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SUSTAINABLE BOTTOM-UP SYNTHESIS OF ANISOTROPIC GOLD NANOPARTICLES  

Patrick J. Straney, M. S. 

University of Pittsburgh, 2013  

 

 Anisotropic noble metal nanoparticles exhibit unique optical and catalytic properties that 

have the potential to revolutionize applications ranging from cancer therapy to hydrogen storage.  

While there is considerable drive for the commercial implementation of these materials, a 

significant barrier to industrial translation lies in the lack of rational synthetic methods to 

produce them.  This gap introduces difficulties with both the reproducibility and the 

sustainability of anisotropic nanoparticle synthesis.  Here, a robust approach for the solution-

phase synthesis of gold nanoparticles of technological interest has been developed.  Instead of 

using a seed template to access canonical gold nanomaterials such as nanorods and nanoprisms, a 

homogeneous nucleation approach has been developed where nucleation and growth occur in the 

same chemical environment.   By regulating the stages of particle nucleation and growth, 

nanorods with lengths from 30 to 630 nm and triangular or hexagonal prisms with vertex-to-

vertex lengths ranging from 120 to over 700 nm were produced in high yield.  These results shed 

light on the factors that influence the growth of anisotropic nanomaterials, and allow for 

drastically more efficient synthetic routes.  Specifically, this methodology allows for the 

reduction in the amount of reagents needed to synthesize nanorods and nanoprisms by as much 

as 90% by weight, and represent the first report of spectroscopically-discernible, colloidal gold 

nanoplates obtained using a seedless approach.  Methods developed will facilitate future 

investigations concerning the formation of complex, hybrid nanoparticle architectures from 

anisotropic nanomaterial substrates.   
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1.0 INTRODUCTION 

 

1.1  Anisotropic Noble Metal Nanoparticles 

Anisotropic noble metal nanoparticles possess unique physical and chemical properties
1-3

 

that are dependent upon not only on their composition, but also on their size, shape, and 

surface chemistry.  Over the past two decades, considerable attention has been directed 

toward developing shape-controlled syntheses of noble metal nanoparticles in order to 

increase the functionality of these materials
4-6

.  In 2001, Murphy et al.
7
 revolutionized the 

field of shape-controlled nanoparticle synthesis by developing a colloidal, seed-mediated 

synthesis for gold nanorods in high yield.  Since the initial discovery of the gold nanorod 

synthesis, continued efforts focus on expanding the range of synthetically accessible 

nanoparticle architectures and investigating the properties of such nanomaterials in 

applications ranging from gene delivery
8, 9

 to photovoltaics
10

.  

 

1.2  Bottom-Up Synthesis of Anisotropic Nanomaterials  

In bottom-up syntheses, colloidal nanoparticle products are formed from the assembly of 

atomic or molecular constituents, as opposed to top-down methods where products are 

“carved” from bulk materials.  While bottom-up syntheses have clear advantages in terms of 

throughput and yield, a major downside lies in the ability to control the resulting size, shape, 

and monodisperisty of products
11

.  In part, the inability to control product morphology is due 

to a lack of mechanistic insight into the processes that govern nanocrystal nucleation and 

growth
12

.   
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1.3  Nucleation and the LaMer Diagram  

The processes of nanoparticle nucleation and growth have been modeled by LaMer and 

coworkers
13

 who investigated the formation of monodisperse hydrosol colloids.  Here, 

nucleation and growth were viewed as a function of the growth monomer concentration in 

solution over the duration of the reaction (Figure 1.1). As the concentration of the monomer 

approaches the critical limiting supersaturation point, the total energy of the system can be 

lowered by the homogeneous nucleation of a solid phase, partially relieving the 

supersaturation condition.  The free energy (  ) cost of forming a spherical cluster with 

radius r is modeled with the following equation
14

:   

    
 

 
             

Equation 1.1. Free energy required for homogeneous nucleation
14

  

 

Here, the free energy per unit volume (   ), accounts for the favorability of a phase 

transformation due to the supersaturation condition and becomes increasingly negative as the 

system approaches the critical limiting supersaturation (Region II).  The driving force for 

nucleation, however, is counterbalanced by the unfavorable energetic cost of introducing a 

new solid phase due to surface tension ( ) at the interface.  Only under superstation 

conditions will the formation of a new phase be energetically favorable enough to overcome 

this energetic barrier imparted by surface tension.   
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Figure 1.1.  The LaMer model of nucleation and growth
13

, which depicts the reaction 

coordinate in terms of increasing monomer concentration.  The nucleation of a solid phase 

occurs when the monomer concentration increases past the supersaturation point (Css, 

Region I) and approaches the critical limiting supersaturation value (Clim, Region II).  

Nucleation continues until the supersaturation condition is relieved, after which particles 

continue to grow by heterogeneous deposition (Region III) until the monomer concentration 

returns to the saturation point (Csat).   

 

After nucleation of the solid phase, the supersaturation condition is partially relieved, and 

clusters continue to grow by diffusion of monomer to the solid surface modeled by a process 

of heterogeneous nucleation, a surface assisted type of nucleation
13

.  Here, intermolecular 

interactions (e.g. adhesive forces) between the solid and liquid phases promote wetting of the 

solid surface, hence lowering the overall surface tension and the energetic barrier to 

nucleation
15

.  As shown in Equation 1.2,  
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                               (
 

 
 

 

 
          ) 

Equation 1.2. Free energy required for heterogeneous deposition 

heterogeneous nucleation requires less total energy than homogeneous nucleation when there 

are favorable interactions between the two phases.  The strength of the adhesive interactions 

can be measured by the contact angle ( ) formed at the phase interface (Figure 1.2)
15

.  Due to 

the wetting of the solid surface, heterogeneous nucleation will continue until the system 

returns to the monomer saturation point (Figure 1.1, Region III).   

  

 

Figure 1.2.  The contact angle formed at the phase interface is determined by the strength of 

the adhesive interactions between phases.  At contact angles greater than 90° (A), the 

adhesive forces formed at the phase interface are not enough to overcome the cohesive forces 

between solvent molecules, indicating hydrophobicity. Contact angles less than 90°, 

however, suggest an attractive interaction between the two phases (B).   

 

 

A. B. 

𝜃 < 90 𝜃 > 90 
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1.3.1  Terrace-Step-Kink Model of Heterogeneous Nucleation   

The terrace-step-kink (TSK) model of adatom deposition onto a stepped crystalline 

surface is a useful mechanism for describing the growth of nanocrystals via heterogeneous 

nucleation
16

.  Depending on the chemical potential of the nucleation site, an adatom will 

either be incorporated into the crystalline lattice, or it may dissolve back into solution
17

.  The 

energy required to remove an adatom from a surface is site-dependent and increases with 

increasing site coordination number.  In terms of nanocrystal growth, the TSK model implies 

that the structure of the crystalline surface will directly impact the rate of atom incorporation 

depending on the relative proportions of terrace, step, and kink sites on the particle surface.  

Furthermore, depending on factors such as internal lattice strain or the presence of surface 

bound adsorbates such as halides or capping ligands, atom incorporation may be impacted 

further
18

.  Slight differences in crystal facet energetics (as related to crystal facet bulk 

coordination number) have a profound impact on the nanocrystal growth pathway and the 

resulting nanoparticle morphology
12

.  This relationship between nanoparticle surface 

structure and the probability of adatom incorporation is commonly related to crystal facet 

poisoning by ligands, and together these effects have become fundamental tenants of shape 

control on  the nanoscale
19

.  As shown in Figure 1.3, of the three possible sites on a given 

surface (terrace, step, or kink), the kink site exhibits the lowest coordination number, and 

therefore an adsorbing atom would have a higher chance for incorporation within the crystal 

lattice at that position
20

.   
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Figure 1.3.  According to the terrace-step-kink model, an incoming atom will the opportunity 

to form more bonds to the surface when adsorbed at a kink site as compared to a step or 

terrace site, and therefore will have a higher probability of incorporation into the crystalline 

lattice (reproduced from Reference 20).  

