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The novel synthesis of p-phenylene vinylene dendrons utilizing a Horner-Wadsworth-

Emmons based approach is described.  The extended, linear π conjugation along all the dendron 

branches, a feature absent in most dendrimers used for light harvesting, was expected to lead to 

an efficient light-harvesting system by acting as a dendritic molecular wire between peripheral 

donor chromophores and a core acceptor.  To that end, nickel porphyrins were added to the 

periphery of the dendrons as preparation for inclusion in dye-sensitized solar cells.  The prepared 

dendron-porphyrin conjugates proved to be poor dyes.  This disappointing result is attributed to 

the use of nickel porphyrins which were found to undergo non-radiative decay, making them 

unsuitable for light-harvesting applications.  Changes to the system are proposed, from replacing 

the nickel with zinc within the porphyrins to the use of alternative chromophores, to better test 

the dendrons function as molecular wires. 
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1.0  AN INTRODUCTION TO DENDRIMERS 

Dendrimers are highly branched, tree-like macromolecules.1-4  Due to the fashion in which they 

are synthesized, they are monodisperse with well-defined structures.  Buhleier, Wehner, and 

Vögtle were the first to publish the synthesis of compounds that would later be classified as 

dendrimers.5  At the time, the compounds were simply referred to as the products of cascade- or 

non-skid-chain-like syntheses.  The term dendrimer is based on the Greek term dendros (tree-

like) and meros (part of).  Donald A. Tomalia et al. first used the term in their report of 

poly(amidoamines) (PAMAM) which they called starburst dendrimers,6 though they credit A. J. 

Vogel for coining the term.7   
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Figure 1.1. In modern terms, a dendron (left) and dendrimer (right) originally reported by Vögtle et al. as cascade 

molecules in 1978. 
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1.1 SYNTHESIS 

In addition to PAMAM, reports of other dendrimers were sparse early on, highlighted by 

poly(propyleneamine) (POPAM),5, 8, 9 and polylysine.10-12  All of these dendrimers were 

constructed using a divergent approach.  Divergent synthesis of a dendrimer is where the 

macromolecule is built starting from the eventual core unit.  It is functionalized with two or more 

reactive sites that are coupled with the new branched monomers.  These monomers are often 

masked with some protecting group which will be removed revealing additional reactive sites.  

The dendrimer is thereby synthesized layer by layer.  These layers are called generations.  As 

generations are added, the dendrimer grows from the central core outwards.   
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Figure 1.2. Some common dendrimers. 

 

PAMAM and POPAM are manufactured commercially using a divergent synthesis due to 

the ability to automate the repetitive steps of dendrimer growth and deprotection.4  The divergent 

method has several disadvantages though.  As the dendrimers are synthesized, the number of 

terminal reactive sites increases exponentially.  In order to realize reaction at each of these sites, 

large excesses of reagents are used.  Even so, in higher generations incomplete reaction becomes 

an issue.  Each unreacted site introduces a structural defect into the dendrimer architecture that 

will be magnified with each generation until it can be purified.  Purification of the defective 
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dendrimers is made difficult in the divergent method as well though.  The properties of the 

perfectly formed dendrimers and the defective ones are very similar. 

 

 

 

Figure 1.3. Divergent synthesis of a dendrimer.   

 

In 1990 a new convergent method for dendrimer synthesis was introduced by Hawker & 

Fréchet.13  This method builds the dendrimer structure starting from the outside.  Hawker 

demonstrated this new synthetic scheme making a poly(benzyl ether) dendrimer based on 3,5-

dihydroxybenzyl alcohol. The structures built in this fashion are referred to a dendrons.  In the 

last step, two or more dendrons are attached to a central core unit to yield the final dendrimer.   
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Figure 1.4. Convergent synthesis of  a dendrimer. 

 

This approach has several advantages, primary among them that the convergent method 

does not lead to structural defects.  In building each successive generation of the dendrons, a 

small number of reactive sites are involved.  This number is constant, rather than growing 

exponentially with successive generations.  This leads to other advantages as well.  Large 

excesses of reagents are not necessary with this method.  Also, the properties of the products of 

incomplete reaction versus complete reaction are very different.  This means purification of the 

products is easier and any defective dendrons can be removed after each step, a difficult task 

with a divergent synthesis.  The convergent method also is useful for controlled substitution of 

the dendrimer periphery, for example in the synthesis of Janus dendrimers.14 
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The convergent method does have some disadvantages though.  As the dendrons become 

larger, steric hinderance places limitations on the possibility of higher generations.  Therefore, 

this method is often employed mainly for the preparation of lower-generation dendrimers. 

1.2 THE NATURAL PHOTOSYNTHETIC UNIT 

Dendrimers are used or have been investigated for use in a number of areas.  These include being 

used in catalysis, pigments and inks, LEDs, various medical applications, and light-harvesting.4  

Light harvesting has drawn particularly high interest due to an unavoidable comparison to the 

natural light harvesting complexes found in photosynthetic organisms.   

Much of the life on Earth uses energy that is derived from sunlight whether it is directly 

as in the case of plants or photosynthetic bacteria or indirectly by organisms higher up the food 

chain.15, 16  The plants and bacteria that directly harvest sunlight for energy have developed 

complex and highly efficient systems to carry out this function.  The structure of the 

photosynthetic reacton center was determined by Johann Diesenhofer, Robert Huber, and 

Hartmut Michel.17  For this work they were awarded the Nobel Prize in Chemistry in 1988. 

The biological photosynthetic unit has the same basic structure and function whether 

investigated in photosynthetic bacteria17-28 or plants.29, 30   Chromophores are arranged in a 

manner so that once they have absorbed light, the captured energy is quickly and efficiently 

funneled to a reaction center where it is used towards production of ATP.   

The purple bacterial photosynthetic unit was the first to be solved by Diesenhofer, Huber, 

and Michel.  It is comprised of three main pieces: the reaction center (RC) and two antenna 

complexes responsible for light-harvesting, LH1 and LH2.  The antenna complexes are 
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comprised of a circular array of chlorophylls or other chromophores coordinated with the peptide 

chains to hold them in a well-defined location and orientation.  The primary difference is in size.  

LH2 is smaller and contains fewer light harvesting molecules.  LH1 is larger with more 

chromophores and encircles the reaction center.  The number of chromophores in LH1 and LH2 

is not constant though and varies from species to species. 

 

 

 

Figure 1.5. Representation of the purple bacteria photosynthetic unit. 

 

When a photon is absorbed, because of the precise arrangement of the chromophores, that 

energy is shuttled around the LH2 complex with very high efficiency before being passed off to 

another antenna complex,either LH1 or possible a second LH2 depending on where in the entire 

photosynthetic unit the energy was absorbed.  Once funneled to the LH1 complex, the energy is 

finally delivered to the RC.  This transfer occurs very efficiently with approximately 95% 

quantum yield and extremely quickly in under 100 ps.31, 32 
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1.3 FUNCTIONALIZATION OF DENDRITIC STRUCTURES  

Dendrimer structures are immediately reminiscent of the natural photosynthetic unit.  Their 

highly branched structure has many locations at which chromophores could be associated around 

a central core unit.  This was recognized early on, as interest in dendrimers and elucidation of the 

photosynthetic unit were simultaneous endeavors.  As reports of dendrimers in the literature 

increased, so did reviews on their potential in artificial photosynthetic devices.33-45 

In order to better distinguish types of functional dendrimers, such as those investigated 

for light-harvesting, it is helpful to categorize them.  This is easily done by sorting them based on 

the manner in which they are functionalized.  Three main types of modifications are found.  

Dendrimers with functional units at their core.  Dendrimers which have functional units attached 

to the periphery.  And lastly, dendrimers which have functional units within their structure 

forming a host-guest complex.  Of course, multi-functional dendrimers can be synthesized 

utilizing multiple functional units among these different locations. 

 

 

 

Figure 1.6. Three common modifications to add function to dendrimers. 
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1.4 LIGHT-HARVESTING DENDRIMERS 

In efforts to mimic the natural photosynthetic unit, dendrimers have been synthesized 

utilizing combinations of these approaches.  To mimic the array of chlorophyll and other light 

harvesting molecules in the photosynthetic unit, many dendrimers have been decorated with 

chromophores around their periphery.  Energy absorbed by these chromophores is then 

transferred to the core of the structure.  In other cases, the dendrimers themselves are the 

chromophores.  Energy absorbed by the dendron branches is transferred to a central point in the 

structure.  Some examples of systems that have been studied for their light-harvesting abilities 

are reviewed below.   

1.4.1 Dendrimers that absorb via attached chromophores 

The most popular system for studying light-harvesting in dendrimers involves functionalization 

of the periphery (see Figure 1.6b) of the dendrimer with strongly absorbing moieties.  This 

affords the opportunity for researchers to match the donor and acceptor chromophore’s 

properties to best observe excitation energy transfer.  The central acceptor can be one of several 

things from a second organic chromophore attached at the focus of the dendrimer (see Figure 

1.6a) to an acceptor present within the dendrimer framework in a host/guest situation. 

1.4.1.1 Transfer to a core organic chromophore 

The most widely reported system for light-harvesting involves functionalization of the 

periphery of the dendrimers with one chromophore and of the core of the dendrimers with a 

second.37, 46-54  Among the earlier reports of light-harvesting in dendrimers, Fréchet and 
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coworkers decorated the benzyl ether dendrons developed in their lab with coumarin dyes as 

shown in Figure 1.6.  Coumarin 2 was attached to the periphery.  At the focal point, a single 

coumarin 343 moiety was placed, chosen for the overlap of its absorption band with the emission 

band of coumarin 2.  Generations 1 through 4 therefore had 2, 4, 8, or 16 coumarin-2 donors 

respectively per coumarin 343.  Energy transfer efficiencies of 97% and up were found for the 

first three generations.  Generation 4 exhibited a fall in efficiency to 93% attributed to the 

increasing distance between the two units resulting in less effective fluorescence quenching by 

the coumarin 343.47, 52  Fréchet dendrons are used by others as well owing to their absorption 

being completely below 300 nm, simplifying interpretation of the energy transfer processes when 

the chromophores are chosen that absorb above this threshold.53 
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Figure 1.7. Structures of G1 thru G4 coumarin-decorated Fréchet benzyl ether dendrons.52  blue = coumarin 2, red = 

coumarin 343  

 

Another example of dendrimers which transfer energy absorbed by chromophores at the 

periphery to a central point are multiporphyrin arrays.37, 48-50  In one report up to 29 porphyrins 

were arranged in a dendrimer with zinc porphyrins placed around a core free base porphyrin.  Of 

note was that only when four porphyrin dendrons were placed around the free base porphyrin 

was highly efficient energy transfer achieved.  The authors propose that this increase in 

efficiency was due to the shell porphyrins acting cooperatively prior to energy transfer to the 
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core, similar to the means by which energy is harvested by a shell of chromophores in the natural 

photosynthetic system.     
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Figure 1.8. Light-harvesting multiporphyrin arrays by Aida et al.49 
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1.4.1.2 Transfer to a core metallic chromophore 

The core organic chromophore can be replaced by a metal complex.  Shown in figure 1.9 

are a pair of RuII complexes with bipyridine ligands that have been dendronized with the addition 

of Fréchet benzyl ether dendrons.  Coumarin 2 or naphthalene is used as the chromophore placed 

at the dendron chain ends.  These absorb the energy and transfer it via FRET matching the 

emission of the coumarin 2 or naphthalene to the [Ru(bpy)3]
2+ absorption.  90-95% of the 

emission is quenched by the ruthenium core.55, 56 

 

 

 

Figure 1.9.  Light harvesting dendrimers with metallic [Ru(bpy)3]
2+ based cores. 

 

1.4.1.3 Transfer to a guest chromophore 

It is not necessary for the energy acceptor to be bonded and present as the core of the 

dendrimer.  In 2000, Balzani et al.57 and Schenning, Peeters, and Meijer58 independently reported 
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examples of light harvesting dendrimers in which the acceptor entity was a guest within the host 

POPAM dendrimer. 

Balzani et al. utilized the fourth generation POPAM dendrimer with 32 dansyl units on 

the periphery as donor chromophores in Figure 1.10.  Eosin was introduced as a guest into the 

dendrimer framework.  Upon selective excitation of the dansyl groups at 370 nm, the eosin 

fluoresced strongly.  Comparisons were made to a solution containing the dendrimer and the 

eosin, but not incorporated as a guest.  The fluorescence quantum yield more than doubles when 

the eosin is included within the dendrimer framework.57, 59   
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Figure 1.10.  Example of light harvesting POPAM dendrimer with 32 pendant dansyl donor chromophores and 

eosin acceptor as a guest shown within the dendrimer structure. 

 

Polylysine dendrimers make especially good hosts for lanthanide ions due to the 

numerous amide groups.  Dansyl groups were once again featured as the donor chromophores on 

the periphery.  It was found that a single Nd3+ or Eu3+ ion, the most efficient of the metals tested, 

could quench approximately 24 dansyl units when incorporated in the polylysine dendrimers in 

Figure 1.11.60   
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Figure 1.11. Second generation polylysine dendrimer with 24 dansyl donor chromophores.  Red sphere 

representative of lanthanide ion complexed within the dendrimer. 
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1.4.1.4 Transfer via an intermediate interior chromophore  

Multi-step transfer from periphery to intermediate to core 

Some especially ambitious examples use dendrimers as a scaffold to which multiple 

chromophores are affixed.  The chromophores are chosen and arranged so as to install an energy 

gradient from periphery to core of the dendrimer.  An outer shell of donors is first excited.  

Energy is transferred to an acceptor placed on the dendritic framework intermediate to the 

periphery and core.  In a final step, the transfer to the core is completed.61-66 

Fréchet and coworkers used a combination of coumarin 2, fluorol 7GA, and perylene 

tetracarboxdiimide (PDI) decorated on benzyl ether dendrons to demonstrate multi-step energy 

transfer as shown in Figure 1.12.  Excitation of the coumarin 2 (λmax = 342 nm) resulted in a 6.9 

fold increase in emission from the core versus direct excitation of the PDI core (λmax = 555 nm).  

