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Understanding the mechanisms behind adaptation to different climates is key to understanding 

the prevalent phenomenon of local adaptation in plants. Variation among sites in seasonal 

patterns of temperature and precipitation is thought to select functional strategies that work 

locally but not range-wide. These strategies tend to involve the concerted evolution of suites of 

traits including life history, acquisition and allocation resources. I studied adaptive 

differentiation due to climate in Arabidopsis thaliana. I examine natural genetic variation in this 

genome-sequenced species, because it provides insight into the functional ecology of annual 

plants generally, while providing context for future research on adaptation genetics. I 

investigated plants collected along an altitudinal gradient where hot, dry low contrasts cold, wet 

high elevation climates. Heating and drying in a growth chamber during reproduction favored 

plants from low elevations where conditions are most similar to the experiment. I found that 

stress avoidance traits like earlier flowering and faster fruit ripening were advantageous in this 

setting. Subsequently, I focused on how variation in the lifespan-dependent balance between 

carbon income and investment adapt plants across the climate gradient. Leaves generally fall 

along a continuum between short lives with rapid photosynthesis and long lives with slow 

photosynthesis, a pattern known as the worldwide leaf economic spectrum. Under seasonal hot, 

dry growth chamber conditions simulating low elevation climate, I demonstrated for the first 

time natural variation in an economic spectrum at the rosette level. Low elevation plants had 

short-lived economies compared to plants from colder, wetter locations. I then considered the 
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whole plant including photosynthetic inflorescences, which were previously ignored. I 

discovered that earlier flowering led to a majority of the whole plant economy depending on the 

contribution of the inflorescence. Plants as a whole exhibited the same trade-offs observed at 

lower levels of organization, with inflorescence-centric life adapting plants for avoidance of 

spring stress. My work supports the general hypothesis that avoidance of stress at low elevation, 

which requires a fast life, is traded off with a strategy of delay and tolerance associated with 

winter in high altitude populations, leading to local adaptation.  
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1.0  INTRODUCTION 

Life is difficult. No species is perfect. All populations and lineages are constrained in their 

adaptability (Antonovics 1976; Blows & Hoffmann 2005). Every genotype and individual has a 

finite set of conditions under which it can survive and reproduce (Hutchinson 1957, Chase & 

Liebold 2003). While these statements are obviously true if you consider whether a fish could fly 

or a bird breathe under water, as these are extreme cases of developmental and biophysical 

constraint (Smith et al. 1985), in most cases the mechanisms that enable and the factors that 

constrain adaptive evolution are unclear (Anderson et al. 2011; MacColl 2011). 

In plants, local adaptation and among population adaptive differentiation within species is 

common, particularly along environmental gradients (Clausen et al. 1940; Antonovics 1976; 

Endler 1986; Linhart & Grant 1996; Hereford 2009; but see Leimu & Fischer 2008). The 

mechanisms that result in these phenomena are clearly important. Indeed, adaptation to variation 

in environment is a key process defining distribution edges (Mayr 1947; Kirkpatrick & Barton 

1997; Sexton et al. 2009) as well as range and niche sizes (Paul et al. 2009). Adaptive divergence 

can be a crucial step resulting in speciation (Mayr 1947; Ackerly 2003). Furthermore, 

understanding the history of adaptive evolution in plants, particularly across climate gradients 

will be crucial for anticipating adaptive responses or lack thereof as the climate changes in the 

coming centuries (Visser 2008; Hoffmann & Sgrò 2011; Anderson et al. 2012). 
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In general, adaptive divergence is thought to occur when there are selective differences 

between environments that place conflicting demands on plant form and function leading to a 

trade off in fitness among environments (Endler 1986; Kawecki & Ebert 2004; Westoby & 

Wright 2006). When resources (including time) are limited (almost always) plants must allocate 

among functions such that some functions must be traded for others (Bloom et al. 1985; van 

Noordwijk & de Jong 1986; Stearns 1989). Adaptive divergence will therefore occur when 

allocation patterns are heritable and differently selected among sites (Stearns 1989). Researchers 

in the last half-century have identified patterns in the combinations of plant traits that are 

associated with particular environments or niches (Grime 1977). These patterns of trait 

correlation can be interpreted in terms of how they alter plant form and function and either 

increase or decrease fitness under a given selection regime (Murren 2002; Pigliucci 2003; 

Westoby & Wright 2006). 

For example, plants tend to trade off current versus future survival and reproduction 

based on the relative allocation of meristems and biomass between reproductive and vegetative 

functions (Geber 1990; Bonser & Aarssen 1996; Bonser & Aarsseen 2006). Plants inhabiting 

harsh environments such as exceptionally hot, cold or dry locations tend to allocate more to 

vegetative :function typically associated with adaptive stress tolerance. In contrast, plants that 

instead allocate relatively more to reproductive function are usually associated with disturbed 

habitats or other environments that select for maximizing early reproduction (Grime 1977). 

Despite these general patterns, the genetic mechanisms by which adaptive divergence of 

integrated suites of traits emerge and optimize plants for different environments is poorly 

understood (Anderson et al. 2011).  
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A new frontier in understanding the mechanisms of adaptation has emerged in the last 

half century and is picking up steam at a tremendous rate. Thanks to affordable high throughput 

sequencing, expression profiling, exponential increases in computing power and numerous other 

advances in molecular biology, the mechanisms of inheritance are finally being revealed in detail 

(Feder & Mitchell-olds 2003; Stearns & Magwene 2003; Tonsor et al. 2005; Straalen & Roelofs 

2006; Ungerer et al. 2008; Mitchell-olds et al. 2008). Quantitative geneticists can now sequence 

large numbers of loci across large populations of wild and domestic species and are beginning to 

identify the specific genetic polymorphisms underlying variation in key plant traits (Straalen & 

Roelofs 2006; Hudson 2007; Zhu et al. 2008; Atwell et al. 2010). Yet our understanding of how 

gene function influences phenotype comes mostly from human-induced lesions of the genome 

resulting in impaired or nulled gene function (Bolle et al. 2011).  

In order to understand gene function in the context of adaptation, we must identify 

natural genetic variations in gene function that influence phenotype (Tonsor et al. 2005; 

Mitchell-olds et al. 2008). Furthermore, we must study the functional ecology and adaptive 

evolution of model organisms (Anderson et al. 2011). In the dissertation that follows, I examine 

patterns of natural genetic variation and covariation in suites of key ecologically important traits 

related to life-history timing, physiology, morphological investment, and fitness in the plant 

genetic model organism, Arabidopsis thaliana. I conduct a series of growth chamber 

experiments, in which genotypes collected along a temperature and precipitation gradient in N.E. 

Spain are examined. In so doing, I provide insight into adaptive trade offs in plant form and 

function that result from adaptation across a climate gradient.  

In chapter two, I conduct a preliminary study of adaptive divergence along a climate 

gradient using N.E. Spanish A. thaliana. Low elevation populations of A. thaliana experience 
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relatively rapid warming and drying during their reproductive season. In contrast, high elevation 

sites must survive long, freezing winters but experience cool, moist spring growing conditions. I 

tested whether subjecting 48 lineages from across the climate gradient to spring heat and drought 

in a growth chamber favored plants from sites with hot, dry spring conditions. I examined the 

relative adaptive values of variation in 11 traits related to either tolerance or avoidance of stress. 

Lineages collected at low elevation were most fit and fitness scaled with climate of origin. 

Higher fitness was associated with earlier bolting, greater early allocation to increased numbers 

of inflorescences, reduction in rosette leaf photosynthesis and earlier fruit ripening. I 

hypothesized that the adaptive strategy of low elevation plants is stress avoidance through early 

flowering, but accompanied by a restructuring of the organism that adapts A. thaliana to low 

elevation Mediterranean climates. This chapter has been accepted for publication in New 

Phytologist with Dr. Stephen Tonsor as coauthor. 

Across the entire plant kingdom, there is a trade off to which almost all leaves appear to 

conform. The worldwide leaf economic spectrum describes a trade-off between “fast” and 

“slow” return leaf tissues and is observed among nearly all plant species examined to date 

(Wright et al. 2004; Wright et al. 2005a; but see Farnsworth & Ellison 2007; Wright & Sutton-

Grier 2012). Plants appear to trade off between leaves with high metabolic and photosynthetic 

rates per unit mass and a short lifespan (fast return) and leaves with low physiological rates but 

long lifespans (slow return). Differences among species in leaf economy appear to be adaptive 

and are often associated with gradients in temperature and precipitation. “Slow return” leaves are 

generally found in colder, drier northern climates (Reich et al. 1999; Wright et al. 2004; Wright 

et al. 2005b; Reich et al. 2007; but see Pensa et al. 2009). In chapters three and four, I follow up 

on the results obtained in chapter two and specifically address the role of carbon economic 
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strategy and its integration in life history in adaptation across the N.E. Spanish climate gradient. 

In both chapters, I utilize data from a yearlong growth chamber study in which I simulated the 

hot, dry climate of low elevation populations based on field temperature logger data. I grew 

replicates of 32 genotypes (two from each of 16 populations) and measured traits of interest at 

multiple time points during the growing season. This allowed understanding of how plant carbon 

economy and life history events were integrated. 

In chapter three, I tested for and found a rosette carbon economic spectrum among N.E. 

Spanish populations of A. thaliana. I hypothesized that since the rosette has a discrete lifespan 

(all leaves die in concert) linked to age at bolting (Vasseur et al. 2012) that factors that cause 

variation in lifespan would result in variation in overall rosette economy. I measured three 

economic traits (rosette lifespan, photosynthesis and mass per area) in a growth chamber 

experiment. I germinated plants under both fall and spring conditions simulating hot, dry seasons 

at one extreme of the climate gradient. I found a rosette economic spectrum, which is correlated 

with climate of origin such that plants from hot, dry sites show faster return economies. 

Additionally, I found that spring germination produced faster economies than fall, regardless of 

climate, indicating plasticity in rosette economy. Finally, I show that the faster return economic 

strategy of low elevation plants was favored in this experiment. This work advances our 

understanding of the role of plant economic constraints in adaptive evolution. This work will be 

submitted for peer review and publication in the journal Ecology Letters. 

In chapter four, I expand on the idea of a rosette economic spectrum. Previous research in 

the Tonsor lab indicated that on average the green stems, leaves and fruits of the inflorescence 

contribute the majority of photosynthetic carbon gained by A. thaliana, but the proportion 

contributed varies widely across stock center ecotypes (Earley et al. 2009). I therefore measured 
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carbon economic traits related to the inflorescence (e.g. photosynthetic rate per gram, mass per 

unit length, lifespan) specifically as well as the whole plant (e.g. lifespan, photosynthetic rate, 

total mass) in addition to the rosette. I compare rosette, inflorescence and whole plant-level 

carbon economies to each other and to the single leaf worldwide spectrum. I hypothesized that 

the inflorescence might offer an alternative and bolting time independent (compared to the 

rosette) dimension of whole plant carbon economy. However, I found that rosette and 

inflorescence carbon economies were actually negatively correlated, indicating that whole plant 

carbon economics were integrated around major allocation “decision” determined by the age at 

bolting. The whole plant’s carbon economy varied along a spectrum that matched the worldwide 

leaf economic spectrum and was correlated with climate of origin in my study system. Low 

elevation plants from hot, dry conditions had higher fitness (see chapter three) associated with 

their inflorescence-centric economies. Interestingly, inflorescence centric carbon economy 

actually corresponded to lower total mass and shorter overall lifespan, yet resulted in higher 

fitness.  This chapter is in preparation for submission to the journal Functional Ecology. 

In chapter five, I provide a brief synthesis of this dissertation and discuss the implications 

of the work. I conclude by emphasizing future avenues for research. 

Throughout my dissertation I use the pronoun “we” acknowledging the work as 

collaboration with my advisor Dr. Stephen Tonsor that will be published as such. Throughout the 

work Dr. Tonsor provided critical commentary, editing, and was critical in advising me on the 

theoretical, analytical and logistical aspects of each experiment. Furthermore, Dr. Tonsor 

provided funding (see preface) supporting lab work via the National Science Foundation. The 

primary goals, conceptual framework, analyses, SAS code, and writing are my own.  Plant 
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growth and maintenance as well as phenotyping was a coordinated effort often times shared by 

all members of the Tonsor lab.  
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2.0  ADAPTATION TO SPRING HEAT AND DROUGHT IN N.E. SPANISH 

ARABIDOPSIS THALIANA 

2.1 SUMMARY 

The extent to which a species’ environmental range reflects adaptive differentiation remains an 

open question. Environmental gradients can lead to adaptive divergence when differences in 

stressors among sites along the gradient place conflicting demands on the balance of stress 

responses. The extent to which this is accomplished through stress tolerance vs. stress avoidance 

is also an open question. We present results from a controlled environment study of 48 lineages 

of Arabidopsis thaliana collected along a gradient in NE Spain across which temperatures 

increase and precipitation decreases with decreasing elevation. We tested the extent to which 

clinal adaptive divergence in heat and drought is explained through tolerance and avoidance 

traits by subjecting plants to a dynamic growth chamber cycle of increasing heat and drought 

stress analogous to low elevation spring in NE Spain. Lineages collected at low elevation were 

most fit and fitness scaled with elevation of origin. Higher fitness was associated with earlier 

bolting, greater early allocation to increased numbers of inflorescences, reduction in rosette leaf 

photosynthesis and earlier fruit ripening. We propose that this is a syndrome of avoidance 

through early flowering accompanied by restructuring of the organism that adapts A. thaliana to 

low elevation Mediterranean climates. 
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2.2 INTRODUCTION 

More than half a century of research on adaptation in plants has shown that local adaptations are 

relatively common (Clausen et al. 1940; Linhart & Grant 1996; Leimu & Fischer 2008). 

Adaptive differentiation occurs when selection varies and requires conflicting optimization of 

plant form and function at different sites (Endler 1986, Kawecki & Ebert 2004). Especially given 

accelerating anthropogenic climate change (Parmesan 2006; Bradshaw & Holzapfel 2006), it is 

necessary to improve our understanding of the functional bases of local adaptations (Feder 2007; 

Mitchell-Olds et al. 2008; Anderson et al. 2011, 2012). One classic and powerful approach to 

understanding historical and future adaptation is the study of trait divergence along 

environmental gradients (Endler 1986) and this approach has been used successfully in studies of 

clinal variation in plant traits including leaf physiology and morphology (Martin et al. 2007), 

above and belowground carbon-nutrient balance (Freschet et al. 2010), phenology and 

architecture (Petrů et al. 2006). In this study we examine how a suite of life history, 

physiological and allocation traits provide an integrated adaptive response to increasing heat and 

drought during the reproductive season in an annual plant.    

Range-wide studies of the model plant Arabidopsis thaliana (Brassicaceae) provide an 

excellent system for clinal studies of geographically varying adaptation and their genetic bases in 

annual plants (Mitchell-Olds 2001; Tonsor et al. 2005; Mitchell-olds & Schmitt 2006; Wilczek et 

al. 2009; Fournier-Level et al. 2011; Ågren & Schemske 2012; Fournier-Level et al. 2013; Grillo 

et al. 2013). A broad suite of differentiated traits is emerging in studies of adaptation across A. 

thaliana’s latitudinal range. These include variable freezing tolerance (Hannah et al. 2006; Zhen 

& Ungerer 2008), vernalization requirements (Hopkins et al. 2008), responses to light quality 

(Stenoien et al. 2002), heat shock protein expression (Tonsor et al. 2008), growth rate (Li et al. 
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1998), seed dormancy and season of germination (Montesinos-Navarro et al. 2012; Kronholm et 

al. 2012) and age at onset of flowering (Stinchcombe et al. 2004; Wilczek et al. 2009).  

Populations in northeastern Spain occur across an altitudinal range from near sea level at 

the Mediterranean coast to near tree line (~2200 m.a.s.l.) in the Pyrenee Mountains. Along this 

gradient, low elevation sites are hotter and drier overall compared with high elevations. Low 

elevations experience temperatures above freezing for most of the fall and winter, but a relatively 

short spring reproductive period with rapid warming and drying. In contrast, high elevations 

experience periodic below-freezing temperature and snow cover during the winter, but have a 

relatively prolonged, cooler and wetter spring reproductive period (Montesinos et al. 2009; 

Montesinos-Navarro et al. 2011).  

Importantly, genetic analyses indicate that the populations in this region are genetically 

distinct from surrounding regions and are likely descended from a common ancestor (Pico et al. 

2008). There are two possible evolutionary genetic causes that could result in clinal trait 

variation. The first is historical colonization of high and low elevation sites by genetically 

distinct ancestors followed by spread from both ends towards mid-elevations and a subsequent 

isolation by distance-driven clinal pattern. . Since we do not detect isolation-by-distance among 

these populations and gene flow is very low (Montesinos et al. 2009), trait-environment 

covariation must therefore result from a response to a gradient in natural selection (Montesinos-

Navarro et al. 2011). 

Shifts in the timing of life history transitions appear to be an important mechanism of 

adaptation across this climate gradient (Montesinos et al. 2009; Montesinos-Navarro et al. 2011). 

Temporal duration of seed primary dormancy, sensitivity of seeds to induction of secondary 

dormancy by high temperatures (Montesinos-Navarro et al. 2012), probability of germinating in 
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fall vs. spring, and age at bolting (Montesinos Navarro et al. 2011) vary with climate of origin in 

our study populations. Under the constant cool, moist, mid-elevation conditions used in 

Montesinos-Navarro et al. (2011) late bolting high- and mid-elevation plants exhibited the 

highest seed production.  

High temperatures and low water availability are important stresses for virtually all plants 

(Parmesan 2006; Wahid et al. 2007) and water availability and temperature have been proposed 

as determinants of the geographic range limits of A. thaliana (Hoffmann 2002; Hoffmann 2005). 

Therefore, in this study we test for adaptive divergence associated with variation in traits 

hypothesized to play a role in adaptation to hot, dry conditions. The climate gradient from the 

Mediterranean coast to near tree-line in the Pyrenees compresses much of A. thaliana’s range-

wide climate gradient into a logistically manageable distance (see results). In particular, the 

coastal conditions are near the southern environmental limit for A. thaliana. The sites of the 

coastal populations are especially strongly differentiated from the inland, higher altitude by a 

rapidly warming and drying spring (Montesinos et al. 2009). We therefore focus particularly on 

clinal variation expressed under conditions of increasing temperature and decreasing water 

availability during the reproductive period. We can assess functional significance under our 

experimental conditions by quantifying the link between fitness and clinally varying traits. 

Additionally, we can use these relationships to generate hypotheses about fitness consequences 

of functional variation in the field. 

Plants facing drought and increasing temperatures during the reproductive period 

potentially experience two forms of selection: for stress avoidance and/or for stress tolerance. 

Heat and drought stress during the spring reproductive season might accelerate A. thaliana’s 

developmental program leading to completion of the life cycle before conditions become 
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unsuitable, thus avoiding stress. Alternatively, A. thaliana populations under reproductive season 

stress might adapt their physiology, allocation strategy and morphology so as to complete the life 

cycle in spite of stress, thus tolerating it (Grime 1977). In this study, we investigate a suite of 

plant characters that are hypothesized to represent aspects of either avoidance or tolerance of 

spring heat and drought. 

Clinal variation in photosynthetic parameters has yet to be investigated in A. thaliana. 

Variation in photosynthetic parameters might be expected to be associated with adaptation across 

the N.E. Spanish climate gradient for several reasons. First, in response to heat, plants may 

alleviate heat stress by opening stomata and increasing transpiration (Farquhar & Sharkey 1982). 

Alternatively, stomata may be closed for increased water use efficiency (WUE) (Kalisz & Teeri 

1986; Chaves et al. 2002).  Clinal variation in WUE might be expected to coincide with the 

previously observed cline in bolting time along the Spanish climate gradient (Montesinos-

Navarro et al 2011) as age at bolting has been shown to correlate with WUE in A. thaliana 

(McKay et al. 2003). Finally, clinal variation in photosynthetic rates has been observed within- 

(Arntz & Delph 2001) and among- (Wright et al. 2004) species previously.  

Montesinos-Navarro et al. (2011) observed clinal variation in allocation in which later-

bolting high elevation plants produced larger rosettes but smaller root systems than did earlier-

bolting low elevation plants. In the face of spring heating and drying, two opposing allocation 

patterns could hypothetically be beneficial. Plants fitting Grime’s (1977) definition of ruderals 

would shift resources from vegetative to reproductive structures in the face of stress. In contrast, 

stress tolerant plants might show increased allocation to vegetative structures, potentially 

allowing continued survival in the spring (Grime 1977). At the leaf level, changes in dry mass 

allocation per unit area (specific leaf area; SLA) are known to vary clinally in A. thaliana (Li et 

  12 



al. 1998) and other species with leaves from higher elevation or colder climates being thicker. In 

contrast, hot, dry spring conditions might favor plants with low-investment leaves as these have 

frequently been associated with shorter life spans thus possibly with stress avoidance (Wright et 

al. 2004; Levey & Wingler 2005).  

We present results from a laboratory controlled environment study of multiple lineages 

collected from across an elevation gradient in NE Spain. We subjected the experimental 

population to warming and drying during the reproductive period placing plants under conditions 

similar to those in the field at the sites of origin of our low elevation populations. With this 

study, we accomplish the following aims: (1) we test for a correspondence between the elevation 

gradient across which the populations were collected and a major climate gradient. (2) We 

quantify the extent of adaptive divergence at the genotype level by testing in a common 

environment for correlations between trait values and elevation- and climate-of-origin. (3) We 

quantify the fitness effects under our experimental conditions of a suite of traits including: leaf-

level gas exchange, specific leaf area, photochemical quantum efficiency of PSII, dry mass 

production of roots, rosettes and inflorescences, and the timing of bolting and fruit ripening 

under conditions of increasing spring heat and drought. 

2.3 MATERIALS & METHODS 

2.3.1 Collections 

Seed collected from 16 sites along an elevation gradient in NE Spain (Figure 2.1) was 

propagated by single seed descent for at least two generations in a laboratory-controlled 
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environment to eliminate maternal effects and increase seed stock. Each collection site 

corresponds with a study population. Three genotypes per population were randomly selected 

(48 total) for inclusion in the present study. 

2.3.2 Planting 

Plants were grown in Ray Leach SC10 164 mL Supercell Conetainers (hereafter pots) 

(www.stuewe.com/products/rayleach.html) and arranged at a density of 24 pots per Ray Leach 

RL98 Tray (hereafter racks). Racks were placed in matching fiberglass bins. Pots were filled 

with Turface MVP fritted clay (http://www.turface.com). 1.5 mL of Nutricote was placed 10 cm 

below surface level.  Nutricote encapsulated fertilizer releases equal daily quantities of nutrients 

for 100 days (NPK 13-13-13, Type 100, Arysta Life Science, New York NY). A 1 cm wide, 2 

cm deep plug of Sunshine germination mix (http://www.sungro.com) was inserted at the surface 

of each pot. Prior to planting, seeds were surface sterilized via exposure to chlorine gas for three 

hours to avoid disease transmission. We planted five seeds per pot at the center of the 

germination mix plug and later thinned seedlings to one per pot. 

Eight pots were planted per genotype. To allow sufficient time for measurement yet 

measure all plants at the same age, one replicate of each genotype was planted each day for eight 

days into sixteen bins (384 pots total). Planted bins were placed in the dark at 4°C and 100% 

relative humidity for four days to induce germination competency. After cold treatment, bins 

were transferred into two Conviron PGW36 growth chambers; eight bins each, for the remainder 

of the experiment. 

http://www.stuewe.com/products/rayleach.html
http://www.turface.com/
http://www.sungro.com/


2.3.3 Growth conditions 

We created a dynamic growth chamber cycle in which temperature, day length and water 

availability changed over time. Our goal here was to provide key seasonal cues through which 

plants sense and respond to the environment thereby approximating key aspects of a fall-

germinated, winter annual life history for the experimental plants. Most importantly for this 

study, during the simulated spring, we imposed a regime of increasing heat and drought stress. 

By doing this, we sought to determine whether the traits expressed by low versus high elevation 

plants were adaptive under reproductive phase heat and drought stress. Field conditions and 

therefore selective regimes undoubtedly differ from chamber conditions. Here, we ask whether 

plants collected along a gradient of seasonal patterns in heat and drought display fitness 

differences under our growth chamber conditions that are explained by genetically based patterns 

of trait variation. We use the combined associations between trait value, home climate and 

fitness to interpret the functional and adaptive significance of our results.  

Our growth chamber cycle began with daily temperature ramping evenly from 14ºC at 

lights on to 22ºC at lights off and back to the minimum overnight. Daily maximum and 

minimum temperatures decreased by 2ºC every eight days. On day 25, temperatures fell to a 

constant 5ºC and were constant until day 45, when daily maximum temperature increased to 7ºC, 

and then to 9ºC and 11ºC on days 49 and 53, respectively. On day 57, daily temperatures 

increased to a maximum of 26ºC and a minimum 18ºC. From day 57, for the remainder of the 

experiment (to day 125), maximum daily temperatures increased by 1ºC and minimums by 0.5ºC 

every four days to an ultimate daily maximum of 42ºC and minimum of 26ºC (Figure 2.6a). This 

produced a gradual increase in the daily temperature range similar to the progression of spring 

into summer in the low elevation population sites (Figure 2.7). 
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Initial day length was 12 hours, decreasing by 0.25 hours every four days, reaching a 

minimum of 10 hours on day 33, simulating day length at the winter solstice in NE Spain. From 

the solstice onward, day length increased at the same rate (0.25 hours every 4 days), reaching a 

maximum of 15 hours on day 113 (Figure 2.6b). 

Water was supplied via an ebb-and-flood system (see Earley et al. 2009). Two modes of 

water control were imposed: water table height and watering frequency. A standpipe in one drain 

of each bin controlled the water table.  Bins filled to standpipe height and remained filled for 45 

minutes until a drain solenoid opened. Standpipe height was seven inches, and watering occurred 

twice daily until the beginning of simulated spring. In spring, water availability gradually 

declined to zero by reducing standpipe height to a minimum of 2.5” and reducing watering 

frequency to once daily, then every other day, until water supply was permanently discontinued. 

By weighing empty pots before and after watering at various standpipe heights, we express water 

availability in grams per watering (Figure 2.6c).  

Light intensity was 150 µM PAR m-2 s-1 until day 45 when light increased by increments 

of 50 µM PAR m-2 s-1 every 4 days, reaching a maximum of 350 µM PAR m-2 s-1 on day 57.  

Tray positions were rotated within each growth chamber every 4 days until day 85, when 

plants reached an advanced stage of flowering, making rotations impractical. 

2.3.4 Trait measures 

To measure differences in developmental timing, we recorded dates of germination, bolting and 

first-ripened fruit. We defined germination date as the day on which cotyledons were first 

visible, bolting as the date on which the first signs of primordial flower buds were visible, and 

ripening as the date on which we observed at least one fully yellow or brown fruit. From these 



life-history transition dates, we derived two life-history traits: The number of days between 

germination and bolting (Time until Bolting) and the number of days between bolting and first 

ripened fruit (Bolting until Ripening). 

We measured leaf traits on day 85 when all but one of the plants was flowering. At mid-

day, two racks per day were transferred to a third Conviron PGW36 growth chamber set to 350 

µM PAR m-2 s-1 and 32°C, the daily maximum temperature. We conducted gas exchange 

measurements to assess the capacity of the plants to photosynthesize under heat stress. The 

plants were acclimated for 30 minutes prior to measurements. Measures were conducted over 

eight consecutive days, giving one replicate per genotype per day. Thus measurements on each 

plant were conducted at the same age. 

For each plant, we selected a recently expanded, fully green rosette leaf. One leaf was 

placed in the cuvette of a LI-6400 infrared gas analyzer (IRGA; LI-COR Biosciences, Inc., 

Lincoln NE) and allowed to equilibrate for five minutes while still attached to the plant. We took 

four measures of net carbon assimilation (µM CO2 m-2 s-1) and transpiration (mM H2O m-2 s-1) 

over one minute. Measures were averaged for a single record of instantaneous CO2 and H2O 

exchange per leaf. WUE was calculated as the ratio of net carbon assimilation to transpiration. 

We measured maximum PSII quantum efficiency using a PAM 2000 fluorometer 

(www.walz.com). We chose a second fully expanded rosette leaf per plant and dark-adapted it by 

placing it in a light-blocking leaf clip for five minutes. Immediately following dark-adaptation 

the baseline fluorescence (Fo) was measured. We then applied a saturating pulse of white light to 

determine the maximal fluorescence (Fm). The quantum efficiency of open PSII calculated as the 

ratio of variable fluorescence (Fv = Fm - Fo) to Fm (Baker 2008). 

 

http://www.walz.com/


After gas exchange measurement leaves were excised, flattened under a pane of glass and 

photographed with an area standard. We measured leaf area using NIH ImageJ 64-bit version 

1.44j (http://rsbweb.nih.gov/ij/). Finally, we dried the leaves at 70ºC, and weighed them. Specific 

leaf area (SLA) was calculated as the ratio of fresh leaf area to dry mass. 

When all plants had fully senesced (day 125) we partitioned the plants into rosettes, 

inflorescences and roots and dried them at 70°C for at least 7 days. As a fitness measure we used 

the summed fruit length, estimated as follows: Inflorescence branches were laid out on a table 

and the length of only the reproductive (fruit bearing) portions of each branch were measured 

with a PlanWheel XLTM (Scalex Corporation, Encinitas, CA). Next we estimated the density of 

fruits by counting the number of fruits along 10 cm of the primary inflorescence branch. Finally, 

we measured the length of five fruits to give an average fruit length. Fitness, or summed fruit 

length, is equal to the reproductive branch length times the fruit density (i.e. fruit number) times 

the average fruit length. Fruit length is tightly correlated with the number of seeds per fruit 

(Alonso-Blanco et al. 1999) and fruit number strongly predicts total seed number by itself 

(Mauricio & Rausher 1997) so summed fruit length is a good proxy for the total number of 

seeds. We also counted the number of basal inflorescence branches. 

2.3.5 Climate data 

We obtained temperature and precipitation data at each of the 16 collection sites from the 

BIOCLIM dataset described by Hijmans et al. (2005). This data set contains 19 biologically 

relevant climatic indices (Table 2.3) derived from monthly precipitation and temperature data for 

the period 1950-2000 (available at http://www.worldclim.org) and has a resolution of 

approximately 1 km2/grid cell. 
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2.3.6 Statistical analysis 

We used principal components analysis (PCA) to produce orthogonal axes or principal 

components (PCs) that explain multivariate climate variance. We conducted the PCA on the 

correlation matrix of BIOCLIM values and the elevation above sea level at each of the 16 

collection sites to produce indices that describe the major climate gradient(s) across which our 

populations are arrayed. We implemented randomization tests (Perez-Neto et al. 2003) to 

determine the number of meaningful climate axes (PCs). The distribution of PCs obtainable 

under the null hypothesis of climate variable independence was constructed by independently 

permuting the order of each BIOCLIM variable, then calculating principal components on the 

permuted data, repeated 5,000 times.  By comparing the actual nth PC to the distribution of nth 

PCs from the 5,000 permutations, we obtained the probability of the actual nth PC value under 

the null hypothesis (SAS code available at http://www.tonsorlab.pitt.edu). By including elevation 

in the PCA we describe the overall multivariate relationship between climate and elevation and 

test the extent to which elevation can be treated as a proxy for climate. 

Before analyses, we first removed variance from each trait accounted for by aspects of 

the experimental design, i.e., RACK, MEASURE DAY, and CHAMBER effects. We also tested 

for an interaction between CHAMBER and MEASURE DAY. We used SAS PROC GLIMMIX 

(version 9.3; SAS Institute Inc., Cary, North Carolina, USA) with RACK as a random effect 

nested in MEASURE DAY and the other factors as fixed effects. We added the grand mean for 

each trait to the residuals from this analysis and performed all subsequent analyses on these 

adjusted trait values. 

