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JOINT MODELING WITH CENSORED DATA AND GROUP-BASED TRAJECTORY 

CLUSTERING 

Ching-Wen Lee, PhD 

University of Pittsburgh, 2013 

ABSTRACT 

Trajectories of data are collected in a variety of settings and offer insight into the evolution of a 

disease in the fields of biomedical, human genetic, and public health research. However, 

trajectories based on serum biomarkers are often subjected to censoring due to the low sensitivity 

of the bioassay used to measure the marker. A joint modeling approach incorporating a binary 

outcome and bivariate normal longitudinal markers which subject to left-censoring is proposed 

as a method to understand the relationship between two longitudinal outcomes and a binary 

outcome. The binary outcome is fitted by a logistic regression model, and the bivariate correlated 

longitudinal data are modeled using a linear mixed model. The binary outcome and bivariate 

measurements are then joined through the random coefficients that are present in both models. A 

clinical example from the GenIMS study is given. The public health significance is that the 

proposed method examined the relationship of the two censored longitudinal biomarkers and the 

binary outcome in a joint modeling approach which provided for direct inference on the effects 

of the two censored longitudinal marker measurements on the evolution of the disease outcome 

in public health.  

Secondly, latent group-based trajectory modeling has been widely used to categorize 

individuals into several homogeneous trajectory groups.  If there exist a small number of 

individuals who have unique trajectory patterns that are not similar to those observed in the rest 

of the population, the latent group-based trajectory modeling may end up identifying a larger 
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number of latent trajectory groups with several groups containing very few individuals.  Further 

analysis treating latent groups as a covariate may then cause unstable estimates of standard 

errors.  The second part of this dissertation applies the idea of the tight clustering method in the 

human genetic field into group-based trajectory analysis to classify latent trajectory groups that 

are more efficient, and to classify miscellaneous individuals or outliers whose trajectory patterns 

are dissimilar to the patterns in the rest of the population. We used the Bayesian information 

criterion as the criterion for model selection. A clinical example from the Normal Aging PiB 

study is provided. The public health relevance is that this innovative method is able to identify 

latent trajectory groups and outliers making it widely applicable in any public health setting 

where longitudinal trajectories are of interest.  
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1.0  INTRODUCTION 

Biomarkers offer an insight into the characteristics of a condition and the evolution of a disease 

in the fields of biomedical, medical, and human genetic research. Most importantly, biomarkers 

used for screening provide a relatively inexpensive opportunity to achieve an early diagnosis and 

prognosis, playing an important role in contributing to public health. For example, the prostate-

specific antigen (PSA) level is used to aid in the detection of prostate cancer and testing of 

KRAS gene mutations is also used to aid in the detection of colon cancer by the National 

Comprehensive Cancer Network (NCCN). More and more studies have collected longitudinal 

biomarker measurements in order to better understand the mechanisms underlying disease 

progression. However, many assays are not sensitive enough to measure values either below a 

lower detection limit or above an upper detection limit, resulting in marker measurements being 

censored at either the lower or upper detection limits. This dissertation is related to longitudinal 

marker analysis and will be composed of two parts. The first part is to apply a joint modeling 

technique to see how disease mortality is affected by multiple longitudinal marker measurements 

which are subject to detection limits due to the sensitivity of the assay. The second part is to 

explore homogeneous latent groups of longitudinal marker trajectories through the application of 

the tight clustering technique developed by Tseng and Wong in 2005. 
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1.1 JOINT MODELING WITH CENSORED DATA 

Longitudinal analysis has been expanded to characterize the relationship between marker profiles 

and a disease outcome through joint modeling techniques, especially when modeling longitudinal 

biomarker measurements combined with a binary or time-to-event outcome. The objectives are 

to explore the within-subject variabilities of the marker trajectories and to relate the features of 

the marker with a disease outcome [Tsiatis and Davidian, 2004]. The basic concept is to model 

the longitudinal measurements through a linear mixed effects model combined with the binary 

outcome through a generalized linear model or the event time through a survival model, that is to 

connect the longitudinal model and outcome model by shared random effects.  

The censoring issue due to the sensitivity of an assay cannot be avoided. There are 

several ways to adjust for censored measurements. The common method is to use the imputation 

of a proportion of the detection limits, i.e. LOD or LOD/2 for the left-censored data. However, 

the naïve imputation approach has been shown to bias estimates and standard errors. Censored 

data can also be viewed as missing data and integrated out of the likelihood function [Hughes, 

1999; Jacqumin-Gadda et al., 2000]. One can model left-censored data using a cumulative 

distribution function and right-censored data with a survival function. Either treating censored 

data as missing data or incorporating it into the model is shown to effectively adjust for the 

censoring issue [Thiebaut and Jacqmin-Gadda, 2004]. 

The first aspect of the dissertation is motivated by the Genetic and Inflammatory Markers 

of Sepsis (GenIMS) study. This prospective multicenter observational study recruited 2,320 

community-acquired pneumonia (CAP) patients who were present in hospital emergency rooms 

and further 1895 confirmed CAP admitted for hospitalization to investigate the likelihood of 
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developing sepsis and its subsequent outcome, i.e. 90-day mortality. Demographics, examination 

results, and related information were collected and blood samples were collected during the first 

week of admission for all hospitalized subjects in the cohort. Researchers are interested in 

multiple biomarkers, including the inflammatory markers IL-6 and IL-10, and a 

coagulation/hemostasis marker D-dimer, and how these markers are simultaneously correlated 

with the disease outcome. Specifically, we modeled the disease outcome in a logistic regression 

model and the two biomarkers of interest, IL-6 and IL-10, in a bivariate linear mixed model. We 

used the covariance structure to capture the correlation between the two marker trajectories. 

However, due to the sensitivity of the assay, the markers were censored at either lower and/or 

upper detection limits. To better understand the relationship between marker evolutions and the 

disease outcome, we adjusted for the censored measurements by modeling left-censored data in a 

cumulative distribution function and right-censored data in a survival function. Our proposed 

nonlinear mixed model which combined two censored longitudinal profiles and a disease 

outcome was first fitted in the NLMIXED procedure in SAS 9.2. Simulation studies were also 

performed at various levels of censoring and different sample sizes. The simulation also 

compared our proposed method with the naïve imputation method. 

1.2 GROUP-BASED TRAJECTORY CLUSTERING 

There are several types of clustering methods available for identifying meaningful groups within 

a set of data. These methods include the hierarchical clustering algorithm [Eisen et al. 1998], the 

k-means algorithm [Tavazoie et al., 1999], self-organizing maps algorithm [Tamayo et al., 1999], 

tight clustering algorithm [Tseng and Wong, 2005], and model-based clustering that can be 

applied for data that are measured at a single point in time. For data that are collected 
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longitudinally, clustering methods have been extended to incorporate repeated measure 

structures and to classify the heterogeneity of marker trajectories, i.e. hierarchical clustering, 

growth curve model, mixtures of experts, regression mixtures, random effect regression 

mixtures, and mixtures of linear mixed models. To our knowledge, only the tight clustering 

algorithm distinguishes scattered data from tight clusters, and has not been applied to the 

developmental trajectory data structure. 

The second aspect of this dissertation is inspired by the Normal Aging Pittsburgh 

Compound B (PiB) study. One goal of this study is to identify groups of subjects with similar 

longitudinal neuropsychological task trajectories and to understand the relationship between 

membership in a given trajectory class and the amount of amyloid deposition in the brain. The 

study recruited cognitive unimpaired elderly volunteers from the community and followed the 

participants for at least five years. All participants were examined by neuropsychological tests 

each year from recruitment. The neuropsychological tests included the N-back task and the 

letter-number sequencing task (used for working memory), the color-word Stroop test and the 

Hayling test (used for inhibitory efficiency) and so forth. All participants also received PiB 

positron emission tomography (PET) scanning, and magnetic resonance imaging (MRI). We 

applied the idea from the tight clustering technique [Tseng and Wong, 2005] to group similar 

trajectories of these neuropsychological scores together to better understand the developmental 

trajectories of the scores and to reduce the dimension of measurements. The proposed method is 

a repeated resampling process that is used to identify more efficient and similar trajectories into a 

group through the group-based trajectory method and to differentiate miscellaneous individuals 

that fit into none of the clustered groups. The longitudinal scores were modeled by linear random 

intercept models. The number of clusters was finite and assumed to follow a multinomial logistic 

4 



regression model. Simulation studies were conducted and the analysis was implemented in the 

FlexMix package in R.   
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2.0  JOINT MODELING OF A BINARY OUTCOME AND BIVARIATE 

LONGITUDINAL MARKERS SUBJECT TO CENSORING DUE TO DETECTION 

LIMITS 

2.1 INTRODUCTION 

There is currently a focus in medical research on identifying biomarkers that are predictive of 

prognosis and/or recovery from a given illness. This is a complex problem that occurs in many 

biomedical areas as it includes the handling of multiple biomarkers measured longitudinally 

coupled with outcomes that may be binary. To better understand the mechanisms driving disease, 

biomarkers are often measured from different disease pathways necessitating the development of 

statistical methods that can lead to an understanding of the relationship between pathways. 

