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UTILIZING MICROSTIMULATION AND LOCAL FIELD POTENTIALS 

IN THE PRIMARY SOMATOSENSORY AND MOTOR CORTEX 

ABSTRACT  

Jason Godlove, Ph.D. 

  

University of Pittsburgh, 2013 

 

Brain-computer interfaces (BCIs) have advanced considerably from simple target detection by 

recording from a single neuron, to accomplishments like controlling a computer cursor accurately 

with neural activity from hundreds of neurons or providing instruction directly to the brain via 

microstimulation. However as BCIs continue to evolve, so do the challenges they face. Most BCIs 

rely on visual feedback, requiring sustained visual attention to use the device. As the role of BCIs 

expands beyond cursors moving on a computer screen to robotic hands picking up objects, there 

is increased need for an effective way to provide quick feedback independent of vision. Another 

challenge is utilizing all the signals available to produce the best decoding of movement possible. 

Local field potentials (LFPs) can be recorded at the same time as multi-unit activity (MUA) from 

multielectrode arrays but little is known in the area of what kind of information it possess, 

especially in relation to MUA. To tackle these issues, we preformed the following experiments. 

First, we examined the effectiveness of alternative forms of feedback applicable to BCIs, 

tactile stimuli delivered on the skin surface and microstimulation applied directly to the brain via 

the somatosensory cortex. To gauge effectiveness, we used a paradigm that captured a fundamental 

element of feedback: the ability to react to a stimulus while already in action. By measuring the 
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response time to that stimulus, we were able to compare how well each modality could perform as 

a feedback stimulus. 

Second, we use regression and mutual information analyses to study how MUA, low-

frequency LFP (15-40Hz, LFPL ), and high-frequency LFP (100-300Hz, LFPH) encoded reaching 

movements. The representation of kinematic parameters for direction, speed, velocity, and position 

were quantified and compared across these signals to be better applied in decoding models. 

Lastly, the results from these experiments could not have been accurately obtained without 

keeping careful account of the mechanical lags involved. Each of the stimuli affecting behavior 

had onset lags, which in some cases, varied greatly from trial to trial and could easily distorted 

timing effects if not accounted for. Special adaptations were constructed to precisely pinpoint 

display, system, and device onset lags.  
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1.0  GENERAL INTRODUCTION 

For almost two centuries, electrical microstimulation has been a useful tool in exploring the 

organization and function of the nervous system. Perturbing neural activity has been invaluable in 

probing system components for their contribution and function, particularly in the motor systems. 

It has been used to explore specific populations of neurons and how they contribute to cognitive 

and sensory processing within a system. Microstimulation has been used in numerous studies to 

activate motor pathways and cause a behavioral response as well in stimulating sensory pathways 

to be behaviorally detected. These studies give a glimpse into how the brain structures interact 

with one another and process information.    

1.1 ELECTRICAL MICROSTIMULATION 

In 1870, Fritsch & Hitzig discovered that when electrical stimulation was applied to the surface of 

a dog’s cortex, it evoked discrete movements that were repeatable with sequent stimulations. When 

stimulation, in the form of brief pulses of direct current, was applied to different areas of the cortex, 

it would evoke different muscle groups depending on the area. This was the first evidence that 

specific functions could be localized in the brain (Fritsch & Hitzig, 1870).  

Since then, microstimulation has evolved from direct current applied via a battery, to a 

more precise tool that can produce reliable activation with minimal neural tissue damage (Fritsch 
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& Hitzig, 1870; Tehovnik, 1996). For instance, most experiments use biphasic pulses composed 

of equal duration anodal and cathodal phases so that no net charge is left to do electrolytic damage 

to the stimulated tissue (Tehovnik, 1996). Experimenters have altered the pulse duration, polarity, 

inter-pulse interval, current amplitude, and temporal sequencing of the pulse in order to adjust the 

efficacy of the microstimulation. Stimulation frequencies typically range from 20-400 Hz with 

current amplitudes ranging from 5-500µA. 

The current flowing from the electrode tip and changing the membrane potential of the 

surrounding neurons causes the direct effect of microstimulation. The level of change in the 

membrane potential drops off at an exponential rate the further the neuronal element is from the 

tip (Rattay, 1999). This direct effect can depolarize cells enough to make them spike or affect the 

probability a neuron will spike in the future through inhibition or sub-threshold excitation. These 

spikes can indirectly trigger a vastly larger amount of spiking events than what was initially 

triggered by the microstimulation event (London, et al., 2010). Using one electrode to stimulate 

and another to record, it was reported that a 200µs cathodal pulse of 10µA directly activated most 

neurons within 90µm of the stimulating electrode’s tip (Stoney, et al., 1968). Increased amplitudes 

from 2 to 150µA would activate within 50-500µm from the tip, corresponding to roughly 60-

62,000 neurons in monkey V1 (Tehovnik &  Slocum, 2007).   

1.2 EVOKING SENSATIONS 

 

In early experiments with conscious human patients, it was found that when points on the occipital 

cortex were stimulated, patients reported seeing localized spots of lights called phosphenes at 
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particular locations that varied depending on where the stimulation was applied (Brindley GS 

&  Lewin WS, 1968 ). In the primary visual cortex (V1), the sensation of localized blindness has 

been produced via microstimulation (Penfield, 1958). While monkeys are unable to describe visual 

percepts created by microstimulation in V1, its effect on the visual system was reflected by the 

behavior exhibited such as eye-movements to the receptive field of the stimulated area, interfere 

with visual tasks, or by animals trained to report the presence of microstimulation (Bartlett 

&  Doty, 1980). The success and reliability of these tasks was always proportional to the amplitude 

of the stimulation current, with different brain areas requiring different amplitude thresholds to 

induce the same level of performance (Murphey &  Maunsell, 2007; Murphey &  Maunsell, 2008).  

 

Microstimulation has also been used to elucidate the role of the primary somatosensory 

cortex in tactile discrimination. Romo et al. (Romo, et al., 1998) conducted discrimination 

experiments where monkeys compared the frequency of tactile stimuli to the fingertips during two 

intervals. The monkeys would then report which of the two intervals contained the higher 

frequency of stimulation. During the progress of the experiment, one of the tactile stimuli was 

replaced with microstimulation of the somatosensory cortex, requiring a comparison between the 

frequency of a physical and an electrical stimulus. Surprisingly, the animals were able to do the 

task to the level of performance of when both stimuli were physical. Further studies eventually 

had the monkeys discriminating two intervals of microstimulation with each other with notable 

success (Romo, et al., 2000).  
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1.3 EVOKING MOVEMENTS  

1.3.1 Evoked Eye Movements 

Stimulation of the frontal eye field (FEF) and of the superior colliculus (SC) produces precise 

saccadic eye movements in the direction of their respective receptive field (Robinson, 1972; 

Robinson &  Fuchs, 1969). The amplitude and direction of the saccades vary systematically 

according to the stimulating electrodes position within the FEF (figure 1). In animals without head 

restraint, microstimulation of FEF produces gaze shifts that combine eye and head movements in 

a manner similar to naturally produced gaze shifts (Knight &  Fuchs, 2007).  

 

While the position of the electrode affects the direction and ultimately the end point of the 

evoked saccade, varying the stimulus frequency, amplitude, and pulse train duration seem to only 

affect the probability of evoking a saccade (Robinson, 1972; Schiller &  Stryker, 1972; Bruce, et 

al., 1985). The pattern of current-pulse timing can have an interesting effect on saccade probability 

from microstimulation of the FEF. Kimmel & Moore stimulated the FEF with five different 

patterns of pulse timings, each lasting 35ms with eight pulses, but different pulse distributions 

across the stimulus duration. The interpulse-intervals (IPIs) could be uniform (fixed), increasing 

(decelerating), decreasing (accelerating), or random (figure 2a). They found the different patterns 

displayed disparate efficacy in evoking saccades. When the eight pulses were arranged in an 

accelerating pattern, saccades were evoked more readily than if the pulses were arranged in a 

decelerating pattern (figure 2b). This shows that the oculomotor system is highly sensitive to the 

relative timing of pulses even within a small time frame (Kimmel &  Moore, 2007).  
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In addition to studying saccadic eye movements, microstimulation has been used to study 

oculomotor vergence and pursuit (figure 1a). Short-latency vergence movements are produced 

from microstimulation of a region just anterior to the FEF (Gamlin &  Yoon, 2000). Stimulation 

of a sub-region of the FEF in the fundus of the arcuate sulcus produces smooth eye movements 

and modifies the gains of movements used for pursuit (Gottlieb, et al., 1993; Tanaka &  Lisberger, 

2002).  

 

Figure 1. Evoking eye movements with microstimulation.  

Microstimulation of different regions inside and surrounding the arcuate sulcus (as) produces vergence 

(striped), smooth pursuit (plaid) and saccadic (solid) eye movements. Map of saccade amplitudes and 

directions evoked by microstimulation of the frontal eye field sites shown. Abbreviations: P, posterior; 

A, anterior; VL, vertical left; HR, horizontal right; HL, horizontal left; VA, vergence angle; H, 

horizontal; V, vertical. Adapted from (Clark, et al., 2011; Bruce, et al., 1985; Gamlin &  Yoon, 2000; 

Gottlieb, et al., 1993) 
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Figure 2. Varying the temporal pattern of microstimulation.  

(a) FEF was stimulated with pulse trains of 35 ms duration and a total of eight bimodal pulses; individual 

IPIs, in milliseconds, are displayed above each train (question marks denote random IPIs). IPIs were 

uniform (fixed, black circles), increasing (decelerating, blue squares), decreasing (accelerating, red 

diamonds), random order (RO, triangles), or random intervals (RIs, inverted triangles). (b) Average 

probability of evoking a saccade as a function of ordinal current (relative to site threshold, depicted by 

grey dotted line) at 14 FEF sites. All pairwise comparisons between patterns over the middle range of 

currents (shaded in grey) yielded significant differences except the two random patterns. Grey crosses, 

no stimulation. Adapted from (Clark, et al., 2011; Kimmel &  Moore, 2007). 
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1.3.2 Evoked Hand Movements 

When stimulating in the somatic motor cortex, distinct movements or muscle activations are seen 

for stimulations sites only a few hundred microns apart (Asanuma &  Rosén, 1972; Donoghue 

&  Wise, 1982; Neafsey, et al., 1986). This, along with its clearly seen behavioral response, 

attributes to how this was the first area to have its functional organization mapped with electrical 

stimulation (Fritsch & Hitzig, 1870; Penfield, 1958; Ferrier, 1876). Many studies observed muscle 

twitches from short stimulation durations (typically <50ms) (Asanuma & Sakata, 1967; Strick 

&  Preston, 1978). Graziano et al.(2002) investigated the effects of longer (500ms) stimulus 

durations in the arm area of motor and premotor cortex (PM); a timescale similar to full arm 

movements. The longer trains of microstimulation evoked full coordinated body movements from 

multiple joints to reach to a final fixed posture. For example, 500ms stimulation at one site would 

cause the monkey to bring its hand toward the mouth with a closed, grip-like hand posture and 

open its mouth, regardless of initial position (figure 3). Although these movements occurred over 

the span of a several hundred millisecond stimulus train, EMG recordings of muscle activation 

have measured response to the train as little as 7ms after stimulus onset (Graziano, et al., 2004). 

Additionally, velocity profiles for the movement were similar to those of spontaneous natural 

movements. 
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Figure 3. Evoking arm and hand movements with microstimulation. 

Microstimulation of motor and premotor for 500 ms evoked complex, coordinated movements 

terminating in a fixed final posture regardless of the initial position. Left: traces show hand position 

during microstimulation. (A–H): map of arm movements evoked by microstimulation of the motor and 

premotor sites shown. Dotted lines indicate path of hand movement, ending in the position shown. 

Adapted from (Clark, et al., 2011; Graziano, et al., 2002; Graziano, et al., 2004) 

  

1.4 DETECTING CORTICAL MICROSTIMULATION 

The majority of studies describing behavioral report of microstimulation have occurred in the 

primary sensory or motor cortex. When the primary sensory cortex is stimulated, human subjects 

have reported the appearance of phosphenes, or other basic sensations. Animals can also be trained 

to report when the primary sensory cortex is stimulated (Bartlett &  Doty, 1980; Tehovnik, et al., 

2006; Murphey &  Maunsell, 2007). In most experiments, there was little attempt to understand 
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what the animals experienced during microstimulation with the exception of Romo and colleagues 

(2000). Their work forced the subjects to directly compare tactile stimuli with the percepts 

produced by microstimulation of area 3b in primary somatosensory cortex with remarkable 

success. Following experiments have shown that monkeys can also discriminate frequencies of 

microstimulation in areas 1 and 3a (O'Doherty, et al., 2011; London, et al., 2008).  

