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Abstract

In contrast to most other sensory modalities, the basic perceptual dimensions of olfaction remain unclear. Here, we use non-
negative matrix factorization (NMF) – a dimensionality reduction technique – to uncover structure in a panel of odor
profiles, with each odor defined as a point in multi-dimensional descriptor space. The properties of NMF are favorable for
the analysis of such lexical and perceptual data, and lead to a high-dimensional account of odor space. We further provide
evidence that odor dimensions apply categorically. That is, odor space is not occupied homogenously, but rather in a
discrete and intrinsically clustered manner. We discuss the potential implications of these results for the neural coding of
odors, as well as for developing classifiers on larger datasets that may be useful for predicting perceptual qualities from
chemical structures.
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Introduction

Our understanding of a sensory modality is marked, in part, by

our ability to explain its characteristic perceptual qualities [1,2].

To take the familiar example of vision, we know that the

experience of color depends on the wavelength of light, and we

have principled ways of referring to distances between percepts

such as ‘red’, ‘yellow’ and ‘blue’ [2,3]. In olfaction, by contrast, we

lack a complete understanding of how odor perceptual space is

organized. Indeed, it is still unclear whether olfaction even has

fundamental perceptual axes that correspond to basic stimulus

features.

Early efforts to systematically characterize odor space focused

on identifying small numbers of perceptual primaries, which, when

taken as a set, were hypothesized to span the full range of possible

olfactory experiences [4–6]. Parallel work applied multidimen-

sional scaling to odor discrimination data to derive a two-

dimensional representation of odor space [7,8], and recent studies

using dimensionality reduction techniques such as Principal

Components Analysis (PCA) on odor profiling data have affirmed

these low-dimensional models of human olfactory perception [9–

11]. A consistent finding of these latter studies is that odor percepts

smoothly occupy a low dimensional manifold whose principal axis

corresponds to hedonic valence, or ‘‘pleasantness’’. Indeed, the

primacy of pleasantness in olfactory experience may be reflected in

the receptor topography of the olfactory epithelium [12] as well as

in early central brain representations [13].

Here, we were interested in explicitly retaining additional

degrees of freedom to describe olfactory percepts. Motivated by

studies suggesting the existence of discrete perceptual clusters in

olfaction [14,15] we asked whether odor space is amenable to a

description in terms of sparse perceptual dimensions that apply

categorically. To do so, we applied non-negative matrix factor-

ization (NMF) [16–19] to the odor profile database compiled by

Dravnieks [20] and analyzed in a number of recent studies [9–11].

NMF and PCA are similar in that both methods attempt to

capture the potentially low-dimensional structure of a data set;

they differ, however, in the conditions that drive dimensionality

reduction. Whereas basis vectors obtained from PCA are chosen

to maximize variance, those obtained from NMF are constrained

to be non-negative. This constraint has proven especially useful in

the analysis of documents and other semantic data where data are

intrinsically non-negative [19,21] – a condition that is met by the

Dravnieks database.

Applying NMF, we derive a 10-dimensional representation of

odor perceptual space, with each dimension characterized by only

a handful of positive valued semantic descriptors. Odor profiles

tended to be categorically defined by their membership in a single

one of these dimensions, which readily allowed co-clustering of

odor features and odors. While the analysis of larger odor profile

databases will be needed to generalize these results, the techniques

described herein provide a conceptual and quantitative framework

for investigating the potential mapping between chemicals and

their corresponding odor percepts.

Materials and Methods

Non-Negative Matrix Factorization (NMF)
Non-negative matrix factorization (NMF) is a technique

proposed for deriving low-rank approximations of the kind [16–

18]:
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where A is a matrix of size m|n with non-negative entries, and W
and H are low-dimensional, non-negative matrices of sizes m|s
and s|n respectively, with svmin(m,n). The matrices W and H
represent feature vectors and their weightings. NMF has been

widely used for its ability to extract perceptually meaningful

features, from high dimensional datasets, that are highly relevant

to recognition and classification tasks in several different applica-

tion domains.

To derive W and H we used the alternate least squares

algorithm originally proposed by Paatero [17]. Realizing that the

optimization problem is convex in either W and H, but not both,

the algorithm iterates over the following steps:

1. assume W is known and solve the least squares problem for H
using:

WT W
� �

H~WT A

2. set negative elements of H?0

3. assume H is known and solve the least squares problem for W
using

HHT
� �

WT~HAT

4. set negative elements of W?0.

We used the standard implementation of non-negative factor-

ization algorithm ( nnmf.m) in Matlab (Mathworks, Inc.). Given

the size of the odor profile matrix (146|140), the speed of

convergence was not an issue. As a stopping criterion, we chose a

value of 1000 for the maximum number of iterations. Given the

iterative nature of the algorithm and small size of the dataset, we

expect the algorithm to reach a global minimum for small s and a

fixed point for large s.

Note that a minimum solution obtained by matrices W and H

can also be satisifed by the pairs such as WD and D{1H for any

nonnegative D and D{1. Thus, scaling and permutation can cause

uniqueness problems, and hence the optimization algorithm

typically enforces either row or column normalization in each

iteration of the procedure outlined above.

Cross-validation procedure with training and testing sets
The choice of sub-space dimension s is problem dependent.

Our strategy was to iterate over the sub-space dimension from

s~1 to 50, dividing the data matrix A each time into random but

equal-sized training and testing halves. We kept track of the

residual error in the form of the Frobenius error norm:

DDA{WHDD2F for both training and testing sets. For each choice

of s we repeated this division 250 times, with a stopping criterion

of 1000 iterations, to report the statistics on residual errors. In

addition, once an optimal sub-space dimension is chosen, we

report the most stable version of the basis matrix, by computing

KL-divergence between every pair of the 250 instances of W from

the training set and picking W with the lowest mean KL-

divergence value.