Furthermore, the mechanism of transfer via the fluorol 7GA was demonstrated by preparation of 

dendrimers identical except for the absence of fluorol 7GA.  Energy transfer efficiency fell from 

over 95% to only 79%.  This demonstrates the importance of matching donors and acceptors for 

optimal excitation energy transfer.  By their measurements, coumarin transferred 98% of the 

energy it absorbed to the fluorol which in turn transferred 97% to the PDI core.61 
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Figure 1.12. 3-chromophore light-harvesting dendrimer consisting of coumarin 2 (blue), fluorol 7GA (green) and 

PDI (red) arranged around benzyl ether dendrons. 

 

Müllen and coworkers constructed a system in which the periphery chromophore  

emission and core chromophore absorption did not overlap at all.  Their chosen scaffold 

dendrimer was polyphenylene, shown in Figure 1.13.  The nature of this dendrimer provided an 

additional benefit due to its inflexibility allowing for characterization of the energy transfer step 

by step.  In addition to the directed energy transfer, the antenna effect of the dendritic structure 

was reported as emission of the core terrylene tetracarboxdiimide (TDI) was monitored as a 

function of excitation of the naphthalene dicarboxmonoimide (NMI) or perylene 
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dicarboxmonoimide (PMI) versus direct excitation of the TDI.  Emission intensity increased due 

to the efficient transfer of energy from the antennae chromophores to the core.62-64, 67, 68   

 

 

 

Figure 1.13. Light harvesting dendrimer of Müllen and coworkers designed as so absorbed energy would cascade 

from the NMI (blue) to PMI (green) and finally to the TDI core (red).64 
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Multi-step transfer from periphery to intermediate to guest 

In a final variation, the light-harvested by the system reported by Balzani, Vögtle et al. 

was ultimately transferred to an eosin guest within the dendrimer framework.  Their dendrimer 

had a polyamine core, internally functionalized with eight dansyl and 24 dimethoxybenzene 

units, and a periphery of 32 naphthalene units as shown in Figure 1.14.  The emission spectrum 

of this dendrimer showed a strong band (λem = 514 nm) attributable to the dansyl groups.  

Emission from other groups had been quenched almost completely (≥ 95%).  The fluorescence 

maximum of the dimethoxybenzene and naphthalene units of 336 nm matched well with the 

dansyl group’s absorption maximum of 340 nm.  The dendrimer was then used as a host to acidic 

dye molecule eosin.  Considering eosin has a strong absorption at 529 nm it was not unexpected 

when they were able to demonstrate efficient light harvesting by this dendrimer with the energy 

directed to the eosin guest molecules.66 



 

22 

 

 

Figure 1.14. A light harvesting dendrimer that transfers energy via cascade to a guest within its branches. 

 

1.4.2 Dendrimers that absorb directly via dendron branches 

An alternative to decorating the framework of a dendrimer with absorbing chromophores is to 

build the dendrimer to absorb light itself.  Most, but not all of the dendrimers in this division are 

comprised of substituted benzene subunits with one or more substituents extending their π 
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system in order to shift the absorption band to longer wavelengths thus allowing some degree of 

light-harvesting function.   

1.4.2.1 Transfer to a core organic chromophore 

Systems in which an organic chromophore has been installed at the core of the dendrimer 

for the purposes of probing the light-harvesting function are the most studied.69-78  One of the 

very first studies of energy transfer in dendritic structures of any type, functionalization with 

chromophores or by absorption by the dendron branches, was by Moore group which prepared a 

series a 1,3,5-substituted phenylene ethynylene dendrons asin Figure 1.15.70, 77-79  By placing a 

perylene group at the focus of the dendron they were able to observe energy transfer from the 

dendron branches to the perylene with up to 95% efficiency.  However this value fell quickly in 

higher generations as distance to the perylene increased.  The efficiency was increased to 98% in 

a similar dendron that differed only in the addition of acetylene spacers closer to the core.  

Because the branches are in cross-conjugation having a 1,3-relationship, the π conjugation does 

not extend through the benzene rings between branches.  Therefore the branches at the periphery 

are shorter than the shell of branches beneath them, which in turn are shorter than the core 

branches.  This resulted in an energy gradient from periphery to core leading to the high 

efficiency observed in this case.   

The same design motif is present in a series of truxene/oligo (thienylene ethynylene) 

developed by Pei and coworkers in Figure 1.16.  Conjugation does not extend through the 

truxene branching units.  Meanwhile, the branches are longer closer to the core leading to an 

energy funnel towards the core that yields energy transfer efficiencies of 96%, 97%, 98% for G0, 

G1, and G2 dendrimers respectively.76 
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Figure 1.15. Generations 1 through 3 of 1,3,5-substituted phenylene ethynylene dendrons (above) and an example 

with added spacer groups (below). 
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Figure 1.16. Generations 0 and 1 truxene/oligo(thienylene ethynylene) dendrimers of Pei and coworkers.76   
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 One other alternative to achieve an energy gradient from periphery to core in order to 

increase efficiency of energy transfer is to use an unsymmetrically branched dendrimer.  1,3,4-

substituted phenylene ethynylene dendrimers have an array of branches of differing lengths of 

conjugation due to their combination of meta and para substituted branches.  Using a perylene 

group as energy trap allowed energy transfer efficiencies of 85% an up to be observed in these 

structures.72, 74  Nierengarten demonstrated energy transfer from 1,3,4-substituted phenylene 

ethynylene dendrons to [60]fullerene with the compounds in Figure 1.17.  Excitation of the 

dendrons at their absorption maxima results in dramatic quenching of their fluorescence.  Instead 

a strong fluorescence is observed from the fullerene moiety demonstrating efficient energy 

transfer from the dendrons.73 

 

 

 

Figure 1.17.  1,3,4-substituted phenylene ethynylene dendrons functionalized with [60]fullerene to observe transfer 

of energy absorbed by the dendron branches.73 
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It should be noted that light harvesting from dendrons without extended π conjugation 

has been reported as well.  Dendrimers consisting of Fréchet benzyl ether dendrons attached to a 

porphyrin core71 or to viologen core69 have been prepared.  With the viologen present as an 

excellent electron acceptor, electron transfer from dendron to core was observed.  In the 

porphyrin-centered dendrimers, the benefit to having a complete shell was once again 

demonstrated as previously mentioned in Section 1.4.1.1.  When a complete shell of benzyl ether 

dendrons surrounded the porphyrin core as in Figure 1.18, the energy transfer yield increased to 

80%.  With one to three dendrons present, energy transfer was only 10% to 32%.  The dramatic 

increase was attributed to efficient energy migration throughout the dendron shell, analogous to 

the natural photosynthetic system. 



 

28 

O

O
O
O

O

O

O
O

O O O

O

O

O

O
O

O O

O

O

O

O

O
O

O

O

O

O

O O

O

O
O
O

O

O

O
O

O O O

O

O

O

O
O

O O

O

O

O

O

O
O

O

O

O

O

O O

O

O

OO

O

O

O

O

O
O

O

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

O

O

O

O

O

O

OO

O

O

O

O

O
O

O

O

O

O

O

O

O
O

O

O

O

O

OO

O

O

O

O

O

O

N

NH N

HN

 

 

Figure 1.18. Light harvesting dendrimer in which energy absorbed by the benzyl ether dendrons is transferred to the 

porphyrin core. 

 

1.4.2.2 Transfer to a metallic core 

Energy transfer from dendron branches to a metallic core was reported by Kawa and 

Fréchet.  They modified benzyl ether dendrons with carboxylate cores.  The dendrons were then 

used as ligands with three lanthanide metal ions, Er3+, Tb3+, and Eu3+.  The dendrons were expected 

to act as a shell to isolate the metal ions and reduce self-quenching.  However, enhancement of the 
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lanthanide luminescence was unexpectedly observed due to the antenna effect of the dendrons 

transferring energy which they absorbed to the metallic core as well.80   
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Figure 1.19. Benzyl ether dendrons modified to form dendrimers with metallic cores.  Ln = Er, Tb, or Eu. 
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1.5 CONJUGATED DENDRIMERS 

Dendrimers with π-conjugated systems are relatively less studied than their non-conjugated 

counterparts such as PAMAM, PPI, the Fréchet benzyl ether system or polylysine.  PAMAM in 

particular is the most common dendrimer found largely due to its early synthesis and commercial 

availability.  Conjugated dendrimers more rigid, shape-persistent structure and electronic and 

photophysical properties have not gone unrealized though, several having already been 

mentioned in the previous section for their use in light-harvesting systems.  Conjugated 

dendrimers have also been investigated for their use in organic light-emitting diodes,81 organic 

solid state lasers,82 and preparation of metal-based nanoparticles.83 

Upon review of conjugated dendrimers in the literature an ambiguity in the term 

“conjugated” is apparent.  The subset of π-conjugated dendrimers fall in two categories: 

dendrimers with π systems exhibiting cross-conjugation and dendrimers with π systems 

exhibiting and extended, linear conjugation.  A cross-conjugated compound has been defined as 

“a compound possessing three unsaturated groups, two of which although conjugated to a third 

unsaturated center are not conjugated to each other.”84 At a basic level then, assuming a 

conjugated molecule is one with alternating single and double bonds, in a cross-conjugated 

molecule two π systems will be conjugated with the third, but themselves will be separated by 

two single bonds.   

 

 

Figure 1.20. Cross versus linear conjugation in reference to the red π systems in each. 
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An alternative and still convenient way of describing cross versus linearly conjugated π-

systems is to assign the atoms to sets according to alternant/nonalternant classification.85, 86  The 

classification is useful for the prediction of reactivity and other properties of conjugated 

molecules.  This system may be applied to any conjugated system by assigning each carbon with 

a p orbital to one of two sets: starred or unstarred.  From the arbitrary starting point, the starring 

of atoms should alternate between the two sets.  In the case of a ring of an odd number of atoms, 

it will be impossible to avoid to neighboring atoms being assigned to the same set and so these 

compounds are classified as nonalternant.  If it is possible to star atoms on alternating π-centers 

and have no stars adjacent, then a conjugated system is present and the compound is said to be 

alternant.   

 

 

Figure 1.21. Examples of nonalternant and alternant conjugated π systems. 

 

The difference between cross- and linearly conjugated systems when marked in this 

fashion is shown in Figure 1.22.  Once the atoms have been starred and assigned to sets, they can 

be sorted into two categories based on the coupling between two ends of their structures: alike 

and disjoint.  This is an important distinction when these compounds will be used as bridges 

between donors and acceptors for example.  Cross-conjugated systems exhibit alike coupling.  

The atoms to which the donor and acceptor would be attached, drawn here as the left and right 
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ends of the structures belong to the same sets (starred or unstarred).  Linearly conjugated systems 

demonstrate disjoint coupling; the atoms at either end belong to different sets.   

 

 

 

Figure 1.22. Assignment of atoms to starred and unstarred sets for a pair of cross-conjgated and a pair of linearly 

conjugated compounds allows their differention into which exhibit alike or disjoint coupling. 

 

Whether there is alike or disjoint coupling is important to predicting the electronic 

coupling of the two compounds attached to the conjugated bridge.  Cross-conjugated 

compounds, those with alike coupling, are known to have very low electronic coupling while 

linearly conjugated systems, those that are disjoint, have high coupling.87, 88  The coupling 

through a bridge is related to the molecular orbital coefficients.87  In a cross-conjugated system, 

it can be anticipated the there will be zeros in the electronic coupling that are not present in a 

linearly conjugated system.  Figure 1.23 shows the HOMO and LUMO for divinyl substituted 

benzenes similar to those shown in Figure 1.22.  In the meta-substituted example, in both the 

HOMO and LUMO, there is within the ring, between the branches at which there is zero 

contribution from the atomic orbitals.     
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Figure 1.23. HOMO and LUMO molecular orbitals of meta- and para- substituted π systems.89, 90 

   

Cross-conjugated and linearly conjugated systems also differ in their UV-vis spectra.  In 

the case of dendrimers with extended, linearly conjugated systems, the spectrum shows a red-

shift with increasing generation as the effective length of the π-conjugation increases.  Many 

instances of conjugated dendrimers fall into the cross-conjugated subset, perhaps because the 

symmetry of the 1,3,5-substituted benzene ring has an aesthetic appeal that fits well with general 

aesthetics of dendrimer synthesis.  To expand on previous examples, if branching is via benzene 

subunits, this will occur whenever two branches are related in a meta fashion.  Dendrimers with 

linearly π-conjugated systems will have alternating single and double bonds on a path from 

periphery to core which occurs when the branching is done in a para fashion.  Dendrimers with 
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ortho branching would also technically possess linear π conjugation, though the twists in these 

systems are a hindrance to extending conjugation.   

1.5.1 Cross-Conjugated Dendrimers 

1.5.1.1 Dendrimers based on the 1,3,5 phenylene vinylene motif   

Dendrimers with the 1,3,5 phenylene vinylene motif are among the most widely studied 

of dendrimers with conjugated systems.46, 81, 91-109  A common focus of research with these 

dendrimers is their luminescence properties, often with the possible application in organic light-

emitting diodes as a stated goal.  Other work has investigated ferrocene-cored dendrimers for 

data storage95 or dendrons with a fullerene core for light-harvesting.46 

 

 

Figure 1.24. Generations 1 and 2 1,3,5-substituted phenylene vinylene dendrimers with cross-conjugated 

π-systems.96 
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1.5.1.2 Dendrimers based on the 1,3,5-phenylene ethynylene motif 

Closely related are the 1,3,5-phenylene ethynylene based dendrimers.70, 110-113  While no 

extended π system is present in these to broaden their absorption characteristics, these were 

studied for their use in light harvesting.  Devadoss et al. demonstrated the use of an energy 

gradient with 1,3,5-phenylene ethynylene based dendrimers previously discussed (Section 

1.3.2.1) by introducing an additional acetylene spacer near the core, thus lowering the energy of 

that chromophore.  The cross-conjugation of the branches allows them to function independently.  

