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BACTERIAL THERMOTAXIS BY SPEED MODULATION 

Mahmut Demir, PhD 

University of Pittsburgh, 2013 

 

One of the most important factors that affects bacterial migration and is sensitive to 

thermal changes is the bacterial swimming speed controlled by the rotation of the flagellar 

motors. In the natural habitats of bacteria, gradients often extend over relatively long distances 

such that their steepness is too small for bacteria to detect. We studied the bacterial behavior in 

such thermal gradients and found that they migrate along shallow thermal gradients due to a 

change in their swimming speed resulting from the effect of temperature on the intracellular pH. 

When nutrients are scarce the bacteria’s intracellular pH and consequently the swimming speed 

decreases with increasing temperature, which causes them to drift towards the warm end of the 

gradient. However, when serine is added to the medium at concentrations >300M, the 

intracellular pH increases causing the swimming speed to increase continuously with increasing 

temperature, and the bacteria to drift towards the cold end of the gradient. This directional 

migration is not a result of bacterial thermotaxis in the classical sense, because the steepness of 

the gradients is below the sensing threshold of bacteria. Nevertheless, our results show that the 

directional switch requires the presence of the bacterial sensing receptors which seem to be 

involved in regulating the intracellular pH. Additionally, it is also important to understand how 

thermal fluctuations and rate of thermal changes experienced by bacteria during their excursion 

in natural environments affect their run speed. To this end we have studied the dynamics of the 

bacterial flagellar motor’s speed in response to thermal fluctuations by tethering bacteria to a 

glass surface through their flagella. Our results show that under heavy load the response of the 
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motor to fast linear thermal changes is instantaneous. However, when subjected to thermal 

fluctuations with varying frequency, they exhibit a resonant response to specific frequencies 

reflecting the complex internal dynamics of the motor. 

 



 vi 

TABLE OF CONTENTS 

LIST OF TABLES ...................................................................................................................... IX 

LIST OF FIGURES ..................................................................................................................... X 

LIST OF APPENDIX FIGURES ........................................................................................... XIII 

LIST OF EQUATIONS ........................................................................................................... XIV 

PREFACE ................................................................................................................................... XV 

1.0 INTRODUCTION ........................................................................................................ 1 

1.1 SCIENTIFIC BACKGROUND .......................................................................... 3 

1.1.1 Escherichia coli and their signal transduction system ................................. 3 

1.1.2 Bacterial Flagellar Motor ............................................................................. 11 

2.0 MATERIALS AND METHODS .............................................................................. 18 

2.1 MICROCHANNEL FABRICATION .............................................................. 18 

2.1.1 Mask preparation .......................................................................................... 18 

2.1.2 Photoresist coating, exposure and development ......................................... 19 

2.1.3 Channel fabrication in PDMS and attachment to the glass slide .............. 20 

2.2 TEMPERATURE GRADIENT APPARATUSES.......................................... 21 

2.2.1 Linear temperature gradient apparatus ...................................................... 21 

2.2.2 Sharp temperature gradient apparatus ....................................................... 23 

2.2.3 Calibration of the apparatuses ..................................................................... 25 



 vii 

2.3 BACTERIAL CULTURE PREPARATION AND HANDLING .................. 32 

2.3.1 Chemicals ....................................................................................................... 32 

2.3.2 Bacterial culture preparation ....................................................................... 33 

2.4 MEASUREMENTS AND IMAGING.............................................................. 35 

2.4.1 Measurements of bacterial swimming speed and concentration profile in a 

gradient ....................................................................................................................... 35 

2.4.2 pH measurements .......................................................................................... 36 

2.4.3 Serine uptake measurements ........................................................................ 41 

2.4.4 Membrane potential measurements ............................................................. 44 

2.4.5 Tethering and rapid temperature modulation ............................................ 46 

3.0 BACTERIA IN SHALLOW TEMPERATURE GRADIENTS ............................. 50 

3.1 THE BEHAVIOR OF BACTERIA IN A SHALLOW TEMPERATURE 

GRADIENT ......................................................................................................................... 58 

3.2 THE EFFECT OF SERINE AND TEMPERATURE ON THE BACTERIAL 

MEMBRANE POTENTIAL AND INTRACELLULAR PH ......................................... 67 

3.3 STOCHASTIC SIMULATIONS OF BACTERIA IN SHALLOW 

TEMPERATURE GRADIENTS ...................................................................................... 75 

4.0 THE EFFECT OF TEMPERATURE CHANGE DYNAMICS ON THE 

FLAGELLAR MOTOR’S SPEED UNDER HEAVY LOAD ................................................ 82 

4.1 RESPONSE OF THE FLAGELLAR MOTOR TO LINEAR 

TEMPERATURE CHANGES .......................................................................................... 83 

4.2 SPEED DYNAMICS UNDER OSCILLATING TEMPERATURES ........... 90 

5.0 SUMMARY AND CONCLUSIONS ...................................................................... 100 



 viii 

APPENDIX A ............................................................................................................................ 105 

APPENDIX B ............................................................................................................................ 115 

BIBLIOGRAPHY ..................................................................................................................... 122 



 ix 

 LIST OF TABLES 

 

Table 2.1: Temperature apparatus calibration values ................................................................... 27 

Table 2.2: Chemicals list............................................................................................................... 32 

Table 2.3: Strains and plasmids .................................................................................................... 33 

Table 5.1. Linear temperature gradient parts list ........................................................................ 105 

Table 5.2. Sharp temperature gradient parts list ......................................................................... 111 



 x 

LIST OF FIGURES 

 

Figure 1.1: Fluorescently labeled Escherichia coli bacterium ........................................................ 4 

Figure 1.2: Signal transduction protein network............................................................................. 6 

Figure 1.3: Bacterial Flagellar Motor ........................................................................................... 12 

Figure 1.4: Torques speed relation of BFM .................................................................................. 16 

Figure 2.1: Linear temperature gradient mask .............................................................................. 19 

Figure 2.2: Glass slide and PDMS plasma treatment ................................................................... 21 

Figure 2.3: Linear temperature gradient device ............................................................................ 22 

Figure 2.4: Sharp temperature gradient apparatus ........................................................................ 24 

Figure 2.5: Calibration curve for copper plate temperature and actual temperature .................... 26 

Figure 2.6: BCECF dye calibration standard curves .................................................................... 29 

Figure 2.7: Linear gradient apparatus calibration curves.............................................................. 30 

Figure 2.8: IR laser heated BCECF dye and Gaussian fit............................................................. 31 

Figure 2.9: Cell density vs. OD .................................................................................................... 35 

Figure 2.10: Measurement of the YFP fluorescence intensity ...................................................... 37 

Figure 2.11: YFP Fluorescence vs. pH calibration curve ............................................................. 39 

Figure 2.12: BCECF calibration curve ......................................................................................... 41 

Figure 2.13: Fluorescamine fluorescence calibration curve ......................................................... 43 



 xi 

Figure 2.14: Membrane potential calibration curve ...................................................................... 46 

Figure 2.15: Temporal sharp gradient setup ................................................................................. 48 

Figure 3.1: The effect of the chemical environment and the steepness of the gradient on the 

response of the bacteria to a temperature gradient........................................................................ 51 

Figure 3.2: Accumulation of UU2612 in MB under shallow temperature gradient ..................... 54 

Figure 3.3: The effect of serine concentration on the direction of bacterial migration in a shallow 

temperature gradient ..................................................................................................................... 59 

Figure 3.4: The effect of non-metabolizable serine (-methyl-DL-serine) on bacterial migration 

in a shallow temperature gradient ................................................................................................. 60 

Figure 3.5: The effects of serine concentration and temperature on the bacterial swimming speed.

....................................................................................................................................................... 61 

Figure 3.6: The speed of bacteria as a function of temperature .................................................... 63 

Figure 3.7: Speed distribution of bacteria with and without serine .............................................. 64 

Figure 3.8: Density profile and inverse speed profile comparison ............................................... 65 

Figure 3.9: Linear relation between density distribution and inverse speed of bacteria ............... 66 

Figure 3.10: The effects of serine on the membrane potential ..................................................... 68 

Figure 3.11: The effect of temperature on the internal and external pH ....................................... 69 

Figure 3.12: The effect of serine on the intracellular pH .............................................................. 70 

Figure 3.13: The effect of temperature on the PMF ..................................................................... 71 

Figure 3.14: Bacterial swimming speed and the PMF .................................................................. 72 

Figure 3.15: Internal pH dynamics upon serine addition .............................................................. 74 

Figure 3.16: Serine uptake by bacteria ......................................................................................... 75 

Figure 3.17: Effect of temperature on run time of bacteria .......................................................... 76 



 xii 

Figure 3.18: Stochastic Simulations of WT accumulation in shallow temperature gradient........ 78 

Figure 3.19: SS - Linear relation between density distribution and inverse speed of bacteria ..... 79 

Figure 3.20: Comparison of SS of different scenarios .................................................................. 81 

Figure 4.1: Linear temperature increase & decrease .................................................................... 84 

Figure 4.2: The motor’s rotational speed as a function of time .................................................... 85 

Figure 4.3: Distribution of maximum speed increase with respect to room temperature speed ... 86 

Figure 4.4: The average rotational speed of the flagellar motors as a function of temperature ... 87 

Figure 4.5: Torque-Speed curve ................................................................................................... 89 

Figure 4.6: Oscillating Temperature Profile and Amplitudes ....................................................... 91 

Figure 4.7: BFM Speed in Response to Oscillating Temperature ................................................ 92 

Figure 4.8: BFM speed amplitude response to temperature oscillation frequency ....................... 93 

Figure 4.9: Power spectra of rotational speed of bacteria under oscillating temperature ............. 95 

Figure 4.10: Power Spectra Amplitude of BFM rotational speed ................................................ 96 

Figure 4.11: Speed oscillations of free rotating tethered bacteria ................................................ 98 

Figure 5.1: Behavior of UU2612 in MB + 600µM Serine under shallow temperature gradient 101 

Figure 5.2: The effect of temperature on the internal pH of UU2612 ........................................ 103 



 xiii 

 LIST OF APPENDIX FIGURES 

Figure A.1: Linear temperature gradient apparatus - exploded view ......................................... 106 

Figure A.2: Linear temperature gradient apparatus - heat sink base .......................................... 107 

Figure A.3: Linear temperature gradient apparatus - heat sink lid ............................................. 108 

Figure A.4: Linear temperature gradient apparatus - copper plates, peltiers, and plastic insulation 

layer............................................................................................................................................. 109 

Figure A.5: Temperature gradient apparatuses - plastic base plate ............................................ 110 

Figure A.6: Sharp temperature gradient apparatus - exploded view .......................................... 112 

Figure A.7: Sharp temperature gradient apparatus - heat sink .................................................... 113 

Figure A.8: Sharp temperature gradient apparatus - copper plate .............................................. 114 



 xiv 

 LIST OF EQUATIONS 

 

 

Eqn. 1 ............................................................................................................................................ 14 

Eqn. 2 ............................................................................................................................................ 45 

Eqn. 3 ............................................................................................................................................ 55 

Eqn. 4 ............................................................................................................................................ 55 

Eqn. 5 ............................................................................................................................................ 56 

Eqn. 6 ............................................................................................................................................ 56 

Eqn. 7 ............................................................................................................................................ 56 

Eqn. 8 ............................................................................................................................................ 62 

Eqn. 9 ............................................................................................................................................ 67 

Eqn. 10 .......................................................................................................................................... 72 

Eqn. 11 .......................................................................................................................................... 94 

 

 

 

 

 



 xv 

PREFACE 

To my parents Melahat and Ahmet. 

Rahmetli babama ve canım anama armağan olsun. 

 

 

 



 1  

1.0  INTRODUCTION 

Temperature variations modulate and drive many physical, chemical and biological 

processes. For example, phase transitions from solid to liquid and from paramagnetic to 

ferromagnetic phases (1) are temperature dependent. The tectonic plate movements are driven by 

thermal convection caused by the temperature gradient below the earth crust due to the magma 

layer under it (2–5). Enzymatic activity also depends on temperature (6). In addition, heat is an 

important driving energy source of micron size molecules inside the cell, which govern the 

function of living organisms. Therefore, almost all living organisms have developed mechanisms 

of sensing and responding to temperature changes. Although the response strategies of organisms 

to temperature changes vary significantly, their outcome is maximizing the benefit and 

minimizing the harm of the temperature changes to the organism.  

Many multi-cellular complex organisms, such as humans, are able to regulate their body 

temperature in response to temperature changes and maintain an optimal temperature around 37 

°C. Other organisms such as the golden-mantled ground squirrels (Spermophilus lateralis) 

hibernate when their body temperature drops below 18 °C, which causes a significant decrease in 

their biosynthetic activities (7, 8). Another common strategy of responding to temperature 

changes often exhibited by birds is migration. Most of the birds migrate in the winter to warmer 

places (9). Migration towards warmth is a common strategy among many simpler organisms as 

well. Drosophila is another example that exhibits migration towards optimal temperature (i.e. 
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thermotaxis) directed by a temperature activated ion (10). Similarly, C. elegans migrate towards 

the cultivation temperature (i.e. the temperature at which they are grown) when subjected to a 

temperature gradient (11).        

In the case of microorganisms thermotaxis is the only strategy they have to cope with 

thermal changes, and it has been observed in many different microorganisms. It has been shown 

for example, that white blood cells, leukocytes, migrate to warmer temperatures in vitro (12). 

Thermotaxis is not only a strategy for microorganisms to avoid unfavorable temperatures but 

also a method to find certain locations. It has been suggested for example, that mammalian 

sperm cells navigate towards the egg guided by ovulation-dependent temperature difference 

within the female genital tract (13). Bacteria as well, sense temperature differences and follow 

thermal gradients towards their favorable temperature (14, 15), which could help them colonize 

certain regions, form biofilms, and infect host cells or tissues. 

During his postdoctoral training in Munich, Germany, Theodor Escherich isolated the 

bacterium coli, later called as after him, Escherichia coli (E. coli), from infant stool and 

presented his findings to the Society for Morphology and Physiology on 14 July 1885 (16). This 

was the first time that E. coli was introduced to the academic society. Since then, E. coli has 

become a standard model system for studies in different disciplines and is commonly used by 

many scientists from various disciplines from biology and bacteriology to physics, mathematics 

and engineering. The vast knowledge acquired about E. coli thus far makes it an excellent model 

system for our study and in this work E. coli bacteria are used as the model organism in order to 

study the effect of temperature on the behavior of the bacteria individually and at the population 

level. 
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E. coli has a signal transduction system which senses both chemical and thermal cues, 

and responds by altering its swimming pattern in order to bias motion in the direction of better 

conditions. This sensory system has been studied intensively and its structural elements and their 

functional properties are well elucidated and will be described in details in the following 

subsections.  

However, temperature unlike chemicals cannot be considered as an input signal affecting 

only the sensing apparatus of the bacteria. It affects all biochemical activity in the cell including 

the switching rate and rotational speed of the bacterial rotary motor, which controls the 

swimming pattern and speed of the cell, and can be viewed as the output channel of the bacterial 

signal transduction system. Consequently, the effect of temperature on the motor can be 

considered as an additional input signal, which can influence the bacterial behavior in a 

temperature gradient. Therefore it is important to understand and characterize these effects and 

their consequences to the bacterial behavior. This is the focus of my thesis.   

1.1 SCIENTIFIC BACKGROUND 

1.1.1 Escherichia coli and their signal transduction system 

  

E. coli is an enteric bacteria species which is 2µm in length and 1µm in diameter and can 

be considered as a cylindrical micron size rod having hemispherical caps (Figure 1.1). It has 4-6 

10 m long flagella (17) each of which is attached at its base to a bi-directional rotary motor 

embedded in the cell wall (18, 19). The bacteria move through their environment by rotating 
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their flagella which propel the bacterial cell body forward in space. It is important to note here 

that due to its size and speed, the motion of E. coli bacteria is classified as motion in the low 

Reynolds number regime (i.e. R~10
-4

) (20). In this regime viscous forces dominate inertial forces 

eventually creating an over-damped environment for the bacteria. Thus, if all flagellar motors 

rotate in counter clockwise direction simultaneously (CCW), when viewed from the end of the 

flagellum or behind the cell, they form a single helical bundle, and only then the bacterium is 

propelled in an arbitrary direction is space with a typical speed of 20-30 µm/sec. This motion of 

the bacterium is called a “run”.  

 

 

Figure 1.1: Fluorescently labeled Escherichia coli bacterium 

Oregon Green 514 labeled E. coli cells were immobilized and illuminated with mercury lamp. 

Reproduced from Turner et al. (21) 

 

When one or more motors change their rotational direction to clockwise (CW), the 

flagella attached to the switched motor leave the bundle disturbing the force balance on the 
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bacterium. This process causes the bacterium to make an erratic motion called a “tumble” (22), 

after which the bacterium chooses a new run direction which is on average 62º with respect to 

the previous direction (23). Therefore, bacteria swim in sequential intervals of runs and tumbles. 

In an environment having sufficient food and appropriate temperature a bacterium runs for ~1 

second, and then tumbles for ~0.1 second. 

E. coli is equipped with five types of receptors that are responsible for sensing chemicals 

and temperature. These receptors are the input channels through which environmental signals are 

received. Each receptor detects different chemicals such as: Tsr (mainly serine and glycine) (24), 

Tar (mainly aspartate) (25), Tap (mainly dipeptides) (26), Trg (mainly galactose) (27), and Aer 

(oxygen) (28). Tsr, Tar, Tap and Trg are trans-membrane proteins whereas Aer is a cytoplasmic 

receptor bound to the inner membrane (29). Tsr and Tar are highly abundant receptors expressed 

in several thousand copies, whereas Tap, Trg and Aer are less abundant, found at few hundred 

copies only in the cell (30). Receptors are not scattered on the cell wall, they are clustered at the 

poles (31). It was also shown that not only the receptors but all other chemotaxis proteins, 

detailed later, are also clustered at the cell’s poles (32–35). This implies that the signal 

transduction system operates at the cell poles in a small volume fraction which as a result might 

increase the sensitivity (22) and the efficiency of the system.     

In addition to the receptors and the motors representing the input and output channels 

respectively, the signal transduction system of the bacteria encompasses a processing unit 

(Figure 1.2), which receives the signals through the receptors and generates an output through 

the motor. This processing unit consists of the kinase CheA, the response regulator CheY, the 

methylation and demethylation enzymes CheR and CheB respectively, and the phosphatase 

CheZ. The kinase CheA is attached to the receptor’s clusters with an adapter protein CheW (36, 
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37) and auto-phosphorylates and transfers phosphate groups to CheY and CheB (38–40). When 

phosphorylated, CheY (CheY-P) binds to the flagellar motor and causes it  to switch its 

rotational direction from CCW to CW (41, 42). CheY-P also interacts with CheZ which 

dephosphorylates CheY-P and regulates the concentration of CheY-P in the cell (42, 43).   