Examples include the study of the relationship between CD4+ (T-lymphocytes) cell counts and 

plasma HIV RNA viral load and the contribution of this relationship to opportunistic diseases 

and/or death (Mellors et al., 1997). An additional, and motivating, example for this work came 

from a cohort study of Genetic and Inflammatory Markers in Sepsis (GenIMS). One goal of this 

study was to examine the relationship between pro- and anti-inflammatory biomarkers and in-

hospital mortality for subjects with community acquired pneumonia (Kellum et al., 2007; Kale et 

al., 2010). In this case, there is a hypothesis that pro-inflammatory and anti-inflammatory 

biomarkers have competing trajectories, that is, as one marker increases, the other decreases; 
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making the joint consideration of these biomarkers extremely important in understanding risk of 

in-hospital mortality. This analysis is further complicated by the fact that the biomarkers are 

subject to left censoring due to the lower limit of detection of the assay measuring the marker. 

To explore the relationship between one or more longitudinal profiles combined with a 

primary endpoint; a joint modeling approach has proven useful in many applications (Lin et al., 

2002; Thiebaut et al., 2005). Under this framework, there are two submodels: a longitudinal 

submodel for the marker trajectories; and a survival or generalized linear submodel for the 

primary endpoint. The interrelationships between the longitudinal profiles and primary endpoint 

are formulated through the shared random effects (Li et al., 2004, 2007) or latent classes (Lin et 

al., 2002; Proust-Lima et al., 2007). Wang et al. (2000) showed that the naive two-stage method 

using least square estimates of the random coefficients of a linear mixed model as covariates of a 

logistic model was biased, and hence they modified the estimating equations based on regression 

calibration methods to improve the estimation. Later Wang and Huang (2001) proposed 

functional methods by extending the sufficiency score and conditional score estimators 

developed by Stefanski and Carroll (1987). Li et al. (2004) relaxed the distributional assumptions 

on the random effects of the longitudinal processes. Li et al. (2007) further proposed estimation 

procedures that require neither distributional or dependence structural assumptions on the 

random effects nor an independence assumption on the measurement errors. Bayesian 

approaches have also been developed for joint models with a binary endpoint (Horrocks et al., 

2009). These aforementioned approaches assume that the target population is homogeneous and 

follows a single pattern of longitudinal profiles. The latent class model, on the other hand, 

assumes that a population is composed of various subpopulations with differing longitudinal 
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evolutions and that the influence of the evolution of these longitudinal markers on a disease 

outcome is different in each latent class (Lin et al., 2000; Proust-Lima et al., 2007 and 2009).  

The methods discussed above are all useful for the joint analysis of multiple longitudinal 

measures coupled with a binary outcome. However, none of these methods address the issue of 

censoring in the longitudinal outcome. For the modeling of biomarker data, left-censoring is a 

common occurrence and further complicates the analysis in a joint modeling setting. The 

inflammatory markers, interleukin-6 (IL-6) and interleukin-10 (IL-10) measured in the GenIMS 

study were heavily left-censored due to the lower limits of detection of the assays used to 

measure these quantities. The censoring rate varied from 30% to 70% in these markers, 

necessitating the use of statistical methods that can accommodate this level of censoring. Ad hoc 

approaches to handling the censoring issue include substituting the value of the lower limit of 

detection or a fraction of the detection limit; however, this crude imputation leads to bias in the 

estimation of parameters and their standard errors (Hughes, 1999; Jacqmin-Gadda et al., 2000; 

Thiebaut and Jacqmin-Gadda, 2004). A common method to deal with censored data is to model 

left-censored data in a cumulative distribution function and right-censored data in a survival 

function (Thiebaut et al., 2005; Wannemuehler et al., 2010).  

  To simultaneously solve the issues of correlation and censoring, we propose a 

likelihood-based joint model for a binary outcome with an adjustment for the censored 

longitudinal covariate processes. Specifically, we construct a logistic regression model for the 

binary outcome and a bivariate linear mixed model for the two longitudinal markers by taking 

the censoring into account. We evaluate the proposed method and compare it to the naive 
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substitution methods through simulation studies. We illustrate the application of this method 

with an example from the GenIMS study. 

2.2 METHOD 

2.2.1 Modeling trajectories of bivariate longitudinal biomarkers through a mixed model 

Repeated measurements of the two markers are modeled using a bivariate linear function of fixed 

and random effects: 

𝑦𝑖𝑘 = 𝑥𝑖𝑘𝛽𝑘 + 𝑧𝑖𝑘𝑏𝑖𝑘 + 𝜖𝑖𝑘.  (1) 

Here, 𝑦𝑖𝑘 = (𝑦𝑖1𝑘, … ,𝑦𝑖𝑇𝑖𝑘)𝑇 , is a column vector of 𝑡𝑖  time components for the kth biomarker 

readings in the ith subject. The 𝑇𝑖 × 𝑝𝑘 matrix of covariates for the kth biomarker is denoted as 

𝑥𝑖𝑘𝑇 = (𝑥𝑖1𝑘, … , 𝑥𝑖𝑇𝑖𝑘)𝑇, which may include polynomial terms of time. The tth row, 𝑥𝑖𝑡𝑘𝑇  is a 𝑝𝑘-

dimensional vector of covariate values for biomarker k and for subject i. Note that 𝑧𝑖𝑘𝑇 =

(𝑧𝑖1𝑘, … , 𝑧𝑖𝑡𝑖𝑘)𝑇 is a 𝑇𝑖 × 𝑞𝑘 matrix for the covariates of the random effects and that 𝛽𝑘 and 𝑏𝑖𝑘 

are 𝑝𝑘- and 𝑞𝑘- dimensional vectors of fixed and random coefficients, respectively. We assume 

that 𝑏𝑖𝑘 follows a multivariate normal distribution with mean zero and covariance structure, Δ. 

The off-diagonal components of Δ capture the correlation between the two markers and the serial 

correlation within a marker. The error term, 𝜖𝑖𝑘, is a 𝑇𝑖𝑘-dimensional vector that is assumed to be 

uncorrelated with other variables, and to be normally distributed with mean zero and covariance 
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matrix 𝜎2𝐼𝑇𝑖𝑘. We assume that the random effects and measurement error for each marker are 

independent of each other. 

2.2.2 Modeling the binary outcome 

Let 𝑅𝑖 be an indicator of whether the ith subject experienced the disease outcome. It is natural to 

use simple logistic regression to model the probability of the primary outcome: 

𝑃(𝑅𝑖 = 1) =
exp (𝜂)

1 + exp (𝜂)
,                                                       (2) 

where 𝜂 is the corresponding linear predictors 𝜂 = 𝑥𝑖𝜃 + 𝑏𝑖𝛾. 

We assume that the association between the two biomarker trajectories and the disease 

risk is represented by 𝛾. The fully observed likelihood function can be denoted as 

𝐿(𝜃,𝛽, 𝛾; 𝑟,𝑦) = ��𝑓(𝑟𝑖|𝜃, 𝛾, 𝑏𝑖)�𝑓(𝑦𝑖𝑘|𝑏𝑖,𝛽𝑘)𝑓(𝑏𝑖)𝑑𝑏𝑖

2

𝑘=1

𝑁

𝑖=1

           (3) 

The first term of the right hand side of (3) is the likelihood function for the logistic model. The 

second term is for the bivariate linear mixed model. The random effects, 𝑏𝑖, in the mixed models 

are the shared parameters that link the two models.  Given the random effects 𝑏𝑖, the repeated 

measurements are assumed to be independent within each marker and between the two markers. 

When there is censoring involved in the biomarker measurements, we introduced an indicator 

𝑑𝑖𝑗𝑘  to specify whether a measure of a biomarker is observed (𝑑𝑖𝑗𝑘 = 0), left-censored at 𝐿𝑘 

(𝑑𝑖𝑗𝑘 = 1), or right-censored at 𝑈𝑘 (𝑑𝑖𝑗𝑘 = 2). Therefore, ∏ 𝑓(𝑦𝑖𝑘|𝑏𝑖,𝛽𝑘)2
𝑘=1  in (3) becomes 
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�𝑓(𝑦𝑖𝑘|𝑏𝑖 ,𝛽𝑘)
2

𝑘=1

 

= ��𝑓(𝑦𝑖𝑘|𝑏𝑖,𝛽𝑘)𝐼(𝑑𝑖𝑗𝑘=0)𝐹(𝐿𝑘|𝑏𝑖,𝛽𝑘)𝐼(𝑑𝑖𝑗𝑘=1){1 − 𝐹(𝑈𝑘|𝑏𝑖,𝛽𝑘)}𝐼(𝑑𝑖𝑗𝑘=2)
2

𝑘=1

𝑇𝑖

𝑗=1

,          (4) 

where 𝑑𝑖𝑗𝑘 = �
0,               if observed
1,    if left − censored
2, if right − censored

�. 