In this way, a gradient from periphery to core of longer and longer branches is used for energy 

transfer.70    Due to their rigid structure, these dendrons were attached to BINOL cores and used 

as asymmetric catalysts.  The dendron-modified BINOL showed much higher catalytic activities 

versus unmodified BINOL.110 
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Figure 1.25. 1,3,5-substituted phenylene ethynylene dendron with added spacers.  Chromophores of increasing 

linear conjugation length (blue, green, orange) are highlighted along with perylene (red) which compose the energy 

gradient.70 

 

1.5.1.3 Dendrimers based on truxene 

Another example of cross-conjugated dendrimers are the truxene-based materials 

prepared by Pei et al.76, 114-121  These drew attention first for their potential as light-harvesting 

dendrimers76, 115-117 and then later as blue organic light-emitting diodes.118-121  The truxene 

structure leads branches of the dendrimer to be cross-conjugated.  Extended π-conjugation was 

ruled out as the λmax of the dendrimers from G0 through G2 remained around 350 nm meaning 

the effective conjugation length was not increased.117, 118  Instead, in order to alter the optical 
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properties and to install a gradient in these compounds short π-conjugated spacers were added 

such as thienylethynylene,76, 115, 116, 119 or phenylene vinylene.120, 121 
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Figure 1.26. Truxene dendrimers with cross-conjugated branches.117  
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1.5.1.4 Dendrimers based on pentaphenylbenzene  

Polyphenylene dendrimers have been reported as well.62-64, 67, 68 They have been used as 

an invisible scaffold for a series of dyes in order to study energy transfer between the dyes.  The 

dendrimers are poor chromophores and show none of the characteristics of other conjugated 

dendrimers.  This is due to their sterically-strained, twisted pentaphenylbenzene units which do 

not show any evidence of extended conjugation.   

1.5.1.5 Other Dendrimers with cross-conjugation 

Other examples of cross-conjugated dendrimers are few.  Interesting though is their 

application.  Rather than use as organic light-emitting diodes or light harvesters, carbazole based 

dendrimers have been used to prepare xerogel films for the detection of explosives.122  

Triphenylamine based polymers were studied for the relationship between increasing generation 

and enhanced two-photon absorption.123  

1.5.2 Dendrimers Combining Cross-Conjugation & Extended, Linear π-Conjugation 

1.5.2.1 Dendrimers based on 1,3,4-phenylene ethynylene motif 

The 1,3,4-phenylene ethynylene motif is an interesting one as it provides a combination 

of types of conjugation in each dendron.72-74, 124-126  Through the para-related branches there is 

linear π-conjugation while between meta-related linkages there is only cross-conjugation.  This 

leads to a broad absorption from the dendrimer backbone stretching from 240 nm to 430 nm due 

to the differing effective conjugation lengths of the various branches.  These structures also 

possess a natural energy gradient from periphery to core as the conjugation lengths increase.  

These two properties have made these compounds targets for light-harvesting applications.  It is 
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anticipated that these dendrimers will be better energy transfer funnels than their meta-linked 

analogs due to the fact the para substitution provides a through-bond charge-transfer 

mechanism.124 

 



 

41 

OH

MeO

OMe

OMe

OMe

MeO

MeO

OMe

MeO

OMe

OMe

OMe

OMe

OMe

MeO

OMe

MeO

MeO

MeO

OMe

OMe

OMe

OH

OMe

OHMeO

OMe

OMe

 

 

Figure 1.27. 1,3,4-substituted phenylene ethynylene dendron with a combination of cross-conjugated and linearly 

conjugated branches.  Cross-conjugation leads to branches of different effective conjugation noted by the colored 

segments.124 
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1.5.2.2 Dendrimers based on thiophene 

Thiophene based dendrimers also contain both cross-conjugated branches as well as 

branches with extended π-conjugation.  Following the first synthesis,127 various other thiophene-

based dendrimers were reported and their properties were further elucidated.128-131  It was found 

that as early as the second generation, gains in optical absorption from the extended π-

conjugation were decreasing.  This was attributed to steric forces causing the dendrons to twist 

out of plane, limiting the effective conjugation length.129  As with other conjugated dendrimers, 

thiophene systems have primarily been investigated for their optical properties, especially their 

application in light harvesting.131-136 

 

 

 

Figure 1.28. Generations 2 and 3 thiophene dendrimers which contain both cross-conjugated and linearly 

conjugated branches.117 
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1.5.3 Dendrimers with Extended, Linear π-Conjugation 

1.5.3.1 Dendrimers based on diphenylazomethine 

Examples of dendrimers in which all the branches are in extended π-conjugation are 

scarce.  Those based on diphenylazomethine by Yamamoto et al. are one example of this 

structural feature.83, 137-142  Since the first report on their preparation,138 a new synthetic route was 

found that reduced the necessary starting material to only 1/176 of the amount required by the 

original method.140  With greater access to these materials, their metal coordinating function, 

including an unusual step-wise, generation by generation coordinating property has been 

investigated.137, 141, 142  They have also been used as a template to prepare quantum size titanium 

oxide83 and in preparation of dye-sensitized solar cells as a charge separator to inhibit back 

electron transfer.139 
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Figure 1.29. Fourth-generation diphenylazomethine dendrimer.138 

 

1.5.3.2 Dendrimers based on a 1,4-phenylene vinylene motif  

Unlike the phenylene vinylene dendrimers mentioned previously, if branching occurs at 

the vinyl moiety as opposed to the phenyl moiety, the resulting structure can have extended π-

conjugation through all its branches.  Itami et al. were the first group to have reported the 

synthesis of these triarylethylene based dendrimers.143  They prepared a series of dendrimers up 

to generation three as a demonstration of chemistry they had developed for the preparation of 

triarylethenes using a double Heck-type arylation followed by a single Suzuki coupling.  In 2012, 
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a second report144 of the preparation of p-phenylene vinylene dendrons by Yamamoto and 

coworkers based on our synthesis145 was made. 
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Scheme 1.1. Synthesis of 3rd generation 1,4-substituted phenylene vinylene dendrimer. 143 

Reagents and Conditions:  (a) A, Pd[P(t-Bu)3]2, iPr2NH, toluene, 80 °C; (b) 1-bromo-4-

iodobenzene, Pd(PPh3)4, aq. Cs2CO3, toluene, 90 °C; (c) 1,4-diiodobenzene, Pd[P(t-Bu)3]2, 

NaOH, H2O, toluene, 90 °C. 
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1.6 CHARGE TRANSFER IN DENDRIMERS 

 1,4-Substituted phenylene vinylene dendrimers are of special interest beyond their 

limited examples in the literature.  Nearly all reports in the literature of light-harvesting by 

dendrimers have been instances of excitation energy transfer either from chromophores arranged 

around the periphery or from the dendrons themselves to a core acceptor chromophore.  This 

mimics the first stages of the natural photosynthetic unit where the light is initially absorbed by 

the LH1 and LH2 antennae.  From those subunits, the energy is transferred rapidly and 

efficiently to the reaction center.  In the reaction center, that energy is changed to chemical 

energy via a charge separated state.   

Reports of charge transfer in dendrimers are much more uncommon.  Phenylene vinylene 

dendrons with a 1,4-substitution pattern could be especially well-suited for electron transfer.  

These are essentially highly branched oligo(phenylene vinylene) (OPV).  OPVs are excellent 

candidates for use as molecular wires.  A molecular wire is molecule that bridges a donor and an 

acceptor through which an charge is transferred.  Usually, as distance increases, the rate of 

charge transfer decreases.  However, with molecular wires this distance dependence is very weak 

resulting in the ability to transfer charge over long distances.   

The ability of p-phenylene vinylene oligomers to behave as molecular wires was 

demonstrated in the system show in Figure 1.30.  Tetracene donors were physically linked with 

pyromellitimide acceptors by oligophenylene vinylene bridges.  Over short distances there was a 

strong distance dependence for the systems with only a benzene or stilbene bridge.  At longer 

lengths though, the rate of electron transfer increased dramatically as seen in Figure 1.31.  This 

was attributed to a switch in the mechanism of transfer to one that utilized the bridge as a 

molecular wire. 
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Figure 1.30. Oligo(phenylene vinylene) molecular wire compounds 

 

 

Figure 1.31. Distance dependence of charge separation rate constants for OPVs.146 
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Moreover, the phenylene vinylene system has been shown to be a better molecular wire 

than other systems, including others with extended π-conjugation.  Compared to an alkane 

bridge, the OPV system has a conductance measured to be three orders of magnitude greater.  

This would be expected, as the π system is invoked in explanation of the decrease in distance 

dependence of those systems.  However, the OPV system has also been found to be 

approximately ten times better than phenylene ethynylene systems.147    

A p-phenylene vinylene dendron could behave similarly acting as a bridge between 

multiple peripheral donor chromophores and an acceptor at the focus.  If donors were able to 

efficiently and rapidly transfer electrons to the core, a benefit to electron transfer could be 

realized similar to the gains seen with energy capture and transfer, the antenna effect, observed 

in dendritic light harvesting systems already discussed.  If a large absorption cross-section from 

multiple chromophores arranged on the periphery of a dendron were to be combined with rapid 

and efficient electron transfer via a phenylene vinylene molecular wire dendron to a reactive 

core, the system would be an excellent candidate for solar energy harvesting and conversion. 

 



 

49 

2.0  SYNTHESIS OF p-PHENYLENE VINYLENE DENDRONS 

 

When work on these dendrimers began, there were no previous reports of their synthesis.  

Since then, two other instances of their preparation have appeared, one using the method 

reported here.  Based on examples of meta-substituted phenylene vinylene dendron synthesis at 

the time work began, this method utilizes a Horner-Wadsworth-Emmons condensation in the key 

bond forming step leading to higher generation dendrons.  A convergent strategy was chosen that 

would build these dendrons from the outer shell inwards.  This is advantageous compared to a 

divergent approach as there are fewer active reaction sites during each reaction leading to greater 

reaction completion.  The products would also be more easily purified as the properties of those 

molecules that did not undergo complete reaction would be easily differentiated from those 

molecules which did completely react.   

 

Figure 2.1 Retrosynthetic analysis of p-phenylene vinylene dendron structure.  

One analysis of the structure of p-phenylene vinylene dendrons yields a benzhydryl core 

as the key repeating unit shown in Figure 2.1.  Key to the controlled, generation-by-generation 
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synthesis of dendrimers is the masking of reactive sites or the choice of functional groups that 

can easily be converted into reactive moieties.  In choosing the Horner-Wadsworth-Emmons 

condensation as the key bond-forming step, groups A and B would be either a carbonyl (ketone 

if A or aldehyde if B) or a phosphonate as shown in Figure 2.2.   

 

 

 

Figure 2.2 Two possible monomers for a Horner-Wadsworth-Emmons based synthesis of p-phenylene vinylene 

dendrons. 

2.1 SYNTHESIS UTILIZING A BENZOPHENONE-DERIVED MONOMER 

Because a convergent strategy was desired, and the ketone functionality could be easily 

recovered from an acetal, the monomer 1 was chosen with the ketone at the core and 

phosphonate diesters at the para position of each phenyl unit.  As the dendrons were synthesized, 

there would be only one deprotection reaction at one site per molecule intermediate to dendron 

growth. 

Synthesis of benzophenone 1 began with 4-bromotoluene as shown in Scheme 2.1.  After 

lithiation and addition of two equivalents to ethyl formate, the benzhydrol 3 was formed in 

excellent yield.  Compound 3 could be recrystallized from hexanes, however the reaction often 
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was so clean, that the crude product could be used in the next step with no problems.  Oxidation 

of the alcohol using Anelli’s protocol148, 149 led to facile conversion to the benzophenone 4.  As 

hoped, this product was easily recrystallized from ethanol.  Wohl-Ziegler radical bromination in 

dichloroethane led to the dibromobenzophenone 5 in very good yield.  Treatment with 

trimethylphosphite gave the phosphonate diester 1.  Recrystallization of this product was 

possible using ethyl acetate.  Lastly, protection of the ketone as the ethylene acetal 6 provided for 

the protection of the carbonyl as would be required during dendron synthesis.  The acetal was an 

ideal protecting group in this instance as it could be removed with simple, mild, high-yielding 

conditions in preparation for further dendron growth or other functionalization for incorporation 

into light harvesting systems.   
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Scheme 2.1. Synthesis of bisphosphonate monomer for p-phenylene vinylene dendron synthesis. 

Reagents and Conditions: (a) i) n-BuLi, hexanes, THF -78°C, ii) ethyl formate, THF, warm to 

RT; (b) TEMPO, NaOCl, KBr, CH2Cl2, 0°C, 92% (over two steps); (c) N-bromosuccinimide, 

benzoyl peroxide, 1,2-dichloroethane, reflux; (d) P(OMe)3, PhMe, reflux, 60% (over 2 steps); (e) 

ethylene glycol, TsOH, PhMe, reflux, 85%. 

 

With the monomer 6 in hand, synthesis of the dendrons was undertaken as shown in 

Scheme 2.2.  As the phosphonates could not easily be masked or converted into another inert 

group, methyl ethers were chosen as a peripheral group.  It was anticipated these could be easily 

removed for later functionalization of the periphery.  Also, 4,4’-dimethoxybenzophenone (G0-

Ketone 7) was readily available and inexpensive.  Therefore, 4,4’-dimethoxybenzophenone was 

added to the anion of phosphonate 6 prepared with sodium hydride.  Upon workup, the 

benzophenone was recovered and no product was obtained.  Unexpectedly, the 

benzylphosphonate anion formed by sodium hydride is unstable when heated.150, 151  In light of 

this finding a switch to potassium tert-butoxide was made.  Addition of this base to a 0 °C 
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solution of G0-Ketone 7 and phosphonate 6 yielded the first generation dendrimer 8, G1-Acetal, 

as a light yellow solid.  Deprotection with p-toluenesulfonic acid gave G1-Ketone 9 as an 

intensely-colored, bright yellow solid in near quantitative yield.  Condensation of G1-Ketone 9 

with 6 yielded the second generation dendron G2-Acetal 10 with eight peripheral methyl ethers 

and the acetal at the focal point.   
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Scheme 2.2. Synthesis of first two generations of a p-phenylene vinylene dendron. 