Scrambling odor profiles
We applied NMF to scrambled perceptual data, that is elements

of A are scrambled (randomly reorganized) before analyzing with

NMF. Three different scrambling procedure were implemented.

First was odorant shuffling where the column values of A are

randomly permuted in each row. The second was descriptor

shuffling where the row values of matrix A are randomly permuted

in each column. Finally, we scrambled the elements of the entire

matrix, that is indiscriminate shuffling of both descriptors and

odorants entries.

Consensus matrix
We tested the stability of the NMF results on the original and

scrambled versions of the perceptual data using a consensus

clustering algorithm proposed in [22,23]. Because NMF is an

iterative optimization algorithm, it may not converge to the same

solution each time it is run (with random initial conditions). For a

sub-space of dimension s, NMF algorithm groups descriptors and

odorants into s different clusters. If the clustering into s classes is

strong, we expect the assignment of descriptors or odorants to their

respective clusters will change only slightly from one run to

another. We quantified this with a consensus matrix. For

illustration, we will work with cluster assignments made to the

descriptors. In particular, each descriptor i is assigned to a meta-

descriptor s’, where W(i,s’) is the highest among all the values of

W(i,k) with 1v~kv~s.

We first initiated a zero-valued connectivity matrix ~CC of size

m|m. For each run of NMF, we updated the entries of the

connectivity matrix by 1, that is ~CCij~~CCijz1 if descriptors i and j

belong to the same cluster, or 0 if they belong to different clusters.

Averaging the connectivity matrix over all the runs of NMF gives

the consensus matrix C, where the maximum value of 1 indicates

that descriptors i and j are always assigned to the same cluster. We

ran NMF for 250 runs to ensure stability of the consensus matrix.

If the clustering is stable, we expect the values in C to be close to

either 0 or 1. To see the cluster boundaries, we can use off-

diagonal elements of C as a measure of similarity among

descriptors, and invoke an agglomerative clustering method where

one starts by assigning each descriptor to its own cluster and then

recursively merges two or more most similar clusters until a

stopping criterion is fulfilled. The output from the agglomerative

clustering method can be used to reorder the rows and columns of

C and make the cluster boundaries explicit.

Cophenetic correlation coefficient
We then evaluated the stability of the clustering induced by a

given sub-space dimension s. While visual inspection of the

reordered C can provide qualitative insights into the stablity of

cluster boundaries, we seek a quantitative measure by using the

cophenetic correlation coefficient approach suggested in [23].

Note that there are two distance matrices to work with. The first

distance matrix is induced by the consensus matrix generated by s-

dim NMF decomposition. In particular, the distance between two

descriptors is taken to be 1{Cij . The second distance matrix is

one induced by a agglomerative clustering method, such as the

average linkage hierarchical clustering (HC). In particular the off-

diagonal elements of the consensus matrix can be used as distance

values to generate hierarchical clustering (HC) of the data (in

Matlab, invoke: linkage.m with average linkage option). HC

imposes a tree structure on the data, even if the data does not have

Human Odor Space
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a tree-like dependencies and is also sensitive to the distance metric

in use. HC generates a dendrogram and the height hij of the tree

at which two elements are merged provide for the elements of the

second distance matrix. The cophenetic correlation coefficient rs

is defined to be the Pearson correlation value between the two

distance matrices. If the consensus matrix is perfect, with elements

being either 0 or 1, then rs is 1. When the consensus matrix

elements are between 0 and 1, then rsv1.

We plot rs vs s for increasing values of s. The results of such

analyses are in some cases helpful for choosing an optimal

subspace size. If a given clustering (say, for subspace size of s{1) is

highly reliable across repeated factorizations (that is, the same sets

of descriptors and the same sets of odors tend to co-cluster), and

hence rs{1 is very high, then one is motivated to retain at least

(s{1) dimensions. If increasing this subspace size (to s, sz1, etc)

leads to systematically less reliable clustering,

rs{1w(rs,rsz1, � � � ), one is motivated to retain the more

conservative estimate of dimensionality (s{1). That said, we note

that cophenetic correlation analyses can often provide better

grounds for excluding certain choices of subspace size that lead to

unreliable clustering, rather than privileging a specific number as

‘the’ dimensionality of the data. Note we seek solutions where sw1
because for s~1 the correlation coefficient r1~1. We also

performed a similar consensus clustering and cophenetic coeffi-

cient analysis in the odorant space using the entries in H.

Odor space visualization
We use a variant of stochastic neighbor embedding method

[24,25] to visualize the high-dimensional odor space organized by

NMF. In particular, we first generated the consensus matrices for

clustering descriptors and odorants, and used them separately as

similarity matrices in the stochastic neighbor embedding algo-

rithm. We used the code from http://homepage.tudelft.nl/19j49/

t-SNE.html and ran it with default parameters.

Results

Dimensionality of odor space
We analyzed the published data set of Dravnieks [20], which

catalogs perceptual characteristics of 144 monomolecular odors.

Each odor in this data set is represented as a 146 dimensional

vector (an odor profile), with each dimension corresponding to the

rated applicability of a given semantic label, such as ‘sweet’,

‘floral’, or ‘heavy’. Because these are strictly non-negative

quantities (i.e. a given semantic label either applies, or does not),

we reasoned this could be meaningfully exploited when reducing

the dimensionality of profiling data. Thus, we applied NMF to the

profiling data in an effort to obtain a perceptual basis set

corresponding to ‘parts’ or ‘features’, as has been observed in the

analysis of images [18] and text [18,21].