 

Several studies have shown that animals can detect microstimulation just about anywhere 

in the cortex, not just the primary sensory areas (Doty, 1969). However, it should be noted that 

extensive training was required before animals could reliably detect microstimulation in non-

primary areas. Fitzsimmons et. al. (2007) reported similar difficulties when stimulating in area 1 

of the primary somatosensory cortex. Because stronger stimulation current directly excites more 

neurons, measuring the amount of current needed for a stimulus to be detected gives a good 

indication of how many cortical neurons must be activated before the subject can detect the 

microstimulation. Murphey and Maunsell (2007) trained monkeys to detect microstimulation 

applied to numerous cortical areas. After extensive training, they found little difference in 

detection thresholds across the visual cortex (~6µA) about V1 or across FEF (~14µA) (Murphey 

&  Maunsell, 2008). 

 

With practice, lower thresholds can be obtained for detecting microstimulation. This comes 

as little surprise because trains of electrical stimuli are commonly used to evoke long-term 

potentiation or depression of neuronal connections in culture or slice experiments (Heusler, et al., 

2000). In vivo, microstimulation has been shown to alter response properties of cortical neurons, 

making them more or less receptive to specific stimuli (Frégnac, et al., 1988), or by changing the 
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orientation map in V1 (Dinse, et al., 1997; Godde, et al., 2002), or somatotopic map in area 3b 

(Jenkins, et al., 1990). In behavioral experiments, evidence of plasticity has been shown with 

reduced thresholds for stimulus detection in V1 after extensive practice. Interestingly, these 

improved levels of stimulus detection strongly correspond to the immediate area of stimulation, 

with surrounding areas left indifferent when stimulated unless previously trained for 

microstimulation there (Doty, et al., 1956; Doty, 1965; Bartlett &  Doty, 1980). Ni et. al. (2010) 

showed similar results with V1 microstimulation. Animals could always easily detect strong V1 

stimulation, but when the stimulation was relatively week and near detection threshold, 

improvement could be seen over time. Figure 4a shows the monkey could not initially detect 

stimulation trains of 50µA but over the course of about 10 days of training, detection thresholds 

dropped to 6µA. This improvement was primarily seen when stimulating in the same 3mm x 3mm 

area over multiple days with animals that already had extensive training with the task. Figure 4b 

demonstrates the detection thresholds when stimulating 10mm away from the trained stimulated 

area. While some generalization can be detected, thresholds were still high and multiple training 

sessions were required to reduce the threshold (Ni &  Maunsell, 2010). This threshold training 

effect was also seen when stimulated areas of area 3a of the somatosensory cortex in multiple sites 

only a few mm away (London, et al., 2008).  These learning effects remained present even in the 

absence of stimulation in that area for over a year (gap in the data in figure 4b).  
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Figure 4. Effects of training to detect microstimulation of V1.  

(A) Threshold current needed for behavioral detection of stimulation of a small 3mm x 3mm region in 

V1 as a function of time over the course of many days. (B) After training the site in A, electrical 

stimulation at a distant V1 site required retraining to achieve low thresholds. Thresholds were stable for 

over a year without further training at this site. (C) After training to detect electrical stimulation at the 

site in A, visual stimuli detection at the corresponding retinal location was impaired with thresholds far 

above the normal range (marked by the thin horizontal band), but gradually returned to normal after 

practice. (D) Retraining with visual stimuli at site A did not improve visual detection at site B, but 

improved after practice with visual stimuli in that retinal location. The horizontal band marks the range 

of normal visual thresholds for this site. Adapted from (Histed, et al., 2013; Ni &  Maunsell, 2010). 
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The fact that training to detect microstimulation to lower detection thresholds is similar to 

training to detect a novel perceptual stimulus suggests that the cortex treats microstimulation like 

a new natural stimulus. This improvement over tens of thousands of trials is unlikely to be caused 

from the animal simply discovering that the stimulus is associated with the reward. It is more likely 

that this gradual improvement is from the subjects slowly acquiring the ability to perceive the 

stimulus, like eyes adjusting to the dark. This could be brought about in two ways. First, detection 

may require a set number of neurons to be activated through stimulation, and with training, the 

intrinsic neuronal properties of neurons in that area are altered to be more excitable to repeated 

stimulus. Alternately, the number of neurons activated by microstimulation does not change 

directly, however the synaptic connections to those neurons are altered to make them more 

sensitive to the spatiotemporal pattern of activation from repeated microstimulation (Histed, et al., 

2013). This synaptic modification rather than neuronal excitability is supported by studies in rat 

behavioral thresholds for detecting functional connectivity between neurons in regions of 

stimulation (Rebesco &  Miller, 2011). Additionally, improvement in microstimulation detection 

in V1 has been coupled with a profound, yet selective impairment of visual detection of natural 

stimuli in the receptive field of the stimulated area. Figure 4c & d show the thresholds for detecting 

visual stimuli after microstimulation training is ~5 times normal levels. These increases in 

threshold were localized to the stimulated area, with surrounding areas threshold left unaffected. 

Luckily, these increased thresholds for detection could be returned to normal levels with repeated 

training with actual visual stimuli (Ni &  Maunsell, 2010). The fact that the effect persisted until 

revered with non-invasive measures shows that the threshold increase was not due to tissue 

damage. This reciprocal relationship between visual and V1 microstimulation detection suggests 

that learning does not involve a simple increase in excitability of V1 which would raise sensitivity 
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to both stimuli, but a rewiring of limited cortical circuitry to favor microstimulation over visual 

stimuli, until trained otherwise. 

 

The idea that the brain is predisposed to process particular spatiotemporal patterns of 

activity suggests an interesting dilemma for utilizing microstimulation of the primary sensory and 

motor cortex in brain computer interfaces. Unless used in an area where the electrical stimulation 

applied is adequately similar to the natural activity patterns of the stimulated area, it may create a 

decrease in actual sensory perception in order to increase perception for microstimulation. This 

primarily affects microstimulation’s prospects as a rehabilitation tool if it cannot be pair with a 

natural movement or natural stimulus. On the other hand, it is reassuring that the brain can readily 

adapt to this novel and foreign sensory perception, incorporating it into its neural circuitry and 

improving detection over time.  

1.5 EXPERIMENTAL AIMS 

A primary goal of this dissertation is to evaluate various aspects of current brain-computer-

interfaces, how they respond under closer scrutiny, and to understand the mechanisms behind their 

performance. We have three specific Aims: 

 

Aim 1. Measure the response time to microstimulation of the primary somatosensory cortex  

To effectively incorporate microstimulation as a feedback modality, we must first understand its 

strengths, shortcomings, and how well it compares alternative feedback modalities. In Chapter 2, 

we sought to demonstrate that microstimulation could be utilized quickly enough to affect a 
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movement in progress. The goal of Chapter 2 was to quantify how quickly a monkey could respond 

to a microstimulation cue mid-motion compared to visual and tactile stimuli in order to gauge 

microstimulation’s effectiveness as a feedback modality.  

 

Aim 2.  Quantify the kinematic information contained in Local Field Potential and Multi-

Unit Activity of the motor cortex 

To develop better decoding algorithms for BCIs, we must first understand how to model the 

information contained in the recorded signals. In Chapter 3, we used regression and mutual 

information analyses to study how Multi-Unit-Activity (MUA) and Local Field Potentials (LFPs) 

encode various kinematic parameters during reaching movements. We then applied position, 

direction, speed, and velocity models (and combinations thereof) to MUA and LFP activity to 

better understand the information contained in each signal modality. 

 

Aim 3. To tightly regulate and correct stimulus onset with the Real-Time system timing 

Visual, tactile, and microstimulation stimuli each require a variable amount of time between when 

a signal is sent to turn on a stimulus and when that stimulus actually turns on. We designed devices 

to regulate these system lags so that timing characteristics of neural and behavioral responses could 

be assessed with minimal error. Chapter 4 explains how to construct and use the custom equipment 

for the behavioral rig and analyze the system signals to quantify lag associated with the visual, 

tactile, microstimulation, and Phasespace systems.   
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2.0  COMPARING TEMPORAL ASPECTS OF VISUAL, TACTILE, AND 

MICROSTIMULATION FEEDBACK FOR MOTOR CONTROL 

2.1 ABSTRACT 

Current brain-computer interfaces (BCIs) rely on visual feedback, requiring sustained visual 

attention to use the device. As BCIs improve, it increases the need for an effective way to provide 

quick feedback independent of vision. Tactile stimuli, either delivered on the skin surface, or 

directly to the brain via microstimulation in somatosensory cortex, could serve that purpose. We 

examined the effectiveness of vibrotactile stimuli and microstimulation by using a fundamental 

element of feedback: the ability to react to a stimulus while already in action.  In human and 

monkey subjects, we found response to tactile cues was faster than visual cues. However, monkey 

response to microstimulation was the slowest of the three modalities.  The temporal aspects of 

feedback are an important design constraint that should be included when designing alternative 

forms of feedback for brain-computer interfaces. 

2.2 INTRODUCTION 

Cortically controlled brain-computer interfaces (BCIs) were first demonstrated over ten years ago 

in humans and monkeys (Nicolelis, et al., 2003; Kennedy, et al., 2004; Suminski, et al., 2011). BCI 

control has been demonstrated in sophisticated behaviors such as cursor control (Jarosiewicz, et 

al., 2013; Musallam, et al., 2004; Li, et al., 2011; Gilja, et al., 2012; Kim, et al., 2008; Mulliken, 
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et al., 2008), self-feeding using a robotic arm (Hochberg, et al., 2012; Carmena, et al., 2003; 

Hochberg, et al., 2006; Velliste, et al., 2008), and the voluntary control of paralyzed muscles 

(Moritz, et al., 2008; Pohlmeyer, et al., 2009; Ethier, et al., 2012). While much has been 

accomplished, there is still room for improvement as we strive to achieve performance comparable 

to natural movement. One obstacle to more natural performance is that most current BCI 

paradigms rely on vision as the sole source of feedback.  

 

Similarly, human subjects who have lost proprioception and touch and who must rely 

solely on vision can still move, however it requires great concentration and produces movements 

that are slow and inaccurate (Ghez, et al., 1995; Sainburg, et al., 1995; Cole, 1995). In able-bodied 

individuals, certain actions, like grip force when picking up an object, are controlled largely under 

non-visual feedback modalities. Next-generation BCIs will attain a higher degree of control once 

they incorporate other relevant sensory modalities such as tactile and proprioceptive feedback 

(Weber, et al., 2012; Suminski, et al., 2011). 

 

Numerous studies have shown that tactile stimuli can improve performance in a wide range 

of tasks (Prewett, et al., 2006; Prewett, et al., 2012), including driving (Scott &  Gray, 2008), 

stimulus detection reaction time paradigms (Forster, et al., 2002; Diederich &  Colonius, 2004), 

and target indication in BCI paradigms (Chatterjee, et al., 2007). We extended the use of tactile 

stimuli to a new context: as a feedback modality to alter a reach in progress. We quantified the 

effectiveness of tactile stimuli as a feedback modality by comparing it to vision. 
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Microstimulation in primary somatosensory cortex (S1) activates many of the same cortical 

pathways as tactile stimuli and, while cortical microstimulation is only beginning to be applied in 

a BCI context (O'Doherty, et al., 2011), microstimulation in sensory cortex has a long history as a 

method of providing sensory information (Weber, et al., 2012; London, et al., 2008; O'Doherty, et 

al., 2009; O'Doherty, et al., 2011; Fitzsimmons, et al., 2007). Ample evidence suggests 

microstimulation evokes sensory effects that mimic the functional contribution of the stimulated 

area (Salzman CD &  Newsome WT, 1994; Romo, et al., 1998; Romo, et al., 2000; Romo, et al., 

2002; Tehovnik, 1996; Graziano, et al., 2002; Cohen &  Newsome, 2004; DeAngelis &  Newsome, 

2004; Tehovnik, et al., 2006; Liu &  Newsome, 2000). Microstimulation in humans has been used 

to induce visual (Brindley GS &  Lewin WS, 1968 ; Dobelle, et al., 1976), and tactile perceptions 

(Davis, et al., 1998; Kiss, et al., 2003; Ohara, et al., 2004). The effectiveness in microstimulation 

to provide sensory substitution leads us to expect that the reaction time to S1 microstimulation 

could be similar to that of tactile stimuli or even faster due to bypassing afferent pathways. 