Reagents and Conditions: (a) KOtBu, DMF, 0°C, 69%; (b) TsOH, H2O, acetone, 100%; (c) 6, 

KOtBu, DMF, 0°C, 26%. 
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During purification by chromatography, the G1-Ketone 9 formed clear, yellow needles in 

the most concentrated fractions.  These needles were suitable for X-ray crystallography, and the 

structure was determined as shown in Figure 2.3.  The structure reveals that the rings are not 

coplanar.  The deviations are only enough to relieve steric interactions while maintaining the 

conjugation along the branches.  Measurements of the dihedral angles between the π systems of a 

branch are given in Table 2.1.  Molecular modeling of the crystal structure to find the minimized 

equilibrium geometry was carried out.  Using semi-empirical methods, the structure became 

quite distorted from the crystallographic structure.  Using the B3LYP density functional theory 

method with STO-3G basis set yielded a minimized structure that was a very close match to the 

crystallographic structure.  This indicates that the dendron does not take on an otherwise unusual 

structure when in the crystal lattice. 
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Figure 2.3. X-ray crystal structure of G1-Ketone 9 and DFT B3LYP152 minimized structure. 

 

Table 2.1. Dihedral angles between π-systems of G1-Ketone 9. 

π systems 
crystallographic 
dihedral angle 

DFT-minimized  
dihedral angle 

 

A—D  51.15° 51.92° 

B—D   36.41° 36.61° 

C—D  24.14° 24.81° 
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In addition to crystallographic data for G1-Ketone 9, the structure of the dendrons was 

confirmed by 1H and 13C NMR and high-resolution mass spectrometry.  For the first generation   

dendrons, especially useful was the –OCH3 from the periphery.  This signal split into two 

singlets, each integrating to six hydrogen.  Also informative was the appearance of the vinylic 

protons present in these structures.  The region immediately downfield of the vinyl protons 

became more complicated due to the number of similar, but not identical, signals for the aryl 

protons.  Here, the use of a higher field 500 MHz instrument was sufficient to deconvolute the 

region and identify the expected doublets for each set of aryl hydrogens.  In analysis of the 

ketone, a switch to deuterated acetone was also helpful as the vinylic protons have the same 

chemical shift as some of the aryl protons when the spectrum is recorded in deuterated 

dichloromethane.  In each case, the 13C NMR showed the predicted chemical shifts and number 

of peaks for each compounds.  The symmetry of the compounds and of portions of branches 

combined with the non-planarity leads to several pairs of nuclei that are nearly, but not in exactly 

identical chemical environments.  Therefore, several pairs of peaks are apparent with very little 

difference in their chemical shifts, similar to the –OCH3 signals observed in the 1H NMR spectra.  

See Appendix A for copies of the spectra of these compounds.  

G2-Acetal 10 was analyzed in the same fashion as the first generation dendrons.  In this 

case, the aryl region now had too many overlapping signals making deconvolution impossible.  

Despite this, the integration of the various peaks in the aryl/vinyl region did match the expected 

value.  More clear was the doubling again in the number of peaks assigned to the –OCH3 groups.  

In the 1H NMR spectrum for G2-Acetal 10, there were now four, closely spaced singlets that 

each integrated to six for these methyl ether protons.  The carbon nuclei of these ethers only give 

two distinguishable signals however.  Similar pairing of related carbon were seen in the second 
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generation dendron as was described in the first generation dendrons.  Lastly, high-resolution 

mass spectrometry was also found to support the synthesis of the second generation acetal. 

The preparation of G2-Acetal 10 was accompanied by a precipitous drop in yield.  

Whereas the Horner-Wadsworth-Emmons condensation to give G1-Acetal 8 proceeded with an 

acceptable, if unspectactular, 69% yield, the preparation of G2-Acetal 10 only gave 26% yield.  

This decrease is similar to that observed in the other reported syntheses of  p-phenylene vinylene 

dendrons where a drop from 76% to 33% between generation one and generation two was 

reported.143  Convergent syntheses are known to be best for preparation of lower generation 

dendrimers, usually up to three or four generations.  The difficulty in preparing higher generation 

dendrimers is generally attributed to steric crowding as the increasingly large dendrons need 

coupled with the relatively small inner branching unit.  In the case of phenylene vinylene 

dendrons, this is likely an especially important factor, due to the rigidity of the phenylene 

vinylene backbone imposing even greater restrictions.   

To investigate the presence of extended π-conjugation in the prepared dendrons, UV-

visible absorption spectra were recorded and presented in Figure 2.4, Figure 2.5, and Table 2.2.  

A comparison of dendrons with a ketone at the apex, G0-Ketone 7 and G1-Ketone 9 supports the 

presence of the extended π-conjugation.  A 78 nm shift of λmax from 292 nm to 370 nm was 

found.  A comparison of the compounds bearing an acetal at the apex showed a similar 

bathochromic shift.  In a comparison of G1-Acetal 8 and G2-Acetal 10, a shift of λmax from 328 

nm to 350 nm is recorded. 
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Figure 2.4. Normalized UV-vis absorption spectra of G0- & G1-Ketone.  

Experimental Conditions: Collected in dichloromethane. [G0-Ketone 7] = 1.4 x 10-5 M; [G1-

Ketone 9] = 5.3 x 10-6 M.  Spectra normalized to λmax of each compound. 
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Figure 2.5.  Normalized UV-vis absorption spectra of G1- & G2-Acetal. 

Experimental Conditions: Collected in dichloromethane. [G1-Acetal 8] = 5.2 x 10-6 M; [G1-

Acetal 10] = 5.5 x 10-6 M.  Spectra normalized to λmax of each compound. 

 

Table 2.2. UV-Vis absorption data for dendrons. 

Compound λmax (nm) ϵ (L·mol−1·cm−1) 

G0-Ketone 7 292 25,717 

G1-Ketone 9 250 34,536 

 285 28,002 

 370 41,949 

G0-OTBS 16 264 61,057 

G1-OTBS 19 236 30,482 

 319 37,131 

G1-Acetal 8 236 43,129 

 328 52,859 

G2-Acetal 10 285 56,294 

 350 114,016 

All spectra collected in dichloromethane. 
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2.2 SYNTHESIS UTILIZING A BENZHYDRYL-DERIVED MONOMER 

An alternate synthesis of p-phenylene vinylene dendrons also showed the same extension 

of the π system.   The alternate synthesis was based on monomer 2 with reversal of the 

phosphonate and carbonyl functional groups versus the arrangement in 1.  Moreover the alternate 

synthesis was to have aldehydes at the periphery for later functionalization which could be 

masked as acetals during construction of the dendrons.  This was of consequence because all the 

initial reactants for the dendron synthesis were derived from a common precursor 12.   

 

 

 

Figure 2.6.  Building blocks for alternate synthesis of dendrons are derived from a common precursor. 

 

The monomer was to be synthesized as shown in Scheme 2.3.  4-bromobenzaldehyde was 

protected as the ethylene acetal 14.  Then, in a manner similar to the synthesis of the previous 

monomer, the acetal was lithiated and underwent condensation with ethyl formate to give 

benzhydrol 12.  Hydrolysis of the acetals followed by protection of the alcohol gave the TBS 

ether 13.   
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Scheme 2.3.  Preparation of monomer 13 for alternate dendron synthesis. 

Reagents and Conditions: (a) ethylene glycol, TsOH, PhMe, reflux, 94%; (b) i) n-BuLi, hexanes, 

THF, -78°C, ii) ethyl formate, THF, warm to RT, 89%; (c) TsOH, H2O, acetone; (d) TBSCl, 

imid, DMF, 63% (2 steps). 

 

Benzhydrol 12 was also silylated in order to prepare the benzhydryl phosphonate 11 

necessary for reaction with the dialdehyde 13.  TBS ether 16 was treated with PPh3Br2 intending 

to isolate the corresponding benzhydryl bromide.153  However, these conditions led to an 

inseparable mixture from which deprotected aldehydes were recovered as well as the 

benzhydrols resulting from desilylation.  Suspecting small amounts of acid present from reaction 

of trace amounts of water with the PPh3Br2 to be the culprit of these unwanted transformations, 

the reagent was instead prepared in situ using carbon tetrabromide and triphenylphosphine, 

thereby avoiding the introduction of any HBr that had formed in the commercially available 

reagent.  This variation led to the same mixture of products however.  Further investigation 

revealed that the conditions used for the desired direct conversion of TBS ethers to bromides also 

effected the undesired deprotection of the acetals154 and so other conditions were sought that had 
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been originally dismissed due to the prospective toll additional steps would take as each 

successive generation was prepared. 

 

Scheme 2.4.  Attempted preparation of phosphonate 11 to be used in alternate dendron synthesis. 

Reagents and Conditions: (a) TBSCl, imid, DMF, 59%; (b) PPh3Br2 or CBr4/PPh3, CH2Cl2. 

 

Conversions which utilized an alcohol at the core were explored as desilylation was 

expected to be a high-yielding, clean reaction which would have a minimal impact on higher 

generations.  Therefore, the synthesis of the phosphonate sans acetals was attempted as shown in 

Scheme 2.5 with the intent that aldehydes could be reprotected at a later stage also in good yield.  

The bromodialdehyde 18 was prepared by refluxing 12 with aqueous HBr.  Unfortunately, 

attempts for conversion of 18 to the benzhydryl phosphonate 11 were futile.  Finally, a route with 

yet more steps necessary between the potential synthesis of each generation of phenylene 

vinylene dendron was attempted.  Instead of direct conversion of the benzhydrol 12 to the 

bromide, an intermediate mesylate would be prepared.  This route was beneficial in that the 

aldehydes would not require reprotection after synthesis of the phosphonate, but otherwise held 

little benefit.  Using this route, benzhydryl bromide 17 was isolated and converted to the desired 

phosphonate 11.  This route however suffered from low yields, making it impractical to use in 



 

64 

preparation of higher generations given then increasing value.  Additionally, it was found that the 

bromides were extremely prone to hydrolysis due to the highly stable benzhydryl cation.  This 

factor was especially apparent as a varying amount of the inseparable benzhydryl chloride was 

isolated during the synthesis of 17 as a result of latent chloride ions remaining in solution from 

the preparation of the mesylate. 

 

 

Scheme 2.5.  Preparation of benzhydryl phosphonate 8 for dendron synthesis. 

Reagents and Conditions: (a) conc. HBr, CH2Cl2, reflux, 94%; (b) i) MsCl, NEt3, THF, 0°C, ii) 
LiBr, warm to RT, 59%; (c) P(OMe)3, reflux, 41%. 
 

With a small quantity of benzhydryl phosphonate 11 that was prepared, the Horner-

Wadsworth-Emmons condensation with dialdehyde 13 was carried out as shown in Scheme 2.6.  

In this manner the first generation p-phenylene vinylene dendron G1-OTBS 19 was prepared in 

52% yield.  Using this, the extended π conjugation in these dendrimers was again shown by the 

UV-visible absorption of the dendrons as shown in Figure 2.7.  Compared to the similarly 

substituted G0-OTBS 16, a red-shift in λmax from 264 nm to 320 nm was observed.   
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Scheme 2.6.  Synthesis of p-phenylene vinylene dendron 19 via alternate approach with reversed reactivity. 
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Figure 2.7. Normalized UV-vis absorption spectra of G0- & G1-OTBS. 

Experimental Conditions: Collected in dichloromethane. [G0-OTBS 16] = 5.6 x 10-6 M; [G1-

OTBS 19] = 5.3 x 10-6 M.  Spectra normalized to λmax of each compound. 

 

Characterization of G1-OTBS 19 dendron utilized the same techniques used in analysis 

of dendrons prepared via the benzophenone-derived monomer in Section 2.1.  Similar to the –

OCH3 peaks which doubled in number with each generation of the previously described 

dendrons, the four benzyl protons at the periphery of 19 showed the same division into two close 

peaks.  The vinylic protons were not separate from the aryl peaks.  Instead, they centered within 

the farthest upfield of those aryl signals; the integration of six for the peaks centered at 7.00 ppm 

(versus four for the other aryl signals) was an indication of their presence in addition to the third 

peak tucked inside the double at the same chemical shift.  The 13C NMR spectrum and high-

resolution mass spectrometry data matched expected values as well. 
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After the work up to this point, the acetals were clearly not robust enough to work in this 

synthetic approach.  The number of steps needed to prepare the monomer compounds was 

prohibitive, all the more so when considering the dendrons would be undergoing the same 

transformations intermediate to successive generations.  A carbonyl protecting group more stable 

to acidic conditions was necessary.  Thioacetal analogs were considered for this reason.  The 

acidity of the carbonyl hydrogen once protected as a thioacetal was problematic during 

construction of the monomer however.  Therefore, acetophenone was considered in which the 

offending hydrogen is instead a methyl group.  The thioacetal 20 however could not be lithiated 

either.155  Also, the Grignard was inaccessible precluding its use in the benzhydrol synthesis in 

place of lithiated 20 in condensation with ethyl formate. 

 

 

 

Scheme 2.7.  Synthesis of a thioacetal analog to circumvent acetal hydrolysis. 

 

A final attempt to prepare the thioacetal protected benzhydrol was made as shown in 

Scheme 2.8.  The commercially available 4-bromobenzaldehyde dimethyl acetal was used in the 

synthesis of benzhydrol 21 with plans to convert this to the thioacetal analog.  Conditions for 

transthioacetalization with magnesium bromide156 did cleave the dimethyl acetal, however, none 

of the dithiol reacted to furnish the thioacetal.  Protection of the dialdehyde 15, also failed to 

yield the desired product.   
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Scheme 2.8. A alternative route to a thioacetal-protected monomer. 

Reagents and Conditions: (a) i) n-BuLi, hexanes, THF, -78°C, ii) ethyl formate, THF, warm to 

RT, 95%; (b) TsOH, H2O, acetone, 99%. 

 

The phosphonate monomer 11 had proven more challenging to prepare than practical, 

however the dialdehyde component 13 was excellent as a stable, easily-accessible solid.  

Therefore, a replacement for the former monomer was sought.  With no suitable way to mask the 

carbonyls, their use as a peripheral group was abandoned completely.  Much more chemically 

robust, yet still suitable for later functionalization of the dendrimer was a methyl ether as was 

used in the first synthesis of phenylene vinylene dendrons described earlier.  It was hoped that 

the dendrimers could be synthesized using the initially envisioned mild bromination conditions 

for direct conversion of TBS ethers (using PPh3Br2) followed by treatment with trialkylphosphite 

to yield the phosphonate.  This synthetic pathway would have been advantageous in reducing the 

number of transformations necessary in between dendron growth reactions.   
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Scheme 2.9. A methoxy-substituted phosphonate would lead to dendrons with identical substitution to the first 

method. 