One major aim of this study was to test for an adaptive cline in the multivariate 

phenotype associated with climate and elevation. Therefore, we conducted PCA on the 
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correlation matrix of the population means for 12 traits, thereby reducing the dimensionality of 

trait space to a few, orthogonal axes. As in the PCA of climate space, we used randomization 

(Perez-Neto et al. 2003) to determine the number of meaningful axes in the trait matrix. We then 

test whether among-population variation in climate predicts among-population variation in 

phenotype by regressing population-mean trait principal component scores on population-mean 

climate PC scores.  

PCA produces ranked orthogonal vectors that reflect weighted combinations of variables 

based on the variables’ covariances. While this is a powerful way to account for covariation and 

reduce the effective number of dimensions, the intuitive/biological interpretation of the 

regression of a trait PC onto a climate PC is difficult. Because of this, we also conducted 

univariate regressions of each trait on climate PC scores for visualization purposes. We also 

regressed population means for each trait on elevation and compared the predictive power of 

elevation to that of climate principal components. We used the SAS PROC REG (version 9.3, 

SAS Institute 2011) for the trait PC-climate PC, univariate trait-climate and trait-elevation 

analyses. 

Finally, we tested hypotheses about natural selection under simulated low elevation 

spring heat and drought using a standard multiple-regression approach to quantifying phenotypic 

selection (Lande & Arnold 1983). We transformed all variables (including fitness) to the same 

scale with a mean of zero and standard deviation of one, allowing direct comparison of the 

strength and direction of selection among traits. Selection gradients therefore indicate the 

number of standard deviations increase in fitness per standard deviation change in trait grand 

mean. We tested for both linear and quadratic selection by regressing summed fruit length on 

both the traits and their squared values in the multiple-regression model. To satisfy the 
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regression assumptions we used log-transformed summed fruit length as the dependent variable 

in the estimation of p-values and r-squares. However, we present parameter estimates based on 

untransformed summed fruit length to facilitate biological understanding.  We note that 

statistical tests for linear selection coefficients may correspond to more complex functions on the 

non-transformed scale.  We have presented only the linear effects in the graphics of 

untransformed data.  

Although multiple regressions provide a view of the relationship between a trait and 

fitness independent of other correlated traits, correlations among traits remain an important issue 

in the interpretation of apparent selection. This is in part because multiple regression estimates of 

selection gradients can suffer from multicollinearity wherein highly correlated traits act to some 

extent redundantly, inflating the variance explained but causing inaccuracy in our estimates of 

the effects for those traits (Mitchell-Olds & Shaw 1987). To aid in our interpretation of selection 

on and relationships among the traits measured, we used Akaike’s Information Criterion (AIC) to 

determine the “best” model by rewarding added explanatory power but penalizing the inclusion 

of additional terms. This provided the simplest model for fitness with the least collinearity and 

thus, presumably, the best estimates of selection (Shaw & Geyer 2010). We used the SAS PROC 

REG (version 9.3, SAS Institute 2011) for all selection analyses. 

To aid interpretation of selection analyses, we also calculate and present the phenotypic 

Pearson product-moment correlations. We employed a sequential Bonferonni correction to all p-

values in the correlation matrix to compensate for the risk of false positive with multiple testing. 

We used the SAS PROC CORR (version 9.3, SAS Institute 2011) for all correlation analyses. 
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2.4 RESULTS 

All pots contained germinated seeds. A small number of deaths or missing measurements 

resulted in a multivariate dataset (i.e. all observations with no missing values) of N=366 of the 

planned N=384 or 95% of the goal.   

We detected significant CHAMBER, MEASURE DAY and CHAMBER x MEASURE 

DAY effects for many of the traits analyzed. All results reported below were obtained with the 

residuals from this model plus the trait grand mean. 

2.4.1 Principal component analysis of the climate gradient 

Randomization testing of the climate PCA eigenvalues detected two significant principal 

components (Figure 2.8), explaining 75% and 17% of the climate variation among our 16 

collection sites respectively (Table 2.4, Figure 2.2). For climate PC1, eigenvector coefficients for 

all precipitation variables with the exception of Precipitation Seasonality (coefficient of variation 

in precipitation) were positive and varied from 0.21 to 0.25. Eigenvector coefficients for all 

variables that describe temperature variability (e.g. Annual Temperature Range) were positive 

but were smaller than the precipitation variables, ranging from 0.05 to 0.14. However, 

eigenvectors of variables that describe temperature during a particular time period (e.g. Max. 

Temp. of the Warmest Month) were negative, ranging from -0.20 to -0.26 (Table 2.4, Figure 

2.2). Variables describing temperature variability (BIO2, BIO3, BIO4 and BIO7) loaded most 

strongly on climate PC2. Elevation loaded positively (0.24) onto climate PC1 but had an 

eigenvector of essentially zero on climate PC2 (Table 2.4, Figure 2.2). Climate PC1 and PC2 

scores for each population are reported in Table 2.5. 
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2.4.2 Principal component analysis of trait space 

There was a single, significant principal component (Trait PC1) in population mean trait space, 

explaining 71% of the variation (Figure 2.9). For Trait PC1, quantum efficiency, rosette mass, 

root mass, age at bolting, time from bolting to first ripe fruit, photosynthetic and transpiration 

rates had positive loadings ranging from 0.15 to 0.34. Summed fruit length, WUE, inflorescence 

mass, basal branch number and specific leaf area had negative loadings ranging from -0.26 to -

0.33 on trait PC1 (Table 2.6, Figure 2.3). Table 2.5 contains Trait PC1 scores for each 

population. 

2.4.3 Evidence for local adaptation, trait-elevation and trait-climate associations 

Multiple regression of trait PC1 score on climate PC1 and PC2 scores explained 36% of the 

variance in PC1 (n=16, model p-value = 0.05). Climate PC1 showed significant positive 

relationship to trait PC1 while climate PC2 was not significant (Figure 2.4).  The quadratic term 

was not significant so it was dropped from the model. Finally, we observe that the population 

BOS is an outlier in terms of its mean phenotypes relative to its elevation. For example, climate 

PC1 explains 56% of the variance in trait PC1 when BOS is excluded (not shown).  

The population mean fitness in our simulated low elevation environment decreases by 

590 mm (0.88 standard deviations) of summed fruit length per 1000 meters above sea level 

(m.a.s.l.) for the site of population origin. Elevation of origin explained 46% (p = 0.004) of 

among-population variation in summed fruit length (Figure 2.5). Population trait means and 

standard deviations are presented in Table 2.7. 
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Elevation of origin significantly predicted population means for all traits except specific 

leaf area (p = 0.14) and root dry mass. (p = 0.74). Maximum photosynthetic quantum efficiency 

(Fv:Fm) increased by 103% (r2 = 0.41) per 1000 m.a.s.l. for the site of population origin. Net 

photosynthetic rate increased by 194% (r2 = 0.57) and transpiration increased by 267% (r2 = 

0.54) per 1000 m.a.s.l. Instantaneous WUE decreased by 78% (r2 = 0.41) per 1000 m.a.s.l. 

Rosette dry mass increased by 300 mg (r2 = 0.49) while inflorescence dry mass decreased by 540 

mg per 1000 m.a.s.l (r2 = 0.39). Age at bolting increased by seven days and the time from bolting 

to the first ripened fruit increased by 1.4 days per 1000 m.a.s.l., explaining 50% and 22% of 

among-population variation, respectively. Plants produced eight fewer basal inflorescence 

branches (r2 = 0.63) per 1000 m.a.s.l. (Figure 2.5). Scores along climate PC1 also significantly 

predicted population-mean trait values except quantum efficiency, specific leaf area, and root 

mass; days from bolting to fruit ripening was marginally significant (Table 3.1). The slopes 

describing the relationship between climate PC1 and trait values were significantly correlated 

with the slopes of the trait-on-elevation regressions (r = 0.74, n = 12, p = 0.006). Climate PC2 

did not significantly predict any trait variable in univariate regression (results not shown). 

2.4.4 Selection under heat and drought during reproductive phase 

We detected significant linear selection on our suite of study traits (Table 2.2). Quadratic models 

did not significantly increase explanatory power and are therefore not presented. Most traits were 

correlated in this study (Table S6). Both the best-fit linear (hereafter “best”) model based on AIC 

and the full linear model explained 69% of the variance in fitness.  

Both the full and best models indicated selection for earlier bolting (β = -0.15 and β = -

0.20 respectively), with selection for faster fruit ripening detected only in the best model (β = -
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0.07). In the best model, a standard deviation (six day) decrease in the age at bolting increases 

fruit production by 0.20 standard deviations, approximately 145 mm of fruit length. Age at 

bolting is nearly three times as important to fitness as time from bolting till ripening in both 

models tested. Age at bolting is the second most powerful predictor of fitness in both models 

after inflorescence mass and these traits are correlated. 

In both models selection favored lower root mass (β = -0.08 full model and β = -0.07 best 

model). Rosette dry mass was excluded from the best model and was not significant in the full 

model. There was strong selection for greater inflorescence mass (β = 0.62 full model and β = 

0.61 best model). A single standard deviation increase in inflorescence mass (721 mg) predicts a 

0.61 standard deviation increase in summed fruit length (441 mm).  

Among the leaf traits, significant selection was detected only for transpiration rate. 

Selection favored lower transpiration rate (β = -0.12 full model and β = -0.11 best model). A 

decrease in transpiration rate of one standard deviation (6.5 mMols H2O m-2s-1) is associated 

with an increase in fitness of approximately 800 mm of fruit length. In the best model, quantum 

efficiency, net photosynthesis and WUE are dropped, while specific leaf area is retained but 

remains non-significant. 

2.5 DISCUSSION 

To test the extent of adaptation to local climate, we grew plants from across an elevation gradient 

under dynamic growth chamber conditions that produced an accelerated winter annual life cycle 

and subjected plants to increasing heat and drought stress during the reproductive season, as is 

observed at low elevations in the field. We identified significant associations between climate 
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and 10 of the 12 traits investigated. Populations from low elevation coastal Mediterranean sites 

developed from germination to seed more quickly than those from high elevation. Low elevation 

plants had relatively more mass and time invested in inflorescence structures and less in 

vegetative growth and rosette photosynthesis.  

The first principal component of climate indicated a gradient of increasing heat and 

drought with decreasing elevation (Figure 2.2). Interestingly, most regression analyses conducted 

with elevation as the independent variable performed better than those using climate PC1 scores. 

Indeed, elevation explained 54% of the variance in trait PC1 (not shown) while climate PC1 

explained only 36% of trait PC1 variation (Figure 2.4). One explanation is that while elevation is 

accurately measured for each collection site, the climate data used are values averaged over 50 

years interpolated from nearby weather station data (Hijmans et al. 2005) and do not account for 

local and micro-climatic site characteristics. There are other factors that may covary with 

elevation and contribute to clinally varying selection, including: soil, atmosphere and light 

environments. Additionally, there is a possible influence of the biotic community, which could 

vary in composition and phenology across the elevation gradient.  

In this study, relative adaptedness to spring heat and drought scaled with elevation of 

origin, favoring low elevation phenotypes under the imposed warming and drying regime (Figure 

2.5). Our findings form a complement with those of Montesinos-Navarro et al. (2011), who 

found, using the same study populations and an overlapping but not identical set of genotypes, 

that higher elevation plants out-produced low elevation plants when spring conditions were cool 

and wet. The clinal trait and fitness variation observed in this study indicate adaptive divergence 

due to differential selection among sites. It is however important to point out that in all cases, the 

direct agents of selection are not known and neither the conditions nor the developmental 
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sequences or phenotypes of the plants in our chambers perfectly match the conditions or 

phenotypes seen in the field. Our source populations exhibit repeated bouts of germination 

during favorable conditions from fall through spring in the field (Pico 2012). The life cycle can 

be as long as nine months or as short as 50-60 days (Pico 2012).  Thus there is no one life cycle 

or set of seasonal conditions that most accurately describes the patterns of phenotype and 

selection in the field. Despite this variation in the early phases of the life cycle, all plants in low 

elevation populations experience spring heat and drought similar to that imposed in our 

chambers.  It is also possible that the characters measured evolved due to indirect selection via 

correlated traits (Lande & Arnold 1983). With these caveats in mind, below we consider the 

relationship between traits, elevation and climate to better understand the phenotypic 

mechanisms underlying adaptive differentiation across the elevation gradient described above.  

Low elevation plants exhibited characteristics consistent with avoidance of heat and 

drought stress during the spring reproductive season, including faster bolting and fruit ripening. 

Avoiding stress through shortening the vegetative phase and rapidly shifting resources to the 

reproductive structures is a key to the ruderal plant strategy described by Grime (1977) and has 

been observed in Arabidopsis thaliana and other species (e.g. Chaves et al. 2002; McKay et al. 

2003; Griffith & Watson 2005; Heschel & Riginos 2005). We observed that genotypes from 

lower elevations bolted significantly earlier than genotypes from high elevation. This pattern of 

earlier bolting at hotter, drier low elevation sites is concordant with the range-wide pattern of 

earlier bolting at lower latitudes (Stinchcombe et al. 2004; Caicedo et al. 2004; Lempe et al. 

2005; Wilczek et al. 2009). Earlier flowering was associated with functional shifts in the 

distribution of biomass among plant parts and in physiological rates.  
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Low elevation plants’ distribution of dry mass reflects in part their earlier flowering time.  

Low elevation plants had smaller rosettes and larger inflorescences relative to those from high 

elevations (Figure 2.4, Figure 2.5). Initiation of primary rosette leaves ceases at bolting because 

the primary meristem activity transitions to inflorescence production. This ends or slows 

accumulation of biomass in the rosette, depending on leaf production by axillary meristems in 

the rosette short-shoot (Bonser & Aarssen 2001).  

The advantage of earlier flowering in the field and its influence on the ratio of 

inflorescence to rosette may in part be due to the distinct thermal niches occupied by these 

organs.  At rosette level radiated heat from the ground and the associated still air layer lead to 

significantly warmer conditions when compared to air at the inflorescence level above the 

ground (Geiger 1950). Thus early flowering may not just ensure earlier reproduction, but also 

successful carbon gain during warm, dry spring months and increasing carbon uptake capacity 

while avoiding further self-shading in the rosette. In support of this hypothesis, Earley et al. 

(2009) showed that on average, A. thaliana inflorescences contribute a greater proportion of 

lifetime carbon gain than rosettes. Earley et al. (2009) also found that the inflorescence had 

greater WUE than the rosette, which may be advantageous during a hot, dry low elevation 

spring. Future studies of lifetime carbon gain and water use by the rosette and inflorescence 

along climate gradients will provide important functional understanding of variation in flowering 

time.  

Low elevation plants’ greater inflorescence mass may be explained in part by their 

greater number of basal inflorescence-forming axillary meristems (Figure 2.5). This trait may 

also allow earlier increase in the number of fruits matured, since for n basal inflorescences, a 
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plant will produce n fruits more or less simultaneously at approximately the same age that an 

single inflorescence will ripen a solitary first fruit.  

One final factor explaining the relationship between elevation and the distribution of 

aboveground dry mass is variation in senescence and re-allocation of rosette resources to the 

inflorescence. It is possible that maximum rosette mass is greater than the final rosette mass 

observed for early bolting plants. Earlier bolting may lead to earlier rosette senescence. The 

adaptive role of nutrient and carbon reallocation during senescence may be particularly important 

in environments where a rapid decrease in water availability can limit the ability of the plant to 

acquire nutrients from the soil, maximizing the importance of re-purposing of stored nutrients.  

Leaves of low elevation plants had significantly lower Fv:Fm, carbon assimilation and 

transpiration rates and greater WUE than high elevation plants (Figure 2.5). McKay et al. (2003) 

found that earlier bolting genotypes of A. thaliana were less WUE as evidenced by decreased 

carbon isotope discrimination. Low elevation plants that bolt earlier produce much larger 

inflorescences both overall (Figure 2.5) and relative to the rosette (not shown). Inflorescences 

can contribute greater lifetime carbon gain while being more WUE than rosettes (Early et al. 

2009). Thus, low elevation plants in this study may circumvent the expected trade-off between 

drought avoidance and tolerance mechanisms observed in McKay et al. (2003). This result is 

likely to be dependent on the timing of the measurements relative to the life history stage and the 

imposition of stress.  

Our low values of gas exchange rates and Fv:Fm among low elevation plants may indicate 

senescence of the measured leaves. This is in line with indications that low elevation conditions 

produce plants that develop more rapidly than their high elevation counterparts. The leaves we 

measured showed no visible sign of senescence at the time measurements were taken. However, 
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recent studies of the molecular and physiological underpinnings of senescence indicate that the 

process itself begins before visible signs appear (Balazadeh et al. 2008).  

We conducted gas exchange measurements in late afternoon to assess the ability of 

experimental plants to photosynthesize under heat stress. Our results would not necessarily 

correlate with measurements taken earlier in either the daily or the developmental cycle. 

Nevertheless, our measures of gas exchange, WUE and quantum efficiency were all strongly 

related to the elevation of each population, indicating that measured or correlated unmeasured 

traits played a significant role in adaptation to the environmental gradient.  

There was strong selection for high inflorescence masses (Table 2.2). This is expected, 

since the greater the inflorescence size, the greater the number of fruits borne. Additionally, there 

was selection for earlier flowering and shorter time until fruits ripen, which matches low 

elevation plants’ life histories. Multiple-regression analysis indicates a much stronger 

relationship between inflorescence mass and fitness, when controlling for correlated traits like 

bolting time. Inflorescence mass is correlated with basal branch number (r = 0.52) and rosette 

dry mass (r = -0.62) neither of which are significant in the selection analysis (Table S6). 

Inflorescence mass explained only 63% of the variance in fitness in a univariate 

regression (results not shown). Indeed, while low elevation plants produced the most fruit overall 

they also produced more fruit length per unit inflorescence mass (result not shown), i.e. exhibit 

greater mass use efficiency in the production of fruits under the conditions of this experiment. 

Given that inflorescences contribute significantly to lifetime carbon gain and have greater WUE 

than vegetative rosette tissue (Earley et al. 2009), they are likely to possess adaptive function 

above and beyond structurally supporting fruit production, further reflecting the advantage of 

conserving water via stomatal closure in the rosette while photosynthesizing in the inflorescence.  
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This study demonstrates variation in relative adaptedness of plants from across a climate 

gradient to heating and drying during the spring reproductive phase. Low elevation plants from 

NE Spain were able to maximize seed production given the short reproductive season we 

imposed because they bolted early and allocated more to reproductive relative to vegetative 

structures and because they ripened fruit more quickly. We propose that this is a syndrome of 

avoidance through early flowering accompanied by restructuring of the organism that adapts A. 

thaliana to low elevation Mediterranean climates. 
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Table 2.1: Univariate results for Arabidopsis thaliana population-mean trait values regressed on climate 

PC1 scores. 
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Table 2.2: Full AIC-selected best models of phenotypic selection on N. E. Spanish Arabidopsis thaliana. 
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Table 2.3: Locations, elevations and climates of the 16 sites in northeastern Spain from which the studied Arabidopsis thaliana genotypes originated. 

Longitude and latitude are reported in decimal degrees. Elevation is reported in meters above sea level (m.a.s.l.). Nineteen variables from the BIOCLIM dataset 

(http://www.worldclim.org) are reported; temperature in degrees celsius and precipitation in millimeters. Isothermality is (BIO2 / BIO7)*100 (Hijmans et al. 

2005). 
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Table 2.4: Eigenvector coefficients of first principal component resulting from a PCA of the value 19 

bioclimatic variables at 16 study populations of Arabidopsis thaliana in NE Spain. 
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Table 2.5: Principal Component Scores of each population of Arabidopsis thaliana for the first principal 

component of trait space plus the first and second principal components of climate space. 
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Table 2.6: Eigenvector coefficients of first principal component resulting from a PCA of the population 

means for each trait of Arabidopsis thaliana. 
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Table 2.7: Population-mean trait values for N.E. Spanish Arabidopsis thaliana. 
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Table 2.8: Pearson product moment correlation matrix for N.E. Spanish Arabidopsis thaliana.  Bold-faced = p < Sequential Bonferonni corrected 

critical value. ** p <0.0001,  * 0.0001 < p < 0.05. 
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Figure 2.1: Map of the sixteen Arabidopsis thaliana collection sites used in this study. Colors indicate 

elevation going from low to high as follows: Green to brown to white. 
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Figure 2.2: Eigenvector plot of the loadings of 20 climate variables onto the first and second principal 

component of climate space that describe conditions in 16 N. E. Spanish Arabidopsis thaliana populations. Each 

arrow represents a vector of loadings. Direction of each arrow represents the relationship of a variable to climate 

PC1 and PC2 and the length of the vector represents the strength of that relationship. Clusters of similar variables 

e.g. Precipitation are bracketed and labeled to help summarize results. 
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Figure 2.3: Eigenvector plot of the loadings of 12 traits onto the first and second principal component of 

trait space for N. E. Spanish Arabidopsis thaliana. Each arrow represents a vector of loadings. Direction of each 

arrow represents the relationship of a variable to trait PC1 and PC2 and the length of the vector represents the 

strength of that relationship. 
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Figure 2.4: Scatter plot and least squares regression of Arabidopsis thaliana population scores on the first 

PC of trait space (vertical axis) on population scores on PC1 of climate space (horizontal axis). P-value for the slope 

parameter estimate and r-square of the regression line are also presented. 

  

  43 



 
Figure 2.5: Scatter plot and least squares regression of Arabidopsis thaliana population-means for each 

trait (vertical axis) on the elevation of origin (horizontal axis). The line is only shown if P< 0.10. Equations for each 

fitted line, p-values for the slope parameter estimates and r2 statistics are also provided 
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Figure 2.6: Experimental conditions Arabidopsis thaliana genotypes were exposed to. Daily minimum and 

maximum temperatures in degrees Celsius (a). number of hours of light per day (b). Water availability expressed as 

grams supplied per day (c). 
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Figure 2.7: Field conditions for low elevation populations of N.E. Spanish Arabidopsis thaliana. Daily 

minimum and maximum temperatures in degrees Celsius (A). Daily temperature range in degrees Celsius (B). Plant 

height temperature data from field loggers placed at three low elevation sites (BAR, COC and RAB) over multiple 

years. BAR data are from 2009-2011, COC and RAB data are from 2010-2012. Data are averaged across sites and 

years within days. 
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Figure 2.8: Eigenvalues from PCA of Arabidopsis thaliana population values for 19 bioclimatic variables 

(black line). The gray dashed line represents the lower 99% confidence interval on the null hypothesis for 

eigenvalues based on 5000 randomizations. 
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Figure 2.9: Eigenvalues from PCA of Arabidopsis thaliana population means for 12 measured traits (black 

line). The gray dashed line represents the lower 99% confidence interval on the null hypothesis for eigenvalues 

based on 5000 randomizations. 
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3.0  ADAPTIVE DIVERGENCE OF ARABIDOPSIS THALIANA ROSETTE 

ECONOMIC SPECTRUM ACROSS A TEMPERATURE AND PRECIPITATION 

GRADIENT 

3.1     SUMMARY

The worldwide leaf economic spectrum represents a trade off between leaf traits optimized for 

resource acquisition versus conservation to which most plant species appear bound. We examine 

genetic variation in rosette carbon economy among Arabidopsis thaliana collected along a 

climate gradient. We measured three economic traits (lifespan, photosynthesis and mass per area) 

in a growth chamber experiment. We germinated plants under both fall and spring conditions 

simulating hot, dry seasons of one extreme of the climate gradient. We reveal a rosette economic 

spectrum, which is correlated with climate of origin such that plants from hot, dry sites show 

faster return economies. Additionally, spring germination produced faster economies than fall, 

regardless of climate, indicating plasticity in rosette economy. Finally, we show that the faster 

return economic strategy of low elevation plants was favored in this experiment. This work 

advances our understanding of the role of plant economic constraints in adaptive evolution. 

  49 



3.2 INTRODUCTION 

The worldwide leaf economic spectrum (LES hereafter) describes a trade-off between “fast” and 

“slow” return leaf tissues and is observed among nearly all plant species examined to date 

(Wright et al. 2004; Wright et al. 2005a; but see Farnsworth & Ellison 2007; Wright & Sutton-

Grier 2012). Plants appear to trade off between leaves with high metabolic and photosynthetic 

rates per unit mass and a short lifespan (fast return) and leaves with low physiological rates but 

long lifespans (slow return). Differences among species in leaf economy appear to be adaptive 

and are often associated with gradients in temperature and precipitation. “Slow return” leaves are 

generally found in colder, drier northern climates (Reich et al. 1999; Wright et al. 2004; Wright 

et al. 2005b; Reich et al. 2007; but see Pensa et al. 2009). Variation in leaf economy has also 

been associated with post-fire regenerative ability (Saura-Mas et al. 2009), invasiveness 

(Penuelas et al. 2009), leaf litter decomposition rates (Cornwell et al. 2008), plant functional 

grouping (Wright et al. 2004; Wright et al. 2005 a, b; Reich et al. 2007), disease (Cronin et al. 

2010), and can be used to parameterize global vegetation models (Wright et al. 2005a; Shipley et 

al. 2006a).  

Trade-offs within species are thought to involve some combination of constraints 

imposed by the laws of chemistry and physics (Maynard Smith et al. 1985), as well as those 

imposed by selection and genetics (Antonovics 1976, Stearns 1989). The LES is thought to have 

arisen due to biogeographic (Heberling & Fridley 2012), biophysical (Shipley et al. 2006b; 

Blonder et al. 2011) and genetic constraints (Reich et al. 1999; Lusk et al. 2008; Blonder et al. 

2011; Donovan et al. 2011; Vasseur et al. 2012). Cross-species clinal variation in LES associated 

with climate suggests adaptive divergence in the optimization of the balance between the fitness 

effects of LES component traits (Reich et al. 1999; Wright et al. 2004; Donovan et al. 2011). 
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Within species, very little is known about the extent of local differentiation in leaf economics. In 

a recombinant inbred line population (RIL) of the genetic model organism, Arabidopsis thaliana, 

Vasseur et al. (2012) found that variation along the LES was explained by antagonistic 

plieotropy at a few loci. While important for gene discovery, a RIL population represents a very 

small proportion of the whole species gene pool. With the genes of only two genotypes being 

compared in a RIL population, it is not possible to make statistical associations between the 

divergent QTLs observed and hypothetical environmental causes of genetic differentiation. Thus 

while variation in leaf economics may be associated with local adaptive divergence in A. 

thaliana, the topic remains to be explored. 

It seems likely that the same economics approach that has been applied to leaves can be 

fruitfully applied to the economics of plant parts in general (Freschet et al 2010, Vasseur et al. 

2012). With its relatively simple architecture and short life cycle, natural populations of A. 

thaliana collected across a climate gradient in NE Spain make a good system to explore this 

approach.  Here we extend understanding of the economics of the vegetative rosette in A. 

thaliana by testing for adaptive differences in rosette economics along a climate and elevation 

gradient in NE Spain. 

Populations of A. thaliana in northeastern Spain occur across an elevation gradient from 

near sea level at the Mediterranean coast to near tree line in the Pyrenee Mountains. In this 

system, low elevation sites are hotter and drier overall compared to high elevation sites. The low 

elevation sites are above freezing for most of the fall and winter, with spring conditions suitable 

for growth and reproduction being relatively short with rapid warming and drying. In contrast, 

high elevation sites experience freezing and snow cover during the winter, but are cooler and 
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wetter during a more prolonged spring reproductive period (Montesinos et al. 2009; Montesinos-

Navarro et al. 2011; Wolfe & Tonsor IN PRESS; see supplemental materials).  

Bolting time and a number of other life history, growth and allocation traits have been 

shown to vary according to climate of origin in NE Spanish A. thaliana (Montesinos-Navarro et 

al. 2011; Montesinos-Navarro et al. 2012; Wolfe & Tonsor IN PRESS). Bolting time in A. 

thaliana is generally highly correlated with vegetative lifespan (Levey & Wingler 2005; 

Balazadeh et al. 2008; Vasseur et al. 2012). Low elevation populations from N.E. Spain exhibit 

adaptive early bolting and rapid seed production in spring conditions of rapid heating and drying 

(Wolfe & Tonsor IN PRESS). Since younger age at bolting time is associated with a shorter 

rosette lifespan, low elevation populations of A. thaliana in N.E. Spain exhibit younger age at 

bolting than high elevation populations, we hypothesized that “fast” return rosette economics 

would be found among low elevation plants and “slow” return economics would predominate 

among high elevation populations. 

Studies of adaptive differentiation in A. thaliana on the N.E. Spanish climate gradient 

have largely focused on the winter annual life history; (Montesinos et al. 2009; Montesinos-

Navarro et al. 2011; Wolfe & Tonsor IN PRESS but see Montesinos-Navarro et al. 2012; Pico 

2012). Since reproduction occurs at the same time for both winter and spring annual A. thaliana 

(Pico 2012) a major consequence of fall vs. spring germination is in the total length of the life 

cycle. In the field at all sites plants are found germinating in both the fall and spring (Montesinos 

et al. 2009; Pico 2012). Further, in the laboratory all genotypes from N.E. Spain germinate some 

seeds under both simulated fall and spring germination cues (Montesinos-Navarro et al. 2012). 

We hypothesized that variation in rosette economic spectrum (RES) may occur both among life 

history strategies and among populations. We further hypothesized that the RES differentiation 
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among populations would be associated with climate of origin and that variation among life 

history types would be associated with length of life cycle, both explainable by the fast-return / 

slow return trade-off.   

In this study, we examined the adaptive significance of variation in rosette economy in a 

growth chamber experiment that simulated the low elevation seasonal temperatures and late 

spring drought of N.E. Spain. In this experiment, genotypes from 16 sites along the climate 

gradient are germinated under both fall and spring conditions. We examined genetic variation in 

three key economic traits: rosette photosynthetic rate (PHOTO) and rosette mass per area at 

bolting (RMA), and rosette lifespan (RL). We hypothesized that the experiment’s low elevation 

temperature regime would favor low elevation plants with fast return economies. In this study we 

accomplished the following aims: First, we tested whether rosette economy varies with elevation 

and climate of origin. Second, we determined whether rosette economy shifts depending on the 

season of germination. Finally, we test whether fitness covaries with climate of origin, favoring 

low elevation plants under low elevation conditions and whether clinal variation in rosette 

economy predicts genotype performance. 

3.3 MATERIALS & METHODS 

3.3.1 Collection 

The rosette economy data presented in this paper are part of a study designed to measure 

seasonal growth curves for a number of ecologically important traits. Two genotypes were 

randomly selected from available seed stores from each of 16 different populations along a 
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climate gradient in N.E. Spain (Table 2.3). The genotypes have been donated to the Arabidopsis 

Biological Resource Center (ABRC). Information about the climate gradient and field collections 

is published elsewhere (Montesinos et al. 2009; Montesinos-Navarro et al. 2011; Montesinos-

Navarro et al. 2012; Wolfe & Tonsor IN PRESS). Each genotype has experienced at least two 

generations of propagation by single seed descent in laboratory-controlled environments to 

minimize any possible environmental maternal effects. 

3.3.2 Planting 

We planted both fall and spring cohorts of the 32 experimental genotypes,. Eighteen replicate 

pots per genotype were germinated in the fall and 10 in the spring plantings. During each round 

of planting (fall and spring) we planted half of the replicates of each genotype on each of two 

consecutive days. The spring planting took place 20 weeks after the fall cohort was planted. 