 

Previous studies utilizing microstimulation during hand control or BCI control have all 

applied it when the subject was at a state of rest, whether it be before movement onset 

(Fitzsimmons, et al., 2007; Romo, et al., 1998; Romo, et al., 2000), or when the subject lingered 

over a target area (O'Doherty, et al., 2011; O'Doherty, et al., 2009). The emphasis of those studies 

was placed on elucidating the discrimination thresholds between two different stimuli and testing 

the robustness of the information channel. Subjects were never required to utilize the stimulus 

during a movement to change the movement plan; the very essence of feedback. In order for 

microstimulation to be used successfully as an artificial sensory feedback channel, it must be able 

to be delivered and interpreted quickly enough for it to be utilized during ongoing movements. 
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Here we compare the temporal aspects of three different sensory modalities as sources of 

feedback about movement. We defined the elemental form of feedback as the ability of a subject 

to change an ongoing reach when confronted with new sensory information. To this end, we used 

a modified center-out reach task in which the subject’s ongoing reach was occasionally interrupted 

by a stimulus cue that instructed an immediate change in reach goal. In both humans and monkeys, 

the response to tactile stimuli was faster than to visual stimuli. Surprisingly we found that the 

behavioral response to microstimulation in S1 was 25 percent slower than for visual stimuli. These 

results set a realistic basis of expectation for feedback modalities in behavioral and BCI 

applications. 

2.3 MATERIALS AND METHODS 

2.3.1 Basic Experimental Procedures 

Human subjects were seated ~1m in front of a computer monitor so they could make unrestricted 

arm movements. Monkeys were seated in a primate chair; head-fixed with a modified halo system 

(Davis, et al., 2009) with the non-reaching arm loosely restrained. Monkeys sat in front of a mirror 

and performed the task in a virtual reality environment with the hand moving freely in the space 

behind the mirror. For humans and monkeys, hand position was represented by an onscreen cursor. 

Both humans and monkeys wore active motion capture markers (Phasespace, San Leandro, CA) 

on the index finger to record movements at 120Hz. Unrestricted hand movements occurred in a 

1m x 1m empty workspace with the virtual workspace centered on the reaching hand’s resting 
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position and reach targets adjusted to span a comfortable reaching range. Human reach distances 

from the center to the target were 25cm; monkeys 1 and 2 reached 12.5cm and 15cm respectively. 

2.3.1.1 Human Subjects 

Ten subjects (6 women, 4 men, ages 20-32 years) participated in the experiment. Participants gave 

informed consent before the start of the experiment and conformed to the guidelines of the 

University of Pittsburgh Institutional Review Board. Subjects trained until proficient (>70% 

success rate for redirect trials) over 1-2 short training sessions. Customized timing parameters were 

calculated for the subject to efficiently sample the entire reach span during the redirect task. The 

data used for analysis were collected during a final session of 1000 trials. To ensure that there were 

not ongoing learning effects that improved response times, two subjects participated in additional 

long sessions. Their response times improved between the training session and first long session 

then remained consistent in subsequent long sessions. Thus we used the first long session for all 

subjects. 

2.3.1.2 Non-Human Primate Subjects 

Two adult male Rhesus monkeys, 1 and 2 (Macaca mulatta, 8.4 and 10.4 kg) participated in this 

study. All animal procedures were reviewed and approved by the University of Pittsburgh's 

Institutional Animal Care and Use Committee, in accordance with US Department of Agriculture, 

International Association for the Assessment and Accreditation of Laboratory Animal Care, and 

National Institutes of Health guidelines.   
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Figure 5. Experimental paradigm.  

(a) Task configuration showing center start target (green), potential reach target (gray), and instructed 

reach target (yellow). The subject moved the hand to position a cursor on the target. Mid-reach redirect 

cues were given via vibrating motor, a blue circle, or microstimulation of S1. (b) Sample horizontal 

hand trajectory across time during a direct reach task (black dashed line) and a redirect task (solid blue 

line) with the go cue represented at time 0. Targets illustrated represent events from the redirect task, 

however target presentation during the direct reach task was identical up to onset of the redirect cue 

(blue). Position of the hand is marked at the redirect cue onset (°) and moment of reach inflection (•). 

(c) Horizontal hand velocity of the direct reach and redirect tasks. Response time to the redirect cue was 

measured as the time elapsed between redirect cue onset (°) and moment of reach inflection (•). 



 21 

2.3.2 Behavioral Tasks 

Our main behavioral task was a redirect task (described more fully below) in which a stimulus 

presented during an ongoing movement signaled a change in the goal location. The redirect task 

was randomly interleaved with a classic center-out reaching task, here called the direct reaching 

task. Our main quantification was the response time to the redirect stimulus, which indicates how 

rapidly a subject can respond to a stimulus as a source of feedback about an ongoing movement. 

We also employed a pressured reaction time task (described below) to assess how quickly the 

subject can respond to a particular stimulus. 

2.3.2.1 Direct Reaching Task 

Seventy percent of the trials were of a control task, performing a prompt reach to one of 2 possible 

opposing targets (figure 5a). Each trial began when the subject moved their hand to position a 

computer cursor into a central target (green square). Two peripheral grey squares then appeared 

indicating potential reach targets (figure 5b). One of the targets briefly flashed yellow to indicate 

the intended reach target. Disappearance of the start target signaled the subject to begin reaching. 

Movement began within a window of 80-400ms after the go cue to penalize false starts or lingering 

on the start target. The hand reached promptly and directly to the intended target within 800ms, or 

else the trial failed. Human subjects were instructed to reach normally as if to pick up a glass full 

of water; unusually fast reaches lack the control needed to adjust trajectory mid-movement. After 

acquiring and holding still at the target, the subjects were rewarded with an audible tone (humans) 

and a juice reward (monkeys). Failed trials were punished with a 2s intertrial interval and 

occasional verbal feedback from the experimenter. 
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2.3.2.2 Redirect Task 

The redirect task was randomly interleaved with the direct task, occurring in 30% or less of the 

trials. Redirect tasks were identical to the direct reach task except that at an unpredictable time 

during the movement, a cue indicated that the other target had become the reach goal. This cue 

could be visual, tactile, or direct microstimulation of the somatosensory cortex. The visual redirect 

cue was a large blue circle appearing in the center of the screen. (figure 5a). The size of the cue 

was fairly consistent between human and monkey subjects (about 7-10° of visual angle). Tactile 

redirect cues were delivered via a vibrating motor placed on the upper arm, back, or hand. The 

microstimulation redirect cue was a pulse train delivered through an electrode in S1. The duration 

of all redirect cues was 400ms (figure 5b). The cue modality was randomly interleaved during each 

session, with 1, 2, or 3 modalities used in a given session. After onset of the redirect cue, the 

subject was required to reverse reach direction and touch the opposite target to receive their reward 

(figure 5b); if the hand touched the original reach target before changing direction, the trial would 

fail immediately. 

 

The response time was quantified as the time between the onset of the redirect cue and the 

time when the horizontal component of the hand velocity crossed zero (figure 5c). We selected 

this time as a definitive point in the hand trajectory where it was clear that the stimulus was being 

acted upon, and could not be mistaken for the deceleration of the reach to the original target. Note 

that the response time is not a classically-defined “reaction time”, which would be harder to 

measure in this task, but would be strictly shorter. The actual time of onset of the redirect cues 

were obtained by photo-transistor circuits placed on the monitors, accelerometers fixed to the 

vibrating motors, and by recording the output of the microstimulator. Lags between the time when 
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the computer commanded the redirect stimulus and when it actually occurred were 77ms ±14ms 

(visual), 11ms ±3ms (tactile), and <1ms (microstimulation stimuli).  

2.3.2.3 Pressured Reaction Time Task 

In monkeys, to elicit the fastest reaction time to a stimulus modality without interference from 

conflicting motor plans or cognitive demands, we used a delayed center-out task with the stimulus 

as the go cue. In this “pressured reaction time task”, one of eight possible targets appeared, and 

then after a delay period 300-2500ms (uniformly distributed), a “go” cue appeared. The go cue 

could be microstimulation, vibrotactile stimulation, or a visual stimulus. In visually cued trials, the 

start target disappeared. In tactilely cued trials, a small vibrating motor placed on the upper arm 

turned on until movement began. In microstimulation trials, a 400ms pulse train waveform was 

delivered through an electrode in S1 to initiate a reach. Ten percent of the trials were “catch trials” 

in which no go cue appeared, and subjects were rewarded for continuing to hold the start target. 

Like the direct reach task, the subject’s behavior was tightly constrained to penalize early starts 

and late responses. Early starts were defined as a reach that began prior to 80 ms after the go cue 

was delivered. At the start of the experiment, the subjects were allowed up to 1500 ms within 

which they could initiate the reach. That temporal window duration was decreased over the course 

of each session. Reaction times became faster and less variable as the temporal window tightened. 

Eventually within the session, the window became so short that the subject could not respond fast 

enough to succeed in the task. Reaction time was measured as the time from stimulus onset to 

movement onset. To remove lucky guesses and leisurely responses, the top and bottom 5% of 

reaction times were removed when calculating the mean. For training purposes we employed the 

pressured reaction time task without tight time constraints. In this case it is referred to as a stimulus 

detection task. 
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2.3.3 Behavioral Timing and Controls 

We used a variety of approaches to ensure that our human and monkey subjects made brisk, 

smooth, and goal-directed reaches. We adjusted task parameters to reduce the prospect of strategies 

like anticipatory “lucky guessing”, hesitations and lingering while awaiting a redirect cue, and 

early termination of trials. To this end, we distributed the timing of redirect cues so they occurred 

throughout the reach span. We titrated the trial type distribution, the punish time-out, and the 

reward volume (for monkeys) to promote smooth performance of the direct reach task. Figure 5c 

illustrates an example velocity profile. For the redirect task, we noted that the response time was 

not dependent on the position of the hand along the trajectory. 

2.3.4 Tactile Stimulation 

Tactile stimuli were delivered via a Jameco Reliapro 1.3V 8500RPM vibrating motor. This device 

consists of an off-axis asymmetric mass fixed in a plastic capsule. Adjusting the speed of the motor 

rotation controlled stimulus intensity. For human subjects, the motor was positioned on the back 

of the non-reaching hand. For monkey subjects the motor was placed on the upper arm of the non-

reaching hand, or on the back, to coincide approximately with the receptive field location for the 

area recorded in S1. The stimulus was set to an intensity sufficient to be readily detected (defined 

as >95% correct in a simple detection task – the pressured reaction time task described below), but 

without inducing an overt startle response. 
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2.3.5 Intracortical Microstimulation 

Monkey 2 was implanted with an acrylic-free titanium recording chamber (Adams et al., 2011) 

placed over intact skull above the somatosensory cortex. A 1 mm burr hole was drilled over the 

arm area of S1, guided by MRI images. Tactile receptive fields for multineuronal activity ranged 

from the bicep to the elbow of the non-reaching arm, and remained stable during the course of 

each session. Neural activity was amplified and played through a loudspeaker; multiunit responses 

were driven best by brisk brushing of the hair, rather than by constant pressure applied to the 

receptive field. During most sessions, the depth where neurons were first encountered was noted, 

then the electrode was advanced an additional 1 to 2 mm during a stimulus detection task until 

microstimulation was consistently reported. We infer that the 70 penetrations done over the course 

of our experiments were made into the gyral portion of S1 (area 1), as confirmed by the fact that 

audible neural activity tapered off when the electrode was advanced by 5 mm or less from where 

neurons were first encountered without any noticeable change in receptive field. 

Neurophysiological recording and intracortical microstimulation (ICMS) was accomplished with 

tungsten electrodes (FHC Inc., Bowdoin, Maine) positioned and manipulated with a Narishige 

single electrode drive (Narishige Co., LTD, East Meadow, New York).  