 

Using now-familiar conditions, the benzhydrol 22 was prepared from 4-bromoanisole.  

Preparation of the bromide was not as easily accomplished, and what little product might have 

been formed as indicated by TLC was not isolable.  The difficulties in preparation of the 

benzhydryl bromide was attributed to the strong donating nature of the methyl ethers making for 

a highly stabilized benzhydryl cation that was overly susceptible to hydrolysis.  This alternative 

would not be suitable either.  Having demonstrated the extended π conjugation in a second series 

of p-phenylene vinylene dendrons, no further attempts at dendron synthesis were undertaken. 
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3.0  FUNCTIONALIZATION AND TESTING OF PPV DENDRONS 

To test the ability of the prepared p-phenylene vinylene dendrons in a light harvesting 

application, functionalization of the periphery and core was necessary.  In collaboration with Dr. 

Jung-Kun Lee’s group, dye-sensitized solar cells were prepared.  This platform would provide a 

set of established methods with which to test the dendrons and look for increased light-

harvesting performance with increasing generation.   

3.1 DYE-SENSITIZED SOLAR CELLS 

Edmond Becquerel discovered the photoelectric effect and first reported it in 1839.157  

While new photoelectrochemical cells were developed over the next 160 years, interest in their 

advancement skyrocketed following the energy crisis of 1973 with over one thousand 

publications in the following decade.158  Since then work has continued due to a realization for 

the necessity of developing alternatives to fossil fuels, especially in light of increasing energy 

demand across the planet.  The sun represents an inexhaustible resource if technology is 

developed to efficiently harness the energy it delivers to the earth’s surface.159-162 

One type of photoelectrochemical cell is the dye-sensitized solar cell.  The prototype of 

this type of cell was made by O’Regan and Grätzel in 1991.163 For this reason, these devices are 

sometimes referred to as Grätzel cells.  Dye-sensitization was an old concept that can be traced 
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to early photographic methods.  Before 1991, attempts to use dye sensitization resulted in very 

low energy conversion.  This was primarily a result of a belief that the smoother the surface of 

the semi-conducting layer, the better the cell would perform.164  The amount of light a single 

layer of dye molecules could absorb though is less than 1%.  O’Regan and Grätzel replaced the 

smooth semi-conducting layer with a thin layer of titanium dioxide nanoparticles which lead to a 

2000-fold increase in surface area to which dye molecules could be chemisorbed.  Their cells 

achieved 7.1% energy conversion efficiency.  Recently, Grätzel et al. set a new record for this 

type of cell with a certified efficiency of 14.1%, while some cells tested in their lab measured 

over 15%.165   

Dye-sensitized cells are attractive due to their ease of preparation relative to other cells, 

their inexpensive materials, and tolerance for impurities versus other cells, though impurities can 

reduce the lifetime of the cells.160  Cells are prepared as a sandwich between two layers of glass 

each coated with a transparent conducting oxide (TCO), often indium tin oxide.  On what will be 

the front side of the cell, the side facing the light source, most often a thin layer of anatase 

titanium oxide added.  Nanoparticles of TiO2 in a colloidal suspension are coated on the glass 

which is then sintered creating a network of TiO2 with direct contact between the nanoparticles 

from 5-20 μm thick.  The dye is then chemisorbed onto the nanoparticles.  A second sheet of 

TCO glass, sometimes with an added layer to increase conduction such as platinum or graphene, 

is placed on top as the countereletrode.  The last component necessary to complete the circuit is 

an electrolyte that will fill the space between the between the top and bottom layers.   

When these components are all combined as shown in figure 3.1, the cell will function to 

convert light into energy.  When a cell is exposed to light, the cycle begins by absorption of a 

photon by the dye leading to an excited state.  Excited electrons are injected into the TiO2 
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resulting in oxidation of the dye.  The electrons then migrate through the TiO2 to the front 

electrode.  The energy is harnessed to do work external to the cell.  Electrons are then returned to 

the cell via the counter-electrode.  Triiodide is reduced to iodide at this electrode.  The 

iodide/triiodide electrolyte completes the circuit when iodide is oxidized to triiodide and the 

oxidized dye is reduced to its original state.  

 

 

 

Figure 3.1. Representation of a dye-sensitized solar cell.   
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3.2 MODIFICATION OF THE DENDRONS 

3.2.1 Design of Dendron-based Dyes 

O O OO = chromophore

= anchor

 

 

Figure 3.2. Basic design of dendron-based dyes. 

 

In order to incorporate the dendrons into DSSCs, a dye was added to broaden and 

intensify the absorption of the compounds.  Also, the apex of the dendrons were modified so that 

the dyes would adhere to the titanium oxide component of the DSSC.  Porphyrins were chosen 

for the dye due to their previous use in solar energy applications, specifically solar hydrogen 

production.166-179  They have also been used previously in dye-sensitized solar cells,180-190 in one 

instance achieving over 12% efficiency.191 Porphyrins are also amenable to modifications to 

increase solubility without meaningful changes to their photoproperties.  Lastly, they are easily 

modified in a fashion that would allow them to be attached to the dendrons.   
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3.2.2 Synthesis of Dendron-based Dyes 

The apex of the dendrons was first modified in order to provide an anchor for the dendron 

to associate with the titanium oxide of the DSSC.  1,3-Dicarboxylic acids are often used.  The 

Knövenagel condensation with diethyl malonate would yield a diester extending the conjugation 

of the π system of the dendrons.  The esters could later be easily saponified furnishing the 

desired anchor.  Benzophenones and diarylketones, however, are extremely poor substrates for 

the Knövenagel, even more so considering the methoxy groups present.  Stobbe condensations of 

benzophenones with dialkyl succinate do have precendence however.  Using the 4,4’-

dimethoxybenzophenone as a model substrate, potassium tert-butoxide was added to a solution 

of benzophenone and diethyl succinate.   

 

 

 

Scheme 3.1. Functionalization of the core ketone group. 

Reagents and Conditions: (a) diethyl succinate, KOtBu, THF, reflux; (b) ethanol, cat. H2SO4, 

reflux, 78% (over two steps). 
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Following the condensation, the free acid 23 was immediately esterified to aid in 

isolation of diester 24 and because it was found the following step proceeded more smoothly 

without the carboxylic acid present.  Demethylation of the ethers, in preparation for attachment 

of the porphyrins, was accomplished with BBr3.  Treatment  of ether 24 with BBr3 did lead to 

some hydrolysis of the esters.  Therefore, the crude phenol 25 was subjected to Fischer 

esterification to consolidate the mixture to a single compound.  The G1-Ketone 9 was converted 

to a diester in the same fashion. 

 

 

Scheme 3.2. Deprotection of the phenols in preparation for porphyrin attachment. 

Reagents and Conditions: (a) BBr3, CH2Cl2, -78 °C to RT; (b) ethanol, cat. H2SO4, reflux, 68% 

(over two steps). 

 

With dendrons prepared, attention was turned to the porphyrins that would be needed.  

Porphyrins used in light-harvesting applications are most often variations of meso-

tetraphenylporphyrin.  This porphyrin suffers from low solubility and so often any modifications 

made are in an effort to increase their solubility.  It was decided that short triethylene glycol units 

would be utilized to increase the solubility of porphyrins making them easier to handle and also 

to avoid any additional solubility issues that might arise once multiple porphyrins were attached 

to the dendron’s periphery.  To introduce these units into the porphyrin structure, aldehyde 27 

was prepared for use in the porphyrin synthesis by reaction of 4-hydroxybenzaldehyde with 
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triethylene glycol monomethyl ether tosylate.  Following the Lindsey protocol,192 condensation 

of pyrrole with 27 in the presence of catalytic BF3·OEt2 followed by oxidation with DDQ gave 

porphyrin 28 in 34%  yield.  The porphyrin was then metallated to prevent unwanted reactions 

during additional functionalization.  Nickel was chosen after a survey of the literature showed its 

inclusion did not disrupt characterization by NMR.   
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Scheme 3.3. Porphyrin synthesis and metallation. 

Reagents and Conditions: (a) i) BF3·OEt2, CHCl3, ii) DDQ, 34%; (b) Ni(OAc)2, CHCl3:MeOH 

(2:1), 90%. 
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In anticipation of attaching the porphyrins to the dendrons by a Mitsunobu reaction, the 

porphyrins would require the addition of an alcohol group.  Formylation of the porphyrin 29 was 

accomplished using Vilsmeier-Haack conditions.   Reduction with sodium borohydride gave the 

required alcohol 31.   

 

 

 

Scheme 3.4.  Preparation of the porphyrins for attachment to dendrons. 

Reagents and Conditions: (a) POCl3, N,N-dimethylformamide, 1,2-dichloroethane; (b) NaBH4, 

CHCl3:MeOH (4:1), 91% (over two steps). 

 

The porphyrin-dendron conjugates were prepared using a Mitsunobu reaction as shown in 

Scheme 3.5.  Saponification of the esters gave the final porphyrin-dendron-diacid compounds 

that would be tested as dyes.  A final compound in the series, 1P-Dye 33 was prepared from 4-

hydroxybenzaldehyde to give a single-porphyrin dye with similar structure to the others with two 

and four porphyrins each as shown in Figure 3.3. 
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Scheme 3.5. Representative preparation of a dye shown for 2P-Dye 34. 

Reagents and Conditions: (a) DIAD, PPh3, THF, 0 °C to RT; (b) 1M NaOH(aq), THF, reflux, 

27.2% (over two steps). 
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3.2.3 Characterization of the Dendron-based Dyes 

UV-visible absorption spectra of each of the dyes were recorded.  Shown in Figure 3.3 

are the spectra adjusted to a common concentration.  Demonstrating the increasing number of 

porphyrin moieties, the absorption of each dye nearly doubles as the number of porphyrin 

chromophores doubles.  However, a first generation dendron with three porphyrins attached 

would give a similar value to the dendron with four porphyrins once the change in concentration 

based on the different molecular weight has been taken into account.  Another way of judging 

the number of porphyrins per dye is possible for this compound.  The 4P-Dye 35 also has an 

absorbance attributed to the first generation phenylene vinylene dendron at 333 nm similar to the 

other dendrons of this generation that had been prepared.  Using this absorbance as an internal 

standard of molar absorbtivity, the ratio of porphyrin to dendron is also estimated to be four to 

one in that compound. NMR spectroscopy was not used in characterization as the signals were 

too broad to provide useful information. 
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Figure 3.3. Structures of prepared dyes. 
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Figure 3.4.  UV-Vis absorption spectra adjusted to reflect a common dye concentration. 

Experimental Conditions: Collected in dichloromethane. [Ni-Por 29] = 9.3 x 10-6 M; [1P-Dye 

33] = 3.8 x 10-6 M; [2P-Dye 34] = 4.7 x 10-6 M; [4P-Dye 35] = 2.7 x 10-6 M.  Spectra adjusted to 

a common concentration of 0.5 M. 

 

Table 3.1. UV-Vis absorption data for dyes. 

Compound λmax (nm) ϵ (L∙mol−1∙cm−1) 
Ni-Por 29 418 262,581 

 529 22,500 
1P-Dye 33 420 294,754 

 532 29,034 
2P-Dye 34 420 519,727 

 532 47,435 
4P-Dye 35 333 110,506 

 421 888,772 
 533 75,714 

All spectra collected in dichloromethane. 
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The synthesis of 1P-Dye 33 was supported by high resolution mass spectrometry.  Using 

electrospray ionization, this compound was identified by the [M+2Na]2+ peak at m/z 799.  

Switching to negative ionization the singly charged [M-H]- peak at 1551 was also found.  HRMS 

of the larger dyes failed to yield molecular ion peaks matching 2P-Dye 34 or 4P-Dye 35.  The 

two porphyrin dye did show a peak in the correct region.  At 2955 m/z a strong signal was 

observed.  2P-Dye 34 however should have measured 2978.  With 4P-Dye 35, electrospray 

ionization proved ineffective at producing ions of the parent compound as well as MALDI.  

These techniques did result in ionization of the porphyrins cleaving the C—O benzyl-type bond.   

Elemental analysis of the dyes was completed for 2P-Dye 34 and 4P-Dye 35.  Because 

these compounds have a very repetitive structure, the elemental composition from one to the 

next, or between a dye that had incomplete reaction with the porphyrin, does not change much.  

However, a comparison of the results to the expected value for complete reaction versus 

expected values for incomplete reactions yields greater error as porphyrins are removed as 

shown in Table 3.1.  The data best fit the expected dyes with two and four porphyrins each for 

2P-Dye 34 and 4P-Dye 35 respectively. 
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Table 3.2. Elemental analysis of 4P-Dye 35 compared to calculated values of related products with fewer 

porphyrins. 

# of Porphyrins 4 3 2 1 

Chemical 
Formula C337H370N16Ni4O72 C264H286N12Ni3O56 C191H202N8Ni2O40 C118H118N4NiO24 

Element Found Calc’d Δ Calc’d Δ Calc’d Δ Calc’d Δ 

C 66.6 67.11 -0.51 67.48 -0.88 68.13 -1.53 69.65 -3.05 

H 6.11 6.18 -0.07 6.13 -0.02 6.05 0.06 5.84 0.27 

N 3.59 3.72 -0.13 3.58 0.01 3.33 0.26 2.75 0.84 

Ni 3.76 3.89 -0.13 3.75 0.01 3.49 0.27 2.88 0.88 

 

3.3 TESTING OF THE DYES 

The porphyrin-dendron conjugates were shared with our collaborators for testing by 

incorporation into dye-sensitized solar cells.  Unfortunately, the dyes performed very poorly.  

The incident photon to current efficiency graph shows the lack of current generated by 

absorptions from the synthesized dyes in Figure 3.4.  The dyes transferred so little charge that the 

current that was produced by the cell was dominated by absorptions from the titanium oxide.  

This feature is often not observed as a dye that performs well will be at least 20 times stronger 

than this absorption.   
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Figure 3.5 Incident photon to current efficiency of the dye compounds. 