NMF seeks a low-rank approximation of a matrix A (146
descriptors | 144 odors in the present case) as the product WH,

where the s columns of W are non-negative basis vectors (146-D

vectors of odor descriptors in the present case), and the columns of

H are the new s-dimensional representations of the original odors

(144 columns, in the present case) ( Fig. 1A). Figure 1B shows the

root-mean-squared (RMS) residual (see Methods) between A and

its approximation WH for subspaces ranging from 1 to 50 (100

equal divisions of A into training and testing subsets, for each

choice of subspace). The residual attained a minimum for a

subspace choice of 25, and increased for larger subspaces. In

addition, the width of the error bars increased on the training and

testing residuals after subspace 25. Increasing the number of

iterations used for training the NMF model only marginally

reduced the size of the error bars. We speculate that the energy

landscape is becoming increasingly rugged, with the existence of

many more local minima to potentially trap the learning of NMF

model parameters. In particular, NMF employs a non-linear

optimization method, and hence it is possible that the each time

the method is run, it finds a local minimum that is different and far

away from a global minimum. Hence, the error bars on the

residuals are large and continue to increase with increasing

subspace dimensionality s because of the ruggedness in the

landscape and the limited size of odor profile data used for training

the model.

Notably, for subspaces 1–25 – a regime in which training error

decreases continuously – the testing error decreases, attains a

minimum, and then begins to increase. Thus, while a 25
dimensional representation of the original perceptual data is

evidently the most accurate achievable with NMF, it is not

necessarily the most parsimonious. Inspecting low-order basis

vectors, we observed that descriptors with largest-amplitudes were

consistent across repetitions of the factorization, and corresponded

to broadly applicable labels such as ‘fragrant’, and ‘sickening’ (see

Figure 2 for examples). By contrast, higher order basis vectors

(w10) had peak-value descriptors that were highly specific (‘anise’,

‘cinammon’, etc), and somewhat variable between NMF repeti-

tions.

To more quantitatively motivate the choice of subspace size, we

applied two techniques commonly used in problems of NMF

model selection [23,26]. First, we plotted reconstruction error (that

is, the fraction of unexplained variance) vs subspace size for 250

different repetitions of NMF (Fig. 1C), and compared this to the

reconstruction error obtained with PCA performed on the original

data (PCAorig) as well as on scrambled data (PCAscram) (Fig. 1D)

[26]. The slope of PCAscram is small and relatively constant for

increasing subspace sizes (Fig. 1D), and provides a means for

estimating the point after which a given model is explaining noise

rather than correlations in data . To visualize this cutoff point,

Figure 1D plots the change in variance for each added dimension

(differences between successive points in Figure 1C). The

reconstruction error rates of both PCAorig and NMF intersect

with PCAscram at subspace size 10 (Fig. 1D), indicating that there

is no gain in retaining dimensions w10 for either dimensionality

reduction method. This is consistent with a recently published

estimate of the intrinsic dimensionality of this same dataset [11],

using PCA. For a further comparison of NMF with PCA, we show

cumulative variance plots of PCA and several runs of NMF in

Fig. S1.

As a second means for quantifying the intrinsic dimensionality

of the Dravnieks data set, we calculated the cophenetic correlation

coefficient [23] for several choices of subspace size. Briefly, this

method exploits the stochasticity inherent in NMF to determine

how reproducible the derived basis set and odor weights are across

repetitions of the factorization. Cophenetic correlations &1
indicate highly reproducible basis sets (see Methods for further

explanation). We note that cophenetic correlation analyses can

often provide better grounds for excluding certain choices of

subspace size that lead to unreliable clustering, rather than

privileging a specific number as ‘the’ dimensionality of the data.

The results of our cophenetic correlation analysis are shown in

supplementary Fig. S2. Two features are readily apparent: First,

there are some notably poor choices of subspace size (such as s~4
or s~5). We speculate that the sharp drop at these values is

because at these subspace choices, the classification scheme has

lost the advantage of being simple and dichotomous, but has yet to

support enough categories for accurate and reliable classification.

Second, unlike with the reconstruction error criterion (above),
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there is no monotone decreasing relationship between cophenetic

correlation and dimension size that provides an obvious stopping

criterion. Our interpretation of this is that there are many good,

reduced-dimensionality representations of the Dravnieks data that

exhibit sparse structure.

Given that analysis of reconstruction error (Fig. 1D) argues for

a choice of 10 dimensions as a cutoff point, and cophenetic

correlation analysis suggests there are many well-motivated

choices of subspace choices w~6 (Fig. S2), we therefore settled

on a subspace size of 10 for all further analyses. Visualizations of

NMF reconstruction quality for different choices of subspace size

are provided in figure S3, which shows that most of the global

and local structure of the original data is explained with 10 NMF

basis vectors. We wish to note, however, that in general there is

no single exact criterion for NMF model selection. There are

multiple justifiable choices of subspace size, each of which may

lead to different insights about the data, or be useful for different

goals.