 

A computer-controlled pulse generator (A&M Systems, Carlsborg, WA) produced 

symmetric, biphasic, charge-balanced pulse trains with the cathode phase leading (Koivuniemi 

&  Otto, 2011; Koivuniemi &  Otto, 2012). Early in experiments, we designed microstimulation 

parameters using a range of amplitudes and durations (Katnani &  Gandhi, 2012). We used a simple 

stimulus-detection task in which the animal’s “go” cue was microstimulation. We defined 

threshold as the point at which the stimulation was detected on 93% of trials (figure 6a). This 
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detection paradigm was briefly recapitulated at the beginning of most sessions. We ascertained 

that 80 µA was clearly sufficient for detection (figure 6a), and thus used that amplitude in all 

experiments. Stimulus duration was evaluated in a similar fashion while the amplitude was set at 

90µA (figure 6). For all proceeding experiments, duration was set at 400 ms, well within the range 

of fast responses with high levels of detection (figure 6b). Stimulus frequency was set at 200 Hz 

(O'Doherty, et al., 2011) and never varied. Pulse widths were 200 µs per phase with 25 µs between 

phases.  

Before and after each training session, stimulus detection was evaluated to ensure peak 

performance was consistent with that of previous days. Microstimulation was paired with tactile 

stimulation when it was first introduced to the animal for several sessions, and during most 

subsequent sessions as a training aid. 

 

We opted to keep the microstimulation site as consistent as possible from one day to the 

next. Our experiment goal was to measure the fastest reaction times possible under different 

stimulus modalities. Since monkeys might not generalize as well as humans do, if the stimuli 

differed from one session to the next, there might be a learning effect as animals learn to use the 

new stimulus. We wanted to match stimulus conditions for all modalities over days. Thus the visual 

stimulus conditions were identical, we attempted to put the vibrotactile motors in the same 

location, and we inserted the electrode into the same burr hole each day. 
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A)             B) 

 

Figure 6. Microstimulation parameters. 

(a) Rate of success as a function of stimulus amplitude and duration (b) Reaction time (from stimulus 

onset to movement onset) as a function of stimulus amplitude and duration. Black dots represent tested 

stimulus parameters. White dot represents stimulus parameters chosen for the microstimulation redirect 

cue. 

2.4 RESULTS 

2.4.1 Human Study 

Our main experimental manipulation was a redirect task, in which a cue instructed the subject to 

alter a reach in mid-flight. The redirect cue could be tactile or visual. We compared the response 

times to stimuli of different modalities. The response time for tactile stimuli was significantly 

faster than for visual stimuli across the cohort of ten subjects (Paired t-test p<0.01) (figure 7a). 

The average difference between tactile and visual response times across all subjects was 12ms, 

with the greatest difference being 23ms, and the smallest being –5ms. For half the subjects, 
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response times to tactile cues were significantly briefer than for visual cues (p<0.05, two-tailed t-

test). For the other half, there was a trend toward a faster response to tactile stimuli that did not 

reach significance, or there was no difference between the two stimulus types (figure 7a). We 

found no subjects for whom the response to a visual cue was significantly faster than the response 

to a tactile cue. 

 

Figure 7. Response time depends on stimulus modality.  

(a) Mean human and monkey (right of dashed line) response times to visual cues (solid blue 

circle), tactile cues (hollow red square), and for monkey 2, microstimulation cues (solid black 

triangle). Bars indicate standard error. *: p<0.05; **: p<0.01 pairwise comparison for all 

modalities  
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A) 

 

B) 

 

Figure 8. Monkey response time depends on stimulus modality.  

 (a) Monkey 2 response time histogram for visual (blue), tactile (red), and microstimulation (gray) 

redirect cues. (b) Monkey 1 response time histogram for visual (blue) and tactile (red) redirect cues. 
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2.4.2 Monkey Study 

2.4.2.1 Visual and Tactile Redirect Task 

The redirect task with visual and tactile cues was conducted with two Rhesus monkey subjects. 

Both animals were over-trained on the tasks and produced movements with a bell-shaped velocity 

profile (Morasso, 1981) (figure 5c). Pooling data across multiple sessions (Monkey 1=24, Monkey 

2= 31), the mean response time for tactile cues was faster than for visual cues (188 ms versus 217 

ms for monkey 1; 190 ms vs 211 ms for monkey 2, p < 0.001, t-test) (figure 7 & 8). Tactile response 

times were also significantly faster in every individual session (figure 9). This difference in 

response times for the two modalities (21 and 29ms) is approximately as large as the largest 

difference in response times observed among the human subjects (23ms). 

The vibrating motors are audible. To control for the possibility the animals responded to 

the audio cues, we placed the stimulator on the rig beside monkey 2 so he could not feel it. After 

a brief training block, the monkey did respond to the sound of the stimulator, but the mean response 

time was 230 +/- 20ms, slower than for both the tactile and the visual redirect cues. 

2.4.2.2 Microstimulation Redirect Task 

We found that tactile cues can be used to influence behavior more rapidly than visual cues can. 

This makes sense based on the latency of neural responses in primary sensory cortices: 30-50ms 

for primary visual cortex (Maunsell JH &  Gibson JR, 1992) and ~15 ms for S1 (Sripati AP, et al., 

2006). The bulk of that processing delay is in sensory transduction. We reasoned that response 

times would be even faster if a signal were provided directly to the brain, since it would bypass 

afferent pathways. 
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We tested this hypothesis by using microstimulation in S1 as the redirect cue. We predicted 

response times would be faster than for tactile stimuli by about 15ms. After becoming proficient 

at the redirect task, monkey 2 was implanted with a recording chamber and given microstimulation 

via a single electrode. We stimulated within area 1 of the somatosensory cortex (S1) in the vicinity 

of quickly adapting neurons. When microstimulation was first introduced, it was trained in 

combination with the tactile cue for stimulus detection tasks and then redirect tasks. The animal 

began to make the association within the first day and became proficient at using only 

microstimulation after two weeks of daily training. Across 23 sessions, response times for 

microstimulation cues were significantly slower than for tactile redirect cues (263 vs 190 ms, p 

<0.001) and even visual redirect cues (263 vs 211 ms) (figure 8a). 

We considered whether extended experience with microstimulation might improve its 

latency. There was a decrease in latency over the first two weeks while the animal learned the task, 

but after becoming proficient (>80% correct for early redirect cues) no further improvements were 

noted. The difference in response time between modalities was in the same order and significantly 

different in each pairwise comparison for each day (figure 9a). 

  



 32 

A) 

 

B) 

 

Figure 9. Response time across days.  

(a) Mean reaction times and standard error for monkey 2 plotted across days with regression line for visual, 

tactile, and microstimulation redirect cues. Regression line slopes are not significantly different from zero. (b) Mean 

reaction times and standard error for monkey 1. Visual regression line slope is significantly different from zero. 

(p<0.01) Tactile regression line is not significant (p=0.12) 
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2.4.2.3 Critical Feedback Point 

If feedback is too slow, it cannot influence behavior. Another way to express the feasibility of a 

feedback modality is to identify a spatial critical feedback point beyond which the feedback arrives 

too late to alter a movement. For better (i.e. faster) feedback modalities, this critical feedback point 

occurs later in the movement. Success at responding to the redirect cue decreases to zero the closer 

the subject’s hand gets to the target. Figure 10 shows performance as a function of the hand 

position at the time the redirect cue is given for monkey 2. We define the critical feedback point 

as the position along the reach trajectory beyond which the animal has a <50% chance of 

successfully responding to the redirect cue. The critical feedback point for tactile and visual cues 

is at 37 and 38.5mm from the target, while for microstimulation, the critical is at 60mm from the 

target. Thus tactile and visual cues could provide actionable information until much later in the 

movement than could microstimulation cues. 

Figure 10 also makes evident that even when delivered sufficiently early in the reach, 

microstimulation cues were considerably less reliable than visual or tactile cues in eliciting a 

redirected reach (~80% percent correct in responding to a microstimulation cue presented just after 

the reach begins, versus ~90% for visual and tactile). Note that this difference in ideal performance 

does not account for the differences in the critical feedback point. Even if the baseline performance 

had matched the other modalities, the critical feedback point would have occurred earlier in the 

reach for microstimulation (55mm from the target)  
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Figure 10. Likelihood of success based on hand position at the time the redirect cue is given.  

Success Rates for binned trials every 3 mm. Lines are best logistic fit for visual (R2=0.98), tactile 

(R2=0.99), and microstimulation (R2=0.95) cued trials. The start target window extended to 83mm from 

the reach target. 

2.4.2.4 Pressured Reaction Time Task 

The response to microstimulation during an ongoing movement was slower than we 

predicted. Cognitive demands of the redirect task might impair the animal’s ability to respond to 

microstimulation. We simplified the task in order to measure very directly how rapidly 

microstimulation could be used to influence behavior. In this task, the pressured reaction time task, 
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the monkey was required to react as quickly as possible to a cue. A visual, tactile, or 

microstimulation stimulus served as the “go” cue in a delayed center-out reaching paradigm. This 

allowed us to measure reaction times to the stimulus without interference of conflicting motor 

plans or sensory feedback. Still, the animal’s response to microstimulation was slower than the 

response to tactile and visual cues (table 1). 

 

Table 1. Reaction times in the pressured reaction time task and response times in the redirect task 

Modality Response Time (ms) Reaction Time (ms) 

Visual 211 +/- 34 222 +/- 48 

Tactile 190 +/- 27 184 +/- 41 

Microstimulation 263 +/- 60 237 +/- 34 
 

2.5 DISCUSSION 

A crucial direction in the improvement of brain-computer interface performance is to provide fast, 

salient, informative feedback signals to BCI users (Weber, et al., 2012). In this study we compared 

the feasibility of three sensory modalities (vision, touch, and somatosensory microstimulation) as 

potential feedback signals to influence an ongoing movement. We defined a fundamental element 

of feedback as the ability of subjects to quickly adjust an ongoing movement once they were 

provided with new sensory information about their movement goal. While human and monkey 

subjects reached toward visible targets, cues were presented that indicated a change in the goal 

location. Our first main finding is that tactile cues could be utilized to change the ongoing reach 

more rapidly than could visual cues. This suggests that a tactile feedback-based BCI could enhance 

BCI performance, at least in temporal aspects, compared to devices that provide only visual 
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feedback. Of course, the tactile feedback would need to be provided on a body part not affected 

by the impairment. Our results indicate that such sensory transfer will not be a problem – our tactile 

stimulator was placed on the limb opposite to the reaching arm, and was behaviorally efficacious. 

We did not attempt to mimic the natural sensory experience that would arise during a reach. 

Instead we focused on the question of whether an abstract sensory signal can provide meaningful 

feedback. Several considerations motivated this design choice. First, in a BCI context, for a patient 

with sensory loss as well as motor impairment, mimicking the natural sensory experience is a 

prospect that will face many challenges (Weber, et al., 2012). Second, the visual stimulus was a 

large central flash of light – which does not resemble naturally occurring feedback – and we opted 

to compare tactile and visual stimuli as directly as we could.  

Response times to tactile and visual cues have been compared in other studies, for example 

(Forster, et al., 2002; Diederich &  Colonius, 2004), but in prior work the stimuli were used to 

indicate movement initiation, not to alter an ongoing movement. To our knowledge this is the first 

demonstration that tactile information can be used more rapidly than visual information to alter an 

ongoing movement. Considering that an ongoing movement can alter afferent sensory responses 

(Graziano MS, et al., 2002 ), this was important to verify. It is also important to have this 

information in a substantial cohort of subjects (n=10). It is clear that the feedback modality should 

be customized for each subject.  

 

Our second main finding is that microstimulation can also serve as an informative stimulus 

modality to alter an ongoing movement. Microstimulation in sensory cortical areas has a long and 

impressive history as a means of providing sensory information to the brain (Salzman CD, et al., 

1990 ; Romo, et al., 1998; Berg, et al., 2013 ). Microstimulation in motor areas rapidly causes a 
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movement (Fritsch & Hitzig, 1870; Schiller PH &  Sandell, 1983; Bruce, et al., 1985). We reasoned 

that microstimulation in sensory areas could be used to adjust an ongoing movement more rapidly 

than tactile stimulation, since microstimulation can bypass sensory transduction delays. We were 

surprised to discover that microstimulation affected behavior considerably more slowly than did 

tactile and visual stimuli. To verify this observation we delivered sensory cues in a pared-down 

paradigm in which the animal simply had to react rapidly to the cue. Behavioral responses to 

microstimulation were still 53ms slower than to tactile stimulation. 

2.5.1 Why is Microstimulation Feedback so slow? 

Our results indicate that the neural activity induced by electrical stimulation must undergo further 

neural processing before it can influence behavior.  Why might further processing be necessary? 

