis, Zachary G. Ives, and Val Tannen. Update exchange
with mappings and provenance. InProc. of the 33rd international conference on Very large
data bases (VLDB), pages 675–686, 2007.

[59] Shenoda Guirguis, Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and
Kirk Pruhs. Adaptive scheduling of web transactions. InProc. of the 25th IEEE Interna-
tional Conference on Data Engineering (ICDE’09), pages 357–368, April 2009.

[60] Ashish Gupta and Inderpal Singh Mumick. Maintenance of materialized views: Problems,
techniques, and applications.IEEE Data Engineering Bulletin, 18:3–18, 1995.

[61] A. Y. Halevy. Answering queries using views: A survey.VLDB Journal, 10:2001, 2001.

[62] Eric N. Hanson. A performance analysis of view materialization strategies. InProc. of the
1987 ACM SIGMOD international conference on Management of data (SIGMOD), pages
440–453, 1987.

[63] Michiel Hazewinkel. Pareto distribution.Encyclopedia of Mathematics, 2001.

[64] J. Herlocker, J. Konstan, A. Borchers, and J. Riedl. An algorithmic framework for perform-
ing collaborative filtering. InProc. of the 1999 Conference on Research and Development
in Information Retrieval, August 1999.

[65] Yoshihide Igarashi and Derick Wood. Roughly sorting: a generalization of sorting.Journal
of Information Processing, 14(1):36–42, Jan 1991.

[66] Marian K. Iskander, Dave W. Wilkinson, Adam J. Lee, and Panos K. Chrysanthis. Enforcing
policy and data consistency of cloud transactions. InProc. of the 2nd ICDCS International
Workshop on Security and Privacy on the Cloud (ICDCS-SPCC’11), pages 253–262, June
2011.

[67] Sushil Jajodia, Pierangela Samarati, Maria Luisa Sapino, and V. S. Subrahmanian. Flexi-
ble support for multiple access control policies.ACM Transactions on Database Systems
(TODS), 26(2):214–260, 2001.

[68] Matthew C. Jones and Elke A. Rundensteiner. View materialization techniques for com-
plex hierarchical objects. InProc. of the sixth international conference on Information and
knowledge management (CIKM), pages 222–229, 1997.

[69] Paul E. Carlson Jr., Joseph Horzempa, Dawn M. O’Dee, Cory M. Robinson, Panayiotis Neo-
phytou, Alexandros Labrinidis, and Gerard J. Nau. Global transcriptional response to sper-
mine, a component of the intra-macrophage environment, reveals regulation of francisella
gene expression through insertion sequence elements. pages 1–10, September 2009.

[70] Jason J. Jung and Jérôme Euzenat. Towards semantic social networks. InProc. of the 4th
European conference on The Semantic Web, pages 267–280. Springer-Verlag, 2007.

132

[71] Jon M. Kleinberg. Challenges in mining social network data: processes, privacy, and para-
doxes. InProc. of the 13th ACM SIGKDD international conference on Knowledge discovery
and data mining (KDD), pages 4–5, 2007.

[72] Georgia Koutrika and Yannis Ioannidis. Personalization of queries in database systems. In
Proc. of the ICDE, page 597, 2004.

[73] Harumi A. Kuno and Elke A. Rundensteiner. Using object-oriented principles to optimize
update propagation to materialized views. InProc. of the Twelfth International Conference
on Data Engineering (ICDE), pages 310–317. IEEE Computer Society, 1996.

[74] Alexandros Labrinidis, Qiong Luo, Jie Xu, and Wenwei Xue. Caching and materialization
in web databases. pages 3(2):169–266, December 2009.

[75] Alexandros Labrinidis, Huiming Qu, and Jie Xu. Quality contracts for real-time enterprises.
pages 143–156, September 2007.

[76] Alexandros Labrinidis and Nick Roussopoulos. On the materialization of web views. In
Proc. of the 2nd International Workshop on the Web and Databases (WebDB), pages 79–84,
June 1999.

[77] Alexandros Labrinidis and Nick Roussopoulos. Webview materialization. InProc. of the
19th ACM International Conference on Management of Data (SIGMOD), pages 367–378,
May 2000.

[78] Alexandros Labrinidis and Nick Roussopoulos. Adaptive webview materialization. InProc.
of the 4th International Workshop on the Web and Databases (WebDB), pages 85–90, May
2001.