Sparseness of basis vectors
An immediate consequence of the non-negativity constraint is

sparseness of the basis vectors. As seen in Figure 2, the basis

vectors consist of a handful of large values, with the remaining

values near or equal to zero. Intuitively, a given basis vector

Figure 1. Summary of non-negative matrix factorization (NMF) applied to odor profiling data. Að Þ Schematic Overview: NMF seeks a
lower, s-dimensional approximation of a matrix A as the product of matrices W and H. A is m|n, consisting in the present study of 146 odor
descriptors | 144 odors. A given column of A is the semantic profile of one odor, with each entry providing the percent-used value (see methods) of
a given descriptor. Columns of W are basis vectors of the reduced, s-dimensional odor descriptor space. Columns of H are s-dimensional
representations (weights) of the odors in the new basis. Bð Þ Plot of residual error between perceptual data, A, and different NMF-derived
approximations. WH. For each choice of subspace, data were divided into random training and testing halves, and residual error between A and WH
computed. One-hundred such divisions into training and testing were used to compute the standard errors shown (shaded areas). Cð Þ
Reconstruction error (fraction of unexplained variance) for PCA and NMF vs. number of dimensions. The change in reconstruction error for the first
interval is indicated by asterisks(*), and corresponds to the first point in the next panel. Dð Þ Change in reconstruction error for PCA and NMF,
compared to the change in reconstruction error for PCA performed on a scrambled matrix (PCAscram). PCAscram is used to estimate the cutoff
number of dimensions for which a given dimensionality reduction method is explaining only noise in a dataset. Note that each point, n, is actually the
difference in reconstruction error between dimensions n and nz1 (by way of illustration, points with an asterisk in this panel denote corresponding
intervals in the previous panel C).
doi:10.1371/journal.pone.0073289.g001
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indicates a subset of descriptors that are related and particularly

informative (Fig. 2 A), while the set of all basis vectors (Fig. 2B)

defines a library of such aggregate descriptors that span the space.

Figure 2C shows the first four basis vectors, which have been

normalized and ranked in decreasing order to highlight their

sparseness. The six most heavily weighted descriptors for each

basis vector are shown to the right. Together, these vectors define

4 descriptor axes that can be roughly labeled as ‘fragrant’, ‘woody’,

‘fruity’, and ‘sickening.’ We note that these labels are for purposes

of concision only, as each axis is actually a meta-descriptor

consisting of a linear combination of more elementary descriptors.

A list of rank-ordered descriptors for all 10 dimensions is shown in

Table 1.

To ensure that the sparse basis vectors we obtained were not an

artifact of the NMF procedure, but rather depended on

correlations in the data, we repeated the calculation of W for

three shuffled versions of the profiling data (Fig. 3). In the ‘full

shuffle’ condition, all elements of the data matrix A were randomly

permuted, eliminating all correlations. In the ‘descriptors-shuffled’

conditions, the elements of each column of A were randomly

permuted, while in the final ‘odorants-shuffled’ conditions, the

elements of each row of A were randomly permuted. In agreement

with the idea that the sparseness obtained by NMF is data

dependent, sparseness was drastically reduced in the basis sets

obtained from all sets of shuffled data (compare Fig. 3C with

Fig. 2B).

In histograms of basis vectors obtained from the full-shuffled

and descriptor-shuffled data (Fig. 3A), it was evident that both

basis sets contained fewer zero-valued elements than the

unshuffled basis set. Interestingly, the long-tail behavior of the

histogram was preserved (even enhanced) in the odorants-

shuffled condition (Fig. 3B). While this does indicate that a

small number of basis vector elements did have very large values

in the odorant shuffle cases, this was notably at the expense of

peak behavior at zero (Fig. 3A, green). Moreover, basis vectors

derived from a given odorant-shuffled matrix were highly

inconsistent across repetitions of the factorization, which we

assessed by computing consensus matrices (see Methods) docu-

menting the stability of clusters across different iterations of NMF

(Figure 4). In brief, we found that only the original data had

clusters that were consistent across iterations.

While these first several NMF dimensions (Fig. 2, and Table 1)

define a perceptual descriptor space reminiscent of that observed

previously with PCA, we note that variance is distributed

somewhat differently in the NMF vs PCA basis sets. In essence,

we have traded degrees of freedom for increased interpretability of

individual perceptual dimensions. Interestingly, despite the fact

that NMF imposes no formal orthogonality constraint on basis

vectors, the perceptual basis set discovered by NMF was still near-

orthogonal (Fig. 5); that is, most pairwise comparisons among the

basis vectors in W subtend an angle close to p=2 (median angle

= 72.9 degrees).

Distribution of odors in the new perceptual descriptor
space

We next asked how the 144 individual odor profiles (that is,

columns of H) are distributed in the new 10 dimensional

perceptual descriptor space spanned by W. One possibility, for

example, is that many of the descriptor space dimensions are

redundant, resulting in odors being confined to a thin, low-

dimensional slice of the full space. At the other extreme, odors may

densely occupy descriptor space, indicating that dimensions

contain non-redundant features, with all dimensions necessary to

fully characterize odors.

To investigate these and other possibilities, we first examined

the structure of H, the matrix of odor weights obtained from NMF

(recall that each column of H corresponds to an odor, and defines

a point in 10-dimensional descriptor space spanned by W; Fig. 1A).

We took the Euclidian norm of each column of H, and then sorted

all columns into 10 groups defined by their largest coordinate in

descriptor space. More explicitly, the 144 columns of H were

scanned left to right until one was found with a largest coordinate

in dimension 1. This was then assigned as the first column of the

re-ordered matrix. The remaining set of columns was similarly

scanned, until all columns with a largest first-coordinate had been

found. This procedure was then iterated on the remaining

dimensions 2–10. Note that this is just a cosmetic reordering of

columns that preserves row orderings – no new structure has been

added, and no existing structure been destroyed.