 

1.3.2  Heterogeneous Nucleation and Seed-Mediated Syntheses 

As described in the LaMer model of nucleation and growth, homogeneous nucleation will 

occur until relief of the supersaturation conditions to some extent that is system dependent 

(Figure 1.1, Region III).  As soon as a cluster reaches a stable size, it will continue to grow 

via the described adatom adsorption model.  Clusters nucleated early in the reaction 

coordinate will therefore undergo a longer duration of growth,  resulting in polydispersity in 

nanoparticle size and shape
21

.  To avoid heterogeneities in nanoparticle morphology, 

nucleation and growth are commonly separated in time and chemical environment in a 
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process referred to as seed-mediated nucleation
22

 (Figure 1.4).  Here, nucleation sites are 

created in one chemical environment, where use of a strong reducing agent allows for a brief 

period of nucleation and less chance of resulting heterogeneity.  After formation, these 

nucleation sites or “seeds” can be introduced to a chemical environment termed a “growth 

solution” tailored for diffusion-limited, anisotropic growth
22

.  Here, both the crystallinity of 

the seed template as well as the presence of shape directing additives in the growth solution 

can influence resulting nanoparticle product distribution
23-26

.  For example, gold nanorods are 

formed by the addition of small, single crystal seeds in the presence of silver nitrate
26

, while 

gold nanoprisms are formed from larger, twinned seeds with the addition of sodium iodide
27

. 

 

 

 

Figure 1.4.  Pictorial representation of seed-mediated syntheses in which the nucleation site, 

the seed template, is first formed by the reduction of metal precursors.  In Step 2, the seed 

will be introduced into a separate chemical environment tailored for anisotropic growth.   

 

1.4  Shape Control in Anisotropic Nanoparticle Synthesis 

Currently, shape control on the nanoscale is achieved by the empirical derivation of 

experimental conditions due to ambiguities in the mechanistic role of the seed in relation to 

Step 1 Step 2 

  

Seed Template Metal Precursor 
Complex 

Anisotropic Product 
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those of shape directing forces in the growth solution.  As indicated by the following 

discussion on the formation of gold nanorods and nanoprisms, the resulting nanoparticle 

product morphology is influenced by a variety of shape-directing mechanisms and is therefore 

difficult to predict a priori.  

 

1.4.1  Nanorod Formation:  Silver Underpotential Deposition  

In the silver-assisted synthesis of gold nanorods, shape control has been attributed to an 

underpotential deposition mechanism, where the selective deposition of silver on the Au 

crystal facets changes the rate of crystal facet growth and hence the resulting product 

morphology
28, 29

. Underpotential deposition (UPD) is an electrochemical phenomenon where 

a metallic species in solution can be deposited to form a monolayer on a metallic substrate at 

a potential less negative than the Nernst potential for the metal
30

.  As indicated by Equation 

1.3, the potential required for UPD to proceed (     ) is dependent upon the difference 

between the work functions of the substrate (  ) and deposited metal (  ).  At a potential 

equal to      , UPD will proceed to form a monolayer on the substrate, as opposed to bulk 

deposition which occurs at the equilibrium reduction potential.  Alternatively, this deposition 

process can be viewed as wetting phenomenon, where a less noble metal will spontaneously 

wet (e.g. deposit) a more noble metallic surface.  The reduction potential of the metal 

precursor, which changes with halide concentration and pH, can alter the UPD process 

leading to significant changes in the deposition rate or structure of the metal deposits (Figure 

1.3)
28, 31

. As a result, UPD has been a useful approach to directing nanocrystal growth.  

                  

Equation 1.3. Underpotential Shift  
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Figure 1.5.  Schematics of silver structures deposited on an Au(111) surface in the presence 

of 0.1 mM HF (A) and 0.5 mM AgF (B) solutions.  Here, the small and large circles 

represent Ag and Au atoms, respectively, while the dark lines indicate the unit cell of the 

deposit (reproduced from Reference 31). 

 

The UPD mechanism has been commonly been invoked to explain the formation of rod-

like architectures in the silver-assisted synthesis of gold nanorods
29, 32

. Here, the selectivity of 

Ag UPD on Au (110) over that of Au (100) is the driving force for unidirectional growth.  As 

indicated by crystal facet reconstructions
33

, the geometric arrangement of the lattice in a 

(110) facet appears to have a “missing row” of atoms, which creates the regular arrangement 

of high energy step sites across the crystalline surface.  This “missing row” arrangement 

increases the surface energy of the (110) facet relative to the (100) facet, and therefore 

increases the rate of Ag UPD. As UPD deposition occurs more quickly on Au (110), the 

surface is assumed to be covered with a silver monolayer throughout the duration of the 

reaction. Although the Ag monolayer is eventually oxidized, allowing for continued 

deposition of Au, overall the UPD process retards or “poisons” growth of the (110) facet.  
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Conversely, Ag UPD on Au (100) occurs at a slower rate, and therefore the surface remains 

more accessible for Au deposition throughout the duration of growth.  Overall, the net effect 

of Ag UPD results in elongation primarily in the (100) direction and the formation of rod-

shaped nanoparticles.   

 

 

 

Figure 1.6. Mechanism of silver-assisted gold nanorod formation
29

.  Au precursor, bound to 

the cationic CTAB micelle, will deposit on the (110) and (100) faces of the growing CTAB 

functionalized Au seed by an underpotential deposition mechanism.  Fast UPD of Ag on Au 

(110) attenuates growth in the [110] direction, yet the (100) facets remains open, promoting 
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Au deposition in the [100] direction and the formation of rod-like architectures. (Reproduced 

from Reference 29). 

1.4.2  Prism Formation:  Factors Influencing 2D Growth 

In describing the formation of gold nanoprisms, shape control has been attributed to the 

presence of twin planes in the crystal lattice in conjunction with crystal facet poisoning of the 

Au (111) facet by sodium iodide
19, 25

. Nanoprism seeds, formed from the reduction of 

HAuCl4 by NaBH4 in the presence of trisodium citrate, are 5.2 ± 0.6 nm and consist of a 

mixture of single crystalline and multiply twinned architectures
24, 27

.  As proposed in the 

silver halide model of plate-like growth
19

, such twin planes, which have higher concentration 

of step and/or kink sites, direct  addition to the two adjacent faces of the twin, promoting 

growth in only two dimensions
34

. Meanwhile, addition to the broad top and bottom faces of 

the prism is restricted due to the interaction of sodium iodide with the (111) facets of the 

growing nanocrystal.  As confirmed by X-ray photoelectron spectroscopy measurements, 

iodide interacts more strongly with the top Au (111) facets compared to the side facets
25

.  

The combined effects of the twin plane and crystal facet poisoning by iodide are thought to 

drive two-dimensional growth and the formation of plate-like morphologies
25

.   

 

1.5  Purification of Nanomaterials  

Before further characterization or use of nanoparticle reaction products, separation from 

reaction byproducts and impurities is required. As the observed chemical and physical 

properties of nanomaterials can readily change with particle morphology,
35, 36

  purification 

strategies that achieve selectivity based on nanoparticle size and shape are highly desirable. 

Equally important, nanoparticle products must be separated from excess reagents, reagent 
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byproducts, and surfactant, which is often difficult to achieve without changes in product 

morphology or stability
37

.  There are a multitude of nanoparticle purification techniques, 

including but not limited to electrophoresis
38

, filtration
39

, precipitation by anti-solvent
40

, or 

size exclusion chromatography
41

, and centrifugation. Centrifugation is particularly attractive 

because it is a rapid, inexpensive, and highly reproducible method of achieving size and 

shape selective purification from reaction impurities.   