In equation (4), f(.|.), F(.|.), and 1-F(.|.) are the conditional probability density function, 

cumulative distribution function, and survival function, respectively.  The integrated likelihood 

over the random effects can be maximized by a variety of optimization techniques. We utilized 

the adaptive Gaussian quadrature technique to approximate the integral of the random effects by 

a weighted sum over predefined abscissas for the random effects. With an appropriate number of 

quadrature points, an accurate approximation can usually be obtained (SAS Institute Inc., 2008). 

We utilized the trust-region optimization technique to carry out the maximization. The trust-

region technique defines a hyperelliptic region with a certain radius around which a model 

function is trusted to be an accurate approximation of the likelihood; when an adequate model of 

the likelihood is found within the region then the region is expanded, and vice versa (SAS 

Institute Inc., 2008). When applying the method, we can obtain the initial values by separately 

fitting a linear mixed model for the longitudinal marker readings and a logistic regression model 

for the primary outcome. Parameters were estimated iteratively with the initial random effects 

estimated from the empirical Bayes estimates. Successful convergence results in maximum 

likelihood estimates and their approximate standard errors are based on the second derivative 
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matrix of the likelihood function. The maximum likelihood estimates have desirable asymptotic 

properties. i.e. consistency, asymptotic normality, and asymptotic efficiency. When the sample 

size is substantially large, bias becomes less important (Fitzmaurice et al., 2004; Brown and 

Prescott, 2006). The approximate standard errors of the nonrandom parameters were then used to 

compute corresponding t statistics, p-values, and confidence limits. Both of our fixed and 

random effects enter nonlinearly into the model. We fitted a nonlinear mixed model using SAS 

NLMIXED (SAS version 9.2) in the analysis.  

2.3 SIMULATIONS 

We carried out simulation studies to assess the performance of the proposed method and to 

compare it to the naïve imputation method. We also examined the sensitivity of our method to 

various sample sizes and different level of censoring proportions. 

2.3.1 The proposed method vs. the naïve imputation method 

For the simulation studies with 300 replications, we simulated two longitudinal marker 

measurements across time and an associated binary outcome. We simulated 7 measurements for 

each marker for each of the 600 subjects based on the bivariate linear mixed model described in 

equation (1) including a random intercept and slope for each marker individually. The time was 

set up to be from 1 through 7. For the first marker, the coefficient parameters for the intercept, 

𝑏11 , and time, 𝑏12 , were 3 and 0.7, respectively. For the second marker, the coefficient 

parameters for the intercept, 𝑏21, and time, 𝑏22, were 4 and 0.6, respectively. The correlation 

12 



between these two markers was reflected by a covariance structure for the random intercepts and 

the random slopes. The variances (diagonal elements) of the covariance structure of the first 

marker's intercept and slope as well as the second marker's intercept and slope were set to be 

𝜎𝑏11
2 =1.5, 𝜎𝑏12

2 =2, 𝜎𝑏21
2 =1.3, and 𝜎𝑏22

2 =1.8, respectively. The correlation coefficient, 𝜌 , was 

common across the random effects and was set to be -0.2. In the logistic regression model, the 

fixed covariate, x, was generated from a uniform distribution(18, 60). The association between 

the marker trajectories and the binary outcome was specified through the subject-specific random 

intercepts and slopes 𝛾 in the logistic model described in equation (2). The coefficients of the 

intercept, x, and the four subject-specific random effects in the logistic model were set to be 𝜃0=-

2, 𝜃1=-0.05, 𝛾11=-0.6, 𝛾12=0.8, 𝛾21=0.7, and 𝛾22=-0.9. With this setting, the average event rate 

was 24.1%. The censoring cut-off point for each marker was determined by the overall sample 

quantiles for each marker. We compare the results of our proposed method to that of the naive 

joint analysis. The naive joint analysis replaced the censored observations with the half value of 

the detection limits in the joint analysis. 

The simulation results with 300 replications and 20% censoring in each marker are 

presented for two different approaches: our proposed joint analysis and a naïve joint analysis. 

The results show that the biases of our proposed method are smaller and that the coverage 

percentages are closer to the nominal value, 0.95, when compared to the naive imputation 

method. The estimated standard errors of the proposed method are closer to the empirical 

standard deviations (Table 2.1). 
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Table 2.1. The proposed method vs. the naïve imputation method 

Parameter (true val.) 

Proposed joint analysis Naïve joint analysis1 

Bias 
Relative 

Bias 
Rate 

SE 
mean SD CP% Bias 

Relative 
Bias 
Rate 

SE 
mean SD CP% 

Bivariate linear mixed model 
M1 int (3) 0.010 0.003 0.057 0.057 0.943 -0.293 -0.098 0.056 0.059 0.000 
M1 slope (0.7) -0.011 -0.015 0.060 0.060 0.937 0.220 0.314 0.046 0.045 0.000 
M2 int (4) 0.005 0.001 0.064 0.065 0.957 -0.323 -0.081 0.063 0.068 0.010 
M2 slope (0.6) -0.004 -0.007 0.057 0.055 0.960 0.200 0.333 0.044 0.043 0.003 

Logistic model 
Int (-2) -0.040 0.020 0.231 0.231 0.967 0.215 -0.108 0.176 0.176 0.700 
X (-0.05) -0.002 0.040 0.012 0.012 0.930 0.006 -0.115 0.010 0.011 0.907 
M1 random int (-0.6) -0.011 0.018 0.157 0.156 0.970 0.163 -0.271 0.122 0.123 0.700 
M1 random slope (0.8) 0.014 0.018 0.146 0.148 0.947 0.091 0.113 0.125 0.130 0.907 
M2 random int (0.7) 0.039 0.056 0.230 0.226 0.967 -0.457 -0.652 0.133 0.138 0.110 
M2 random slope (-0.9) -0.008 0.009 0.150 0.136 0.970 -0.334 0.371 0.173 0.161 0.507 

Covariance structure 
𝛿11(1.5) -0.044 -0.030 0.103 0.099 0.923 0.131 0.087 0.108 0.100 0.807 
𝛿21 (-0.346) 0.009 -0.026 0.088 0.085 0.960 0.364 -1.052 0.063 0.060 0.000 
𝛿22 (2) 0.019 0.009 0.137 0.143 0.953 -0.755 -0.377 0.073 0.074 0.000 
𝛿31 (-0.279) 0.000 -0.001 0.088 0.089 0.960 -0.263 0.942 0.090 0.088 0.143 
𝛿32 (-0.322) 0.009 -0.028 0.093 0.090 0.960 -0.005 0.017 0.072 0.071 0.947 
𝛿33 (1.3) 0.002 0.002 0.138 0.136 0.953 0.328 0.252 0.141 0.132 0.343 
𝛿41 (-0.329) 0.007 -0.021 0.080 0.077 0.960 0.014 -0.042 0.062 0.058 0.953 
𝛿42 (-0.379) -0.019 0.050 0.085 0.086 0.927 0.196 -0.517 0.050 0.048 0.027 
𝛿43 (-0.306) -0.012 0.039 0.097 0.099 0.963 0.357 -1.168 0.069 0.066 0.000 
𝛿44 (1.8) 0.006 0.003 0.124 0.131 0.933 -0.673 -0.374 0.067 0.071 0.000 

M1, Marker 1; M2, Marker 2; rand int, random intercept; 𝛿𝑖𝑗 represents the ith row and jth column of the covariance 

structure (the order of the rows or columns: M1 int, M1 slope, M2 int, M2 slope); Relative Bias Rate = bias / true 

value; SE Mean, estimated standard error; SD, empirical standard deviation; CP%, coverage percentage. 
1The naïve imputation method replaced the censoring observations with the half value of the detection limits. 

2.3.2 Sensitivity of variety levels of marker censoring 

Three parallel simulations with 20% censoring in both of the markers, 40% censoring in both of 

the markers, and 30% censoring in one marker plus 60% in the other were also conducted. The 

parameter settings in this section are different from those in the previous section while the model 
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remains the same. In the simulation studies of 500 replications, we simulated two longitudinal 

marker measurements across time and an associated binary outcome. For this simulation, we 

simulated 7 measurements for each marker for each of the 1500 subjects based on a bivariate 

linear mixed model as described in equation (1). We included a random intercept and slope for 

each marker individually. The time was set to range from 1 through 7. For the first marker, the 

coefficient parameters for the intercept, 𝑏11, and time, 𝑏12, were 3 and -0.5, respectively. For the 

second marker, the coefficient parameters for the intercept, 𝑏21, and time, 𝑏22, were 2 and -0.6, 

respectively. The correlation between these two markers was reflected by a covariance structure 

for the random intercepts and the random slopes. The variances (diagonal elements) of the 

covariance structure of the first marker's intercept and slope, as well as the second marker's 

intercept and slope, were set to be 𝜎𝑏11
2 =4, 𝜎𝑏12

2 =2.89, 𝜎𝑏21
2 =0.25, and 𝜎𝑏22

2 =0.36, respectively. 