After planting racks were placed in the dark at 4°C and 100% relative humidity for seven days to 

induce germination competency. After the cold treatment, racks were transferred into a Conviron 

PGW36 growth chamber for the remainder of the experiment. Additional details on the planting 

design and growth set-up can be found in Appendix S1 in Supporting Information. 

3.3.3 Seasonal climate conditions 

We imposed a dynamic growth chamber cycle in which temperature, day length and water 

availability varied over a 40-week period. We based the seasonal temperature cycle on field 

plant-height temperature data from multiple years at four low elevation sites. We also varied day 

length seasonally. Additionally, a late spring dry-down between weeks 34 and 40 was imposed. 
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Thus we created an archetype of a low elevation Mediterranean temperature regime, not 

representing any specific site or year. We conducted two plantings under the seasonal conditions 

outlined above. The first was under conditions corresponding to the fall (early October) and the 

second was 20 weeks later under spring conditions (late February). A detailed description of the 

creation and implementation of the seasonal growth chamber program can be found in Appendix 

S2. 

3.3.4 Sampling design 

The nine fall and five spring cohort measurement periods involved destructive sampling. At each 

time point two replicates of each genotype, one on each of two consecutive days, were sampled 

from the growth chamber  (n=32 plants per day). This had the effect of thinning out growth 

chamber space as plants grew, minimizing light competition. All examinations of trait changes 

over time are done at the genotype means level.   

At all except each cohort’s final sampling date we measured whole plant photosynthesis. 

For plants with inflorescences, after whole plant measures were conducted, a measurement of 

inflorescences only was taken (see Earley et al. 2009). This allowed rosette gas exchange rates to 

be estimated by subtracting inflorescence from whole plant rates. Measures from plants with 

dead rosettes were not conducted and gas exchange was set to zero in these cases. Measurements 

commenced one hour after lights turned on in a separate growth chamber whose temperature 

matched that of the primary growth chamber. Gas exchange measures were made with a LI-6400 

XT infrared gas analyzer (IRGA; LI-COR Biosciences, Inc., Lincoln NE) connected to a custom 

built four-cuvette array (Tonsor & Scheiner 2007; Earley et al. 2009; Tonsor et al. 2013). After 
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additional measurements rosettes were collected, dried for a week at 70°C and massed, allowing 

us to express rosette gas exchange rates on a dry mass basis. 

After physiological measurements, we recorded the total number of live (TLLN and dead 

(TDLN) leaves. Rosette status was then calculated as the ratio (TLLN / (TLLN + TDLN)), or the 

proportion of rosette leaves that are alive (Proportion Live Leaves). After leaf counting, we 

severed each rosette from the root system at the soil surface, flattened under glass and 

photographed it with a 1cm2 area standard obtaining a top down, projected rosette area using a 

pixel-counting macro (available upon request) in NIH ImageJ 64-bit version 1.47k 

(http://rsbweb.nih.gov/ij/). We then calculated the ratio of rosette dried mass to projected area 

(rosette mass per area or RMA hereafter). We estimated the summed fruit length, a proxy for 

total seed number (Wolfe & Tonsor in press). Summed fruit length is estimated by multiplying 

the total number of ripened fruits by the average fruit length. Finally, we conducted weekly 

censuses, recording age at bolting in days since sowing. Additional details on the sampling 

design and trait measurements conducted during this study are available in Appendix S3. 

3.3.5 Statistical analysis 

Our sampling design generated growth curves related to three key leaf economic traits (Rosette 

photosynthesis per mass, rosette mass per area and proportion live leaves) for each genotype in 

two germination cohorts. Our goal with the photosynthesis and rosette mass per area data was to 

estimate values for these two traits at bolting. Plant bolting provides a common developmental 

time point for comparing traits among genotypes (Vasseur et al. 2012). Trait values at bolting 

were not directly measured; instead we used nonlinear regression models to estimate the change 

  56 

http://rsbweb.nih.gov/ij/


in trait values with age and used the intercept of this function with age at bolting to estimate trait 

value at bolting.  

We note that Wright et al. (2004) analyze photosynthetic rates on both per mass and per 

area bases. While the correlation structure differs depending on the mode of standardization, the 

patterns were qualitatively similar at the single leaf level, worldwide (Wright et al. 2004). We 

therefore follow the previously published approach of Vasseur et al. (2012) in presenting per 

mass standardized photosynthetic rates.  

For rosette per-mass photosynthesis we fit a two parameter exponential model: PHOTO 

= α * e^(β * Age), where α and β are parameters to be estimated and age is in days since sowing. 

For rosette mass per area we fit a three parameter logistic function for each genotype: RMA = γ / 

(1+e^(-α * (Age * β))). For a subset of genotypes, a logistic function would not converge 

because the growth curves did not reach a threshold or plateau phase prior to senescence. For 

these genotypes, we fit two parameter exponential functions as in the models of rosette per-mass 

photosynthesis.  

The age at which 5% of rosette leaves remained alive was used to quantify rosette 

lifespan; at that point we considered the rosette dead. We first fit a two-parameter logistic 

function: proportion live leaves = 1 / (1+e^(-α * (Age * β))). We used each genotype’s 

parameter estimates to solve for the age when the proportion of live leaves = 0.05.  

We used the SAS PROC NLIN (version 9.3; SAS Institute Inc., Cary, North Carolina, 

USA) to carry out all nonlinear regressions. We fit the models described above for each genotype 

in each cohort and calculated model fit as the pseudo r2 (pseudo r2  = 1 – (SSError / Corrected 

SSTotal)).  
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Principal components analysis of trait variation (PCA using SAS PROC PRINCOMP) for 

pooled fall and spring cohorts (n=64) were used to describe the multivariate correlation structure 

of rosette economy. Randomization tests determined the number of meaningful axes of rosette 

economy (Perez-Neto et al. 2003; Wolfe & Tonsor IN PRESS). The randomization approach 

compares the true eigenvalue of each PC to a distribution of eigenvalues obtainable under the 

null hypothesis that the traits are independent. This was done by independently permuting the 

order of each variable, then conducting a PCA on the permuted data, repeated 1,000 times. For 

each PC, if the real eigenvalue was greater than 99% of the null hypothesis distribution of 

eigenvalues that PC and its eigenvector were considered a significant dimension in multi-trait 

space  (SAS macro program available at http://www.tonsorlab.pitt.edu).  These will be referred 

to as “rosette economic PCs”. 

In Wolfe & Tonsor (IN PRESS) we showed that 75% of the variation in climate among 

the 16 N.E. Spanish study sites could be described by the first principal component of a 

correlation matrix including 19 bioclimatic variables and elevation (Climate PC1 hereafter). 

Climate PC1 indicates that high elevation populations are relatively cold and wet while low 

elevation populations are relatively hot and dry (Figure 2.2). We used each population’s mean 

score on rosette economic PC1 as the dependent variable in a general linear model run in SAS 

PROC GLM to test for the fixed effect of life history cohort. In the same model, we included 

each population’s score on climate PC1 as a covariate and tested whether the climate-rosette 

economy relationship differed between life history cohorts as a difference in slope of the climate-

rosette economy relationship between life history cohorts.  

Finally, we analyzed the relationship between rosette economic variation and summed 

fruit length. We use standardized (mean centered, unit variance) genotype mean values of 
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summed fruit length as the dependent variable in an ANCOVA conducted using SAS PROC 

GLM. We tested for fitness differences associated with the fixed effect of life history cohort and 

included as a covariate rosette economy PC1 scores. We also tested for a difference in the fitness 

effects of economic variation between cohorts as an interaction term between life history cohort 

and rosette economic PC1 score. 

3.4 RESULTS 

All nonlinear models PHOTO converged successfully. In the fall cohort, pseudo r2 ranged from 

0.85 to 0.99 with a mean of 0.96. Spring cohort models had an average pseudo r2 of 0.85 and 

ranged from 0.16 to 1.00. Parameter estimates were generally significant and visual inspection of 

the fitted models with insignificant parameter estimates indicate that they still fit the data well 

(Table 3.3). The logistic function we initially fit to RMA data converged in the majority of cases. 

All fall cohort models converged with pseudo r2 ranging from 0.61 to 0.94 with an average of 

0.86. All but seven spring cohort models converged and of those that did pseudo r2 ranged from 

0.55 to 1.00 and averaged 0.91 (Table 3.4a). The seven spring genotypes that did not converge 

for RMA were RAB17, RAB4, BAR4, COC7, VDM17, PAL12 and PAN1. In each case, the plot 

of rosette mass per area vs. age indicated that these genotypes never entered the deceleration and 

saturation phase that would have been fit by a logistic function. Instead, for these genotypes we 

fit a two-parameter exponential function. All seven exponential models converged and pseudo r2 

ranged from 0.64 to 0.95, averaging 0.87 (Table 3.4b). Finally, all models of proportion live 

leaves vs. age converged with pseudo r2 ranging 0.83 to 1.00 (mean 0.98) in the Fall and from 

0.92 to 1.00 (mean of 0.99) in the Spring (Table 3.5). 
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We estimated PHOTO and RMA at the age of bolting and rosette lifespan (RL, age when 

95% of rosette leaves had died) using the parameter estimates from our nonlinear regressions. 

Estimated net rosette photosynthesis at bolting ranged from 1.1 to 144.6 and averaged 41.8 (σ = 

37.3 nM CO2 g-1 s-1) while rosette mass per area at bolting averaged 0.015 (σ = 0.005 g cm-2) 

across cohorts. Bolting ages ranged from 47 to 167.8 days (μ = 85.2, σ = 27.7 days) while RLs 

ranged from 63 to 320.7 days (μ = 146.7, σ = 61.2 days) (Table 3.6). Genotype mean trait values 

(Table S6) and population mean values (Table 3.8) are available in the data supplement. 

We tested whether each of the three input traits (PHOTO, RMA and RL) were normally 

distributed across cohorts. Rosette photosynthesis deviated from normality significantly. To 

resolve this, we first removed a strong outlier data point (spring genotype PAN5). For this data 

point, the estimated photosynthetic rate at bolting is extremely low (~0.01 nmol CO2 g-1 s-1 

which we judged to be unrealistic since all plants have green rosettes at bolting. This genotype, 

from the highest elevation, (1664 m.a.s.l.) and had the latest bolting date. The remaining values 

were log10 transformed to obtain a normal distribution for the PCA and all subsequent plots and 

analyses.  

As expected, the three rosette economic traits included in the PCA were highly correlated 

with each other and with age at bolting (Table 3.9, Figure 3.4). The first principal component 

(Rosette Economy PC1 hereafter) explained a significant proportion (76.2%) of multivariate 

genetic variation (Figure 3.1, Table 3.10). Rosette lifespan and rosette mass per area loaded 

positively onto rosette economy PC1 (0.56 and 0.60 respectively) while rosette photosynthetic 

rate loaded negatively (-0.56) (Figure 3.1, Table 3.10).  

We tested whether cohort altered rosette economy and component traits, whether climate 

PC1 predicted rosette economy and whether germination season altered the climate-trait 
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relationships. To do this, we conducted analyses of covariance on rosette economy PC1 score, 

the three economic traits, age at bolting, and summed fruit length (Table 3.1). Cohort and 

Climate PC1 effects were significant except for photosynthetic rate at bolting while the 

interaction effects are significant only for summed fruit length (Table 3.1). Overall, a fall 

germinating life history and higher values of climate PC1 were positively associated with rosette 

economy PC1 (Figure 3.2a). Photosynthetic rate was not significantly related to climate PC1 nor 

was germination cohort (Figure 3.2b). Rosette mass per area was 37% greater in the fall cohort 

compared to the spring and rose by 51% across the range of climate PC1 values (Figure 3.2c). 

Rosette lifespan was on average 90 days longer in the fall-germinated cohort and rose 27% (34.9 

days) with increasing values of climate PC1 (Figure 3.2d). Plants germinated in the fall were 

314% more fecund than spring plants. In the fall cohort (but not the spring) summed fruit length 

decreased by 34% from the low to the high extremes of climate PC1 (Figure 3.2e). Plants 

germinated in the spring bolted on average 26.7 days earlier and in both life history cohorts 

plants from the lower extreme of climate PC1 bolted as much as 35 days earlier than those from 

the opposite climate extreme (Figure 3.2f). 

Analysis of covariance indicated that summed fruit length is predictable based on life 

history cohort (Figure 3.2e, Figure 3.3, Table 3.1, Table 3.2). Further, we found that in both life 

history cohorts, a unit decrease in rosette economy PC1 score resulted in a 0.26 standard 

deviation (69 mm) increase in summed fruit length (Figure 3.3, Table 3.2). The combination of 

cohort differences and rosette economy differences explained 83% of the total variance in fitness 

in this study (Table 3.2). 

  61 



3.5 DISCUSSION 

In this study we quantified natural genetic variation in rosette carbon economy among 

Arabidopsis thaliana genotypes from along a climate gradient in Spain. We demonstrate that for 

the three rosette economic traits measured (lifespan, per mass photosynthesis and mass per area) 

the correlation structure is similar to that of the worldwide leaf-level economic spectrum of 

Wright et al. (2004) and the rosette-level economy demonstrated by Vasseur et al. (2012), 

forming a rosette economic spectrum. We found that climate of origin significantly predicted 

rosette economy such that low elevation plants from hot, dry Mediterranean sites show faster 

return, shorter lifespan economies. In addition, we show that, as hypothesized and in accordance 

with their shorter lifespans, spring-germinated have faster return rosette economies compared to 

fall- germinated plants. Finally, we link rosette economic variation to variation in fecundity 

(summed fruit length) under a simulated low elevation temperature regime, indicating that 

rosette economy is likely to have been under selection in the field. 

Our rosette carbon economy traits differ from the single leaf measures of LES. A. 

thaliana is structurally organized in a nested hierarchy of units with the rosette being a 

photosynthetic unit one level up from that of the leaf. The identity of the rosette as a functional 

unit is strengthened by the observation that it has a discrete life span in which the leaves 

contained by the rosette die in concert (Lim et al. 2007; Balazadeh et al. 2008; Vasseur et al. 

2012). We can match the LES traits with analogous traits at the rosette level and therefore expect 

that rosette economic spectrum will match that of the LES. When studying the LES, leaf 

photosynthetic capacity measures are typically used as indicators of the carbon revenue at any 

given time over its lifespan. Thus a leaf with a short lifespan can be a net carbon source by 

having higher assimilation rates. The analogous parameter of rosette carbon economy is the 
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rosette photosynthesis-lifespan relationship. Similarly, RMA in this study is the whole plant 

analogue of the single leaf mass per area (LMA), representing the structural carbon investment 

of the leaf over its lifespan (Diemer & Korner 1996; Shipley et al. 2006a). Rosette mass per area 

is determined by the LMA of its component leaves and the total number of leaves, i.e. leaf area 

index (Watson 1958), and the structural carbon content of petioles and the short shoot.  

The economic traits measured in this study also differ slightly from Vasseur et al. 

(2012)’s study of RIL rosette economics in A. thaliana. In that study, whole plant rosette leaf 

mass per area was measured by detaching leaves from the short shoot, removing petioles and 

measuring total blade mass and area. Total leaf mass per area was therefore dependent on the 

same factors (e.g. cell size, wall thickness, number) as in prior LES studies (Reich et al. 1999; 

Vile et al. 2005; Shipley et al. 2006). However, Vasseur et al. (2012) as in this study, measured 

gas exchange on intact rosettes. Thus the photosynthetic rate estimates in both studies were 

affected by self-shading and plant architecture (Lake 2004). In contrast to Vasseur et al. (2012) 

we used projected rosette area for rosette mass per area and whole rosette dry-mass for per-unit 

mass photosynthesis. This approach comes closer to measuring both the total carbon cost and the 

carbon gain per unit investment. Ultimately, the differences in trait measurements between our 

and other economy studies are overshadowed by the fact that the economic trade-off between 

lifespan, structural investment and physiological rates are strongly manifested across studies. 

We found that that plant economy varies not only between genotypes and populations but 

is also plastic, varying with the season of germination. Many studies in A. thaliana have 

addressed genotypic and environmental cues resulting in variation in germination season and 

subsequent adaptive value with little focus on other phenotypic characters (Donohue et al. 2005a, 

b; Korves et al. 2007; Wilczek et al. 2009; Metcalf & Mitchell-Olds 2009; Scarcelli & Kover 
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2009; Pico 2012). Among N.E. Spanish A. thaliana we find that fall and spring germination 

occurs at all sites across the climate gradient (Montesinos et al. 2009) and that all genotypes 

hedge their bets and germinate in both seasons (Montesinos-Navarro et al. 2012).  

Here we find that all traits except PHOTO and including rosette economy PC1 differ 

according to germination cohort, supporting our hypothesis that spring germinated plants would 

exhibit fast return economies through shorter lives and lower rosette mass per area (Table 3.1, 

Figure 3.3). Changes in environment (i.e. growing season) can sometimes alter trait-trait scaling 

relationships in addition to overall trait means (Weiner 2004).  Therefore, we used a Flury 

hierarchical analysis (not shown; see Phillips & Arnold 1999) to test for differences between 

cohorts in the economic correlation structure and found that the cohorts share PCs (same trait-

trait relations along PC1) differing only in mean values and the magnitude of variation. This 

result is in line with Vasseur et al. (2012) who found little genetic variation off the main axis of 

the rosette economic spectrum. This may suggest either a physiological constraint (Blonder et al. 

2011), or that one or a few tightly linked and pleiotropic alleles (Anderson et al. 2011) govern 

the trait-trait scaling of the RES. 

In this study, we demonstrate genetically based clinal variation in rosette economy 

associated with home-site climate in N.E. Spain. Specifically, we found that low elevation plants 

from hot, dry Mediterranean sites exhibited fast-return economics (lower rosette economy PC1) 

compared to high elevation montane plants from cold, moist sites (Figure 3.2). This result is 

consistent with previous findings indicating that low elevation N.E. Spanish A. thaliana are 

adapted in having a minimal time and resource investment in vegetative structures hypothetically 

as a mechanism for avoiding spring reproductive season heat and drought stress (Montesinos-

Navarro et al. 2011; Wolfe & Tonsor IN PRESS). Although fecundity did not vary with climate 
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of origin in the spring germinated cohort (Figure 3.2, Table 3.1), plants from hot-dry low 

elevation climates exhibited a fitness advantage in the fall cohort; a result that matches that of 

Wolfe & Tonsor (IN PRESS). Consistent with those results, in this study both fall and spring 

cohorts fast-return rosette economy was associated with higher fitness under this experiment’s 

low elevation temperature and watering regime (Figure 3.3; Table 3.2). The cline we observe 

among populations cannot be easily matched to those of the worldwide clines in LES traits in 

part because leaf traits are differently modulated among functional groupings (Wright et al. 

2005). For example, in deciduous species increased temperature extends leaf lifespan but 

decreases it for evergreens (Wright et al. 2004). Our example of clinal variation in rosette 

economy represents a specific example of adaptive divergence and is interpretable in the context 

of A. thaliana life history. In contrast, the clines in the LES depend on myriad factors including 

biogeography (Heberling & Fridley 2012) and plant functional groupings. 

For traits to evolve trait variation must be heritable (Endler 1986). Heritable variation has 

previously been documented for single and pairs of leaf economic traits in natural populations 

but without specific reference to the LES (Donovan et al. 2011). Vasseur et al. (2012) contribute 

significantly to our understanding of LES and genetic basis through quantitative trait locus 

analysis, but examine a recombinant inbred line population whose parents differ in leaf traits but 

originate from disparate locations and therefore give us little guidance as to how much local or 

regional genetic variation might exist in this species. Our demonstration of naturally occurring 

regional genetic variation in rosette economy provides a key link in understanding the potential 

microevolutionary origins of the RES. Critically, by linking economic variation with geographic 

variation in climate we provide the first evidence of adaptive differentiation in RES within a 

species. 
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Our examination of rosette economy represents an important step forward in 

understanding evolutionary causes of variation in leaf and whole plant economics. Here the RES 

exists because populations evolve their way up and down this trade-off, optimizing the mix of 

positive and negative effects associated with the trade-off in their home environments. It is an 

open question whether in addition to contrasting selective regimes, genetic constraints and/or 

biophysical limitations account for the lack of deviation from the RES (Antonovics 1976, Stearns 

1989; Reich et al. 1999; Shipley et al. 2006b; Blonder et al. 2011; Donovan et al. 2011). Future 

work must ask whether genetic crosses of disparate individuals can produce early bolting 

genotypes with long-lived rosettes that maintain high photosynthetic rates? Further, if genotypes 

occasionally arise naturally that do not conform to the rosette or single leaf economic spectrum, 

does natural selection result in their extinction? Future studies must leverage the power of 

quantitative genetics and functional genomics (e.g. Vasseur et al. 2012) combined with classical 

approaches to studying natural selection both in the field and in the lab (e.g. Lande & Arnold 

1983; Wade & Kalisz 1990; Donovan et al. 2011) to answer these and other questions and to 

identify the ultimate source of observed within and among species economic trade offs. 
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Table 3.1: Tests of life-history cohort, climate-of-origin and interaction effects on rosette economic and related traits. Analyses of covariance results are 

presented for rosette economy PC1 scores, each rosette economic trait, the summed fruit length and age at bolting. F-tests and corresponding P-values are 

reported for each of the following model factors: Life History Cohort (fixed effect), Climate PC1 (covariate) and the interaction. Model p-value and r-square are 

also reported. Each row represents an independent analysis on the trait indicated. Analyses were performed on within-cohort population mean trait values so in 

all cases n=32. 
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Table 3.2: Relationship between summed fruit length and rosette economy. Here we test for the effect of 

life history cohort (fixed effect) and within cohort genotype score on rosette economy PC1 (covariate) on summed 

fruit length (fitness). Both the summed fruit length and rosette economy PC1 score were standardized to mean = 0 

and variance = 1 prior to analysis. Selection coefficients (β) and standard errors on the parameter estimates (SE) are 

presented along with p-values for the t-test (ho: β = 0). Additionally, the F-tests and corresponding p-values for each 

model factor are reported as well as the overall model statistics. N=64. 
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Table 3.3: Results from two parameter exponential nonlinear regression models fit to each genotype in both germation cohort are provided here for 

rosette per-mass photosynthetic rate versus time. In addition to the paramter estimates, standard errors, 95% confidence intervals, and significance tests are 

provided for each parameter. Pseudo r-squares are provided as a measure of each models fit. 
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Table 3.3: Continued from previous page. 
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Table 3.4: Results from regression models fit to each genotype in both germation cohort are provided here for rosette mass per area versus time. In 

addition to the paramter estimates, standard errors, 95% confidence intervals, and significance tests are provided for each parameter. Pseudo r-squares are 

provided as a measure of each models fit. Three parameter logistic functions are fit in (A) and two parameter exponential functions are reported in (B). 
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Table 3.4: Continued from previous page. 

 
  

  72 



Table 3.4: Continued from previous page. 
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Table 3.5: Results from two parameter logistic nonlinear regression models fit to each genotype in both germation cohort are provided here for the 

proportion of living rosette leaves versus time. In addition to the paramter estimates, standard errors, 95% confidence intervals, and significance tests are 

provided for each parameter. Pseudo r-squares are provided as a measure of each models fit. 
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Table 3.5: Continued from previous page. 
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Table 3.6: Basic descriptive statistics within and across cohorts for rosette per-mass photosynthetic rate 

and rosette mass per area at bolting, rosette lifespan, age at bolting and summed fruit length. 

 
  

  76 



Table 3.7: Genotype mean trait values within each cohort for rosette per-mass photosynthetic rate and 

rosette mass per area at bolting, rosette lifespan, age at bolting,  summed fruit length and score on rosette economy 

PC1. 
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Table 3.7: Continued from previous page. 
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Table 3.8: Population mean trait values within each cohort for rosette per-mass photosynthetic rate and 

rosette mass per area at bolting, rosette lifespan, age at bolting,  summed fruit length and score on rosette economy 

PC1. 
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Table 3.9: Genotype mean correlation matrix for rosette per-mass photosynthetic rate and rosette mass per 

area at bolting, rosette lifespan, age at bolting and summed fruit length. In each cell, the top row represents the 

pearson product-moment correlation coefficient, the middle row includes the p-value for the two-tailed test of the 

hypothesis that the correlation is zero and the bottom contains the sample size. 
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Table 3.10: Rosette economy PCA results. Each column contains information for one of the three principal 

components. Each row of the first subsection contains the loading for an individual variable onto each of the three 

PCs. The second subsection contains eigenvalues, 99% significance thresholds and variance explained for each PC. 
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Table 3.11: Daily high and low temperatures, day length, water table height and total daily water supply 

(in grams) per pot for each week of the experiment. Standard errors are given for temperature data as they represent 

averages from multiple sites and years based on data logger data. The actual growth chamber program did not 

incorporate the temperature variance reported below. 
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Table 3.12: The week, plant age and growth chamber conditions for each sampling time point is shown for 

both fall and spring germinated cohorts. Additionally, the pot types sampled at each time point are listed (see 

Appendix A.3 in Supporting Information for details). 

 
  

  83 



 
 

Figure 3.1: Rosette economy PCA results. Eigenvalues for a PCA of three rosette economic traits (AM, 

RMA and RL) are plotted against the upper 99% limit of the distribution of eignenvalues under the null hypothesis 

of random correlation structure (A). Eigenvector coefficients (loadings) of the 3 rosette economic variables onto the 

first PC of trait space (B). The sign of each loading indicates whether trait values increase or decrease with 

increasing scores on rosette economy PC1 and also indicates the relationship between each trait pair. 
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Figure 3.2: Trait vs. Climate Plots. Scatter plot and least squares regressions of population-means for each 

trait (vertical axis) on the climate PC1 score for that population (horizontal axis). Filled circles and solid regression 

lines represent the results for the Fall germinated cohort while open circles and dashed regression lines are for the 

Spring germinated cohort. R-squares are presented for each individual regression line within each plot. Climate PC1 

is the result of a PCA of population values of 19 BIOCLIM variables and Elevation originally published in Wolfe & 

Tonsor in press. High values of climate PC1 represent high elevation sites that are cold and wet overall while low 

values are low elevation sites with hot, dry climatic conditions. 
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Figure 3.3: Rosette economy predicts fitness (summed fruit length). Scatter plot and least squares 

regressions of genotype-means within the spring (open circles, dashed regression lines) and fall (closed circles, solid 

regression lines) germinated cohorts. The vertical axis represents a fitness component related to total seed number 

(summed fruit length) while the horizontal axis represents each genotype's score on rosette economy PC1. High 

values of the predictor variable represent "slow-type" economics; long rosette lifespan, high rosette mass per area 

and low rosette photosynthetic rate at bolting. Low values of rosette economy PC1 represent "fast-type" rosette 

economies. R-squares are presented for each individual regression line within each plot. 
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Figure 3.4: Genotype mean scatterplot matrix for rosette per-mass photosynthetic rate and rosette mass per 

area at bolting, rosette lifespan, age at bolting and summed fruit length. 
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Figure 3.5: The dynamic growth chamber cycle simulating a low elevation N.E. Spanish seasonal climate 

is shown here. Daily high and low temperatures in centigrade (A), day lengths in hours (B) and daily water supply in 

grams per pot (C) are ploted by week. Standard errors bars for the temperature cycle represent variance in field 

temperature data (averaged across sites and years) and do not represent thermal variance in growth chamber 

conditions. 
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4.0  ADAPTIVE SHIFTS IN WHOLE PLANT ECONOMY FROM ROSETTE TO 

INFLORESCENCE ACROSS A CLIMATE GRADIENT IN ARABIDOPSIS THALIANA 

4.1      SUMMARY

Plant leaves generally experience a lifespan-associated trade off between carbon income and 

investment. Leaves fall along a continuum between short lives with rapid photosynthesis and 

long lives with slow photosynthesis; a pattern known as the worldwide leaf economic spectrum 

(LES). This apparent trade off has recently been extended from single leaves to whole rosettes in 

the winter annual Arabidopsis thaliana and implicated in adaptation to climate. We hypothesized 

that photosynthetic inflorescences might also play a role in adaptation to climate and vary along 

a similar economic spectrum to that of leaves and rosettes. In this study, we tested for economic 

spectra in the form of single principal component axes that describe the economic strategies of 

N.E. Spanish A. thaliana from across a climate gradient. We tested for trade offs analogous to 

those observed at the single leaf level among rosettes, inflorescences, and at the whole plant 

level of organization. We found that rosette and whole plant economies exhibited a trade-off 

similar to the LES. Inflorescence economies match leaf and rosette level patterns except that 

lifespan and photosynthetic rate are not traded off.  Slow rosette economy was associated with a 

long-life and slow economy overall, but also with a short-lived, slowly photosynthesizing 

inflorescence. In this experiment faster plants from hotter, drier low elevation sites that gained 
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most of their carbon income from their inflorescences were most fit. The adaptive value of 

inflorescence-centric life cycle under the relatively hot and dry conditions of this experiment 

suggests a role for this strategy in heat and drought avoidance. The key contribution of this 

study, therefore, is to provide evidence of the integrative changes to whole plant economy that 

are involved in climatic adaptation and the potential importance of photosynthetic stems and 

fruits in this process. 

4.2 INTRODUCTION 

The limitations on plant form and function can be fruitfully understood through economic 

analogy (Bloom et al. 1985). For example, leaves across the plant kingdom appear to trade a long 

life for a high photosynthetic rate. Corresponding to this trade off is a shift from high carbon and 

low nutrient cost to high nutrient and low carbon cost (Wright et al. 2004; Shipley et al. 2006). 

This trade-off is known as the worldwide leaf economic spectrum (LES hereafter) and represents 

a shift in the balance of resources investment over a time period that hypothetically optimizes the 

lifetime profitability in carbon gain of the leaf. Species tend to fall along the spectrum between 

slow leaves optimized for conservation and leaves optimized for fast acquisition of resources.  

The economic indicators describing the LES have generally been applied at the 

interspecific level (but see Donovan et al. 2011) and relate to everything from post-fire 

regenerative ability (Saura-Mas et al. 2009) to litter decomposition rates (Cornwell et al. 2008) to 

the parameterization of global vegetation models (Wright et al. 2005a; Shipley et al. 2006). 

Recently, examination of this leaf-level trade off has been simultaneously extended to a higher 

level of biological organization (whole rosettes) and focused on within species variation 
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(Vasseur et al. 2012; Chapter 2). Vasseur et al. (2012) demonstrated that recombinant inbred 

lines of the plant model organism Arabidopsis thaliana exhibited a rosette economic spectrum 

(RES hereafter) ranging from slow rosettes with long lives but slow photosynthesis to fast 

rosettes with short lives and fast assimilation. These will be referred to as “slow” and “fast” 

economies henceforth.  

In Wolfe & Tonsor (Chapter 3) we showed that rosette carbon economies were 

adaptively differentiated according to their climate of origin. Specifically, we showed that hot, 

dry climates of the N.E. Spanish coastal lowlands produced rosettes with relatively fast 

economies while A. thaliana from high elevation sites where cold, wet montane climates prevail 

produced slow rosettes. The age at bolting, a critical life-history trait for annual species has also 

been shown to increase with elevation and thus covary with climate in this system (Montesinos-

Navarro et al. 2011; Wolfe & Tonsor in press). Age at bolting is typically highly correlated with 

and causally related to vegetative lifespan in A. thlaliana (Levey & Wingler 2005; Balazadeh et 

al. 2008; Vasseur et al. 2012). Thus bolting age is necessarily a strong determinant of overall 

rosette carbon economy. However, a potentially significant and largely unexplored contributor to 

whole plant carbon economy in many species is the time and resource economics of 

photosynthetic inflorescences.  