[79] Susan Weissman Lauzac and Panos K. Chrysanthis. Personalizing information gathering for
mobile database clients. InProc. of the 17th Annual ACM Symposium on Applied Computing
(SAC), pages 49–56, March 2002.

[80] Qinglan Li, Jonathan Beaver, Ahmed Amer, Panos K. Chrysanthis, Alexandros Labrinidis,
and Ganesh Santhanakrishnan. Multi-criteria routing in wireless sensor-based pervasive
environments.Journal of Pervasive Computing and Communications (JPCC’05), 1(4):313–
326, December 2005.

[81] Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis. User-centric annotation man-
agement for biological data. InProc. of the Second International Provenance and Annota-
tion Workshop (IPAW), pages 54–61, June 2008.

[82] Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis. User-centric annotation man-
agement for biological data (demo). InProc. of the Second International Provenance and
Annotation Workshop (IPAW), pages 1–4, June 2008.

133

[83] Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis. ViP: a user-centric view-
based annotation framework for scientific data. InProc. of the 20th International Conference
on Scientific and Statistical Database Management (SSDBM), pages 295–312, July 2008.

[84] Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis. ViP: a user-centric view-
based annotation framework for scientific data. Inthe 7th Hellenic Data Management Sym-
posium (HDMS), pages 1–12, July 2008.

[85] Sergey Melnik, Atul Adya, and Philip A. Bernstein. Compiling mappings to bridge appli-
cations and databases. InProc. of the 2007 ACM SIGMOD international conference on
Management of data, pages 461–472, 2007.

[86] Lory Al Moakar, Panos K. Chrysanthis, Christine Chung, Shenoda Guirguis, Alexandros
Labrinidis, Panayiotis Neophytou, and Kirk Pruhs. Admission control mechanisms for con-
tinuous queries in the cloud. InProc. of the 26th IEEE International Conference on Data
Engineering (ICDE), pages 1–4, March 2010.

[87] Lory Al Moakar, Alexandros Labrinidis, and Panos K. Chrysanthis. Adaptive class-based
scheduling of continuous queries. InProc. of the Seventh International Workshop on Self-
Managing Database Systems (SMDB’12), pages 1–6, April 2012.

[88] Lory Al Moakar, Thao N. Pham, Panayiotis Neophytou, Panos K. Chrysanthis, Alexan-
dros Labrinidis, and Mohamed A. Sharaf. Class-based continuous query scheduling for
data streams. InProc. of the 6th International Workshop on Data Management for Sensor
Networks (DMSN’09), pages 1–6, August 2009.

[89] Luc Moreau, Juliana Freire, Joe Futrelle, Robert E. McGrath, Jim Myers, and Patrick Paul-
son. The open provenance model. Inhttp://wiki.esi.ac.uk/w/files/e/e8/Opm.pdf.

[90] Panayiotis Neophytou, Panos K. Chrysanthis, and Alexandros Labrinidis. Towards continu-
ous workflow enactment systems. pages 162–178, 2009.

[91] Panayiotis Neophytou, Panos K. Chrysanthis, and Alexandros Labrinidis. Confluence: Con-
tinuous workflow execution engine. InProc. of the 30th ACM International Conference on
Management of Data (SIGMOD’11), pages 1311–1314, June 2011.

[92] Panayiotis Neophytou, Panos K. Chrysanthis, and Alexandros Labrinidis. Confluence: Im-
plementation and application design. InProc. of the 7th International Conference on Col-
laborative Computing: Networking, Applications and Worksharing (CollaborateCom’11),
pages 181–190, October 2011.

[93] Panayiotis Neophytou, Roxana Gheorghiu, Rebecca Hachey, Timothy Luciani, Di Bao,
Alexandros Labrinidis, G. Elisabeta Marai, and Panos K. Chrysanthis. Astroshelf: Un-
derstanding the universe through scalable navigation of a galaxy of annotations. InProc. of
the 31st ACM International Conference on Management of Data (SIGMOD’12), pages 1–4,
May 2012.

134

[94] B.C. Neuman. Security, payment, and privacy for network commerce.IEEE Journal on
Selected Areas in Communications, 13(8):1523–1531, Oct 1995.

[95] Jakob Nielsen.Designing Web Usability. New Riders Publishing.

[96] Jakob Nielsen and Hoa Loranger.Prioritizing Web Usability. New Riders Press.

[97] Patrick O’Neil and Elizabeth O’Neil.Database: Principles, Programming, and Perfor-
mance. Morgan Kaufmann, second edition, 2001.