Intriguingly, this procedure revealed a prominent block

diagonal structure to the full matrix H (Fig. 6A) indicating that:

1) a given odor tends to be characterized by a single prominent

dimension, and 2) all 10 dimensions are occupied. Furthermore,

this suggests that a given odor percept may be considered an

instance of one of several fundamental qualities (see discussion).

These two properties can be alternatively visualized when odors

(columns of H) are plotted as points in the 10 dimensional

perceptual space spanned by basis set W. Because this perceptual

space is high-dimensional and difficult to represent geometrically,

we show a representative 3 dimensional subspace of W. We note

that this is not a projection of the data, but rather a selective

visualization of a subspace. Figure 6B shows all 144 odors in the

space spanned by perceptual dimensions 1–3. Most odors are

clustered diffusely near the origin (gray points in Fig. 6B), since

their peak coordinates do not reside in this particular 3-D

subspace. By contrast, when odors are separated into groups

defined by peak coordinate (as in Fig. 6A), it is evident that a given

odor tends to be best defined by a single perceptual dimension.

The black, red, and blue points in figure 6B, for example, are those

points with largest coordinates occurring in the first, second, and

third dimensions respectively. While there was notable structural

homology among the odors in a given diagonal block of H
(Fig. 6C), we did not quantify this further in the present work.

Figure S4 shows additional representations of odorants distributed

in descriptor space, and further highlights the categorical nature of

the perceptual space derived from NMF.

Figure 2. Properties of the perceptual basis set W. Plot of normalized odor descriptor amplitude vs. odor descriptor number for the basis
vector W1 . Each point along the x-axis corresponds to a single odor descriptor, and the amplitude of each descriptor indicates the descriptor’s
relevance to the shown perceptual basis vector. Colored circles show the 7 largest points in the basis vector, and descriptors corresponding to these
points are listed to the right. Bð Þ Waterfall plot of the 10 basis vectors constituting W, used in subsequent analyses. Note that each vector contains
many values close to or equal to zero. Cð Þ Detailed view of the first four basis vectors and their leading values. Left column: peak-normalized, rank
ordered basis vectors, illustrating their sparseness and non-negativity. Right column: semantic descriptors characterizing the first four basis vectors.
Bars show the first six rank-ordered, peak-normalized components of basis vectors 1 through 4 (subset of data from left column). The semantic label
for each component is show to the left.
doi:10.1371/journal.pone.0073289.g002
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As a final means for investigating whether odorants are

smoothly vs. discretely arranged in descriptor space, we construct-

ed two-dimensional embeddings for the matrices W and H using

the stochastic neighbor embedding (SNE) algorithm. Briefly, this

technique provides a planar representation of all pairwise distances

between odors in the original high dimensional space, such that

relative neighbor relations are preserved (e.g. odors that are close

together in the original space are also close together in the

embedding). Applying SNE to the descriptor space (W), we

obtained 8 discrete and non-overlapping clusters of the 146

descriptors, which are shown in Figure 7. Similarly, applying SNE

to the space of odorants (H), we obtained 10 discrete and non-

overlapping clusters of the 144 odors (Figure 8). In sum, the

perceptual descriptor space derived from NMF is not smoothly

occupied.

Bi-clustering of descriptors and odors
The perceptual space, W, discovered by NMF can be

considered a set of 10 meta-descriptors, each of which is a linear

combination of more elementary descriptors. While these dimen-

sions are compact and categorical in that a given odor tends to

have a prominent single coordinate (Figs. 6 and S4), this may also

Figure 3. NMF on full, descriptor-only, and odor-only shuffled versions of the data. Að Þ Peak behavior of histograms obtained from NMF
performed on shuffled data, for each of the various shuffling conditions (see text for descriptions). Bð Þ Tail behavior of histograms, same procedure
and conditions as in Að Þ; note difference in scaling of axes between Að Þ and Bð Þ. Cð ÞWaterfall plots of basis sets obtained when NMF was applied on
shuffled data, for various shuffling conditions. Note the comparative lack of sparseness, relative to the basis set shown in Fig. 3A. Reproducibility of
basis vectors across iterations of NMF for shuffled data sets was eliminated, or severely compromised, as shown in Fig. 4.
doi:10.1371/journal.pone.0073289.g003
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obscure interesting details about the organization of the descriptor

space. For example, within a dimension there may be correlations

between specific descriptors and specific odors.

To explore this potential fine-scale structure wherein subsets of

odorants show distinct correlations among subsets of descriptors,

we sought submatrices of WH (the NMF approximation to the

original data matrix A ) with large values in both the descriptor

and odorant dimensions (Fig. 9). Briefly, we did this by performing

10-reorderings (one for each perceptual dimension) of rows and

columns of WH via the process illustrated in figure 9A. Rank-

ordering the first column of W, for example, aggregates the peak

valued descriptors for the first perceptual dimension, W1.

Similarly, rank ordering the first row of H aggregates those

odorants with largest weights in W1. Applying these row and

column re-orderings simultaneously to the matrix WH gives a

matrix whose largest values are in the upper-left corner.

The clear upper-left organization of these submatrices illustrates

that there are sets of odors to which distinct odor descriptors apply.