Numerous plant species have green stems and reproductive structures. These non-foliar 

photosynthetic structures can range from carbon sink to net carbon source (Watson & Casper 

1984; Nilsen 1995; Aschan & Pfanz 2003). In the Brassicaceae, Brassica napus fruits (siliques) 

have been shown to exhibit net photosynthetic rates in the late growing season that are higher 

than in the basal leaves (Gammelvind et al. 1996; Bennett et al. 2011). In fact, among five 

ecotypes of A. thaliana the inflorescence on average contributes the majority of lifetime carbon 
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gained in rapid cycling laboratory conditions (Earely et al. 2009). Photosynthesis from the 

upright branches held above the still ground air layer may be advantageous when temperature 

and irradiance are high (Nilsen 1995). We therefore hypothesize that inflorescence 

photosynthesis may be an important and adaptive alternative (or complement) to the rosette’s 

contribution to whole plant economy. 

For monocarpic plants, especially annuals, the correct timing of reproduction is an 

essential step in adaptation to the local environment (Cohen 1976; Metcalf & Mitchell-Olds 

2009). Given contribution to photosynthesis by inflorescences, variation in age at bolting may 

have added significance to whole plant economy because bolting initiates the formation of the 

inflorescence. Thus the seasonal timing of bolting determines the environmental context but not 

necessarily economics and lifespan of the inflorescence. Indeed in the monocarpic annual A. 

thaliana loci influencing bolting time generally have extensive pleiotropic effects on other 

vegetative and reproductive traits (Van Tienderen 1996; Scarcelli et al. 2007; Atwell et al. 2010). 

Therefore, we hypothesize that variation in age at bolting will be strongly associated not just 

with the timing of reproduction, but also with the overall carbon economy of the plant.  

In N.E. Spain A. thaliana rosette economics go from fast to slow with increasing 

elevation and with the change from hot, dry low elevation to cold, wet high elevation sites 

(Chapter 3). Given the potential role bolting time plays in determining inflorescence growth, it is 

hypothesized that inflorescence economy will be correlated with rosette economy and vary with 

climate-of-origin in this system. Alternatively, the inflorescence economy may be independent of 

(uncorrelated with) bolting time and rosette economy, providing an alternative dimension to 

whole plant economics. Thus adaptive shifts in rosette economy associated with the climate 

gradient may or may not coincide with adaptive shifts in inflorescence economy. 
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The conceptual model for carbon economy (Figure 4.1) involves balancing resource 

investment (cost), and return on investment (income).  Investment can be measured as either the 

absolute or per unit area dry mass (cost of a functional unit) allocated to a given plant module. 

Return on investment can also be measured in absolute terms as the total lifetime carbon gained 

or as a function of the rate of return (photosynthesis) and duration, or lifetime, of the structure in 

question. This model can in theory be applied to leaves, rosettes, inflorescences and whole 

plants. Whole plant economy is the sum of rosette and inflorescence economies. The whole plant 

might be expected to balance total investment with total return as well as the apportioning of 

investment and duration between rosette and inflorescence. In this paper we test for spectra in 

inflorescence as well as whole plant and rosette level carbon economies. We compare these 

spectra not only to each other but to the LES to understand how carbon economic trade-offs 

change at different levels of organization. 

Ultimately, both rosette and inflorescence economies contribute to the whole plant 

economy, determining the whole plant’s fitness.  Previous studies of whole plant carbon and 

nutrient economics address correlations between above and below ground traits among species, 

but rarely include physiological and lifespan measurements (reviewed in Freshet et al. 2010). 

Briefly, our approach to whole plant carbon economy subdivides resource investment between 

rosette and inflorescence over the course of the plant’s lifespan. Figure 4.1 illustrates the rise and 

fall of rosette photosynthesis, peaking at approximately the time of bolting. Figure 4.1 also 

illustrates that upon bolting, photosynthetic carbon gain by the inflorescence and the process of 

rosette senescence both begin. Inflorescence photosynthesis terminates with the end of the 

plant’s lifespan. The whole plant’s lifespan is therefore allocated between rosette and 

inflorescence photosynthesis with a period of functional overlap between the two, hinging on the 
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timing of bolting and other unknown factors. If the costs and/or benefits of carbon gain via the 

rosette differs from that of the inflorescence, then variation in age at bolting will have an 

important impact on whole plant economy. This would mean that, whole plant economy and 

fitness may modified by the effect that variation in age at bolting may have on rosette and/or 

inflorescence economy.  

In this study, we address adaptive functional variation in the photosynthetic roles of 

rosette and inflorescence for semelparous annuals by focusing on the whole plant carbon 

economy of N.E. Spanish A.thaliana from 16 sites along a climate gradient. We present a growth 

chamber study of rosette and inflorescence photosynthesis as well as biomass allocation over 

time under seasonally varying conditions. We accomplish the following specific aims:  First, we 

quantify variation in carbon economy at the rosette, inflorescence and whole plant organization 

levels, testing for evidence of an inflorescence economic spectrum for the first time and 

comparing to the LES. Second we examine how rosette and inflorescence economic spectra are 

related to each other and how they contribute to variation in whole plant economy. Third, we 

examine the way in which variation in the age at bolting alters whole plant, rosette and 

inflorescence economic spectra as well as the correlation among modules. Fourth, we test for 

adaptive variation in rosette, inflorescence and whole plant economic spectra according to 

climate of origin. Finally, we assess the functional significance of plant economic variation by 

testing whether and how such variation predicts fitness under a simulated low elevation climatic 

regime. 
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4.3 MATERIALS & METHODS 

4.3.1 Collection 

The data presented in this paper were generated as part of a larger experiment designed to 

measure key aspects of seasonal growth curves for a number of ecologically important traits. 

Two genotypes were randomly selected from available seed stores from each of 16 different 

populations along a climate gradient in N.E. Spain (Figure 3.2). The genotypes have been 

donated to the Arabidopsis Biological Resource Center (ABRC). Information about the climate 

gradient and field collections is published elsewhere (Montesinos et al. 2009; Montesinos-

Navarro et al. 2011; Montesinos-Navarro et al. 2012; Wolfe & Tonsor in press). Each genotype 

has experienced at least two generations of propagation by single seed descent in laboratory-

controlled environments to minimize any possible maternal effects. 

4.3.2 Planting 

We planted two sets of replicates of the 32 experimental genotypes, designated as fall and spring 

cohorts. There were 18 replicate pots per genotype. Four replicate pots per genotype were 

planted for early-age destructive sampling in Ray Leach RLC3 49 mL Cone-tainers. The 

remaining replicates were planted in Ray Leach SC10 164 mL Supercell Cone-tainers (hereafter 

pots, regardless of size) (http://www.stuewe.com/products/rayleach.php).  

We filled all pots with Turface MVP fritted clay (http://www.turface.com) with 0.21-0.24 

grams of Nutricote pellets added, for release of equal daily quantities of nutrients for 100 days 

(NPK 13-13-13, Type 100, Arysta Life Science NA Co., New York, NY). Central plugs 1 cm 
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wide by 2 cm deep of Sunshine germination-mix (http://www.sungro.com) in each pot provided 

a safe site for germination and early growth. RLC3 and SC10 pots were placed in RL200 and 

RL98 racks (http://www.stuewe.com/products/rayleach.php) respectively. 

Seeds were surface sterilized through exposure to chlorine gas for three hours prior to 

planting. We planted 10-20 seeds per pot and at 15 days post-sowing we thinned seedlings to one 

per pot. We planted half of the replicates for each genotype on each of two consecutive days. 

After planting racks were placed in the dark at 4°C and 100% relative humidity for seven days to 

induce germination competency. After the cold treatment, racks were transferred to a Conviron 

PGW36 growth chamber for the remainder of the experiment. 

4.3.3 Dynamic Growth Chamber Cycle 

We imposed a dynamic growth chamber cycle in which temperature, day length and water 

availability varied over a 34-week period. Growth chamber seasonal cues, combined with 

heating and drying stress in the reproductive phase, result in variable fitness among N.E. Spanish 

populations such that low elevation plants are favored and fecundity scales with climate of origin 

(Wolfe & Tonsor in press). We based the seasonal temperature cycle on field plant-height 

temperature obtained from Hobo pendant temperature loggers (www.onsetcomp.com) placed in 

four low elevation sites, logging every 60 or 90 minutes. The number of years of temperature 

data and the number of loggers per site varied as follows: population BAR (2007-2010, 1 

logger), population COC (2007, 1 logger and 2010, 3 loggers), population HOR (2007-2010, 1 

logger) and population RAB (2010, 2 loggers). We extracted daily high and low temperatures 

from the raw logger data (Dryad doi:(to be posted at time of acceptance)). We averaged by day 

across years and sites separately for daily high and low temperature. We then averaged daily 

  96 

http://www.sungro.com/
http://www.stuewe.com/products/rayleach.php


high and low temperatures in seven-day intervals. This created an archetype of a low elevation 

Mediterranean temperature regime, not representing any specific site or year. Growth chamber 

temperature ramped linearly between the weekly mean minimums at lights on and weekly mean 

maximums at lights off (Figure 3.5).  

Day length was also varied on a weekly basis (Figure 3.5) based on US Navy 

sunset/sunrise table calculator (http://aa.usno.navy.mil/data/docs/RS_OneYear.php) for the mean 

latitude and longitude (42.1539° Lat, 1.5738° Lon) of the study populations’ sites of origin. 

Plants were germinated under mild conditions that continued for two weeks: 12 hour day 

length, 150 ± 50 μmols photons m-2 s-1, 18°C maximum and 12°C minimum daily temperatures. 

At the third week post-sowing, light increased to 350 ± 50 μmols photons m-2 s-1 and the 

seasonal day length and temperature regimes were begun for the fall cohort (Figure 2.8). 

Lighting increased a final time to 550 ± 50 μmols photons m-2 s-1 at the start of week four. Based 

on observations of field germination timing (Montesinos et al. 2009), we began our growth 

chamber temperature and day length cycle to correspond with conditions in the field at the 

beginning of October. 

For the first 20 days of life standpipe height is 7” with constant water supply. From day 

21 to 27 bins are drained each day and filled in the morning for one hour providing 

approximately 2.8 grams of water per pot per day (Tonsor, unpublished). On day 28, standpipe 

height was reduced to 4” or 1.6 grams of water per pot per day and remained at this supply for 

the remainder of the life cycle (Figure 3.5).  

Because building CO2 concentration varied both daily and seasonally, we controlled CO2 

concentration by keeping it just above the building max at 530 ppm.   
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After ebb-and-flood watering regime began, rack rotations were conducted on a twice-

weekly basis and continued for the duration of the experiment. 

4.3.4 Sampling Design 

We conducted trait measurement through destructive harvests of individual plants on nine dates 

during the growing season (35, 56, 77, 98, 140, 182, 210, 231 and 244 days after sowing, Table 

3.11). On each harvest date we sampled one of two replicates of each genotype on each of two 

consecutive planting days (n=32 plants per day). This sampling protocol resulted in a gradual 

reduction in plant density in the growth chamber. This process maximized the number of 

sampling days possible while largely avoiding light-competition and overcrowding. We analyze 

growth and plant economy in terms of genotype and population means (see below). 

The first two sampling dates used only the smaller RLC3 pots. This design increased the 

number of plants we could grow at one time and thus the number of time points we could 

sample. We randomly and evenly assigned and distributed pots across racks within each 

sampling date / planting day combination. 

4.3.5 Trait measurements at each sampling point 

At all except the final sampling date, at which point plants had completely senesced, we 

measured whole plant photosynthesis. For plants with inflorescences, we first measured whole 

plant gas exchange, then also measured gas exchange of the inflorescence only by excluding the 

rosette from our cuvette (see Earley et al. 2009). By doing this we were able to measure rosette 
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gas exchange non-destructively on a flowering plant by subtracting inflorescence from whole 

plant rates.  

We begin physiological measurements one hour after lights turned on, in a separate 

growth chamber whose temperature and lighting matched that of the primary growth chamber. 

We used a LI-6400 XT infrared gas analyzer (IRGA; LI-COR Biosciences, Inc., Lincoln NE) to 

measure net photosynthetic rates in conjunction with a custom built four-cuvette array (Tonsor & 

Scheiner 2007; Earley et al. 2009; Tonsor et al. 2013). We allowed all plant parts to adjust to 

conditions in the cuvette for 15 minutes before we recorded net carbon assimilation rate (nM 

CO2 s-1) five times over one minute. We averaged across the five records of each plant part for a 

single measurement of instantaneous gas exchange.  

Following gas exchange measurement, we counted the total number of rosette leaves 

(TLN) and partitioned leaf counts into the number of live (TLLN) and dead (TDLN) leaves. We 

also counted the number of inflorescence branches arising from rosette leaf axils (basal branches 

hereafter). After removing inflorescences, we flattened rosettes under glass and photographed 

them with 1cm2 area standards providing a top down, projected rosette area measurement, which 

was made using a custom pixel-counting macro (http://www.tonsorlab.pitt.edu/) in NIH ImageJ 

64-bit version 1.47k (http://rsbweb.nih.gov/ij/). We then calculated the ratio of rosette dried mass 

to projected area (rosette mass per area or RMA hereafter). We washed the planting medium 

from the roots and separated rosettes from inflorescences. We dried plant parts for a week at 

70°C before weighing. We express inflorescence and rosette dry mass in both absolute terms and 

proportional to the total mass of root, rosette and inflorescence. 
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4.3.6 Other traits measured 

We estimated the summed fruit length, a proxy for the total seed number (Tonsor et al. 2013; 

Wolfe & Tonsor in press), by counting the number of ripened fruits (siliques) on the final 

harvest. We separated, spread out and photographed all inflorescence branches, then used the 

random grid overlay function of NIH ImageJ to generate digital transects across the 

inflorescence branches of a plant. We used the NIH ImageJ line tool to measure the length of 

each fruit that intersected a transect line. The average fruit length times the total fruit number 

equaled the summed fruit length. 

On the final harvest, we excised the basal most 10 cm of the primary inflorescence 

branch and dried it for a week at 70°C. We express the mass of the basal 10 cm as mass per 

length, a measurement of cost per functional unit analogous to leaf mass per area because we 

expect branch length to be proportional to branch surface area. 

Finally, we conducted weekly censuses, recording age in days since sowing at bolting.  

4.3.7 Estimating Return on Investment (Relative Lifetime Carbon Gain) 

One important measure of whole plant carbon economy is the gross lifetime carbon gained by 

the plant (lifetime return on investment). We followed the approach of Earley et al. (2009) and 

constructed line plots describing the change over time in net photosynthetic rate for the whole 

plant, the rosette and the inflorescence separately (Figure 3a, b). By determining the area under 

these plots we obtain an estimate of the relative net carbon gain over the lifespan of the plant. 

This approach does not accurately estimate absolute lifetime carbon gain since we cannot 

account for variation in carbon balance over the course of a day, between sampling dates. As 
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such, we consider our measures to provide only relative lifetime carbon gain by each part, and 

lifetime absolute net carbon gain by the whole and individual plant parts to be a latent variable. 

Our estimates of area under the photosynthesis vs. time curve represent indicators of that latent 

variable. We express the relative lifetime carbon contributions of the individual plant parts as the 

individual areas under the curve. We further assume that, while not measuring absolute 

differences between genotypes in absolute carbon gain by a given structure, the differences 

between genotypes in areas under the carbon gain curve are roughly proportional to the 

unmeasured absolute differences and can therefore be used to test for differences in total lifetime 

carbon gain. 

The day 56 gas exchange measures, all conducted on plants in RLC3 pots (see above), 

did not match the overall shape of lifetime photosynthetic growth curves. Subsequent 

comparisons of growth in 49 mL RLC3 pots compared to 134 mL SC10 pots reveal that growth 

is accelerated in 49 mL pots so that while measures taken on the first harvest (35 days post-

sowing) fit the overall growth curve, photosynthetic rates were higher than the rest of the growth 

curve for the day 56 harvest (data not shown). Because of this effect, we excluded day 56 

measures from subsequent analyses of gas exchange and mass data. The dataset used to calculate 

relative lifetime carbon contributions is available through DRYAD (to be uploaded upon 

acceptance of manuscript)).  

4.3.8 Estimating Functional Lifespan 

Defining the age at death for a plant or plant part can be difficult yet lifespan is a critical 

component of plant economy. Any measure of time or age at death sets an arbitrary point in a 

progression of events that lead to complete loss of biological activity.  We were most interested 
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in death defined in terms of loss of photosynthetic carbon gain.  We estimated effective 

photosynthetic lifespan using non-linear regression fitting the following Gaussian function to the 

age-specific photosynthetic measures for each genotype: Net Photosynthetic Rate = α * EXP( - 

0.5 * ((Age – μ)/σ)2)). In this model, α estimates the peak age-specific photosynthetic rate for the 

genotype. The parameter μ is the first moment of the Gaussian, describing the point on the age 

axis where the distribution of photosynthetic rates is centered (i.e. the age at which peak 

photosynthetic rate α occurs). Finally, the parameter σ is the second moment of the Gaussian 

(e,g. the standard deviation of the normal Gaussian) and describes the spread of the curve around 

the peak on the age axis. We took advantage of these properties of the Gaussian function and 

defined μ+1.96* σ (the upper 95th percentile of a normal Gaussian distribution) as the end of the 

functional lifespan. We model whole plant, rosette and inflorescence functional lifespans 

separately for each genotype. We defined the functional lifespan of the inflorescence by 

subtracting genotype mean ages at bolting from μ+1.96* σ, providing a standardized estimate of 

the time of death for each genotype. 

Nonlinear regressions were conducted using PROC NLIN in SAS (version 9.3, SAS 

Institute 2011). For all nonlinear regressions, we use the pseudo r2 (pseudo r2  = 1 – (SSError / 

Corrected SSTotal)) to quantify model fit.  

4.3.9 Rosette Economic Spectrum Traits from Chapter 3 

In Chapter 3, we quantified the carbon economic spectrum of the rosette with three key traits. In 

that study, rosette lifespan was measured as the number of days from germination until 95% of 

rosette leaves had died (See Chapter 3 for details). We include this measurement in addition to 

the photosynthetic functional lifespan described above. In addition, in Chapter 3, we used non-
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linear regression models similar to those described above to estimate the rosette cost (RMA) and 

photosynthetic gain rate (per gram) at the time of bolting. We did this rather than examining 

RMA and photosynthesis per gram at any directly observed time point because bolting is 

approximately when we expect rosette function to peak and because it represents a consistent 

developmental time point at which to compare genotypes with varying developmental rates. 

However, there was no apparent developmental age analogous to bolting time for inflorescence 

measurements in this study. Instead we used the maximum observed rate of photosynthesis and 

the end-of-life mass per length of inflorescences in this study. We include the maximum 

observed RMA and photosynthetic rate per gram for rosettes in addition to estimated values at 

bolting, providing two measures of RMA and two of carbon gain rate for rosettes. 

4.3.10 Statistical Analysis 

From the measurements and models described above, we extracted a total of 26 variables that 

describe aspects of rosette, inflorescence and whole plant carbon economy (Table 4.1). We 

divide them up into 12 rosette, nine inflorescence traits and five whole plant indicators. Thus our 

primary dataset had n=32 genotypes each with measures of 26 plant characters plus fitness and 

the age at bolting (Appendix A.1). 

4.3.10.1 Test for rosette, inflorescence and whole plant economic spectra 

Our first aim was to quantify the extent to which the carbon economies of rosettes, 

inflorescences and the whole plant varied along “spectra” or principal components (PCs). We 

used separate principal components analysis (PCA) to describe the multivariate correlation 

structure of rosette, inflorescence and the whole plant. The variables representing carbon 
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economy for each analysis (rosette, inflorescence and whole plant) are listed in Table 4.1. In 

order to determine the number of meaningful PCs (spectra), we tested whether each principal 

component explained more variation than a threshold determined by iterative randomization of 

the data. This approach is described in detail elsewhere (Perez-Neto et al. 2003; Wolfe & Tonsor 

in press; Chapter 3). Briefly, variable IDs are randomly assigned and a PCA conducted 3,000 

times. The upper 99th percentile of the distribution of eigenvalues is then computed and 

compared to the true eigenvalue (SAS macro program available at 

http://www.tonsorlab.pitt.edu). We therefore define the principal components (PCs) whose 

eigenvalues exceed the threshold as significant and label them as economic spectra (e.g. 

Inflorescence Economy PC1)  

The scores for each genotype on each economy PC represent indicators of rosette, 

inflorescence and whole plant economy and are used in further analyses. We interpret the nature 

of detected economic spectra based on the loadings of each original variable onto the PC. We ask 

whether the variable loadings onto rosette, inflorescence and whole plant economic PCs show a 

correlation structure analogous to the worldwide LES. In each PCA (rosette, inflorescence and 

whole plant) we include variables above and beyond the three critical traits for quantifying 

carbon economy (i.e. lifespan, mass per area and photosynthetic rate). We do this because carbon 

economies represent latent (un-measurable) variables; as we have laid them out above, the traits 

we include in each analysis represent indicators of particular properties of the latent economic 

spectrum being measured. 

Loadings here are defined as the correlation between the original variable and each PC 

score. PCA was conducted with PROC PRINCOMP in SAS (version 9.3, SAS Institute 2011). 
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4.3.10.2 Relationships among rosette, inflorescence and whole plant economic spectra 

Our second aim in this study was to examine the relationship between rosette and inflorescence 

economies and the manner in which they contribute (are associated with) whole plant economic 

variation. We used PROC CORR in SAS (version 9.3, SAS Institute 2011) to determine the 

Pearson product-moment correlations between significant whole plant, rosette and inflorescence 

economic PCs.  

4.3.10.3 The association between plant economics and bolting time 

Our third aim was to assess the relationship between age at bolting and whole plant, rosette and 

inflorescence economic variation. We chose a univariate regression model, positing a causal 

relationship between age at bolting (independent variable) and whole plant, rosette and 

inflorescence economic PCs (dependent variables). In order to summarize the relationships 

between age at bolting, rosette, inflorescence, and whole plant economic PCs, we conducted an 

additional PCA on those variables. Lastly, we show how variation in the age at bolting actually 

accounts for 3-way correlation structure between rosette, inflorescence and whole plant PCs, we 

calculated partial correlations between them, controlling for the age at bolting. We compare 

partial correlations with the effect of bolting time removed to the raw correlations. 

We used PROC CORR to calculate partial correlation coefficients and PROC REG to 

conduct univariate regressions (SAS version 9.3, SAS Institute 2011). 

4.3.10.4 Test for climate associated adaptive variation. 

Our fourth aim was to test for adaptive divergence in plant economic spectra according to 

climate of origin. We tested for adaptive divergence in rosette, inflorescence and whole plant 

economic PCs by regressing population mean scores against the scores each population had on a 
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principal component describing the climate gradient (see below). In order to make the magnitude 

of association between traits and climate comparable among traits, we standardized all dependent 

variables to a mean of zero and a variance of one. We also present results for univariate 

regressions of the age at bolting and summed fruit length on climate (see below).  

Our predictor variable in the regression analyses described above is the first PC of a PCA 

with 19 bioclimatic variables and elevation (called Climate PC1 hereafter) that explained 75% of 

the among site variation in climate. In Wolfe & Tonsor (2013, in press) we found that as climate 

PC1 increases elevation increases and conditions become wetter but colder. There is high 

variability in precipitation at low climate PC1 sites, which is traded for high variability in 

temperature at high climate PC1 sites.  

4.3.10.5 Assessing the fitness effects of plant economic variation. 

Our final aim was to assess the potential adaptive significance of plant economic variation under 

the experiment’s growing conditions by testing whether and how such variation is related to 

fitness under a simulated low elevation climatic regime. 

We test the fitness effects of rosette, inflorescence and whole plant economic PCs with 

univariate regressions using summed fruit length as the dependent variable. We also compared 

the independent effects of rosette and inflorescence economic spectra on fitness with multiple 

regression; basically a genotypic selection analysis. We standardized genotype mean summed 

fruit length (mean of zero, variance of one) and all independent variables (economic PCs) prior 

to regression. We used genotype means (n=32) for all tests of fitness effects, which were 

conducted using PROC REG in SAS (version 9.3, SAS Institute 2011). 
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4.4 RESULTS 

4.4.1 Functional lifespan model results 

Gaussian function estimation procedures for rosettes, inflorescences and whole plants 

successfully converged for all genotypes (Figure 3c,d). All parameters were significant for whole 

plant photosynthesis models, and model pseudo r2 averaged 0.88 ranging from 0.53 to 0.98 

(Table 4.2). Models of rosette photosynthesis generally fit well (mean pseudo r2 = 0.91 ranging 

from 0.65 to 1.00) (Table 4.3). There was a significant negative rosette photosynthetic rate at age 

98 days for genotype RAB17 that did not fit the overall growth curve and was thus judged to be 

an outlier. We had to remove this outlier data point to achieve model convergence. For 

inflorescence models, pseudo r2 ranged from 0.64 to 1.00 and averaged 0.92 (Table 4.4).  

However, there were several genotypes for whom inflorescence parameters were either 

not significant and/or where statistical tests could not be conducted by PROC NLIN. For 

genotypes SPE5 and VIE6 the α and σ were not well estimated. Our goal was to estimate the 

approximate date when inflorescence function ceased (thus death). Plotting SPE5 and VIE6 

functions versus the data indicated that inflorescence age at death was reasonably estimated by 

the parameter estimates for these two genotypes, despite lack of convergence. PROC NLIN 

could not provide statistical tests of the σ parameter for genotypes PAN5 and PAN1. Here as in 

the models for SPE5 and VIE6, plotting the estimated Gaussian function indicated that the age at 

inflorescence death was likely well estimated by these models and they are therefore used as is.  

Unlike the other genotypes mentioned, the inflorescence model for genotype PIN6 did 

not fit a Gaussian function well (pseudo r2 = 0.67) and both the μ and σ parameters were not 

statistically testable. Overlaying the PIN6 inflorescence data against the estimated Gaussian 
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function indicated that inflorescence age at death was strongly underestimated. Photosynthesis 

for this genotype’s inflorescence peaks early and then displays a linear and gradual decline. 

While we report the parameter estimates for PIN6’s Gaussian function, we used an alternative 

approach to estimating the age at death for this inflorescence and use that value in subsequent 

analyses. Basically, there were four dates where inflorescence photosynthesis was observed for 

genotype PIN6 and the decline in photosynthesis was linear. We therefore used a linear 

regression of photosynthesis versus plant age based on the last four sampling ages. This 

regression had an r2 of 0.94. We used the regression to predict the age when inflorescence 

photosynthesis reached zero (i.e. intercepted the age axis). 

Mean whole plant functional lifespan was 209 days (range 146-247). Rosette lifespan 

averaged 159 days (73-238). Inflorescences lived an average of 108 days (37-153).  

4.3.2 Whole plant economic spectra   

In each of the three PCAs of plant carbon economy, the first principal components were the only 

ones with eigenvalues above the null hypothesis threshold (Figure 4.3D, Table 4.5). Carbon 

investment (e.g. RMA), lifespan and lifetime carbon gain loaded positively on Rosette Economy 

PC1 while Rosette Photosynthetic Rate per Gram (maximum and at bolting) loaded negatively 

(Figure 4.3A, Table 4.6), explaining 58% of the variance in rosette economy (Table 4.5). 

Loadings on Inflorescence Economy PC1 were all positive except for the Branch Mass per 

Length, the carbon cost per functional unit of inflorescence (Figure 4.3B, Table 4.6). 

Inflorescence Economy PC1 explained 45% of the total variance in inflorescence economic trait 

space (Table 4.5). Whole Plant Economy PC1 explained 43% of the variation in the five traits 

analyzed (Table 4.5). Plants with high values along that PC had long lifespans, achieved greater 
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lifetime carbon income and thus large total mass but tended to photosynthesize more slowly 

(Figure 4.3C, Table 4.6). 

4.4.3 Relationships among rosette, inflorescence and whole plant economic spectra 

Rosette, inflorescence and whole plant economy PC1 are all significantly correlated (Figure 4.4). 

Rosette-inflorescence and whole plant-inflorescence correlations are negative, r=-0.85 and -0.64 

respectively with p < 0.0001, n=32 (Figure 4.4). Rosette economy PC1 is positively correlated 

with whole plant economy PC1, r=0.76, p < 0.0001 (Figure 4.4).  

4.4.4 The association between plant economics and bolting time 

The age at bolting explained 81%, 82% and 57% of the variation in rosette, inflorescence and 

whole plant economy PC1 respectively. Later age at bolting corresponded with higher values of 

rosette and whole plant economy but lower values of inflorescence economy PC1 (Figure 4.5). 

Principal component analysis of scores on rosette, inflorescence and whole plant economy PC1 

plus age at bolting revealed a single axis explaining 85% of the variance in the four variables 

analyzed. Age at bolting (loading = 0.96), whole plant economy PC1 (loading = 0.85) and rosette 

economy PC1 (loading = 0.95) load positively while inflorescence economy PC1 loads 

negatively (loading = -0.92).  

Our partial correlation analysis testing whether rosette-inflorescence, rosette-whole plant 

and inflorescence-whole plant associations are accounted for by bolting age revealed no 

significant correlations. However, each individual partial correlation was in the same direction 
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only smaller than the raw correlation, with partial r=-0.23, 0.29 and 0.15 for rosette-

inflorescence, rosette-whole plant and inflorescence-whole plant respectively. 

4.4.5 Test for climate associated adaptive variation 

Climate PC1 was a significant predictor of population mean trait values in 16 out of 31 

univariate regressions (Table 4.7). In particular, rosette economy PC1 (r2 = 0.24, p=0.06), whole 

plant economy PC1 (r2 = 0.30, p=0.03) and age at bolting (r2 = 0.32, p=0.02) increased with 

climate PC1 (Figure 4.6A, 7C, 7D). Inflorescence economy PC1 (r2 = 0.52, p=0.002) and 

summed fruit length (r2 = 0.50, p=0.002) both decreased with increasing climate PC1 (Figure 

4.6B, 7E). 

Of the significant plant carbon economic trait-climate associations, there were five rosette 

traits, five inflorescence traits and two whole plant traits. In addition, inflorescence economy 

PC1, whole plant economy PC1, summed fruit length and age at bolting were also significantly 

associated with climate PC1 (Table 4.7). 

4.4.6 Assessing the fitness effects of plant economic variation  

Multiple regression analysis of standardized summed fruit length our measure of plant fecundity, 

as the dependent variable predicted by rosette economy PC1 and inflorescence economy PC1 

explained 32% of the variation in fitness (Table 4.8). However, in that analysis, neither predictor 

was significant. We note that the correlation between rosette and inflorescence economy PC1 

was r=-0.85 (p < 0.0001, n=32). In univariate regressions, fitness increased significantly with 

decreasing whole plant economy PC1 (Figure 4.7A), rosette economy PC1 (Figure 4.7C), and 
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age at bolting (Figure 4.7D) and increasing inflorescence economy PC1 (Figure 4.7B). We note 

that in the multiple regression, even though not significant, rosette economy PC1 is negative and 

inflorescence economy PC1 is positively associated with fitness (Table 4.8). 

4.5 DISCUSSION 

The carbon economies of photosynthetic structures appear to exhibit a trade off to which almost 

all plant life conforms (Wright et al. 2004). Fast photosynthetic carbon gain is typically 

associated with a short lifespan and low carbon investment while long lifespans are associated 

with a greater carbon investment and generally also have lower photosynthetic rates. This 

apparent trade off has recently been extended from single leaves (Wright et al. 2004, Donovan et 

al. 2011) to whole rosettes in the winter annual Arabidopsis thaliana (Vasseur et al. 2012; 

Chapter 3). Rosette economy in A. thaliana appears to play a role in adaptation along a climate 

gradient in N.E. Spain (Chapter 3). However, inflorescences play a major role in lifetime carbon 

gain in A. thaliana  (Earley et al. 2009) and other species (Nilsen 1995). Therefore, we 

hypothesized that inflorescences potentially provide a dimension of economic variation that is 

independent of rosette economics, and may be involved in adaptation. 