[98] Vilfredo Pareto. Cours dconomie politique: Nouvelle dition par g.-h. bousquet et g. busino,
1964.

[99] Huiming Qu and Alexandros Labrinidis. Scheduling update and query transactions under
quality contracts in web-databases. InProc. of the 5th Hellenic Data Management Sympo-
sium (HDMS’06), pages 1–12, September 2006.

[100] Huiming Qu and Alexandros Labrinidis. Preference-aware query and update scheduling in
web-databases. InProc. of the 23rd IEEE International Conference on Data Engineering
(ICDE’07), pages 1–10, April 2007.

[101] Huiming Qu, Alexandros Labrinidis, and Daniel Mosse. Unit: User-centric transaction
management in web-database systems. InProc. of the 22nd International Conference on
Data Engineering (ICDE), pages 1–10, April 2006.

[102] Huiming Qu, Jie Xu, and Alexandros Labrinidis. Quality is in the eye of the beholder:
Towards user-centric web-databases (demo). InProc. of the 26th ACM International Con-
ference on Management of Data (SIGMOD’07), pages 1106–1108, June 2007.

[103] Huming Qu, Jie Xu, and Alexandros Labrinidis. Guiding personal choices in a quality
contracts driven query economy. InProc of Third International Workshop on Personalized
Access, Profile Management, and Context Awareness in Databases (PersDB’09), pages 1–6,
August 2009.

[104] Geerajit Rattanaritnont, Masashi Toyoda, and Masaru Kitsuregawa. Analyzing patterns of
information cascades based on users’ influence and posting behaviors. InProceedings of
the 2nd Temporal Web Analytics Workshop (TempWeb’12), pages 1–8, New York, NY, USA,
2012. ACM.

[105] Eldar Sadikov, Montserrat Medina, Jure Leskovec, and Hector Garcia-Molina. Correcting
for missing data in information cascades. InProc. of the 4th International Conference on
Web Search and Data Mining (WSDM’11), page 912, February 2011.

[106] Ganesh Santhanakrishnan, Qinglan Li, Jonathan Beaver, Panos K. Chrysanthis, Ahmed
Amer, and Alexandros Labrinidis. Multi-criteria routing in pervasive environment with
sensors. InProc. of the IEEE International Conference on Pervasive Services (ICPS’05),
pages 7–16, July 2005.

135

[107] A. D Sarma, O. Benjelloun, A. Halevy, and J. Widom. Working models for uncertain data.
In Proc. of the international conference on Data Engineering (ICDE), 2006.

[108] Marc Seeger. Key-value stores: a practical overview. pages 1–21, 2009.

[109] Peter Pin shan Chen. The entity-relationship model: Toward a unified view of data.ACM
Transactions on Database Systems, 1:9–36, 1976.

[110] Mohamed A. Sharaf, Panos K. Chrysanthis, Alexandros Labrinidis, and Cristiana Amza.
Optimizing I/O-Intensive transactions in highly interactive applications. InProc. of the 28th
ACM International Conference on Management of Data (SIGMOD’09), pages 785–798,
June 2009.

[111] Konstantin Shvachko, Hairong Kuang, Sanjay Radia, and Robert Chansler. The hadoop
distributed file system. InProc. of the IEEE 26th Symposium on Mass Storage Systems and
Technologies (MSST’10), pages 1–10, 2010.

[112] Y. Simmhan, B. Plale, and D. Gannon. A survey of data provenance in e-science.SIGMOD
Record, pages 31–36, 2005.

[113] Alan Jay Smith. Design of cpu cache memories. 1987.

[114] Swapna Somasundaran, Josef Ruppenhofer, and Janyce Wiebe. Discourse level opinion
relations: An annotation study. InSIGdial Workshop on Discourse and Dialogue, June
2008.

[115] Divesh Srivastava and Yannis Velegrakis. Intensional associations between data and meta-
data. InProc. of the 2007 ACM SIGMOD international conference on Management of data,
pages 401–412, 2007.

[116] Zhao Sun, Hongzhi Wang, Haixun Wang, Bin Shao, and Jianzhong Li. Efficient subgraph
matching on billion node graphs.Proc. of VLDB Endowment, 5(9):788–799, May 2012.

[117] Jesse Szwedko, Callen Shaw, Alexander G. Connor, Alexandros Labrinidis, and Panos K.
Chrysanthis. Demonstrating an evacuation algorithm with mobile devices using an e-
scavenger hunt game. InProc. of Eighth ACM International Workshop on Data Engineering
for Wireless and Mobile Access (MobiDE’09), pages 49–52, June 2009.