 

 

Figure 1.2: Signal transduction protein network 

Signals are received by Methyl Accepting Chemotaxis Proteins (MCP). An attractant ligand binds to the 

receptor and decreases the activity of Kinase CheA which is attached to the MCP’s by a coupling protein 

CheW. Decreased kinase activity decreases phosphorylation of CheY. CheY is responsible for binding to the 

rotary motor to change rotation from CCW to CW to induce tumbling. Concentration of phosphorylated 

CheY decreases and results in decrease of tumbling frequency. CheZ enhances the de-phosphorylated of 

CheY-P and decreases the probability of tumbling. In short, attractant bound to the receptor increases the 

run length of the bacteria such that bacteria will swim in the direction of increasing chemical concentration 

in a biased random walk. Meanwhile, CheR adds methyl groups to the receptors to increase sensitivity of the 

sensors to the chemicals, and CheB works in the opposite direction to remove methyl groups from the 

receptor to decrease sensitivity of the receptors. CheB and CheR work in cooperation to reset the sensitivity 

of the receptors allowing the cell to adapt changes in chemical concentrations. Adapted from Sourjik et al. 

2004, Trends in Microbiology (44). 

 

The methylase CheR and methylesterase CheB work in antagonist directions to methylate 

and de-methylate the receptors in order to reset their sensing threshold and the level of CheA 

activity and therefore allow the system to adapt to the new chemical (thermal) environmental 

conditions. CheR adds methyl groups to the (45, 46) receptors which increases their sensitivity to 
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ligands whereas phosphorylated CheB (CheB-P) removes methyl groups from them (47, 48) and 

decreases their sensitivity.  

The mechanism by which the signal transduction system allows bacteria to perform 

chemotaxis is as follows. When a repellent binds to a receptor, the receptor exhibits a 

conformational change (49). This conformational change leads to an increased activity of the 

kinase CheA which in turn increases the concentration of CheY-P. The increased concentration 

of CheY-P causes an increase in the bacterial tumbling rate and a decrease in the run length. As a 

result, an increase in the concentration of a repellent (a decrease in the concentration of an 

attractant) causes shorter runs with increased tumbling rate, whereas a decrease in the 

concentration of a repellent (an increase in the concentration of an attractant) causes longer runs 

with decreased tumbling rate. Consequently, in a gradient of repellents (attractants) bacteria drift 

down (up) the gradient by performing what is known as “biased random walk”, which increase 

the duration of their runs in the favorable direction and shorten their runs in the opposite 

direction along the gradient (23).  

By changing their run time and tumbling frequency bacteria can bias their random walk 

in response to changes in the environment. However, the run time of the bacteria does not exceed 

10 seconds because of the physical limitations. Due to rotational diffusion, the swimming 

direction of the cell drifts by about 90 degrees in 10 seconds (50). On the other hand if the run 

time is shorter than about a second the bacterium cannot propel itself far enough to overcome the 

diffusion and cannot make measurements of the nutrient amount for comparison.   

In addition to sensing chemicals, there is clear evidence that the signal transduction 

network described above is responsible for sensing and processing thermal signals as well (51, 

52). In a series of articles Yasuo Imae and his colleagues have elucidated the role of receptors in 
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temperature sensing. Initially, Maeda et al. observed in 1976 that the tumbling frequency of 

bacteria increased with a rapid decrease of temperature and a sudden increase of temperature 

suppressed the tumbling temporarily (14). That particular experiment was the first well 

documented observation supporting E. coli’s thermotaxis ability. They also subjected bacterial 

populations to a linear temperature gradient between 17 ºC and 39 ºC along 1 cm, ( 
   

  
), and 

observed that 2 hours after turning on the gradient the bacteria accumulated where the 

temperature was about 30 ºC. That band moved slowly to colder temperatures probably due to a 

metabolically created oxygen gradient. They also showed that swimming speed of bacteria 

depends on temperature, and that the bacteria have a peak steady state tumbling frequency at 

around 34 ºC.  

Two years later in 1978 Maeda et al. reported that a Tsr mutant did not respond to the 

temperature decrease indicating that it would be the main receptor responsible for temperature 

sensing (51). They observed that L-serine at concentrations as low as 100 µM inhibits 

temperature sensing via increasing the methylation level of the receptors. 

 A later, seemingly contradicting yet elaborate, work was reported by Mizuno et al. in 

1984. This time they observed that Tsr mutants showed the same but weaker thermoresponse as 

wild type such that they exhibited smooth swimming upon temperature increase and tumbled 

when temperature decreased suddenly (53). When mutants were adapted to Tar specific 

attractants such as aspartate, glutamate, methyl-DL-aspartate or maltose, the temperature 

response was switched from warm seeking to cold seeking. They observed that temperature 

decrease causes decreased methylation of Tar receptor proteins; furthermore low methylated Tsr 

and Tar produce smooth swimming signal whereas high methylation inhibits Tsr sensing ability 

and switches Tar response as temperature increases. 



 9  

 In 1988, Lee et al. showed that serine binding deficient Tsr mutants were not altered in 

their thermosensing ability (54), but rather the ability of serine to inactivate Tsr thermoreceptor 

function was altered. In another study, thermosensing ability of the two low abundance 

receptors Trg and Tap were elucidated by the Imae group in 1991 by over expressing them in an 

all receptors deleted strain. Nara et al. (55) showed that Trg functioned as warm sensor whereas 

Tap was a cold sensor. In 1996, they reported that Tar functions as a three state thermoreceptor 

such that it can be a null, warm, and cold sensor depending on covalent modifications of the 

methylations sites (56).  

However, by modifying  the methylation sites of Tar with alanine Nishiyama et al. later 

reported that the negative charge at the methylation sites is one factor that determines the 

thermosensing phenotypes (57). In a following study in 1999, they replaced methyl-accepting 

glutamyl residues of the receptors by non-methylatable aspartyl residues in order to examine the 

effect of methylation level of Tar on thermotaxis. They observed that methylation of a single site 

is sufficient to convert the thermosensing response of Tar from warm seeking to cold seeking in 

the presence of aspartate (58). 

 The Imae group later studied the effect of the Tar methylation by genetic mutations of the 

receptor and they were able to demonstrate that the inversion of thermosensing ability could be 

done artificially without presence of aspartate by permanently methylating the receptors via 

genetic modifications (59). They presented evidence that, relative movements of methylation 

sites on different parts of the receptor driven by conformational changes caused by binding of 

aspartate might play crucial role in temperature sensing. The oxygen receptor, Aer, of E. coli was 

also shown by Nishiyama et al. in 2010 to function as a warm seeking thermoreceptor. (52). 
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They suggested that, since Aer is a receptor lacking the periplasmic part, the thermosensing 

property of receptors is a general attribution of their highly conserved cytoplasmic domain.  

     More recently, Paster et al. studied the response of bacteria to a thermal impulse by 

measuring the CCW rotational bias of tethered bacteria in response to fast thermal changes and 

as a function of the background temperature. They reported that the response function (defined 

as the CCW bias) of the bacteria to changes of ~3C/100ms from a background temperature less 

than 31C has a similar time course, the same directionality and biphasic character as the 

chemotaxis response. Above 31 ºC some cells inverted their response and the fraction of inverted 

response increased with increasing temperature with a sharp increase at 37 ºC. These results 

indicate that cells are warm seeking below 37 ºC and cold seeking at higher temperatures (60). 

 This switch in the bacterial temperature preference was shown by Salman et al. to depend 

on the ratio of the two most abundant receptors Tar/Tsr (61), which was also found to change 

with the growth conditions of the bacteria. 

 In summary, the role of each receptor in sensing temperature changes was elucidated in 

the past and it is known how each receptor responds when the temperature is increased or 

decreased at a rate which bacteria can sense. It is also known how the chemical content of the 

environment alters the temperature sensing ability of the bacteria by changing the methylation 

state of the receptors. However, quantitative studies of bacterial thermotaxis under conditions 

where the temperature gradient is below the sensing threshold of the bacteria are still lacking, 

and it is not obvious how bacteria would behave in such conditions based on the results obtained 

from previous observations. In this thesis we focus on the behavior of bacteria in shallow 

temperature gradients and aim to understand and characterize the effect of temperature variations 
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on bacterial motility, in particular on the bacterial flagellar motor, and over longer time scales 

(i.e. hrs.). 

 

1.1.2 Bacterial Flagellar Motor 

The Bacterial Flagellar Motor (BFM) is one of the largest protein complexes in the bacterium 

comprising 13 structural proteins and an additional 25 proteins for expression and assembly (62) 

(Figure 1.3). Each motor is typically 45 nm wide (63) and attached to a flagellum which is on 

average about 10 µm long with a width of 20 nm made of 11 helical filaments which are 

assembled in alternating short and long forms (64–70).  

 The main structure of the BFM presented in Figure 1.3 was revealed by electron 

microscopy, particularly by cryo-EM, which was combined with biochemical and genetic studies 

to determine where proteins are located and what would be their function in the motor (71–73). 

The main components of the motor are a membrane spanning rotor and several stator complexes 

anchored to the peptidoglycan layer.  

The rotor is attached to the flagellum with a flexible hook and they all rotate together 

with respect to the cell wall. The hook is so flexible that it works as a universal joint that allows 

several flagella from motors all around the cell to rotate together as a single bundle. There are 

two bushings, one in the outer lipopolysaccharide layer (L ring) and one in the peptidoglycan 

layer (P ring), between the rotor and the cell wall which hold the core of the motor (i.e. the rod) 

stable in the cell and let it rotate freely. Nevertheless it is not known if the rotor rotates with 

respect to stationary L and P rings or with L and P rings with respect to the cell wall. 
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Figure 1.3: Bacterial Flagellar Motor 

BFM schematic view. Proteins composing the motor and their location as well as the copy number of the 

torque generators are presented. Rotor is composed of the L, P, MS, C rings and the rod. L and P rings 

function as bearings. MS and C rings are the parts involved in torque generation and switching. Stators are 

complexes of MotA and MotB proteins. They are anchored to peptidoglycan layer through MotB and torque 

is generated via electrostatic interactions between stators and rotor upon proton translocation. On the right 

the proteins of torque generation on C ring are shown in detail. The figure is reproduced from Sowa et al. 

(62) 

 

 The hook is connected to the membrane and supramembranous (MS) ring, which is the 

first part to be assembled in the motor (74, 75), located in the cytoplasm and which consists of 26 

copies of FliF proteins (76–78). The cytoplasmic face of the MS ring is attached to the 

cytoplasmic (C) ring consisting of FliG (23-26 copies), FliM (32-36 copies) and FliN (4x(32-36) 

copies) proteins. FliG was thought to be the site for force generation (71, 79, 80) and FliM and 

FliN were thought to control the motor direction via an interaction with CheY-P. Inside the C 

ring there is an export apparatus that pumps proteins needed to make the hook and filament (81).  
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The stators are protein complexes consisting of MotA (4x11 copies) and MotB (2x11 

copies) subunits (82). Stator complexes anchor to the peptidoglycan cell wall by MotB proteins, 

while MotA proteins span the cytoplasmic membrane forming channels for proton translocation 

(83–85). The cytoplasmic domain of MotA contains two charged residues that interact with five 

charged residues on FliG to generate torque (86–89). The mechanism of the force generation is 

thought to be such that, the protonmotive driven proton flux causes conformational changes in 

MotA, including movements of the charged residues on MotA that interact electrostatically with 

FliG subunits on the C ring. These interactions create forces that pull FliG subunits towards 

anchored stator complexes resulting in a torque that rotates the rotor with respect to stators. One 

interesting property of the stators is that, they are not permanently incorporated in the motor, 

rather they are motile and diffuse in and out of the motor with time scales of minutes, which is 

observed via fluorescence recovery after photobleaching experiments (90). 

The BFM under natural conditions switches direction from CCW to CW stochastically 

every second under the control of the signal transduction  network described in the previous 

subsection (22). It has been shown that reversal of a single motor is enough to make the flagellar 

filament leave the bundle and cause a tumble, and the switching of more motors increases the 

reorientation angle (21).           

The rotational nature of the BFM was observed more than 40 years ago by tethering cells 

to a glass surface through their flagella, causing them to rotate at a maximum rate of 20 Hz (18, 

19). The speed of the BFM was measured in two different ways; by tethering the cell to a glass 

surface through a single shortened flagellum and recording the body’s rotation (91, 92) or by 

fixing the cell to the glass surface and attaching a micron size bead to broken flagella and 

recording the rotational rate of the bead (93–99). In addition, the rotational speed of the BFM 
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was measured in free swimming bacteria by fluorescently labeling flagella and recording the 

rotational rate of both, flagella and cell body. This measurement revealed that, on average, a 

bacterium swimming at ~30 µm/s has its flagellar bundle rotating at 131 Hz, and the cell body at 

23 Hz, indicating that the BFM rotates at 154 Hz (100). 

The BFM converts chemical energy to mechanical work. Energy is supplied by the 

proton motive force (PMF) which is a result of the electric potential and pH differences across 

the membrane as shown in Eqn. 1 (101).  

           (
  

 
)    Eqn. 1 

Which is derived from the Gibbs free energy (102) change when one mol of hydrogen 

ions pass through the membrane from outside to inside under the electrochemical gradient 

created by the cell. Here  is the membrane potential difference (           ), R and F 

are the gas and Faraday constants, respectively, T is the temperature, and     is the pH 

difference across the membrane (              ). This potential energy drives protons 

across the membrane through the flagellar-motor’s force-generating units and generates torque. 

The BFM is a stepper motor (96). This has been demonstrated recently by attaching small 

beads to the hooks of immobilized bacteria consisting of Na
+
 driven chimeric motors (103), in 

which the stators were expressed in low numbers and sodium motive force was reduced by 

lowering the external sodium concentration in order to decrease the rotational speed, and thus 

allowing steps, with periodicity of 26 steps per revolution, to be detected. Note that 26 steps per 

cycle is consistent with the periodicity of the FliG proteins in the C ring. 

The BFM is a tightly coupled motor where the proton flux through MotA/B complexes is 

strictly proportional to the rotation (104) and the system operates near thermodynamic 
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equilibrium. Since the system is over-damped, a motor rotating at 150 Hz and 26 steps per 

revolution will have a waiting time of about 
     

(      )
       between two steps assuming 

instantaneous power strokes, and that time will be enough for viscous forces to damp the motion 

and stop it immediately within a microsecond (105). Therefore, for each revolution the work 

done equals the energy dissipated, that is:              , where τ is the torque generated, 

f is the frictional drag coefficient on the flagellar bundle, ω is the rotational speed, n is the 

number of protons passing through the motor per revolution, e is electron charge, and Δp is the 

proton motive force described in Eqn. 1. In this regime of low Reynolds numbers, conventional 

conservation of energy does not apply, i.e.
 

 
           , since the kinetic energy created 

by the force generating units of the motor is instantaneously dissipated by the viscous forces.    

One of the significant properties of rotary motors is the torque-speed curve which 

describes the motor’s torque generation capacity at different operating conditions. Measurements 

of the BFM rotational rate by varying load on the flagellum show that the torque is constant up to 

a specific “knee” speed, after which it decreases linearly as seen in Figure 1.4 (106).  In the 

plateau, speed is limited mechanically by the load (62) and the speed in the high-speed regime is 

limited by factors affecting the proton transition rates such as temperature (107) and the mass of 

the proton ions in the medium (93). Free swimming bacteria experience a drag force on their 

flagella that causes the motor to rotate close to the knee speed, which interestingly corresponds 

to the maximum power output of the motor (62).  

 



 16  

 

Figure 1.4: Torques speed relation of BFM 

Reproduced from Chen et al. Biophys. J. 2000 (106). They immobilized an E. coli strain whose motors rotate 

exclusively CCW and attached small beads (~0.3µm) to broken flagella. They varied the load on the motor by 

changing concentration of the Ficoll in the medium and measured the speed of the BFM under that load. The 

knee frequency of the motor decreases with decreasing temperature. 

 

In summary, extensive studies have been previously performed on the BFM, which aimed 

to understand the structure of its mechanical components, the way it is assembled, the nature of 

the torque generation, and the mechanism of switching. However, as a mechanical machine, the 

BFM has a dynamical range of response to environmental changes and driving factors. This 

dynamical range defines the limits of the bacterial response to environmental changes, i.e. 
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chemical content of the environment and/or temperature of the surroundings. Therefore, it is 

important to study the response of the BFM to rapid changes in the environment, which is 

another aim of this thesis.  
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2.0  MATERIALS AND METHODS 

In this section, the experimental methods implemented throughout this study and the materials in 

terms of chemicals, bacterial strains and vectors are explained in detail, and the sources where 

we obtained them are listed. The designs of the experimental apparatuses are presented as well.    

 

2.1 MICROCHANNEL FABRICATION 

2.1.1 Mask preparation 

Masks for micro-channel fabrication were designed with Corel Draw (Corel Corporation, 

Ottawa, Canada) software. The mask presented in Figure 2.1 was used for all studies of bacterial 

behavior in linear shallow temperature gradient experiments, as well as, in sharp temperature 

gradients. In order to prevent the collapsing of the PDMS channels 200 μm diameter poles were 

placed at the center of the channel with 1 mm distance in between. The ends of the two channels 

at the top and bottom were bent at 45° to allow side loading of the temperature sensitive dye 

(used for measuring the temperature before every experiment) and prevent its mixing with the 

bacterial culture. This mask was printed at high resolution (1200dpi) on transparencies and used 

as for imprinting the structure in photoresist material.  
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Figure 2.1: Linear temperature gradient mask 

 

2.1.2 Photoresist coating, exposure and development 

The microchannels were prepared by utilizing the lift-off micro-technology. All processes were 

carried out in near dark room to avoid unintended exposure of the photoresist material to ambient 

light. Glass microscope slides (25x75x1mm, Fisher Scientific) were coated with a ~20 µm thick 

layer of negative photoresist material (SU-8 10, Micro-Chem). This was accomplished by 

covering the microscope slide with ~3 ml of the photoresist material and spinning it at 1500 rpm 

for 20 seconds following acceleration from rest in 10 seconds. The coating was followed by two 

steps of baking. The slide was first soft-baked for 2 minutes at 65 °C, and then hard-baked for 5 

minutes at 95 °C. Using a mercury lamp (Mercury Short Arc, 50W, Osram), the coated slides 

covered with the mask described above were then exposed to UV light for 2.5 minutes. 