The correlation coefficient, 𝜌, was common across the random effects, and was set to be -0.2. In 

the logistic regression model, the time independent covariate, x, was generated from a 

uniform(18, 60). The association between the marker trajectories and the binary outcome was 

specified through the subject-specific random intercepts and slopes 𝛾  in the logistic model 

described in equation (2). The coefficients of the intercept, x, and the four subject-specific 

random effects in the logistic model were set to be 𝜃0=-7, 𝜃1=1, 𝛾11=0.4, 𝛾12=2.7, 𝛾21=0.3, and 

𝛾22=1.4. The censoring cut-off point for each marker was determined by the overall sample 

quantiles for each marker. With this setting, the average event rate was about 30%. 

The results indicated that for smaller censoring percentage, the bias in the estimates was 

also smaller. In addition the estimates were more efficient (smaller variance estimates and the 

estimates of variance) and the coverage rates were close to 95%. When the censoring percentage 
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is 30% for one marker and 60% for the other, the results indicate that the method generally 

performs well (Table 2.2). 

2.3.3 Sensitivity of different sample sizes 

Three parallel simulations with sample sizes of 500, 1000, and 1500 subjects and 500 

replications were also run for the proposed method. The censoring percentage was fixed at 20%. 

The parameter settings in this section are the same as those in Section 2.3.2. 

The results from these simulations indicate that the bivariate longitudinal sub-model 

performs well generally among the range of sample sizes. However, the mortality sub-model 

performs better when the sample sizes are greater than 1000 (Table 2.3). 
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Table 2.2. Sensitivity of the marker censoring percentages 

20% censoring 40% censoring 30% censoring for M1 and 60% for M2 

Parameter (true value) Bias 
Relative 

Bias 
Rate 

SD SE
mean CP% Bias

Relative 
Bias 
Rate 

SD SE
mean CP% Bias

Relative 
Bias 
Rate 

SD SE 
mean CP%

Bivariate linear mixed model 
M1 int (3) 0.000 0.000 0.057 0.056 0.944 0.011 0.004 0.058 0.060 0.958 -0.005 -0.002 0.059 0.058 0.950 
M1 time (-0.5) -0.001 0.002 0.045 0.045 0.950 -0.010 0.020 0.045 0.049 0.954 0.008 -0.015 0.044 0.047 0.958 
M2 int (2) 0.000 0.000 0.022 0.022 0.952 0.000 0.000 0.024 0.024 0.954 0.004 0.002 0.028 0.028 0.950 
M2 time (-0.6) 0.001 -0.002 0.015 0.016 0.966 0.001 -0.002 0.017 0.018 0.956 -0.002 0.003 0.020 0.022 0.952 

Logistic model 
Int (-7) -0.348 0.050 0.830 0.805 0.976 -0.458 0.065 0.948 0.935 0.976 -0.427 0.061 1.010 0.933 0.966 
X (1) 0.049 0.049 0.116 0.111 0.974 0.063 0.063 0.134 0.130 0.976 0.064 0.064 0.141 0.130 0.968 
M1 random int (0.4) 0.017 0.043 0.127 0.123 0.954 0.032 0.081 0.131 0.136 0.970 0.029 0.072 0.146 0.135 0.940 
M1 random slope (2.7) 0.124 0.046 0.341 0.328 0.972 0.152 0.056 0.373 0.381 0.986 0.176 0.065 0.424 0.384 0.964 
M2 random int (0.3) -0.024 -0.079 0.738 0.710 0.974 -0.002 -0.006 0.896 0.828 0.976 0.009 0.029 0.929 0.922 0.998 
M2 random slope (1.4) 0.033 0.023 0.393 0.383 0.954 0.083 0.059 0.437 0.429 0.966 0.098 0.070 0.474 0.455 0.958 

Covariance structure 
𝛿11 (4) 0.007 0.002 0.163 0.168 0.960 -0.036 -0.009 0.172 0.176 0.948 0.029 0.007 0.168 0.177 0.956 
𝛿22 (2.89) -0.008 -0.003 0.114 0.113 0.960 0.023 0.008 0.138 0.137 0.958 -0.003 -0.001 0.131 0.124 0.938 
𝛿33 (0.25) 0.000 0.002 0.025 0.025 0.946 0.000 0.000 0.030 0.028 0.946 -0.006 -0.025 0.033 0.033 0.940 
𝛿44 (0.36) 0.000 0.000 0.013 0.014 0.958 0.001 0.004 0.016 0.016 0.968 -0.002 -0.005 0.020 0.020 0.942 
tho (-0.2) 0.000 0.001 0.007 0.007 0.940 -0.001 0.007 0.007 0.008 0.952 -0.003 0.013 0.008 0.008 0.934 

Measurement error 
errsq1 (0.64) 0.000 -0.001 0.012 0.012 0.952 0.000 0.001 0.014 0.014 0.964 0.000 0.000 0.012 0.013 0.962 
errsq2 (0.49) 0.000 0.001 0.009 0.009 0.948 0.000 -0.001 0.011 0.011 0.956 0.001 0.002 0.013 0.013 0.950 
M1, Marker 1; M2, Marker 2; rand int, random intercept; 𝛿𝑖𝑗 represents the ith row and jth column of the covariance structure (the order of the rows or columns: 

M1 int, M1 slope, M2 int, M2 slope); Relative Bias Rate = bias / true value; SE Mean, estimated standard error; SD, empirical standard deviation; CP%, 

coverage percentage. 
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Table 2.3. Sensitivity of the sample sizes 500, 1000, and 1500 

500 subjects 1000 subjects 1500 subjects 

Parameter (true value) Bias 
Relative 

Bias 
Rate 

SD SE
mean CP% Bias

Relative 
Bias 
Rate 

SD SE
mean CP% Bias

Relative 
Bias 
Rate 

SD SE 
mean CP%

Bivariate linear mixed model 
M1 int (3) -0.006 -0.002 0.096 0.098 0.950 -0.003 -0.001 0.068 0.069 0.954 0.000 0.000 0.057 0.056 0.944 
M1 time (-0.5) 0.001 -0.002 0.076 0.078 0.966 0.002 -0.004 0.057 0.055 0.942 -0.001 0.002 0.045 0.045 0.950 
M2 int (2) -0.001 0.000 0.037 0.037 0.954 0.000 0.000 0.026 0.026 0.950 0.000 0.000 0.022 0.022 0.952 
M2 time (-0.6) 0.001 -0.002 0.027 0.028 0.958 0.002 -0.003 0.019 0.020 0.964 0.001 -0.002 0.015 0.016 0.966 

Logistic model 
Int (-7) -1.691 0.242 3.651 2.359 0.978 -0.597 0.085 1.178 1.089 0.982 -0.348 0.050 0.830 0.805 0.976 
X (1) 0.245 0.245 0.513 0.331 0.972 0.086 0.086 0.166 0.151 0.968 0.049 0.049 0.116 0.111 0.974 
M1 random int (0.4) 0.083 0.209 0.385 0.283 0.970 0.026 0.065 0.173 0.158 0.942 0.017 0.043 0.127 0.123 0.954 
M1 random slope (2.7) 0.658 0.244 1.575 0.950 0.984 0.218 0.081 0.489 0.439 0.964 0.124 0.046 0.341 0.328 0.972 
M2 random int (0.3) 0.045 0.148 2.036 1.690 1.000 -0.081 -0.269 1.031 0.938 0.986 -0.024 -0.079 0.738 0.710 0.974 
M2 random slope (1.4) 0.344 0.245 1.522 0.922 0.970 0.078 0.056 0.521 0.491 0.956 0.033 0.023 0.393 0.383 0.954 

Covariance structure 
𝛿11 (4) 0.011 0.003 0.284 0.291 0.970 0.004 0.001 0.197 0.206 0.972 0.007 0.002 0.163 0.168 0.960 
𝛿22 (2.89) -0.014 -0.005 0.205 0.195 0.932 -0.012 -0.004 0.137 0.138 0.958 -0.008 -0.003 0.114 0.113 0.960 
𝛿33 (0.25) 0.000 -0.002 0.044 0.043 0.958 -0.001 -0.004 0.032 0.030 0.932 0.000 0.002 0.025 0.025 0.946 
𝛿44 (0.36) 0.001 0.002 0.024 0.024 0.960 0.001 0.001 0.017 0.017 0.964 0.000 0.000 0.013 0.014 0.958 
tho (-0.2) 0.000 0.002 0.013 0.013 0.954 0.000 0.002 0.009 0.009 0.952 0.000 0.001 0.007 0.007 0.940 

Measurement error 
errsq1 (0.64) 0.000 0.000 0.020 0.021 0.958 0.000 0.000 0.014 0.015 0.962 0.000 -0.001 0.012 0.012 0.952 
errsq2 (0.49) 0.000 0.000 0.016 0.016 0.956 0.000 0.000 0.011 0.011 0.944 0.000 0.001 0.009 0.009 0.948 

M1, Marker 1; M2, Marker 2; rand int, random intercept; 𝛿𝑖𝑗 represents the ith row and jth column of the covariance structure (the order of the rows or columns: 