[118] Wang-Chiew Tan. Containment of relational queries with annotation propagation. InProc.
of the 19th international conference on Data Base Programmming Languages (DBPL),
2003.

[119] Wang-Chiew Tan. Research problems in data provenance.Bulletin of the IEEE Computer
Society Technical Committee on Data Engineering, 2004.

[120] Rob Tweed and George James. A universal nosql engine, using a tried and tested technology.
pages 1–25, 2010.

136

[121] Chad Vicknair, Michael Macias, Zhendong Zhao, Xiaofei Nan, Yixin Chen, and Dawn
Wilkins. A comparison of a graph database and a relational database: a data provenance
perspective. InProceedings of the 48th Annual Southeast Regional Conference, ACM SE
’10, pages 42:1–42:6, New York, NY, USA, 2010. ACM.

[122] Fusheng Wang and Carlo Zaniolo. Xbit: An xml-based bitemporal data model. InProc. of
the 23rd International Conference on Conceptual Modeling, 2004.

[123] Tom White.Hadoop: The Definitive Guide. O’Reilly Media, 2012.

[124] Janyce Wiebe, Theresa Wilson, and Claire Cardie. Annotating expressions of opinions and
emotions in language. InLanguage Resources and Evaluation (formerly Computers and the
Humanities), 2005.

[125] Hejun Wu, Qiong Luo, Jianjun Li, and Alexandros Labrinidis. Quality aware query schedul-
ing in wireless sensor networks. InProc. of 6th International Workshop on Data Manage-
ment for Sensor Networks (DMSN’09), pages 1–13, August 2009.

[126] Jie Xu, Qinglan Li, Huiming Qu, and Alexandros Labrinidis. Towards a content-provider-
friendly web page crawler. InProc. of the Tenth International ACM Workshop on the Web
and Databases (WebDB), pages 1–10, June 2007.

[127] Jun Zhao, Carole Goble, Mark Greenwood, Chris Wroe, and Robert Stevens. Annotating,
linking and browsing provenance logs for e-science. InProc. of the 2nd International Se-
mantic Web Conference Workshop on Retrieval of Scientific Data (ISWC), October 2003.

[128] Jingren Zhou, Per-Ake Larson, and Hicham G. Elmongui. Lazy maintenance of materialized
views. InProc. of the 33rd International Conference on Very Large Data Bases (VLDB),
pages 231–242, 2007.

[129] Yue Zhuge, H́ector Garćıa-Molina, Joachim Hammer, and Jennifer Widom. View mainte-
nance in a warehousing environment. InProc. of the 1995 ACM SIGMOD international
conference on Management of data (SIGMOD), pages 316–327, 1995.

[130] Cai-Nicolas Ziegler and Georg Lausen. Propagation models for trust and distrust in social
networks.Information Systems Frontiers, 7(4-5):337–358, 2005.

[131] George K. Zipf.The Psychobiology of Language. Houghton-Mifflin, 1935.

[132] George K. Zipf.Human Behavior and the Principle of Least Effort. Addison-Wesley, 1949.

137

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Standard Annotation Management Features Comparison
	2. User-driven Annotation Management Features Comparison
	3. Comparison of ViP and Social Networks
	4. Queries and Results for Figure 11
	5. List of Implementations
	6. Experimental Environment Setting of Data Set 1
	7. Experimental Parameters of Data Set 1
	8. Experimental Environment Setting for Data Set 2
	9. Experimental Parameters of Data Set 2
	10. Experimental Environment Setting of Data Set 3
	11. List of Experiments - Query Processing on Data Set 1 and 2
	12. List of Experiments - Query Processing on Data Set 3
	13. List of Experiments - Eager vs Lazy
	14. List of Experiments - Cache Hits
	15. List of Experiments - User-driven Features
	16. List of Experiments - Path Strength
	17. List of Experiments - Public vs Private Views and Paths
	18. Query Execution Time with Different Annotation Densities
	19. Path Propagation for User-driven Network Semantics