Following the light exposure, the slides were developed in SU-8 Developer (Microchem) to 

remove excess photoresist, rinsed with isopropanol, and air dried.  

The slides with the imprinted photoresist pattern were then used as templates for the 

microchannels fabrication with Polydimethylsiloxane (PDMS). 
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2.1.3 Channel fabrication in PDMS and attachment to the glass slide 

PDMS was prepared by mixing the silicone elastomer base and silicon elastomer curing agent 

(Dow Corning, Sylgard 184 Silicone Elastomer) at a 9:1 ratio (w/w) and mixed vigorously for 5 

minutes. Total weight of the mixture was kept at 20 grams in order to ensure similar sample 

thicknesses in all experiments. A slide with the imprinted pattern was placed in a 100 mm 

diameter petri dish with the pattern facing up. The liquid PDMS mixture was poured onto the 

slide template and spread carefully in order to cover the whole slide. Air bubbles in the mixture 

were removed by placing the petri dish in a vacuum chamber for 30-45 minutes. Following the 

removal of air bubbles, the PDMS was cured at 60-100 °C for 1-2 hours or at room temperature 

for two days. The resulting PDMS structure was clear and perfect for microscopy use. In 

addition, the porous nature of PDMS ensured the continuous diffusion of oxygen into the 

channels and thus extending the lifetime of bacteria in our samples (108–110). 

 To form the channels, the PDMS was peeled off the photoresist template and plasma-

cleaned with a clean microscope glass slide for 30s in order to make both surfaces hydrophilic. 

Following the plasma treatment, the PDMS was adhered to the microscope slide such that the 

channels are formed between the two (Figure 2.2).  
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Figure 2.2: Glass slide and PDMS plasma treatment 

Glass slide and micro-channel engraved PDMS pieces were treated under air plasma for 30 seconds and then 

treated surfaces were adhered against each other, leaving the micro-channels in between, in order to seal 

them permanently.  

2.2 TEMPERATURE GRADIENT APPARATUSES 

2.2.1 Linear temperature gradient apparatus 

To study the behavior of bacteria in a shallow temperature gradient, we have designed, 

manufactured, and assembled an apparatus that allows us to apply a linear temperature gradient 

that extends over 10mm distance on the micro-channels described in the previous section. The 

designs of all parts were carried out using a 3D CAD program, IronCAD (IronCAD LLC, 

Atlanta, GA) and the apparatus was manufactured in the Department of Physics and Astronomy 

Machine Shop (for further details see Appendix A).  

As presented in Figure 2.3 (Figure A.1, Table 5.1) the device consisted of one heat sink, 

two Peltier devices separated with a plastic insulation layer, two copper plates attached to the 



 22  

Peltier devices, and one plastic base. The heat sink was made of aluminum and had a zigzag 

shaped channel for water circulation. The temperature of the heat sink water was kept at 30 °C 

with a refrigerating bath circulator (Jeio Tech Inc. Des Plaines, IL USA, RW-1025G).  

 

 

Figure 2.3: Linear temperature gradient device 

Two Peltier devices, 10mm apart, were attached to a microscope slide via thin copper plates on one side and 

to a heat sink on the other side. The heat sink was simply composed of an aluminum plate through which 

water was circulated by a water bath to maintain its temperature. The PDMS channels were attached to the 

other side of the microscope slide and all the exposed spaces of the slide were then covered with Plexiglas for 

better thermal isolation. All contacts were made using thermal grease. 

 

The two Peltier devices (Custom Thermoelectric Inc., Bishopville, MD, USA, 12711-

5L31-03CK) and the plastic insulation layer in between were attached permanently to the heat 
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sink from one side. The other side of the Peltier devices were attached permanently to thin 

copper plates with silver based epoxy glue (Arctic silver, Arctic Silver Inc., Visalia, CA USA) to 

ensure good and uniform thermal contacts between the glass slide and Peltier devices. 

To avoid bad thermal conduction due to surface roughness and maintain better contact 

between the copper plates and the microscope slide we applied a thin layer of thermal grease 

(GC Electronics, Type Z9 heat sink compound, Rockford, IL, USA) right before each 

experiment. 

The microscope glass slide was placed into the slot of a plastic base, with the PDMS 

channels facing downwards, and attached to the rest of the apparatus through screws at both 

ends. The complete setup was mounted on an inverted microscope and the bacterial behavior was 

observed and recorder by Epifluorescence microscopy. 

2.2.2 Sharp temperature gradient apparatus 

In order to create a sharp temperature gradient over a distance of ~100 µm we focused an 

infrared laser (λ=1480 nm) into the sample through a 20X objective (Zeiss 20X, 0.40 LD 

Acroplan). To control the background temperature of the environment a device was designed, 

manufactured and assembled as was done for the linear temperature gradient apparatus. The 

apparatus depicted in Figure 2.4 was designed using the same 3D drawing program (IronCAD 

(IronCAD LLC, Atlanta, GA)), machined and assembled at the facilities of the University of 

Pittsburgh. 

As presented in Figure 2.4 (Figure A.6, Table 5.2) the device consisted of two heat sinks, 

two Peltier devices, one copper plate attached to the two Peltier devices with a large through hole 

at the center to allow the laser to reach the sample, and one plastic base. The background 
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temperature was controlled via the two Peltier devices. The heat sinks on the other side of the 

Peltier devices were used to stabilize the devices’ temperature. The contacts between the heat 

sinks, the Peltier devices, and copper plate were made permanent to ensure a more stable device 

using silver based epoxy glue, which also guaranteed  good thermal contacts between the 

different components.      

 

   

Figure 2.4: Sharp temperature gradient apparatus 

Two Peltier devices were attached to a microscope slide via a thin copper plate on one side and to heat sinks 

on the other side. The copper plate had a circular opening in the middle in order to apply a sharp 

temperature gradient via focusing an infrared laser from top. The heat sink was an aluminum plate with a 

through hole in which water was circulated by a water bath to maintain its temperature. The PDMS channels 

were attached to the other side of the microscope slide and all the exposed spaces of the slide were then 

covered with Plexiglas for better thermal isolation. All contacts were made using thermal grease 

 

Observations using this device were carried out as before via Epifluorescence microscopy 

using an inverted microscope onto which the complete setup could be mounted.  The temperature 

of the copper plate was continuously measured by inserting a thermocouple (Stamford, CT USA, 
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5TC-GG-T-24-36) into the center of the copper plate from the side and monitored with 

thermocouple temperature readers (Omega Stamford, CT USA, Dpi32) to ensure constant 

background temperature during experiments (For more details see Appendix A). 

2.2.3 Calibration of the apparatuses 

The temperature gradient apparatuses were calibrated using the temperature sensitive dye 

BCECF (111). The fluorescence of BCECF decreases with increasing temperature in an almost 

linear fashion. As stated previously the temperature of the linear gradient apparatus as well as the 

temperature of the uniform temperature apparatus were continuously measured via a 

thermocouple embedded in the copper plate. However there is some temperature difference 

between the microchannels and copper plate due to heat dissipation through the glass slide and 

the PDMS containing the bacterial sample. Two calibration curves were generated: one for the 

relation between the measured copper temperature and the temperature at the bottom surface of 

the microscope slide, and a second for the relation between the relative fluorescence of the 

BCECF and the temperature. 

The first calibration curve was generated by inserting a second thermocouple between the 

bottom surface of the slide and the PDMS attached to it and measuring the temperature of that 

surface as a function of the temperature of the copper plate. The results are presented in Figure 

2.5 and Table 2.1. 

As stated earlier, BCECF fluorescence decreases as temperature increases. By measuring 

the percentage of fluorescence decrease one can estimate how much the temperature has 

increased relative to an initial specific value. We have generated one standard curve for this 

purpose. 



 26  

  

 

Figure 2.5: Calibration curve for copper plate temperature and actual temperature 

The calibration curve for the temperature of the copper plate and the temperature of the bottom surface of 

the microscope glass slide where bacterial sample is attached. Empty circles are measured values, error bars 

represent one degree measurement error and dashed line is linear fit to the data. The linear relation is 

expressed as:                                     

   

BCECF at 200 μM was loaded into the PDMS-Slide micro-channels and the sample was 

mounted on the linear temperature gradient apparatus. The PDMS was carefully attached at the 

center of the copper plate beneath one of the Peltier devices and the temperature of the sample 

was controlled by the Peltier device. The sample was initially cooled down to 7.5 °C and the 

temperature was then increased gradually by changing the current. After the temperature 

stabilized (~2 minutes after the power is changed) three fluorescence images of the dye were 
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acquired consecutively. The dye was imaged using a mercury lamp with an excitation bandpass 

filter (450-490 nm) (Carl Zeiss filter set 09), and an emission longpass filter (515 nm). In 

addition, the light intensity was reduced to 10% with a neutral density filter (Thorlabs Inc. ND2) 

in order to avoid fast bleaching. Images were acquired using a CCD camera (ProgRes MF) with 

an exposure of 500 ms.  

 

Table 2.1: Temperature apparatus calibration values 

Copper Temp  
(°C) 

Actual Temp  
(°C) 

Fluorescence  
(a. u.) 

Relative 
Fluorescence 
 % (w.r.t 20°C) 

7.5 9.3 155.21 104.07 
8.5 10.2 155.06 103.97 

10.0 11.6 154.35 103.49 
12.0 13.3 154.08 103.31 
14.0 15.1 152.43 102.21 
16.0 16.9 151.75 101.75 
17.8 18.5 150.42 100.86 
20.0 20.4 148.42 99.52 
22.0 22.2 148.81 99.78 
24.0 24.0 147.60 98.97 
26.0 25.8 146.03 97.92 
28.0 27.5 144.50 96.89 
31.0 30.2 142.32 95.42 
32.0 31.1 141.28 94.73 
34.0 32.9 140.05 93.91 
36.0 34.7 138.12 92.61 
38.2 36.6 136.78 91.71 
40.0 38.2 135.45 90.82 
42.0 40.0 133.51 89.52 
44.0 41.8 132.33 88.73 
46.0 43.5 130.02 87.18 
48.0 45.3 128.46 86.14 
50.0 47.1 126.79 85.01 
52.0 48.9 124.90 83.75 
54.0 50.7 123.57 82.85 
57.0 53.3 121.72 81.61 
57.5 53.8 119.62 80.21 
60.0 56.0 119.07 79.84 
65.0 60.4 116.59 78.17 
67.0 62.2 114.76 76.95 

71.0 65.8 112.43 75.38 
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The mean values of the BCECF images were calculated using ImageJ “measure” module. 

Water in the microchannels was imaged under the same experimental conditions in order to 

estimate the background fluorescence of the system. This background was subtracted from the 

dye raw fluorescence values. The resulting fluorescence values were then used to estimate the 

standard curve for the BCECF fluorescence as a function of temperature. The BCECF dye’s 

fluorescence at 20C was used as a reference point, and the relative fluorescence of the dye with 

respect to 20 °C was calculated to be a reference for future measurements. In Table 2.1 the dye 

fluorescence values (see also Figure 2.6A) and the relative fluorescence values with respect to 20 

°C (see also Figure 2.6B) are presented. Although the standard error estimated from different 

measurements is relatively high the data obtained in each measurement is smooth, therefore the 

mean fluorescence is smooth. Since we calculate the relative fluorescence change and convert 

that change into temperature changes the error in the standard curve does not affect our 

temperature estimation. This error represents the variation between different measurements of 

the same quantity following the same trend, not the standard deviation of a group of 

measurements with fluctuating data and different trends. This error estimation method is used for 

all of the measurements in the thesis. 
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Figure 2.6: BCECF dye calibration standard curves 

(A) Background subtracted fluorescence values of BCECF dye pictured under 10% mercury lamp exposure 

with a CCD camera for 500 ms, and (B) relative fluorescence w.r.t. 20 °C. Error bars of temperature indicate 

one degree measurement error, and y-error bars are standard error of the mean. 
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 Calibration of the linear temperature gradient apparatus was done by inserting BCECF in 

the microchannels and acquiring fluorescence images of the dye at several locations separated by 

1mm along the channel before and after the gradient was turned on. The change in the 

fluorescence intensity after the gradient was applied relative to the intensity before was, used to 

estimate the temperature at each location along the channel. The estimated temperature, before 

and after the gradient was turned on, obtained from the dye fluorescence measurements are 

presented in Figure 2.7.  

 

 

Figure 2.7: Linear gradient apparatus calibration curves 

Temperature along the linear temperature gradient apparatus is calibrated and calculated using BCECF in 

microchannels. Temperature in the microchannels is ~28.5 °C when gradient is turned off (open circles). The 

water in the heat sink temperature is set to 30 °C. Temperature along the apparatus when gradient is turned 

on has a linear shape (filled circles).   
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Similarly, the temperature profile of the gradient applied by focusing an infrared laser 

was also estimated from the changes in the fluorescence intensity of the BCECF dye. The shape 

of the temperature profile of IR laser heated area resembles a 2D-Gaussian, where the center has 

the maximum temperature, which then decays exponentially as a function of distance away from 

the center. A typical image of IR laser heated BCECF dye and the fitted Gaussian profile are 

presented in Figure 2.8 A and B respectively. The discrepancy between the data and the fit arises 

from the heat diffusion in the sample, which causes a small deviation from the Gaussian profile. 

However, this does not influence our measurements, since we are interested in the temperature at 

the center of the heated spot only.     

 

 

Figure 2.8: IR laser heated BCECF dye and Gaussian fit 

A. Temperature sensitive dye BCECF at 200 µM is loaded in micro-channel engraved PDMS-Glass piece and 

fluorescence of the dye was imaged as described in the text. Fluorescence intensity decreases with increasing 

temperature which is seen at the center of the image. B. Surface plot of the dye intensity and 2D Gaussian fit 

to the surface. Color scale indicates the corresponding temperature created by the focused laser.   
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2.3 BACTERIAL CULTURE PREPARATION AND HANDLING 

2.3.1 Chemicals 

Several chemicals were used to grow bacterial cultures and measure different physical quantities 

throughout the experiments, such as membrane potential of the cell and intra and extracellular 

pH. The chemicals used in this study and the companies that they were purchased from are listed 

in Table 2.2.  

 

Table 2.2: Chemicals list 

Chemical Source 

 

Chemical Source 

all trans-Retinal Sigma-Aldrich Co. 
 Luria Broth Sigma-Aldrich Co. 

Ampicillin Sigma-Aldrich Co. 
 M9 Salts MP Biomedical, LLC. 

Arabinose Sigma-Aldrich Co. 
 MgSO4 Sigma-Aldrich Co. 

Bacto Agar Becton Dickinson 
 Monobasic K2HPO4 

EMD Chemicals. 

BCECF Molecular Probes, Inc. 

 

NaCl Fisher Scientific 

Boric Acid Fisher Scientific 
 Nigericin Sigma-Aldrich Co. 

CaCl2 Sigma-Aldrich Co. 

 

PDMS Dow Corning Co. 

Casamino Acids MP Biomedical, LLC. 
 Pipes Sigma-Aldrich Co. 

CCCP Sigma-Aldrich Co. 
 Potassium Chloride Sigma-Aldrich Co. 

Chloramphenicol Sigma-Aldrich Co. 
 Sodium Benzoate Sigma-Aldrich Co. 

Dibasic KH2PO4 
EMD Chemicals. 

 Sodium Lactate  Sigma-Aldrich Co. 

DiSC3(5) Anaspec 
 Sodium Phosphate Fisher Scientific 

D-Serine Sigma-Aldrich Co. 
 Sodium Salycilate Sigma-Aldrich Co. 

EDTA  Lonza Group Ltd. 
 TMRM Invitrogen 

Glucose MP Biomedical, LLC. 
 Tris BIO-RAD 

Glycerol EMD Chemicals. 
 Ultrapure Agarose Invitrogen 

IPTG Fisher Scientific 
 Valinomycin Sigma-Aldrich Co. 

L-Aspartate Sigma-Aldrich Co. 
 α-methyl-DL-Aspartate Sigma-Aldrich Co. 

L-Methionine Sigma-Aldrich Co. 

 

α-methyl-DL-Serine Sigma-Aldrich Co. 

L-Serine Sigma-Aldrich Co. 
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2.3.2 Bacterial culture preparation 

Several strains of Escherichia coli were used in the experiments throughout this study. In 

addition, plasmids carrying fluorescent protein genes were transferred into the strains for 

different experiments. The list of strains, plasmids, and their sources are presented in Table 2.3. 

  

Table 2.3: Strains and plasmids 

Strain/Plasmid Genome Resistance/Induction Source 

RP437 Wild type for Chemotaxis Streptomycin Leibler 

HCB317 Δtsr Streptomycin Berg 

RP2361 Δtar Streptomycin Parkinson 

UU2612 Δ(tsr, tar, tap, trg, aer) Streptomycin Parkinson 

VH1 
Δ(cheR cheB cheY cheZ)  
Δ(tsr, tar, tap, trg, aer) 

Streptomycin Sourjik 

pZA3R-YFP Yellow Fluorescent Protein Chloramphenicol Salman 

PZA1R-YFP Yellow Fluorescent Protein Ampicillin This Work 

pBAD TOPO GPR D97N PROPS Ampicillin / Arabinose (requires retinal) Cohen 

   

Bacterial cultures used in the experiments, unless otherwise stated, were initiated from a 

frozen glycerol stock stored at -80C, and grown in M9CG (111) (M9 minimal medium 

supplemented with 1g/L Casamino acids and 4g/L glucose) with the appropriate antibiotics in 

order to prevent contamination and ensure the purity of the grown culture, at 30 °C while 

shaking at 240 rounds per minute (rpm). The growth was monitored by measuring the optical 

density of the culture at 600 nm (OD600) with a spectrophotometer (Biophotometer plus, 

eppendorf).When the culture reached an OD600 of 0.1, the bacteria were centrifuged at 10,000 

rpm for 5 minutes, the supernatant was discarded, and the bacteria were washed once in motility 

buffer (MB: 10mM potassium phosphate, 0.1mM EDTA, 10mM sodium lactate, 1μM L-

methionine, pH=7.0). Motility buffer was then used to resuspend the bacteria, always 
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maintaining the same final concentration of OD600=0.3. Samples were incubated at room 

temperature for 30 min before starting experiments. Amino acids or other chemicals were then 

added to the required concentration prior to the measurement. The bacteria were labeled by 

insertion of the plasmid pZA3R-YFP, which constitutively expresses YFP, for the purpose of 

observation via fluorescence microscopy. 