By varying the speed and duration of the centrifugation process, nanoparticles of desired 

shape and size can be selectively precipitated out of solution.  Here, selectivity is achieved 

due to the difference in the sedimentation coefficients of nanoparticles of various 

morphologies (Equation 1.4)
42

.  The sedimentation coefficient ( ), which accounts for 

differences in viscosity, molecular weight, and electrostatic interaction of the sedimentating 

species, is defined as the ratio of a particle’s sedimentation velocity (  ) to the applied 

acceleration (e.g. centrifugal force,  ).  For a nanoparticle at a given force, a higher 

sedimentation coefficient will correspond to a faster sedimentation velocity, hence allowing 

for selectivity in purification by centrifugation.  

   
  

 
  

Equation 1.4.  Sedimentation Coefficient  

 

1.6  Characterization of Nanomaterials 

In order to understand the effect of experimental parameters on the resulting nanoparticle 

morphology or composition, methods to accurately characterize the average dimensions, 

yields, and spectral features of nanoparticle products are required.   
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1.6.1  UV-vis-NIR Spectroscopy 

Ultraviolet visible near-infrared (UV-vis-NIR) spectroscopy is a useful tool for analyzing 

the optical properties of a nanoparticle colloidal suspension, and thereby allows for a 

qualitative approximation of the size and shape distributions of nanoparticle reaction 

products.  Here, assessments concerning nanoparticle size and shape are possible due to an 

optical phenomenon of noble metal nanoparticles referred to as the localized surface plasmon 

resonance (LSPR, Figure 1.7).
43

  A surface plasmon is the collective oscillation of surface 

conduction electrons at a dielectric interface caused by incident light.  This surface resonance 

conditions occurs when the frequency of incident light matches that of the electrons on the 

metallic surface, and therefore changes with nanoparticle morphology
44

.  When confined to 

dimensions of less than 100 nm, the SPR is referred to as a localized surface plasmon 

(LSPR)
43

.  

 

Figure 1.7. Graphical representation of the localized surface plasmon resonance. 

Electromagnetic radiation incident on the metallic nanoparticle induces the coherent 

oscillation of surface conduction electrons (reproduced from Reference 43). 
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Due to this relationship between particle morphology and optical properties, the LSPR 

excitation wavelength is a useful diagnostic of particle size, shape, and monodisperisty (as 

indicated by the full width at half maximum of the absorbance peak).  As described by the 

Beer-Lambert (Equation 1.5), the LSPR allows one to determine the concentration (C) of a 

morphology with a known molar extinction coefficient ( ) simply by measuring the 

absorbance ( ) through a given path length ( ). It is important to note, however, that the 

Beer-Lambert law deviates from linearity at high concentrations, the effect of which 

intensifies with increasing extinction coefficient
45

.  Deviations from linearity result at high 

concentrations of the absorbing species, as decreased intermolecular distances can cause 

fluctuations in the charge density of the absorbing species, thereby impacting the ability to 

absorb radiation of a given wavelength.  In absorbance determinations for anisotropic noble 

metals, these deviations become more apparent due to extinction coefficients on the order of 

10
9
 M

-1
 cm

-1
.
36

 Furthermore, as the extinction coefficient changes with particle 

morphology
46

, it is important to note that Uv-vis-NIR analyses of nanoparticle yield or 

monodisperisty are strictly qualitative.   

       

Equation 1.5. Beer-Lambert Law 

 

1.6.2  Electron Microscopy  

Electron microscopy is an invaluable asset in characterizing nanomaterials, as the 

resolution of this technique allows for direct visualization of nanoscale structural details.   To 

date, resolutions better than 50 pm at magnifications of about 10,000,000x has been achieved 

using this technique.
47
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1.6.2.1 Transmission Electron Microscopy 

In transmission electron microscopy (TEM), a beam of electrons is transmitted through 

the sample.  Depending on the mode of TEM operation, image contrast is achieved by the 

combination of several different phenomena.  For example, in bright field mode (normal 

operation conditions), contrast is a function of sample thickness, Z-number, and crystallinity 

as less electrons are transmitted through thicker samples, those with larger nuclei, or with 

increased crystallinity due to electron scattering by the sample
48

.  Furthermore, elements will 

higher atomic numbers will scatter more electrons, causing fewer electrons to reach the 

detector and contrast derived from differences in atomic number. In another mode of 

operation referred to as dark field mode, only scattered electrons are used to generate the 

observed image. Hence, dark field mode is more useful for elemental analysis as the intensity 

of scattered electrons directly correlates to atomic number.
11

 Other possible analytical 

techniques involve analyzing inelastically scattered electrons, such as electron-energy loss 

spectroscopy and energy dispersive X-ray spectroscopy which can provide elemental 

information about the sample  

 

1.6.2.2 Scanning Electron Microscopy 

In scanning electron microscopy (SEM), an image is produced by scanning a surface with 

an electron beam and imaging the resulting backscattered and secondary electrons with a 

detector
11

. The electron beam used in SEM may be generated by a field emission source and 

is focused by a series of condensers to a spot size ranging from 0.4 to 5 nm in diameter.  The 

narrow spot size allows for a large depth of field, which is defined as the distance between 

the nearest and farthest objects that can appear in focus
49

.  Together, the rastering of the 
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beam across the sample, combined with the large depth of field, provide SEM images with 

high z-resolution, imparting a 3D quality to sample morphology in SEM images.  As a 

characterization technique, SEM is most commonly used to analyze the surface topography 

and morphology of the sample and for determining the elemental composition at the surface.   

 

1.7  Sustainable Nanochemistry and the Viability of Nanotechnology  

Advancing nanotechnology from the laboratory to the industrial setting will require 

improved synthetic techniques and purification protocols
50

. For example, anisotropic 

nanoparticle syntheses are commonly low-yielding and irreproducible. Such detriments arise 

from a lack of mechanistic understanding and ultimately hinder the advancement of 

nanotechnology.  In order to advance the synthetic efficiency of nanoparticle syntheses, 

future synthetic development should be guided by the 12 Principles of Sustainable 

Chemistry
51

.  Green chemistry principles begin with three fundamental tenets: prevention of 

waste, atom economy, and the reduction of hazardous materials.
51

 Prevention of waste leads 

to the elimination of unnecessary reagents from a given synthetic pathway and, from a 

nanochemistry perspective, also presents the opportunity to eliminate mechanistic “red-

herrings.” Here, improving atom economy is interpreted for nanochemistry as a more 

efficient use of reagents in order to maximize product atoms out for reagent atoms in. This 

efficiency can be particularly challenging for reagents such as surfactants which have 

concentration dependent supramolecular architectures that may or may not impact final 

nanoparticle outcomes.
19, 26, 52-55

  Finally, a more efficient synthesis in terms of steps, reagent 

use, and reaction conditions (e. g. temperature and pressure) simultaneously addresses issues 

of synthetic hazards both up and downstream of the synthetic process.   
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1.8  Specific Aims 

The goal of this project is to thoroughly investigate the role of the seed in seed-mediated 

syntheses.  In doing so, the role of the seed in determining the growth pathways of 

anisotropic nanomaterials can be further elucidated, thereby highlighting critical factors in 

the stages of anisotropic nanoparticle growth.  With advanced mechanistic insight, 

sustainable and scalable alternatives to seed-mediated syntheses can be developed.  