In this study, we tested for economic spectra in the form of single principal component 

axis that describe the economic strategies of N.E. Spanish A. thaliana from across a climate 

gradient as a study system. We tested for trade offs analogous to those observed at the single leaf 

level (Wright et al. 2004) among rosettes, inflorescences and at the whole plant level of 

organization. We found that rosette and whole plant economies exhibited a trade-off similar to 

the LES. Plants with high values of whole plant economy PC1 and rosette economy PC1 lived 
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longer, required greater investment overall and per unit area, but photosynthesized more slowly. 

Further rosette-whole plant economic spectra are positively correlated (Figure 4.4) indicating a 

potentially strong contribution of rosette economy to the overall whole plant spectrum observed. 

Thus, rosettes and whole plants exhibit a trade-off between fast- and slow-return carbon 

economics. 

In contrast, while inflorescence economies were confined along a spectrum described by 

a single principal component, the trait combinations observed did not conform to the 

expectations of the LES. Instead, inflorescences with high values on inflorescence economy PC1 

were not only longer lived with greater carbon investment, they also had a higher rate of income 

(photosynthesis) and lifetime carbon incomes were greater (Figure 4.3B). We note that 

inflorescences with faster photosynthetic rates (higher PC1) did cost somewhat less per unit 

length (lower mass per length), which we use as a proxy for the photosynthetic surface area of 

branches. Below, we consider one possible explanation for the apparent lack of a trade-off 

between lifespan, cost and income rate. 

Plant economic theory would predict the senescence of a vegetative organ when the costs 

of maintaining photosynthesis outweigh the benefits (Chabot & Hicks 1982; Bloom et al. 1985). 

For the rosette, most vegetative growth is tied to a single meristem and spiral phyollotaxy means 

that self-shading occurs as new leaves are produced. This appears to mean that the plant 

experiences diminishing photosynthetic returns on the investment of new leaves and mass into 

the rosette as they age (Chapter 3). When the plant bolts, the time of investment in the rosette 

generally ends and leaves senescence. In the inflorescence, biomass accumulation, 

photosynthetic income and reproductive activity are divided among potentially multiple 

meristems (Bonser & Aarssen 2001). This may mean that inflorescence lifespan can be extended 
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by activation of additional axillary meristems. It may also be that the vertical architecture of the 

inflorescence means that accumulation of additional inflorescence biomass does not result in the 

same diminishing photosynthetic rates per gram observed for the rosette. Thus, at least for the 

inflorescences we observed, longer lifespan and additional biomass appear to yield faster rates of 

acquisition and overall greater contribution of the inflorescence to lifetime carbon income of the 

whole plant. 

Whether and to what degree the above explanation accounts for the economic spectra 

observed for inflorescences in this study remains to be seen. In addition, other factors may 

enable greater photosynthetic rate per unit investment in inflorescences. Firstly, inflorescence 

assimilation rates may be influenced by nutrients from xylem and photosynthate in the phloem 

that are more accessible in stems versus leaves due to proximity (Watson & Casper 1984; 

Bennett et al. 2011; Blonder et al. 2011). In addition, significant quantities of nutrients and 

biomass ultimately deposited in the inflorescence originate from the rosette, meaning that the 

rosette to some extent covers the cost of construction and operation of inflorescences (Watson & 

Casper 1984; Hörtensteiner et al. 2002; Balazadeh et al. 2008; Bennet et al. 2011; Masclaux-

Daubresse et al. 2011). Lastly, stems of some species re-fix carbon dioxide from leaves via 

internal gas transport (Nilsen 1995; Aschan & Pfanz 2003) although it is unclear whether this is 

the case in A. thaliana. 

The rosette and inflorescence carbon economies exhibited a strong, negative correlation 

(r = -0.85, p <0.0001; Figure 4.4) indicating a trade-off. Plants with slower-type rosette economy 

tended to have faster, more productive (high PC1) inflorescence economies (Figure 4.3A, 4B). 

Indeed, the whole plant and subsidiary economies of the rosette and inflorescence were all highly 

integrated around the age at bolting (Figure 4.5). Plants that bolted later had more productive but 
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slower-type overall economies, corresponding to the slower economies of their rosettes and 

despite the less productive, shorter-lived inflorescences they typically produce.  

Negative correlations between vegetative and reproductive structures have long been 

known (Cohen 1976, Grime 1977, Geber 1990). Shifts between strictly vegetative and 

reproductive tissues have been hypothesized to result from trade-offs between current and future 

survival and reproduction, but reproductive tissues that photosynthesize are expected to change 

the economics of this trade-off (Cohen 1976, Watson & Casper 1984). That is, A. thaliana that in 

this experiment simultaneously achieve the greatest fecundity (Figure 4.7A) and earliest time of 

reproduction appear to do so by allocating to dual-purpose reproductive and photosynthetic 

tissues. This hypothesis potentially explains how A. thaliana and other annuals (Nilsen 1995; 

Aschan & Pfanz 2003; Earley et al. 2009) cover the carbon cost of accelerating the age at 

flowering, which is important for ensuring completion of the life cycle when growing seasons 

are short (Grime 1977; e.g. Chaves et al. 2002; McKay et al. 2003; Griffith & Watson 2005; 

Heschel & Riginos 2005).  

The trade off between rosette and inflorescence photosynthetic function that we observed 

may also stem from the nutrient costs of the inflorescence being covered by re-mobilization from 

the senescing rosette (Hörtensteiner et al. 2002; Masclaux-Daubresse et al. 2011). Another 

possibility is that the rosette-inflorescence trade-off may result partially from shading of the 

rosette by the inflorescence. In addition, vertically oriented photosynthetic structures may be at 

an advantage in hotter and/or brighter environments (Nilsen 1995; Gammelvind et al. 1996;). 

The water conditions of the growing season, given potentially higher water use efficiency 

(Earley et al. 2009) of the inflorescence, may contribute to the observed trade off. Lastly, 

however, the apparent trade off that we observed might in fact be the result of some combination 
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of natural selection and genetic constraint (Antonovics 1976; Pigliucci 2003; Blows & Hoffman 

2005) given the particular climate gradient from which we have drawn our experimental 

population, rather than a physiological or morphological constraint. Thus other samples and 

alternative growing conditions e.g. a more favorable environment with cooler more consistent 

temperature and additional soil nutrients might alter the rosette-inflorescence relationship we 

have observed. One could most readily test for pleiotropic constraints vs. trade-offs resulting 

from selection by measuring the same traits used here in an advanced generation recombinant 

population in which non-pleiotropic linkage disequilibrium, caused by selection, has been 

removed.   

In N.E. Spain, mean annual temperature gets about 11°C cooler and mean annual 

precipitation is about 550 mm greater as you move from the lowest elevation population (PIN, 

109 m.a.s.l.) near the Mediterranean to the highest elevation site (PAN, 1664 m.a.s.l.) in the 

Pyrenee Mountains (Wolfe & Tonsor 2013. in press). In this study we asked whether whole 

plant, rosette, and inflorescence carbon economic spectra were adaptively differentiated 

according to home climate. Under the conditions of this experiment, plants from hotter, drier low 

climate PC1 sites were favored (Table 4.7). Indeed, fitness decreased monotonically with 

increasing climate PC1 (Figure 4.6E). Ultimately climate PC1 explained 50% of among-site 

variation in fitness. The more fit, low climate PC1 populations in this study bolted earlier, had 

faster-type rosette and whole plant economies and longer-lived, more productive type 

inflorescence economic strategies (Figure 4.6). Thus the adaptive strategy observed under the 

experimental conditions, corresponding to the carbon economic strategy of low elevation 

populations involved trading-off a longer, more productive life centered on carbon gain from the 

rosette, for a faster, cheaper existence dependent on the inflorescence for carbon uptake. 
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The adaptive value of inflorescence-centric life cycle under the relatively hot and dry 

conditions of this experiment suggests a role for this strategy in heat and drought avoidance. The 

experimental conditions favored plants from low elevation sites where spring heat and drought 

are thought to be important selective agents (Wolfe & Tonsor 2013. in press). This also makes 

sense given that stems tend to be more water use efficient than leaves (Nilsen 1995; Earley et al. 

2009). Additionally, since near-ground climate is generally warmer than at inflorescence height 

(Geiger 1950) inflorescence-centric low elevation life may also represent an adaptive mechanism 

for escaping heat stress (Nilsen 1995). Thus the overall strategy that appears to be favored at the 

low elevation extreme in this system is akin to the ruderal strategy of Grime (1977), in which 

vegetative allocation (basal leaves in this case) is traded for accelerated allocation to 

reproduction. The key contribution of this study, therefore, is to provide evidence of the 

integrative changes to whole plant economy that are involved in evolving such a strategy and the 

potential importance of photosynthetic stems and fruits in this process. 

Future studies must determine whether genetic constraints (i.e. plieotropy), natural 

selection or both (Antonovics 1976; Blows & Hoffman 2005) maintain the economic trade-off 

we observe varying across this climate gradient. The age at bolting appears to be the nexus of a 

genetically based trade off between inflorescence and rosette, which has significant implications 

for adaptation. Specifically, the first principal component of the G-matrix (Gmax), has been 

termed the evolutionary line of least resistance (Schluter 1996). Selection on any of the traits that 

align with Gmax will tend to drag the other traits with it in the direction of the principal 

component. This would explain why adaptation to climate in A. thaliana tends to always involve 

variation in age at bolting, and why in turn age at bolting tends to be highly correlated with other 

plant traits (van Tienderen et al. 1996; Scarcelli et al. 2007; Atwell et al. 2010).  
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Remaining questions therefore include whether inflorescence structure and function is 

independent genetically from age at bolting? Addressing this question will potentially reveal an 

alternative (additional) dimension in multivariate trait space that may be explored during 

adaptation. Would it therefore be possible to have a long-lived, high investment rosette (i.e. late 

bolting age) plant with a highly productive, highly branched inflorescence? If the genetic 

correlations between rosette, inflorescence and bolting time could indeed be broken, we could 

then ask under what conditions might selection favor rosette-inflorescence dissociation? 
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Table 4.1: Carbon economy variable list by plant module. Details on the measurement or calculation of traits are provided. Carbon economy traits are 

grouped based on the plant module they represent rosette, inflorescence and the whole plant. Within each plant module traits are further grouped based on the 

aspect of plant carbon economy they describe; either resource investment (cost) or return on investment (income). Return on Investment is subdivided into traits 

measuring the lifetime return, the duration of return (lifespan) and the rate of return. 
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Table 4.1: Continued from previous page. 
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Table 4.2: Results from 3-parameter Gaussian function regression of whole plant net photosynthesis on plant age for each genotype. In addition to the 

parameter estimates, standard errors, 95% confidence intervals, and significance tests are provided for each parameter. Pseudo r-squares are provided as a 

measure of each models fit. 
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Table 4.3: Results from 3-parameter Gaussian function regression of rosette net photosynthesis on plant age for each genotype. In addition to the 

parameter estimates, standard errors, 95% confidence intervals, and significance tests are provided for each parameter. Pseudo r-squares are provided as a 

measure of each models fit. 
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Table 4.4: Results from 3-parameter Gaussian function regression of inflorescence net photosynthesis on plant age for each genotype. In addition to the 

parameter estimates, standard errors, 95% confidence intervals, and significance tests are provided for each parameter. Pseudo r-squares are provided as a 

measure of each models fit. 
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Table 4.5: Eigenvalues, proportion variance explained and significance threshold for rosette, inflorescence 

and whole plant carbon economy PCAs. * denotes PC's with eigenvalues > threshold. 
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Table 4.6: Loadings onto PC1 from three separate PCAs of rosette, inflorescence and whole plant 

economic traits. 
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Table 4.7: Results from univariate regressions of plant carbon economy traits onto home climate PC1 

scores. Each regression was conducted independently on the population means for the traits listed on each row. 

Dependent variables were standardized (mean = 0, standard deviation = 1). Regressions are sorted by the economy 

measured (i.e. rosette, inflorescence, whole plant). For each regression, the parameter estimates ± the standard error 

are provided followed by the t-test, p-value and r2 describing the model fit. Descriptive statistics (mean, standard 

deviation, minimum and maximum values) for each dependent variable are also provided. Significant models are in 

bold. 
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Table 4.8: Analysis of fitness effects. Standardized (mean = 0, std. dev. = 1) summed fruit length was 

regressed on genotype mean scores for rosette and inflorescence economy PC1. Parameter estimates β ± one 

standard error is provided with significance tests. Overall model F-value, p-value and r2 are also presented. N=32. 
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Figure 4.1: Conceptual model of rosette and inflorescence carbon economy. Illustrated here is our 

conceptual framework for understanding whole plant carbon economy. Plant carbon economy is determined by the 

balance between resource investment (cost) and return on investment (income), which is a function of rate and 

duration of income. Total rosette photosynthesis rises until a peak near the time of bolting. Upon bolting, a period of 

photosynthetic carbon gain by the inflorescence begins and the plants life ends when the inflorescence has fully 

senesced. In this scheme, the whole plant’s lifespan is allocated between rosette and inflorescence with a period of 

functional overlap, which hinges on the age at bolting. The inset lists carbon economic indicators quantified in this 

study according to the aspect of economy they measure (i.e. resource investment). 
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Figure 4.2: Examples of lifetime photosynthetic carbon gain data and models. Here we compare line plots 

of lifetime carbon gain for an early bolting, low elevation genotype RAB4 (A) to the high elevation, late bolting 

genotype PAN5 (B). We also compare Gaussian functions fit to each genotypes carbon gain curve for the rosette and 

the inflorescence separately (C, D). We place a narrow vertical bar through the age at bolting in each plot. 
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Figure 4.3: Rosette, inflorescence and whole plant carbon economy PCA results. Correlatings between PC 

scores and the original variables (loadings) are presented in this horizontal bar plot. Panels A-C show loadings for 

rosette, inflorescence and whole plant economy PC1 respectively. The sign of each loading indicates whether trait 

values increase or decrease with increasing scores on the corresponding PC and also indicates the relationship 

among the traits in each analysis. Panel D shows scree plots for the analyses summarized in panels A-C. In each 

scree plot, eigenvalues are plotted against the upper 99% limit of the distribution of eigenvalues under the null 

hypothesis of random correlation structure. Eigenvalues that are greater than the threshold represent meaningful axes 

for summarizing carbon economy. 
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Figure 4.4: Scatterplot matrix for whole plant, rosette and inflorescence economy PC1 scores. 95% 

confidence ellipses are shown and pearson product-moment correlation coefficients and corresponding p-values are 

inset in each panel. N = 32. 
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Figure 4.5: Regression of rosette, inflorescence and whole plant economy PC1 scores on age at bolting 

(days since sowing). The equation for the best fit line along with corresponding p-value and r2 are inset in each 

panel. N = 32. 
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Figure 4.6: Associations between carbon economic spectra (A-C) plus age at bolting (D) and summed fruit 

length (E) and home climate PC1 scores. r2 and p-value are provided at right.
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Figure 4.7: Regression of summed fruit length on whole plant (A), inflorescence (B) and rosette economy PC1 (C) plus age at bolting (D). r2 and p-

value are presented, n = 32. 
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5.0  CONCLUSION 

In this dissertation I set out to improve understanding of the functional ecology and adaptive 

evolution of annual plants. I began with the idea that life is difficult and all species are 

constrained in the conditions in which they can succeed. Adaptive differentiation is a prevalent 

phenomenon in the plant kingdom, yet the nature of natural selection and genetic constraint that 

result in this differentiation is rarely understood (Linhart & Grant 1996; Hereford 2009; Leimu & 

Fischer 2008). Recognizing that successful adaptation to any environment likely requires close 

integration of numerous plant characters (Grime 1977; Murren 2002); I examined suites of traits 

describing key aspects of plant form and function. I used the annual plant and genetic model 

organism Arabidopsis thaliana collected across a climate gradient as a case study of adaptive 

trait divergence. 

I found that almost every trait investigated covaries with variables describing the climate 

of origin. Association between environmental variables and plant traits are a classic approach 

and provide a key piece of evidence indicating that those traits are under divergent selection in 

different environments (Clausen et al. 1940; Antonovics 1976; Endler 1986). I therefore 

combined trait-environment associations with analyses of the fitness effects of those traits under 

controlled conditions to develop functional hypotheses about adaptation across my focal climate 

gradient. 
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In A. thaliana and other annual plants, the correct timing of reproduction is critical for 

success (Cohen 1976; Metcalf & Mitchell-Olds 2009) and has thus become one of the most 

investigated plant traits. One of my major contributions therefore, is showing that fitness 

depends not just on the age of reproductive onset, but on the rate and magnitude of other 

physiological processes like carbon acquisition and fruit ripening (Chapter 2). However, I found, 

as others have (Van Tienderen et al. 1996; Scarcelli et al. 2007; Atwell et al. 2010) that the age at 

bolting is highly correlated and potentially causally related to variation in many other plant traits. 

In subsequent studies, I found evidence that A. thaliana rosettes experience a trade-off between 

fast- and slow-return carbon economics and that the trade-off is strongly associated with the age 

at bolting (Chapter 3). In fact, I found that even inflorescence traits are highly integrated with 

bolting time, even though because inflorescence development plays out after bolting, this was 

not necessarily true (Chapter 4). 

Ultimately, from this dissertation, I generate hypotheses about the selective agents and 

subsequent selection responses that led to the trait-climate associations observed in chapters two 

through four. Low elevation sites along my focal, N.E. Spanish climate gradient are generally hot 

and dry, but are particularly so during the transition from spring into summer. I hypothesize that 

as a result of stochastic (or even consistent) heat waves and droughts during the reproductive 

season (spring), populations become have evolved ruderal, or avoidance characteristics. That is, I 

hypothesize that plants at low elevations must complete their life cycle before being killed off by 

unsuitable conditions during the spring. Thus these plants have reduced investment in vegetative 

rosettes, earlier bolting, faster fruit ripening rates and an overall cheaper construction (thinner 

stems and rosettes) and greater mass use efficiency overall (fruits per mass).  
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In contrast to the adaptive strategy I have hypothesized for low elevation plants, at high 

elevations conditions are cold and wet. During the winter in particular, high elevation N.E. 

Spanish sites experience snow cover and extended periods of freezing or sub-zero temperatures. 

However, high elevation reproductive seasons (springs) are longer and hypothetically milder in 

terms of temperature and water availability. The plants from these montane sites have longer, 

more carbon intensive lives in which they spend a significant amount of time as a vegetative 

rosette. Thus, while low elevation plants move quickly and cheaply to the finish line (seed 

production), high elevation plants are hypothesized to succeed by going slowly and investing in 

mechanisms of cold, or freezing tolerance. These hypotheses, if further studies (see below) 

should support them, suggest the differences in the selective regime at opposite extremes of the 

climate gradient place conflict demands on plant form and function leading to a trade off in 

fitness (local adaptation) across the gradient.  

This work is significant because it provides insight into the trade offs that at least annual 

plant species experience in adapting to variation in climate regime. Further, the strong genetic 

correlation structure, particularly the rosette-inflorescence economy trade-off revealed in Chapter 

4 is valuable for understanding adaptive divergence in general. Schluter (1996) famously 

referred to the first principal component of the G—matrix as an evolutionary line of least 

resistance. Thus in N.E. Spanish A. thaliana at least, such strong correlation structure associated 

with variation in bolting age might either constrain or else facilitate adaptation. If selection 

favors plants with late bolting and a long-lived, productive inflorescence for instance, 

evolutionary response may be slow. However, if selection is in the same direction as the 

correlation structure (late bolting, short-lived, unproductive inflorescence) than adaptation may 

occur quickly. 
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There are two major avenues for advancing the work presented in my dissertation. 

Firstly, advanced generation crosses of genotypes from across the climate gradient can break 

apart combinations of alleles across multiple loci. This will allow association-mapping studies to 

reveal the number of effect of loci underlying traits implicated in adaptive evolution by my 

dissertation. This will help determine whether and to what extent the correlations observed in my 

thesis work are due to natural selection and subsequent genetic linkage or else antagonistic 

plieotropy. Secondly, field studies to better understand the true selective agents operating across 

my focal climate gradient are needed. In the field, it should now be possible to take advantage of 

the data I have generated on genetic correlations among traits in the lab. Instead of attempting to 

measure plant physiology in the field, we can make interpretations of functional significance in 

the field in part based on results generated in the lab.  

This is an exciting time in evolutionary ecology. Studies like the ones presented here 

provide evolutionary context and hypotheses for explaining the origin and maintenance of 

genetic and phenotypic diversity within and among species. It is my hope that as we improve our 

understanding historical adaptive evolution, like the kind I have shown occurred in N.E. Spain, 

we will also enhance our appreciation of the consequences of current and future changes to the 

climate. 
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APPENDIX A 

A.1 DETAILED DESCRIPTION OF PLANTING DESIGN AND SET-UP 

We planted two sets of replicates of the 32 experimental genotypes designated as the fall and 

spring cohorts (see below). We prepared 18 replicate pots per genotype for the fall cohort and 10 

replicates for the spring. Four replicate pots per genotype were planted for the fall cohort and 

three replicates for the spring cohort were planted for early-age destructive sampling in Ray 

Leach RLC3 49 mL Cone-tainers. The remaining replicates were planted in Ray Leach SC10 

164 mL Supercell Cone-tainers (hereafter pots, regardless of size) 

(http://www.stuewe.com/products/rayleach.php).  

We filled all pots with Turface MVP fritted clay (http://www.turface.com) including with 

0.21-0.24 grams of Nutricote pellets that released equal daily quantities of nutrients for 100 days 

(NPK 13-13-13, Type 100, Arysta Life Science NA Co., New York, NY). Central plugs 1 cm 

wide by 2 cm deep of Sunshine germination-mix (http://www.sungro.com) in each pot provided 

a safe site for germination and early growth. RLC3 and SC10 pots were placed in RL200 and 

RL98 racks (http://www.stuewe.com/products/rayleach.php) respectively.   

Seeds were surface sterilized through exposure to chlorine gas for three hours prior to 

planting. We planted 10-20 seeds per pot and at 15 days post-sowing we thinned seedlings to one 

per pot. During each round of planting (fall and spring) we planted half of the replicates of each 

genotype on each of two consecutive days. The spring planting took place 20 weeks after the fall 

cohort was planted. 
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After planting racks were placed in the dark at 4°C and 100% relative humidity for seven 

days to induce germination competency. After the cold treatment, racks were transferred into a 

Conviron PGW36 growth chamber for the remainder of the experiment. 

A.2 CREATING A DYNAMIC GROWTH CHAMBER CYCLE SIMULATING LOW 

ELEVATION GROWING SEASON IN N.E. SPAIN. 

We imposed a dynamic growth chamber cycle in which temperature, day length and water 

availability varied over a 40-week period. Growth chamber seasonal cues, combined with 

heating and drying stress in the reproductive phase, result in variable fitness among N.E. Spanish 

populations such that low elevation plants are favored and fecundity scales with climate of origin 

(Wolfe & Tonsor in press). We based the seasonal temperature cycle on field plant-height 

temperature obtained from Hobo pendant temperature loggers (www.onsetcomp.com) placed in 

four low elevation sites, logging every 60 or 90 minutes. The number of years of temperature 

data and the number of loggers per population site varied as follows: BAR (2007-2010: 1 

logger), COC (2007: 1, 2010: 3), population HOR (2007-2010: 1) and RAB (2010,:2). We 

extracted daily high and low temperatures from the raw logger data (Dryad doi:(to be posted at 

time of acceptance)). We averaged by day across years and sites separately for daily high and 

low temperature. We then averaged daily high and low temperatures in seven-day intervals. This 

created an archetype of a low elevation Mediterranean temperature regime, not representing any 

specific site or year. Growth chamber temperature ramped linearly between the weekly mean 

minimums at the time lights turned on and weekly mean maximums at the time lights turned off 

(Figure 3.5a, Table 3.11).  
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Day length was also varied on a weekly basis (Figure 3.5b, Table 3.11) based on US 

Navy sunset/sunrise table calculator (http://aa.usno.navy.mil/data/docs/RS_OneYear.php) for the 

mean latitude and longitude (42.1539° Lat, 1.5738° Lon) of the study populations’ sites of 

origin. 

Fall cohort plants were germinated under mild conditions that continued for two weeks: 

12 hour day length, 150 ± 50 μmols photons m-2 s-1, 18°C maximum and 12°C minimum daily 

temperatures. At the third week post-sowing, light increased to 350 ± 50 μmols photons m-2 s-1 

and the seasonal day length and temperature regimes were begun for the fall cohort (Figure 3.5). 

Lighting increased a final time to 550 ± 50 μmols photons m-2 s-1 at the start of week four. Based 

on observations of field germination timing (Montesinos et al. 2009), we began our growth 

chamber temperature and daylength cycle to correspond with conditions in the field at the 

beginning of October.  

The spring cohort plants were sown 20 weeks after the fall cohort and were moved to the 

growth chamber at the start of week 21. Conditions for germination for spring cohort plants 

therefore corresponded to field logger data between 2/24 and 3/02. Unlike the fall germination 

cohort, the spring germinating plants had to share a growth chamber with the now mature fall 

germinated cohort growing in 550 ± 50 μmols photons m-2 s-1.  To match conditions for the fall 

germinating cohort shade screens were placed over the spring cohort. Seedlings were started with 

two layers of fiberglass window screen, reducing light intensity to 150 ± 50 μmols photons m-2 s-

1. Three weeks after sowing one layer was removed raising light to 350 ± 50 μmols photons m-2 

s-1. At four weeks all shade screen was removed. 

We simulated the low elevation spring dry-down (Montesinos et al. 2009) between weeks 

34 and 40 under thermal conditions corresponding to field logger data for 5/30 to 7/12. Water 
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availability was controlled by varying standpipe and thus water table height in growth bins such 

that water table declined by 0.5” (0.2 grams of water per pot per day) every week during the dry 

down. For the first 20 days of life standpipe height is 7” with constant water supply. From day 21 

to 27 bins are drained each day and filled in the morning for one hour providing approximately 

2.8 grams of water per pot per day (Tonsor, unpublished). On day 28, standpipe height was 

reduced to 4” or 1.6 grams of water per pot per day and remained at this supply rate until the 

week 34 dry down (Figure 3.5c, Table 3.11).  

Because CO2 concentration the building that housed the growth chambers varied both 

daily and seasonally, we controlled CO2 concentration by keeping it just above the building 

maximum at 530 ppm.   

After ebb-and-flood watering regime began, rack rotations were conducted on a twice-

weekly basis and continued for the duration of the experiment.  

A.3 DETAILED DESCRIPTION OF SAMPLING DESIGN AND TRAIT 

MEASUREMENTS. 

The nine fall and five spring cohort measurement periods (Table 3.12) involved destructive 

sampling. At each time point two replicates of each genotype, one on each of two consecutive 

days, were sampled from the growth chamber  (n=32 plants per day). This had the effect of 

thinning out growth chamber space as plants grew, minimizing light-competition. All 

examinations of trait changes over time are done at the genotype means level.  

For the fall cohort on the first two sampling dates we used only the smaller RLC3 type 

pots in order to avoid pot size effecting development. This design increased the number of plants 
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we could grow at one time and thus the number of time points we could sample. For the spring 

cohort, we planted one replicate per sample date per genotype in RLC3 and one in SC10 for the 

first three of the five sampling dates. In all cases, we randomly and evenly assigned and 

distributed pots across racks within each sampling date / planting day combination.  

At all except each cohort’s final sampling date we measured whole plant photosynthesis. 

When inflorescences were present, we also measured inflorescence gas exchange excluding the 

rosette. Measurements commenced one hour after lights on in a separate growth chamber whose 

temperature matched that of the primary growth chamber. Gas exchange measures were made 

with a LI-6400 XT infrared gas analyzer (IRGA; LI-COR Biosciences, Inc., Lincoln NE) 

connected to a custom built four-cuvette array (Tonsor & Scheiner 2007; Earley et al. 2009; 

Tonsor et al. 2013).  

In order to interface plants with the whole plant cuvette array, we increased the height of 

SC10 pots by approximately 0.25” by fitting the pots with removable collars consisting of a 6” 

strip of rubber splicing tape (Scotch 130C 1” Linerless Rubber Splicing Tape, 3M, Austin, TX). 

We used thoroughly washed bicycle tire inner tubes cut into approximate 1 cm sections to 

increase the height of the smaller RLC3 pots. By extending the height of each pot with a 

removable collar we were able to non-destructively expose the top 0.5 cm of the primary root, 

which was crucial for interfacing the plant with our whole plant gas exchange system. 

For plants with inflorescences, after whole plant measures were conducted, a 

measurement of inflorescences only was taken (see Earley et al. 2009). This allowed rosette gas 

exchange rates to be estimated by subtracting inflorescence rates from whole plant rates. 

Measures from plants with fully senescent rosettes were not used in this study and rosette gas 

exchange was set to zero in the dataset. For all measures, plants were allowed to equilibrate in 
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the open-system cuvette for 15 minutes before we recorded net carbon assimilation (nM CO2 s-1) 

rate five times over one minute. For each plant, we averaged across the five records for a single 

measurement of instantaneous gas exchange. After additional measurements (see below) rosettes 

were collected, dried for a week at 70°C and massed, allowing us to express rosette gas exchange 

rates on a dry mass basis. 

After physiological measurements, we recorded the total number of live (TLLN and dead 

(TDLN) leaves. Rosette status was then calculated as the ratio (TLLN / (TLLN + TDLN)), or the 

proportion of rosette leaves that are alive (Proportion Live Leaves). After leaf counting, we 

severed each rosette from the root system at the soil surface, flattened it under a pane of glass 

and photographed it with a 1cm2 area standard obtaining a top down, projected rosette area using 

a pixel-counting macro (available upon request) in NIH ImageJ 64-bit version 1.47k 

(http://rsbweb.nih.gov/ij/). We then calculated the ratio of rosette dried mass to projected area 

(rosette mass per area hereafter). 

We also estimated the summed fruit length, a proxy for the total seed number (Tonsor et 

al. 2013; Wolfe & Tonsor in press, by counting the number of ripened fruits (siliques) on the 

final harvest. We separated, spread out and photographed all inflorescence branches, then used 

the random grid overlay function of NIH ImageJ to generate digital transects across the 

inflorescence branches of a plant. We used the NIH ImageJ line tool to measure the length of 

each fruit that intersected a transect line. The average fruit length times the total fruit number 

equaled the summed fruit length. 

We also conducted weekly censuses, recording age at bolting. Age at bolting is expressed 

as the number of days since sowing.  
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APPENDIX B 

EXPERIMENT TO DETERMINE THE EFFECT OF FERTILIZER REDUCTION ON 

TRAIT-ELEVATION ASSOCIATIONS 

B.1 BACKGROUND 

Plants grown in growth chambers in nutrient saturated environments grow to sizes much larger 

than those observed in the field (Wolfe, personal observation).  The focal species A. thaliana 

grows across a broad range of environmental conditions (Hoffmann 2002) including at least 

nitrate supplies ranging from 1-56 ppm (Diane Byers, personal communication; see also Tonsor 

et al. 2013). In the dynamic seasonal growth chamber experiment described above, I sought to 

grow plants under nutrient limiting conditions in order to produce plants that were closer to field-

observed sizes. However, I was concerned that reducing nutrient availability might alter the trait-

elevation relationships I intended to test for as evidence of adaptive differentiation.  

Statistical association between plant traits expressed in a growth chamber and 

environmental characteristics found at their place of collection is evidence of adaptive 

divergence. However, it does not prove that the specific predictor variable examined was the 

selective agent. Elevation- or climate-correlated factors like nitrogen supply, herbivory and the 
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phenology of plant communities could also be selecting the measure plant traits differentially 

across the climate gradient.   