For the purpose of plasmid DNA extraction, bacteria were grown in Luria Broth (LB) at 

37 °C while shaking at 240 rpm until OD600 of ~1.5. DNA extraction was carried out using DNA 

extraction kit (Plasmid Midi Kit, Qiagen) and following the manufacturer’s protocols. 

To determine the cell concentration in units of #/cm
3
, we have generated a calibration 

curve representing the number of cells per cm
3
 as a function of OD600. The number of cells per 

cm
3
 for each OD600 was measured by taking a known volume of bacterial culture, plating it onto 

an agar plate at several dilutions, and incubating at 37C over night. The next day, images of the 

plates containing the colonies were acquired and the colonies on each plate were counted. The 

number of colonies on the plate represents the number of cells in the original sample. These 

measurements were used to estimate the cell density as a function of OD600 as depicted in Figure 

2.9.  
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Figure 2.9: Cell density vs. OD 

The number of cells in a cubic centimeter (milliliter) is estimated by plating bacterial cultural at different 

OD600’s and counting the number of colonies on the plate (inset). 

 

2.4 MEASUREMENTS AND IMAGING 

2.4.1 Measurements of bacterial swimming speed and concentration profile in a gradient 

After resuspending the bacteria in motility buffer with the required concentration of 

amino acids, they were immediately transferred into the thin channels microfabricated in PDMS 

described earlier (15). The channels were sealed on both ends immediately after filling them by 

epoxy glue. The temperature of the sample was set using a Peltier device attached to the 
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microscope slide. Movies of swimming bacteria were acquired at the various conditions by 

fluorescence microscopy with a 20X objective. 20 seconds videos were recorded at a rate of 5 

fps by a CCD camera (ProgRes MF, Jenoptik). Swimming trajectories were analyzed using 

ImageJ Particle Tracker plugin (112, 113) and custom MATLAB scripts (The Mathworks, 

Natick, MA). The speed was then calculated from these trajectories by simply calculating the 

average distance traveled by the bacteria between consecutive frames. Each measurement was 

repeated at least two times and each measurement yielded a few thousand trajectories for 

analyses. 

To measure distribution of bacterial concentration in the temperature gradient, images of 

the fluorescent bacteria were acquired at different locations along the gradient using a 10X 

objective. The Number of bacteria at each location was counted using ImageJ particle analyzer 

module and used to calculate the bacteria’s concentration at that location. 

2.4.2 pH measurements 

The change in the bacterial intracellular pH was measured by means of measuring the 

fluorescence intensity of YFP, which is pH sensitive as has been demonstrated previously (114). 

YFP expressing cells were grown from a frozen stock in 50 mL M9CG medium at 30
o
C, while 

shaking at 240 rpm. When the culture reached an OD600 of ~0.1, cells were harvested, washed in 

motility buffer via centrifugation at 10000 rpm for 5 minutes, and resuspended at a final OD600 

~0.3 in motility buffer. Samples were incubated at room temperature for 30 minutes.  

50μl of the bacterial cultures were then transferred into a 96 well Eppendorf RT-PCR 

plate. Nutrients and chemicals whose effect on pH would be tested were added afterwards. The 

plate was sealed from top with a clear thin plastic cover. The fluorescence intensity of the YFP in 
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the culture was measured using a real-time PCR machine (eppendorf). After mounting the plate 

into the RT-PCR, the temperature was set to 18 °C and the bacteria were incubated at that 

temperature for 2 minutes before starting the fluorescence measurements.  

 

 

Figure 2.10: Measurement of the YFP fluorescence intensity 

The fluorescence intensity of YFP measured as a function of temperature in bacteria incubated in motility 

buffer (circles), and in motility buffer with 600μM serine (squares). The temperature of each step in order is: 

18, 21, 24, 27, 30, 33, 35, 37, 39, 37, 35, 33, 30, 27, 24, 21, and 18°C. Increasing the temperature is known to 

reduce the pH of the medium. And as can been seen in the graph, the YFP fluorescence intensity inside the 

bacteria decreases as well when serine is absent from the surrounding medium, which implies that the 

intracellular pH decreases as well with increasing temperature. However, when serine is added to the 

medium, the YFP fluorescence intensity increases with the increasing temperature above 30º, indicating that 

the intracellular pH is increasing. 

 

The bacterial samples were excited at 470nm and their fluorescence intensity was 

measured at 520 nm. The temperature values set for measurements were 18 °C, 21 °C, 24 °C, 27 

°C, 30 °C, 33 °C, 35 °C, 37 °C, 39 °C, 37 °C, 35 °C, 33 °C, 30 °C, 27 °C, 24 °C, 21 °C, and 18 
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°C. At each temperature 10 measurements were taken with 11 seconds intervals. The last four 

stable measurements of each set were averaged to get the fluorescence of the well at the 

measurement temperature (Figure 2.10).  

The fluorescence intensity of each sample at each temperature measured as the 

temperature increased was then averaged with the corresponding measurement for the same 

temperature acquired as the temperature decreased in order to eliminate effects arising from the 

temperature change’s directionality. But, since there could be a variation in the number of cells 

in each sample, the average fluorescence intensities were then normalized by the intensity of the 

sample at 18C, and the normalized values were averaged between the different samples 

measured at the same conditions. The relative fluorescence values of several wells (3-12 wells) 

having the same experimental conditions were averaged to estimate the sample’s mean and 

standard deviation. Experiments were repeated at least three times with cultures grown on 

different days.        

The reason we chose to normalize the fluorescence measurements by the intensity at 

18C is that the speed of the bacteria at that temperature does not change with the serine 

concentration. This indicates that the internal pH changes with the serine concentration in a 

similar fashion to the external pH, maintaining the same difference. However, the external pH 

does not change with addition of serine (Figure 3.11 inset). Therefore, we assumed that the 

intracellular pH does not change as well at 18C. The normalized values thus, represent the 

change in the YFP fluorescence relative to the same fluorescence intensity. Note that the medium 

used in all the measurements does not support the growth of bacteria and the measurement time 

is too short to cause any damage to the bacteria. This can be also seen in the reverse 

measurements, where similar results were obtained as in the forward measurements. 
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In order to convert YFP fluorescence values to pH, a calibration curve for pH as a 

function of YFP fluorescence was generated. YFP expressing cells were grown from frozen 

stock in 50 mL M9CG medium at 30
o
C, while shaking at 240 rpm. When the culture reached an 

OD600nm of ~0.1, cells were harvested, washed in motility buffer via centrifugation at 10000 rpm 

for 5 minutes, and resuspended at a final OD600nm ~0.25 in motility buffer having various pH 

values between 5.6 and 8.5. The final cell concentration was carefully kept the same for the 

different buffers to eliminate variation due to cell density.  

 

 

Figure 2.11: YFP Fluorescence vs. pH calibration curve 

The fluorescence intensity of YFP was measured at 18 °C as a function of pH as described in the text above. 

All measurements were then normalized by the fluorescence intensity at pH=7.25 (the measured value of the 

intracellular pH at 18 °C) as a reference point. All of our fluorescence measurements were in the range 

covered by the dashed line. Therefore, we used a linear fit depicted by the dashed line to estimate the pH 

from the fluorescence measurements as explained in the text above. 
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Sodium benzoate was added to the buffers at a final concentration of 20mM to set the 

cells’ internal pH equal to the external pH (114). The culture’s YFP fluorescence was measured 

using eppendorf realplex RT-PCR while maintaining the temperature at 18
o
C. The final 

fluorescence intensity of YFP in each buffer was determined by averaging 12 different samples, 

each measured 30 times.  

Using the calibration curve, presented in Figure 2.11, we estimated the internal pH of 

RP437 cells in the motility buffer at the same temperature as a reference point. Our results show 

that the internal pH under these conditions is 7.25 (± 0.07). 

The fluorescence measurements for the different temperatures were normalized by the 

intensity at 18C. To convert fluorescence values to pH at different temperatures, the 

fluorescence intensities were first normalized by the intensity at 18
o
C, which we know should 

have a pH of 7.25, and the normalized values were then converted to pH values using the 

calibration curve in Figure 2.11. 

 



 41  

 

Figure 2.12: BCECF calibration curve 

The pH sensitive dye BCECF was suspended in motility buffer at different pH values as indicated by the x-

axis, and its fluorescence intensity was measured as a function of the buffer’s pH. 

 

The change in the medium’s pH was measured using the BCECF dye, whose 

fluorescence increases with increasing pH. BCECF dye was dissolved in motility buffer with 

different pH values, and its fluorescence was measured in a similar fashion to the YFP as 

described above. Also here, the fluorescence intensity of the dye was normalized by its value at 

23C as a reference point. The calibration curve of the dye is presented in Figure 2.12. 

2.4.3 Serine uptake measurements 

Serine uptake by bacteria was measured following the protocol described by Udenfriend 

et al. (115). This method measures the amount of free aminoacids in the medium. By measuring 
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the change in the amino acids concentration we were able to determine the rate at which bacteria 

uptake amino acids from the environment. 

Bacteria were grown, as described in subsection 2.3.2, from frozen stock (-80 °C) in fresh 

M9CG medium at 30 °C while shaking at 240 rpm. When the OD600 reached ~0.1 bacteria were 

harvested via centrifugation at room temperature at 10000 rpm for five minutes and the 

supernatant was discarded. The bacterial pellet was washed twice with motility buffer by 

resuspension and centrifugation, and finally resuspended in motility buffer at OD600 ~0.2. The 

sample was then incubated at room temperature for 30 minutes, and serine was added to a final 

concentration of 600 µM. 

In order to measure the amount of serine remaining in the medium, one ml sample was 

collected every 20 minutes after the addition of serine. The samples were then centrifuged at 

13000 rpm for five minutes, the supernatant was carefully collected without disturbing the 

bacterial pellet, and filtered through a 0.22 μm size filter (Millipore) in order to remove any 

remaining bacteria. The collected media were mixed with sodium-borate (200 mM boric acid 

mixed with NaOH to adjust pH to 9) at 1:20 v/v ratio. The resulting mixture was then mixed with 

15% Fluorescamine (Sigma-Aldrich) (w/v) in acetone at a 2:1 v/v ratio. The fluorescamine 

interacts with amine groups within a second and yields a stable fluorescent derivative (116). The 

fluorescence intensity of the stained amino acid mixtures was measured using a microplate 

reader by exciting the sample at 390 nm and measuring the emission at 475 nm.  
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Figure 2.13: Fluorescamine fluorescence calibration curve 

The fluorescence intensity of Fluorascamine was measured as a function of serine concentration as described 

in the text above. Average fluorescence values from several measurements were used to construct the 

presented calibration curve. Therefore, we used a linear fit depicted by the dashed line to estimate the 

amount of serine in the bacterial suspensions from the fluorescence measurements as explained in the text 

above. 

 

In order to convert fluorescence values into concentration of serine a calibration curve 

was produced following the protocol described above. The fluorescence intensity of stained 

mixtures increases linearly with the increasing amount of serine present in the medium as shown 

in Figure 2.13. 
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2.4.4 Membrane potential measurements 

The membrane potential of E coli was measured using a mutated green-absorbing 

proteorhodopsin (GPR) developed by the group of Dr. Adam Cohen at Harvard University.  GPR 

is a light driven proton pump of marine bacteria which translocate protons upon green light 

absorption. The mutated form, GPR
D97N

 named by its developers Proteorhodopsin Optical Proton 

Sensor (PROPS), was shown to have membrane-potential dependent fluorescence intensity 

(117).  

 For our purposes, PROPS was expressed in bacteria using the pBAD plasmid obtained 

from Dr. Cohen’s Laboratory and following their protocol; Wild type Escherichia coli RP437 

expressing PROPS were grown in 50 mL of LB medium at 30
o
C while shaking at 240 rpm to 

early log-phase (OD600nm = 0.3 – 0.4). Arabinose and all-trans retinal were then added to the 

culture to a final concentration of 1.3mM and 5µM respectively. Arabinose is the inducer for the 

plasmid and retinal is necessary for PROPS to be fluorescent. The culture was further grown in 

the dark for 3-4 hr. Cells were then washed with 10mM Potassium Phosphate buffer (pH 7) by 

centrifugation at 4 
o
C, 10000 rpm, for 5 minutes, resuspended in 3 ml of the testing buffer, and 

incubated on ice for ~30 minutes. 

Prior to the measurement, nigericin was added to the culture to a final concentration of 1 

M in order to eliminate the effect of the pH (118) by inducing an H
+
/K

+
 exchange (119), and 

cells were incubated for at least 7 minutes at each temperature to allow them to reach steady 

state. At the end of each run, Carbonyl Cyanide 3-ChloroPhenylhydrazone (CCCP) was added to 

the mix at a final concentration of 50 µM to set the membrane potential to zero, by eliminating 

the proton gradient across the membrane, (120, 121) as a reference point. Spectroscopic 

measurements of PROPS were carried out using Tecan Infinite M200 microplate reader. The 
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cells were excited at 570 nm and the fluorescence emission was scanned between 630 and 780 

nm. Maximum emission was observed at 718 nm (±6 nm) and was used to estimate the 

membrane potential following the calibration curve described below.    

The fluorescence intensity of PROPS as a function of the membrane potential was 

calibrated following the protocol of (120, 122) (Figure 2.14). The fluorescence emission of 

PROPS (expressed in RP437) was measured for different known membrane potentials. The 

membrane potential was determined as follows: Cells were incubated in 10mM potassium 

phosphate buffer, pH=7.0, with varying concentration of sodium and potassium while 

maintaining the total ionic concentration constant, i.e. [Na
+
] + [K

+
] = 300mM. Valinomycin, a 

potassium-selective ionophore, was added to the solution to a final concentration of 5 µM, which 

sets the membrane potential equal to the potassium Nernst potential (120), determined by: 

 
      
       

      (
    

  
) Eqn. 2 

where F is Faraday constant, Δψ is the membrane potential, R is the gas constant, and  T is the 

temperature in degrees Kelvin. 

Fluorescence measurements were carried out at 30
o
C. Also here, nigericin was added to 

the cultures to eliminate effect of transmembrane pH gradient (118) on PROPS fluorescence, and 

CCCP was added at the end of the measurement to collapse the membrane potential (120) and 

provide a reference point for all the measurements. 
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Figure 2.14: Membrane potential calibration curve 

The Fluorescence intensity of PROPS as a function of the membrane potential. The membrane potential was 

set using the potassium ion gradient and valinomycin as described in the text above.   

 

2.4.5 Tethering and rapid temperature modulation 

Studying the effect of gradient steepness and thermal fluctuations on the bacterial 

swimming speed in a spatial temperature gradient is a challenging task due to the difficulty of 

controlling the swimming direction of bacteria in space. To overcome this problem, we used an 

experimental setup that allows us to change the temperature in a well-controlled manner while 

following the rotational speed of the flagellar motors one at a time.  Using the infrared laser 

apparatus described earlier in subsection 2.2.2, we changed almost linearly the surrounding 

temperature of a bacterium fixed in space by tethering to a glass slide and measured its rotational 

speed as a function of time and temperature. 
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To avoid the effects of changing the rotational direction in response to thermal changes, 

we used the mutant strain whose motors rotate continuously in one direction only. That mutant 

strain of E. coli bacteria VH1 (Δ(cheR cheB cheY cheZ) Δtsr Δ(tar tap) Δtrg Δaer) (123)), 

expressing yellow fluorescent protein (YFP) constitutively were grown at 30°C in 5 mL M9CG 

while shaking at 240 rpm until early exponential phase (OD600=0.1). Cells were centrifuged at 

10,000 rpm for 5 minutes and resuspended in 2 mL tethering buffer (10 mM Potassium 

Phosphate, 0.1 mM EDTA, 67 mM Sodium Chloride, 1 µM L-methionine, and 50 mM glycerol, 

pH=7) (60). The harvested cells were then sheared by gently passing them 33 times through a 

PS#24 gauge syringe, and incubated at room temperature for 30 minutes. The bacteria were 

loaded into channels formed by a microscope glass slide and a cover slip separated by two 

parafilm straps and left at room temperature for 10 minutes to allow the tethering of bacteria to 

the surface. The channels were then flushed gently with one mL tethering buffer to remove 

unattached cells, and the ends of the channel were sealed with epoxy glue. 

The surrounding temperature of each bacterium was then changed by focusing an infrared 

laser (λ=1480 nm) into the sample using a 20X objective (Zeiss 20X, 0.40 LD Acroplan). The 

temperature was changed by changing the laser power through the applied current controlled 

with a custom written LabVIEW software (National Instruments Corporation, Austin TX), which 

allowed us to modulate the temperature as desired (Figure 2.15). At the beginning and end of 

each experiment the speed of the bacteria at room temperature was recorded for 10 second in 

order to determine the change in speed due to damage that might have occurred to the cell as a 

result of the fluorescence imaging. The temperature of the heated region surrounding the tethered 

bacteria was measured using the temperature sensitive dye BCECF. 
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Figure 2.15: Temporal sharp gradient setup 

Heating was applied by focusing an infrared laser (λ=1480 nm) through a 20X objective into the sample, and 

the temperature was changed by changing the laser power through the applied current using a custom 

written LabVIEW (National Instruments Corporation, Austin TX) program. The rotation of tethered 

bacteria (depicted in the dashed panel) was observed with 100X objective via fluorescence microscopy, and 

movies were recorded using a CCD camera (Jenoptik, ProgRes MF) at a rate of 20 fps. The sample 

temperature around the tethered bacteria was measured using the temperature sensitive dye BCECF, whose 

fluorescence decreased with increasing temperature as can be seen in the bottom frame of the dashed panel. 

 

  Rotating tethered cells were observed in fluorescence mode using a Zeiss Axiovert 40 

CFL inverted microscope with 100X microscope objective (Zeiss 100X, 1.3 EC Plan-

NEOFLUAR). Movies of the rotation were recorded with a CCD camera (Jenoptik, ProgRes 

MF) at a rate of 20 fps. The cell’s center of mass in each frame was extracted by ImageJ particle 

analyzer, and the angular velocity between each consecutive frames of the cell’s rotation was 

calculated from the cell’s center of mass and the center of rotation using custom scripts written in 

MATLAB (The Mathworks, Natick, MA). The speed of each bacterium was corrected to account 
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for any decrease caused by the mercury lamp used for fluorescence imaging, by fitting a line to 

the 10 second stable ends of each measurement and subtracting the linear decrease from the data, 

and the data from all bacteria measured were then averaged together. 
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3.0  BACTERIA IN SHALLOW TEMPERATURE GRADIENTS 

Microorganisms such as bacteria sense thermal changes in their environment, and 

respond by changing their swimming pattern to facilitate their migration towards their favored 

region (22, 28, 124–129). As detailed earlier, the five receptor species of E. coli bacteria  are able 

to sense temperature (14, 15, 51–58, 60, 61, 130). The response of each receptor to thermal 

changes is different and depends on the methylation state of the receptor, determined by the 

concentration of the different attractants and repellents in the surrounding medium (51–58).  