First, it may be that amplification by downstream processing is needed. If microstimulation were 

applied at an earlier stage in the sensory processing hierarchy, it might harness cortical circuitry 

to become amplified into a behaviorally meaningful signal. The somatosensory portion of the 

thalamus (the core of the ventral posterior lateral region) projects to areas 1, 2, 3a, and 3b, with 

the strongest projection going to 3b. Had we stimulated in the thalamus or in an “earlier” cortical 

recipient zone, the response to microstimulation might have been faster. Second, it might be that 

further processing is needed to refine microstimulation into a usable signal. Microstimulation 

presumably activates excitatory and inhibitory cell bodies, as well as fibers of passage (Butovas 

&  Schwarz, 2003). There may be a local competition among these processing units before cortical 

activity patterns can settle into “natural” patterns capable of influencing behavior. In support of 

the role of further cortical processing in amplifying and refining artificial signals, Horwitz and 

colleagues (Jazayeri, et al., 2012) elicited a behavioral response with optogenetic stimulation in 
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primary visual cortex. They speculated that these effects might not have occurred if they had 

stimulated downstream, thereby bypassing the amplification provided by subsequent cortical 

processing. 

However, these explanations do not seem adequate to explain all the phenomena. In our 

tasks the animals only had to use the presence of a stimulus to react; they were not required to 

interpret it in any naturalistic manner. Stimulus detection is known to be a faster process than 

stimulus discrimination (VanDerLubbe, et al., 2001). Also, when peripheral nerves are stimulated 

in humans, they report that the sensation feels “artificial” (Daly, et al., 2012 ) 

2.5.2 Perceptual Comparisons 

Many authors have shown behavioral effects of stimulating in sensory areas, including (Romo, et 

al., 1998; Romo, et al., 2000; Romo, et al., 2002; Liu &  Newsome, 2000; Ohara, et al., 2004; 

Koivuniemi &  Otto, 2012; Tehovnik &  Slocum, 2005). A question that underlies all these studies, 

not directly addressable using non-human subjects, is what perceptions are evoked by 

microstimulation in sensory areas?  If the evoked perception from microstimulating S1 were 

similar to those evoked by stimulating the skin with tactile stimuli, then after a task is learned for 

tactile cues, replacing those cues with microstimulation should produce only marginal drops in 

performance and engender a rapid understanding of the new stimulus. In studies stimulating area 

3b, monkeys were able to compare the frequency of a microstimulation stimulus to a tactile 

stimulus (Romo, et al., 2000). Additionally, this comparison task was trained in only a few days, 

presumably because somatosensory microstimulation “felt like” touch to the animals. In contrast, 

other authors stimulating in area 1 have reported extensive training was required for animals to 

affiliate microstimulation with touch (Fitzsimmons, et al., 2007). 
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When stimulating in area 1, we verified that extensive training is required. When the 

microstimulation was first introduced, the animal ignored it until it was paired with a natural 

stimulus. We first paired microstimulation and tactile stimuli using our detection task. Once the 

animal could react to microstimulation alone reliably in that simple task, we introduced 

microstimulation alone in the redirect task. Again, the animal would not react to the 

microstimulation until it was paired with tactile stimuli in the redirect task. After this new role for 

microstimulation had been learned, it was remembered in subsequent days of training without 

pairing. The perceptions for the two stimuli, microstimulation and tactile, were different enough 

that no perception-based association was made in either task. Only when the cues occurred 

simultaneously, with a direct side-by-side comparison, could the association then be made. 

2.5.3 Applications to BCI 

Our goal was to inform the design of feedback for BCIs. To provide feedback usable to guide an 

ongoing movement, a sensory modality should be informative and fast. Most current BCIs function 

solely under visual feedback. While vision is highly informative, it is slow. Our data suggest that 

a tactile-based feedback scheme might complement visual feedback by providing faster 

information. To our surprise, microstimulation-based feedback, at least in area 1, affected behavior 

more slowly than did tactile and visual feedback. We targeted area 1 for this study, since it is on 

the cortical surface, and thus is the most accessible target for a flat multielectrode array (Blackrock 

Systems Inc.). It may be that carefully designed patterns of microstimulation across a 

multielectrode implant (O'Doherty, et al., 2009) might provide richer, faster feedback than we 

could achieve with a single electrode. Microstimulation patterning might be designed to mimic the 

responses that are recorded during actual touch (Weber, et al., 2012). 
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Our study provides a strategy for the quantification of the effectiveness of temporal aspects 

of sensory feedback. It also highlights the need of careful quantifications like these; it cannot 

simply be assumed that microstimulation will yield a superior form of feedback in comparison to 

simpler approaches such as tactile and visual stimulation. 

  



 41 

3.0  DIRECTION AND SPEED TUNING OF MOTOR-CORTEX MULTI-UNIT 

ACTIVITY AND LOCAL FIELD POTENTIALS DURING REACHING MOVEMENTS 

3.1 ABSTRACT 

Primary motor-cortex multi-unit activity (MUA) and local-field potentials (LFPs) have both been 

suggested as potential control signals for brain-computer interfaces (BCIs) aimed at movement 

restoration. Some studies report that LFP- based decoding is comparable to spiking-based 

decoding, while others offer contradicting evidence. Differences in experimental paradigms, 

tuning models and decoding techniques make it hard to directly compare these results. Here, we 

use regression and mutual information analyses to study how MUA and LFP encode various 

kinematic parameters during reaching movements. We find that in addition to previously reported 

directional tuning, MUA also contains prominent speed tuning. LFP activity in low-frequency 

bands (15-40Hz, LFPL ) is primarily speed tuned, and contains more speed information than both 

high-frequency LFP (100-300Hz, LFPH) and MUA. LFPH contains more directional information 

compared to LFPL, but less information when compared with MUA. Our results suggest that a 

velocity and speed-encoding model is most appropriate for both MUA and LFPH, whereas a 

speed only encoding model is adequate for LFPL. 
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3.2 INTRODUCTION 

Primary motor-cortex (M1) is the major area for harnessing neural signals for brain-computer 

interface (BCI) control. In recent years, single-unit activity (SUA), multi-unit activity (MUA) and 

local-field potentials (LFPs) have been proposed as possible control signals for BCIs. While the 

relationship of SUA to various movement parameters during reaching movements has been 

extensively studied (Georgopoulos, et al., 1982; Flament & Hore, 1988; Fu, et al., 1995; Scott, et 

al., 1997; Moran & Schwartz, 1999; Paninski, 2004; Paninski, et al., 2004), that of MUA and LFP 

is not as well understood. Several groups have studied low-frequency LFP in the time or frequency 

domain, concluding that it encodes hand position, direction or velocity information (Mehring, et 

al., 2003; Rickert, et al., 2005; Asher, et al., 2007; Stark & Abeles, 2007; Bansal, et al., 2011; Liu 

& Newsome, 2006). Studies of high-frequency LFP in the frequency-domain have shown similar 

results (Rickert, et al., 2005; Liu & Newsome, 2006; Heldman, et al., 2006; Zhuang, et al., 2010; 

Zhuang, et al., 2010 ; Flint, et al., 2012; Bansal, et al., 2012). Comparisons of movement related 

information encoded by LFP to that encoded by either SUA or MUA have resulted in contradicting 

results: some studies have reported that the amount of information encoded by LFP exceeds that 

encoded by spiking activity, while other studies report less movement related information in LFP 

than in spiking. 

Several factors could account for this discrepancy. First, experimental paradigms differ across the 

various groups. Second, while some studies used averaged neural activity, others used 

instantaneous activity. Third, some studies decoded kinematics from neural activity, while others 

used mutual-information (MI) or linear correlation based analyses. Finally, each of the studies 

made different assumptions about the encoding model. 
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Here, we extend previous work by systematically studying tuning properties of LFP and comparing 

them to MUA tuning. Motor-cortical SUA has been previously shown to encode both direction 

and speed (Moran & Schwartz, 1999). We therefore considered tuning models which included 

direction, velocity, speed and their additive combinations. We used instantaneous neural activity 

and kinematics, as opposed to averaged data, to make our conclusions more relevant for real-time 

BCI use. We found that MUA exhibited prominent speed tuning, along with directional tuning 

which was especially evident in a small subset of the channels examined. Low- and high- 

frequency LFP were speed tuned. Some high-frequency LFP channels demonstrated directional 

tuning similar to that of MUA.  

3.3 METHODS 

3.3.1 Behavioral Task and Data Collection 

A Rhesus monkey was trained to perform center-out movements using the arm contralateral to the 

recording site. The animal was comfortably seated in a primate chair, in front of a computer screen, 

with one arm restrained and the other free to move behind the screen, thus obscured from the 

animal. An active marker system (Phasespace Inc, San Leandro, CA) was used to track its hand 

position in real- time. This 3D position was projected to a 2D plane and was used to render a cursor 

on the computer screen in real-time. At the beginning of each trial, a center target appeared and 

the animal had to move its hand so that the cursor location matched the center target. Then, after 

200-400ms, a peripheral target appeared. The animal reached so the cursor moved to the peripheral 

target, within ~800ms, or else the trial would fail. Successful trials were indicated with a water 
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reward. On some trials, the animal had to move its hand so the cursor followed paths of varying 

shapes and thicknesses. On most trials, the hand path was not constrained. Neural tuning did not 

seem to differ between these two tasks, so those data were combined for the analyses described 

here. 

After the animal had sufficient proficiency in the task, a 96-electrode silicon array 

(Blackrock Systems Inc.) was chronically implanted in the arm region of the contralateral motor-

cortex. All surgical procedures followed protocols approved by the University of Pittsburgh 

Institutional Animal Care and Use Committee. Post-surgery, the animal resumed performing the 

task while neural activity was recorded and stored for off-line analysis using a TDT system 

(Tucker-Davis Technologies, Florida). The 3D hand position (sampled at 120Hz) and relevant task 

information were stored in synchronization with the neural data. 

An RMS based threshold was used to obtain threshold-crossing event times for every 

channel. Here, we refer to these threshold-crossing events as MUA, but that does not necessarily 

imply these are multi-unit clusters of neural activity that are well separated from the noise floor. 

LFP activity was obtained by band-pass filtering channel voltage signals (10-500Hz), and was 

stored at a sampling rate of 1220Hz. Off-line, MUA threshold-crossings were converted to firing- 

rates by counting events in consecutive 100ms bins and dividing by the bin width. The LFP power-

spectral density (PSD) was computed at a temporal resolution of 16ms with a frequency resolution 

of 5Hz using the mem library (BCI2000 Project [19]), and then log-transformed. In the analyses 

presented in this paper, we used two frequency-bands: 15-40Hz (LFPL) and 100-300Hz (LFPH). 

These two bands demonstrate the two major types of modulation commonly found in LFP during 

reaching movements (suppression and facilitation relative to baseline, e.g. (Mollazadeh, et al., 

2011). Due to noise artifacts in the frequency band 28-32Hz, these frequencies were notch-filtered 
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prior to computing the LFP PSD. We chose the LFPL and LFPH frequency bands based on both 

single channel and channel averaged normalized time frequency plots. We found that frequencies 

in these ranges tended to demonstrate similar tuning (data not shown). Furthermore, R2 values for 

the 41-99Hz band (see sec. II-B) were significantly lower compared to the other two bands; hence 

we ignored it in further analyses. 

3.3.2 Tuning Models Estimation 

Based on previous studies, suggesting that SUA contains both directional and speed information 

(Moran & Schwartz, 1999), we considered the following 5 tuning models: 

y = b0 +bxdx +bydy +noise  (1) 

y = b0 +bxvx +byvy +noise  (2) 

y = b0 +bss+noise   (3) 

y = b0 +bxdx +bydy +bss+noise (4) 

y = b0 +bxvx +byvy +bss+noise (5) 

where: 

 y is a single-channel MUA instantaneous firing-rate in Hz, or a single channel 

log-transformed instantaneous LFP PSD averaged across a given frequency band 

 𝑑 = (𝑑𝑥, 𝑑𝑦) = (cos 𝜃 , sin 𝜃)  is the instantaneous direction of hand movement 

 𝑣⃗ is the instantaneous hand velocity 

 𝑠 =  |𝑣⃗|  is the instantaneous hand speed 

These models relate neural activity to instantaneous direction (eq. 1), velocity (eq. 2), speed 

(eq. 3), direction & speed (eq. 4), and velocity & speed (eq. 5). Together, they allow systematic 
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investigation of how MUA and LFP relate to direction and speed components in a multiplicative 

or additive manner. Prior to fitting the regression models, MUA firing-rate and kinematic features 

were spline-interpolated to match the LFP PSD sampling frequency. We also performed a lag 

analysis, where we fit the above models with varying lags between the neural and kinematic 

features. We considered lags ranging from causal values (-300ms) to non-causal values (+400ms), 

at 50ms steps. For most MUA channels, the best fits, as determined by coefficient of determination 

(R2) values, were obtained with causal lags in the range of -100 to   -150ms. For real-time BCI 

control, a single time-lag would likely be used for all channels; therefore we chose a causal lag of 

100ms for all channels (MUA and LFP), for all analyses in this paper. 