Figure 4. Consensus Matrices for odor-shuffles, descriptor-shuffles, and full-shuffles. Að Þ Consensus matrices (see text) showing reliability
of basis sets when NMF is applied to various shuffled versions of the data. Only the original data shows the bimodal distribution of 1s and 0s
characteristic of highly reliable clustering. Image ranges and colorscale same for all 4 matrices. Bð Þ Top: Histograms of consensus matrix values for the
three shuffling conditions, and the original data, confirming that only the original data shows a bimodal distribution of 1s and 0s (line colors
correspond to labels in Að Þ). Bottom: Cumulative histograms, same data as above.
doi:10.1371/journal.pone.0073289.g004
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Figure 5. Approximate orthogonality of the NMF basis vectors. Að Þ Histogram of angles subtended by all pairs of basis vectors, W.
Histogram was constructed for all pairwise comparisons between dimensions, excluding self-comparisons. Bar with (*) denotes self-comparisons. Bð Þ
Matrix of pairwise comparisons of angles between dimensions.
doi:10.1371/journal.pone.0073289.g005

Figure 6. Visualization of odors expressed in coordinates of the new basis. Að Þ The weight matrix, H, discovered by NMF. Columns of H
(each column corresponds to a different odor), are normalized and sorted into groups defined by peak coordinate (1–10). Bð Þ Plot of all 144 odors
(each point is a column of H) in the space spanned by the first 3 basis vectors, W1,W2, and W3 . Black, red, and blue points are those with peak
coordinates in dimensions 1, 2, and 3 respectively. Gray points are all remaining odors. Cð Þ Chemical structures of representative odorants from the
second and seventh diagonal blocks of the sorted matrix H (panel Að Þ).
doi:10.1371/journal.pone.0073289.g006
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Members of all clusters, as defined by their peak coordinate in the

new 10 dimensional descriptor space, are given in Table 2.

Discussion

We have applied non-negative matrix factorization (NMF) to

odor profiling data to derive a 10-dimensional descriptor space for

human odor percepts. For the data set investigated, individual

odor profiles are well-classified by their proximity to a single one of

these dimensions, with all 10 dimensions being approximately

equally expressed across the set of odors. This is consistent with the

notion that olfactory space is high-dimensional [27], and not

smoothly occupied [14,28]. More speculatively, the observation

that odors tend to be confined to a single best dimension of the

NMF basis (Figure 6, and Figure S4 in supporting information)

suggests that a given olfactory percept can be described as an

‘instance’ of one of several fundamental qualities. Whether these

proposed qualities are innate or the product of learning is,

naturally, an important question, but one that is beyond the scope

Figure 7. Two-dimensional embedding of the descriptor-space, W. Results of stochastic neighbor embedding (see text) applied to the
similarity matrix for W. Axis units are arbitrary, but preserve neighbor relations present in the higher dimensional space, W. Note that discrete clusters
are clearly evident. Clusters were identified by eye, and descriptors composing each cluster are listed in the table below.
doi:10.1371/journal.pone.0073289.g007
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of this study. In addition, we note two important caveats of the

present work. First, the fundamental odor qualities we propose are

necessarily provisional, given the limitations of the Dravnieks data

set in size and odorant diversity. Second, constraining perceptual

judgments to a fixed and possibly limited lexicon (i.e. the 146

descriptors) may obscure the true complexity of odor space.

The perceptual dimensions obtained from NMF identify

descriptors that are salient in several previous analyses of odor

space [9–11,13,27], and commonly applied in ratings of odor

quality. Moreover, these dimensions are consistent with a broad

ecological perspective on olfactory function [29,30] which

emphasizes the importance of chemosensation in coordinating

Figure 8. Two-dimensional embedding of the odorant-space, H. Results of stochastic neighbor embedding (see text) applied to the similarity
matrix for H. As in figure 7, axis units are arbitrary, but preserve neighbor relationships observed in the full-dimensional space, H. Clusters were
identified by eye, and odorants composing each cluster are listed in the table below.
doi:10.1371/journal.pone.0073289.g008
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approach, withdrawal, and the procurement of safe food. For

example, we observe, as others have, dimensions corresponding to

relative pleasantness (‘fragrant’ (W1), ‘sickening’ (W4)). In addition,

most of the remaining dimensions identified appear to correspond

to cues of potential palatability/nonpalatability: ‘fruity, non-citrus’

(W2), ‘woody, resinous’ (W3), ‘chemical’ (W5), ‘sweet’ (W7), and

‘lemon’ (W10). We hasten to note that the labels applied above are

only an aid to intuition, as each perceptual basis is really a meta-

descriptor consisting of linear combinations of more elementary

descriptors. Moreover, it is possible that such linear combinations

obscure interesting details about the exact positions of these more

elementary descriptors. For a thorough treatment of this issue, one

should consult Zarzo et al [9,31].

While several of these same principal qualities have been

identified before, NMF describes a notably different representation

of the space in which they reside. Specifically, NMF leads to a

description of odor space defined by dimensions that apply

categorically. By contrast, odors in PCA space are more diffusely

distributed across dimensions. Moreover, odors in PCA space (as

well as spaces derived from multidimensional scaling and factor

analysis) tend to be smoothly distributed in subspaces that span

multiple axes, though heirarchical applications of PCA have

identified several quality-specific clusters [9]. Naturally, these

Figure 9. Co-clustering of descriptors and odors. Að Þ Overview of method used for defining a bicluster (see text for definition). A column k of

W (descriptors), and the corresponding kth row of H (odors) are rank ordered. The indices derived from the rank-ordering are used to re-order rows

and columns of WH (accomplished by computing the outer product between the rank-ordered kth column of W and rank-ordered kth row of H),
producing a submatrix with high correlation among both odors and descriptors. By the nature of the sorting procedure, these matrices – biclusters –
will have their largest values in the upper-left corner. For purposes of visualization, biclusters were convolved with an averaging filter. Bð Þ The 10
biclusters defined by NMF on odor perceptual data.
doi:10.1371/journal.pone.0073289.g009
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differences in the representation of odor space are a consequence

of the different constraints applied when obtaining a basis from

PCA vs NMF. Whereas PCA basis vectors are chosen to be

orthogonal, and allow any linear combination of variables, NMF

basis vectors are constrained to be non-negative, allowing only

positive combinations of variables. It is worth noting, however,

that the NMF basis set is still approximately orthogonal (mean

pairwise angle between different basis vectors is 72.9 degrees

(Fig. 5)). Moreover, NMF is capturing structure in the data beyond

simple first-order statistics, as applying NMF to scrambled versions

of A fails to produce sparse and perceptually meaningful basis

vectors ( Fig. 3).