The reaction of the receptors to thermal changes facilitates the bacteria’s migration in 

temperature gradients towards their favored temperature. In short, when swimming in a thermal 

gradient, bacteria continuously detect changes in temperature (60, 131) . If they sense an 

improvement in the environmental conditions along their swimming trajectory, they respond by 

extending their swim in that direction (132, 133), a process known as thermotaxis. This response 

occurs almost instantaneously over time scales as short as seconds (134, 135). 

But since thermal cues are processed through the same signal transduction network as 

chemicals, the concentration of different attractants in the cell’s surrounding can alter its 

response to temperature changes by increasing the receptors’ methylation state (51, 53, 56–58). 

For example, at serine concentrations as high as 600M, bacteria do not respond to temperature 

changes (Figure 3.1C), whereas without nutrients in the medium bacteria always go to the high 

temperature (Figure 3.1A).  
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Figure 3.1: The effect of the chemical environment and the steepness of the gradient on the response 

of the bacteria to a temperature gradient 

The temperature gradient was applied by focusing an infrared laser (=1480nm) into the bacterial sample 

(for details see (61)). The background temperature was the room temperature (~24C), and the center spot 

was heated by the laser to a temperature of ~27C in the image labeled “shallow gradient” (making the 

gradient ~0.02C/m), and ~34C in all other images. The graph depicts the fluorescence intensity at the 

center of the heated spot measured as a function of time and normalized by the initial intensity for all the 

experiments described. In motility buffer the bacteria accumulate in the heated spot. In a shallow 

temperature gradient and in a sharp gradient with 600M serine added to the medium, no response is 

detected. When 2mM serine and 3mM aspartate are added to the medium, the bacteria escape from the 

heated region.  
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On the other hand, when serine concentration is increased to 2mM, and aspartate is added 

to a concentration of 3mM, the bacteria escape from the heated region towards lower 

temperature (Figure 3.1D). However, bacterial sensing and responding through this signal 

transduction pathway in general is limited, i.e. bacteria are not able to sense or respond to 

changes, either chemical (124) or thermal, below a certain threshold. In the case of temperature 

for example, when bacteria are exposed to a temperature gradient with steepness less than 

0.02C/m that extends over short distances (~100m), no response or directed migration is 

observed (Figure 3.1B). Such shallow gradients are frequently found in nature, albeit they often 

extend over much longer distances. When encountering such conditions, the response 

mechanism described above will not drive bacteria towards their favored environment. 

The main difference between these two scenarios, i.e. short and long shallow gradients, is 

the distance over which the gradient extends. In the first scenario, the difference in temperature 

between the two extremes of the gradient is too small to cause any significant change in the 

cellular processes. On the other hand, when the gradient extends over long distances of the order 

of magnitude of ~10mm, the difference in temperature that bacteria experience along the 

gradient is as high as 20C. This can in turn cause a significant change in many cellular 

processes.  

Since bacteria have a temperature sensing threshold such that the signal transduction 

mechanism is not able to detect and respond to temperature changes in the environment below a 

certain threshold, one could predict that bacteria would not show directed migration in shallow 

temperature gradients. However, previous studies showed that bacteria in shallow temperature 

gradients actually exhibited thermotaxis and accumulated in the gradient. For instance, Maeda et 

al. in 1976 (14) and Salman et al. in 2006 (15) showed that WT E. coli accumulate around their 
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favored temperature, 35–37 °C in motility buffer and M9CG medium respectively. The former 

experiment was done in a channel impermeable to oxygen, therefore oxygen gradient formed by 

bacterial oxygen consumption would have involved aerotaxis in the process of accumulation. 

The latter experiment was conducted in PDMS, permeable to oxygen, and aerotaxis was 

eliminated. However, in this case, temperature dependent consumption of other nutrients 

available in the testing medium could produce a nutrient gradient, which in turn can lead to the 

observed accumulation. 

When we repeated the same experiment in motility buffer, we surprisingly observed that 

bacteria accumulated at the highest temperature even though that temperature is harmful to them. 

This result implies that the chemical environment affects the migration of bacteria in shallow 

temperature gradients as well as sharp gradients. But the fact that the bacteria migrate to the 

extreme of the gradient and do not accumulate around 37C as predicted by previous studies, 

indicate that this migration is not controlled by the signal transduction network. To test this 

hypothesis we tested a mutant of RP437 bacteria with all sensors deleted (UU2612 (136)). Since 

all the receptors are deleted, chemical and thermal signals received through the receptors cannot 

affect the motor switching (i.e. tumbling rate) and therefore cannot control the swimming pattern 

of the bacteria or their migration’s direction. The UU2612 bacteria were tested in motility buffer 

under linear temperature gradient and found that they move up the gradient (Figure 3.2). This 

observation shows that bacteria can actually migrate in shallow temperature gradients without 

the aid of their signal transduction network.  
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Figure 3.2: Accumulation of UU2612 in MB under shallow temperature gradient 

The concentration profiles of the mutant bacteria UU2612, whose receptors are deleted, in the motility buffer 

measured at different times after applying the temperature gradient. The concentrations were measured as 

explained in Materials and Methods (section 2.0 ). All measurements were normalized by the initial 

concentration at each location. 

  

Thus far, we have shown that in a shallow temperature gradient with steepness below the 

bacteria’s sensing threshold, E. coli bacteria still exhibit a directed migration that occurs over 

timescales as long as tens of minutes. We also showed that the bacterial migration in such 

shallow temperature gradients is affected by the chemical environment. The direction of the 

bacterial migration and their favored environment, however, cannot be attributed to their chemo- 

and thermotaxis system in the classical sense as explained previously, because bacteria lacking 

all of their methyl accepting receptors also exhibit directed migration under such conditions 

(Figure 3.2). 
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In order to understand these results, we note first that temperature and chemicals 

influence the cellular behavior in other regards. Temperature changes the rate of enzymatic 

activity (137–139), biochemical reactions (140–144), proteins’ conformation (145–149) and 

binding affinity (150–152), as well as the viscosity (153, 154) and pH of the environment (155, 

156). Certain chemicals can also affect the rate of enzymatic activity (if they are sources of 

energy), and can change the environment’s pH. In addition, the rotation of the bacterial flagellar 

motors is driven by the flux of protons across the membrane (62, 66, 157). To maintain this flux, 

the cell needs to sustain a pH difference between the interior and exterior of the cell, which in 

turn requires energy (158, 159). Therefore, it is expected that the speed of bacteria would be 

affected by all factors that influence the pH or cellular metabolism, including temperature and 

chemicals. 

To understand how the change in the bacterial swimming speed can lead to an 

accumulation in shallow temperature gradients where temperature sensing is negligible, we 

consider the bacteria as simple random walkers whose run time and speed depend on 

temperature, but the rate of tumbling does not depend on the swimming direction which would 

imply temperature sensing. Schnitzer et al. theoretically analyzed such random walks in one 

dimension. They assumed that during instantaneous tumbles, half of the random walkers switch 

their direction at a rate α and they have speed υ. Defining the right and left moving particles as 

 (   ) and  (   ), flow of particles can be expressed as: 
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   Adding and subtracting Eqn. 3 and Eqn. 4 yields: 
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where       is the local density of particles, and        is defined as     , 

where     particle flux. In the case when both  ( ) and  ( ) have spatial dependence and 

 ( )  ( ) is not constant, Eqn. 5 and Eqn. 6 cannot be described in terms of a generalized 

Fick’s law and a  ( ), since the effects of  ( ) and  ( ) cannot be described by one single 

parameter as  ( ). Nevertheless, under these conditions, analysis of such systems in one 

dimension revealed that the steady-state concentration profile of the random walkers is inverse 

proportional to their speed profile (160, 161), i.e. 

  ( )    

  

 ( )
 Eqn. 7 

In this equation  ( ) and  ( ) are the density and the speed of the random walkers as a 

function of position , whereas    and    are the density and speed at a reference point 

respectively. This suggests that it is possible that the bacterial distribution observed in shallow 

temperature gradient is due to the effect of temperature on the swimming speed of the bacteria. 

To test this hypothesis, we measured, by image-recording, the bacteria’s swimming speed 

as a function of temperature. In addition, since we also observed an effect of the chemical 

environment, we tested the effect of one chemical, for simplicity, on the bacterial swimming 

speed and their behavior in a shallow temperature gradient. Our chemical of choice was serine 

due to the fact that serine is known to be one of few amino acids that allow E. coli to maintain its 

motility under anaerobic conditions (113, 162) and has been shown to change the swimming 

speed of E. coli (163). In addition serine is a strong attractant that is sensed by the most abundant 

chemoreceptor Tsr (61, 164), and it is known to be a rich source of carbon.  
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Our findings, detailed in the following three subsections, show that bacteria migrate 

along shallow thermal gradients due to a change in their swimming speed resulting from the 

effect of temperature on the intracellular pH, which also depends on the chemical environment. 

When nutrients are scarce in the environment, the bacterium’s intracellular pH decreases with 

increasing temperature. As a result, the swimming speed of the bacteria decreases with 

increasing temperature, which causes them to slowly (i.e. compared to active sensing and 

responding) drift toward the warm end of the thermal gradient. However, when serine is added to 

the medium at concentrations >300 mM, the intracellular pH increases causing the swimming 

speed to increase continuously with increasing temperature, and the bacteria to drift toward the 

cold end of the temperature gradient. This directional migration is not a result of bacterial 

thermotaxis in the classical sense, because the steepness of the gradients applied is below the 

sensing threshold of bacteria (Figure 3.1D). Nevertheless, our results show that the directional 

switch requires the presence of the bacterial sensing receptors. This seems to be due to the 

involvement of the receptors in regulating the intracellular pH which will be discussed later. In 

addition, our measurements of the effects of temperature and serine on the swimming speed 

reveal a previously undetected feature. We find that the speed is a two-state function of serine 

concentration and the difference between the two states increases with increasing temperature. 

We are able to describe these results using a simple phenomenological model that separates 

between thermal and chemical effects. 

These findings are the first experimental results that suggest an alternate thermotaxis 

method to the classical signal transduction pathway. They also reveal the importance of the 

physical environment effects on cellular processes in controlling the behavior of 

microorganisms. Finally, the detected change in the intracellular pH, which is seemingly 
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regulated, at least in part, by the chemical- and heat-sensing receptors, could have significant 

consequences to the field of cellular biology due to the importance of pH in regulating many 

cellular and molecular processes.  

 

3.1 THE BEHAVIOR OF BACTERIA IN A SHALLOW TEMPERATURE 

GRADIENT 

We have studied the behavior of the wild-type E. coli bacteria RP437 in a simple 

chemical environment (MB) without any nutrients added, under a shallow temperature gradient 

between ~22 C and ~43 C extending over a distance of 10 mm as described in Materials and 

Methods ( section 2.0 ). Under such conditions the steepness of the gradient is 0.002 C/m. We 

found that the bacteria accumulate at the warm end (Figure 3.3A). However, when serine is 

added to the medium, the direction of bacterial migration in the temperature gradient is inverted. 

At serine concentrations higher than 300M, the bacteria accumulated at the cold end of the 

gradient (Figure 3.3B-C). This response shift is not due to the change in the methylation state of 

the receptors, since at serine concentrations of ~300 - 600M, bacteria lose their ability to sense 

temperature changes (Figure 3.1C).  
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Figure 3.3: The effect of serine concentration on the direction of bacterial migration in a shallow 

temperature gradient 

Examples of concentration profiles of the bacteria, without serine added to the medium (A) and with 

600M serine (B) measured at different times after applying the temperature gradient. The concentrations 

were measured as explained in Materials and Methods (section 2.0 ). All measurements were normalized by 

the initial concentration at each location to allow better comparison of different experiments. (C) The shift of 

the bacterial population’s center of mass (COM) as a function of serine concentration calculated after ~ 45 

minutes from applying the temperature gradient. A positive shift indicates migration to the right (higher 

temperature), whereas a negative shift indicates migration to the left (lower temperature). Each point on the 

graph is the average of at least three different experiments, and the error bars represent the standard 

deviation between experiments. Note that the error bar of the 300M measurement is very large. That is due 

to the fact that some of the experiments exhibited a shift towards higher temperature while in other 

experiments the bacteria migrated towards lower temperature.   
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In addition, when the non-metabolizable form of serine (-methyl-DL-serine) is added to 

the medium, the response is not altered and bacteria accumulated at the hot end of the gradient 

(Figure 3.4).  

 

 

Figure 3.4: The effect of non-metabolizable serine (-methyl-DL-serine) on bacterial migration in a 

shallow temperature gradient 

The concentration profiles of the wild type bacteria RP437 in the motility buffer with 600 µM -methyl-DL-

serine, a non-metabolizable form of serine, measured at different times after applying the temperature 

gradient. The concentrations were measured as explained in Materials and Methods (section 2.0 ). All 

measurements were normalized by the initial concentration at each location. 
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To understand this phenomenon, we recall that if considered as simple random walkers, 

with position-dependent speed and run time, the steady-state distribution of the bacteria in the 

gradient will be inverse proportional to their swimming speed as described in Eqn. 7.  

To test this hypothesis, we measured the bacterial swimming speed as a function of serine 

concentration in the medium at different background temperatures as described in Materials and 

Methods (section 2.0 ).  

 

 

Figure 3.5: The effects of serine concentration and temperature on the bacterial swimming speed. 

The swimming speed of bacteria as a function of serine concentration for different temperatures as 

indicated in the legend. Note that the increase in the speed occurs around the same serine concentration for 

all temperatures. The lines depict the function:  (   )      ( )  
    ( )     ( )

     [ 
(    )

  
]
 with SH  250mM, So  

30mM, and vmin(T) and vmax(T) are temperature dependent functions that represent the speed of the bacteria 

at low and high serine concentration respectively. 
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Our results, presented in Figure 3.5, show that the bacterial swimming speed exhibits a 

sharp increase as a function of the serine concentration for all temperatures. The increase in the 

speed occurs always at ~250M serine and can be described to a very good approximation by a 

sigmoidal function: 

 
 (   )      ( )  

    ( )      ( )

     [ 
    

  
]

 
Eqn. 8 

where vmin(T) and vmax(T) are temperature-dependent functions that describe the speed of the 

bacteria asymptotically at low and high serine concentrations, respectively. 

Fitting this equation to our experimental data results in the values for SH and S0 as 250 

±33 mM and 30 ±11 mM respectively. Even though SH and S0 are assumed to be independent of 

temperature, the speeds of the different modes, i.e. vmin(T) for low serine concentration and 

vmax(T) for high serine concentration, are functions of temperature (Figure 3.6). At high serine 

concentrations the speed increases continuously with increasing temperature, whereas at low 

concentration the speed increases initially with the increasing temperature but decreases when 

the temperature increases above ~30°C. It has been reported that addition of serine to the motility 

medium increases the speed of the bacteria at room temperature (163).  
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Figure 3.6: The speed of bacteria as a function of temperature 

The speed of bacteria is presented as a function of temperature in motility buffer and with 600M serine. 

Each point in these graphs was calculated from few thousands trajectories acquired in at least two different 

experiments.     ( ) was calculated by averaging the speed measured at 0 and 100M serine, whereas 

    ( ) was calculated by averaging the speed measured at 400, 500 and 600M serine.  

 

This increase is not due to widening of the speed distribution, which would indicate an 

increase in the speed of a fraction of the population but rather a shift in the distribution (Figure 

3.7), which suggests that the rotational speed of all flagellar motors increases with the serine 

concentration.  
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Figure 3.7: Speed distribution of bacteria with and without serine 

The black line describes the probability distribution of bacterial speed measured in motility buffer without 

serine, whereas the red line depicts the probability distribution measured in the presence of 600M serine. 

The points are values obtained from experiments at 39 ºC.  

 

The model given by Eqn. 7 implies that the density profile of the bacteria reflects their 

inverse speed profile (Figure 3.8) and suggests a linear relation between bacterial density along 

the gradient and the inverse of their speed as a function of location. Indeed, our results show that 

the bacterial density along the gradient is linearly proportional to the bacterial inverse speed 

(Figure 3.9). This linear relation between the inverse speed profile and the concentration profiles 

suggests that the effect of temperature on the bacterial swimming speed could indeed be the 

driving mechanism of bacterial thermotaxis in shallow temperature gradients, where the 

steepness of the gradient is lower than the sensitivity threshold of the bacteria.  

There is some discrepancy, however, between the model and the experimental data. The 

slope of the linear fit (mexp~3.5, average of MB and serine) to the data presented in Figure 3.9 is 
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higher than what the model predicts (mmodel=1), and the y-intercept is negative instead of being 

zero. This discrepancy could be attributed in part to the fact that in our experiments the bacteria 

are not uniform, but rather they exhibit a wide variability in motility and swimming speed.  In 

addition, our experimental system is not completely closed. The channels, in which the bacteria 

reside, extend 2-3 millimeters beyond the end of the gradient at both ends, where the temperature 

is uniform and constant.  

As a result, bacteria that reach either end of the gradient get trapped in that region due to 

a severe slowing down at cold temperature or death at high temperature, and thus can be 

considered as if they are no longer part of the system.  

 

 

Figure 3.8: Density profile and inverse speed profile comparison 

The concentration profiles in motility buffer without serine and with 600M serine are presented in (A) to 

compare with the profile of the bacterial reciprocal swimming speed presented in (B). Concentration values 

are normalized by the initial concentration and speed values are normalized by the speed at room 

temperature. The linear relation between density profiles shown in A and the inverse speed profiles shown in 

B is presented in Figure 3.9. 

 



 66  

The above described results can explain the observed directional migration of bacteria in 

shallow temperature gradients, with steepness below the bacterial sensing threshold. However, 

the question remains: what is the reason for the different temperature dependence of the 

swimming speed at low and high serine concentrations? 