 

 

 

Figure 3.6. Incident photon to current efficiency of the dye compounds focusing on 400-900 nm region. 
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Closer inspection of the region between 400 and 900 nm , Figure 3.6, does show some 

activity.  Between 400 and 500 nm the 4P-Dye 35 delivers a higher photon to current efficiency 

than the 2P-Dye 34, which in turn is more active than 1P-Dye 33. This region is on the shoulder 

of the Soret band at 420 nm seen in Figure 3.4 and absorbance at these wavelengths is very 

weak.  A second region around 650-700 nm does not correspond to any absorptions measured in 

either the UV-vis absorption spectra of the dyes, porphyrin, or the dendrons.  To more 

conclusively determine the relative activity of the dendron-dye conjugates, a more active system 

is necessary. 

One explanation for the disappointing performance of the dendritic dyes is related to the 

nickel porphyrins used as the peripheral chromophores.  Nickel porphyrins do not have a 

significantly different absorption spectrum compared to either the free base porphyrins or 

differently metallated porphyrins.193  The luminescence spectra of porphyrins however does 

change, in some cases dramatically, with changes of the metal complexed within the porphyrin.  

In the case of nickel porphyrins, fluorescence cannot be observed.  Instead, they undergo a non-

radiative decay process extremely quickly, faster than 1010 s-1.194  This being the case, nickel 

porphyrins are unsuitable for light harvesting applications.   

The fluorescence spectra of the dye compounds show the effects of the nickel porphyrins 

as well.  The excitation spectra of the three dyes (33-35) and nickel porphyrin 29 are shown in 

Figure 3.5.  Each spectrum shows a total lack of fluorescence when excited in the region around 

the absorption maximum of 420 nm of the dyes.  The emission spectra show an inner filter effect 

of the nickel porphyrins.  Each exhibits a trough of no fluorescence centered at the absorption 

maxima of the dyes.  The nickel porphyrins act as a filter absorbing any fluorescence energy at 

these wavelengths.  
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Figure 3.7. Normalized fluorescence excitation spectra of porphyrin 29 and dyes 33-35 as observed at wavelengths 

shown in legends.  All spectra were recorded as dichloromethane solutions of ~10-6 M. 
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Figure 3.8. Fluorescence emission spectra (excitation wavelengths in legend) demonstrating the inner filter effect of 

the nickel porphyrin chromophores centered at 420 nm. 

 

Other factors may also have contributed to a lower efficiency for dyes based on this 

system.  There is a not a completely conjugated pathway between the donors and the core of the 

dendrimer.  The ether connection at the periphery represents a break in the π system.  This 

however might also have been beneficial by retarding charge recombination.  It is also unknown 

what interactions exist between the dyes.  Energy transfer between the dyes forming a shell of a 

dendrimer has been shown to be beneficial.  This would be analogous to energy transfer in the 

natural photosynthetic unit, and the effect has been observed previously.49, 71  In those systems 

though, when the shell was not complete, efficiencies dropped drastically.  As the dyes prepared 

are only dendron wedges, this may be observed in this system as well.   
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4.0  CONCLUSIONS 

The dyes prepared from the nickel porphyrins were ineffective when incorporated into dye-

sensitized solar cells.  Therefore, the question remains of the potential that p-phenylene vinylene 

dendrons acting as bridges between multiple donors and an acceptor might have.  A number 

ideas for new experiments have been prompted by this work with these dendrons. 

The most basic change that could be made to the system would be replacement of the 

nickel in the porphyrins with zinc.  Zinc porphyrins have none of the issues with fluorescence, 

energy or charge transfer that their nickel counterparts possess.  Zinc porphyrins have been used 

in many light-harvesting applications and so their inclusion in this system would be a minor 

change that could help to determine if any increase in efficiency is with the dendritic system.   

More fundamental experiments would involve learning more about the energy transfer in 

the p-phenylene vinylene system.  Attachment of dyes more suitable to studying this effect 

would allow a better understanding of whether the energy is transferred via the dendrons or not.  

Dyes such as the coumarins used by Fréchet52 in early examples of light-harvesting dendrimer or 

the series of polycyclic aromatic imides used by Müllen64 would be potential options.   

These same alternate chromophores could be used in testing in the dye-sensitized solar 

cell platform as well.  While these would not be good dyes for overall light to energy conversion 

due to their limited, narrow absorptions, they would be suitable to investigating the changes to 

efficiency in relation to dendron generation.  Once that process is better understood, the 
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incorporation of ruthenium dyes more commonly used in dye-sensitized solar cells could provide 

a broad absorption cross-section that would be ideal in such a system.  

In another variation, a strong electron acceptor such as a viologen could be placed at the 

focus of the dendrons.  Electron transfer through the dendrons could be tested then as well.  

Porphyrins and viologens were two early components in many solar hydrogen systems.  Electron 

transfer from porphyrin to viologen is well known.  Electron transfer from benzyl ether 

dendrons, not a particularly good chromophore, to viologen has been reported before as well.69  

A porphyrin-dendron-viologen conjugate might be especially useful for photoinduced water 

splitting.   

Changes to the dendron also pique interest.  Addition of electron donor groups to the 

benzhydryl units towards the periphery and electron withdrawing groups closer to the core would 

create an energy gradient within the dendron.  This gradient would help to funnel energy 

absorbed by whatever chromophores were attached from the periphery to the focus.   

The periphery of the dendrons also has potential to be changed.  In the current system, the 

ethers were a robust group for dendron synthesis.  However, once the porphyrins were attached, 

the ethers were the only break in π conjugation between the porphyrins and the core group.  The 

use of alternate functional groups that would leave a complete pathway of conjugation between 

donor and acceptor would be beneficial to the rate of charge separation if the dendron bridge is 

used in electron transfer.  The break however might also provide a barrier slowing down charge 

recombination.  In one possibility, the periphery of the dendrons could have alkyne functional 

groups.  Once the dendrons are synthesized, the peripheral alkynes would allow functionalization 

of the periphery by click chemistry with groups containing an azide.  The resulting connection 

between dendron and peripheral group would extend the conjugation of the dendrimer to the 
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attached group.  The break however might also provide a barrier slowing down charge 

recombination.   

Lastly, from the X-ray crystal structure that was obtained from the first generation 

dendron it is known that some minor twisting of the branches occurs.  This is not enough to 

disrupt conjugation.  The twisting though does lead to poorer conjugation of the branches.  The 

replacement of the benzhydryl units with a fluorene derived unit would minimize the twisting.  A 

fluorene-based dendrimer would be a particularly rigid structure.   

Ultimately, there is still much to be studied with p-phenylene vinylene dendrons.  

Between the organometallic route of Itami and coworkers,143 and the Horner-Wadsworth-

Emmons based approach developed in this work and repeated by Imaoka, Ueda, and 

Yamamoto,144 multiple pathways now exist to access these dendrons.  Hopefully their utility in 

charge transfer is further explored in the not too distant future. 



 

92 

5.0  EXPERIMENTAL INFORMATION 

5.1 GENERAL TECHNIQUES 

All moisture-sensitive reactions were performed under an N2 atmosphere under 

anhydrous conditions unless otherwise noted.  Tetrahydrofuran (THF) was distilled from 

sodium-benzophenone or purchased anhydrous and used without further purification.  

Dimethylformamide (DMF) was distilled from P2O5.  All other solvents and reagents were used 

without further purification unless otherwise stated.  Reactions were monitored by thin-layer 

chromatography (TLC) carried out on 0.25-mm EMD silica gel plates (60F-254) using UV-light 

(254 nm) to visualize and anisaldehyde, KMnO4, or dinitrophenylhydrazine stains, or I2 to 

develop.  Flash chromatography was performed using silica gel (230-400 mesh) purchased from 

Sorbent Technologies.  NMR spectra were recorded on Bruker Avance AM300 or AM500 

instruments at room temperature.  Chemical shifts (δ) are reported in parts per million, and the 

residual solvent peak195 was used as an internal standard.  Data are reported as follows: chemical 

shift, multiplicity, integration, and coupling constant.  The following abbreviations are used to 

indicate the multiplicities: s, singlet; d, doublet; dd, doublet of doublets; app t, apparent triplet; 

m, multiplet; br, broad.  IR spectra were obtained on a Nicolet Avatar 360 FT-IR E.S.P. 

spectrometer.  UV-visible spectra were obtained on a Perkin-Elmer Lambda 9 UV/VIS/NIR 

spectrometer.  Peak absorptions (λmax) are reported in nanometers (nm). Molar absorbtivity 
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values (ϵ) are reported in units of L∙mol−1∙cm−1.  Fluorescence emission and excitation spectra 

were recorded on a Jobin Yvon-Horiba Fluorolog-322 spectrofluorimeter.   

Elemental analyses were performed by the Microanalysis Laboratory, University of 

Illinois in Urbana, Illinois. 

Dye-sensitized solar cells were kindly prepared and tested by Bo Ding, Department of 

Mechanical Engineering & Materials Science, Swanson School of Engineering, University of 

Pittsburgh according the methods described in Ding et al.196 

5.2 EXPERIMENTAL DATA 

 

OH

3  

4,4’-Dimethylbenzhydrol (3).  To a solution of 4-bromotoluene (66.812 g, 390.6 mmol, 2.05 

eq.) in THF (250 mL)  cooled to -78 °C was added n-butyllithium in hexanes (1.6 M, 250 mL, 

400 mmol, 2.1 eq.) over three hours.  After one hour ethyl formate (15.4 mL, 14.08 g, 190 mmol, 

1.0 eq.) in THF (100 mL) was added dropwise.  After two hours water (200 mL) was added and 

the reaction warmed to room temperature.  The aqueous phase was extracted with diethyl ether 

(2 x 100 mL).  The combined organic phases were washed with brine (200 mL), dried over 

MgSO4, filtered, and concentrated under reduced pressure.  The product was used crude in the 

oxidation to 4.  A portion was recrystallized from hexanes to yield white needles for 

characterization.  mp 69.0-70.2 °C; IR (film) 3294, 3024, 2921, 1614, 1511, 1451, 1037, 1020, 
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805, 760 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.33 (d, 4H, J = 8.0 Hz), 7.23 (d, 4H, J = 8.0 Hz), 

5.77 (s, 1H), 2.80 (br s, 1H), 2.45 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 141.1, 136.8, 128.9, 

128.3, 75.6, 20.9; high resolution mass spectrum (EI+) calcd for C15H16O (M+)  212.1201, found 

212.1210 m/z. 

O

4  

4,4’-Dimethylbenzophenone (4).  To a solution of the crude alcohol 3 in dichloromethane (400 

mL) cooled to 0 °C was added 1.0 M aqueous potassium bromide (20 mL, 20 mmol, 0.1 eq.) and 

TEMPO (0.304 g, 1.9 mmol, 0.01 eq.).  Bleach, with 1.7 g NaHCO3 added per 100 mL, was 

added in portions with vigorous stirring until a yellow-orange color persisted.  The organic phase 

was washed with 10% HCl freshly prepared with 1.6 g potassium iodide added per 100 mL (200 

mL), 10% aqueous Na2S2O3 (200 mL), and brine (100 mL), dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Recrystallization from ethanol yielded 4 (30.053 g) as 

white needles.  Flash chromatography of the mother liquor using 10% to 50% ethyl acetate in 

hexanes yielded additional 4 for an overall yield of 36.651 g (174.3 mmol, 91.7%).  mp 91.0-

92.5 °C; IR (film) 3040, 1649, 1607, 1408, 1277, 1177, 1116, 844, 751 cm-1; 1H NMR (300 

MHz, CDCl3) δ 7.71 (d, 4H, J = 8.0 Hz), 7.26 (d, 4H, J = 8.0 Hz), 2.42 (s, 6H); 13C NMR (75 

MHz, CDCl3) δ 196.4, 143.2, 135.6, 130.5, 129.2, 21.9; high resolution mass spectrum (EI+) 

calcd for (M+) C15H14O 210.1045, found 210.1037 m/z. 

 

Alternative one-step synthesis of 4,4’-dimethylbenzophenone (4).  4-bromotoluene (27.92 g, 

163.2 mmol, 1.02 eq.) was dissolved in THF (100 mL) in  flame-dried flask.  After cooling 
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to -78 °C, n-butyllithium in hexanes (1.6 M, 100 mL, 160 mmol, 1.00 eq.) was added via cannula 

and the solution was stirred at -78 °C for one hour.  A solution of p-tolunitrile (18.74 g, 160 

mmol, 1.0 eq.) in THF (20 mL) was added via cannula at a rapid dropwise rate, pausing when the 

dry ice/acetone bath began bubbling vigorously indicating a rapid warming of the reaction 

mixture.  After the addition was complete, the reaction was stirred two additional hours then 

quenched by the addition of saturated aqueous NH4Cl.  After warming to room temperature, the 

reaction mixture was extracted with diethyl ether (2 x 100 mL).  The combined organic phases 

were washed with brine (200 mL), dried over MgSO4, filtered and concentrated.  The crude 

mixture which contains both the desired product as well as the imine was then added to a 

solution of LiOH (~40 g, ~10 eq.) in methanol (125 mL) and water (100 mL) and refluxed for 36 

hours until hydrolysis was complete.  The mixture was cooled.  Diethyl ether (100 mL), water 

(100 mL), and concentrated HCl (added until all solid was dissolved) were added and the layers 

separated.  The aqueous layer was extracted with diethyl ether (2 x 50 mL), and the combined 

organic layers were washed with saturated aqueous NaHCO3 (100 mL) and brine (100 mL).  

After drying over MgSO4, the solution was filtered and concentrated.  Recrystallization from 

ethanol yielded 4 (30.70 g, 146 mmol, 91.2%) as white needles.   