 

The specific aims of this project include:  

Specific Aim I:  Develop mechanistic parameters that contribute to the better understanding 

of anisotropic noble metal nanoparticle synthesis  

Specific Aim II:  Use insights gained Specific Aim I to improve reaction scalability and 

sustainability for the increased prospect of translation into industry 

Specific Aim III:  Incorporate mechanistic insight with sustainable reaction methodologies to 

increase the range of synthetically accessible nanomaterial compositions and architectures 
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2.0  EXPERIMENTAL 

 

2.1  Materials  

Cetyltrimethylammonium bromide (CTAB, 99%), hydrogen tetrachloroaurate trihydrate 

(HAuCl4•3H2O, 99.99%), L-ascorbic acid (99%), potassium hexachloroplatinate(IV) 

(K2PtCl6, >99.99%), silver nitrate (AgNO3, 99.9999%), sodium borohydride (NaBH4, 

99.99%), sodium hydroxide (99.99%), sodium iodide (NaI, 99.999%), and trisodium citrate 

(99%) were obtained from Sigma Aldrich (St. Louis, MO) and used as received.  All 

solutions were prepared using NANOpure™ (Thermo Scientific, 18.2 MΩ ∙ cm) water and 

were made fresh prior to use.  Formvar-coated 400 copper mesh grids for TEM analysis and 

silicon wafer substrates (p-type, 200 nm thermal oxide (silicon dioxide, SiO2)) for SEM 

analysis were purchased from Ted Pella Inc. (Redding, CA). All water used during synthesis 

and work-up is NANOpure™. All reagents were used in air at room temperature unless 

otherwise noted. All solutions were prepared in water unless otherwise noted. 

 

2.2  General 

 

2.2.1  Glassware Cleaning Procedure 

For the following procedures, all glassware was washed with aqua regia (3:1 hydrochloric acid to 

nitric acid by volume) and rinsed copiously with water.  Caution:  aqua regia is toxic and corrosive 

and must be handled in a fume hood with proper personal protection equipment.  Glassware was then 

covered with aluminum foil and dried in an oven at 150 °C 
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2.2.2  CTAB Solution Preparation 

     CTAB solutions (at various concentrations) were prepared by heating the sealed mixture 

in a water bath (37 ºC) until it became clear. The solution was then sonicated for 30 seconds 

and allowed to cool to room temperature before use.  If recrystallization of CTAB occurred 

either during storage or during use, the solution was treated as described above before 

continuing with the following reactions. 

2.3   Seeded Syntheses 

 

2.3.1  Nanorods 

Seed-mediated nanorods were prepared according to the literature procedure
26

. In a 

typical synthesis, CTAB-functionalized nanorods seeds were prepared by adding 5 mL of 0.2 

M CTAB to 5 mL of 1 mM HAuCl4.  Next, 0.6 mL of a 10 mM NaBH4 solution (freshly 

prepared, 0°C) was added to the HAuCl4/CTAB solution while rapidly stirring. After 

addition of the NaBH4, the solution was allowed to stir for 60 seconds and then aged for two 

hours to allow for complete degradation of the NaBH4. A nanorod growth solution was 

prepared by sequentially adding 0.1 mL of 4 mM AgNO3, 5.0 mL of 1 mM HAuCl4 and 0.05 

mL of 100 mM L-ascorbic acid to 5.0 mL of 0.2 M CTAB.  After briefly stirring the growth 

solution, 12.0 µL of the CTAB-functionalized seeds were added, the solution was stirred for 

several seconds, and allowed to rest for two hours until nanorod growth was complete.  

2.3.2  Prisms 

Seed-mediated prisms were prepared according to literature protocols
25

. In a typical 

synthesis, citrate-functionalized seeds were first prepared by adding 1.0 mL of 10 mM 

trisodium citrate and 1.0 mL of 10 mM HAuCl4 to 36 mL of H2O in a 100 mL round bottom 

flask with a Teflon coated stir bar.  The solution was stirred at 1000 rpm, and 1.0 mL of a 
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freshly prepared solution of 100 mM NaBH4 was rapidly injected.  The solution was allowed 

to rest for two hours before usage to allow for complete degradation of excess NaBH4.  Two 

portions of growth solution (A, B) were prepared by the sequential addition of 0.25 mL of 10 

mM HAuCl4, 0.05 mL of 100 mM NaOH, and 0.05 mL of 100 mM L-ascorbic acid to 9.0 

mL of a 50 mM CTAB solution (50 µM in NaI).  The reaction mixture was briefly stirred 

after each addition, and final solution was transparent in color.  Lastly, another portion of 

growth solution (C) was prepared in a similar manner, except that the volume of all reagents 

was increased by a factor of ten.  After preparation of the growth solutions, 1.0 mL of the 

citrate-functionalized seed solution was added to growth solution A.  The solution stirred for 

two seconds, and 1.0 mL of growth solution A was added to growth solution B.  Again, the 

solution was stirred for two seconds, and the entire mixture was added to growth solution C.  

The reaction was briefly mixed and allowed to rest for two hours until prism formation was 

complete.   

2.4  Seedless Syntheses 

2.4.1  Nanorods 

In a typical synthesis, 5 mL of aqueous 200 mM CTAB solution was prepared and added 

to a 20 mL scintillation vial. To this, 100 µL of 4 mM AgNO3 was added and the solution 

was mixed gently by shaking.  Next, 5 mL of 1 mM HAuCl4•3H2O was added and the 

solution was mixed briefly by shaking.  Upon addition of 50 µL of 100 mM L-ascorbic acid, 

the orange solution was stirred until turning colorless.  Growth was initiated by injecting 1-

100 μL of freshly prepared 2.25 mM NaBH4 while stirring on a benchtop vortex mixer 

(Analog Vortex Mixer, 120V, 50/60Hz, Fisher Scientific).  Mixing was continued for 10 

seconds, after which the solution was left undisturbed for 30 minutes.   
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2.4.2  Prisms 

In a typical synthesis, 10 µL of 50 mM NaI was added to 10 mL of 50 mM CTAB.  

Following preparation of the surfactant-salt mixture, 275 µL of 10 mM HAuCl4•3H2O was 

added to the solution, followed by the addition of 55 µL of 100 mM L-ascorbic acid, after 

which the solution turned from orange to clear.  To initiate nanoprism growth, a solution of 

25 μM NaBH4 was prepared, and 2.5-8.5 μL was added to the growth solution while slowly 

mixing on a vortex mixer. Mixing was continued for 10 seconds, and the solution was left 

undisturbed for 30 minutes.  Purification of the reaction mixture was carried out by dividing 

the solution into 1.5 mL centrifuge tubes, and allowing the nanoplates to separate via 

sedimentation. Nanoprisms were separated from reaction impurities by removal of the 

supernatant and were stored in 50 mM CTAB.   

N.B.  In the absence of NaI, this synthesis results in the formation of pentatwinned 

nanorods when the ratio of NaBH4 to HAuCl4 is changed from the above range for prism 

formation to values ranging from 0.045 to 0.18.  

2.5   CTAB Efficient Syntheses  Concentrated solutions of seedless nanorods and 

nanoprisms were prepared as described above, except that all stock solutions were increased 

in concentration while the concentration of CTAB remained unchanged.  For example, in a 

synthesis denoted as a 5x synthesis, the stock solution concentrations of HAuCl4, AgNO3, 

ascorbic acid, and NaBH4 were increased by a factor of 5 (to 5 mM, 20 mM, 500 mM, 11.25 

mM, respectively) while the concentration of the CTAB solution remained at 200 mM. 

 

 



22 

 

2.6  Purification Methods 

Nanoparticle products were purified by centrifugation at 70 relative centrifugal force (rcf) 

for 20 mintues (nanoprisms) or at 6000 RCF for five minutes (nanorods).  After removal of 

the supernatant via syringe, nanoparticle pellets were resuspended in H2O and the entire 

process was repeated two additional times.    

2.7  Characterization Methods 

2.7.1  UV-vis-NIR Spectroscopy 

 Colloids were diluted to an optical density of less than 1.0 optical density (O.D.) for 

analysis.  In all cases, spectra were collected against a background of pure solvent (H2O or 

D2O).  For spectral analysis of the prisms, the prisms were purified by centrifugation and 

resuspended in a 1 mM CTAB solution in D2O two times to remove residual H2O.  In 

syntheses for efficient CTAB usage, colloids were volumetrically diluted to their standard 

concentration prior to analysis (for example, for a seedless 5x efficient synthesis, samples 

were diluted to 20% of the original concentration).  