3.3.3 Mutual Information Estimation 

The models in eq. 1-5 explore the linear relationship between neural activity (MUA, LFP) and 

velocity, direction and/or speed. However, if neural activity is linearly related to velocity, then it 

might be non-linearly related to its magnitude (speed). We therefore explored non-linear 

relationships between neural and kinematic features, in the form of mutual- information (MI), 

which measures any dependency between two random variables, regardless of its functional form. 

MI was empirically estimated by: 

𝑀𝐼(𝑋; 𝑌) =  ∑ ∑ 𝑝(𝑥, 𝑦) log
𝑝(𝑥,𝑦)

𝑝(𝑥)𝑝(𝑦)𝑦∈𝑌𝑥∈𝑋        (6) 

where:  

 Y represents single-channel instantaneous neural activity 

 X represents instantaneous direction or speed 
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Empirical MI estimations are sensitive to data discretization; hence we chose the following 

discretization schemes. Given that the behavioral task used peripheral targets at roughly 8 regions 

around the center target, we discretized movement direction (θ) to 8 bins. To ensure similar entropy 

for direction and speed, speed was discretized to 8 bins as well. We used varying bin widths 

resulting in close to uniform marginal distributions for direction and speed. For Y, we used MUA 

spike counts in 100ms bins, or discretized LFP PSD for a given frequency-band. 

Empirical MI estimates tend to be positively biased (Treves & Panzeri, 1995). We 

estimated this bias by permuting the neural data and computing the MI to direction and speed 100 

times; then computing the bias as the mean of these 100 null MI values. This bias estimate was 

then subtracted from the MI estimate, for every channel and neural data type, in all the analyses 

described here. 

To determine an optimal discretization for LFP PSD, we computed the bias-corrected MI 

using 5-305 bins (in steps of 5). As expected, both the MI and bias increased with the number of 

bins, but bias-corrected MI estimates for all LFP channels and frequency bands tended to plateau 

for more than 25 bins. We therefore discretized LFP PSD using 25 bins. 

3.4 RESULTS 

3.4.1 Linear Tuning to Kinematics 

We first explored linear tuning of MUA and LFP to direction, velocity and speed using the 

regression models from sec. II-B. We fit the models using data from multiple recording sessions 

and results were qualitatively similar. We chose to present data from the two sessions with the 



 48 

largest number of trials. Figure 11 summarizes our findings in the form of R2 box-plots across all 

channels, one for every model and neural modality (MUA, LFPL, LFPH). It should be noted that 

R2 values are lower than those previously reported using averaged data, because we used 

instantaneous non-smoothed data, as would be the case in on-line BCI control. 
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Figure 11. MUA and LFP tuning model R2.  

Population tuning model R2 for the 5 models described in sec. 3.3.2: Direction (D), Velocity (V), Speed 

(S), Direction & Speed (D+S), Velocity & Speed (V+S). Box-plots describe the 5th, 25th,75th and 95th R2 

percentiles, as well as the mean (solid line) and median (dashed line) R2, across all channels with 

significant regressions. Percentages above the 95th percentile indicate the proportion of significant 

regressions among 87 channels. MUA demonstrates the strongest direction and velocity tuning. MUA 

speed tuning is prominent. Most LFPL and LFPH channels are speed tuned. Some LFPH channels show 

direction and velocity tuning, equivalent to MUA. LFPL shows the strongest speed tuning across the 

three modalities. 
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While previously published results indicated that SUA encodes direction or velocity 

(Moran & Schwartz, 1999; Stark & Abeles, 2007; Flint, et al., 2012), we found that MUA encoded 

speed better than either direction or velocity, possibly due to the fact that threshold-crossing events 

in MUA originated from multiple single-units with different directional tuning. The two models 

incorporating direction & speed (eq. 4) or velocity & speed (eq. 5) yielded the highest R2 values 

across MUA channels. These models were better than either speed, direction, or velocity only 

models, indicating that MUA encoded directional information which was independent of speed 

information. The differences between the mean and median R2 for all models indicated that the R2 

distribution has a long positive tail. Therefore, MUA tuning was heterogeneous, where a small 

subset of channels (~20%) encoded the kinematic features better than the other channels. 

We found that LFPL encoded only speed, with no evidence of directional tuning. The 

difference between the LFPL mean and median R2 was very small, suggesting that LFPL speed 

tuning was homogeneous, in the sense that most channels encoded speed equally well. Most LFPH 

channels contained prominent speed tuning, but in contrast to LFPL, a subset of channels (~20%) 

were also directionally tuned. 

Figure 11 also allows us to compare tuning across neural modalities. As expected, most 

MUA channels encoded direction and velocity better than either LFPL or LFPH channels. A subset 

of LFPH channels (~20%) demonstrated direction or velocity R2 values equivalent to the average 

MUA R2. Speed was best encoded by LFPL: the worst LFPL channels encoded speed better than 

~80% of MUA channels and ~70% of LFPH channels. 
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Figure 12. MUA and LFP MI comparison.  

MI between MUA, LFPL, LFPH and kinematics (direction and speed) is compared. MI between MUA 

and direction is the highest among the three modalities. MI between LFPL and speed is the highest 

among the three modalities. Compare to figure 11 where linear tuning is shown. 

3.4.2 Non-linear Tuning to Kinematics 

We used the information theoretic analysis described in sec. II-C to capture potential non-linear 

dependencies between MUA, LFPL, LFPH and direction or speed, beyond the linear tuning 

described in sec. III-A. Figure 12 shows box-plots of MI values across all channels and neural 

modalities. The results in figure 12 are qualitatively similar to figure 11. Direction was best 

encoded by MUA, followed by a subset of LFPH channels with weaker direction encoding. While 
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MI(LFPL;direction) was very low, MI(LFPL;speed) was higher than MI(MUA;direction). 

MI(MUA;speed) and MI(LFPH;speed) were similar across channels, both lower than 

MI(LFPL;speed). These results support the tuning analyses in sec. 3.4.1, suggesting that linear 

models adequately describe the relationships between MUA, LFP and speed or direction. 

3.5 DISCUSSION 

Multi-unit activity (MUA) and local-field potentials (LFPs) are two potential control signals for 

brain-computer interfaces. Recent studies relating MUA and LFP to various movement kinematics 

resulted in disagreement. Some studies suggest that LFP based decoding is equivalent to MUA 

based decoding, while other studies have found MUA based decoding to be superior. One possible 

reason for the contradicting results is the different tuning models used in those studies. Another 

reason could be data pre-processing: some studies used averaged data, others applied different 

filters to instantaneous data. The relative time-lags between neural data and kinematics also varied 

across studies. 

Here, we studied a rich set of MUA and LFP encoding models using instantaneous non-

filtered data, with a fixed lag, to closely match the type of data used in on-line BCI studies. We 

found that while MUA was directionally tuned, as previously reported, it was more strongly tuned 

to speed. Based on this finding, decoding models utilizing MUA would benefit from taking speed 

tuning into account. A velocity-speed encoding model (eq. 5) best represented MUA tuning in our 

data. MUA tuning was heterogeneous across channels: some channels encoded speed or direction 

much better than others. This suggests that BCI decoding might also benefit from some form of 

channel selection criteria. 



 53 

Of the models we tested, we found that our low-frequency LFP activity (LFPL) was driven 

predominantly by speed, and that LFPL activity across channels was highly correlated. High-

frequency LFP  activity (LFPH) encoded both speed and direction, although directional information 

was lower compared to MUA. LFPH activity across electrodes was more heterogeneous compared 

to LFPL: similarly to MUA, a subset of LFPH channels best encoded speed or direction. We 

determined that the most appropriate LFPL encoding model was a speed only model (eq. 3), 

whereas a velocity-speed encoding model (eq. 5) best described LFPH tuning.  

Our regression and mutual-information analyses showed similar trends for both MUA and 

LFP, suggesting that linear direction and speed models adequately capture the neural tuning in our 

data. Based on our findings, a hybrid MUA-LFP decoder, accounting for the prominent speed 

tuning in both neural modalities, should prove superior to velocity-only based decoders. 
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4.0  ACHIEVING PRECISE TEMPORAL CONTROL FOR TIME-CRITICAL 

EXPERIMENTS  

4.1 STATEMENT OF PURPOSE 

The experiments preformed in chapter 2 dealt with the precise timing of stimulus onset and the 

resulting behavioral response. The response and reaction times observed were below 500ms with 

significant behavioral differences between the stimuli being as small as 20ms. If the stimulus onset 

had any unmonitored temporal delays larger than 1ms, it could have a dramatic effect on the results 

obtained, not only artificially inflating the standard deviation, but also shifting the perceived mean 

response time for that one stimulus while not affecting another, thus changing the perceived 

difference in behavioral response all together. For instance, typical LCD monitors have a refresh 

rate of 60Hz, so a lag of 1-16ms can be expected depending on where in the display cycle the 

command to change the visual stimulus is given. This does not take into account any lags 

associated with rendering the new graphics. The purpose of this chapter is to explain how to 

account for and remove the following lags from data: 

 Graphics computer delay and monitor refresh via photodetector 

 Motor ramp-up time via accelerometer 

 Microstimulation stimulus onset delay via oscilloscope readout 

 Phasespace-to-Host-to-RT lag via internal sync signal 

Due to the close proximity of some of these monitoring devices to the subjects and the fragile 

nature of the equipment, general maintenance notes are also provided. All matlab functions 

mentioned by name are located on the accompanying flash-drive.  
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4.2 VISUAL DISPLAY ONSET SYNCED BY PHOTODETECTOR 

The LCD monitors in the behavioral rig have a refresh rate of 60Hz, meaning it will take 

1-16ms to display each instructed display change. This does not take into account any lags 

associated with rendering the new graphics. We used a phototransistor circuit to monitor precisely 

when these visual changes occurred so that the time of visual presentation could be synced with 

the Real-Time machine’s internal clock.  

 

4.2.1 Phototransistor Circuit 

 

Figure 13. Phototransistor circuit diagram. 

Component list: 

 Phototransistor: PNZ102-ND 

 Transistor: 2N3904 
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 Inverter/NOT gate: 7404 

 Resistors: 1kΩ & 50kΩ 

 3.3V AC/DC Adapter 

 

The circuit box is placed near the monitor with the phototransistor fixed directly on the monitor 

screen. The receptive frequency of the phototransistor should be chosen so that it responds to the 

visual wavelength of the monitor and becomes open when placed over a white area of the screen 

and closed when placed over a black area of the screen. When no light is present, the circuit in 

figure 13 allows current to flow freely towards the voltage out port (VOUT), which is connected to 

the Host DAQ card. An inverter was placed between the current source and VOUT to invert that 

voltage to 0 volts. When light shines on the phototransistor, the input to the inverter to VOUT 

becomes grounded, which inverted, makes VOUT go to 3.3V. The inverter was used in this circuit 

to stabilize the signal, making it a clear step in voltage and also to make 0 volts represent darkness 

and 3.3V represent the presence of light to avoid conceptual confusion. 
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4.2.2 Analysis of the Raw Photodetector Signal  

 

Figure 14. Photodetector signal. 

State transitions (horizontal green lines) indicate the time at which the visual display was changed. 

Following the transition, the raw Photodetector signal (blue) would indicate the change in visual display 

(horizontal black line).  

 

The behavioral paradigm displayed a white square that alternatively appeared and disappeared to 

visually indicate a change in state. The phototransistor was positioned over this square and reported 

when the state change was actually processed and performed. Figure 14 shows the processing of 

the raw photodetector signal using the function PhotoTransitions(). The function reviews the raw 

photodetector signal to look for alternations in the high/low status and syncs them to the 

stateTransistions field recorded in the .mat file (table 2). The function only assigns photodetector 
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times to states within a narrow window of the photo-transition event. In some cases, states are only 

present for 1ms and do not cause a photo-transition event (for instance state 3 in table 2). In this 

event, the photo-transition time was assigned to the first state change and the lack of a 

photodetector signal shift, indicated with a zero, is assigned to the following states. 