	LIST OF FIGURES
	1. View-based Annotation Propagation
	2. The ViP System Model
	3. Annotation Representation Methods
	4. High-level System Architecture
	5. ViP Annotation-Object Diagram
	6. User-driven Time Semantics
	7. View-based Annotation Propagation: Time Semantics
	8. View-based Annotation Propagation: Network Semantics (Disjoint)
	9. View-based Annotation Propagation: Network Semantics (Identical)
	10. View-based Annotation Propagation: Network Semantics (Overlapping)
	11. User-driven Annotation Propagation Example
	12. Path Strength
	13. Path Strength Presentation
	14. Views from Annotators and Users
	15. Query Type I
	16. Query Type II
	17. Query Type III
	18. Relational Tables of Cache Operations
	19. Keyword Index Structure
	20. Extended System Architecture
	21. DataXS User Interface
	22. Registering An Annotation View
	23. ViP User Interface
	24. System Monitoring
	25. Data Distribution (500 data items)
	26. Data Distribution (50,000 data items)
	27. Ratings Distribution on Movies in the 100k Data Set
	28. Annotations Distribution on Ratings in the 100k Data Set
	29. Comparison of Different Caching Schemes
	30. Uniform and Zipf Distribution (60% data updates and 30% annotation inserts)
	(a). Uniform Distribution - 60/30
	(b). Zipf Distribution - 60/30
	31. Zipf Data Distribution (5% data updates and 2% annotation inserts)
	32. With or Without Indexing
	33. The Query Execution Time with Different Caching Algorithms
	34. Different Cache Operations When Data Changes
	35. The ``Eager'' vs ``Lazy'' Annotation Propagation Case I
	36. The ``Eager'' vs ``Lazy'' Annotation Propagation Case II
	37. Different Data Updates Percentages with Eager Propagation
	38. Cache Management without Any Updates
	39. Cache Management with 5% data Updates - Eager
	40. Cache Management with 5% data Updates - lazy
	41. The Query Time vs Cache Management Time - Eager
	42. The Query Time vs Cache Management Time - Lazy
	43. The Total Cache Hits of 1,000 Queries
	44. The Total Cache Hits of 10,000 Queries
	45. Query Time with Different Annotation Views
	46. Cache Hits and Annotations Found with Different Annotation Views
	47. Query Processing Time Over Time
	48. Query Processing Time Over Different Cache Sizes
	49. Query Processing Time of LFU Algorithm
	50. Query Processing Time of LRU Algorithm
	51. Query Processing Time of PC Algorithm
	52. Query Processing Time of AC Algorithm
	53. Query Execution Time
	54. Setup Time
	55. Query Execution Time with Different Annotation Densities
	(a). Query Execution Time of 50% Annotation Density
	(b). Query Execution Time of 100% Annotation Density
	(c). Query Time Execution of 150% Annotation Density
	(d). Query Execution Time of 200% Annotation Density
	56. Caching Time
	57. Query Execution Time for Different User Search Conditions
	58. Annotations Found for Different User Search Conditions
	59. Query Execution Time with Different Public Annotation View Percentages
	60. Query Execution Time with Different Public Annotation Path Percentages
	61. Query Processing Time Over Different Path Strengths
	62. Query Distribution on the 100k Data Set
	63. Query Execution Time and Annotations Found in the 100k Data Set
	(a). Query Processing in the 100k Data Set
	(b). Annotations Found in the 100k Data Set
	64. Setup Time of the 100k and the 1M Data Set
	65. Query Processing of the 100k Data Set with Different Cache Capacities
	66. Cache Hits in Queries of the 100k Data Set
	67. Processing Time Sequence of Query Trace on the 100k Data Set
	68. Annotations Distribution on Ratings in the 1M Data Set
	69. Annotations Distribution on Movies in the 1M Data Set
	70. Query Processing with Different Cache Capacities of the 1M Data Set
	71. Cache Hits in Queries of the 1M Data Set
	72. Setup Times of the 10M Data Set
	73. Query Traces of the 10M Data Set
	74. Query Processing with Different Cache Capacities of the 10M Data Set
	75. Cache Hits in Queries of the 10M Data Set
	76. The Annotation View-Data Association Matrix - Initial Idea

	LIST OF ALGORITHMS
	1. Direct and Inherited Annotation Search
	2. Annotation Search in Cache
	3. Cache Management
	4. Adding an annotation
	5. Deleting an annotation
	6. Annotation Search

	PREFACE
	1.0 MOTIVATION
	1.1 Problem Statement
	1.2 Using Views
	1.3 Contributions and Evaluation
	1.4 RoadMap

	2.0 SYSTEM MODEL
	2.1 Annotation Representation Methods
	2.2 System Architecture
	2.3 Annotation-object Diagram
	2.4 Summary