Intuitively, the non-negativity constraint produces NMF basis

vectors defined by subsets of descriptors that are weighted and co-

applied in particularly informative combinations, defining dimen-

sions that range from absence to presence of a positive quantity.

This contrasts to basis vectors and dimensions derived from other

techniques, which extend from one quality to that quality’s

presumed opposite. Such dimensions have intuitive interpretations

in some cases, for example, the experimentally supported

‘pleasantness’ dimension corresponding to principal component

1 (PC1), which ranges from ‘fragrant’ to ‘sickening’. Interestingly,

constraining the NMF subspace to 2 shows that most odors fall

homogeneously along a continuum reminiscent of the first

principal component (Fig. S5 in supporting information). Howev-

er, second and higher order PCs become progressively more

difficult to interpret, spanning such qualities as ‘woody, resinous’

? ‘minty, peppermint’ (PC2), and ‘floral’ ? ‘spicy’ (PC3).

Whether odor percepts are more accurately represented as

residing in dimensions that span oppositely valenced qualities, or

dimensions that represent only a single quality will depend on

whether there is systematic opponency in peripheral or central

odor representations.

It may be possible to observe physiological properties of odor

representations indicative of one kind of representation vs.

another. If the underlying perceptual dimensions of odor space

are categorical, one would expect relative similarity between odor

representations for odors occupying the same putative perceptual

dimension. Similarly, one would expect abrupt, state-like transi-

tions in neural representations of slowly morphing binary mixture

Table 2. List of compounds in every cluster identified from NMF.

Cluster 1 Cluster 2 Cluster 3 Cluster 4 Cluster 5

1. Isoamylphenylacetate,
2. Aurantiol,
3. 6,7-dihydro-1,1,2,3,3-
pentamethyl-4-(5H)indanone,
4. Indol-hydroxycitronellal,
5. beta-ionone (low concentration),
6. beta-ionone (high concentration),
7. N’-[(E)-3-(5-methoxy-2,
3-dihydro-1,4-benzodioxin-7-yl)
prop-2-enoyl]-2,3-dihydro-1,4-
benzodioxine-3-carbohydrazide,
8. hydroxyisohexyl 3-cyclohexene
carboxaldehyde,
9. 2-methoxynaphthalene,
10. Diethoxymethane,
11. Galaxolide,
12. ethylenebrassylate,
13. Phenylethyl Alcohol (low
concentration)
14. Phenylethyl Alcohol (high
concentration)

15. Cedrene epoxide,
16. bornyl acetate,
17. 8-sec-Butylquinoline,
18. 2,4,6-trimethylcyclohex-3-ene-1-
carbaldehyde,
19. decalin,
20. dibutylamine,
21. Synthetic amber,
22. 1,1-Dimethoxy-2-phenylpropane,
23. Methyl isonicotinate,
24. Nootkatone,
25. 1-octen-3-ol,
26. isophorone (low concentration),
27. isophorone (high concentration),
28. Isopropyl quinolone,
29. Argeol,
30. Gamma-undecalactone,
31. 10-undecenoic acid

32. ethylmethylphenylglycidate (low
concentration)
33. ethylmethylphenylglycidate (high
concentration)
34. allylcaproate,
35. isoamyl acetate,
36. n-amyl butyrate,
37. Dmbc butyrate,
38. ethyl butyrate,
39. ethyl propionate,
40. Fructone,
41. methylanthranilate,
42. Pentylvalerate

43. Butyric Acid
44. hexanoic acid
45. indole
46. methylthiolbutyrate
47. n-pentanoic acid
48. 4-pentenoic acid
49.
50. . phenylacetic acid
51. Propyl butyrate
52. Skatole (3-Methyl-1H-
indole)
53. Isovalerylaldehyde
54. isovaleric acid

55. Acetophenone
56. Anisole
57. 1-Butanol
58. 4-cresol
59. p-Tolylisobutyrate
60. 4-methyl anisole
61. cyclohexanol
62. 2,5-dimethylpyrazine
63. methyl hexyl ether
64. 1-hexanol
65. 3-hexanol
66. iodoform
67. methyl furan-3-
carboxylate
68. 4-methylquinoline
69. phenylacetylene
70. alpha-terpineol
71. 6-methyl-1,2,3,4-
tetrahydroquinoline
72. Thymol
73. Toluene
74. 3-Methyl-1H-indole

Cluster 6 Cluster 7 Cluster 8 Cluster 9 Cluster 10

1. Anethole
2. 8-sec-Butylquinoline
3. carvone
4. caryophyllene
5. 4-cresyl acetate
6. eucalyptol
7. Eugenol
8. Menthol
9. methyl salicylate
10. Safrole

11. Abhexon
12. Gamma-nonalactone
13. Benzaldehyde
14. 3,4-dihydrocoumarin
15. 3-Propylidene phthalide
16. cinnamic aldehyde
17. coumarin
18. cyclotene
19. Furaldehyde
20. 2-hexenal
21. 2-methylbenzaldehyde
22. gamma-valerolactone