M1 int, M1 slope, M2 int, M2 slope); Relative Bias Rate = bias / true value; SE Mean, estimated standard error; SD, empirical standard deviation; CP%, 

coverage percentage. 
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2.4 APPLICATION 

We applied our proposed method to the GenIMS study to investigate the effects of the two 

correlated inflammatory markers IL-6 and IL-10 on 90-day mortality among community-

acquired pneumonia patients who presented in hospital emergency rooms and were then admitted 

for hospitalization. The study recruited 2320 patients; among them, 1214 (52.33%) subjects are 

male, 1838 (79.22%) are white and 1586 (68.36%) are with Charlson Comorbidity Index (CCI) 

greater than zero. The 90-day mortality rate is 10.26%. After we excluded missing values in the 

two marker measurements in the analysis, the sample size was reduced to 1884. Among them, 

52.07% of subjects are male, 80.79% are white and 72.51% are with Charlson Comorbidity 

Index (CCI) greater than zero. The mean (SD) of age is 67.3 (16.8). The 90-day mortality rate is 

11.36%. Based on a previous analysis of the GenIMS data (Kellum et al., 2010), the markers IL-

6 and IL-10 are associated with the 90-day mortality rate. However, the two markers both 

suffered from a high percentage of censoring. The censoring percentages of the first week for IL-

6 and IL-10 range from 13.46% to 35.54% and from 46.87% to 78.91%, respectively. We will 

use our proposed method to estimate the effects of IL-6 and IL-10 on the 90-day mortality rate 

by accounting for the censoring in the two markers. Both of the markers were transformed to 

natural log scales in the analysis. 

The results of our proposed model show that on average, IL-6 and IL-10 decrease over 

the first week. In the mortality model, older age, gender, and a Charlson Comorbidity Index 

(CCI) greater than zero are associated with higher risk of mortality. For the marker effects, the 
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association between IL-6 and 90-day mortality remains significant in the presence of IL-10, and 

vice versa. The magnitude of the coefficient for the intercept of IL-6 is 0.4, which demonstrates 

that a higher baseline measurement leads to a higher risk of mortality. The magnitude of the 

coefficient for the slope of IL-6 is 2.7, which indicates that marker readings of IL-6 with a slope 

above the mean trajectory (increasing IL-6 profiles or slow decreasing in IL-6) will lead to a 

higher risk of mortality. Similar patterns were found for IL-10 (Table 2.4). 

Comparing the proposed method to the naïve imputation method, the results with p-

values < 0.05 are the same for both methods. However, the proposed method shows that both the 

CCI effect in the longitudinal IL-6 model and the male effect in the IL-10 model are borderline 

significant. In the mortality model, the estimates and SEs of the random effects were smaller in 

the proposed model compared to the naïve imputation method which represents that the proposed 

method is more efficient (Table 2.4). 
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Table 2.4. Results from the GenIMS study 

Proposed method Naïve imputation method 
Model Parameter Estimate SE  P value  Estimate SE  P value 
Longitudinal 
IL-6 

Int 3.229 0.164 <.0001 3.108 0.139 <.0001 
Slope -0.451 0.014 <.0001 -0.358 0.011 <.0001 
Age 0.010 0.002 <.0001 0.009 0.002 <.0001 
Male 0.315 0.072 <.0001 0.238 0.061 0.000 
CCI > 0 -0.155 0.083 0.061 -0.094 0.070 0.184 

Longitudinal 
IL-10 

Int 1.992 0.171 <.0001 1.779 0.077 <.0001 
Slope -0.598 0.029 <.0001 -0.147 0.006 <.0001 
Age 0.003 0.002 0.217 0.002 0.001 0.117 
Male 0.122 0.074 0.099 0.036 0.033 0.281 
CCI > 0 -0.038 0.084 0.653 -0.046 0.038 0.231 

Mortality Int  -7.795 0.553 <.0001 -7.835 0.553 <.0001 
Age 0.060 0.006 <.0001 0.062 0.006 <.0001 
Male 0.385 0.164 0.019 0.363 0.164 0.027 
CCI > 0  0.768 0.216 0.000 0.773 0.218 0.000 
Subject specific 
 IL-6 Int  0.417 0.071 <.0001 0.591 0.089 <.0001 
 IL-6 Slope  2.665 0.540 <.0001 3.739 0.815 <.0001 
 IL-10 Int  0.337 0.082 <.0001 0.669 0.167 <.0001 
 IL-10 Slope 1.353 0.349 0.000 3.280 1.515 0.031 

Covariance 
structure 

 𝛿21    1.800 0.130 <.0001 1.001 0.067 <.0001 
 𝛿31    -0.655 0.041 <.0001 -0.541 0.030 <.0001 
 𝛿32    -0.450 0.033 <.0001 -0.192 0.015 <.0001 
 𝛿41    -0.376 0.046 <.0001 -0.191 0.014 <.0001 
 𝛿42    -0.565 0.055 <.0001 -0.188 0.010 <.0001 
 𝛿43    0.164 0.013 <.0001 0.051 0.003 <.0001 
 𝛿11  4.230 0.188 <.0001 3.725 0.151 <.0001 
 𝛿22  2.911 0.187 <.0001 1.244 0.053 <.0001 
 𝛿33  0.206 0.013 <.0001 0.130 0.007 <.0001 
 𝛿44  0.304 0.027 <.0001 0.041 0.003 <.0001 

Note: CCI: Charlson Comorbidity Index.  

Reference groups for gender and CCI are female and CCI=0, respectively. 
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2.5 DISCUSSION 

The proposed method addressed the joint association between a disease outcome and two 

biomarker profiles accounting for the correlation between the two markers and subject to a 

restriction on the detection limits. The simulations were conducted to compare the proposed 

method with the naïve imputation method, and to assess the performance of the proposed method 

among a range of censoring levels, as well as among a range of sample sizes. The results show 

that our proposed method performs better than the naïve imputation of censoring in terms of 

parameter estimates and coverage percentages. The proposed method still performed well when 

the censoring levels increased to 40% for both markers with 1500 of sample size, although the 

smaller the censoring percentage, the smaller the biases, the more efficient, the closer the 

coverage rates to 95%. Even when the censoring percentage was 30% for one marker and 60% 

for the other with 1500 subjects, the results also performed generally well. The bivariate 

longitudinal sub-model performed well when the sample sizes ranged between 500 and 1500; 

while both of the biases and variances were reduced in the mortality sub-model when sample 

sizes were greater than 1000. The maximum likelihood estimates have desirable large sample or 

asymptotic properties, hence, bias becomes less important when the sample size is substantially 

larger than 1000 (Fitzmaurice et al., 2004; Brown and Prescott, 2006). Correspondingly, the 

results indicate that for higher levels of censoring, larger sample sizes are needed, that is, when 

the censoring levels are 20% for both markers, a sample size of 1000 is large enough. When the 

censoring levels of at least one marker are above 50%, a sample size of 1500 is needed. In 

summary, the proposed method provides an efficient way to see multiple censored marker 
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evolutions contribute to the progression of a disease. However, when the sample size is large, the 

computation may be time-consuming. The model is based on the assumption that the longitudinal 

marker profiles are homogeneous in the study; while in the future, we may test the homogeneity 

assumption of the marker evolutions and apply a joint model of a disease outcome combined 

with latent-class trajectories when appropriate.  

 

 

23 



3.0  THE USE OF TIGHT CLUSTERING TECHNIQUES FOR GROUP-BASED 

TRAJECTORY MODELING OF LONGITUDINAL DATA 

3.1 INTRODUCTION 

Developmental profiles of markers provide information on the progress of a disease. Nagin 

(2009) contends that charting and understanding developmental trajectories are among the most 

fundamental and empirically important research topics in the social and behavioral sciences and 

medical research today. Examples include tracing the temporal profiles of memory 

neuropsychological test scores for understanding pre-dementia memory declines and testing the 

prostate-specific antigen (PSA) level for aiding in early detection of the initial development of 

prostate cancer. Many of the longitudinal studies contain meaningful groups in the population 

that are heterogeneous profiles that do not depend on a single covariate, e.g. age or gender, and 

may act distinctively on the process of a disease (Nagin, 2009). Latent group based trajectory 

modeling has been developed to categorize homogeneous trajectory groups of the population. 

However, there are some issues in the application of the latent group based trajectory modeling 

when many groups are found and only small numbers of subjects are in some of the groups. 

Whether the small groups are homogeneous trajectory groups or randomly distributed cannot be 

discerned from the data. This issue cannot be addressed with regular latent group based 

trajectory modeling which forces all individuals into a group. Among clustering techniques 
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developed for genetic analyses, the tight clustering algorithm (Tseng and Wong, 2005) provides 

a way to select clusters that are more stable and consistent. In this paper, we apply the idea from 

the tight clustering algorithm to the latent group based trajectory modeling to search for 

trajectory groups that are less variant and more homogeneous. 