2.7.2  Transmission Electron Microscopy Analysis 

 A 1 mL aliquot of particles, as synthesized, was centrifuged (Eppendorf Centrifuge 5424, 

rotor FA-45-24-11; 5424/5424R) at speeds and durations described above.  After removal of 

the supernatant via syringe, particles were resuspended in 1 mL of water.  This procedure 

was performed two additional times, after which particles were again collected by 

centrifugation and resuspended in 50 μL of water.  A 10 μL aliquot of concentrated particles 

was drop cast onto a Formvar-backed copper TEM grid (Ted Pella, Formvar on 400 mesh 

Cu) and was slowly dried in a humid environment.  Samples were imaged on a FEI Morgagni 
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268 at 80 kV.  TEM images were analyzed using ImageJ (open access software, 

http://rsbweb.nih.gov/ij/), using the particle analysis feature.  Over 100 nanoparticles were 

measured to obtain reported values. All reported errors are the standard deviation in these 

measurements. 

2.7.3  Scanning Electron Microscopy Analysis 

Silicon wafer substrates (University Wafer, p-type, silicon dioxide) were first cleaned by 

sonicating in ethanol for five minutes.  The substrate was then successively rinsed with 

ethanol and acetone, and dried under a stream of N2 (g). Samples were prepared using the 

same procedure described for TEM analysis. Here, 10 μL of the resulting solution was drop 

cast onto the wafer and allowed to dry before imaging on a Raith Dual Beam EBL-SEM at 

various accelerating voltages.   

2.7.4  pH Determination  

After addition of ascorbic acid, the pH of the growth solutions for seeded and seedless 

protocols was measured with a 8172BNWP ROSS Sure-Flow Combination electrode 

(Thermo Scientific), and Orion 3 Star pH benchtop meter, calibrated with buffered solutions 

at pH 4, 7, and 10 (Fischer Scientific).    
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3.0 RESULTS AND DISCUSSION 

 

3.1 Time Dependence of Templating Efficiency by Seed 

 Seed-mediated syntheses exhibit time dependent changes in templating efficiency which 

ultimately detract from the reproducibility and utility of such approaches.  Here, templating 

efficiency is defined as the ability of a seed population to form a single anisotropic 

morphology, such as a nanorod, without observable heterogeneities in product size and 

shape.  As the structure of a seed is dynamic in solution, as after formation seeds undergo 

processes such as Ostwald ripening and coalescence which can change the size, shape, and/or 

crystallinity of the seed over time
56

.  As a result, the seed reagent has a limited active lifetime 

for templating anisotropic growth.  For example, the age of the seed reagent contributes 

product heterogeneity in these syntheses, where the aspect ratio of seed-mediated nanorods 

decreases with increasing seed age. 

 

Figure 3.1.  UV-vis-NIR extinction spectra (A) and transmission electron microscopy 

images (B-D) of nanoparticles produced using seeds of varying age. In all cases, the same 

batch of nanoparticle seeds was used to initiate particle growth. Seeds were stored at room 

temperature in a sealed glass vial and protected from light. After one day of aging, seeds 

produced rods in high yield (B).  After four days of aging, a blue-shift is observed in the 
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longitudinal LSPR (A,C).  After nine days of aging, the seeds no longer produce anisotropic 

products (D).  Average aspect ratios of particles for days 1, 4, and 9 were 2.6 ± 0.5, 2.2 ± 0.7, 

and 1.1 ± 0.2, respectively. 

3.2 Homogeneous Nucleation Pathway to Anisotropic Nanomaterials 

     Using reaction conditions similar to those detailed in the seed-mediated synthetic 

protocols for gold nanorods
26

 and nanoprisms
25

, a seedless protocol was developed.  In order 

to further understand the nanoparticle nucleation and growth in the absence of a seed 

template, synthetic products of the seed-mediated and seedless syntheses were compared 

using SEM, TEM, and UV-vis-NIR spectrophotometry (Figure 3.2).   

Without the separation of nucleation and growth in time and chemical environment, 

multiple nucleation events throughout the duration of the reaction could lead to 

polydispersity in nanoparticle size and shape.  Therefore, a strong reducing agent, sodium 

borohydride (reduction potential of -1.24 eV vs standard hydrogen electrode (SHE))
57

, was 

selected, as it quickly degrades (t1/2 = 0.0607 minutes at pH = 7).
58

  The rapid reduction of 

the gold precursor briefly increases the concentration of the gold monomer over the critical 

supersaturation limit required for nucleation. In doing so, a short burst of nucleation was 

achieved, followed by monodisperse, diffusion-limited growth in the same chemical 

environment.  As shown by previous work independently reported by El-Sayed et al.
6
 and 

Catherine J. Murphy
7
, it is clear that final nanoparticle shape is influenced by the rate of gold 

precursor reduction due to changes in the concentration of gold monomer available for 

growth.  Therefore, it was reasoned that by adjusting the ratio of NaBH4:HAuCl4, shape-

controlled, monodisperse growth could be attained. 
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Tuning the ratio of NaBH4:HAuCl4 in the presence of silver nitrate or sodium iodide 

allowed for the formation of gold nanorods and nanoprisms, respectively.  Nanorods were 

produced in greater than 90% yield and prisms in approximately 60% yield, comparable to 

as-synthesized yields reported using seed-mediated protocols
26, 59

 Nanorods (length = 40 ± 5 

nm, diameter = 16 ± 4 nm, Figure 3.2 A), were produced in comparable yield (> 90%) but 

with improved monodisperisty, as indicated by the full width at half-max (FWHM, Figure 

3.2 C). Purified nanorods and nanoprisms synthesized via seedless initiation were also 

comparable in size, shape and monodispersity to products obtained using seed-mediated 

approaches (Figure 3.2). UV-vis-NIR extinction spectra of nanorods produced using seedless 

initiation exhibited a characteristic longitudinal LSPR at 790 nm and a transverse LSPR at 

512 nm (Figure 3.2 C), in agreement with previous studies on NaBH4 mediated growth of 

gold nanorods.
60

  Nanoprisms (edge length = 186 ± 16 nm, thickness = 9 ± 1 nm) exhibited 

an in-plane dipole band at ~1400 nm and a quadrupole band at ~850 nm, consistent with 

previous literature reports (Figure 3.2 B, D).
35, 59
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Figure 3.2.   SEM images of nanorods (A) and nanoprisms (B) synthesized via seedless 

initiation, and corresponding UV-vis-NIR spectra (C, D) showing characteristic optical 

features.  

3.3  Shape Control in the Seedless Syntheses 

3.3.1  Tuning the Morphology of Seedless Nanorods 

As observed in the seeded synthesis, by changing the concentration of silver nitrate in the 

growth solution, the location of the longitudinal LSPR could be tuned from 650 to 810 nm 

Figure 3.3).  Here, the change in rod length with silver concentration is a kinetic effect; by 

adding more silver, the Au (110) face is less accessible for growth (see Section 1.4.1), 

causing an increase in the average length of the rods from 30 to 55 nm.
29
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Figure 3.3.  UV-vis-NIR extinction spectra of Au nanorods synthesized using a seedless 

method indicating the systematic increase in nanorod aspect ratio as a function of AgNO3 

concentration, as previously reported by El-Sayed et al.
26

 

     At a given concentration of silver nitrate, the morphology of the rod can be further tuned 

by adjusting the NaBH4:HAuCl4 ratio (Figure 3.4).  Here, the amount of gold consumed 

during the nucleation event can be modulated, thereby directly influencing the amount of 

gold remaining for nanorod growth.  Ratios of NaBH4:HAuCl4 found to produce rod like 

growth were from 0.00045 to 0.045.  At lower ratios, excess gold remained after growth, as 

indicated by the decreased rod yield and increased absorbance in the UV regime (Figure 3.4 

A).  At higher ratios of NaBH4:HAuCl4, growth became progressively isotropic, as an 

insufficient amount of gold led to a shortened duration of the growth phase.   
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Figure 3.4.  UV-vis-NIR spectra (A) and corresponding TEM images of nanorods produced 

over a range of NaBH4:HAuCl4 concentration ratios (B-D).  At low reducing agent to metal 

precursor ratios (0.00045) (B), nanorods exhibit average lengths of 51 ± 4 nm with a 

corresponding LSPR at 770 nm. As the ratio of NaBH4:HAuCl4 is increased, nanorod length 

decreases (47 ± 5 nm, 35 ± 5 nm) and λmax blueshifts (762 nm, 735 nm) at ratios of 0.0045 

(C) and 0.045 (D), respectively.    