 

Table 2. Visual and motor onset times synced with real-time state transition times 

State 1 2 3 4 5 

RT Time 1276 1376 1576 1577 1777 

Photo Time 1361 1464 1661 0 1865 

Motor Time NaN NaN NaN 1589 NaN 

  

 

Figure 15. Visual stimulus onset lag. 

 

Due to the graphic processing and screen refresh rate, the disjoint between the command for a 

visual display and its actual onset can range from 40ms to 100ms with a mean of 77ms (figure 15). 
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Because of such large lags, any task that utilizes timing of visual stimuli must sync the visual 

display to the system time; otherwise any behavioral or neurological results linked with the onset 

of a visual display will be inaccurate by up to 100ms. 

4.3 VIBROTACTILE MOTOR ONSET (VIPER BOX) 

Tactile stimuli were delivered via a Jameco Reliapro 1.3V 8500RPM vibrating motor. The small 

pager motor was fixed in a plastic capsule and worn by the subject. During states in which tactile 

stimulation was administered, a signal from the DAQ card connected host machine sent out a 

voltage to the VIbrotactile Proprioceptive EmulatoR (VIPER) box, which amplified the signal and 

powered the motors. Once power was distributed to the motors, they ramped up and provided 

vibrotactile stimulation of an intensity determined by the input signal. In order to properly sync 

the tactile stimulation onset with the trail data, this ramp-up time was monitored with 

accelerometers attached to the motors and relayed the x, y, and z acceleration of the motors to the 

Host machine. 

4.3.1 VIPER Box circuit  

The VIPER box consisted of 2 systems: 6 operational amplifiers to control & power 6 motors 

independently and a power & signal relay system for the 2 accelerometers. Each operational 

amplifier consisted of the circuit in figure 16. Physically, each integrated circuit contained 2 

opamps; only 3 IC were required for the VIPER box. For each IC, an adjustable regulator was used 

to step down the 24V current from the outlet to 5V for the IC. 
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Figure 16. Motor operational amplifier circuit. 

Component list: 

 Operational Amplifier: TLV4112 

 Adjustable Regulator: LM117 

 Motor: Jameco Reliapro 1.3V 8500RPM vibrating motor 

 Resistors: 1kΩ & 300Ω 

 24V AC/DC Adapter 

 

The accelerometer used was a triple axis accelerometer breakout board (MMA7260Q) powered 

by 5.5V. Output from the x, y, and z accelerometers were relayed independently to the Host 

machine to be recorded. 
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4.3.2  Accelerometer Signal Analysis 

 

Figure 17. Raw accelerometer signal. 

Raw x,y, and z accelerometer signals (blue, green, and purple dots) with signal average (black). 

 

The function MotorLatency() was used to sync the motor onset times with the Real-Time clock 

using the accelerometer signals. The accelerometer was placed on the subjects with no regard to 

the orientation of the x, y, and z direction. While the raw accelerometer values for x, y and z may 

having distinct values from one another, the orientation could change throughout the day, changing 

the amplitude and baseline of the signal. In order to sync motor activity, the signals were averaged 

together to ensure the net disruption from the motor remained consistent throughout the session 
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(figure 17). The averaged signal was normalized by subtracting the mean signal amplitude across 

all periods that did not have motor activity. Now that the signal was centered on zero, the absolute 

value was taken, making periods of motor activity have a much higher value than periods with no 

motor activity (red points in figure 18). The processed signal was then smoothed to remove the 

extreme high and low values, and creating a plateau in the signal where the motor activity ramping 

up could clearly be seen (black points in figure 18). This smoothed signal was very consistent from 

session to session. When the activity level crossed a threshold of 0.175, it indicated the onset of 

the motor (Motor time in table 2 and blue star in figure 18). 

 

Figure 18. Processed accelerometer signal. 

Time 0 indicates the moment the motor was instructed to turn on. Unsmoothed normalized 

accelerometer signal (red) with smoothed accelerometer signal (black). Threshold level set at .175 (blue 

line) and a blue star at time when that threshold was crossed, indicating vibrotactile stimulus onset. 
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Figure 19. Tactile stimulus onset lag. 

The motor ramp up time for the tactile stimuli was very small and relatively consistent compared 

to the visual stimulus lag. Lags for vibrotactile stimuli ranged from 3ms to 25ms with a mean of 

11ms (figure 19). For time critical tasks, the lag is large enough to warrant monitoring; however, 

the lag is short enough that it can be relied upon to show up within the state that it is called in. 

 

4.4 MICROSTIMULATION AND SINGLE UNIT RECORDING SETUP 

The microstimulation and single unit recording system was setup to be easily transportable from 

rig to rig. With this in mind, the system could be used independently of the Host behavioral 
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programs and only interfaced with the host computer structure to record and sync data with events 

during a trial or to trigger microstimulation (figure 20). Listening to and recording single units 

could even be done with recordings saved onto an SD card and without the Host and Real-Time 

computers even being on.  

 

Figure 20. Single unit recording and microstimulation setup. 

Microstimulation signal began with a trigger signal, triggering the waveform generator and then 

progressing to the recording electrodes (red arrows). Recorded activity was sent through a 60Hz noise 

reducer before being split between an oscilloscope for visualization, speakers and the Host computer to 

be saved to file (black arrows). 

 

Components: 

 Noise Reducer: Humbug 50/60Hz Noise Eliminator 

 Microstimulation waveform generator:  A-M Systems Model 2100 Isolated Pulse 

Stimulator, 110V, 60Hz 

 Amplifier: A-M Systems 1800 Microelectrode AC Amplifier 

 Oscilloscope: Instek GDS-1062A Digital Storage Oscilloscope, 60 MHz 
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To trigger a microstimulation event, the Host computer sent out a binary TTL pulse to the 

trigger port of the waveform generator. While the waveform generator is able to generate entire 

trains of pulses, it can also generate single pulse waveforms allowing for a pseudo Host control 

over stimulation frequency up to 500Hz. Once the pulse is generated, the signal travels through 

the amplifier unmodified, then into the head stage and recording electrodes (Figure 20). While the 

amplifier is in “Stimulus Mode”, signals will still be recorded and sent through the output port to 

monitor microstimulation signals, but neural activity recording quality is drastically reduced. 

When recording neural activity, the signal travels through the amplifier to a 60Hz noise reducer 

and then to an oscilloscope for visualization. The signal is also split to speakers for audio 

monitoring of the signal. This signal can also be sent to the DAQ card on the Host machine in 

order to record the signals to file. For experiments that do not require recording signals, an easy 

method for quickly setting up a recording using the Host behavioral software is to plug the speaker 

output into one of the two Photodetector inputs in the DAQ by either using a spare BNC cable 

from the Photodetector and plugging it in at the junction of the speaker and the oscilloscope, or 

simply unplugging the speaker and attaching alligator clips to the audio plug and running the wires 

to the DAQ. The signal will be recorded on the secondary Photodetector channel (figure 21) and 

be visualized on-screen. The microstimulation signal itself was analyzed similar to the vibrotactile 

signal in section 4.3.2 using the matlab function MicrostimLatency(). The lag between triggering 

a microstimulation event and recording the output of that event on the Host machine was less than 

1ms (figure 22). Because of this, during tasks where microstimulation parameters are consistent 

across the session, the user does not need to record the microstimulation signal in order to properly 

sync the signal onset with the Real-Time computer time as long as the onset time of the state that 

triggers the microstimulation is known.  
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Figure 21. Raw microstimulation signal. 

 

Figure 22. Processed microstimulation signal. 

Time 0 indicates the moment the microstimulation was triggered. Unsmoothed normalized 

microstimulator signal (red) with smoothed microstimulation signal (black). Threshold level set at .175 

(blue line) and a blue star at time when that threshold was crossed, indicating microstimulation stimulus 

onset. 
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4.5 PHASESPACE-HOST-RT COMMUNICATION LAG 

When the Phasespace motion capture system records hand position, it sends those positional 

coordinates to the host machine, however the Phasespace machine runs on a different internal 

clock than the Real-Time machine that the behavioral paradigm runs on. In order to sync 

Phasespace marker data temporally with events happening in the behavioral paradigm a sync signal 

is introduced. Analyzing these signals compared to how the behavioral paradigm would react in 

an ideal world reveals some minor system lag that should be kept in mind when analyzing time 

critical data (figure 23). 

 

Figure 23. Sync signal and coordinate transmission diagram. 

 (1) The sync signal is sent from the Real-Time machine to Phasespace and paired with a coordinate 

sample. (2) Phasespace sends the sync signal and coordinate pair to the Host machine to be recorded. 

(3) The Host machine then sends the coordinates to the Real-Time machine to evaluate state conditions 

and advance the trial. (4) Updated State conditions are sent back to the Host machine to be recorded.  
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While the time between the sync signal being sent from the RT machine to the Phasespace 

machine is negligible, the time it takes for the coordinates to be sent to the Host machine and then 

back to the RT machine where the coordinates are analyzed is not. There seems to be a 15ms lag 

between when a Phasespace marker is reported to have entered a target window to when the RT 

responds by advancing to the next state. This causes a disjoint between the Phasespace marker 

times and the stateTransitions field in the .mat file structure. 

 

The bottom line is that if you want to know when the hand moves to a specific location in 

space, say to touch a target, you must look at the raw data values under marker data; do not simply 

use the state transition time of the state that advances when that target is touched. There is a 

measurable lag between when a target is touched as reported by Phasespace and when the RT 

system responds to that touch. This is something to keep in mind when looking at timing properties 

of reaches in your analysis. 
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Figure 24. Sample coordinate trace with target crossing. 

A sample hand trance with actual Phasespace markers (dark blue dots) synced with the RT time and a 

smoothed trajectory (light blue line). Reach target is outlined in black. Enlarged blue dots represent 

samples before and after the hand entered the target. The labeled black square denotes when the RT 

system recognized the hand entering the target. It should be noted that this occurs 2 samples AFTER 

the initial sample enters the target boundary.   

 

To illustrate this, figure 24 shows a sample hand trajectory crossing a target threshold The 

Box shows the target window and the blue dots are raw samples. The first dot that appears inside 

the box should have triggered a change in state in the rig, however, the time at which a change of 

state is shown by the labeled black square. Looking at the raw data and keeping in mind that the 

target boundary is at -58mm (table 3) 
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Table 3. Raw phasespace marker samples crossing a target threshold 

X Y Z 

Sample 

Number Time  

-59.52  500.88  151.29 449074 817  

-58.73  500.72  151.36 449075 826  

-57.96  500.52  151.42 449076 834 

Time the state change should 

have occurred  

-57.23  500.32  151.47 449077 842  

-56.48  500.17  151.51 449078 851 

Time the Phasespace sync 

signal says it occurred 

-55.76  500.05  151.54 449079 859  
 

The raw data values of the markers show that the target was touched (ie crossing the 

threshold and having x > 58 and y > 508) at 834, however the file’s state transition time for 

touching the target after being synced with the system time using the sync signal is reported at 

851. This lag varies from trial to trial, but is about 10ms 90% of the time as seen in the histogram 

of figure 25.  

 

Figure 25. Histogram of time differences between synced marker samples and actual threshold 

crossings. 
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What is happening is a Phasespace marker point is being recorded as for example, 100ms 

into the trial but isn't actually making it to the RT machine to be used for state analysis until 120ms 

into the trial, thus causing a state transition to be recorded at 120ms even though the data marker 

being used was captured at 100ms. This makes it difficult to sync the raw Phasespace with the 

state transitions, which may be important for reaction time studies. However, the transitions of 

states, while being important for trying to recreate a trial precisely using only the .mat file, are not 

directly useful for data collection and analysis. 

At any given moment, the marker position, neural recording, photodiode reading, and 

accelerometer are recorded precisely for that specific time point. The only thing that has lag is 

RT's ability to make decisions based on that data and record that decision at the same time point 

that the data was received (which is to be expected). This means that while you can't rely on the 

state transition times to sync up exactly, any state transitions that require precise syncing already 

have another sync setup already. If something is displayed, it is synced with the photodiode on the 

screen; if a motor is turned on, the accelerometer reading is recorded, etc. While this isn't 

detrimental to the data collected or the rig setup, it is something to keep in mind when writing 

analysis code. State transitions cannot be relied upon to indicate accurate assumptions of 

Phasespace data. 