A variety of non-model-based heuristic clustering methods have been widely used in the 

literature, including hierarchical clustering (Eisen et al. 1998), self-organizing maps (Tamayo et 

al., 1999), K-means (Tavazoie et al., 1999), and the tight clustering algorithm (Tseng and Wong, 

2005). Model-based clustering methods assume that the data are generated by a finite mixture of 

underlying probability distributions in which each component represents a different group or 

cluster; these are known as finite mixture models (Fraley and Raftery, 1998). For example, in the 

Gaussian mixture model, each cluster is modeled by the multivariate normal distribution. 

Gaussian mixture models have been shown to produce higher quality clustering results than 

heuristic approaches when the data are appropriately transformed (Yeung, et al., 2001). However, 

less attention has been paid to the setting where the data are measured across time. To 

differentiate temporal profiles of dysfunction levels on human health provides insights into how 

a disease evolves. Clustering array data with repeated measurements has been explored in recent 

years based on several different approaches to the problem (Yeung, et. al. 2003). Finite mixture 

models with a fixed number of components have been extended for such purposes. Some 

researchers proposed trajectory clustering with mixtures of regression models and mixtures of 

non-parametric regression models (Gaffney and Smyth, 1999; Grün et al., 2012). A mixture of 

standard linear regression models also falls under the umbrella of latent class regression (Leisch, 

2004). Some researchers have used mixture models in the framework of mixed-effects models 

which incorporate error estimates estimated from repeated measurements (Yeung et al, 2003; 

25 



Celeux et al., 2005; Qin and Self, 2006; Grün and Leisch, 2008; Ma et al, 2009).  Luan and Li 

(2003) proposed a mixture of mixed-effects models using B-splines to smooth the cluster 

profiles. Some clustering methods developed variability-weighted similarity measures that would 

down-weight noisy genes or noisy experiments (Yeung et al., 2003). Bayesian mixture-model-

based clustering has been developed, e.g. with the structure of generalized linear models with 

random effects (Lenk and DeSarbo, 2000).  

However, in most clustering studies, researchers classify each of the units i.e., subjects, 

into a cluster (Yeung, et al. 2001; Yeung, et al. 2003; Luan and Li 2003; Qin and Self, 2006), 

with the case being that either a large number of clusters are formed, or fewer clusters which 

contain small groups of miscellaneous individuals. In the former case when clusters with a small 

number of individuals are identified, analyses using cluster membership as a covariate may be 

unstable. Furthermore, there are some situations where some units are miscellaneous, i.e., their 

characteristics are different from the cluster that the individual was assigned (Tseng and Wong, 

2005; Yuan and Kendziorski, 2005). When miscellaneous units are forced into a cluster, the 

estimation of the number of clusters, the parameters of the clusters, and the inference based on 

the parameters will be biased. We utilize the concept of tight clustering method which is used in 

microarray analysis (Tseng and Wong, 2005), and further apply it to repeated measures data. 

Using this approach, we develop a method that can classify trajectories into several 

homogeneous groups and also identify trajectories that do not belong to any of the homogeneous 

groups (the miscellaneous group). This allows us to distinguish units that do not contain useful 

information and to focus on the more efficient trajectories, namely the “cores” of the group, for 

estimation and inference. The paper is organized as follows: a detailed statistical method is 
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presented in section 2, followed by simulation studies in section 3, and an empirical application 

in section 4; we further give a discussion in the last section. 

3.2 METHOD 

We propose to combine the tight clustering technique and latent group-based trajectory method 

in order to find the latent trajectory groups and to identify miscellaneous individuals or outliers, 

i.e., trajectory patterns that are deviant from the rest of the population and/or trajectory patterns

that are dissimilar to the patterns in the rest of the population. The tight clustering technique has 

been used in the microarray analysis which is an unsupervised learning and resampling method. 

The latent group-based trajectory method has been used to classify individuals into several 

homogeneous trajectory groups. We assume that 1) individuals from the same trajectory group 

share common effects of covariates, and 2) some individuals do not belong to any homogeneous 

trajectory group, e.g., miscellaneous individuals or outliers. 

The number of groups is determined through minimizing the Bayesian information 

criterion (BIC; Schwarz, 1978; Brown and Prescott, 2006). The BIC is defined as log(𝐿) −

0.5𝑘log(𝑁 − 𝑝), where L is the likelihood; p is the number of fixed effects in the model; N is the 

number of observations; and k is the number of covariance parameters. 

3.2.1 Modeling the probability of group membership 

Suppose there are N subjects in the population, 𝑖 =  1, … ,𝑁, that can be divided into K latent 

groups, 𝑘 =  1, … ,𝐾  and that 𝜓𝑖𝑘  represents the individual probability that the 𝑖𝑡ℎ  subject 
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belongs to the latent group k. For each subject i, ∑ 𝜓𝑖𝑘 = 1𝐾
𝑘=1 . Then 𝜓𝑖𝑘 can be modeled using 

the multinomial logistic regression as the form 

𝜓𝑖𝑘 = 𝑝(𝑐𝑖𝑘 = 1|𝑋1𝑖) =
exp (𝜌0𝑘 + 𝑋1𝑖𝑇 𝜌1𝑘)

1 + ∑ exp (𝜌0𝑗 + 𝑋1𝑖𝑇 𝜌1𝑗)K
j=2

,∀𝑘 = 1, … ,𝐾. 

For group k, 𝜌0𝑘 denotes the intercept and 𝜌1𝑘 denotes the 𝑝1 × 1 fixed parameters for covariates 

𝑋1𝑖𝑇 . For identifiability, we assume that the coefficients of the first group will be set to zero 

(𝜌01 = 0 and  𝜌11 = 0). 

3.2.2 Modeling trajectories of a longitudinal marker through a normal mixture model 

We assume that the repeated measures of a subject belong to the same group. Once the number 

of groups is fixed, the marker measurements, 𝑦𝑖, are related to the latent group through mixture 

components which could be random effects, fixed effects, and/or some other covariates. For 

simplicity, the repeated measures, 𝑦𝑖 , are represented as mixtures of linear random intercept 

models with each mixture component coming from a latent group, k. That is, given a latent group 

k, the repeated measurements of a marker are modeled as a linear normal random intercept model 

𝑦𝑖|𝑐𝑖𝑘=1 = 𝑋2𝑖𝑇 𝛽𝑘 + 𝑏𝑖𝑘 + 𝜖𝑖, 

where 𝑦𝑖 = 𝑦𝑖𝑡 = (𝑦𝑖1, … ,𝑦𝑖𝑚𝑖)
𝑇  is a column vector of longitudinal measurements of the 𝑖𝑡ℎ 

subject, 𝑖 = 1, … ,𝑁, on the 𝑡𝑡ℎ measurement, 𝑡 = 1, … ,𝑚𝑖, and 𝑋2𝑖𝑇  is a design matrix associated 

with the 𝑝2 vector of class-specific fixed effects 𝛽𝑘. The random intercept effect, 𝑏𝑖𝑘, and the 

measurement errors, 𝜖𝑖 , are assumed to be independent as well as normally and identically 

distributed with mean 0 and variance 𝜎𝑏𝑘
2  and  𝜎𝜖2, separately. For simplicity, the measurement 

error variances 𝜎𝜖2 are common to all clusters. 
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3.2.3 The log-likelihood of the joint model 

Let 𝜃 denotes all of the parameters that are to be estimated, that is 𝜃 = �𝜌0𝑘, 𝜌1𝑘,𝛽𝑘,𝑏𝑖𝑘,𝜎𝑏𝑘
2 ,𝜎𝜖2�. 

Once the number of latent groups is fixed, the log-likelihood of the latent joint model given the 

observed data, 𝑙(𝜃;𝑦), can then be specified as 

� ln ��
exp(𝜌0𝑘 + 𝑋1𝑖𝑇 𝜌1𝑘)

∑ exp�𝜌0𝑗 + 𝑋1𝑖𝑇 𝜌1𝑗�K
j=1

× 𝑓𝑘(𝑦;𝜃)
𝐾

𝑘=1

�
𝑁

𝑖=1

, 

where exp�𝜌0𝑘+𝑋1𝑖
𝑇 𝜌1𝑘�

∑ exp�𝜌0𝑗+𝑋1𝑖
𝑇𝜌1𝑗�K

j=1
 calculates the individual probability of belonging to the latent class k; 

that is 𝜓𝑖𝑘. In each class, 𝑓𝑘(𝑦;𝜃) captures the longitudinal evolution of the marker. 

𝑓𝑘(𝑦;𝜃) = � 𝑓𝑘�𝑦𝑗;𝜃�
𝑚𝑖

𝑗=1
=

1

(2𝜋)
𝑚𝑖
2 |𝜎𝜖2𝐼|

1
2

exp �−
1
2

{𝑦 − 𝐸(𝑦)}𝑇(𝜎𝜖2𝐼)−1{𝑦 − 𝐸(𝑦)}�. 