At higher ratios of reducing agent to metal precursor (≥ 0.045), a significant population 

of pseudospherical particles was observed along with a decreased yield of nanorods (Figure 

3.5).  Here, the increase in pseudo-spherical particles may be attributed to an excess of 

nucleation sites in solution produced by the high concentration of reducing agent.  When 

more gold is consumed during the nucleation event, the subsequent phase of particle growth 

by diffusion is effectively shorter, where the concentration of free gold is depleted before 

rod-like architectures emerge in high yield.   
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Figure 3.5. UV-vis-NIR spectrum (A) and selected TEM image (B) of nanoparticles 

produced in nanorod syntheses using higher reducing agent to metal precursor ratios (e. g. 

0.045, NaBH4:HAuCl4) examined for the nanorod synthesis. Here, in addition to nanorods, a 

significant population of pseudo-spherical impurities was observed (representative particles 

are shown in panel B). The increase in pseudo-spherical NPs may be attributed to an 

“excess” of nucleation sites in solution produced by the high concentration of reducing agent. 

With more gold consumed during nucleation, the subsequent phase of particle growth by 

diffusion is effectively shorter, where the concentration of free gold is depleted before rod-

like architectures emerge in high yield. This explanation is consistent with the recently 

proposed stochastic formation mechanism
61

, where nuclei remain dormant until an activation 

event, and then proceed to grow rapidly after activation.  If the available gold precursor is 

exhausted prior to this activation event, pseudo-spherical impurities subsist.   

3.3.2  Tuning the Morphology of Seedless Nanoprisms  

The edge length and shape of seedless nanoprisms was found to change with the ratio of 

NaBH4:HAuCl4.   Similarly to the seedless nanorod synthesis, comparable trends in product 

shape and spectral features were observed, where ratios of 0.0225 to 0.1 produced the desired 
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shape in comparable yield to the analogous seed-mediated procedure (Figure 3.6).  However, 

the range of NaBH4:HAuCl4 ratios that resulted in plate-like growth was found to be more 

narrow than for the seedless nanorod synthesis, and changes in product morphology were 

more pronounced.  At a NaBH4:HAuCl4 ratio of 0.1, the major product was triangular 

nanoprisms (yield ~60%). At the lowest concentration of NaBH4 found to promote plate-like 

growth (0.025), the nanoplates became hexagonal in shape with an average vertex-to-vertex 

length of 720 ± 70 nm.  Although the particle shape recovers symmetry, the dipole LSPR 

shifts from 1420 to over 1600 nm and there is a marked broadening of the peak, likely due to 

particle scattering
35

.  At ratios greater than 0.1, a marked increase in isotropic growth was 

observed, and the yield of nanoprisms decreased.   

 

Figure 3.6. UV-vis-NIR spectra (A) and corresponding TEM images of nanoprisms 

produced over a range of NaBH4:HAuCl4 concentration ratios (B-D). At the lowest 

concentration of reducing agent relative to gold precursor (0.0225) (B), prisms exhibit 

hexagonal morphologies with an average vertex-to-vertex distance of 720 ± 20 nm and a 

corresponding in-plane dipole LSPR at 1674 nm.  As the ratio of reducing agent to metal 

precursor increases, nanoprisms become triangular in shape with decreasing edge lengths 

(153 ± 21 nm, 120 ± 18 nm) and blue-shifted λmax (1420 nm, 1180 nm) at ratios of 0.075 (C) 

and 0.1 (D), respectively.   
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3.3.3  Tuning the Morphology of Pentatwinned Rods  

In addition to the silver-assisted gold nanorods and nanoprisms, pentatwinned nanorods 

were also synthesized using a seedless initiation approach.  Due to the five-fold symmetry of 

pentatwinned rods, it has been postulated these a pentagonally twinned seed is necessary for 

rod formation
19, 24

.  Surprisingly, however, pentatwinned rods could be formed in high yield 

without use of a seed template (Figure 3.7).  As in the previous examples with silver-assisted 

nanorods and nanoprisms, the ratio of NaBH4 to HAuCl4 was found to have an influence on 

the nanoparticle morphology, with ranges of 0.045 to 0.18 producing rods of average lengths 

ranging from 630 to 460 nm, respectively.  Again, this is evidence that crystallographic 

features such as twin planes develop during growth regardless of the nucleation conditions 

and are not shape directing attributes of the seed template 

 

Figure 3.7.  SEM of penta-twinned high aspect ratio gold nanorods synthesized using a 

seedless method based on the silver-less synthesis developed by Murphy et al. At the lowest 

ratio of NaBH4:HAuCl4 (A, 0.045), rods were 631 ± 64 nm in length by 27 ± 7 nm wide. As 

the amount of reducing agent increased relative to gold precursor, the length of the rods 

decreased (575 ± 70 nm, 498 ± 36 nm, and 459 ± 32 nm for B, C, and D, respectively. The 

widths of the rods were measured to be 27 ± 8, 41 ± 11, 40 ± 10, and 39 ± 10 for A, B, C, and 

D, respectively. 
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3.4  HRTEM Comparison of Seed-Mediated and Seedless Product Crystallinity  

The crystallinity of products obtained via seedless initiation match their counterparts 

formed using seed-mediated protocols (Figure 3.8).  Fast Fourier transform (FFT) analysis of 

high resolution transmission electron microscopy (HRTEM) images of nanorods aligned with 

the [011] zone axis is consistent with previous literature reports.
62

  Similarly, nanoprisms 

demonstrate similar crystalline architectures regardless of the method of initiation. In 

conclusion, it seems that the crystallinity of the resulting nanoparticle does not depend on the 

method used to generate the nanoparticle nuclei.  Instead, the similarity of products formed 

using two routes suggests that the anisotropic growth of colloidal gold nanoparticles may be 

most strongly influenced by the presence of shape directing additives (e.g. metal salts or 

halides) rather than the nucleation pathway 

 

Figure 3.8. HRTEM analysis of particle morphology (A,D,), lattice planes (B,E) and FFT 

analysis (C,F) of the lattice plane spacing for anisotropic nanoparticles produced using 

seeded and seedless methods, respectively.   
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3.5  Reevaluating Surfactant Usage 

As CTAB has been shown to be both cytotoxic
63

 and difficult to purify
26

, developing 

conditions for efficient CTAB usage is critical for the viability of nanoparticle synthesis and 

applications.  Furthermore, because CTAB is present in near-molar concentrations, it also 

dominates the synthetic cost of anisotropic gold nanoparticles — more than 4-6 times the 

cost of the constituent gold. 