While there is no experiment we can do in the lab that would identify the actual selective 

agent(s), it was important that we determine whether our results depended on nutrient supply. 

My goal with reducing nutrient supply is the produce smaller plants but without altering the trait-

elevation relationship. I conducted an short preliminary experiment with the following specific 

aims: 

Aim 1: Determine a dosage of fertilizer suitable for reducing the plants to a more “field-

like” stature. This will enable us to grow plants at a greater density and thus obtain a greater 

sample size.  

Aim 2: Determine whether the ranking for measures of size and growth rate varies 

among populations as a result of fertilizer reduction. If populations respond differently to the 

treatments, then our future comparisons of populations will be contingent on fertilizer supply.  

B.2 METHODS 

B.2.1 Plant Material 

One genotype from each of sixteen NE Spanish populations was selected. Selection was made at 

random from a collection of 48 (three per population) used in a previous study. 
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B.2.2 Planting Design 

Three replicates were planted for each of 16 genotypes in each of three fertilizer treatments for a 

total of 144 plants. Plants were planted in three separate racks at a density of 48 each. Each 

fertilizer-genotype combination was replicated once in each tray. This means that there are three 

replicates per genotype per tray but each replicate is at a different fertilizer level. Additionally, 

the ordering of each pot within each tray was randomized. 

Plants were grown in Ray Leach SC10 Supercell Conetainer 164 mL pots 

(www.stuewe.com/products/rayleach.html). Pots were filled with Metromix-grade Turface 

(http://www.turface.com). A 1 cm wide, 2 cm deep plug of Sunshine germination mix 

(http://www.sungro.com) was inserted at the surface of each pot. Four to ten seeds were planted 

per pot. 

B.2.3 Fertilizer Treatments 

Nutricote, an encapsulated fertilizer that releases nearly equal daily quantities of nutrients for up 

to 100 days (NPK 13-13-13, Type 100, Arysta Life Science NA Co., Cary NC) was screened 

through a colander to remove abnormally large pellets. The standard supply of nutricote used in 

the lab is 1.5 mL. This volume was previously determined to provide a saturating supply of 

nutrients. For this experiment, ten aliquots of 1.5 mL of sieved Nutricote were weighed.  Based 

on the mean weight (µ=1.62 g) a saturating fertilizer treatment (1.0 NUTsaturating) was created 

using per pot fertilizer mass of between 1.62 and 1.66 grams. Two additional treatments (0.50 

NUTsaturating and 0.25 NUTsaturating) were created with fertilizer aliquots of 0.81-0.85g and 0.41-

0.45g respectively per pot. 
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B.2.4 Growth Conditions 

Plants were grown in a Conviron PGW36 with a daily temperature cycle of 20°C maximum at 

lights off and 12°C minimum at lights on each day. Twelve hours of 350 µM
𝑚2 ∙ 𝑠�  

photosynthetically active radiation were supplied per day. Plants were watered via an automated 

ebb-and-flood system supply a 7” water table for twenty minutes daily. 

Following planting, bins were placed in the dark at 4°C and 100% relative humidity for 

five days to induce germination competency. After cold treatment, bins were transferred to a 

Conviron PGW36 with a daily temperature cycle of 20°C maximum at lights off and 12°C 

minimum at lights on each day. Twelve hours of 150 µM
𝑚2 ∙ 𝑠�  photosynthetically active radiation 

(PAR) were supplied for seven days. On day seven after cold treatment ended the lights 

increased to 250 µM
𝑚2 ∙ 𝑠�  PAR and were again increased to 350 µM

𝑚2 ∙ 𝑠�  PAR on day nine. 

B.2.5 Leaf Initiation Rate 

Three counts of the total leaf number (TLN) were conducted on eight (TLN8), 13 (TLN13) and 

19 (TLN19) days after germination. Counts including all true leaves at least 1 mm in length 

along the midrib. Leaf initiation rate (LIR) was calculated as: LIR = (TLN_t2 – TLN_t1) / (t2-

t1). LIR was calculated between one and eight (LIR1to8), eight and 13 (LIR8to13), 13 and 19 

(LIR13to19) days after germination. The average leaf initiation rate was also calculated 

(AvgLIR).  
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B.2.6 Rosette Expansion Rate 

Two methods were employed and compared for measuring project two-dimensional area of the 

rosette: whole-bin and individual photographs. Whole-bin photographs are taken by fixing an 

aluminum frame over a fiberglass bin in which one rack of 48 plants is situated. An 12 

megapixel Stylus-7010 digital camera was centered over the bin. Two 1.0 cm2 area standards 

were placed in each photograph. Silhouettes of each rosette in a photograph were selected using 

Photoshop CS5 Extended Edition (v12.1x64, Adobe Systems, Inc.). The background was then 

removed and the image converted to black and white. Pixels for each rosette and area standard 

were counted in NIH ImageJ 64-bit version 1.45m (http://rsbweb.nih.gov/ij/). Rosette area (cm2) 

was calculated as the number of pixels in the rosette divided by the number of pixels in the area 

standard. Whole-bin photographs of were taken on 21 and 24 days after germination. 

Individual rosettes were also photographed for area measurements. Black construction 

paper was fitted between the soil surface and the rosette leaves, flattening the rosette into an 

approximately two-dimensional configuration. The camera was centered over the rosette with a 

copy stand. Area standards (1.0 cm2) were placed in each photograph. The procedure for 

obtaining an area measurement is essentially identical to whole-bin photographs. Individual 

rosette photographs have the advantage of greater magnification and focus for each rosette, but 

the disadvantage of being considerably more invasive and slow. Individual rosette photographs 

were taken on 24 and 30 days post-germination.  

Relative rosette expansion rate (RoseRER) was calculated between 1 and 21, 21 and 24, 

24 and 30 days after germination. The average RoseRER (AvgRoseRER) was also calculated. 

Whole-bin rosette area  on days 21 and 24 (WBArea21 and WBArea24) as well as individual 

rosette area on days 24 and 30 (RosetteArea24 and RosetteArea30) were also analyzed. Relative 
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expansion rates are calculated as follows: RER = (log(RoseArea)_t2 – log(RoseArea)_t1) / (t2 – 

t1).  

B.2.7 Leaf Expansion Rate 

Leaf area was measured photographically. Leaves were fixed at a right angle to the camera and 

gently pressed into a two-dimensional pane between a black construction paper background and 

a standard microscope slide. Care was taken to non-destructively move non-focal leaves that 

obscured the view of the leaf-of-interest. Area standards (1.0 cm2) were placed in each 

photograph. The procedure for obtaining an area measurement is essentially identical to whole-

bin and individual-rosette photographs. Two leaves were measured on each plant.  

First, the fifth rosette leaf was photographed on day 30 after germination. This represents 

a group of leaves of varying age but equal position in the rosette. The age on day 30 of the fifth 

rosette leaf will be used as a covariate in analysis and was determined by recording the number 

of leaves initiated daily for the 19th day after germination. 

Next, a cohort of leaves was designated as the most recently initiated (expanded to >1mm 

along the midrib) leaf on day 19 after germination. Leaves were marked with a spot of 3D puffy 

paint on the leaf tip. This represents a group of leaves all of the same age but of potentially 

different positions in the rosette.  

The cohort of leaves was then photographed at age 21 (after leaf initiation, 40 days after 

germination) and again at age 26 (45 days after germination). Relative expansion rate of the 

cohort leaf (CohortRER) was calculated between days 1 and 21 as well as between days 21 and 

26 after leaf initiation. The average cohort expansion rate (CohortAvgRER) was also calculated. 

Cohort leaf position in the rosette (TLN19) will be used as a covariate in analysis. Cohort leaf 
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area at age 21 (CohortArea21) and age 26 (CohortArea26) were also analyzed. Cohort leaf 

relative expansion rate was calculated as: CohortRER = (log(CohortArea)_t2 – 

log(CohortArea)_t1) / (t2 – t1). 

B.2.8 Dry Mass 

Aboveground plant parts were cut-off at the base of the stem 47 days after germination and dried 

at 65°C and weighed. Roots were washed from the soil medium, and also dried at 65°C and 

weighed. The dry mass of aboveground parts, roots, proportion of total mass invested in roots 

and total mass of the plant are all analyzed. 

B.2.9 Analyses 

There were 28 measures of growth and size. For each I used an ANCOVA model, tested in 

PROC GLM (SAS version 9.3). The model included the fertilizer treatment (FERT) as a fixed 

effect and elevation-of-origin (ELEVATION) as a covariate plus the interaction and a fixed 

effect for rack (RACK). The key factor of interest is ELEVATION x FERT as it would indicate a 

significant change in trait expression relative to the elevation gradient and potentially make our 

results contingent upon fertilizer application. 
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B.3 RESULTS AND CONCLUSION 

Fertilizer reduction altered almost every trait that I measured in the manner that I expected, 

reducing plant size and growth rate. Elevation significantly explained differences in plant traits 

for 11 of the 28 traits measured. There was no significant ELEVATION x FERT interaction for 

any trait measured (Table B.1). I concluded the 0.25 of saturating nutrient treatment was ideal for 

future experiments because it reduced plant stature (Figure B.1) while the rank-order of plants 

relative to elevation did not change.  
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Table B1: Results for 28 response variable of a general linear model testing the fixed effect of fertilizer treatment, the covariate effect of elevation-

of=origin and the interaction of the two. Factor F- and P-values are provided as well ast he model r-square and p-value. 
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Figure B1: Least squares means for the fertilizer effect estimated from a GLM with the model Trait = 

FERT + ELEVATION + FERT x ELEVATION + RACK. One standard error is shown above and below each LS 

mean. 
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APPENDIX C 

COMPARISON OF EURASION CLIMATE GRADIENT TO N.E. SPANISH GRADIENT 

In the various analyses I conduct in the dissertation above, I use population scores on a principal 

component describing climate differences between the 16 study sites. This variable describes 

75% of the climate variation between the populations I studied but leaves the reader without a 

broader understanding of the relationship between the climate in N.E. Spain and the climate 

variation across A. thaliana’s Eurasian range.  

I used the same 19 BIOCLIM variables that form the N.E. Spanish Climate PC1 in a 

Eurasia wide analysis. To do this, I randomly sampled 10,000 locations across A. thaliana’s 

Eurasian range (Figure C.1). I conducted a PCA on the resulting dataset, the scores on climate 

PC1 were translated into a raster map of Eurasia showing a broad latitudinal gradient from cold, 

wet high latitude and altitude to hot, dry low latitude and altitude (Figure C.1). There is a strong 

significant correlation (r = -0.86, n = 19, p < 0.0001) between the loadings of the BIOCLIM 

variables on the Eurasian climate PC1 and the loadings on N.E. Spanish climate PC1 (Table 

C.1). There is an even stronger correlation (r = -0.99, n = 16, p < 0.0001) between the scores for 

each population along Eurasian and N.E. Spanish climate PC1s (Table C.2). These two results 

taken together indicate that the N.E. Spanish climate gradient is a portion of a larger, latitudinal 
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climate gradient covering most of A. thaliana’s native distribution. Scores along Eurasian 

climate PC1 range from -14 to 4.6, with a standard deviation of 2.97 across the 10,000 randomly 

sampled points used in the Eurasian climate PC1. The scores for the 16 N.E. Spanish sites along 

the Eurasian climate PC1 range from -4.3 to 1.19 or about 1.84 standard deviations. This 

amounts to about 29% of the total variation in climate encompassed by the Eurasian PCA I 

conducted. While the Eurasian PC1 does not specifically describe climates where A. thaliana 

occurs, the species is known to occur throughout the entire region of Eurasia analyzed. The key 

point here is that in the portion of the lower end of A. thaliana’s climate distribution that I 

examined (N.E. Spain), I have identified a great deal of variation in ecologically important plant 

traits. Future research examining a broader climatic range is therefore likely to reveal stronger 

patterns of trait-climate variation and generalize our understanding of climatic adaptation in 

plants. 
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Table C1: Loadings for each of 19 bioclimatic variables and elevation onto the first principal component 

from two separate analyses. In the first analysis, 10,000 locations across Eurasia were randomly sampled for the 

variables listed. In the second analyses as is explained in Chapter 2, the values fro each variable at16 A. thaliana 

collection sites are analyzed. The percentage of multivariate variance accounted for by the first PC is also listed. 
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Table C2: Scores along the first PC of climate space from two separate analyses are present here. Scores 

along PC1 for the Eurasian and N.E. Spanish climate were calculated based on the loadings as described in the text. 
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Figure C1: Map of Eurasian climate PC1 generated in ArcGIS 9.0 based on the loadings from a PCA 

conducted on a random sample of 10,000 locations across the region indicated. Warmer colors denote hotter, drier 

climates corresponding to the positive end of Eurasian climate PC1 while cooler colors indicate colder, wetter high 

latitude / altitude locations on the negative size of climate PC1. 
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APPENDIX D 

SAS CODE 

D.1 SAS CODE USED IN CHAPTER 2 

%GLOBAL Prefix; 
%LET prefix= /*INSERT FILE PATH HERE */ ; 
 
data Master; 
 infile "&prefix.HD Adapt - Master Dataset - 8'26'12.csv " 
delimiter=',:' firstobs=2 truncover  lrecl=1200; 
    input Pot Pop $ Geno $ Chamber $ Rack $ PlantDate $  
    RootMass RosetteMass InflorMass TotMass  
    FvFm 
    Days2FitMeas Nbranches RepBranchLength SilDense SilNumb 
MeanSilLength TotSilLength 
    Germ2Bolt Bolt2Ripe  
    PhotoPerM2 TotalPhoto TransPerM2 TotalTrans WUE TimeofDay 
CO2Ref H2ORef RHRef  
    LeafArea LeafMass SLA; 
run;  
proc sort data=Master; by pot; run; 
proc print data=Master; title1 'Master Dataset'; run;  
 
data SpanishPopData; set gecko.SpanishPopData; run; 
proc print data=SpanishPopData; title1 'Spanish Population Climate Data'; 
run; 
 
OPTIONS MPRINT; 
%MACRO RemoveDesignRelatedVariance; 
proc glimmix data=Master plots = all; 
 title1 "&Trait - Test for Chamber, Rack and PlantDate Effects"; 
    class Chamber PlantDate Rack; 
    model &Trait = Chamber PlantDate Chamber*PlantDate; 
    random Rack(PlantDate) / solution ; 
 output out=&Trait Resid=R Pred=P; 
run; 
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Proc Sort data=Master; by Pot; run; 
Proc Sort data=&Trait; by Pot; run; 
data &Trait; set &Trait; KEEP Pot R; RENAME R=R&Trait; run; 
data Master; merge Master &Trait; by Pot; run; 
%MEND RemoveDesignRelatedVariance; 
 
/* REMOVE DESIGN RELATED VARIANCE */ 
%LET Trait = TotSilLength; %RemoveDesignRelatedVariance; 
%LET Trait = FvFm;   %RemoveDesignRelatedVariance; 
%LET Trait = PhotoPerM2; %RemoveDesignRelatedVariance; 
%LET Trait = TransPerM2; %RemoveDesignRelatedVariance; 
%LET Trait = WUE;   %RemoveDesignRelatedVariance; 
%LET Trait = SLA;   %RemoveDesignRelatedVariance; 
%LET Trait = RootMass;  %RemoveDesignRelatedVariance; 
%LET Trait = RosetteMass; %RemoveDesignRelatedVariance; 
%LET Trait = InflorMass; %RemoveDesignRelatedVariance; 
%LET Trait = Germ2Bolt;  %RemoveDesignRelatedVariance; 
%LET Trait = Bolt2Ripe;  %RemoveDesignRelatedVariance; 
%LET Trait = NBranches;  %RemoveDesignRelatedVariance; 
 
proc corr data=Master;  
 title1 'Correlations Among Phenotypes - AFTER Removing Design 
Variance'; 
 var RTotSilLength RFvFm RPhotoPerM2 RTransPerM2 RWUE RSLA RRootMass 
RRosetteMass RInflorMass RGerm2Bolt RBolt2Ripe RNBranches; 
run; 
proc print data=p; title1 'Correlation Coeffs and P-values After GLIMMIX'; 
run; 
 
/* CALCULATE STANDARDIZED GENOTYPE MEANS FOR EACH PHENOTYPE */ 
proc sort data=Master; BY Pop; run; 
proc means data=Master Mean StdErr NOPRINT; 
 title1 'Pop Means'; 
 var RTotSilLength RFvFm RPhotoPerM2 RTransPerM2 RWUE RSLA RRootMass 
RRosetteMass RInflorMass RGerm2Bolt RBolt2Ripe RNBranches; 
 output out=PopMeans Mean   =  
          StdErr = / AUTONAME; 
 by POP; 
run; 
proc sort data=PopMeans; by Pop; run; 
proc sort data=SpanishPopData; by Pop; run; 
data PopMeans; merge PopMeans SpanishPopData; by Pop; drop _TYPE_ _FREQ_; 
run; 
proc print data=PopMeans; title1 'Standardized Pop Mean and Standard Error 
for Each Phenotype PLUS Climate Data'; run; 
 
/* STANDARDIZE POP MEANS DATASET */ 
proc standard  
 data=PopMeans 
 out=StdPopMeans 
 mean=0 std=1; 
 VAR  
RTotSilLength_Mean 
RFvFm_Mean 
RPhotoPerM2_Mean 
RTransPerM2_Mean 
RWUE_Mean 
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RSLA_Mean 
RRootMass_Mean 
RRosetteMass_Mean 
RInflorMass_Mean 
RGerm2Bolt_Mean 
RBolt2Ripe_Mean 
RNBranches_Mean 
BIO1-BIO19 Elevation; 
run; 
proc print data=StdPopMeans; title1 "Standardized POP MEANS Dataset"; run; 
 
/* TRAIT PCA */ 
proc princomp data=StdPopMeans plots=all 
 Prefix = TraitPC 
 Outstat = PCStats 
 Out = TraitPCSCores; 
 title1 'Pop Mean Trait PCA'; 
 var RFvFm_Mean RPhotoPerM2_Mean RTransPerM2_Mean RWUE_Mean RSLA_Mean 
RRootMass_Mean RRosetteMass_Mean RInflorMass_Mean RGerm2Bolt_Mean 
RBolt2Ripe_Mean  
  RNBranches_Mean RTotSilLength_Mean; 
run; 
data TraitPCScores; set TraitPCSCores; Keep Pop Geno TraitPC1 TraitPC2; run; 
proc print data=traitpcscores; title1 'Trait PCA Scores'; run; 
 
/* CLIMATE PCA */ 
proc princomp data=StdPopMeans plots=all 
 Prefix = ClimatePC 
 Outstat = PCStats 
 Out = ClimatePCSCores; 
 title1 'Climate PCA'; 
 var BIO1-BIO19 Elevation; 
run; 
data ClimatePCScores; set ClimatePCScores; Keep Pop ClimatePC1 ClimatePC2; 
run; 
proc print data=ClimatePCScores; title1 'Climate PCA SCores'; run; 
 
/* MERGE TRAIT AND CLIMATE PC SCORES TO STANDARDIZED GENO MEANS DATASET */ 
proc sort data=StdPopMeans; by pop; run; 
proc sort data=traitpcscores; by pop; run; 
proc sort data=ClimatePCScores; by pop; run; 
data StdPopMeans; merge StdPopMeans TraitPCSCores ClimatePCScores; by Pop; 
run; 
proc print data=StdPopMeans; title1 'Std Pop Means - With PCA Scores'; run; 
 
/* REGRESS TRAIT PC'S ON CLIMATE PC'S */ 
proc reg data=StdPopMeans plots=all; 
 title1 'Trait PC1 vs. Climate PC1 & PC2'; 
 MODEL TraitPC1 = ClimatePC1 ClimatePC2; 
run; 
proc reg data=StdPopMeans plots=all; 
 title1 'Trait PC2 vs. Climate PC1 & PC2'; 
 MODEL TraitPC2 = ClimatePC1 ClimatePC2; 
run; 
 
proc reg data=StdPopMeans plots=all; 
 title1 'Trait PC1 vs. Climate PC1'; 
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 MODEL TraitPC1 = ClimatePC1; 
run; 
proc reg data=StdPopMeans plots=all; 
 title1 'Trait PC2 vs. Climate PC2'; 
 MODEL TraitPC2 = ClimatePC2; 
run; 
 
data NoBossost; 
 set StdPopMeans; 
 if Pop = 'BOS' then DELETE; 
run; 
proc princomp data=NoBossost plots=all 
 Prefix = TraitPC 
 Outstat = PCStats 
 Out = NoBossostPCA; 
 title1 'No Bossost Trait PCA'; 
 var RFvFm_Mean RPhotoPerM2_Mean RTransPerM2_Mean RWUE_Mean RSLA_Mean 
RRootMass_Mean RRosetteMass_Mean RInflorMass_Mean RGerm2Bolt_Mean 
RBolt2Ripe_Mean  
  RNBranches_Mean RTotSilLength_Mean; 
run; 
proc reg data=NoBossost plots=all; 
 title1 'Trait PC1 vs. Climate PC1 & PC2'; 
 MODEL TraitPC1 = ClimatePC1 ClimatePC2; 
run; 
 
proc sort data=PopMeans; by Pop; run; 
data PopMeans; merge PopMeans ClimatePCScores; by pop; run; 
 
 
/* UNIVARAITE REGRESSIONS - POPULATION MEAN PHENOTYPE ON ELEVATION-OF-ORIGIN 
*/ 
OPTIONS MPRINT; 
%MACRO TraitElevationRegression; 
proc reg data=PopMeans plots=all; 
 title1 "Regress &Trait on ClimatePC1"; 
 MODEL &Trait._Mean = ClimatePC1; 
run;  
run; 
%MEND TraitElevationRegression; 
%LET Trait = RTotSilLength;  %TraitElevationRegression; 
%LET Trait = RFvFm;    %TraitElevationRegression; 
%LET Trait = RPhotoPerM2;  %TraitElevationRegression; 
%LET Trait = RTransPerM2;  %TraitElevationRegression; 
%LET Trait = RWUE;    %TraitElevationRegression; 
%LET Trait = RSLA;    %TraitElevationRegression; 
%LET Trait = RRootMass;   %TraitElevationRegression; 
%LET Trait = RRosetteMass;  %TraitElevationRegression; 
%LET Trait = RInflorMass;  %TraitElevationRegression; 
%LET Trait = RGerm2Bolt;  %TraitElevationRegression; 
%LET Trait = RBolt2Ripe;  %TraitElevationRegression; 
%LET Trait = RNBranches;  %TraitElevationRegression; 
 
%MACRO TraitElevationRegression; 
proc reg data=PopMeans plots=all; 
 title1 "Regress &Trait on ClimatePC2"; 
 MODEL &Trait._Mean = ClimatePC2; 
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run;  
run; 
%MEND TraitElevationRegression; 
%LET Trait = RTotSilLength;  %TraitElevationRegression; 
%LET Trait = RFvFm;    %TraitElevationRegression; 
%LET Trait = RPhotoPerM2;  %TraitElevationRegression; 
%LET Trait = RTransPerM2;  %TraitElevationRegression; 
%LET Trait = RWUE;    %TraitElevationRegression; 
%LET Trait = RSLA;    %TraitElevationRegression; 
%LET Trait = RRootMass;   %TraitElevationRegression; 
%LET Trait = RRosetteMass;  %TraitElevationRegression; 
%LET Trait = RInflorMass;  %TraitElevationRegression; 
%LET Trait = RGerm2Bolt;  %TraitElevationRegression; 
%LET Trait = RBolt2Ripe;  %TraitElevationRegression; 
%LET Trait = RNBranches;  %TraitElevationRegression; 
 
/* SELECTION ANALYSIS - FULL MODEL */ 
proc reg data=stdmaster plots=all; 
 title1 'TotSilLength - LINEAR Selection'; 
 MODEL RTotSilLength = RFvFm RPhotoPerM2 RTransPerM2 RWUE RSLA RRootMass 
RRosetteMass RInflorMass RGerm2Bolt RBolt2Ripe RNBranches / VIF COLLIN AIC; 
 OUTPUT Out = Residual1 R=R; 
run; 
proc univariate data=Residual1 normal plots; var R; run; 
data StdMaster; set StdMaster; logRTotSilLength = log( RTotSilLength + 10); 
run; 
proc reg data=stdmaster plots=all; 
 title1 'logTotSilLength - LINEAR Selection'; 
 MODEL logRTotSilLength = RFvFm RPhotoPerM2 RTransPerM2 RWUE RSLA 
RRootMass RRosetteMass RInflorMass RGerm2Bolt RBolt2Ripe RNBranches / VIF 
COLLIN AIC; 
 OUTPUT Out = Residual2 R=R; 
run; 
proc univariate data=Residual2 normal plots; var R; run; 
 
 
/* SELECTION ANALYSIS - AIC MODEL */ 
proc reg data=stdmaster outest=est; 
 model logRTotSilLength= RFvFm RPhotoPerM2 RTransPerM2 RWUE RSLA 
RRootMass RRosetteMass RInflorMass RGerm2Bolt RBolt2Ripe RNBranches / 
selection=adjrsq sse aic ; 
run; 
proc sort data=est; by _aic_; run; 
proc print data=est; title1 'AIC Model Selection'; run; 
proc reg data=stdmaster plots=all; 
 title1 'logTotSilLength - AIC BEST MODEL'; 
 MODEL logRTotSilLength = RTransPerM2 RSLA RRootMass RInflorMass 
RGerm2Bolt RBolt2Ripe; 
 OUTPUT Out = Residual3 R=R; 
run; 
proc univariate data=Residual3 normal plots; var R; run; 
proc reg data=stdmaster; 
 title1 'TotSilLength - AIC BEST MODEL'; 
 MODEL RTotSilLength = RTransPerM2 RSLA RRootMass RInflorMass RGerm2Bolt 
RBolt2Ripe; 
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D.2 SAS CODE USED IN CHAPTER 3 

D.2.1 SAS code modeling photosynthesis over time and calculating photosynthetic rate at 

bolting. 

/* RUN THE START-UP MASTER DATASET SAS PROGRAM FIRST */ 
/* There is a CSV format Master dataset with the raw data used in all 
subsequent analyses.  
   This file is located on the Tonsor laboratory DROPBOX.  
   The file is paired with a SAS program that processes it and calulates the 
genotype mean dataset "CGC_GenoMeans".  
   Please contact me (Marnin Wolfe, wolfemd@gmail.com) or Dr. Stephen J. 
Tonsor (tonsor@pitt.edu) for these files. 
   Alternatively, when this dissertation is published, the related datasets 
and SAS code will be uploaded to DRYAD for public access. 
*/ 
DATA CGC_GenoMeans1; SET CGC_GenoMeans; 
 WHERE Env = 'Mediterr'; 
 RENAME Elevation_Mean = Elevation; 
RUN; 
PROC PRINT DATA=CGC_GenoMeans1; RUN; 
 
 
PROC SORT DATA=CGC_GenoMeans1; BY Env Cohort Elevation Geno; RUN; 
%MACRO EXPO2P; 
PROC NLIN DATA=&Data Plots=all METHOD=Marquardt TOTALSS MAXITER=500; 
 title1 "&ID"; 
 PARAMETERS ALPHA = 1000 BETA = 0.05; 
 MODEL &Trait = ALPHA * EXP(BETA*AgeAtHarvest); 
 BY Env Cohort Elevation Geno; 
 ODS OUTPUT ParameterEstimates=&ID.PARMS ANOVA=&ID.ANOVA; 
RUN; 
PROC PRINT DATA=&ID.PARMS; RUN; 
/*The following code calculates pseudo r-square for each model */ 
PROC SORT DATA=&ID.ANOVA; BY Source Env Cohort Elevation Geno; RUN; 
DATA &ID.SSE; SET &ID.ANOVA; WHERE Source = "Error"; RENAME SS=SSE; KEEP Env 
Cohort Elevation Geno SS; RUN; 
DATA &ID.SSCT; SET &ID.ANOVA; WHERE Source = "Corrected Total"; RENAME 
SS=SSCT; KEEP Env Cohort Elevation Geno SS; RUN; 
DATA &ID.SSUCT; SET &ID.ANOVA; WHERE Source = "Uncorrected Total"; RENAME 
SS=SSUCT; KEEP Env Cohort Elevation Geno SS; RUN; 
PROC SORT DATA=&ID.SSE; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.SSCT; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.SSUCT; BY Env Cohort Elevation Geno; RUN; 
DATA &ID.PSEUDORSQ; MERGE &ID.SSCT &ID.SSE &ID.SSUCT; BY Env Cohort Elevation 
Geno;  
 CtPseudoRsq = 1 - (SSE/SSCT); 
 UnCtPseudoRsq = 1 - (SSE/SSUCT); 
RUN; 
PROC PRINT DATA=&ID.PSEUDORSQ; TITLE1 "&ID - PseudoRsq by Env-Cohort-
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Elevation-Geno"; RUN; 
 
/* The following code extracts the parameter estimates from each model, 
merges it with  
 population (or genotype) mean bolting ages and calculates the predicted 
photosynthetic rate per gram at the age of bolting */ 
DATA &ID.ALPHA; SET &ID.PARMS; WHERE Parameter = "ALPHA"; RENAME 
Estimate=ALPHA; KEEP Env Cohort Elevation Geno Estimate; RUN; 
DATA &ID.BETA; SET &ID.PARMS; WHERE Parameter = "BETA"; RENAME Estimate=BETA; 
KEEP Env Cohort Elevation Geno Estimate; RUN; 
PROC SORT DATA=&ID.ALPHA; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.BETA; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=GenoMeansDays2Climate; BY Env Cohort Elevation Geno; RUN; 
PROC PRINT DATA=&ID.ALPHA; TITLE1 "&ID - ALPHA"; RUN; 
PROC PRINT DATA=&ID.BETA; TITLE1 "&ID - BETA"; RUN; 
DATA &ID.PHOTOATBOLTING; MERGE &ID.ALPHA &ID.BETA GenoMeansDays2Climate; BY 
Env Cohort Elevation Geno; RUN; 
DATA &ID.PHOTOATBOLTING; SET &ID.PHOTOATBOLTING;  
 PhotoAtBolting = ALPHA * EXP(BETA*Days2Bolt_Mean); 
 PhotoAt7days = ALPHA * EXP(BETA*7); 
 PhotoAt14days = ALPHA * EXP(BETA*14); 
 PhotoAt28days = ALPHA * EXP(BETA*28); 
 PhotoAt56days = ALPHA * EXP(BETA*56); 
RUN; 
PROC PRINT DATA=&ID.PHOTOATBOLTING; TITLE1 "&ID - Calculated Photo Per Gram @ 
Bolting"; RUN; 
%MEND EXPO2P; 
%LET Data = CGC_GenoMeans1; %LET ID = PhotoExpo2P; %LET Trait = 

RosePhotoPerGram1_Mean; %EXPO2P; 

D.2.2 SAS code modeling rosette mass per area (RMA) over time and calculating 

photosynthetic rate at bolting. 