 

 

Figure 3.9: Linear relation between density distribution and inverse speed of bacteria 

The density of bacteria along the gradient, measured as the total number of cells within a 1mm window, was 

normalized by the density at 28 ºC and these values are plotted as a function of inverse speed which were 

normalized by the speed of bacteria at 28 ºC. The linear relation between normalized speed and inverse 

normalized speed is consistent with the theory presented in Eqn. 7. It is important to note here that our 

experiments never reach a true steady state, because bacteria those reach temperatures >40C die and 

become immobile and therefore are no longer part of the system. This is similar to a situation where the 

system is actually open at one end and has a very small flux out. 
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3.2 THE EFFECT OF SERINE AND TEMPERATURE ON THE BACTERIAL 

MEMBRANE POTENTIAL AND INTRACELLULAR PH 

To answer the question presented at the end of the previous subsection, we invoke the 

fact that the swimming speed of the bacteria is dependent on the rotational speed of the flagellar 

motor. We also consider that the flagellar motor is driven by the proton motive force (PMF), 

which is a combination of the membrane potential and the intracellular-extracellular pH 

difference (165): 

    ( ) [      (
  

 
)   ] Eqn. 9 

where   is the rotational speed of the motor, (f) is a constant that depends on the frictional 

drag coefficient, f,  is the membrane potential, R and F are the gas and Faraday constants, 

respectively, T is the temperature in K, and       (
  

 
)    is the PMF. Therefore, a change 

in the swimming speed of the bacteria is a result of a change in the membrane potential and/or 

the intracellular-extracellular pH difference. 

To determine what changes in the membrane potential and/or pH, are responsible for the 

observed change in the swimming speed, we measured both as a function of temperature and 

serine concentration separately. Figure 3.10 shows that the membrane potential (measured using 

PROPS as described in Materials and Methods (section 2.0 )) changes little when the serine 

concentration is changed, but it increases with the temperature up to ~35C and decreases 

afterwards (see also (120) Fig. 10).  
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Figure 3.10: The effects of serine on the membrane potential 

 (A) The membrane potential of bacteria as a function of serine concentration for different temperatures as 

indicated in the figure legend. Note that the membrane potential is not affected by increase in the serine 

concentration at different temperatures. Dashed lines are averages of the MP at different temperatures (B) 

The Membrane potential of bacteria as a function of temperature at different serine concentrations as 

indicated in the figure legend. The membrane potential increases up to 35 °C and decreases above that 

temperature for all serine concentrations. Dashed line is the average of the temperature series. All 

measurements we carried out as described in Materials and Methods (section 2.0 ).     

 

 

On the other hand, our measurements of the intracellular and extracellular pH, using YFP 

and BCECF, respectively, as described in Materials and Methods (section 2.0 ), show that while 

the extracellular pH is affected by temperature only, the intracellular pH changes with changing 

serine amount as well (Figure 3.11). 
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Figure 3.11: The effect of temperature on the internal and external pH 

The intracellular pH as a function of temperature with and without 600M serine. The pH in both cases is 

almost the same up to 30C, after which it starts increasing with increasing temperature when serine is 

present in the medium and decreasing when no nutrients are added. The extracellular pH on the other hand 

decreases with increasing temperature exactly the same with and without serine as depicted in the inset 

 

 

 Figure 3.12A shows that the intracellular pH exhibits a sigmoid-like behavior as a 

function of serine concentration similar to the behavior detected in the swimming speed (Figure 

3.5). The increase in the intracellular pH occurs around similar values of serine concentration 

~250M, and the difference between the intracellular pH at high and low serine concentrations is 

also temperature dependent as exhibited by the swimming speed.  
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Figure 3.12: The effect of serine on the intracellular pH 

(A) The intracellular pH at different temperatures as a function of serine concentration in the medium, 

measured as described in Materials and Methods (section 2.0 ). (B) The difference between the intracellular 

and extracellular pH as a function of serine at different temperatures calculated using the measurements in 

(A) and Figure 3.11 inset. The lines in the graphs are to guide the reader.   

 

Moreover, the intracellular-extracellular pH difference for low and high serine 

concentrations are almost the same at low temperature up to ~30C, but the difference between 

the two increases for temperatures higher than that (Figure 3.12B).  

In addition, the PMF, calculated using the measurements of the membrane potential and 

pH, shows that at low serine concentration it increases with increasing temperature up to 30C 

and decreases afterwards, while for high serine concentration it continuously increases with 

increasing temperature in good agreement with the measurements of the bacterial swimming 

speed (Figure 3.13 and Figure 3.6 respectively).  
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Figure 3.13: The effect of temperature on the PMF 

The PMF calculated as defined in Eqn. 1 using the measurements of the membrane potential and the pH 

described above in Figure 3.10B and Figure 3.12B, respectively.  

 

Finally, the corresponding speed for our measured PMF is calculated by utilizing the data 

from Gabel et al. (104) and Darnton et al (100). The relationship between the flagellar rotational 

speed and the proton motive force is obtained from (Fig. 2b in (104)) (Eqn. 10a). This 

relationship is combined with the linear relation between the motor rotational speed and the 

bacterial swimming speed obtained from (Fig. 3 in (100)) (Eqn. 10b-c) to get the relation 

between the swimming speed and proton motive force (Eqn. 10d). Using this relation the PMF 

data presented in Figure 3.13 is used to calculate the swimming speed of the bacteria presented 

in Figure 3.14 which is in good agreement with the measured values presented in Figure 3.6.  
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Figure 3.14: Bacterial swimming speed and the PMF 

The corresponding speed for our measured PMF is calculated by utilizing the data from Gabel et al. (104) 

and Darnton et al (100). The relationship between the flagellar rotational speed and the proton motive force is 

obtained from (Fig. 2b in (104)). This relationship is combined with the linear relation between the motor 

rotational speed and the bacterial swimming speed obtained from (Fig. 3 in (100)) to get the relation between 

the swimming speed and proton motive force. Using this relation the PMF data presented in Figure 3.13 is 

used to calculate the swimming speed of the bacteria presented here. Filled circles are experimental data and 

empty circles are calculated using PMF measurements from Figure 3.13. Red: MB + 600 µM Serine, Black: 

MB. 
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Note that the motility medium used in the experiments whose results are given above is 

similar to the medium that we used in our experiments. Since the experimental conditions are 

similar, the relations given in Eqn. 10 are applicable to our results too. 

The change in the intracellular pH detected here (Figure 3.11 and Figure 3.12) is very 

surprising, and it seems contradictory to previous observations of cellular pH homeostasis (166) 

since bacteria have mechanisms to maintain their intracellular pH at a constant level even when 

external conditions change abruptly. However, it is important to note that the MB used in all 

measurements does not contain a carbon source and does not support cellular growth or protein 

production, and therefore, it is possible that the cell in such environment is not capable also of 

regulating and maintaining a stable cytoplasmic environment. As a result, in MB the intracellular 

pH behaves in a similar manner to the extracellular pH and therefore decreases with increasing 

temperature (Figure 3.11 inset). On the other hand, serine as mentioned earlier is known to be a 

bacterial source of carbon that can be used to maintain bacterial motility under anaerobic 

conditions (113, 162). Therefore, when it is added to the medium perhaps the bacteria are able to 

maintain a stable intracellular environment and increase their pH close to its normal values (i.e. 

pH=7.8).  

This increase however, occurs only for temperatures higher than 24C (Figure 3.12) 

possibly because of the reduced rate of metabolism at lower temperature. To further support this 

hypothesis, we have measured the kinetics of pH increase as a function of time after adding 

serine to the medium and compared it to the serine consumption kinetics. Our measurements 

presented in Figure 3.15 show that when serine is added to a bacterial sample, suspended in MB 

and incubated at 37C, at a 600 μM concentration the internal pH increases from ~7.25 to ~ 7.8 

within minutes and the bacteria are able to maintain the internal pH increase for ~ 2 hours.  
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Figure 3.15: Internal pH dynamics upon serine addition 

Intracellular pH increase upon serine addition. Intracellular pH increases from initial value, i.e. 7.25, to ~7.8 

upon addition of serine at a final concentration of 600 μM. The pH increase happens within minutes. The 

observed intracellular pH increase persists for ~ 2 hours and decreases back to the MB values. Dots represent 

measurements at every 20 seconds and lines are the moving average smoothing of the data. The graph 

represents two different experiments for both MB and 600 µM serine addition. Experiments were performed 

at 37 °C. 

 

The length of time that bacteria maintain the internal pH increase is consistent with the 

time required for the bacteria to consume all the serine in the medium (Figure 3.16). The 

hypothesis that internal pH increase is related to metabolism of serine is also supported by the 

fact that this effect is not detected when a non-metabolizable form of serine is used. In order to 

understand the exact mechanism that controls this observed change in the intracellular pH, 

further investigation is required, but these results provide an important insight that can be also 

useful for understanding the mechanism bacteria use to regulate their intracellular pH. 
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Figure 3.16: Serine uptake by bacteria 

Serine uptake by bacteria from medium is measured as described in subsection 2.4.3. Vertical axis represents 

the amount of serine in the medium. 

 

3.3 STOCHASTIC SIMULATIONS OF BACTERIA IN SHALLOW TEMPERATURE 

GRADIENTS 

To further test our theory, we have performed stochastic simulations (SS) of random 

walkers in a temperature gradient with temperature dependent speed and step size. The 

simulations were carried out with the parameters obtained from constant temperature 

measurements in order to compare the simulations with our experimental results. The main point 
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here is that the random walk model we used in the simulations does not include directional 

dependence of tumbling rate which would imply response of the sensory network to the 

temperature changes along the gradient. Thus, the result of the simulations is due to spatially 

dependent speed and run time and there is no contribution from the signal transduction system at 

all. 

 

 

Figure 3.17: Effect of temperature on run time of bacteria 

Run time,     , of bacteria measured by fitting the model 〈   ( )〉     (     (       )) to the mean 

square displacement calculated from the trajectories of swimming bacteria in MB and MB + 600 µM serine. 

Values and dependence to the temperature are similar for both medium and average values of both medium 

are represented. 

 

In each SS, initially 3000 bacteria were distributed randomly along the linear gradient 

which is 10 mm in length (x axis) and 800 μm in width (y axis) so that the initial density is 
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uniform. The temperature gradient was one dimensional along the x direction starting at 23 °C 

and ending at 43 °C. At the beginning of the simulation, each bacterium was assigned to a speed, 

a run time and a run direction in the 2D space. The run time was randomly drawn from a Poisson 

distribution (167) whose mean was determined based on our own measurements presented in 

Figure 3.17. Similarly, the speed was drawn from a lognormal distribution (based on our 

measurements) whose mean and width were estimated from our data presented in Figure 3.6 and 

Figure 3.7 respectively.  

For simplicity we assumed linear speed dependence on temperature for the case with 600 

μM serine, and quadratic dependence for MB. Initially, the run direction, relative to the positive 

x axis, was selected randomly between 0° and 360°. Each bacterium swam with the given initial 

speed and direction during the assigned run time and then tumbled.  

During the tumble, which lasted for a time step, the speed and run time were adjusted to 

the new location and a new direction was assigned randomly from a lognormal distribution 

centered around 62º, with a standard deviation of 26º, relative to the previous run direction (23). 

The time resolution of the simulation was hundred milliseconds. Since the durations of runs are 

about one order of magnitude higher than this time step and we are interested in the density 

profiles of bacteria in time-scales larger than minutes, 100 milliseconds time-step is reasonable 

for the simulation. The boundaries of the channel were considered reflective such that a 

bacterium that hit a wall was reflected with the same speed. The MATLAB (The Mathworks, 

Natick, MA) code for the simulations is included in Appendix B, and the results presented in 

Figure 3.18 exhibit good agreement with our experimental results.  
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Figure 3.18: Stochastic Simulations of WT accumulation in shallow temperature gradient 

The concentration profiles were obtained from stochastic simulations (SS) as explained in the text above. The 

normalized density profiles of the bacteria, without serine added to the medium (A) and with 600M serine 

(B) recorded at different times in SS. All values were normalized by the initial concentration at each location 

to allow better comparison of different experiments.  
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   The simulation results confirm that the bacteria accumulate at the warmer end of the 

temperature gradient in motility buffer (Figure 3.18A) and at the colder end in the presence of 

600 µM serine in motility buffer (Figure 3.18B), consistent with the experimental observations 

presented in Figure 3.3. The agreement between the experiment and the simulation in the 

direction as well as the time courses of the accumulation confirms that the migration of the 

bacteria in shallow temperature gradients is mainly due to the speed modulation by temperature 

changes, not through temperature sensing. 

   

 

Figure 3.19: SS - Linear relation between density distribution and inverse speed of bacteria 

The density of bacteria along the gradient, obtained from SS as the total number of cells within a 1mm 

window, was normalized by the density at 28 ºC and these values are plotted as a function of inverse speed 

which was normalized by the speed of bacteria at 28 ºC. The linear relation between normalized density and 

normalized inverse speed is consistent with the theory presented in Eqn. 7 for both cases of bacteria in MB 

and MB + 600µM serine under shallow temperature gradients.  
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In addition, the linear relationship between the density and the inverse speed presented in 

Figure 3.19 is in good agreement with the theory suggested by Schnitzer et al. in Eqn. 7. 

However, unlike the experiment (Figure 3.8), the slope and the intercept on the y-axis of the 

linear relation in Figure 3.19 (msim ~ 0.8, bsim ~ 0.13, average of the slopes and y-intercepts of red 

and black lines) are close to the values predicted by the theory (mmodel=1, bmodel=0). This is to be 

expected in this case since the stochastic simulations do not include any flux of bacteria into or 

out of the system, as in the case of experiments.  

Allowing bacteria to diffuse in and out of the system (i.e. the 10mm part of the channels 

with the temperature gradient of interest) at the hot end of the shallow gradient makes the 

simulations more realistic, because in our experiments both hot and cold ends are open and 

bacteria are free to swim in both directions. Furthermore, the simulation might become more 

realistic by introducing a decrease in the number of bacteria via death at temperatures above 40 

°C. These two scenarios are simulated using the above described model and code. The 

differences between closed system, the system with the open hot end, and the one with the open 

hot end and where bacteria die above 40 °C with a rate of 2 bacteria/mm/min are shown in 

Figure 3.20. These results indicate that, the decrease in the relative density at the location with 

the highest temperature (i.e. highest inverse speed for the bacteria in MB) presented in Figure 3.9 

can be explained by a flux out of the system, since the simulations in which a flux is introduced 

at the hot end of the gradient produces the observed discrepancy (Figure 3.20).  
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Figure 3.20: Comparison of SS of different scenarios 

The density of WT bacteria along the gradient, obtained from SS as the total number of cells within a 1mm 

window, was normalized by the density at 28 ºC and these values are plotted as a function of inverse speed 

which was normalized by the speed of the bacteria at 28 ºC. The linear relation between normalized density 

and normalized inverse speed is consistent with the theory presented in Eqn. 7 (solid lines), however allowing 

the bacteria to swim in and out of the system at the hot end decreases the density at that location (i.e. the 

point with the highest inverse speed) compared to the closed system (blue and black markers respectively). 

An additional flux out of the system by introducing bacterial death at temperatures above 40 ºC decreases the 

density at the hot end further (red markers).   
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4.0  THE EFFECT OF TEMPERATURE CHANGE DYNAMICS ON THE 

FLAGELLAR MOTOR’S SPEED UNDER HEAVY LOAD 

In the previous section we have shown that the directional migration of bacteria in a shallow 

temperature gradient is driven by speed modulation rather than active response to temperature 

changes sensed by the bacterial sensing receptors. However, in a sharp temperature gradient 

speed modulation might have a contribution to thermotaxis apart from the signal transduction 

system. As explained earlier, bacteria respond to thermal changes by extending the period of 

counter clock-wise rotation (CCW) of their flagellar motors when the temperature changes are 

favorable (52–58, 60). This allows them to extend their run period in the direction of the 

temperature of their preference. However, it is important also to understand how thermal changes 

experienced by bacteria during their excursion in a temperature gradient affect their run speed, 

and their run speed dynamics.  

In addition, the bacterial flagellar motors are small molecular machines which are subject 

to thermal fluctuations that can affect their rotational speed as well as their switching rate. As a 

result, thermal changes will introduce additional noise into the output of the signal transduction 

network that can affect the behavior of the bacteria in a temperature gradient and influence its 

sensing precision. Therefore, it is important to quantitatively measure these effects. Also, the 

dynamics of molecular machines in general can help reveal hidden structural features and 

interactions between the different components that cannot be detected through structural studies 
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alone. In this section we study the effect of temperature dynamics on the rotational speed of the 

bacterial flagellar motor. We begin by measuring the response of the bacterial flagellar motor to 

temporal linear temperature changes applied at different rates and then we study the response of 

the motor to thermal fluctuations with various frequencies.  

The torque generated by the bacterial flagellar motor (BFM) will rotate an attached object 

at a speed such that the viscous drag on the object balances the generated torque. The viscous 

drag on the object (cell body, flagellar bundle, latex bead etc.) determines the load under which 

the motor operates. For a sphere of radius r rotating through its central axis with a speed of Ω in 

a viscous medium with viscosity η the viscous drag will be 8πηΩr
3
. For large objects (r~1µm) 

the load is considered heavy, which corresponds to the plateau region in the torque-speed curve 

of the BFM (Figure 1.4  and Figure 4.5), whereas for relatively small objects (r<0.3µm) the load 

is light, which corresponds to the linear decay region. In our experiments with the tethered cells, 

motors are forced to rotate the cell body. Therefore, our studies were carried out under the heavy 

load which does not completely represent a free swimming bacterium; however it still reveals 

important quantitative information about the internal dynamics of the BFM. 

 

4.1 RESPONSE OF THE FLAGELLAR MOTOR TO LINEAR TEMPERATURE 

CHANGES 

 

Using a focused infrared laser beam (=1480nm) as described in material and methods, 

section 2.4.5 (Figure 2.15), we increased almost linearly the surrounding temperature transiently 
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(Figure 4.1) of a tethered bacterium and measured its rotational speed as a function of time and 

temperature.  

 

 

Figure 4.1: Linear temperature increase & decrease 

The temperature around the rotating bacteria as a function of time was estimated from the change in the 

fluorescence intensity of the BCECF at the center of the image and is plotted for all the signals applied in our 

experiments in (see Figure 2.15). In all experiments, the laser was turned on 10 seconds after the recording of 

the tethered bacterium started. Its power was increased by changing the applied current from zero to 200mA 

gradually over 2, 10, or 30 seconds, or applied as a pulse at 225mA. The applied current was then kept 

constant at 200mA for 10 seconds after which it was decreased back to zero at the same rate of increase. The 

recording of the bacteria’s rotation continued for another 10 seconds after the laser power reached zero. For 

time axis, use top for pulse and 2s (red), and bottom for 10s and 30s (black).   