3.5.1  Reduction in Surfactant Concentration Promotes Isotropic Growth 

Above the critical micelle concentration of, CTAB can form supramolecular architectures 

in solution which may or may not have an impact of the final nanoparticle morphology.
26, 52-

55
  As expected, attempts to directly reduce the surfactant concentration in these syntheses led 

to increased particle heterogeneity and increasingly isotropic growth.  As indicated in Figure 

3.9, nanorods were produced at standard surfactant concentrations of surfactant in 95% yield 

with lengths of 47 ± 5 nm.  Upon a 50% decrease in the surfactant concentration (to 50 mM), 

the average rod length decreased to 39 ± 4 nm.  A further 50% decrease (to 25 mM) caused 

no further changes in rod length, however, the yield of nanorods compared to pseudo-

spherical products was reduced from 95% to 71%. 
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Figure 3.9. UV-vis-NIR extinction spectra (A) and transmission electron microscopy images 

(B-D) of nanoparticles produced using different CTAB concentrations. In a typical nanorod 

synthesis, as the concentration of CTAB increases, the yield of nanorods increases.  At 

standard reaction concentrations, 100 mM (concentration in the final reaction mixture) (D), 

rods are produced in greater than 90% yield.  After decreasing the concentration of CTAB by 

50%, (to 50 mM), average rod length decreased from 47 ± 5 to 39 ± 4 nm (C).  Using 25 mM 

CTAB, nanorod products were of similar length, however, the yield of nanorods compared to 

pseudo-spherical products was reduced (from 95 to 71%).   

3.5.2  Increasing Reagent Concentration Relative to Surfactant Concentration 

Instead of directly reducing the surfactant concentration in the seedless syntheses (and 

thereby influence the supramolecular architecture of the surfactant), a more efficient 

approach to reducing the amount of CTAB was to increase the concentration of all reagents 

relative to CTAB.  Here, reagent concentrations were increased between 3 and 15 times the 

concentrations used in our original seedless synthesis, while the concentration of CTAB was 

held constant at 200 mM and 50 mM for nanorods and nanoprisms, respectively. Here, the 

concentration of surfactant is maintained, yet the amount of surfactant required per 

nanoparticle product can be reduced, enabling total reductions in the surfactant concentration 

and cost upwards of 80%.   
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3.5.2.1 CTAB Efficient Synthesis of Nanorods 

In CTAB efficient syntheses of seedless nanorods, increasing the reagent concentration by 5x 

relative to that of CTAB led to the formation of nanorods in comparable yield and monodisperisty as 

those produced under standard reaction concentrations (Figure 3.10).  The resulting particle products 

were produced at approximately five times the concentration, as indicated by extinction 

measurements (extinction at 750 nm increased 4.65 times compared to spectra taken of as-

synthesized solutions produced in the standard synthesis). Increasing concentrations to 10x 

leads to a population of cuboidal impurities, evident in the extinction spectra by increased 

absorbance at 535 nm (Figure 3.10 A, D).
64

 At concentrations exceeding 10x, nanorods 

decrease in aspect ratios as well as yield, as indicated by the decreasing intensity and blue-

shift of the longitudinal LSPR to 612 nm (Figure 3.10 A).   

 

Figure 3.10.  UV-vis-NIR spectra (A) and corresponding TEM images of nanorods produced 

using a CTAB-efficient, seedless approach (B-D). Upon increasing the reagent concentration 

with respect to CTAB concentration used in standard seedless conditions (B), no observable 

changes in product yield, monodisperisty, or morphology were observed even at a five-fold 

increase, 5x (C). At concentrations greater than 5x, the formation of pseudo-spherical and 

cuboidal particles begins to become competitive with rod growth (D). 
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3.5.2.2 CTAB Efficient Synthesis of Nanorprisms  

Upon increasing the concentration of all reagents relative to CTAB in the seedless 

synthesis of gold nanoprisms, large changes in prism size and shape were observed (Figure 

3.101.  At 5x concentration, the triangular prism shape was maintained, however edge 

lengths increased from 186 ± 16 nm to 217 ± 18 nm and thickness increased from 9 ± 1 nm 

to 25 ± 2 nm.  When the reagent concentration was increased to 8x, plate-like growth was 

still observed in similar yield (~60%), however, prism thickness again increased slightly (28 

± 3 nm) and particles adopted hexagonal geometries.  Further, vertex-to-vertex distance 

decreased from 217 ± 18 nm to 125 ± 18 nm.  Combined, these morphology changes led to a 

blue-shift of the dipole LSPR band (>250nm), which can be attributed to both “snipping” of 

the prism edges
65

 as well as an increase in particle thickness
66

. Here, the changes in product 

morphology are consistent with previously proposed growth mechanisms based upon the 

Terrace-Step-Kink model.  The presence of a twin plane defect on the side facets of 

nanoprisms results in a type of kink site, promoting a faster rate of Au incorporation on the 

sides of the prisms as compared to the top faces.  At high concentrations of metal monomer, 

deposition on the top face competes effectively with deposition on the side facets, causing 

observable growth in both particle dimensions.    
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Figure 3.11.  UV-vis-NIR spectra (A) and corresponding TEM images of nanoprisms 

produced using a CTAB-efficient, seedless approach (B-D). Using standard seedless 

conditions, nanoprisms exhibit characteristic optical features (in-plane dipole LSPR   1510 

nm) with average edge lengths of 143  ± 16 nm and average thickness of 9 ± 1 nm (B and 

inset).  Prisms synthesized at 5x displayed hexagonal morphologies with slightly longer 

vertex-to-vertex distances (217 ± 18 nm) and thickness of 25 ± 2 nm as well as a blue-shifted 

λmax (1245 nm) (C and inset).  At 8x reagent concentrations, plate-like growth is still 

observed, but particles are smaller (vertex-to-vertex = 125 ± 18 nm) and thicker (28 ± 3 nm, 

D and inset). 

3.6 Seedless Synthesis as a Sustainable Alternative to Seed-Mediated Growth Processes 

Considering the effects of the NaBH4:HAuCl4 ratio and efficient CTAB usage conditions, 

optimized conditions (maximized yield of reaction products which are indistinguishable from 

those obtained using seed-mediated methods) were found to be 5x and 3x for nanorods and 

nanoprisms, respectively (Figure 3.12).  Extinction spectra taken of dilute nanoparticle 

products (Figure 3.12 C,D) indicate that these particles exhibit characteristic spectral 

features, yet are produced in 3-5 times the concentration compared to literature protocols.   
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Figure 3.12.  SEM images (A, B) and extinction spectra (C,D) of nanorods and nanoprisms, 

synthesized at 5x and 3x, respectively. Nanorods were 39 ± 6 nm in length, and nanoprisms 

had an average edge length of 183 ± 20 nm and average thickness of 21 ± 4 nm. These data 

demonstrate that characteristic morphologies and optical properties are observed from both 

shapes using CTAB-efficient, seedless initiation reaction conditions. 

 

Efficient use of CTAB is crucial for the sustainability of nanoparticle syntheses, both in 

terms of atom economy and waste prevention.  Optimization of seedless initiation conditions 

afforded reductions in the amount and total cost of CTAB by 80% and 66% for nanorods and 

nanoprisms, respectively  These improvements, coupled with the elimination of seeds and 

extraneous reagents, allowed for a 91% and 88% decrease in the amount of reagents (by 

weight) necessary for the production of nanorods and nanoprisms, respectively (Figure 3.13). 
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Figure 3.13.  Comparison between the amount of reagents required for seed-mediated vs. 

seedless syntheses of gold nanorods (left) and gold nanoprisms (right).  The total amount of 

reagent used is dominated by CTAB (as is the total cost, see SI). In total, the weight of 

reagents was reduced by 91% and 88% in the seedless CTAB-efficient synthesis of nanorods 

and nanoprisms, respectively, relative to the seed-mediated protocols. (Inset is a zoom-in of 

each bar graph to allow visualization of other reagents). 

 

3.6.1  Approach to Evaluating Synthetic Efficiency  

In comparing the efficiency of seeded and seedless methods, a value referred to as the 

amount of reagent per standard mL of nanoparticles was used as a qualitative relation 

between reagent weight and nanoparticle product yield for seeded and seedless syntheses.  

Here, the amount of reagent per standard mL of nanoparticles is the amount of reagents ( in 

milligrams) required to synthesize 1 mL of nanoparticles at the concentration produced in a 

standard seed-mediated synthesis as determined by the optical density at at λmax.  These 

calculations are based on estimates of concentration using the optical density of nanoparticle 

solutions as every nanoparticle has a unique extinction coefficient based on its size, shape, 
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and composition.  Here, the relationship between solution optical density and particle 

concentration is challenging to present quantitatively due to particle size and shape 

distributions which can vary from synthesis to synthesis.  Instead, comparisons of 

concentration are relative rather than quantitative and are not converted to molarity.   