 

O

Br Br

5  

Bis(4-bromomethylphenyl)methanone (5).197  To a solution of benzophenone 4 (49.384 g, 

234.86 mmol, 1.0 eq.) in 1,2-dichloroethane (1000 mL) was added N-bromosuccinimide (84.02 

g, 472.07 mmol, 2.01 eq.) and benzoyl peroxide (2.844 g, 11.74 mmol, 0.05 eq.).  The solution 
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was heated to reflux for 120 minutes then allowed to cool slowly over night to allow succinimide 

to recrystallize.  The succinimide was removed by filtration and the filtrate concentrated under 

reduced pressure.  The resultant solid was dissolved in dichloromethane (200 mL) and washed 

with water (2 x 100 mL), dried over MgSO4, filtered and concentrated under reduced pressure to 

yield a light yellow solid (91.35 g).  Analysis by NMR showed this solid to consist of the desired 

product 5 and trace amounts of succinimide and solvents.  A small portion was recrystallized 

from dichloroethane with hexanes for characterization to yield 5 as a light yellow powder.  mp 

128.2-130.0 °C; IR (film) 3052, 2970, 1647, 1603, 1411, 1279, 1227, 1199, 1143, 927, 845, 771 

cm-1; 1H NMR (300 MHz, CDCl3) δ 7.77 (d, 4H, J = 8.0 Hz), 7.50 (d, 4H, J = 8.0 Hz), 4.53 (s, 

4H); 13C NMR (75 MHz, CDCl3) δ 195.0, 142.2, 137.1, 130.4, 128.9, 32.122; high resolution 

mass spectrum (EI+) calcd for (M+) C12H12O79Br2 365.9255, found 365.9237 m/z. 

 

O

P
O

O
O

P
O

OO

1  

(4-[4-(Dimethoxyphosphorylmethyl)benzoyl]benzyl)phosphonic acid dimethyl ester (1).198  

To a solution of the crude dibromide 5 in toluene (125 mL) was added trimethyl phosphite 

(101.04 g, 814.3 mmol, 3.4 eq.).  The mixture was refluxed for 6 hours before concentrating 

under reduced pressure.  The resulting solid was washed with ethyl acetate to remove dimethyl 

methylphosphonate leaving 1 (43.066 g) as a light yellow powder.  The washings were 

concentrated under reduced pressure and chromatographed using 5% methanol in 

dichloromethane to yield additional 1 for 61.506 g total (144.3 mmol, 61.4%, 2 steps).  mp 

126.5-128.0 °C; IR (film) 2955, 1651, 1607, 1416, 1252, 1181, 1053, 1028, 872, 788 cm-1; 1H 
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NMR (300 MHz, CDCl3) δ 7.66 (d, 4H, J = 8.0 Hz), 7.33 (dd, 4H, J = 8.0 Hz, 4JP-H = 2.3 Hz), 

3.62 (d, 12H, 3JP-H = 10.9 Hz), 3.15 (d, 4H, 2JP-H = 22.2 Hz); 13C NMR (75 MHz, CDCl3) δ 

195.3, 136.1 (d, JP-C = 9.2 Hz), 135.9 (d, JP-C = 2.9 Hz), 130.0 (d, JP-C = 2.6 Hz), 129.4 (d, JP-C = 

6.5 Hz), 52.7 (d, 2JP-C = 6.7 Hz), 32.7 (d, 1JP-C = 137.0 Hz); high resolution mass spectrum (EI+) 

calcd for (M+) C19H24O7P2 426.0997, found 426.0995 m/z. 

 

P
O

O
O

P
O

OO

O O

6  

(4-(2-[4-(Dimethoxyphosphorylmethyl)phenyl]-[1,3]dioxolan-2-yl)benzyl)phosphonic acid 

dimethyl ester (6).  To a solution of benzophenone 1 (1.203 g, 2.82 mmol, 1 eq.) in toluene (50 

mL) was added ethylene glycol (5 mL) and p-toluenesulfonic acid (0.5 g).  The mixture was 

refluxed in a Dean-Stark apparatus for 14 hours until water was no longer produced.  The cooled 

reaction mixture was poured into 50 mL aqueous saturated NaHCO3 solution.  The separated 

organic phase was washed with brine (50 mL), dried over MgSO4, filtered and concentrated 

under reduced pressure to yield 6 (1.166 g, 2.48 mmol, 87.9%) as a yellow powder.  mp 89.8-

94.5 °C; IR (film) 3032, 2956, 2895, 1609, 1509, 1463, 1417, 1247, 1179, 1019, 868, 788, 734 

cm-1; 1H NMR (300 MHz, CDCl3) δ 7.38 (d, 4H, 8.1 Hz), 7.19 (dd, 4H, J = 8.1 Hz, 4JP-H = 2.3 

Hz), 3.97 (s, 4H), 3.59 (d, 12H, 3JP-H = 10.8 Hz), 3.08 (d, 4H, 2JP-H = 21.7 Hz); 13C NMR (75 

MHz, CDCl3) δ 140.6 (d, JP-C = 3.2 Hz), 130.9 (d, JP-C = 9.0 Hz), 129.2 (d, JP-C = 6.5 Hz), 126.2 

(d, JP-C = 2.6 Hz), 108.9, 64.6, 52.6 (d, 2JP-C = 6.7 Hz), 32.2 (d, 1JP-C = 137.6 Hz); high resolution 

mass spectrum (EI+) calcd for (M+) C21H28O8P2 470.1259, found 470.1265 m/z. 
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O O OO

O O

8  

G1-Acetal (8).  To a solution of phosphonate 6 (1.278 g, 2.72 mmol, 1 eq.) and 4,4’-

dimethoxybenzophenone 7 (1.381 g, 5.70 mmol, 2.1 eq.) in DMF (10 mL) cooled to 0 °C was 

added in a dropwise fashion a solution of potassium tert-butoxide (1.219 g, 10.87 mmol, 4 eq.) in 

DMF (5 mL).  The reaction was allowed to warm to room temperature over 12 hours then poured 

into water (20 mL).  The mixture was extracted with ethyl acetate (3 x 30 mL).  The combined 

organic phases were then washed with 10% HCl (2 x 20 mL), dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Flash chromatography using 10% to 40% ethyl acetate in 

hexanes yielded 8 (1.315 g, 1.87 mmol, 68.8%) as a pale yellow solid.  mp unsharp 82.0-120.0 

°C; UV-vis (CH2Cl2) λmax 328 nm (ε = 52,859), 236 nm (ε = 43,129); IR (film) 3032, 2999, 

2954, 2895, 2835, 1604, 1572, 1510, 1463, 1284, 1246, 1174, 1081, 1034, 835, 737 cm-1; 1H 

NMR (500 MHz, CD2Cl2) δ 7.26 (d, 1H, J = 8.7 Hz), 7.23 (d, 1H, J = 8.4 Hz), 7.11 (d, 1H, J = 

8.6 Hz), 7.01 (d, 1H, J = 8.4 Hz), 6.89 (d, 1H, J = 8.6 Hz), 6.85 (d, 1H, J = 8.7 Hz), 6.84 (s, 

2H), 3.97 (s, 4H), 3.84 (s, 6H), 3.80 (s, 6H); 13C NMR (125 MHz, CD2Cl2) δ 159.7, 159.5, 142.5, 

140.5, 138.0, 136.6, 133.0, 131.7, 129.4, 129.1, 126.1, 125.9, 114.4, 113.8, 109.4, 65.2, 55.6, 

55.5; high resolution mass spectrum (EI+) calcd for (M+) C47H42O6 702.2981, found 702.3008 

m/z. 

 



 

99 

O O OO

O

9  

G1-Ketone (9).  To a solution of the G1-Acetal 8 (1.305 g, 1.85 mmol, 1 eq.) in acetone (40 mL) 

was added water (3 mL) and para-toluenesulfonic acid (0.407 g).  After one hour the reaction 

mixture was poured into ethyl acetate (50 mL) and washed with saturated aqueous NaHCO3 (25 

mL), dried over MgSO4, filtered and concentrated under reduced pressure.  Flash 

chromatography using 20% ethyl acetate in hexanes after loading the sample as a 

dichloromethane solution yielded 9 (1.218 g, 1.85 mmol, quantitative) as a bright yellow solid.  

Yellow needles formed in early fractions that were submitted for x-ray analysis.  mp 171.5-172.2 

°C; UV-vis (CH2Cl2) λmax 370 nm (ε = 41,949), 285 nm (ε = 28,002), 250 nm (ε = 34,536); IR 

(film) 3034, 3001, 2955, 2906, 2835, 1648, 1593, 1572, 1510, 1463, 1282, 1247, 1178, 1033, 

931, 833, 737 cm-1; 1H NMR (500 MHz, Acetone-d6) δ 7.51 (d, 4H, J = 8.3 Hz), 7.29 (d, 4H, J = 

8.9 Hz), 7.17 (d, 4H, J = 8.3 Hz), 7.10 (d, 4H, J = 8.7 Hz), 6.98 (s, 2H), 6.95 (d, 4H, J = 8.7 Hz), 

6.91 (d, 4H, J = 8.9 Hz), 3.83 (s, 6H), 3.81 (s, 6H); 1H NMR (500 MHz, CD2Cl2) δ 7.54 (d, 4H, J 

= 8.2 Hz), 7.29 (d, 4H, J = 8.8 Hz), 7.13 (d, 4H, J = 8.2 Hz), 7.12 (d, 4H, J = 8.7 Hz), 6.91 (s, 

2H), 6.90 (d, 4H, J = 8.7 Hz), 6.87 (d, 4H, J = 8.8 Hz), 3.83 (s, 6H), 3.82 (s, 6H); 13C NMR (125 

MHz, CD2Cl2) δ 195.3, 160.1, 159.8, 144.7, 142.6, 136.2, 135.6, 132.6, 131.9, 130.0, 129.5, 

129.4, 125.3, 114.4, 113.9, 55.6, 55.5; high resolution mass spectrum (EI+) calcd for (M+) 

C45H38O5 658.2719, found 658.2696 m/z. 
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O O OO O O OO

O O

10  

G2-Acetal (10).  To a solution of the G1-Ketone 9 (0.528 g, 0.80 mmol, 2.2 eq.) and 

phosphonate 6 (0.171 g, 0.36 mmol, 1.0 eq.) in DMF (10 mL) cooled to 0 °C was added in a 

dropwise fashion a solution of potassium tert-butoxide (0.327 g), 2.9 mmol, 8 eq.) in DMF (10 

mL).  The solution was allowed to warm to room temperature overnight.  Dichloromethane (20 

mL) was added and the mixture was washed with 10% HCl (4 x 20 mL), dried over MgSO4, 

filtered, and concentrated under reduced pressure.  Flash chromatography using 25% to 50% 

ethyl acetate in hexanes gave 10 (0.145 g, 0.09 mmol, 26.2%) as a pale yellow powder.  mp 

unsharp 141.0-185.0 °C; UV-vis (CH2Cl2) λmax 350 (ε = 114,016), 285 (ε = 56,294); IR (film) 

3032, 2999, 2952, 2835, 1603, 1572, 1510, 1462, 1285, 1246, 1173, 1034, 833 cm-1; 1H NMR 

(500 MHz, CD2Cl2) δ 7.27 (app t, 8H, J = 8.3 Hz), 7.23 (d, 4H, J = 8.4 Hz), 7.14-7.12 (m, 8H), 

7.07 (d, 4H, J = 8.3 Hz), 7.03 (d, 4H, J = 8.0 Hz), 6.85-6.98 (m, 34H), 3.99 (s, 4H), 3.83 (s, 6H), 

3.81 (s, 6H), 3.80 (s, 6H), 3.78 (s, 6H); 13C NMR (125 MHz, CD2Cl2) δ 159.7, 159.5, 142.5, 

142.4, 141.2, 141.0, 138.6, 137.7, 137.5, 136.7, 136.6, 133.1, 133.0, 131.9, 131.8, 130.1, 129.6, 

129.5, 129.2, 129.1, 127.4, 127.3, 126.1, 126.0, 125.9, 114.4, 114.3, 113.9, 109.4, 65.3, 55.6, 

55.5; high resolution mass spectrum (ES+) calcd for (M+H+) C107H91O10 1535.6612, found 

1535.6636 m/z. 
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Br

O

O

14  

2-(4-Bromophenyl)-[1,3]dioxolane (14).199  To a solution of 4-bromobenzaldehyde (40.826 g, 

220.6 mmol, 1.0 eq.) in toluene (200 mL) was added ethylene glycol (24.6 mL, 27.39 g, 441.2 

mmol, 2.0 eq.) and p-toluenesulfonic acid (0.84 g, 4.4 mmol, 0.02 eq.).  The mixture was 

refluxed in a Dean-Stark apparatus for 24 hours until water was no longer produced.  The cooled 

reaction mixture was poured into 100 mL aqueous saturated NaHCO3 solution.  The separated 

organic phase was washed with brine (100 mL), dried over Na2SO4, filtered and concentrated 

under reduced pressure.  The remaining yellow oil was vacuum distilled to yield 14 (47.712 g, 

208.2 mmol, 94.4%) as a clear liquid that crystallized on standing as white needles. bp 113.5 °C 

@ 4 torr); mp 31.5-34.0 °C; IR (film) 3064, 2885, 1594, 1484, 1081, 1011, 816 cm-1; 1H NMR 

(300 MHz, CD2Cl2) δ 7.55 (d, 2H, J = 8.4 Hz), 7.38 (d, 2H, J = 8.4 Hz), 5.76 (s, 1H), 4.14-3.95 

(m, 4H); 13C NMR (75 MHz, CD2Cl2) δ 137.9, 131.7, 128.7, 123.3, 103.3, 65.7; high resolution 

mass spectrum (EI+) calcd for C9H9
79BrO2 (M+) 227.9786, found 227.9785 m/z. 

 

O

O

O

O

OH

12  

Bis(4-[1,3]dioxolan-2-ylphenyl)methanol (11).  A solution of 14 (32.419 g, 141.5 mmol, 2.03 

eq.) in THF (100 mL) was cooled to -78 °C.  1.6 M n-Butyllithium in hexanes (90 mL, 144.0 

mmol, 2.07 eq.) was added via cannula over 30 minutes.  The solution was stirred an additional 
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hour during which it became a cream color.  Ethyl formate (5.62 ml, 5.15 g, 69.57 mmol, 1.00 

eq.) in THF (50 mL) was added dropwise over 30 minutes.  After one hour, the reaction was 

quenched with 200 mL of water then allowed to warm to room temperature.  The aqueous layer 

was extracted with ether (2 x 50 mL).  The combined organic layers were washed with brine 

(100 mL), dried over MgSO4, filtered and concentrated under reduced pressure.  Flash 

chromatography using 25% to 50% ethyl acetate in hexanes as a stepped eluant yielded 11 (15.14 

g, 46.1 mmol, 66.3%) as a white solid.  mp 84.5-85.0 °C; IR (film) 3442, 2892, 1614, 1511, 

1389, 1221, 1080, 819 cm-1; 1H NMR (300 MHz, CD2Cl2) δ 7.42 (d, 4H, J = 8.2 Hz), 7.35 (d, 

4H, J = 8.2 Hz), 5.76 (br d, 1H, J = 2.3 Hz), 5.74 (s, 2H), 4.09-3.94 (m, 8H), 2.97 (br d, 1H, J = 

2.3 Hz); 13C NMR (75 MHz, CD2Cl2) δ 145.4, 137.7, 126.9, 126.7, 103.8, 75.7, 65.6; high 

resolution mass spectrum (ES+) calcd for C19H20O5Na (M+Na+)  351.1208, found 351.1198 m/z. 