 

Our measurements were carried out for several rates of increase and decrease but always 

starting from an initial steady state at room temperature, and allowing the motor’s rotational 
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speed to reach steady state at the highest temperature applied before starting to decrease the 

temperature (Figure 4.2). To avoid the effects of changing the rotational direction in response to 

thermal changes, we used the mutant strain VH1 (123) whose motors rotate continuously in one 

direction only (see section 2.4.5 for experimental details).  

  

Figure 4.2: The motor’s rotational speed as a function of time 

Grey dashed lines depict the rotational speed of different bacteria. Black thick lines depict the averages of 

each set of experiments. The speed at room temperature was subtracted from each curve. The number of 

bacteria recorded for temperature increases as a pulse and over periods of 2, 10, and 30 seconds are 46, 59, 

62, and 54 respectively. Arrows indicate where the laser power started to increase.  

 

Notice that we have used speed increases for analysis rather than relative speed (i.e. 

speed increase relative to the background). Since the temperature increase and decrease happens 

within seconds, we assume that the internal pH and membrane potential do not change during the 

process (see section 3.2). Taking these quantities as constants from Eqn. 9, we can express the 
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speed of the bacteria as  (  )        . Here   is the angular speed in Hz,    is the 

temperature difference from room temperature (i.e.           ),    is the angular speed at 

room temperature, and c is a constant that depends on the viscosity of medium, size of the 

bacteria, pH difference, and gas and Faraday constants. Since these quantities are the same for all 

temperature increase and decrease rates one would expect that the increase in the average speed 

of the population relative to the speed at room temperature should be the same. Indeed, that 

claim is verified by looking at the distribution of speed increase in Figure 4.2 and Figure 4.3. 

 

 

Figure 4.3: Distribution of maximum speed increase with respect to room temperature speed 

The initial speed values are subtracted from the ones at the steady state after linear temperature increase for 

each bacterium, and histograms were calculated for each linear increase rate. Speed increase distributions for 

pulse, 2, 10, and 30 sec are represented with black, red, green, and blue curves. Using speed increase for 

statistics and calculations is reasonable since speed histograms are consistent.  
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Our measurements show that when we increase the surrounding temperature from room 

temperature (~23C) to ~34C and decrease it back to room temperature, the motors’ rotational 

speed changes with temperature during both, its increase and decrease, and the rotational speed 

of all motors at the beginning and end of all measurements is similar. Moreover, at all  rates of 

the temperature change (~0.3C/s, ~1C/s, ~5C/s, ~10C/s), the speed decreases with the 

temperature in almost an identical fashion to its increase and maintains an almost linear 

dependence on temperature (Figure 4.4).  

 

 

Figure 4.4: The average rotational speed of the flagellar motors as a function of temperature 

The gray, orange, light green, and light blue lines depict the speed dynamics as the temperature increases, 

while the black, red, dark green and dark blue lines depict the speed dynamics as the temperature decreases 

for the different time periods over which the temperature increase occur, pulse, 2s, 10s, and 30s respectively.   

Notice that the rotational speed of the flagellar motors appears to be almost linear with temperature in both 

directions of change.   
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Amazingly, our results show that, under the heavy load the response of the motor to 

thermal changes is instantaneous without any delay (Figure 4.4). In other words, the change in 

the motors’ speed in response to changes in temperature does not depend on the rate of 

temperature increase or decrease within the rates that we have tested. However there might be 

some phase shift in the response of the BFM to temperature changes, nevertheless we do not 

observe that due to limitations of our data acquisition and experimental precision. The 

instantaneous and linear response is not a surprising result, and it is what would be expected 

from previous studies performed under steady state. Under a heavy load the speed of the motor is 

limited to the low frequency range, where the torque is almost constant as a function of the 

motor’s speed (104). As a result, the change in the rotational speed of the motor as a function of 

temperature will be mostly due to the change in the medium’s viscosity, which is instantaneous. 

However, there is a need to extend this study to rotation under light load and higher rotational 

speed. Under light load and high rotational speed, the torque will change significantly as a 

function of speed. In addition, the speed-torque relationship is temperature dependent (Figure 

4.5) (66).  

Therefore, under light load, when changing the temperature, both speed and torque will 

change and the dynamics of this change will not necessarily follow the steady-state curve. The 

rotational speed dynamics as a function of temperature under these conditions will reflect the 

dynamics of the torque generating components of the motor. 
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Figure 4.5: Torque-Speed curve 

The torque-speed curve for the flagellar motor of E. coli shown at three temperatures (thick lines), together 

with two load lines (thin lines), one for an object the size of the cell body of wild-type E. coli (effective radius 

about 1 m, H. L.), the other for a mini-cell (effective radius about 0.3 m, L. L.). Figure reproduced from 

Berg et al. 2003 (66). 

 

The bacterial flagellar motor is a complex machine assembled of many components that 

interact together in an orchestrated manner to result in the rotation observed. From the curves 

presented in Figure 4.5, it is obvious that these interactions and their results are temperature 

dependent (62, 66, 168). However, the transition dynamics from one temperature-dependent state 

to another is not a priori known, and it could be different in different directions of change. It is 

very important to study such dynamics as a function of the rate of change of temperature, as the 

results will allow us to better understand the response of bacteria to different temperature 

gradients, with different steepness, and as a function of the swimming direction of the bacteria in 

the gradient. In addition, the results of this study could reveal hidden mechanisms of interactions 

that are not reflected in the steady-state behavior. 
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Finally, even though our results in this section do not reveal new features of the motor, 

the technique used here for the first time has proven to be successful and can be easily used in 

the future to study the rotation of the flagellar motors under light load.  

4.2 SPEED DYNAMICS UNDER OSCILLATING TEMPERATURES 

To better understand how the bacterial motor’s speed responds to thermal changes and 

whether its response depends on the rate of change of the temperature, we used the infrared laser 

setup described earlier in subsection 2.4.5 to apply sinusoidal temperature oscillations to tethered 

bacteria.  

Using the LabVIEW (National Instruments Corporation, Austin TX) software we 

controlled the laser’s input current and changed its output power at the desired frequency. The 

maximum current applied was carefully adjusted for each frequency such that the maximum 

temperature of the bacterial surrounding be the same for all frequencies, and the background 

temperature remains constant at ~30C (Figure 4.6A). We have carried out these measurements 

for different temperature amplitudes as can be seen in Figure 4.6B. 
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Figure 4.6: Oscillating Temperature Profile and Amplitudes 

Fluorescence of the BCECF (see Material and Methods (section 2.0 for details) and amplitudes of 

temperature oscillations. (A) The fluorescence of temperature sensitive dye BCECF (left axis) and 

corresponding temperature values (right axis) of the medium at the laser spot as a function of time (black 

curve). Fluorescence values are w.r.t. the background. Each oscillation was driven for 10 seconds. 

Background temperature of the laser spot is set to ~30°C. Amplitudes of the temperature oscillations were 

calculated by fitting sinus functions (red curves) to each 10 second windows. (B) Measurements of A with 

more datasets. Amplitude of the temperature oscillations were kept fixed for the same experiment and six 

different temperature amplitudes were tested (i.e. 0.7, 1.3, 3.4, 4.5, 5.5 and 6.5 °C). The dashed lines in (B) are 

hand-drawn to guide the reader. 
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The oscillations in temperature were applied after the bacterial rotation was recorded at 

the background temperature for 10 seconds, and each frequency was applied for 10 seconds 

while the rotation was continuously recorded. The speed of the motor’s rotation was calculated 

then from these recordings. A typical speed measurement for several frequencies at fixed 

temperature amplitude is presented in Figure 4.7.  

 

 

Figure 4.7: BFM Speed in Response to Oscillating Temperature 

Speed of bacteria in response to the temperature oscillations. Speed of a single bacterium vs. time in response 

to the applied temperature change as in Figure 4.6A with frequencies listed in the figure. Amplitude of the 

temperature oscillations is 3.5 ºC. 

 

We have measured the amplitudes of the speed oscillations by fitting a sinusoidal 

function to each 10 seconds window of different frequencies. The relative amplitude values with 

respect to the background speed were calculated by dividing the speed amplitude at one 

frequency with the average background speed at that frequency, i.e.         
  

⁄ .  
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Figure 4.8: BFM speed amplitude response to temperature oscillation frequency 

Relative amplitudes (        
  

⁄ ) of the speed oscillations are calculated by fitting sinus functions to each 

10 second window and dividing the obtained amplitudes with background speed. Relative amplitudes of a 

single experiment set are normalized with the relative amplitude at 0.2 Hz, and normalized relative 

amplitudes are averaged for all experiments. Error bars are standard deviation of relative amplitudes of 

different experiments. Average normalized relative amplitude increases as the oscillation frequency increases 

up to 3-4 Hz and decreases sharply above a “resonance frequency” (black circles). The black line is the fit of 

model described in Eqn. 11. Comparison with the speed histogram (red bars) confirms that bacterium-

surface hydrodynamic interactions is not the cause of the observed resonance.  Use left axis for normalized 

relative speed amplitudes and right axis for speed histogram. 

 

In order to eliminate the effects of different temperature amplitudes and cell-culture 

variability on rotational speed, we normalized the relative speed amplitudes of a single 

measurement set with the relative amplitude at the lowest frequency (0.2 Hz) in the same set, so 

that we could compare different experiments.  

Our measurements show that the amplitude of the speed oscillations in response to 

temperature exhibits a peak around 3-4 Hz with a sharp decay above 4 Hz (Figure 4.8). It is 
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important to note here that the observed resonance peak is not due to the interaction of the cells 

with the glass surface. If for instance, the cell is tethered unevenly to the surface then it is 

expected to slow down at fixed points when it is rotating. Therefore surface interactions would 

cause the rotation speed to be modulated with the rotation rate which would make the resonance 

frequency the same as the rotation rate. To verify this is not the case, we compared the rotational 

speed histogram with the oscillation amplitudes (Figure 4.8 red bars). As evident there, the 

majority of the cells tested have a rotation rate different from the resonance peak frequency.  

This result was also confirmed by calculating the power spectra of the rotational speed in 

response to the different frequencies. As can be seen in Figure 4.9 and Figure 4.10, the response 

is indeed maximal in the same frequency range observed before (3-4 Hz). This behavior is 

characteristic of forced damped harmonic oscillators, which exhibit resonance when driven at its 

natural frequency. Indeed, we were able to fit the response amplitude of the rotational speed to 

the function: 

 
   ( )   

 

√   (  
    )

 
      

   
Eqn. 11 

This function describes the amplitude dependency of a damped-forced harmonic 

oscillator to the driving factor. Here, f is the temperature oscillation frequency and it is the 

independent variable, whereas A, B, fo, and β are fitting parameters. A (59.001±15.2 Hz
2
) is a 

constant to fit the model to the normalized data, B (0.49±0.09) is a constant to account for 

background amplitude fluctuations, fo (4.01±0.21 Hz) is the natural oscillation frequency of the 

motor and β (8.30±1.37 Hz) is a parameter associated with damping.    
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Figure 4.9: Power spectra of rotational speed of bacteria under oscillating temperature 

Power spectral analysis of rotational speed of bacteria under oscillating temperature with amplitude of 6.5 

ºC. The frequency of the temperature oscillation is shown on top of each graph. Thin orange lines represent 

the speed power spectra of individual bacteria. Thick red curves with circular markers are the average of all 

individual power spectra representing the average behavior. In order to eliminate the rotational speed 

oscillations which are not driven by the temperature oscillations, time series of rotational speed of bacteria 

are aligned by shifting them to get in phase with respect to the driving frequency and then averaged. The 

black curve represents the power spectra of the averaged time series of the speed of the bacteria which is 

aligned with the driving frequency. The resonance peak is evident in individual power spectra and average of 

all. 
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Figure 4.10: Power Spectra Amplitude of BFM rotational speed 

Average of power spectra calculated from speed of bacteria as response to oscillating temperature with 1.3 ºC 

amplitude. Each curve represents average power spectrum of one frequency. The resonance peak around 3-4 

Hz is evident in each spectrum and the driving oscillation corresponding to resonance frequencies are 

amplified. Dashed red line is hand drawn and guide for the reader.  

 

To understand how such a behavior can be observed in the response of the motor’s speed 

to thermal oscillations, let us remember that the bacterial flagellar motor is a complex machine 

assembled of many components that interact together in an orchestrated manner to result in the 

rotation observed. Due to the complexity of the motor, the interactions between the different 

components can exhibit various states, at each of which BFM can have a different rotational 

speed. Thermal fluctuations can lead to transitions between these states with distinct frequencies. 

Thus, a possible explanation to this behavior can be the internal kinetics of the BFM which is a 

result of the collective dynamics of all different parts that compose the motor. Driving the 

motor’s rotation at frequency that corresponds to one of its natural modes will result in a 

resonant response like behavior as exhibited by our results. It is important to note here that 
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identifying these frequencies can help reveal the mechanism controlling them and the various 

states that the motor exhibits.  

To further test this hypothesis, we have performed spectral analysis of long and fast 

recordings (900 frames/second) of bacterial rotational speed at steady state (Figure 4.11A). If 

indeed the resonant response of the rotational speed to thermal oscillations is due to natural 

modes of oscillations exhibited by the motor, then these oscillations should be observed in the 

power spectrum. The result of this analysis, presented in Figure 4.11B, shows that indeed the 

rotational speed of the flagellar motor exhibits oscillations at a wide range of frequencies. The 

data presented here was obtained from one bacterium. However, different bacteria exhibit 

slightly different frequencies, and while their frequency and amplitude can change slightly from 

cell to cell, their order of magnitude is about the same. The data presented in Figure 4.9 on the 

other hand is the average response of hundreds of bacteria, which can lead to eliminating 

oscillations that appear in individual cells and amplify only the ones that appear in most cells.  

Similar oscillations to the ones observed here in the rotational speed were reported in the 

past by other groups as well. Kara-Ivanov et al. reported two ranges of oscillations, slow (0.15-

1.2 Hz) and fast (1.7-25 Hz) (169). They speculated that the slow fluctuations might be due to 

the local mechanical oscillations and incomplete switching of the motor, whereas fast 

fluctuations they attributed to association-disassociation of torque generating units and 

fluctuations in the proton occupancy of the force generating units. However, the very fast 

oscillation (>100 Hz) that we observe here, they did not report, probably due to measurement 

limitation.    
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Figure 4.11: Speed oscillations of free rotating tethered bacteria 

(A) The speed of free rotating tethered bacterium at room temperature captured at 900 fps. The average 

speed is subtracted from the data in order to calculate the amplitudes of the oscillations around the 

background speed using power spectral analysis which is represented in (B). BFM has natural oscillations 

occurring at low frequencies from 0.01 Hz up to hundreds of Hz. Inset: The magnified view of A between 10 

and 10.1 seconds.   
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As a mechanical motor the BFM has a wide dynamical range that it can respond to 

environmental changes and driving factors. In addition, it can respond better to and amplify the 

effect of certain driving frequencies corresponding to its natural frequencies. These natural 

frequencies may arise due to motor’s physical structure and the overall effect of the protein 

elasticity, coupling strength of torque generating units to rotor, duty ratio of stators, and MP and 

pH homeostasis capacity of the cell.  

Despite the vast knowledge of its physical and biochemical properties, information about 

the origin of the noise in the rotational speed of the bacterial flagellar motor and the response of 

the motor to fast environmental changes that can influence its rotational speed is still lacking. 

Our results presented here, are the first to report resonance in the response of the motor’s 

rotational speed to environmental fluctuations. These results also reveal the importance of 

understanding the internal kinetics of the motor for characterizing its response to environmental 

changes, and can be used as a first step for future studies aiming at understanding the nature of 

mechanical interactions within the motor.  
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5.0  SUMMARY AND CONCLUSIONS 

Temperature is one of the most important factors that influence living organisms. All 

biochemical reactions are affected by temperature, and therefore, it is important for all living 

organisms to maintain a stable body temperature optimal for their survival. Multicellular 

organisms are generally able to regulate their body temperature, and thus are able to thrive in a 

wide range of temperatures. On the other hand, single-cell microorganisms whose body 

temperature is set by the environment strive to migrate towards regions where the temperature is 

optimal for their growth and metabolism. For that purpose, single-cell microorganisms, such as 

E. coli bacteria have developed sensory networks that allow them to sense and respond to 

thermal cues and direct their migration towards their favored environment. However, active 

response is not the only mechanism whereby bacteria can migrate in a temperature gradient.  

We have shown here that in a shallow temperature gradient, where bacteria are not able 

to respond to changes in temperature along their run path through the known chemotaxis and 

thermotaxis signal-transduction pathway, they still exhibit a directed migration along the 

temperature gradient. This migration we find is due to the effect of temperature on the bacterial 

swimming speed. Since bacteria spend more time where their speed is lower they tend to 

accumulate in that region. Moreover, we find that the direction of bacterial migration is affected 

by the concentration of serine in the environment. Our results show that the bacterial swimming 

speed increases with the serine concentration following a sigmoidal function with constant 
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kinetic parameters, SH and S0 (Figure 3.5), and a temperature dependent minimum and maximum 

speeds, vmin(T) and vmax(T). The temperature dependent nature of vmin(T) and vmax(T), at high and 

low serine concentration respectively, is the reason for the change in the direction of bacterial 

migration. We also find that the difference observed between vmin(T) and vmax(T) is due to the 

increase in the bacteria’s intracellular pH caused by serine at high temperature.  

 

 

Figure 5.1: Behavior of UU2612 in MB + 600µM Serine under shallow temperature gradient 

The concentration profiles of the mutant bacteria UU2612, whose receptors are deleted, in the motility buffer 

with 600µM serine measured at different times after applying the temperature gradient. See Materials and 

Methods (section 2.0 ) for measurement details. 
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A question that these results immediately raise is whether receptor-less bacteria respond 

similarly to such temperature gradients under the same chemical conditions. Since the bacteria’s 

temperature sensing ability is negligible under shallow gradients there should not be a difference 

in terms of accumulation direction between WT bacteria and receptors deleted bacteria. As we 

stated previously, indeed the mutant strain bacteria UU2612 (136) lacking all chemoreceptors 

migrate towards high temperature in MB (Figure 3.2). However, when serine is added to the 

medium, we do not observe a similar migration towards low temperature (Figure 5.1). This could 

indicate that the observed migration towards low temperature is not a result of the speed 

dependence on temperature but rather due to direct sensing of the temperature gradient via the 

chemoreceptors. Yet, measuring the change in the intracellular pH of this mutant strain as a 

function of temperature and serine, reveal that the intracellular pH does not exhibit a similar 

behavior. Our results show that in the absence of the all chemoreceptors, the intracellular pH 

decreases with increasing temperature similarly with and without serine in the medium (Figure 

5.2).  