3.2.4 Using the tight clustering algorithm 

In the following steps, we will define groups that are less variant by using the idea of the tight 

clustering algorithm through a resampling method (Figure 3.1). We first fix the number of 

groups, k. Suppose we have a sample Y which is composed of N sampling units with T repeated 

measurements.  In the resampling method, take a random subsample of Y, 𝑌′, as 70% of Y. This 

sampling is repeated and two subjects are classified into a given group based on the number of 

times that they fall within the same group. We estimate the parameters using the maximum 

likelihood estimation based on the EM algorithm (Dempster et al, 1977) on the subset of the 

sample and then find the mean trajectories and form the classifier 𝐶(𝑌′,𝑘) to cluster the original 

data Y according to their posterior probabilities. The posterior probabilities can be specified as  
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Figure 3.1. The re-sampling method 

𝑝�𝑐𝑖𝑘 = 1�𝑦𝑖;𝜃�� = 𝑝(𝑐𝑖𝑘=1)𝑓(𝑦𝑖|𝑐𝑖𝑘=1;𝜃�)
∑ 𝑝�𝑐𝑖𝑗=1�𝑓(𝑦𝑖|𝑐𝑖𝑗=1;𝜃�)𝐾
𝑗=1

. The result is represented by a N×N co-membership 

matrix 𝐷[𝐶(𝑌′,𝑘),𝑌], in which 1 represents subjects that are in the same group while 0 denotes 

different groups. The next step is to repeat the independent random sub-sampling B times to 

obtain subsamples 𝑌′(1),𝑌′(2), … ,𝑌′(𝐵). Following the same procedure, we calculate the average 

co-membership matrix by taking the mean of the all co-membership matrices. The search for a 

set of trajectories 𝑉 = {𝑣1, … , 𝑣𝑚} ⊂ {1, … ,𝑛}  such that 𝐷�𝑣𝑖𝑣𝑗 ≥ 1 − 𝛼,∀𝑖, 𝑗  where 𝛼  is a 

constant close to zero. These V sets are groups and ordered by size from largest to smallest. On 

the other hand, for the regular trajectory method as a comparison method, we estimate 

parameters based on the whole sample, Y. The maximum likelihood estimation is also based on 

the expectation-maximization (EM) algorithm. Then we cluster Y into a group according to their 

largest posterior probabilities of being classified in that group. We use the FlexMix package 

Whole data 
Y 

Subsample 
Y’(1) 
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whole data 
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Find mean 
trajectories 
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which provides infrastructure for flexible fitting of finite mixture models in the R computing 

environment using the EM algorithm or its variants (Grün and Leisch, 2008). We report our 

results in two steps. Step 1 is to differentiate the miscellaneous individuals from the rest of the 

population. Step 2 is to classify the non-miscellaneous individuals into groups. Furthermore, we 

compared our proposed method with a regular latent group-based trajectory method using the 

FlexMix package accounting for random intercepts. In the regular method, once the number of 

groups is fixed, individuals are classified into a group with the largest posterior probability. 

3.3 SIMULATION 

To evaluate the performance of the proposed method, we conducted two simulation scenarios: 

two trajectory groups plus one miscellaneous group and three trajectory groups plus one 

miscellaneous group. We used two steps to assign individuals into a group. The first step was to 

determine a miscellaneous group and the next step was to classify the non-miscellaneous 

individuals by their underlying groups. 

3.3.1 Two trajectory groups plus one miscellaneous group 

In 100 simulations of the first scenario, we generated a linear random intercept model for each of 

the two trajectory groups (n = 50 for each group) and one miscellaneous group (n = 4). Each 

trajectory includes observations recorded at 7 time points. A covariate was generated from a 

uniform(18, 60). Specifically, the two trajectory groups with a sample size of 50 were  

𝑌1𝑖𝑚𝑖 = (0.5 + 𝑏1𝑖) + 1 × 𝑡𝑖𝑚𝑒𝑖𝑚𝑖 + 2 × 𝑥𝑖 + 𝜖𝑖𝑚𝑖 , 𝑎𝑛𝑑 
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𝑌2𝑖𝑚𝑖 = (1.5 + 𝑏2𝑖) − 0.5 × 𝑡𝑖𝑚𝑒𝑖𝑚𝑖 + 0.5 × 𝑥𝑖 + 𝜖𝑖𝑚𝑖 . 

The random intercepts were assumed to be normally and identically distributed with (mean, 

variance) of (0, 0.49) and (0, 0.81) for the two groups, respectively. The errors were assumed to 

be common across the two groups with mean 0, and variance 0.36. For the miscellaneous group 

of size 4, two observations were generated from a similar setting as that of the first trajectory 

group, but with the variances of the random intercept and errors of 12.1 and 9, separately, and 

another two were generated from a uniform(-80, 80).   

To perform the resampling technique for each dataset, we randomly selected 70% of the 

sample without replacement 100 times. For simplicity, we used the Bayesian information criteria 

for the first dataset to provide an estimate of the number of groups. Once the number of groups 

was determined, we then estimated the parameters of each group. After the parameters were 

estimated using the FlexMix package, we applied the parameters back to the whole dataset so 

that a posterior probability of belonging to a specific group can be estimated for each individual 

of the dataset. An individual was assigned to a specific group if its corresponding posterior 

probability of that group was greater or equal to 0.8. An individual was assigned to the 

miscellaneous group if all of its posterior probabilities were less than 0.8 for that group. We then 

calculated the co-membership matrix for each whole sample, and derived the average co-

membership by pulling all 100 subsamples in the resampling setting. To do this we searched for 

a set of trajectories such that any pair of average co-membership within the set was ≥ 1 - α, 

where α was set to 0.05. As a result, the set was selected as a trajectory group. A miscellaneous 

group was decided by that the size of the group was very small, i.e., less than 10 individuals in 

that group. 
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The results showed that our proposed method correctly assigned individuals into their 

underlying groups with high probability. In the first step, we calculated the mean ± SD of the 

rate that individuals from the miscellaneous group being assigned correctly to this group was 

97.25% ± 7.86%. Its range was from 75% to 100% with a median rate of 100%. On the other 

hand, the overall mean ± SD was 99.50% ± 1.37% of the rate that individuals from the two 

trajectory groups were correctly not assigned to the miscellaneous group with a range of 94% to 

100% and a median rate of 100%. In the second step only the subjects that were not generated as 

miscellaneous subjects were included. The mean ± SD was 100% ± 0% of the rate that 

individuals from the two trajectory groups being correctly assigned to their latent groups.  

Table 3.1 was composed to compare the mean (SD) of the estimates from our proposed 

method with the regular method by groups. Although the mean estimates of the intercept and the 

variance of the random intercept were biased, the mean estimates of the rest variables in the 

proposed method were closer to the true values and more efficient compared to the regular 

method. 

Table 3.1. Mean (SD) of the estimates 
Group 1 Group 2 

True 
value 

Proposed 
method 

Regular 
method 

True 
value 

Proposed 
method 

Regular 
method 

Int 0.5 
1.7 0.79 

1.5 
0.27 1.51 

(2.39) (1.60) (2.57) (1.71) 

Time 1 1 0.73 -0.5 -0.5 -0.26 
(0.02) (0.39) (0.02) (0.39) 

Age 2 
1.85 1.74 

0.5 
0.64 0.76 

(0.25) (0.39) (0.24) (0.41) 

σ2
error  0.36 0.35 39.93 0.36 0.35 47.91 

(0.03) (39.94) (0.03) (37.78) 

σ2
rint  0.49 

18.79 37.07 
0.81 

19 37.53 
(33.52) (55.34) (33.80) (54.68) 
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3.3.2 Three trajectory groups plus one miscellaneous group 

In 100 simulations of the second scenario, we generated a linear random intercept model for each 

of the three trajectory groups (n = 40, 30, and 30 for each group respectively) and one 

miscellaneous group (n = 4). Each trajectory includes observations recorded at 7 time points. A 

covariate was generated from a uniform(18, 60). Specifically, the three trajectory groups with a 

sample size of 40, 30, and 30, separately, were  

𝑌1𝑖𝑚𝑖 = (0 + 𝑏1𝑖) + 0.5 × 𝑡𝑖𝑚𝑒𝑖𝑚𝑖 + 2 × 𝑥𝑖 + 𝜖1𝑖𝑚𝑖 ,  

𝑌2𝑖𝑚𝑖 = (1.5 + 𝑏2𝑖) − 1 × 𝑡𝑖𝑚𝑒𝑖𝑚𝑖 + 0.5 × 𝑥𝑖 + 𝜖2𝑖𝑚𝑖 ,𝑎𝑛𝑑 

𝑌3𝑖𝑚𝑖 = (2 + 𝑏3𝑖) + 4 × 𝑡𝑖𝑚𝑒𝑖𝑚𝑖 + 1 × 𝑥𝑖 + 𝜖3𝑖𝑚𝑖 . 