For example, in a standard, seeded synthesis of nanorods
26

 a total of 72.1 mg of reagents 

are used to produce 10.16 mL of nanorods. Therefore, 7.097 mg of reagents produce 1 mL of 

as-synthesized nanorods in this seed-mediated synthesis. Using our seedless method, 36.13 

mg of reagents is used to produce 10.16 mL of nanorods at 1x. Therefore 3.556 mg of 

reagents produce 1 mL of nanorods using a seedless approach. Here, optical density at the 

longitudinal LSPR is used to assess concentration. In both the seeded and seedless cases, the 

as-synthesized nanoparticle mixtures have similar optical density at the longitudinal LSPR 

peak maximum (OD = 0.62 at 706 nm, OD = 0.72 at 745 nm for seeded and seedless 

nanorods, respectively).  For a comprehensive list of reagent quantities in the literature 

protocols for seedless and seeded syntheses, please refer to Table 3.1. 
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Table 3.1.  Reagent quantities for seeded and seedless syntheses. 

The following flow-chart summarizes the series of calculations used to determine the 

final amount of reagent per standard mL of nanoparticles for nanorods (Figure 3.14) and 

nanoprisms (Figure 3.15).  Starting from the standard seed-mediated and seedless reagent 

experimental protocols, the amounts of each reagent required for the seed-mediated and 

seedless syntheses were plotted (top left).  Next, these values were divided by the total 

reaction volume (1) to reach the concentration of reagents needed in the seed-mediated and 

seedless synthesis (in mg/mL).  The seedless synthesis values were adjusted to reflect the 

amounts used in the CTAB efficient syntheses.  For example, in the 5x seedless nanorod 

synthesis, the concentrations of HAuCl4, ascorbic acid, NaBH4, and AgNO3 were increased 

by a factor of 5 (2).  Lastly, all values for the seedless syntheses were adjusted to reflect the 

total concentration of reagents needed to produce 1 mL of nanoparticles at concentrations 

produced in a standard seed-mediated synthesis and these are the values used to construct 

Figure 8 in the main text.  Here, for instance, the reagent concentration values for the 

Synthesis 
HAuCl4 

(mg) 

CTAB 

(mg) 

Ascorbic 

Acid (mg) 

NaBH4 

(mg) 

AgNO3 

(mg) 

NaI 

(mg) 

Trisodium 

Citrate (mg) 

Nanorods 

(seeded) 
2.55 729 0.872 0.227 0.0679 -- -- 

Nanorods 

(seedless) 
1.70 364 0.872 0.0009 0.0679 -- -- 

Nanorods 

(seedless, 5x) 
8.49 364 4.36 0.00428 0.340 -- -- 

Nanoprisms 

(seeded) 
4.25 164 0.881 3.78 -- 0.0675 2.94 

Nanoprisms 

(seedless) 
0.941 182 0.977 0.117 -- 0.0749 -- 

Nanoprisms 

(seedless, 3x) 
2.82 182 2.99 0.351 -- 0.203 -- 
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seedless 5x nanorods synthesis were divided by five to account for the increased nanorod 

yield per unit volume relative to the seed-mediated synthesis (3). 

 

Figure 3.14.  Flow-chart depicting the process used to determine the amount of reagents 

consumed in preparing a standard mL of nanorods using seed-mediated and seedless 

methods. Graph insets are a zoom-in of reagents that are used in much lower quantities than 

CTAB. 
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Figure 3.15.  Flow-chart depicting the process used to determine the amount of reagents 

consumed in preparing a standard mL of nanoprisms using seed-mediated and seedless 

methods. Graph insets are a zoom-in of reagents that are used in much lower quantities than 

CTAB. 

3.6.2  Approach to Evaluating Synthetic Cost 

As a final means of comparing synthetic efficiency, the total amount of reagents per 

standard mL of nanoparticles was converted from reagent molecular weight to reagent cost.  
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Here, the conversion from reagent weight to reagent cost was performed in order to 

normalize differences in reagent cost and reagent amount.  For instance, only 1.7 mg of 

HAuCl4 are required for the synthesis of seedless gold nanorods, compared to 364 mg of 

CTAB.  As HAuCl4 is over 50 times more expensive that CTAB (Table 3.2), however, 

calculating reagent cost eliminates differences between quantity and price and allows for an 

accurate representation of the economic improvements afforded by seedless syntheses.  As 

indicated in Figure 3.16, the total cost per standard mL of nanoparticles for seedless nanorods 

and nanoprisms has been reduced by 81% and 72%, respectively as compared to the seed-

mediated protocols.   

Reagent Product Code (Sigma Aldrich) Cost ($/g) 

HAuCl4 254169 196.60 

NaBH4 480886 3.97 

AgNO3 209139 3.88 

CTAB H9151 3.84 

Ascorbic Acid A7506 1.32 

NaOH 306576 1.20 

Trisodium Citrate S4641 0.90 

NaI 383112 0.68 

Table 3.2.  Reagent cost per gram.   
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Figure 3.16.  Total cost reductions in the three most expensive reagents (CTAB, HAuCl4, 

and ascorbic acid) in seedless silver-assisted gold nanorods and gold nanoprisms, and total 

reduction in cost per standard mL of seeded and seedless syntheses.   
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4.0  CONCLUSIONS AND FUTURE DIRECTIONS 

 

4.1 Conclusions 

In conclusion, a homogeneous nucleation approach to canonical anisotropic gold 

nanoparticles has been developed.  In developing the seedless methodology, the range of 

synthetically accessible nanoparticle product morphologies has been extended, allowing for 

increased tenability of the resulting optical, electronic, and catalytic properties.  Elimination 

of the seed and extraneous regents also allows for sustainable reaction conditions, as 

nanoprisms and nanorods have been formed with almost identical crystallographic properties 

using up to 90% less reagent.    These results shed new light on the fundamental mechanisms 

leading to anisotropic gold nanoparticle growth, and should accelerate the discovery and 

commercialization of applications based on anisotropic noble metal nanoparticles. 

 

4.2 Future Directions 

Having developed methods to produce pure, anisotropic nanomaterials in high yield, 

these materials will be investigated as substrates for the rational design of complex of 

complex hybrid nanoparticle architectures.  Such hybrid architectures  have shown orders of 

magnitude improvement in electronic and catalytic properties over their individual 

constituents
2, 67

, and are therefore of immediate technological interest.  In this approach, the 

anisotropic crystalline architecture allows for shape-controlled design of hybrid architectures, 

as the difference in crystal facet energetics can be used as a handle for reaction selectivity.   

Our preliminary work in this area has concerned the site-selective deposition of platinum 

on the surface of gold nanoprisms.  Here, underpotential deposition of platinum proceeds by 
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a Volmer-Weber mechanism
68

, leading to the formation of Pt islands on the gold surface
69, 70

 

(Figure 4.1).  Although the exact mechanism behind the deposition process is still under 

investigation, the regular arrangement of defect sites on the gold nanoprism cause the Pt 

islands to be deposited in uniform rows across the surface (Figure 4.2).  Future work on this 

area will concern investigating the catalytic activity of the Pt clusters, as well as using the Pt 

as a shape directing functionality for the deposition of semiconducting materials
71

.   

 

 

  

 

 

Figure 4.1.  Reaction scheme for the underpotential deposition of Pt island rows on the surface 

of an Au nanoprism  

 



49 

 

 

Figure 4.2.  As indicated by TEM, the Pt islands are 3.9 ± 0.5 nm in diameter, arranged in rows 

separated by 5.9 ± 0.6 nm, where the separation distance is the center-to-center distance of Pt 

islands in adjacent rows. 
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