23. Vanillin
24. 2-acetylpyridine
25. 2,4-decadienal
26. Pyrazine
27. methyl hexyl ether
28. 2,5-dimethylpyrrole
29. Ethylpyrazine
30. Ethylpyrazine
31. Heptanal
32. n-hexanal
33. 1-Octanol
34. 2-methyl-5,7-
dihydrothieno[3,4-d]pyrimidine

35. Zingherone
36. dibutyl sulfide
37. Chlorothymol
38. 2-Mercaptopropanone
39. 1,2-cyclohexanedione
40. diethyl sulfide
41. dimethyltrisulfide
42. furfurylmercaptan
43. Guaiacol
44. Hexylamine
45. Hexylamine
46. AC1L18DS

47. polythiophene
48. Adoxal
49. Amyl cinnamic aldehyde
diethyl acetal
50. Citral
51. Geranonitrile
52. Cuminaldehyde
53. 4-Methyl-2-(1-phenylethyl)-
1,3-dioxolan
54. 2-Methyl-4-phenylbutan-2-ol
55. phenyl ether
56. Floralozone
57. Heptanol
58. hexylcinnamic aldehyde
59. hydroxycitronellal
60. linalool
61. limonene
62. Melonal
63. Myrac aldehyde
64. n-Nonyl acetate

doi:10.1371/journal.pone.0073289.t002
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stimuli whose component odors nominally ‘belong’ to different

perceptual dimensions. Consistent with these criteria, a recent

study has shown discrete transitions in the ensemble activity of the

zebrafish olfactory bulb during such odor morphs ([14], but see

[32]).

Our study has some limitations that should be noted. Chief

among these is the small size of the odor profiling data set used

relative to the much larger set of possible odors, which may limit

the generality of our findings. In future studies, it will be necessary

to extend the NMF framework to larger sets of odors than the 144

investigated presently, such that a more complete and represen-

tative sample from odor space is obtained. Another limitation

pertains to the ‘subjective’ nature of odor profiling data. While

profiles are quantitative in the sense that they are stable and

reliable across raters [33], it is clearly important to corroborate

profiling-derived estimates of the intrinsic dimensionality of odor

space, as well as proposals for how this space is structured, with

psychophysical tests of discriminability [34]. It would be interest-

ing, for example, to test whether the approximately orthogonal

axes we observe are recapitulated in data derived from tests of

pairwise discriminability. Finally, our analysis cannot distinguish

between perceptual vs. cognitive influences on the organization of

human odor space. One possibility is that the coarse division of

odor-space into quality-specific axes reflects the existence of fixed

points or attractors [14,28] that guide odor processing dynamics;

similarly, there may exist a set of especially stable, prototypical

glomerular maps that serve a related functional role. Another

possibility is that early olfactory processing only resolves odor

quality to a degree sufficient to rank relative pleasantness, with

further parsing of this percept into discrete categories occurring

through mechanisms involving learning and context.

In summary, we have shown that olfactory perceptual space can

be spanned by a set of near-orthogonal axes that each represent a

single, positive-valued odor quality. Odors cluster predominantly

along these axes, motivating the interpretation that odor space is

organized by a relatively large number of independent qualities

that apply categorically. Independently of whether our description

of odor space identifies innate or ‘natural’ axes determined by

receptor specificities, it provides a compact description of salient,

near-orthogonal odor qualities, as well as a principled means for

identifying and rating odor quality. Finally, our study has

identified perceptual clusters that may help elucidate a structure-

percept mapping.

Supporting Information

Figure S1 Comparison of PCA and NMF. Plot of

cumulative fraction of variance explained for PCA and NMF,

for various choices of subspace size.

(TIF)

Figure S2 Cophenetic correlation vs. choice of subspace
size. Cophenetic correlation obtained for NMF representations of

increasing subspace size. Procedure is defined in the text.

(TIF)

Figure S3 NMF-derived approximations of odor pro-
files 2Að Þ Image of original data (left) and NMF-derived

approximations WH for subspaces of 5 (center) and 10 (right).

Same range and color scale for all images. Because the data matrix

contains many small and zero-valued entries among sparse, large-

valued entries, the colorscale has been gamma-transformed

(2c~1:8) for better visualization and comparisons. Arrowheads

indicate columns shown in more detail in panel below. 2Bð Þ
Detailed representation of columns 70–74 of original data matrix

A (black traces) and NMF approximations to those columns by

WH for a 10 dimensional subspace (red traces).

(TIF)

Figure S4 Representations of odorants distributed in
perceptual space. 2Að Þ Star plots of odorants (columns of H).

Odorant weight vectors are wrapped on ½0,22p� for visualization

purposes. Left: three example odorants and their distributions in

perceptual space, showing that a given odorant tends to occupy a

single one of ten perceptual dimensions, to the exclusion of others.

Right: star plot of all 144 odorants in the perceptual space. Colors

indicate odors with a common peak coordinate in the 10-D

descriptor space. 2Bð Þ Visualizations of various three-dimensional

subspaces of the matrix H, as in Figure 6.

(TIF)

Figure S5 NMF reveals hedonic valence of odors. For a

choice of subspace 2, NMF reveals the hedonic valence of odors.

2Að Þ left column: basis vectors returned for NMF with subspace 2.

right column: normalized amplitudes and descriptors for leading

values of rank-ordered basis vectors. 2Bð Þ Plot of all 144 odors in

the space spanned by W1, W2 (analogous to plots shown in Fig. 6

in the main manuscript). Colors indicate classification based on

largest coordinate (black, W1, gray, W2), showing coarse

categorization into good-vs-bad smelling odors.

(TIF)
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