/* DEVELOPING AND TESTING MODELS THAT WORK */ 
/* 
PROC NLIN DATA=CGC_GenoMeans1 Plots=all METHOD=Marquardt TOTALSS MAXITER=1000 
MAXSUBIT=75; 
 TITLE1 'GRID SEARCH 1'; 
 PARAMETERS ALPHA = 0.001 to 0.10 by 0.01 BETA = 50 to 1500 by 200 GAMMA 
= 0.02 to 1000 by 100; 
 MODEL RMA_Mean = ( GAMMA / (1 + EXP(-ALPHA*(AgeAtHarvest-BETA)))); 
 BY Cohort Elevation Geno; 
RUN; 
PROC NLIN DATA=CGC_GenoMeans1 Plots=all METHOD=Marquardt TOTALSS MAXITER=500 
MAXSUBIT=75; 
 TITLE1 'GRID SEARCH 2'; 
 PARAMETERS ALPHA = 0.001 to 0.10 by 0.01 BETA = 50 to 1500 by 200 GAMMA 
= 0.02 to 1000 by 100; 
 MODEL RMA_Mean = ( GAMMA / (1 + EXP(-ALPHA*(AgeAtHarvest-BETA)))); 
 BY Cohort Elevation Geno; 
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RUN; 
PROC NLIN DATA=CGC_GenoMeans1 Plots=all METHOD=Marquardt TOTALSS; 
 TITLE1 'GRID SEARCH 3'; 
 PARAMETERS ALPHA = 0.001 to 0.10 by 0.01 BETA = 50 to 1500 by 200 GAMMA 
= 0.02 to 1000 by 100; 
 MODEL RMA_Mean = ( GAMMA / (1 + EXP(-ALPHA*(AgeAtHarvest-BETA)))); 
 BY Cohort Elevation Geno; 
RUN; 
PROC NLIN DATA=CGC_GenoMeans1 Plots=all METHOD=Marquardt TOTALSS; 
 TITLE1 'GRID SEARCH 4'; 
 PARAMETERS ALPHA = 0.05 0.10 BETA = 50 100 GAMMA = 0.02 0.08; 
 MODEL RMA_Mean = ( GAMMA / (1 + EXP(-ALPHA*(AgeAtHarvest-BETA)))); 
 BY Cohort Elevation Geno; 
RUN; 
 
DATA CGC_GenoMeans2; set CGC_GenoMeans1; WHERE Cohort='Spring'; RUN; 
PROC SORT DATA=CGC_GenoMeans2; BY Elevation Geno; RUN; 
PROC NLIN DATA=CGC_GenoMeans2 Plots=all METHOD=Marquardt TOTALSS; 
 TITLE1 'Test Exponential'; 
 WHERE Geno = 'RAB17' or Geno = 'RAB4' or Geno = 'BAR4' or Geno = 'COC7' 
or Geno = 'VDM17' or Geno = 'PAL12' or Geno = 'PAN1'; 
 PARAMETERS ALPHA = 0.001 to 0.02 by 0.001 BETA = 0.001 to 0.02 by 0.001 
; 
 MODEL RMA_Mean = ALPHA * EXP(BETA*AgeAtHarvest); 
 BY Elevation Geno; 
RUN; 
*/ 
 
 
PROC SORT DATA=CGC_GenoMeans1; BY Cohort Elevation Geno; RUN; 
%MACRO LOGISTIC3P; 
PROC NLIN DATA=&Data Plots=all METHOD=Marquardt TOTALSS; 
 title1 "&ID"; 
 PARAMETERS ALPHA = 0.05 0.10 BETA = 50 100 700 GAMMA = 0.02 0.08; 
 MODEL &Trait = ( GAMMA / (1 + EXP(-ALPHA*(AgeAtHarvest-BETA)))); 
 BY Cohort Elevation Geno; 
 ODS OUTPUT ParameterEstimates=&ID.PARMS ANOVA=&ID.ANOVA; 
RUN; 
PROC PRINT DATA=&ID.PARMS; RUN; 
/*The following code calculates pseudo r-square for each model */ 
PROC SORT DATA=&ID.ANOVA; BY Source Cohort Elevation Geno; RUN; 
DATA &ID.SSE; SET &ID.ANOVA; WHERE Source = "Error"; RENAME SS=SSE; KEEP 
Cohort Elevation Geno SS; RUN; 
DATA &ID.SSCT; SET &ID.ANOVA; WHERE Source = "Corrected Total"; RENAME 
SS=SSCT; KEEP Cohort Elevation Geno SS; RUN; 
DATA &ID.SSUCT; SET &ID.ANOVA; WHERE Source = "Uncorrected Total"; RENAME 
SS=SSUCT; KEEP Cohort Elevation Geno SS; RUN; 
PROC SORT DATA=&ID.SSE; BY Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.SSCT; BY Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.SSUCT; BY Cohort Elevation Geno; RUN; 
DATA &ID.PSEUDORSQ; MERGE &ID.SSCT &ID.SSE &ID.SSUCT; BY Cohort Elevation 
Geno;  
 CtPseudoRsq = 1 - (SSE/SSCT); 
 UnCtPseudoRsq = 1 - (SSE/SSUCT); 
RUN; 
PROC PRINT DATA=&ID.PSEUDORSQ; TITLE1 "&ID - PseudoRsq by Cohort-Elevation-
Geno"; RUN; 
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/* The following code extracts the parameter estimates from each model, 
merges it with  
 population (or genotype) mean bolting ages and calculates the predicted 
photosynthetic rate per gram at the age of bolting */ 
DATA &ID.ALPHA; SET &ID.PARMS; WHERE Parameter = "ALPHA"; RENAME 
Estimate=ALPHA; KEEP Cohort Elevation Geno Estimate; RUN; 
DATA &ID.BETA; SET &ID.PARMS; WHERE Parameter = "BETA"; RENAME Estimate=BETA; 
KEEP Cohort Elevation Geno Estimate; RUN; 
DATA &ID.GAMMA; SET &ID.PARMS; WHERE Parameter = "GAMMA"; RENAME 
Estimate=GAMMA; KEEP Cohort Elevation Geno Estimate; RUN; 
PROC SORT DATA=&ID.ALPHA; BY Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.BETA; BY Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.GAMMA; BY Cohort Elevation Geno; RUN; 
DATA GenoMeansDays2Climate1; SET GenoMeansDays2Climate; WHERE Env = 
"Mediterr"; RUN; 
PROC SORT DATA=GenoMeansDays2Climate1; BY Cohort Elevation Geno; RUN; 
PROC PRINT DATA=&ID.ALPHA; TITLE1 "&ID - ALPHA"; RUN; 
PROC PRINT DATA=&ID.BETA; TITLE1 "&ID - BETA"; RUN; 
PROC PRINT DATA=&ID.GAMMA; TITLE1 "&ID - GAMMA"; RUN; 
DATA &ID.RMAATBOLTING; MERGE &ID.ALPHA &ID.BETA &ID.GAMMA 
GenoMeansDays2Climate1; BY Cohort Elevation Geno; RUN; 
DATA &ID.RMAATBOLTING; SET &ID.RMAATBOLTING;  
 RMAatBolting = ( GAMMA / (1 + EXP(-ALPHA*(Days2Bolt_Mean-BETA)))); 
 RMAAt7days = ( GAMMA / (1 + EXP(-ALPHA*(7-BETA)))); 
 RMAAt14days = ( GAMMA / (1 + EXP(-ALPHA*(14-BETA)))); 
 RMAAt28days = ( GAMMA / (1 + EXP(-ALPHA*(28-BETA)))); 
 RMAAt56days = ( GAMMA / (1 + EXP(-ALPHA*(56-BETA)))); 
RUN; 
PROC PRINT DATA=&ID.RMAATBOLTING; TITLE1 "&ID - Calculated RMA @ Bolting"; 
RUN; 
%MEND LOGISTIC3P; 
%LET Data = CGC_GenoMeans1; %LET ID = RMALogistic; %LET Trait = RMA_Mean; 
%LOGISTIC3P; 
 
DATA CGC_GenoMeans2; set CGC_GenoMeans1; WHERE Cohort='Spring'; RUN; 
PROC SORT DATA=CGC_GenoMeans2; BY Env Cohort Elevation Geno; RUN; 
%MACRO EXPONENTIAL; 
PROC NLIN DATA=&Data Plots=all METHOD=Marquardt TOTALSS; 
 title1 "&ID"; 
 WHERE Geno = "RAB17" or Geno = "RAB4" or Geno = "BAR4" or Geno = "COC7" 
or Geno = "VDM17" or Geno = "PAL12" or Geno = "PAN1"; 
 PARAMETERS ALPHA = 0.001 to 0.02 by 0.001 BETA = 0.001 to 0.02 by 0.001 
; 
 MODEL &Trait = ALPHA * EXP(BETA*AgeAtHarvest); 
 BY Env Cohort Elevation Geno; 
 ODS OUTPUT ParameterEstimates=&ID.PARMS ANOVA=&ID.ANOVA; 
RUN; 
PROC PRINT DATA=&ID.PARMS; RUN; 
/*The following code calculates pseudo r-square for each model */ 
PROC SORT DATA=&ID.ANOVA; BY Source Env Cohort Elevation Geno; RUN; 
DATA &ID.SSE; SET &ID.ANOVA; WHERE Source = "Error"; RENAME SS=SSE; KEEP Env 
Cohort Elevation Geno SS; RUN; 
DATA &ID.SSCT; SET &ID.ANOVA; WHERE Source = "Corrected Total"; RENAME 
SS=SSCT; KEEP Env Cohort Elevation Geno SS; RUN; 
DATA &ID.SSUCT; SET &ID.ANOVA; WHERE Source = "Uncorrected Total"; RENAME 
SS=SSUCT; KEEP Env Cohort Elevation Geno SS; RUN; 
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PROC SORT DATA=&ID.SSE; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.SSCT; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.SSUCT; BY Env Cohort Elevation Geno; RUN; 
DATA &ID.PSEUDORSQ; MERGE &ID.SSCT &ID.SSE &ID.SSUCT; BY Env Cohort Elevation 
Geno;  
 CtPseudoRsq = 1 - (SSE/SSCT); 
 UnCtPseudoRsq = 1 - (SSE/SSUCT); 
RUN; 
PROC PRINT DATA=&ID.PSEUDORSQ; TITLE1 "&ID - PseudoRsq by Elevation-Geno"; 
RUN; 
 
/* The following code extracts the parameter estimates from each model, 
merges it with  
 population (or genotype) mean bolting ages and calculates the predicted 
photosynthetic rate per gram at the age of bolting */ 
DATA &ID.ALPHA; SET &ID.PARMS; WHERE Parameter = "ALPHA"; RENAME 
Estimate=ALPHA; KEEP Env Cohort Elevation Geno Estimate; RUN; 
DATA &ID.BETA; SET &ID.PARMS; WHERE Parameter = "BETA"; RENAME Estimate=BETA; 
KEEP Env Cohort Elevation Geno Estimate; RUN; 
PROC SORT DATA=&ID.ALPHA; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.BETA; BY Env Cohort Elevation Geno; RUN; 
DATA GenoMeansDays2Climate1; SET GenoMeansDays2Climate; WHERE Env = 
"Mediterr" and Cohort = "Spring"; RUN; 
DATA GenoMeansDays2Climate1; SET GenoMeansDays2Climate1; WHERE Geno = "RAB17" 
or Geno = "RAB4" or Geno = "BAR4" or Geno = "COC7" or Geno = "VDM17" or Geno 
= "PAL12" or Geno = "PAN1"; RUN;  
PROC SORT DATA=GenoMeansDays2Climate1; BY Env Cohort Elevation Geno; RUN; 
PROC PRINT DATA=&ID.ALPHA; TITLE1 "&ID - ALPHA"; RUN; 
PROC PRINT DATA=&ID.BETA; TITLE1 "&ID - BETA"; RUN; 
DATA &ID.RMAATBOLTING; MERGE &ID.ALPHA &ID.BETA GenoMeansDays2Climate1; BY 
Env Cohort Elevation Geno; RUN; 
DATA &ID.RMAATBOLTING; SET &ID.RMAATBOLTING;  
 RMAatBolting = ALPHA * EXP(BETA*Days2Bolt_Mean); 
 RMAat7days = ALPHA * EXP(BETA*7); 
 RMAat14days = ALPHA * EXP(BETA*14); 
 RMAat28days = ALPHA * EXP(BETA*28); 
 RMAat56days = ALPHA * EXP(BETA*56); 
RUN; 
PROC PRINT DATA=&ID.RMAATBOLTING; TITLE1 "&ID - Calculated RMA @ Bolting - 
Exponential Model Subset"; RUN; 
%MEND EXPONENTIAL; 
%LET Data = CGC_GenoMeans2; %LET ID = SubsetExpo2P; %LET Trait = RMA_Mean; 
%EXPONENTIAL; 

D.2.3 SAS code modeling the proportion live rosette leaves over time and calculating the 

age at 95% rosette mortality. 

/* RUN THE START-UP MASTER DATASET SAS PROGRAM FIRST */ 
/* PROC PRINT DATA=PopMeans; RUN; */ 
DATA CGC_GenoMeans1; SET CGC_GenoMeans; 
 WHERE Env = 'Mediterr'; 
 RENAME Elevation_Mean = Elevation; 
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 PropLiveLeaves = PctLiveLeaves / 100; 
RUN; 
 
PROC SORT DATA=CGC_GenoMeans1; BY Env Cohort Elevation Geno; RUN; 
%MACRO LOGISTIC2P; 
PROC NLIN DATA=&Data Plots=all METHOD=Marquardt TOTALSS; 
 title1 "&ID"; 
 PARAMETERS ALPHA = -0.1 to -0.02 by 0.02 BETA = 70, 80, 90, 120, 140, 
160, 180, 200; 
 MODEL &Trait = 1 / ( 1 + EXP(-ALPHA *(AgeAtHarvest - BETA) ) ); 
 BY Env Cohort Elevation Geno; 
 ODS OUTPUT ParameterEstimates=&ID.PARMS ANOVA=&ID.ANOVA; 
RUN; 
PROC PRINT DATA=&ID.PARMS; RUN; 
/*The following code calculates pseudo r-square for each model */ 
PROC SORT DATA=&ID.ANOVA; BY Source Env Cohort Elevation Geno; RUN; 
DATA &ID.SSE; SET &ID.ANOVA; WHERE Source = "Error"; RENAME SS=SSE; KEEP Env 
Cohort Elevation Geno SS; RUN; 
DATA &ID.SSCT; SET &ID.ANOVA; WHERE Source = "Corrected Total"; RENAME 
SS=SSCT; KEEP Env Cohort Elevation Geno SS; RUN; 
DATA &ID.SSUCT; SET &ID.ANOVA; WHERE Source = "Uncorrected Total"; RENAME 
SS=SSUCT; KEEP Env Cohort Elevation Geno SS; RUN; 
PROC SORT DATA=&ID.SSE; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.SSCT; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.SSUCT; BY Env Cohort Elevation Geno; RUN; 
DATA &ID.PSEUDORSQ; MERGE &ID.SSCT &ID.SSE &ID.SSUCT; BY Env Cohort Elevation 
Geno;  
 CtPseudoRsq = 1 - (SSE/SSCT); 
 UnCtPseudoRsq = 1 - (SSE/SSUCT); 
RUN; 
PROC PRINT DATA=&ID.PSEUDORSQ; TITLE1 "&ID - PseudoRsq by Env-Cohort-
Elevation-Geno"; RUN; 
 
/* The following code extracts the parameter estimates from each model, 
merges it with  
 population (or genotype) mean bolting ages and calculates the predicted 
photosynthetic rate per gram at the age of bolting */ 
DATA &ID.ALPHA; SET &ID.PARMS; WHERE Parameter = "ALPHA"; RENAME 
Estimate=ALPHA; KEEP Env Cohort Elevation Estimate Geno; RUN; 
DATA &ID.BETA; SET &ID.PARMS; WHERE Parameter = "BETA"; RENAME Estimate=BETA; 
KEEP Env Cohort Elevation Estimate Geno; RUN; 
PROC SORT DATA=&ID.ALPHA; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=&ID.BETA; BY Env Cohort Elevation Geno; RUN; 
PROC SORT DATA=GenoMeansDays2Climate; BY Env Cohort Elevation Geno; RUN; 
PROC PRINT DATA=&ID.ALPHA; TITLE1 "&ID - ALPHA"; RUN; 
PROC PRINT DATA=&ID.BETA; TITLE1 "&ID - BETA"; RUN; 
DATA &ID.TimeOfDeath; MERGE &ID.ALPHA &ID.BETA GenoMeansDays2Climate; BY Env 
Cohort Elevation Geno; RUN; 
DATA &ID.TimeOfDeath; SET &ID.TimeOfDeath;  
 TimeAt1PctLive = ( log(-(0.01/(0.01-1))) + ALPHA*BETA ) / ALPHA; 
 TimeAt5PctLive = ( log(-(0.05/(0.05-1))) + ALPHA*BETA ) / ALPHA; 
 TimeAt10PctLive = ( log(-(0.1/(0.1-1))) + ALPHA*BETA ) / ALPHA; 
 TimeAt50PctLive = ( log(-(0.5/(0.5-1))) + ALPHA*BETA ) / ALPHA; 
 PropLiveLeavesAtBolting = 1 / ( 1 + EXP(-ALPHA *(Days2Bolt_Mean - BETA) 
) ); 
RUN; 
PROC PRINT DATA=&ID.TimeOfDeath; TITLE1 "&ID - Calculated Days to Death and 
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PropLiveLeaves @ Bolting"; RUN; 
%MEND LOGISTIC2P; 
%LET Data = CGC_GenoMeans1; %LET ID = Logistic2P; %LET Trait = 

PropLiveLeaves; %LOGISTIC2P; 

D.2.4 SAS code used in all analyses subsequent to the nonlinear models of RMA, 

Photosynthetic Rate and Proportion live Leaves. 

/* RUN START-UP MASTER DATASET SAS PROGRAM LOCATED ON TONSOR LAB DROPBOX 
BEFORE RUNNING THIS CODE */ 
DATA Master; 
 SET CGC_GenoMeans; 
 WHERE Env = 'Mediterr' AND Cohort = 'Fall';  
 PropRose = RosetteMass_Mean / TotMass_Mean; 
 PropRoot = RootMass_Mean / TotMass_Mean; 
 PropInflor = InflorMass_Mean / TotMass_Mean; 
RUN; 
PROC PRINT DATA=Master; TITLE1 'Mediterranean Fall Geno Means Dataset'; RUN; 
 
 
proc sort data=Master; by Geno Harvest AgeAtHarvest CGDD3 CGDD4; run; 
PROC MEANS DATA=Master Max NOPRINT; 
 VAR NBasalBranches_Mean RosetteMass_Mean RootMass_Mean InflorMass_Mean 
Totmass_Mean  
  RosetteArea_Mean RMA_Mean LeafArea_Mean LeafMassMG_Mean TLN_Mean; 
 OUTPUT OUT = MaxValues 
         MAX = / AUTONAME; 
 BY Geno Harvest AgeAtHarvest CGDD3 CGDD4; 
RUN; 
PROC PRINT DATA=MaxValues; TITLE1 'Max Trait Values by Genotype'; RUN;  
 
 
%LET prefix  = /* INSERT FILE PATH HERE */; 
 
DATA LES; 
 INFILE "&prefix.LES Project - GENO MEANS - Raw Rosette Economic Traits 
- 5.13.13.csv" DLM  =  ','  FIRSTOBS  =  2   TRUNCOVER LRECL  =  2000 ; 
 INPUT Env $ Cohort $ Pop $ Geno $ Elevation  
   Days2Bolt Lifespan Photo RMA SummedFruitLength; 
RUN; 
DATA LES; SET LES; log10Photo = log10(Photo); RUN; 
proc print data=LES; title1 'Rosette Economics Dataset'; run; 
 
DATA PopClimateData; 
 INFILE "&prefix.Spanish Population Climate Data - 11.19.12.csv" DLM  =  
','  FIRSTOBS  =  2   TRUNCOVER LRECL  =  2000 ; 
 INPUT POP $ POPELEV $ Longitude Latitude Elevation 
     BIO1 BIO2 BIO3 BIO4 BIO5 BIO6 BIO7 BIO8 BIO9 BIO10 BIO11 BIO12 
BIO13 BIO14 BIO15 BIO16 BIO17 BIO18 BIO19 
     IberianClimatePC1 IberianClimatePC2 MinTSeptoFeb MaxTMartoJun 
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MinPreMartoJun MinPreSeptoFeb  
     ClimatePC1 ClimatePC2 ShortestDistanceToCoast DistanceToMedit 
DistanceToAtlantic; 
 KEEP Pop Elevation ClimatePC1; 
RUN; 
PROC PRINT DATA=PopClimateData; TITLE1 'Spanish Population Climate Data'; 
RUN; 
 
PROC SORT DATA=PopClimateData; BY Pop; RUN; 
PROC SORT DATA=LES; BY Pop; RUN; 
DATA LES; MERGE LES PopClimateData; BY Pop; RUN; 
PROC PRINT DATA=LES; TITLE1 'Rosette Economics Dataset + Climate Data'; RUN; 
 
PROC PRINCOMP DATA=LES PLOTS=All PREFIX = RoseEconPC OUTSTAT = PCStats OUT = 
GenoMeanRoseEcon;  
 TITLE1 'PCA of Rosette Economic Variables'; 
 VAR Lifespan log10Photo RMA; 
RUN; 
PROC PRINT DATA=GenoMeanRoseEcon; TITLE1 'Geno Means - Rosette Economy 
Dataset'; run; 
 
PROC SORT DATA=GenoMeanRoseEcon; BY Env Cohort Pop Elevation ClimatePC1; RUN; 
PROC MEANS DATA=GenoMeanRoseEcon MEAN NOPRINT; 
 VAR Days2Bolt Lifespan Photo RMA SummedFruitLength log10Photo 
RoseEconPC1;  
 OUTPUT OUT = PopMeanRoseEcon 
    MEAN (Days2Bolt Lifespan Photo RMA SummedFruitLength log10Photo 
RoseEconPC1) =  
    Days2Bolt Lifespan Photo RMA SummedFruitLength log10Photo 
RoseEconPC1; 
 BY Env Cohort Pop Elevation ClimatePC1; 
RUN; 
PROC PRINT DATA=PopMeanRoseEcon; TITLE1 'Pop Means - Rosette Economy 
Dataset'; RUN; 
 
%MACRO ANCOVA_ClimatePC1; 
PROC GLM DATA=PopMeanRoseEcon PLOTS = All; 
 TITLE1 "&Trait - ClimatePC1"; 
    CLASS Cohort; 
    MODEL &Trait = Cohort ClimatePC1 Cohort*ClimatePC1 / SS3 SOLUTION; 
 LSMEANS Cohort / PDIFF; 
RUN; 
%MEND ANCOVA_ClimatePC1; 
 
%LET Trait = RoseEconPC1; %ANCOVA_ClimatePC1; 
%LET Trait = log10Photo; %ANCOVA_ClimatePC1; 
%LET Trait = Photo; %ANCOVA_ClimatePC1; 
%LET Trait = RMA; %ANCOVA_ClimatePC1; 
%LET Trait = Lifespan; %ANCOVA_ClimatePC1; 
%LET Trait = SummedFruitLength; %ANCOVA_ClimatePC1; 
%LET Trait = Days2Bolt; %ANCOVA_ClimatePC1; 
 
 
PROC STANDARD 
 DATA=GenoMeanRoseEcon 
 out=StdGenoMeanRoseEcon 
 mean=0 std=1; 
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 VAR SummedFruitLength log10Photo RMA Lifespan Days2Bolt RoseEconPC1 
Days2Bolt; 
run; 
proc print data=StdGenoMeanRoseEcon; title1 "Standardized Rosette Econ 
Dataset"; run; 
 
 
%MACRO DirectSelection; 
PROC REG DATA=StdGenoMeanRoseEcon PLOTS = All; 
 TITLE1 "Direct Selection - &Trait"; 
    MODEL SummedFruitLength = &Trait; 
RUN; 
PROC REG DATA=StdGenoMeanRoseEcon PLOTS = All; 
 TITLE1 "Direct Selection - &Trait - By Cohort"; 
    MODEL SummedFruitLength = &Trait; 
 BY Cohort; 
RUN; 
%MEND DirectSelection; 
%LET Trait = RoseEconPC1; %DirectSelection; 
%LET Trait = log10Photo; %DirectSelection; 
%LET Trait = Photo; %DirectSelection; 
%LET Trait = RMA; %DirectSelection; 
%LET Trait = Lifespan; %DirectSelection; 
%LET Trait = Days2Bolt; %DirectSelection; 
 
PROC CORR DATA=StdGenoMeanRoseEcon PLOTS=All; 
 TITLE1 "Trait Correlations"; 
 VAR SummedFruitLength log10Photo RMA Lifespan Days2Bolt RoseEconPC1; 
RUN; 
 
PROC GLM DATA=StdGenoMeanRoseEcon; 
 TITLE1 "Comparing Fitness-Economy Relationships Among Cohorts"; 
 CLASS Cohort; 
 MODEL SummedFruitLength = RoseEconPC1 Cohort RoseEconPC1*Cohort / SS3 
SOLUTION; 
RUN; 

D.3 SAS CODE USED IN CHAPTER 4 

D.3.1 Modeling whole plant photosynthesis over time. 

 
PROC SORT DATA=Master; BY Geno; RUN; 
PROC NLIN DATA=Master Plots=fit METHOD=Marquardt TOTALSS; 
 TITLE1 'Whole Plant - GAUSSIAN'; 
 *PARAMETERS ALPHA = 0.01 0.5 0.75 1.5 3 5 10 15 20 50 75 100 200 300 
400 BETA = 0.001 0.01 0.5 0.75 1.5 3 5 10 50 100 150 200 400 500 800 GAMMA = 
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0.001 0.01 0.5 0.75 1.5 3 5 15 25 35 45 55 75 100 150 500; 
 PARAMETERS ALPHA = 0.5 1.5 3 5 10 15 20 50 75 100 BETA = 0.001 0.01 0.1 
1 10 50 100 150 200 GAMMA = 0.001 0.01 0.5 0.75 1.5 3 5 15 25; 
 MODEL WholeTotalPhoto = ALPHA * EXP( - ( 0.5 * ( ( AgeAtHarvest - BETA 
) / GAMMA )**2 ) ); 
BY Geno; 
RUN; 
 
 
PROC SORT DATA=Master; BY Geno; RUN; 
%MACRO GAUSSIAN; 
PROC NLIN DATA=&Data Plots=Fit METHOD=Marquardt TOTALSS; 
 title1 "&ID"; 
 PARAMETERS ALPHA = 0.5 1.5 3 5 10 15 20 50 75 100 BETA = 0.001 0.01 0.1 
1 10 50 100 150 200 GAMMA = 0.001 0.01 0.5 0.75 1.5 3 5 15 25; 
 MODEL &Trait = ALPHA * EXP( - ( 0.5 * ( ( AgeAtHarvest - BETA ) / GAMMA 
)**2 ) ); 
 BY Geno; 
 ODS OUTPUT ParameterEstimates=&ID.PARMS ANOVA=&ID.ANOVA; 
RUN; 
PROC PRINT DATA=&ID.PARMS; TITLE1 "&ID - Parameters"; RUN; 
/* The following code calculates pseudo r-square for each model */ 
PROC SORT DATA=&ID.ANOVA; BY Source Geno; RUN; 
DATA &ID.SSE; SET &ID.ANOVA; WHERE Source = "Error"; RENAME SS=SSE; KEEP Geno 
SS; RUN; 
DATA &ID.SSCT; SET &ID.ANOVA; WHERE Source = "Corrected Total"; RENAME 
SS=SSCT; KEEP Geno SS; RUN; 
DATA &ID.SSUCT; SET &ID.ANOVA; WHERE Source = "Uncorrected Total"; RENAME 
SS=SSUCT; KEEP Geno SS; RUN; 
PROC SORT DATA=&ID.SSE; BY Geno; RUN; 
PROC SORT DATA=&ID.SSCT; BY Geno; RUN; 
PROC SORT DATA=&ID.SSUCT; BY Geno; RUN; 
DATA &ID.PSEUDORSQ; MERGE &ID.SSCT &ID.SSE &ID.SSUCT; BY Geno;  
 CtPseudoRsq = 1 - (SSE/SSCT); 
 UnCtPseudoRsq = 1 - (SSE/SSUCT); 
RUN; 
PROC PRINT DATA=&ID.PSEUDORSQ; TITLE1 "&ID - PseudoRsq by Geno"; RUN; 
 
/* The following code extracts the parameter estimates from each model, 
merges it with  
 population (or genotype) mean bolting ages and calculates the predicted 
photosynthetic rate per gram at the age of bolting */ 
/* 
DATA &ID.ALPHA; SET &ID.PARMS; WHERE Parameter = "ALPHA"; RENAME 
Estimate=ALPHA; KEEP Geno Estimate; RUN; 
DATA &ID.BETA; SET &ID.PARMS; WHERE Parameter = "BETA"; RENAME Estimate=BETA; 
KEEP Geno Estimate; RUN; 
DATA &ID.GAMMA; SET &ID.PARMS; WHERE Parameter = "GAMMA"; RENAME 
Estimate=GAMMA; KEEP Geno Estimate; RUN; 
PROC SORT DATA=&ID.ALPHA; BY Geno; RUN; 
PROC SORT DATA=&ID.BETA; BY Geno; RUN; 
PROC SORT DATA=&ID.GAMMA; BY Geno; RUN; 
PROC PRINT DATA=&ID.ALPHA; TITLE1 "&ID - ALPHA"; RUN; 
PROC PRINT DATA=&ID.BETA; TITLE1 "&ID - BETA"; RUN; 
PROC PRINT DATA=&ID.GAMMA; TITLE1 "&ID - GAMMA"; RUN; 
DATA &ID.GAUSSIANPARMS; MERGE &ID.ALPHA &ID.BETA &ID.GAMMA; BY Geno; RUN; 
RUN; 
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PROC PRINT DATA=&ID.GAUSSIANPARMS; TITLE1 "&ID - Gaussian Parameters"; RUN; 
*/ 
%MEND GAUSSIAN; 
 %LET Data = Master; %LET ID = WholeCGain; %LET Trait = WholeTotalPhoto; 
%GAUSSIAN; 

D.3.2 Modeling rosette photosynthesis over time. 

PROC SORT DATA=Master; BY Geno; RUN; 
%MACRO GAUSSIAN; 
PROC NLIN DATA=&Data Plots=Fit METHOD=Marquardt TOTALSS; 
 where geno = "&ID"; 
 title1 "&ID"; 
 PARAMETERS ALPHA = 9.77 15 235 BETA = 56.79 70.59 GAMMA = 8.45 16 24 
37.84 48; 
 *PARAMETERS ALPHA = 0.5 1.5 3 5 10 15 20 50 75 100 BETA = 0.001 0.01 
0.1 1 10 50 100 150 200 GAMMA = 0.001 0.01 0.5 0.75 1.5 3 5 15 25; 
 MODEL &Trait = ALPHA * EXP( - ( 0.5 * ( ( AgeAtHarvest - BETA ) / GAMMA 
)**2 ) ); 
 BY Geno; 
 ODS OUTPUT ParameterEstimates=&ID.PARMS ANOVA=&ID.ANOVA; 
RUN; 
PROC PRINT DATA=&ID.PARMS; TITLE1 "&ID - Parameters"; RUN; 
/* The following code calculates pseudo r-square for each model */ 
PROC SORT DATA=&ID.ANOVA; BY Source Geno; RUN; 
DATA &ID.SSE; SET &ID.ANOVA; WHERE Source = "Error"; RENAME SS=SSE; KEEP Geno 
SS; RUN; 
DATA &ID.SSCT; SET &ID.ANOVA; WHERE Source = "Corrected Total"; RENAME 
SS=SSCT; KEEP Geno SS; RUN; 
DATA &ID.SSUCT; SET &ID.ANOVA; WHERE Source = "Uncorrected Total"; RENAME 
SS=SSUCT; KEEP Geno SS; RUN; 
PROC SORT DATA=&ID.SSE; BY Geno; RUN; 
PROC SORT DATA=&ID.SSCT; BY Geno; RUN; 
PROC SORT DATA=&ID.SSUCT; BY Geno; RUN; 
DATA &ID.PSEUDORSQ; MERGE &ID.SSCT &ID.SSE &ID.SSUCT; BY Geno;  
 CtPseudoRsq = 1 - (SSE/SSCT); 
 UnCtPseudoRsq = 1 - (SSE/SSUCT); 
RUN; 
PROC PRINT DATA=&ID.PSEUDORSQ; TITLE1 "&ID - PseudoRsq by Geno"; RUN; 
%MEND GAUSSIAN; 
 
%LET Data = Master; %LET ID = PIN9; %LET Trait = RoseTotalPhoto; %GAUSSIAN; 
DATA Master; SET Master; 
 if AgeAtHarvest = 98 and Geno = 'RAB17' then RoseTotalPhoto = .; 
RUN; 
%LET Data = Master; %LET ID = RAB17; %LET Trait = RoseTotalPhoto; %GAUSSIAN; 
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D.3.3 Modeling inflorescence photosynthesis over time. 