The random intercepts were assumed to be normally and identically distributed with (mean, 

variance) of (0, 0.81), (0, 0.49) and (0, 0.25) for the three groups, respectively. The errors were 

assumed to be common across the two groups with mean 0, and variance 0.36. As to the 

miscellaneous group of size 4, two of the subjects were generated from a similar setting as that of 

the first trajectory group but with the variances of the random intercept and errors of 12.1 and 9, 

separately, and another two were generated from a uniform(-80, 80).   

To perform the resampling technique for each dataset, we randomly selected 70% of the 

sample without replacement 100 times. For simplicity, we used the Bayesian information criteria 

for the first dataset to provide an estimate of the number of groups. Once the number of groups 

was determined, we then estimated the parameters of each group. After the parameters were 

estimated using the FlexMix package, we applied the parameters back to the whole dataset so 

that a posterior probability of belonging to a specific group can be estimated for each individual 
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of the dataset. An individual was assigned to a specific group if its corresponding posterior 

probability of that group was greater or equal to 0.8. An individual was assigned to the 

miscellaneous group if all of its posterior probabilities were less than 0.8 for that group. We then 

calculated the co-membership matrix for each of the whole sample, and derived the average co-

membership by pulling all 100 subsamples in the resampling setting. To do this we searched for 

a set of trajectories such that any pair of average co-membership within the set is ≥ 1-α, where α 

is set to 0.05. As a result, the set was selected as a trajectory group. A miscellaneous group was 

decided by that the size of the group was very small, i.e., less than 10 individuals in that group. 

The results showed that our proposed method correctly assigned individuals into their 

underlying groups with a high probability. In the first step, we calculated the mean ± SD, 99.50% 

± 3.52%, representing the rate that individuals from the miscellaneous group were correctly 

assigned to this group. Its range was from 75% to 100% with a median rate of 100%. On the 

other hand, the overall mean ± SD was 98.82% ± 3.31% of the rate that individuals from the 

three trajectory groups were correctly not assigned to the miscellaneous group with a range of 

82% to 100% and a median rate of 100%. In the second step only the subjects that were not 

generated as miscellaneous subjects were included, the mean ± SD was 98.71% ± 6.38%, 

98.52% ± 7.29%, and 99.85% ± 1.49%, respectively, of the rate that individuals from the three 

trajectory groups being correctly assigned to their latent groups. 

Table 3.2 compared the mean (SD) of the estimates from our proposed method with the 

regular method by three groups. As in Table 3.1, although the mean estimates of the intercept 

and the variance of the random intercept were biased, the mean estimates of the rest variables in 
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the proposed method were closer to the true value and more efficient compared to the regular 

method. 

Table 3.2. Mean (SD) of the estimates 
Group 1 Group 2 Group 3 

True 
value 

Proposed 
method 

Regular 
method 

True 
value 

Proposed 
method 

Regular 
method 

True 
value 

Proposed 
method 

Regular 
method 

Int 0 
0.6 0.63 

1.5 
1.83 1.09 

2 
0.64 1.65 

(2.83) (1.93) (1.67) (3.30) (2.37) (1.98) 

Time 0.5 0.47 0.76 -1 -0.3 0.08 4 3.38 2.9 
(0.14) (1.05) (1.75) (1.74) (1.63) (1.68) 

Age 2 
1.92 1.75 

0.5 
0.53 0.72 

1 
1.06 1.09 

(0.20) (0.42) (0.18) (0.38) (0.14) (0.26) 

σ2
error  0.36 0.45 18.18 0.36 0.35 85.71 0.36 0.42 44.82 

(0.51) (41.74) (0.03) (82.30) (0.42) (67.43) 

σ2
rint  0.81 

11.94 24.75 
0.49 

5.23 28.08 
0.25 

13.17 29.04 
(31.13) (49.28) (14.06) (64.04) (24.07) (50.13) 

3.4 APPLICATION 

We applied our method to the Normal Aging Pittsburgh Compound B (PiB) study to identify 

latent groups of longitudinal neuropsychological measurements excluding a group of 

outliers. One goal of this study is to identify groups of subjects with similar longitudinal 

neuropsychological task trajectories and to understand the relationship between membership in a 

given trajectory class and the amount of amyloid deposition in the brain. The 79 elderly 

volunteers without cognitive impairments were recruited from the community through an 

advertisement in a local seniors’ newspaper and through direct mailings to individuals who had 

shown an interest in participating. The exclusion criteria included the presence of dementia or 

mild cognitive impairment (MCI), the presence or history of major neurological or psychiatric 
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diseases, and the use of psychoactive medications at the time of recruitment (Aizenstein et al., 

2008). The study followed participants for at least 5 years. Participants were given a variety of 

neuropsychological tests at recruitment and at annual follow-ups. The neuropsychological tests 

included the N-back task and a letter-number sequencing task (used for working memory), the 

color-word Stroop test and the Hayling test (used for inhibitory efficiency), and among other 

applicable tests. All participants also received PiB positron emission tomography (PET) scanning 

and magnetic resonance imaging (MRI). The 79 subjects had at least 12 years of education and 

had average (SD) age 75.8 (6.2) years old (range 65 - 92 years old). Among these subjects, 28 

(35.4%) were male, 68 (86.1%) were white, and 14 (19.2%) were APOE*4 allele carriers. In the 

analysis, we used our proposed method to identify latent trajectory groups of N-Back task 

measurements (baseline and 4 follow-ups) and to identify individuals whose trajectory of N-

Back task measurements outsides of these patterns. Based on the BIC, two latent trajectory 

groups were determined, group 1 and group 2 with a size of 35 and 23, respectively. In general, 

the first group started with a high N-Back task score and increased slightly over five years, while 

the second group started with a lower score and increased faster than the first group. There were 

21 subjects with miscellaneous trajectories that were represented as group 3. We compared the 

results obtained from our method to those obtained from a regular latent group-based trajectory 

method using FlexMix accounting for random intercepts. The spaghetti plot (Figure 3.2) 

illustrated the N-Back task measurements over time for the two groups (group 1 and group 2), 

and the rest of the individuals (a miscellaneous group, group 3). We then made a cross-table of 

the results from our method with results from the regular latent group-based trajectory method 

(Table 3.3). Our method identified that, when using the regular latent trajectory analysis, 14 
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miscellaneous subjects were included in group 1 and 7 miscellaneous subjects were included in 

group 2. 

Figure 3.2. Spaghetti plots of individual profiles by the latent trajectory groups  

Note. Fitted latent trajectories of the groups were obtained from our proposed method (red lines) 

and from the regular latent group-based trajectory method (black dashed lines). 
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Table 3.3. The crosstab of groups by our proposed method and the regular method 
Our proposed method 

Regular method Group 1 Group 2 Miscellaneous Total 
Group 1 35 0 14 49 
Group 2 0 23 7 30 

Total 35 23 21 79 

We then compared the demographic characteristics between the 35 subjects in group 1 

by our proposed method and 14 miscellaneous subjects who were classified into group 1 by the 

regular method (Table 3.4). The results presented that age, race, and APOE*4 allele carriers 

showed a borderline significant difference between the two groups. The 35 subjects in group 1 

classified by our proposed method were younger and contained more white people and less 

APOE*4 allele carriers than the 14 miscellaneous subjects. When comparing the demographic 

characteristics of between the 23 subjects in group 2 identified by our proposed method and 7 

miscellaneous subjects who were classified into group 2 by the regular method (Table 3.4), the 

results showed that none of the demographics were significantly different between the two 

groups. Although there were differences in the percentages of the APOE*4 allele carriers 

between the two groups, it was not statistically significant; this was probably due to a power 

issue. 

3.5 DISCUSSION 

Our proposed method successfully identifies latent trajectory groups of longitudinal 

measurements that are more efficient (less variant) and to identify the miscellaneous group. Once 

the trajectory groups were found, researchers can use these group memberships for further 
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Table 3.4. The demographic characteristics comparisons 

Demographics Group 1 
n1 = 35 

Group 3 
n3 = 14 P value Group 2

n2 = 23 
Group 3 
n3 = 7 P value

Mean age 
(SD) 

71.9 
(5.5) 

74.9 
(5.9) 0.077 75.3 

(6.4) 
75.6 
(4.4) 0.884 

Mean 
education 
(SD) 

15.1 
(2.8) 

15.2 
(2.8) 0.937 14.6 

(2.2) 
14.3 
(2.7) 0.638 

Male, % 22.9 42.9 0.181 43.5 42.9 0.999 

White, % 91.4 71.4 0.091 87.0 85.7 0.999 

APOE*4, % 12.1 38.5 0.092 20.0 14.3 0.999 

analysis. Clinical inspection may be required for individuals in the miscellaneous groups in order 

to provide subject-specific health care. The value of α used as a threshold for the pair of the level 

of the average comembership in a group ensures the levels of group stability. Our simulation 

results of the two trajectory-group and the three trajectory-group studies showed a high 

probability of correctly identifying individuals in the miscellaneous group. However, when the 

sample size is large, computations may be time-consuming. In the future, we will extend the 

study for a large sample size, investigate the effects of the magnitude of α on the results, and 

examine the influences of the proportion levels of the subsamples taken in the resamping 

method. 
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