	3.0 RELATED WORK
	3.1 Annotations
	3.2 Data Provenance and Annotations
	3.3 User-driven Data Management
	3.4 Annotation Management Features
	3.4.1 Standard Annotation Management Features
	3.4.2 User-driven Annotation Management Features

	3.5 Social Networks
	3.6 Big Data
	3.6.1 NoSQL Systems
	3.6.2 Big Data Computing Services
	3.6.3 Big Data Sets

	3.7 Summary

	4.0 THE VIP FRAMEWORK - ANNOTATION POINT OF VIEW
	4.1 User-driven Time Semantics
	4.2 User-driven Network Semantics
	4.3 User-driven Access Control on Annotation Views
	4.4 User-driven Access Control on Annotation Paths
	4.4.1 User-driven Access Control on the Paths
	4.4.2 Path Strength/weight Definition and Management

	4.5 ViP-SQL Definition - Annotation
	4.6 Summary

	5.0 THE VIP FRAMEWORK - QUERY POINT OF VIEW
	5.1 Views and Queries
	5.1.1 What Views Do We Have?
	5.1.2 What Results Do Users Want?
	5.1.3 ViP-SQL Definition - Query

	5.2 Query Processing
	5.2.1 Query Type I: Query Data with associated Annotations
	5.2.1.1 Query Processing
	5.2.1.2 Caching to Optimize Annotation Search
	5.2.1.3 Cache Replacement Algorithms

	5.2.2 Query Type II: Query Annotations with associated data
	5.2.3 Query Type III: Query Data and Annotations
	5.2.3.1 Keyword Search

	5.3 Summary

	6.0 THE VIP FRAMEWORK - PROOF OF CONCEPT IMPLEMENTATION
	6.1 User-driven Time Semantics
	6.2 User-driven Network Semantics
	6.2.1 Lazy/eager Annotation Propagation Algorithms
	6.2.2 Indexing on Annotation Views and Annotation Paths
	6.2.3 Cache Management
	6.2.4 Private/public Views and Paths Management

	6.3 Annotations Management
	6.3.1 Inserting Annotations
	6.3.2 Deleting Annotations
	6.3.3 Implementing Auxiliary Tables

	6.4 Working with AstroShelf
	6.5 Big Data
	6.5.1 Our Solution

	6.6 User Interface
	6.6.1 Define Annotations and Annotation Paths
	6.6.2 Annotation Browsing and Searching
	6.6.3 System Performance Statistics

	6.7 Summary

	7.0 EVALUATION OF THE VIP FRAMEWORK
	7.1 Experimental Setup
	7.1.1 Description of Data Set 1 (Figure 25, 26, and Table 6, 7)
	7.1.2 Description of Data Set 2 (Table 8 and 9)
	7.1.3 Description of Data Set 3 (Figure 27, 28 and Table 10)

	7.2 Workload Summary
	7.3 Evaluation of Caching Algorithms - Data Set 1
	7.3.1 Query Distribution (Figure 29, 30, and 31)
	7.3.2 Indexing (Figure 32)
	7.3.3 Caching Algorithms (Figure 33 - Figure 52)

	7.4 Comparison of ViP to MMS - Data Set 2
	7.4.1 View-based Annotation Propagation (Figure 53, 54, 55 and Table 18)
	7.4.2 Annotation Propagation with Caching (Figure 56)

	7.5 Evaluation of Network Semantics - Data Set 2
	7.5.1 User-driven Annotation Paths Propagation (Table 19)

	7.6 Evaluation of Access Control on Annotation Views/Paths
	7.6.1 User-driven Access Control on Annotation Views and Paths (Figure 57 - Figure 60) - Data Set 2
	7.6.2 Path Strength (Figure 61) - Data Set 1

	7.7 Evaluation of Scalability - Data Set 3
	7.7.1 MovieLens 100k Data Set (Figure 63, 62, 64, 65, 66, and 67)
	7.7.2 MovieLens 1M Data Set (Figure 68, 69, 70, and 71)
	7.7.3 MovieLens 10M Data Set (Figure 72, 73, 74, and 75)

	8.0 CONCLUSIONS
	8.1 Contributions
	8.2 Future Work
	8.2.1 Graphical Representation of Annotation Views/Paths
	8.2.2 Beyond the scope of this thesis

	8.3 Broad Impact

	9.0 APPENDIX
	BIBLIOGRAPHY