Tsr, alongside Tar and Aer, have been shown to respond to changes in the intracellular 

pH (170–172). However, this is the first observation that suggests that the chemoreceptors might 

be involved in regulating the intracellular pH, as well. The mechanism underlying the 

intracellular pH regulation and the role of the receptors in this process are still unclear. 

Nevertheless, this finding is very important as it suggests that the chemoreceptors could be 

involved in alternate signal transduction pathways different than the one already known.  

 

 



 103  

 

Figure 5.2: The effect of temperature on the internal pH of UU2612 

The intracellular pH of all receptors deleted mutant (UU2612) as a function of temperature with and without 

600M serine. The pH in both cases is almost the same which decreases with increasing temperature. 

 

In conclusion, our results show that there is more than one way for bacteria to sense 

temperature gradients (173). When the temperature gradient is not steep enough to be detected 

by the classical bacterial signal transduction pathway, the change in the speed (as a result of 

changes in the intracellular pH, which also seems to be regulated by the chemoreceptors) allows 

the bacteria to migrate in such environments. This improves the ability of bacteria to respond to 

thermal gradients. 

In addition, we have studied the response of the BFM rotational speed to fast thermal 

changes. We found that under heavy load, the motor responds to linear thermal changes 

instantaneously and without any delay. Under heavy load, the change in rotational speed was 
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shown to be mainly due to changes in the medium’s viscosity. Since this change is fast, the speed 

as well follows the temperature at the same rate. However, when subjected to thermal 

oscillations, we find that the speed’s amplitude depends on the oscillation’s frequency. The 

response of the motor exhibits resonance with the driving factors at frequencies in the range of 

~3 – 4 Hz. This result is characteristic of driven damped oscillators, which indicates that the 

motor has natural oscillations that can be amplified through external driving forces. This was 

also supported by the spectral analysis of the motor’s rotational speed, which reveals that indeed 

the BFM has several natural frequencies. These frequencies can be due to the complex 

interactions among the different components forming the motor, which can have different states 

and corresponding rotational speed.  
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APPENDIX A  

TEMPERATURE APPARATUS DRAWINGS 

In this appendix I provide the design details of the apparatuses used for applying shallow and 

sharp temperature gradients respectively.   

A.1 LINEAR SHALLOW GRADIENT APPARATUS 

Table 5.1. Linear temperature gradient parts list 

Part Name Material Quantity Note 

Heat Sink Base Aluminum 1 Machined 

Heat Sink Lid Aluminum 1 Machined 

Plastic Insulation Layer Plexiglas 1 Machined 

Peltier Device - 2 Custom Thermoelectric 

Copper Plate Copper 2 Machined 

Microscope Glass Slide Glass 1 Fisher Scientific, 25x75x1 mm 

Plastic Base Plexiglas 1 Machined 
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Figure A.1: Linear temperature gradient apparatus - exploded view 
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Figure A.2: Linear temperature gradient apparatus - heat sink base 
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Figure A.3: Linear temperature gradient apparatus - heat sink lid 
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Figure A.4: Linear temperature gradient apparatus - copper plates, peltiers, and plastic insulation layer 
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Figure A.5: Temperature gradient apparatuses - plastic base plate 

 



 111  

A.2 SHARP TEMPERATURE GRADIENT APPARATUS 

 

 

Table 5.2. Sharp temperature gradient parts list 

Part Name Material Quantity Note 

Heat Sink Aluminum 2 Machined 

Peltier Device - 2 Custom Thermoelectric 

Copper Plate Copper 1 Machined 

Microscope Glass Slide Glass 1 Fisher Scientific, 25x75x1 mm 

Plastic Base Plexiglas 1 Machined 
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Figure A.6: Sharp temperature gradient apparatus - exploded view 
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Figure A.7: Sharp temperature gradient apparatus - heat sink 
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Figure A.8: Sharp temperature gradient apparatus - copper plate 
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APPENDIX B 

STOCHASTIC SIMULATIONS OF THE BACTERIAL BEHAVIOR IN SHALLOW 

LINEAR TEMPERATURE GRADIENT 

The MATLAB (The Mathworks, Natick, MA) code used to simulate the behavior of WT bacteria 

in shallow temperature gradients is provided below with detailed explanations.  

B.1 MAIN CODE 

% if there is no comment next to the line the one below it is the  

% explanation 
% MB stands for Motility Buffer and Ser stands for MB + 600 µM Serine 
clear;          % clears all the data on the workspace  
close all;      % closes all open graphs 
clc;            % clears the command window 
T = 3;          % (Hour) total time for calculation 
N= 3000;        % number of bacteria in the channels 
L = 10;         % (mm) the length of the channels 
b = .8;         % (mm) the width of the channels 

aspectvec = [4 1 1];    % plot box aspect ratio 

xmb = L.*rand(N,1);        
% (mm) (MB) the vector containing x coordinate of each bacterium.  

% Randomly distributed 
ymb = b*rand(N,1);         
% (mm) (MB) the vector containing y coordinate of each bacterium.  

% Randomly distributed 
thetamb = 360*rand(N,1);   
% (degree) (MB) the vector containing angle value of each bacterium.  

% Randomly distributed 
xser = L.*rand(N,1);        



 116  

% (mm) (Ser) the vector containing x coordinate of each bacterium.  

% Randomly distributed 
yser = b*rand(N,1);         
% (mm) (Ser) the vector containing y coordinate of each bacterium.  

% Randomly distributed  
thetaser = 360*rand(N,1);   
% degree) (Ser) the vector containing angle value of each bacterium.  

% Randomly distributed 
 

% initially all bacteria are running 
tstep = .1;         % time step (sec) 
NT=T*3600/tstep;    % number of calculation steps 
xedges=[0:.5:L];    % bin locations for histogram 
t= 0;          % initiate the simulation time   
rtibacmb = zeros(N,1);       
% the vector containing run durations of each bacterium. Memory pre-allocated  
rtibacser = zeros(N,1);          
% the vector containing run durations of each bacterium. Memory pre-allocated 

t2rec = 1*60*1/tstep;         % set recording time steps (min*60*sec/tstep) 
datasize = fix(NT/t2rec); % calculate data recording size for memory 

% allocation 
xoutmb = zeros(N,datasize);   % (MB) initiate the data matrix for recording x 

% coordinates 
youtmb = zeros(N,datasize);   % (MB) initiate the data matrix for recording y 

% coordinates 
tvec = zeros(1,datasize);     % initiate time vector for recording 
xoutmb(:,1) = xmb;      % (MB) write the initial x coordinates for time 0 
youtmb(:,1) = ymb;      % (MB) write the initial y coordinates for time 0 
tvec(1) = 0;            % write time 0 
xoutser = zeros(N,datasize);   % (Ser) initiate the data matrix for recording 

% x coordinates 
youtser = zeros(N,datasize);   % (Ser) initiate the data matrix for recording 

% y coordinates 
xoutser(:,1) = xser;    % (Ser) write the initial x coordinates for time 0 
youtser(:,1) = yser;    % (Ser) write the initial y coordinates for time 0 
ind1 = 1;   % initiate recording index 

  
% Now initialize initial running parameters  
Tempmb = pos2temp10mmTiTf(xmb,22,43);                 
% (ºC)(MB) calculates the temperatures at each location of the bacteria  
Speedmb = Speed_MB(Tempmb)./1000; 
% (µm/sec)(MB) calculates the speed values of each bacterium  

% (convert to mm/sec) 
t2tumblemb = temp2tc_MB(Tempmb); 
% (sec)(MB) calculates the run durations of each bacterium 
Tempser = pos2temp10mmTiTf(xser,22,43); 
% (ºC)(Ser) calculates the temperatures at each location of the bacteria  
Speedser = Speed_Ser_600(Tempser)./1000; 
% (µm/sec)(Ser) calculates the speed values of each bacterium  

% (convert to mm/sec)         
t2tumbleser = temp2tc_MB(Tempser); 
% (sec)(Ser) calculates the run durations of each bacterium         
 

% set lognormal turn angle parameters 
mang = 62;      %mean turn angle is 62 degrees 
varang = 26;     
%variance of the turn angle distribution is 26 degrees, from Berg Nature 1972 
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mu = log(mang^2/sqrt(varang+mang^2));   %lognormal parameter 
sigma = sqrt(log(varang/mang^2+1));     %lognormal parameter  
figure;         % open a graph window 
pause(1)        % pause 1 sec to make it full screen manually 

 

for n=1:NT       
rtibacmb = rtibacmb + tstep;       
% (MB) increase the timer of each bacterium by time step 
rtibacser = rtibacser + tstep; 
% (Ser) increase the timer of each bacterium by time step 
for i = 1:N 
 % do calculations for MB             
      if rtibacmb(i) <= t2tumblemb(i)             % "run" mode 
   % update x and y coordianets     
       xmb(i) = xmb(i) + Speedmb(i)*tstep*cosd(thetamb(i)); 
       ymb(i) = ymb(i) + Speedmb(i)*tstep*sind(thetamb(i)); 
   % check boundaries and return exiting bacterium 
       if ymb(i) < 0, 
        ymb(i) = abs(ymb(i)); 
             thetamb(i) = thetamb(i) + 180; 
       elseif ymb(i) > b, 
             ymb(i) = 2*b - ymb(i); 
             thetamb(i) = thetamb(i) + 180; 
       end 
       if xmb(i) < 0, 
             xmb(i) = abs(xmb(i)); 
                  thetamb(i) = thetamb(i) + 180; 
            elseif xmb(i) > L, 
                  xmb(i) = 2*L - xmb(i); 
                  thetamb(i) = thetamb(i) + 180; 
            end 
 else              % "tumble" mode 
thetamb(i) = thetamb(i) + getdirbac(randi(2,1,1))*lognrnd(mu,sigma);        
% select another direction 

Tempmb(i) = pos2temp10mmTiTf(xmb(i),22,43);  
      % determine the temperature at the new location 
      t2tumblemb(i) = poissrnd(tumbf*temp2tc_MB(Tempmb(i)));       
      % calculate the run duration for the bacterium, draw from random 

% Poisson ditribution 
      rtibacmb(i) = 0;           % reset the timer for the bacterium 
      vm = Speed_MB(Tempmb(i));  % calculate the mean speed at that  

 % temperature 
      mus = log(vm)-0.832^2/2;    
      % calculate the mu with sigma = .832 (obtained from experimental  

 % data lognormal fit) 
      Speedmb(i) = lognrnd(mus,0.832)/1000; 
      % calculates the speed value of the bacterium (convert to mm/sec) 
   end       

% do the calculations for Serine   
      if rtibacser(i) <= t2tumbleser(i)             % "run" mode 
  % update x and y coordianets 
      xser(i) = xser(i) + Speedser(i)*tstep*cosd(thetaser(i)); 
      yser(i) = yser(i) + Speedser(i)*tstep*sind(thetaser(i)); 
  % check boundaries and return exiting bacterium 
      if yser(i) < 0, 
       yser(i) = abs(yser(i)); 
            thetaser(i) = thetaser(i) + 180; 
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elseif yser(i) > b, 
       yser(i) = 2*b - yser(i); 
            thetaser(i) = thetaser(i) + 180; 
      end 
      if xser(i) < 0, 
       xser(i) = abs(xser(i)); 
            thetaser(i) = thetaser(i) + 180; 
      elseif xser(i) > L, 
       xser(i) = 2*L - xser(i); 
            thetaser(i) = thetaser(i) + 180; 
      end 
  else    % "tumble" mode 
 thetaser(i) = thetaser(i) + getdirbac(randi(2,1,1))*lognrnd(mu,sigma);        
 % select another direction 
  Tempser(i) = pos2temp10mmTiTf(xser(i),22,43);  
     % determine the temperature at the new location 
      t2tumbleser(i) = poissrnd(tumbf*temp2tc_MB(Tempser(i))); 
      % calculate the run duration for the bacterium, draw from random  

 % Poisson distribution 
      rtibacser(i) = 0;  % reset the timer for the bacterium 
      vm = Speed_Ser_600(Tempser(i));     % calculate the mean speed at 

% that temperature 
      mus = log(vm)-0.832^2/2;               
     % calculate the mu with sigma = .832 (obtained from experimental  

 % data lognormal fit) 
      Speedser(i) = lognrnd(mus,0.832)/1000;            
      % assign the new speed (convert to mm/sec) 
  end 

end 
t = t + tstep;              % update the global timer by time step 
numxmb=histc(xmb,xedges);       % estimate the histogram for MB 
numxser=histc(xser,xedges);     % estimate the histogram for Ser 
if 0    % change to 1 in order to view bacterial motion at each step  

subplot(2,2,1)  % (MB) plot location of bacteria in the channels 
plot(pos2temp10mmTiTf(xmb,22,43),ymb,'k.') 

      xlabel('T(C)') 
      ylabel('y(mm)') 
      title('Motility Buffer') 
      axis([22 43 0 b]) 
      pbaspect(aspectvec) 
      subplot(2,2,3)  % (MB) plot the total number of bacteria at each  

 % half mm 
      bar(xedges,numxmb,'histc') 
      xlabel('x(mm)') 
      ylabel('number/bin') 
      title(t2str(t)) % display time as title 
      axis([0 L 0 300]) 
  subplot(2,2,2)  % (Ser) plot location of bacteria in the channels 
      plot(pos2temp10mmTiTf(xser,22,43),yser,'k.') 
      xlabel('T(C)') 
      ylabel('y(mm)') 
      title('MB + 600uM Ser') 
      axis([22 43 0 b]) 
      pbaspect(aspectvec) 
      subplot(2,2,4)  % (Ser) plot the total number of bacteria at each  

 %half mm 
      bar(xedges,numxser,'histc') 
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      xlabel('x(mm)') 
      ylabel('number/bin') 
      title(t2str(t)) 
      axis([0 L 0 300]) 
      pause(.0001)        % wait 0.1 ms to let graph refresh 
end 
% do the data and image recordings at defined times by t2rec 
if rem(n,t2rec)==1       %min*60*sec*10 
 ind1 = ind1 + 1; 
      xoutmb(:,ind1) = xmb;   % (MB) record x coordinates 
      youtmb(:,ind1) = ymb;   % (MB) record y coordinates 
      xoutser(:,ind1) = xser; % (Ser) record x coordinates 
      youtser(:,ind1) = yser; % (Ser) record y coordinates 
      tvec(ind1) = t; % record time point 
      %generate the current plot in order save it as an image 
      subplot(2,2,1) 
      plot(pos2temp10mmTiTf(xmb,22,43),ymb,'k.') 
      xlabel('T(C)') 
      ylabel('y(mm)') 
      title('Motility Buffer') 
      axis([22 43 0 b]) 
      pbaspect(aspectvec) 
      subplot(2,2,3) 
      bar(xedges,numxmb,'histc') 
      xlabel('x(mm)') 
      ylabel('number/bin') 
      title(t2str(t)) 
      axis([0 L 0 300]) 
      subplot(2,2,2) 
      plot(pos2temp10mmTiTf(xser,22,43),yser,'k.') 
      xlabel('T(C)') 
      ylabel('y(mm)') 
      title('MB + 600uM Ser') 
      axis([22 43 0 b]) 
      pbaspect(aspectvec) 
      subplot(2,2,4) 
      bar(xedges,numxser,'histc') 
      xlabel('x(mm)') 
      ylabel('number/bin') 
      title(t2str(t)) 
      axis([0 L 0 300]) 

name = strcat('Sim_WT_030713_poissontc_3k_62degree_lognv',… 

num2str (int64(t/60)),'.jpeg'); 
      % generate the image name 
      saveas(gcf,name)    % save the image 
      pause(.3) 
      close all       % close all the active graphs 
      pause(.2) 
      data_out = vertcat(tvec,xoutmb,youtmb,xoutser,youtser); 
      % combine time and coordinate data (x,y) for MB and Serine 
      fname = 'Sim_WT_030713_poissontc_3k_62degree_lognv.txt'; 
      % define the file name for data recording 
      csvwrite(fname,data_out) 
      % save the data as a text file 
      save('Sim_WT_030713_poissontc_3k_62degree_lognv.mat'); 
      % save the data in matlab format 
end 
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end 

B.2 FUNCTIONS 

 
 

function T = pos2temp10mmTiTf(x,Tmin,Tmax) 
% function pos2temp10mmTiTf(x,Tmin,Tmax) 
% calculates the temperature value at the position x in the linear 

% gradient where the linear gradient in the channel starts at Tmin(C) 

% and ends at Tmax(C). 

% The Length of the channel is 10 mm. x can be a point or a vector. 
[m,n] = size(x);            % determine the size of the input vector 
T = zeros(m,n);         % allocate memory for the output and initiate to zero 
c_fac = (Tmax -Tmin)./10;   % calculate the gradient steepness  

% estimate the Temperature 
for i = 1:m 
    for j = 1:n 
        T(i,j) = (x(i,j)).*c_fac+Tmin; 
    end 
end  
 

function Speed = Speed_MB(T) 
% Speed(µm/sec) = Speed_MB(T(ºC)) 
% calculates the speed of the bacteria which is swimming at a location 
% having temperature T. Values are generated for Motility buffer.  
% The quadratic curve used to generate speed is obtained from 

% experimental values  
Speed = -51.732 + 5.1931 * T -.08788 * T.^2;  
 

function Speed = Speed_Ser_600(T) 
% Speed(µm/sec)  = Speed_Ser_600(T(ºC)) 
% calculates the speed of the bacteria which is swimming at a location 
% having temperature T. Values are generated for Motility buffer + 600 µM 

% Serine. The linear curve used to generate speed is obtained from 

% experimental values  
Speed = .6848 + .88837 .* T ; 

  
function tc = temp2tc_MB(Temp) 
% tc(sec) = temp2tc_MB(Temp(ºC)) 
% calculates the characteristic time tc, run duration, from the 

% temperature of the bacteria. The exponential curve used to generate 

% values is obtained from experiments 
tc = .68329 + 600.78 .* exp(-Temp*.29912); 

  
function bdirec = getdirbac(int) 
%function bdirec = getdirbac(int) 
% function bdirec = getdirbac(int) 
% This function generates direction for bacteria such that if int is 1 
% than direction is to the right : bdirec = 1, whereas if int is 2 than 
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% direction is to the left : bdriec = -1 
if int ==1 
    bdirec = 1; 
elseif int==2 
    bdirec = -1; 
else 
    bdirec = 0; 
end 
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