 

The functions used to analyze this data were as followed: 

FormatPhasespaceData(): to analyze the Phasespace signals based on the sync parameters  

encoded in the .mat structure. 
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PhasespaceTransitionSync(): Uses the raw marker samples to manually sync with the 

threshold crossing of the first target and aligns the rest of the data accordingly. 

 

trialview(): A helpful function that displays all the timing information of a trial as well as 

hand windows, hand trajectories, raw and smoothed samples, and horizontal & vertical 

velocities. 
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5.0  GENERAL DISCUSSION 

The central theme behind this dissertation was to access the current capabilities of certain aspects 

of BCIs and provide a clearer view on how those aspects can be better utilized in the future. We 

trained two monkeys and ten humans to perform a stimulus response task mid-movement in order 

to access the effectiveness of visual and tactile stimuli given as feedback cues (Chapter 2). By 

looking at how rapidly the subjects responded to the cues, we concluded that tactile stimuli could 

be utilized significantly faster than visual cues. Additionally, the response times between human 

and monkey were well within the same physiological range. Monkey response times were a little 

bit faster on average, presumably due to experience with the task. We then took the experiment to 

the next level by stimulating directly into the brain. We microstimulated in area 1 of the 

somatosensory cortex, one of the major cortical input areas that signals from tactile stimuli must 

pass through in order to be perceived. The monkey was able to respond to this microstimulation 

while in the middle of a reach and could respond fast enough to change an existing motor plan. 

One unique feature about this task is that the monkey was under pressure to respond to quickly 

avoid the object that was initially its target. This is promising for using microstimulation as a 

feedback source. Unfortunately the average response time to microstimulation stimuli was 

significantly slower and less reliable than to tactile or even visual stimuli. Our results show that, 

even on a day-to-day basis, microstimulation consistently induced the slowest response times of 

the three modalities. The utility of microstimulation stimuli also dropped at a much faster rate than 

the other modalities the closer the reach was to completion. This implies that while 

microstimulation can be used to convey binary sources of information, it should not be relied upon 

to deliver quick, clear feedback. Instead, more focus should be placed on using microstimulation 
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to convey richer data consisting of more than one bit of information in a setting that is not time-

critical. 

To differentiate the roles and efficacy of multi-unit activity (MUA) and local-field 

potentials (LFPs) as control signals for brain-computer interfaces, we studied a rich set of MUA 

and LFP encoding models over non-filtered data. We then determined which of those models best 

fit the data received from each of these control signals (Chapter 3). We found that while MUA was 

directionally tuned, as previously reported, it was more strongly tuned to speed. Additionally, this 

activity was heterogeneous across the electrodes, with some channels providing more speed and 

directional information than others. Low-frequency LFP activity (LFPL) was driven predominantly 

by speed, with activity highly correlated across channels. On the other hand, high-frequency LFP 

activity (LFPH) encoded both speed and direction, although directional information was lower 

compared to MUA. Like MUA, LFPH activity across electrodes was more heterogeneous than 

LFPL. We determined that the most appropriate LFPL encoding model was a speed only model, 

whereas a velocity-speed encoding model best described LFPH tuning. Based on our findings, a 

hybrid MUA-LFP decoder, accounting for the prominent speed tuning in both neural modalities, 

should prove superior to velocity-only based decoders. 

5.1 DIRECTION OF BRAIN-COMPUTER-INTERFACES 

The prospects for brain-computer-interfaces look very exciting in the near future. Cursor control 

has been obtained with a variety of recording methods like EEG (Onose, et al., 2012), ECoG 

(Rouse, et al., 2013; Ashmore, et al., 2012), LFP (Flint, et al., 2012), and multi-electrode arrays 

(Li, et al., 2011; So, et al., 2012). With the needs for rudimentary control satisfied, the technology 
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has overcome that entry-level barrier of obtaining at least some degree of multi-purpose control 

and is starting to branch off into different avenues of research like controlling robotic limbs, 

incorporating different modes of feedback, applications for better communication, aiding in 

rehabilitation, etc.; much like inventing the first smart phone paved the way for the creation of a 

wide variety of smart phones available in the market today. It has reached a point where results 

make the news and begin to create a demand in select patient populations.  

Now the emphasis seems to be shifting toward completing the information loop from brain-

to-computer-to-brain. Currently this is being attempted by combing previously perfected 

techniques, like BCI cursor control with microstimulation detection studies. While this doesn’t 

provide a wealth of scientific information beyond proof of concept that two separate working parts 

also can work together, this is an intriguing and necessary step in the scientific process. First of 

all, it combines numerous research areas into one neat package, making it easier to draw in public 

attention, thus allowing more funding to be allocated with the involved areas of research. Second, 

it is a good tool to reveal unique conflicts involved with combining two technologies from different 

fields of BCI. One example is microstimulation artifacts interfering with a BCIs decoding ability. 

While microstimulation is applied, recordings from nearby electrodes for BCI control pick up the 

microstimulation artifact which distorts recorded activity, lowering quality of control. Because 

LFP is more consistent across the brain area and less sensitive to individual spikes in activity, it 

may be a preferable recording method when incorporating these two technologies since the artifact 

can be more easily removed using filters. This is in contrast to multi-unit recordings where 

microstimulation stimuli will be incorporated with threshold crossings and also masks naturally 

occurring spikes at the same time across multiple electrodes and multiple artificially synchronized 

firing events which need to be removed, thus creating periods of no input during decoding. Lastly, 
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being in the limelight and having one cutting-edge technology hinge on the reliable success of 

another cutting-edge technology, exposes the limitations of both technologies and provides 

inspiration for what needs to be done to improve those technologies independently.  

 

5.2 FUTURE RESEARCH IN MICROSTIMULATION 

As microstimulation is increasingly applied as an information channel, the need for a reliable, 

easily understood stimulus remains (Chapter 2). Currently microstimulation, transcranial magnetic 

stimulation, and similar modalities are being combined with BCI controlled paradigms to achieve 

proof of concept confirmation that the two technologies can be combined under one paradigm. As 

the appeal of being first at combining these two technologies subsides, research will begin focusing 

on improving the performance of those technologies, particularly in the field of microstimulation, 

much like the emphasis on different encoding models to achieve greater prediction and control 

with multielectrode BCIs. Based on my research, this means elucidating the relationship between 

stimulated area, frequency, pulse waveform, and pattern of somatosensory microstimulation with 

how quickly and successfully it can be detected.  

A key factor in advancing cortical microstimulation will be in eliciting natural looking 

neural activity so additional cognitive processing does not need to be done in order to utilize the 

signal. This means that the method of stimulation will need to evolve from an instrument of mass 

excitation that activates axons, excitatory, and inhibitory neurons indiscriminately. Some degree 

of selectivity could be achieved through using an asymmetric yet charge balanced waveforms to 

activate cell bodies but not axons (Wang, et al., 2012). Another option for increased selectivity is 
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through the adaptation of optogenetics to stimulate the somatosensory cortex. Here specific types 

of neurons can be tagged and then activated via light through a fiber-optic cable. An additional 

advantage of this method is the decreased risk of damaging the stimulated tissue. While being able 

to selectively stimulate a specific population of neurons, currently this method is limited by only 

being able to activate a small percentage of its target population. This may hinder stimulus 

perception for use as a fast acting feedback modality, especially so far down stream in the tactile 

sensory processing chain, where numerous neurons would have been activated from a single tactile 

stimulus.  

Due to the amount of processing already involved once reaching the cortex, it may be 

advantageous to stimulate peripheral nerves. For users of myoelectric prosthesis, who already have 

muscle-controlled command over their prosthetic’s movement, providing an artificial sense of 

touch through peripheral nerves would be safer and more appealing than direct cortex stimulation. 

Smaller amplitude stimulation closer to the cutaneous receptors, the original source of neural 

signals for tactile stimulation, could provide a more natural sensation than cortical 

microstimulation for a number of reasons. Being able to both understand and reproduce the 

patterns of activity is much easier at the receptor level than it is at the cortical level due to the 

signal being more based on the mechanical aspects of the receptor and less with the neural 

processing that has already been done. As a tactile stimulus is processed, the number of neurons 

involved with the signal increases with every synapse; like dropping a stone in a pond, the area 

disturbed increases with every second that passes. Trying to mimic tactile sensations with cortical 

microstimulation is like trying to go from calm water to instantaneously emulating the effects of 

the dropped stone 3 seconds after it was dropped without emulating the previous 3 seconds. It may 

not be impossible, but the task becomes increasingly difficult the further down the process that 
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you try to emulate because of the magnitude of factors involved. Stimulating closer to the receptor 

means it is more probably that one could stimulate the same amount of neurons in a similar fashion 

as what would have happened with a natural stimulus. Also, it goes without saying, for the chance 

to have some degree of touch emulated, surgery on the stump of a lost limb is much more appealing 

than brain implantation.  

5.3 FUTURE RESEARCH IN BRAIN-COMPUTER-INTERFACES 

Two of the largest confounds with commercializing BCIs today are the high level of 

invasiveness of the Utah array and the benefits gained from using a BCI. Arguably the best results 

with control have been obtained with multi-unit activity from multi-electrode arrays implanted in 

the cortex. Because the array is a foreign object penetrating the brain, the brain mounts a defense, 

coating the electrodes with glial cells and ejecting it from the tissue. This causes the recording 

quality of these arrays to degrade over a period of 6 months to 3 years with unpredictable levels 

of success and an increased level of infection. If an infection does occur, centimeters of brain tissue 

can be lost causing movement impairment and other problems. In return for taking these risks, BCI 

users can control a computer cursor, robotic arm, or spell out words on a computer screen. While 

this control is better than nothing, it is slow, shaky and painful to watch. Communication BCIs 

move along at 15 words per minute (Santhanam, et al., 2006). In other words, it would have taken 

13 minutes to copy this paragraph up to this point. Currently, the risk-benefit ratio is only appealing 

to those with only the most severe cases of immobility (quadriplegia) and for researchers seeking 

to further understand brain function or improve BCI decoding ability. With the advent of longer 
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lasting cortical recording devices for SUA and more specific cortical stimulation techniques, BCI’s 

will be able to offset increased invasiveness with greater performance and capability.  

The next steps in BCI research will be to deal with these problems. Each recording modality 

has a finite limit to the amount of information that can be obtained. As more advance decoding 

methods are created, they are beginning to hit against a wall of diminishing returns. Chapter 3 

clearly shows that different recording modalities contain different types of kinematic information. 

Future BCIs can capitalize on this by creating combination decoders that utilize multiple 

modalities of recording signals to improve performance. LFP signals could be used to monitor 

motor and premotor activity to identify different stages of a movement, (intention to move, 

initiation of the movement, adjustment of the movement, and completion of the movement), 

allowing for specific MUA decoding parameters pertaining to the current stage to be keyed up for 

enhanced decoding ability. ECoG could be placed over areas of the brain where the information 

gained is near the level of MUA to limit the invasiveness of the BCI implants while optimizing 

information extraction. Miniaturization of voltage sensitive dye recording could lead to a new 

recording modality for BCI. 

Commercially speaking, the short-term focus of BCI should be to incorporate minimally 

invasive techniques to a larger population like those with missing limbs through more direct 

advances in current prosthetics and function restoration. EEG signals are already being 

incorporated in myoelectric prosthetics; obtaining greater control through nerve cuffs and other 

limp implants would be a logical step in increasing the marketability of BCIs. For quadriplegics 

who have more to gain from cortical implants, using a less invasive modality such as ECoG arrays 

not only would be more appealing for long term use, but also easier to gain government approval. 

Although one hopes that the coming years will establish more experimentally precise and 
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commercially reliable tools for recording and manipulating neural circuitry, studies employing 

BCIs have already contributed much to the livelihood of the subjects involved, and their results 

will guide future work to further improve the quality of life for those suffering from limited 

mobility. For most researchers in our field, we dream that one day, future scientists will stand on 

our shoulders and not only restore lost function but improve upon it.  
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APPENDIX A 

FLASH DRIVE CONTENTS 

A Verbatim 8GB flashdrive was appended to this dissertation for the benefit of future Batista lab 

members who may want to revisit one of the projects that I have taken part it. 

Contents: 

 3D Wiimote Calibration 

 DIY Playstation Eye Tracker 

 Juicer Calibration VI 

 LabVIEW Tutorials 

 Matlab Functions described in this document along with  

o General Programming Functions 

o General Reach Analysis Functions 

o Redirect and Pressured Reaction Time Functions 

 Data Files including: 

o Example data for lag calculation of tactile, visual, and microstimulation 

o Raw Human Data 

o Compressed Monkey Data  
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