PROC SORT DATA=Master; BY Geno; RUN; 
%MACRO GAUSSIAN; 
PROC NLIN DATA=&Data Plots=Fit METHOD=Gauss TOTALSS; 
 where geno = "&ID"; 
 title1 "&ID"; 
 PARAMETERS ALPHA = 14.61 8 4 BETA = 135.24 175 194.8 GAMMA = 5.45 7 10 
12 14 16 18 20 37.92; 
 *PARAMETERS ALPHA = 0.5 1.5 3 5 10 15 20 50 75 100 BETA = 0.001 0.01 
0.1 1 10 50 100 150 200 GAMMA = 0.001 0.01 0.5 0.75 1.5 3 5 15 25; 
 MODEL &Trait = ALPHA * EXP( - ( 0.5 * ( ( AgeAtHarvest - BETA ) / GAMMA 
)**2 ) ); 
 BY Geno; 
 ODS OUTPUT ParameterEstimates=&ID.PARMS ANOVA=&ID.ANOVA; 
RUN; 
PROC PRINT DATA=&ID.PARMS; TITLE1 "&ID - Parameters"; RUN; 
/* The following code calculates pseudo r-square for each model */ 
PROC SORT DATA=&ID.ANOVA; BY Source Geno; RUN; 
DATA &ID.SSE; SET &ID.ANOVA; WHERE Source = "Error"; RENAME SS=SSE; KEEP Geno 
SS; RUN; 
DATA &ID.SSCT; SET &ID.ANOVA; WHERE Source = "Corrected Total"; RENAME 
SS=SSCT; KEEP Geno SS; RUN; 
DATA &ID.SSUCT; SET &ID.ANOVA; WHERE Source = "Uncorrected Total"; RENAME 
SS=SSUCT; KEEP Geno SS; RUN; 
PROC SORT DATA=&ID.SSE; BY Geno; RUN; 
PROC SORT DATA=&ID.SSCT; BY Geno; RUN; 
PROC SORT DATA=&ID.SSUCT; BY Geno; RUN; 
DATA &ID.PSEUDORSQ; MERGE &ID.SSCT &ID.SSE &ID.SSUCT; BY Geno;  
 CtPseudoRsq = 1 - (SSE/SSCT); 
 UnCtPseudoRsq = 1 - (SSE/SSUCT); 
RUN; 
PROC PRINT DATA=&ID.PSEUDORSQ; TITLE1 "&ID - PseudoRsq by Geno"; RUN; 
%MEND GAUSSIAN; 
 
%LET Data = Master; %LET ID = HOR6; %LET Trait = InflorTotalPhoto; %GAUSSIAN; 
 
PROC SORT DATA=Master; BY Geno; RUN; 
%MACRO GAUSSIAN; 
PROC NLIN DATA=&Data Plots=Fit METHOD=Gauss TOTALSS; 
 where geno = "&ID"; 
 title1 "&ID"; 
 PARAMETERS ALPHA = 6 12 15 20 133.77 284.62 BETA = 194.36 194.51 GAMMA 
= 5.41 10 15 20 22 24 26 ; 
 *PARAMETERS ALPHA = 0.5 1.5 3 5 10 15 20 50 75 100 BETA = 0.001 0.01 
0.1 1 10 50 100 150 200 GAMMA = 0.001 0.01 0.5 0.75 1.5 3 5 15 25; 
 MODEL &Trait = ALPHA * EXP( - ( 0.5 * ( ( AgeAtHarvest - BETA ) / GAMMA 
)**2 ) ); 
 BY Geno; 
 ODS OUTPUT ParameterEstimates=&ID.PARMS ANOVA=&ID.ANOVA; 
RUN; 
PROC PRINT DATA=&ID.PARMS; TITLE1 "&ID - Parameters"; RUN; 
/* The following code calculates pseudo r-square for each model */ 
PROC SORT DATA=&ID.ANOVA; BY Source Geno; RUN; 
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DATA &ID.SSE; SET &ID.ANOVA; WHERE Source = "Error"; RENAME SS=SSE; KEEP Geno 
SS; RUN; 
DATA &ID.SSCT; SET &ID.ANOVA; WHERE Source = "Corrected Total"; RENAME 
SS=SSCT; KEEP Geno SS; RUN; 
DATA &ID.SSUCT; SET &ID.ANOVA; WHERE Source = "Uncorrected Total"; RENAME 
SS=SSUCT; KEEP Geno SS; RUN; 
PROC SORT DATA=&ID.SSE; BY Geno; RUN; 
PROC SORT DATA=&ID.SSCT; BY Geno; RUN; 
PROC SORT DATA=&ID.SSUCT; BY Geno; RUN; 
DATA &ID.PSEUDORSQ; MERGE &ID.SSCT &ID.SSE &ID.SSUCT; BY Geno;  
 CtPseudoRsq = 1 - (SSE/SSCT); 
 UnCtPseudoRsq = 1 - (SSE/SSUCT); 
RUN; 
PROC PRINT DATA=&ID.PSEUDORSQ; TITLE1 "&ID - PseudoRsq by Geno"; RUN; 
%MEND GAUSSIAN; 
%LET Data = Master; %LET ID = PAN1; %LET Trait = InflorTotalPhoto; %GAUSSIAN; 
%LET Data = Master; %LET ID = PAN5; %LET Trait = InflorTotalPhoto; %GAUSSIAN; 

D.3.4 Principal component and all subsequent analyses. 

PROC PRINCOMP DATA=GenoMeans PLOTS=All PREFIX = WholeEconPC OUTSTAT = PCStats 
OUT = GenoMeanWholeEcon;  
 TITLE1 'PCA of Whole Plant Economic Variables'; 
 VAR WholeFunctionalLifespan MaxTotMass MaxWholePhotoPerGram 
MaxWholeTotalPhoto WholeCarbonGain; 
RUN; 
PROC PRINCOMP DATA=GenoMeans PLOTS=All PREFIX = RoseEconPC OUTSTAT = PCStats 
OUT = GenoMeanRoseEcon;  
 TITLE1 'PCA of Whole Plant Economic Variables'; 
 VAR RosetteLeafLifespan RosetteFunctionalLifespan MaxRoseMass 
MaxRoseArea MaxTLN MaxRosePhotoPerGram MaxRoseTotalPhoto MaxRMA 
RosePhotoAtBolting RMAAtBolting RoseCarbonGain MaxPropRose; 
RUN; 
PROC PRINCOMP DATA=GenoMeans PLOTS=All PREFIX = InflorEconPC OUTSTAT = 
PCStats OUT = GenoMeanInflorEcon;  
 TITLE1 'PCA of Whole Plant Economic Variables'; 
 VAR InflorFunctionalLifespan PostBoltWholeFunctionalLifespan 
MaxInflorMass MaxBasalBranches MaxInflorPhotoPerGram MaxInflorTotalPhoto 
MassPerLength InflorCarbonGain MaxPropInflor; 
RUN; 
 
DATA GenoMeans; 
INPUT POP $ Genotype $ Elevation ClimatePC1 AgeAtBolting 
RosetteLeafLifespan RosetteFunctionalLifespan InflorFunctionalLifespan
 WholeFunctionalLifespan PostBoltRoseFunctionalLifespan
 PostBoltRoseLeafLifespan PostBoltWholeFunctionalLifespan
 PropLifePostBolt MaxBasalBranches MaxRoseMass MaxInflorMass
 MaxTotMass RoseArea MaxRMA MaxTLN MaxWholePhotoPerGram
 MaxWholeTotalPhoto MaxInflorPhotoPerGram MaxInflorTotalPhoto
 MaxRosePhotoPerGram MaxRoseTotalPhoto WholeCarbonGain
 RoseCarbonGain InflorCarbonGain PercentInflorContribution
 MaxPropRose MaxPropInflor MassPerLength
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 RosePhotoPerGramAtBolting RMAAtBolting SummedFruitLength
 WholeEconPC1 WholeEconPC2 InflorEconPC1 InflorEconPC2
 RoseEconPC1 RoseEconPC2; 
DATALINES; 
ALE ALE10 1163 2.31 115 221.5 176.444568 121.8 221.534612 61.4 106.5
 106.5 0.481 6 0.475 0.5865 1.246 21.47743336 0.023399799 60.5
 364.9792841 24.50162924 44.27816956 9.896727591 364.9792841 24.21382114
 2927.081912 2160.910332 996.7850745 31.56685324 0.647912886 0.47070626
 0.03775 16.40622439 0.01919453 560.2 0.680634228 -0.047336505
 -1.57264092 -0.087180479 0.962361065 -0.767892161 
ALE ALE12 1163 2.31 99.4 209.2 164.388224 119.9 206.669236 65 109.8
 107.3 0.519 10.5 0.369 0.7045 1.3255 21.51604583 0.020246281
 50.5 312.9339765 30.3012046 96.97403925 15.06794915 312.9339765
 20.7890443 2947.553526 1897.361146 1078.073567 36.23247259 0.654188948
 0.560183257 0.033 26.08475909 0.016498154 450.6 0.411915533 1.278121839
 0.308418176 -0.099334178 -0.44282047 -1.520598795 
ARB ARB10 440 -2.19 92.3 218.6 173.901592 150.7 235.36928 81.6 126.3
 143.1 0.608 9 0.4365 1.0095 1.408 24.01054022 0.021927806
 57 276.2424013 26.48486837 89.06150919 17.19059094 276.2424013
 23.62205112 3475.908299 2101.405557 1568.161068 42.73423073 0.704610951
 0.716974432 0.04275 38.75073796 0.015472558 541.2 2.327540724
 1.232263211 2.525055406 2.013926885 0.67191018 -0.879917167 
ARB ARB8 440 -2.19 78.6 142.9 120.787516 132.7 214.019784 42.2 64.3
 135.4 0.633 8.5 0.2775 0.692 1.055 24.9252161 0.018886306 46
 355.564831 21.96814167 95.19708446 15.31823955 355.564831 21.96814167
 1998.797618 747.3389482 1363.483423 64.59489162 0.671383648 0.717880086
 0.04175 33.73519972 0.014514967 778.9 -0.635016198 -
2.049192341 1.473322695 0.690462755 -2.232920594 0.373242779 
BAR BAR4 340 -4.58 83.6 191.6 137.490956 126.3 217.896192 53.9 108
 134.3 0.616 19 0.3515 1.019 1.5115 24.29124271 0.022173966
 49.5 372.1016968 22.93368496 80.17902906 13.57431314 372.1016968
 22.93368496 2176.356202 1103.568802 1147.945554 50.98548678 0.668863262
 0.710590137 0.05475 35.57654347 0.014992331 863.9 0.641584387 -
1.789640298 1.778537462 1.943884987 -1.106839446 0.157408385 
BAR BAR9 340 -4.58 87.2 165.4 135.893588 138.3 195.881508 48.7 78.2
 108.7 0.555 17.5 0.3255 0.9615 1.404 29.0569261 0.019886607
 51 328.8752034 26.59780133 52.57969559 10.28182207 328.8752034
 26.59780133 2022.296009 1061.374583 993.9579441 48.35995786 0.654822335
 0.687378641 0.0585 29.4671413 0.01625521 823.1 -0.338915609
 -1.142550479 0.576299107 1.868558595 -0.877322614 1.242742732 
BIS BIS11 1397 5.82 107.6 212.6 202.885452 110.4 224.57296 95.3 105
 117 0.521 6.5 0.4905 0.4795 1.447 24.35858053 0.026604825
 67 400.6646334 25.33379077 21.1460246 9.2831048 400.6646334
 24.08868765 3198.398141 2450.181785 748.2163556 23.39347144 0.767728674
 0.424336283 0.04275 3.965336647 0.02271605 369.4 1.261570616
 0.475744878 -2.51023873 -0.357468238 2.87067145 0.333697406 
BIS BIS8 1397 5.82 117.2 194.5 192.589356 95.9 224.323428 75.4 77.3
 107.1 0.478 5.5 0.6 0.6075 1.433 22.88626236 0.027665676 67
 402.3590555 25.19113671 43.25175536 8.162715748 402.3590555 25.19113671
 2958.123105 2420.781541 537.341564 18.16494936 0.73857868 0.439712389
 0.0455 3.334771251 0.021639594 480.1 0.989960245 0.056672262 -
2.628956635 0.144367533 2.719621215 0.284732371 
BOS BOS5 719 2.61 61.7 90.2 139.009528 105.4 158.250836 77.3 28.5
 96.6 0.61 17.5 0.201 0.5585 0.8145 17.66718193 0.017834737
 29.5 389.44669 28.96866697 72.11695289 18.05040853 389.44669
 25.35257912 2440.881401 800.112015 1671.860378 67.63264763 0.606557377
 0.782212885 0.04125 144.5692822 0.012720079 725.8 -2.906121569
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 0.3984266 1.391736498 -1.567627633 -4.824189025 -
0.153124347 
BOS BOS6 719 2.61 59.6 107.9 104.10568 87.8 174.922488 44.5 48.3
 115.3 0.659 20.5 0.2775 0.6635 0.915 21.9375179 0.021978043
 34.5 254.0100616 29.36974102 43.04654602 25.28147499 254.0100616
 26.97744827 2642.750958 817.6562006 1825.094757 69.06041418 0.652173913
 0.766318538 0.04725 118.1659217 0.013004951 553 -1.287717718
 0.783463793 1.885323864 -1.864263722 -3.393021923 -
0.084114999 
COC COC14 519 -3.28 82.3 185.4 168.312756 132 218.534172 86 103.1
 136.2 0.623 16 0.2315 0.8275 1.2215 20.92171626
 0.020776808 45 415.4851783 28.3030419 72.34836527 21.50030124
 415.4851783 24.35476502 3278.308086 1591.346579 1710.410914 51.80304481
 0.625407166 0.70046729 0.03675 47.36641044 0.015031027 577.6
 0.293526407 1.414086635 2.532706839 0.050496183 -1.680630385 -
0.174728307 
COC COC7 519 -3.28 69.6 143.9 134.211864 135.4 193.285836 64.6 74.3
 123.7 0.64 21 0.1985 0.616 0.8595 19.02062131 0.024308254
 37.5 366.4956044 26.96543354 83.33107545 13.78951146 366.4956044
 23.71580169 2698.772399 1130.292959 1494.404514 56.9362576 0.672881356
 0.716695753 0.027 112.8691335 0.012486253 900.8 -1.415250228
 0.350496031 1.953441446 -0.608844279 -3.116966428 -
0.478017956 
HOR HOR16 351 -2.71 84.8 174.6 144.294948 142.1 224.387276 59.5 89.8
 139.6 0.622 18 0.3195 0.748 1.091 18.50756321 0.030687262 44
 380.3263601 23.74259922 120.5652468 13.59864146 380.3263601 21.59418423
 2486.738434 1094.982347 1406.959455 56.23469954 0.630799605 0.685609533
 0.0505 24.96046172 0.019376608 490 -0.107423773 -
0.857569275 2.249212209 1.296071815 -1.014733489 -1.199180677 
HOR HOR6 351 -2.71 82.8 190.1 125.998004 127.6 145.592672 43.2 107.3
 62.8 0.431 23.5 0.265 0.8965 1.281 28.12712949 0.023124975 43
 493.7703676 26.23967134 97.97864721 16.41117567 493.7703676 24.72062823
 2060.129543 798.1247794 1313.585533 62.20481688 0.671736375 0.711403097
 0.0525 14.14534436 0.017765267 824.5 -2.766854554 -
1.129220941 1.514365653 0.061048601 -1.144269186 2.219344771 
MUR MUR15 836 -2 117.1 192.2 181.198768 101.7 223.224032 64.1 75.1
 106.1 0.475 13.5 0.448 0.8035 1.4335 21.82003764 0.025954546
 62.5 374.9878567 23.55770919 54.83960386 11.75989648 374.9878567
 23.55770919 2824.218569 2147.417233 676.8013357 23.96419821 0.765100671
 0.615214507 0.06975 3.290052416 0.02075764 619.6 1.122729604 -
0.538410419 -0.92416768 1.176022947 1.807262137 -0.072412069 
MUR MUR17 836 -2 129.4 320.7 190.290908 97.8 226.63988 60.9 191.3
 97.2 0.429 3.5 0.4415 0.7665 1.423 22.46747574 0.022663426
 57 273.5168046 21.52790944 50.20160666 11.41397177 273.5168046
 20.03794306 2816.899589 2178.814607 638.0849821 22.6520315 0.69591528
 0.538650738 0.069 4.533850118 0.019162779 439.9 1.922156955 -
1.003717756 -2.085253464 1.178550083 1.876305875 -2.211928449 
PAL PAL12 1491 4.26 75.6 162.5 137.822248 145.9 206.762672 62.2 86.9
 131.2 0.634 10 0.256 0.9255 1.3645 20.20648945 0.019753388
 46.5 364.695492 25.03927392 60.86333789 18.20065892 364.695492
 20.91673769 2677.892625 1183.793562 1604.476802 57.54380287 0.640625
 0.68877551 0.08 61.41508238 0.013291809 787.9 0.356321439 -
0.404053807 1.454960018 2.333580382 -2.578500809 -0.93289159 
PAL PAL16 1491 4.26 109.8 208.3 149.665896 95.9 217.596032 39.9 98.5
 107.8 0.495 7 0.338 0.7395 1.29 21.40222877 0.025173519 68
 299.9152229 20.53738452 50.2809156 12.4890364 299.9152229 20.05531944
 2485.46401 1542.314573 943.1494378 37.94661415 0.646271511 0.600247525
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 0.06575 10.13644215 0.01650948 495.8 0.963707589 -1.707221951
 -1.179142101 0.793027609 -0.042908127 -1.866093174 
PAN PAN1 1664 5.79 164.4 236.4 237.55538 40.6 246.823908 73.2 72
 82.4 0.334 1 0.533 0.5695 1.2805 26.35088841 0.025084558
 77 352.1159649 31.4725813 25.03307085 11.01455117 352.1159649
 31.4725813 2973.867184 2544.481372 445.4540049 14.89844925 0.72005772
 0.460714286 0.059 2.075575548 0.021389632 386.4 0.96116011 1.631113378
 -4.069424107 -0.930225338 3.822262984 1.060397957 
PAN PAN5 1664 5.79 167.8 221.4 191.48362 37.3 235.403372 23.7 53.6
 67.6 0.287 6.5 0.55 0.579 1.5285 25.70546537 0.025898514 79.5
 290.7169038 30.82526935 34.64513682 19.70403575 290.7169038 30.82526935
 3282.168192 2475.950756 806.2174357 24.56356252 0.725 0.416696654
 0.0595 3.219285967 0.023981927 460.5 2.037500931 1.848336368 -
3.136321377 -2.081742751 3.704945543 0.596196028 
PIN PIN6 109 -3.65 67.9 112.3 122.279148 152.6 149.517472 54.4 44.4
 81.6 0.546 24.5 0.234 0.836 1.1275 22.70107677 0.023207528 52
 328.9946245 31.62415019 40.31424659 21.51478881 328.9946245 21.98057118
 2526.184811 1162.450394 1390.0049 54.45756105 0.666666667 0.773311897
 0.044 79.09637254 0.011323553 762.1 -2.069357467 0.97743985
 2.023874731 -0.509007438 -2.682820783 -0.450508705 
PIN PIN9 109 -3.65 79.8 191.4 140.217464 116.3 207.677884 60.4 111.6
 127.9 0.616 9 0.373 0.7845 1.077 25.56849391 0.022649711 46.5
 385.1443434 25.1355436 85.49623843 13.76345711 385.1443434 25.1355436
 1828.015567 879.7071494 1003.682394 53.29127993 0.739742087 0.728412256
 0.0455 14.74103677 0.015431867 550.6 -1.310098143 -
1.615245134 0.793549326 0.962178167 -0.42424297 1.355202026 
POB POB10 597 -2 106.6 207.7 178.525216 118.2 224.347156 71.9 101.1
 117.7 0.525 17 0.6635 0.7505 1.2815 26.47823553
 0.030662797 66 457.2504763 27.72179441 42.99278587 13.1146442
 457.2504763 27.72179441 2937.177191 2233.510962 720.1742425 24.38222738
 0.71450858 0.585641826 0.035 10.33999033 0.020674803 492.2 0.0605723
 0.686754698 -0.21900166 0.024058516 2.891660337 1.567606872 
POB POB7 597 -2 121.1 265.2 195.908388 92.5 226.091076 74.8 144.1
 105 0.464 7.5 0.551 0.5875 1.176 23.69597265 0.033921023 70
 358.8361296 26.8625015 97.52084372 8.694564632 358.8361296 26.8625015
 2704.559967 2116.071319 588.4886482 21.75912737 0.682648402 0.49957483
 0.0375 9.847786505 0.021636162 596.2 0.249744798 0.174488291 -
1.538134461 -0.089399291 3.208274331 -0.330713347 
RAB RAB17 110 -4.48 62.4 133.7 73.3536 84.7 185.44138 11 71.3
 123 0.664 20 0.163 0.675 0.9315 15.36437 0.017299275 28
 491.8907887 22.83966743 61.56129917 27.73749725 491.8907887 19.92987656
 2566.986557 739.266821 1821.688731 71.13316472 0.636363636 0.769156159
 0.02675 113.3665534 0.00830416 622 -1.962838022 -
0.871070231 2.57042713 -2.460583249 -5.848256221 -0.258954338 
RAB RAB4 110 -4.48 59.9 137 78.557612 94.3 177.881944 18.7 77.1
 118 0.663 29 0.238 0.5055 0.726 21.14482844 0.02197675 20.5
 410.4473307 32.76387645 89.44058866 24.84123338 410.4473307 25.60862935
 2769.457904 944.4835492 1824.974355 65.89644682 0.639175258 0.706293706
 0.013333333 65.30003226 0.011617622 528.4 -2.765617443 1.869118759
 2.902049896 -3.372142195 -3.924496267 0.911416545 
SPE SPE5 332 -2.92 107.9 180.1 176.184676 68.8 206.973156 68.3 72.2
 99.1 0.479 20.5 0.2955 0.8295 1.247 27.41917384 0.02760195
 62.5 424.7167107 26.74689886 55.59257168 13.00640453 424.7167107
 26.74689886 2947.710476 2025.819096 921.8913797 31.27482795 0.680399501
 0.681594084 0.0345 10.929846 0.019494964 663.6 -0.168696106
 0.493214993 0.027547403 -0.865080355 1.085001004 1.248936232 
SPE SPE6 332 -2.92 86.8 198.7 132.080608 104.5 201.147848 45.3 111.9
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 114.3 0.568 6.5 0.3615 0.6245 1.074 31.15789367 0.022158428
 48.5 465.9937942 29.93563516 68.51056517 16.96597282 465.9937942
 29.93563516 2568.139512 1110.436523 1459.104557 56.7846363 0.729695432
 0.639006663 0.0595 16.46441757 0.017701684 962.4 -1.608039773
 0.698065416 0.031643117 -0.003893534 0.219831593 3.578581865 
VDM VDM17 912 1.29 116.4 242.6 198.16764 110.7 223.353288 81.8 126.2
 107 0.479 7.5 0.468 0.6725 1.3125 26.49568824 0.02625134
 62 309.9206287 26.62136233 61.9877679 7.344030022 309.9206287
 26.62136233 2975.559784 2538.734511 521.4385758 17.0395125 0.684491979
 0.609700816 0.03575 21.34932243 0.020807522 572.4 1.104198037
 0.489345884 -1.317183954 0.429886752 2.479374715 -0.211474883 
VDM VDM9 912 1.29 120.7 235.9 197.872496 97.8 226.261808 77.2 115.2
 105.6 0.467 6.5 0.412 0.68 1.413 27.1027713 0.029731621 64
 364.8483843 26.86883105 25.16121458 9.286472824 364.8483843 26.86883105
 2910.339574 2461.620986 448.7185879 15.41808358 0.599690881 0.481245577
 0.04275 23.48431345 0.016652222 482.4 1.03039432 0.380533734 -
2.503768388 0.153412623 1.625941937 -0.17816265 
VIE VIE3 1538 5.73 121.5 243.8 199.629088 90.5 227.406448 78.1 122.3
 105.9 0.466 6.5 0.4705 0.5895 1.2445 26.10742837
 0.031134095 65 290.4658186 21.66608605 61.85205217 10.57254847
 290.4658186 21.66608605 2990.223374 2398.354197 595.9117778 19.90176501
 0.708211144 0.473684211 0.05025 13.79415537 0.024256089 446.4
 1.533108498 -0.589217723 -2.159546198 -0.009788936
 3.082795317 -1.30596515 
VIE VIE6 1538 5.73 116.3 204.6 199.243584 89.9 223.890412 82.9 88.3
 107.6 0.481 9 0.416 0.682 1.4025 22.60308588 0.033290952 68.5
 274.3725513 22.05803402 18.60366697 13.33882922 274.3725513 22.05803402
 2437.268719 2096.791128 573.9071021 21.48902844 0.685459941 0.494202899
 0.049 9.800809141 0.0222126 445.2 1.393619879 -1.493239762 -
2.1486913 -0.212952819 2.306719053 -1.852827208 
; 
RUN; 
 
/* CORRELATION MATRIX */ 
ODS OUTPUT PearsonCorr=Correlations; 
PROC CORR DATA=GenoMeans plots=all; 
  TITLE1 'Correlation Matrix'; 
  VAR SummedFruitLength AgeAtBolting WholeEconPC1 InflorEconPC1 
RoseEconPC1; 
RUN; 
PROC PRINT DATA=Correlations; RUN; 
 
/* STANDARDIZE GENOMEANS DATASET */ 
proc standard  
 data=GenoMeans 
 out=StdGenoMeans 
 mean=0 std=1; 
 VAR SummedFruitLength AgeAtBolting PostBoltRoseFunctionalLifespan 
PercentInflorContribution MassPerLength RosePhotoPerGramAtBolting 
RMAAtBolting WholeEconPC1 InflorEconPC1 RoseEconPC1; 
run; 
proc print data=StdGenoMeans; title1 "Standardized Dataset"; run; 
 
/* STANDARDIZE POP MEANS DATASET */ 
proc standard  
 data=PopMeans 
 out=StdPopMeans 
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 mean=0 std=1; 
 VAR ClimatePC1 SummedFruitLength AgeAtBolting 
PostBoltRoseFunctionalLifespan PercentInflorContribution MassPerLength 
RosePhotoPerGramAtBolting RMAAtBolting WholeEconPC1 InflorEconPC1 
RoseEconPC1; 
run; 
proc print data=StdPopMeans; title1 "Standardized Dataset"; run; 
 
 
/* SPECIFIC AIM 2: ROSETTE AND WHOLE PLANT CONTRIBUTION TO WHOLE PLANT 
ECONOMY */ 
PROC REG DATA=StdGenoMeans PLOTS=All; 
  TITLE1 'Std Whole = Rose + Inflor'; 
  MODEL WholeEconPC1 = RoseEconPC1 InflorEconPC1; 
RUN; 
PROC REG DATA=StdGenoMeans PLOTS=All; 
  TITLE1 'Std Whole = Rose'; 
  MODEL WholeEconPC1 = RoseEconPC1; 
RUN; 
PROC REG DATA=StdGenoMeans PLOTS=All; 
  TITLE1 'Std Whole = Inflor'; 
  MODEL WholeEconPC1 = InflorEconPC1; 
RUN; 
  
/* SPECIFIC AIM 3: ECONOMY PREDICTED BY BOLTING AGE? */ 
PROC REG DATA=GenoMeans PLOTS=All; 
  TITLE1 'Rose = AgeAtBolting'; 
  MODEL RoseEconPC1 = AgeAtBolting; 
RUN; 
PROC REG DATA=GenoMeans PLOTS=All; 
  TITLE1 'Inflor = AgeAtBolting'; 
  MODEL InflorEconPC1 = AgeAtBolting; 
RUN; 
PROC REG DATA=GenoMeans PLOTS=All; 
  TITLE1 'Whole = AgeAtBolting'; 
  MODEL WholeEconPC1 = AgeAtBolting; 
RUN; 
PROC PRINCOMP DATA=GenoMeans PLOTS=All PREFIX = PC1;  
 TITLE1 'AgeAtBolting, Whole, Rose and Inflor Economies are highly 
integrated'; 
 VAR WholeEconPC1 RoseEconPC1 InflorEconPC1 AgeAtBolting; 
RUN; 
 
/* SPECIFIC AIM 4: ECONOMY VS. CLIMATE */ 
PROC REG DATA=PopMeans Outest=TraitsvsClimate TABLEOUT RSQUARE;  
 TITLE1 "Traits vs Climate"; 
 MODEL SummedFruitLength AgeAtBolting WholeEconPC1 InflorEconPC1 
RoseEconPC1 = ClimatePC1;  
RUN; 
 
 
/* SPECIFIC AIM 5: FITNESS VS. ECONOMY */ 
PROC REG DATA=StdGenoMeans PLOTS=All Outest=SelectionAnalysis TABLEOUT 
RSQUARE; 
 TITLE1 'STD Fitness = WholeEconPC1'; 
 MODEL SummedFruitLength = WholeEconPC1; 
RUN; 
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PROC PRINT DATA=SELECTIONANALYSIS; RUN; 
PROC REG DATA=StdGenoMeans PLOTS=All Outest=SelectionAnalysis TABLEOUT 
RSQUARE; 
 TITLE1 'STD Fitness = RoseEconPC1'; 
 MODEL SummedFruitLength = RoseEconPC1; 
RUN; 
PROC PRINT DATA=SELECTIONANALYSIS; RUN; 
PROC REG DATA=StdGenoMeans PLOTS=All Outest=SelectionAnalysis TABLEOUT 
RSQUARE; 
 TITLE1 'STD Fitness = InflorEconPC1'; 
 MODEL SummedFruitLength = InflorEconPC1; 
RUN; 
PROC PRINT DATA=SELECTIONANALYSIS; RUN; 
PROC REG DATA=StdGenoMeans PLOTS=All Outest=SelectionAnalysis TABLEOUT 
RSQUARE; 
 TITLE1 'STD Fitness = AgeAtBolting'; 
 MODEL SummedFruitLength = AgeAtBolting; 
RUN; 
PROC PRINT DATA=SELECTIONANALYSIS; RUN; 
PROC REG DATA=StdGenoMeans PLOTS=All Outest=SelectionAnalysis TABLEOUT 
RSQUARE; 
 TITLE1 'STD Fitness = RoseEconPC1 + InflorEconPC1'; 
 MODEL SummedFruitLength = RoseEconPC1 InflorEconPC1; 
RUN; 
PROC PRINT DATA=SELECTIONANALYSIS; RUN; 
PROC REG DATA=StdGenoMeans PLOTS=All Outest=SelectionAnalysis TABLEOUT 
RSQUARE; 
 TITLE1 'STD Fitness = RoseEconPC1 + InflorEconPC1 + AgeAtBolting'; 
 MODEL SummedFruitLength = RoseEconPC1 InflorEconPC1 AgeAtBolting; 
RUN; 
PROC PRINT DATA=SELECTIONANALYSIS; RUN; 
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