 

OH

O O

15  

Alcohol 15.  A solution of benzhydrol 23 (2.852 g, 8.6 mmol, 1 eq.), para-toluenesulfonic acid 

(163 mg), and water (5 mL) in acetone (40 mL) was stirred for 6 hours.  The reaction mixture 

was added to diethyl ether (20 mL) and aqueous NaHCO3 (20 mL).  The aqueous phase was 

extracted with diethyl ether (2 x 20 mL).  The combined organic phases were washed with water 

(30 mL), dried over MgSO4, filtered, and concentrated under reduced pressure.  Flash 

chromatography using 20% to 35% ethyl acetate in hexanes yielded 15 (1.361, 5.6 mmol, 66.0%) 

as a white solid.  mp 105.0-106.2 °C; IR (film) 3339, 2835, 2738, 1686, 1603, 1573, 1389, 1209, 

773 cm-1; 1H NMR (300 MHz, CDCl3) δ 9.88 (s, 2H), 7.78 (d, 4H, J = 8.2 Hz), 7.52 (d, 4H, J = 
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8.2 Hz), 5.93 (s, 1H), 3.77 (br s, 1H); 13C NMR (75 MHz, CDCl3) δ 192.0, 149.7, 135.6, 130.0, 

126.9, 75.1; high resolution mass spectrum (EI+) calcd for C15H12O3 (M+) 240.0786, found 

240.0793 m/z. 

 

OTBS

O O

13  

Silyl ether 13.  A solution of benzhydrol 11 (11.11 g, 33.8 mmol, 1 eq.), para-toluenesulfonic 

acid (200 mg), and water (20 mL) in acetone (100 mL) was refluxed for 3 hours.  After cooling, 

diethyl ether was added to effect the separation of layers.  The aqueous was extracted with 

diethyl ether (3 x 20 mL).  The combined organic phases were then dried over MgSO4, filtered, 

and concentrated under reduced pressure.  The crude alcohol was taken up in DMF (50 mL).  

Imidazole (6.91 g, 101.5 mmol, 3.0 eq.) and tert-butyldimethylsilyl chloride (7.65 g, 50.8 mmol, 

1.5 eq.) were added and the mixture stirred at room temperature for 24 hours.  Diethyl ether (50 

mL) and water (50 mL) were added.  The aqueous layer was extracted with diethyl ether (3 x 30 

mL).  The combined organic layers were washed with brine (50 mL), dried over MgSO4, filtered 

and concentrated under reduced pressure.  Flash chromatography using 20% diethyl ether in 

hexanes yielded 13 (7.523 g, 21.2 mmol, 62.7%) as a white crystalline solid.  mp 84.8-86.0 °C; 

IR (film) 2954, 2929, 2857, 2734, 1702, 1604, 1578, 1471, 1254, 1208, 1086, 868,838, 793 cm-1; 

1H NMR (300 MHz, CDCl3) δ 9.96 (s, 2H), 7.82 (d, 4H, J = 8.2 Hz), 7.55 (d, 4H, J = 8.2 Hz), 

5.88 (s, 1H), 0.92 (s, 9H), 0.00 (s, 6H); 13C NMR (75 MHz, CDCl3) δ 191.6, 150.7, 135.5, 129.9, 

126.6, 76.0, 26.6, 18.1, -5.0;  high resolution mass spectrum (EI+) calcd for C17H17O3Si (M-

C4H9
+) 297.0947, found 297.0945 m/z. 



 

104 

O

O

O

O

OTBS

16  

[Bis(4-[1,3]dioxolan-2-ylphenyl)methoxy]tert-butyldimethylsilane (16).  To a solution of 

benzhydrol 11 (2.401 g, 7.3 mmol, 1.0 eq.) and imidazole (1.493 g, 22.0 mmol, 3 eq.) in DMF (7 

mL) was added tert-butyldimethylsilyl chloride (1.653 g, 11.0 mmol, 1.5 eq.) at room 

temperature.  After 24 hours, 20 mL of diethyl ether and 20 mL of water were added.  The 

mixture was separated and the organic phase extracted with diethyl ether (3 x 20 mL).  The 

combined organic phases were washed with brine (30 mL), dried over MgSO4, filtered and 

concentrated under reduced pressure.  Flash chromatography of the resulting yellow oil using 0% 

to 30% diethyl ether in hexanes yielded 16 (1.906 g, 4.3 mmol, 59.0%) as a white, crystalline 

solid.  mp 98.7-101.0 °C; UV-Vis (CH2Cl2) λmax (nm) 264 (ε = 61,057); IR (film) 2946, 2925, 

2880, 2856, 1614, 1507, 1471, 1426, 1385, 1250, 1082, 1017, 870, 841, 776 cm-1; 1H NMR (300 

MHz, CD2Cl2) δ 7.41 (s, 8H), 5.84 (s 1H), 5.75 (s, 2H), 4.14-3.94 (m, 8H), 0.96 (s, 9H), 0.04 (s, 

6H); 13C NMR (75 MHz, CD2Cl2) δ 146.5, 137.4, 126.8, 126.5, 103.9, 76.6, 65.7, 26.0, 18.5, -

4.8; high resolution mass spectrum (EI+) calcd for C21H25O5Si (M-C4H9
+) 385.1471, found 

385.1465 m/z. 
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18  

Bromide 18.  To a solution of benzhydrol 11 (14.46 g, 44.0 mmol) in dichloromethane (250 mL) 

was added concentrated HBr (150 mL) and the mixture was refluxed until the alcohol was 

consumed as monitored by TLC.  The reaction was cooled and the aqueous phased extracted 

with dichloromethane (2 x 40 mL).  The combined organic layers were washed with saturated 

aqueous NaHCO3 (50 mL) and brine (50 mL), dried over MgSO4, filtered, and concentrated 

under reduced pressure.  Flash chromatography using 20% to 40% ethyl acetate in hexanes 

yielded 18 (12.587 g, 41.5 mmol, 94.4%) as a yellow crystalline solid.  mp 86.2-87.5 °C; IR 

(film) 3057, 2830, 2740, 1700, 1604, 1577, 1504, 1422, 1210, 800, 773 cm-1; 1H NMR (300 

MHz, CDCl3) δ 9.99 (s, 2H), 7.85 (d, 4H, J = 8.2 Hz), 7.60 (d, 4H, J = 8.2 Hz), 6.31; 13C NMR 

(75 MHz, CDCl3) δ 191.2, 146.1, 136.0, 129.9, 129.0, 52.5; high resolution mass spectrum (EI+) 

calcd for C15H10
79BrO2 (M-H+) 300.9864, found 300.9852 m/z. 
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17  

Bromide 17.  A solution of benzhydrol 11 (0.970 g, 2.95 mmol, 1 eq.) and triethylamine (1.24 

mL, 0.90 g, 8.86 mmol, 3 eq.) in THF (5 mL) was cooled to 0 °C and stirred for 30 minutes. 

Methanesulfonyl chloride (0.25 mL, 0.372 g, 3.25 mmol, 1.1 eq.) was added, and the mixture 

was stirred an additional 30 minutes.  The reaction was allowed to warm to room temperature 
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overnight.  Lithium bromide (2.56 g, 30 mmol, 10 eq.) was added.  After 1 hour, 

dichloromethane (15 mL) was added and the entire mixture then poured into saturated aqueous 

NaHCO3 (20 mL).  The aqueous phase was extracted with dichloromethane (3 x 20 mL).  The 

combined organic phases were then washed with water (20 mL), dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Flash chromatography with 30% ethyl acetate in hexanes 

gave 17 (0.684 g, 1.75 mmol, 59.3%) as a light yellow solid.  mp 65.0-66.8 °C; IR (film) 2955, 

2887, 1614, 1511, 1473, 1427, 1391, 1301, 1221, 1082, 1020, 971, 943, 823, 788 cm-1; 1H NMR 

(300 MHz, CD2Cl2) δ 7.50 (d, 4H, J = 8.6 Hz), 7.46 (d, 4H, J = 8.6 Hz), 6.35 (s, 1H), 5.78 (s, 

2H), 4.11-3.98 (m, 8H); 13C NMR (75 MHz, CD2Cl2) δ 142.2, 138.7, 128.7, 127.1, 103.5, 65.7, 

54.9; high resolution mass spectrum (EI+) calcd for C19H19
79BrO4 (M+) 390.0467, found 

390.0470 m/z.  Varying amounts of the analogous chloride were obtained in increasing amounts 

as the reaction was allowed to stir with lithium bromide for increasing amounts of time.  The 1H 

NMR of the chloride is indistinguishable but for the benzhydryl signal found at δ 6.14 ppm in the 

chloride.  Low resolution mass spectrum (EI+) supports the chloride product (M-Cl+) m/z 311 

with chlorine-containing fragments at 303/301 and 167/165.   
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11  

[Bis(4-[1,3]dioxolan-2-ylphenyl)methyl]phosphonic acid dimethyl ester (11).  The bromide 

17 (3.190 g, 8.15 mmol, 1 eq.) was dissolved in toluene (50 mL) and trimethyl phosphite (1.92 

mL, 2.02 g, 16.3 mmol, 2.0 eq.) was added and refluxed for 12 hours.  Monitoring by TLC 
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showed little progress, and so the solution was concentrated under reduced pressure.  The 

residual oil was dissolved in 20 mL of phosphite and refluxed for 24 hours.  After concentrating 

under reduced pressure, flash chromatography with 40% to 100% ethyl acetate in hexanes gave 

11 (2.004 g, 4.8 mmol, 58.5%) as a white solid.  mp 110.2-113.0 °C; IR (film) 2954, 2889, 1613, 

1511, 1430, 1391, 1252, 1223, 1183, 1082, 1055, 1022, 972, 943, 898, 871, 823, 763 cm-1; 1H 

NMR (300 MHz, CD2Cl2) δ 7.54 (dd, 4H, J = 8.3 Hz, 4JP-H = 1.7 Hz), 7.44 (d, 4H, J = 8.3 Hz), 

5.75 (s, 2H), 4.53 (d, 1H, 2JP-H = 24.9 Hz), 4.13-3.93 (m, 8H), 3.58 (d, 6H, 3JP-H = 10.7 Hz); 13C 

NMR (75 MHz, CD2Cl2) δ 137.9 (d, JC-P = 5.3 Hz), 137.7 (d, JC-P = 2.3 Hz), 129.6 (d, JC-P = 7.9 

Hz), 127.1, 103.6, 65.6, 53.6 (d, 2JC-P = 7.3 Hz), 50.4 (d, 1JC-P = 137.5 Hz); 1H NMR (300 MHz, 

Acetone-d6) δ 7.62 (dd, 4H, J = 8.2 Hz, 4JP-H = 1.8 Hz), 7.43 (d, 4H, J = 8.2 Hz), 5.71 (s, 2H), 

4.73 (d, 1H, 2JP-H = 24.4 Hz), 4.07-3.92 (m, 8H), 3.53 (d, 6H, 3JP-H = 10.7 Hz); 13C NMR (75 

MHz, Acetone-d6) δ 139.1 (d, JC-P = 4.9 Hz), 138.5, 130.1 (d, JC-P = 7.9 Hz), 127.6, 104.0, 65.8, 

53.4 (d, 2JC-P = 6.8 Hz), 50.2 (d, 1JC-P = 136.9 Hz); high resolution mass spectrum (EI+) calcd for 

C21H24O7P (M-H+) 419.1260, found 419.1255 m/z. 
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19  

(Bis(4-[2,2-bis(4-[1,3]dioxolan-2-ylphenyl)vinyl]phenyl)methoxy)tert-butyldimethylsilane 

(19).  To a solution of phosphonate 11 (0.502 g, 1.19 mmol, 2.05 eq) in THF (20 mL) cooled to 0 

°C was added n-butyllithium (1.6 M in hexanes, 0.81 mL, 1.3 mmol, 2.2 eq.).  After one hour, 
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the dialdehyde 13 (0.204 g, 0.58 mmol, 1.0 eq.) in THF (5 mL) was added to the dark orange 

solution.  The mixture was stirred overnight while warming to room temperature then quenched 

with water.  The aqueous phase was extracted with diethyl ether (2 x 20 mL).  The combined 

organic phases were then washed with brine (20 mL), dried over MgSO4, filtered, and 

concentrated under reduced pressure.  Flash chromatography using 60% to 70% diethyl ether in 

hexanes as eluant gave 19 (0.230 g, 0.24 mmol, 42.1%) as a white solid.  mp unsharp 72.8-109.5 

°C; UV-Vis (CH2Cl2) λmax 319 nm (ε = 37131), 236 nm (ε = 30482);   IR (film) 2953, 2928, 

2884, 2857, 1613, 1510, 1471, 1421, 1388, 1305, 1252, 1220, 1082, 1019, 970, 943, 868, 835, 

776 cm-1; 1H NMR (300 MHz, CD2Cl2) δ 7.46 (d, 4H, J = 8.1 Hz), 7.41 (d, 4H, J = 8.3 Hz), 7.32 

(d, 4H, J = 8.3 Hz), 7.22 (d, 4H, J = 8.1 Hz), 7.14 (d, 4H, J = 8.2 Hz), 7.00 (s, 2H), 7.00 (d, 4H, J 

= 8.2 Hz), 5.81 (s, 2H), 5,78 (s, 2H), 5.63 (s, 1H), 4.15-4.00 (m, 16H), 0.90 (s, 9H), -0.04 (s, 

6H); 13C NMR (75 MHz, CD2Cl2) δ 144.6, 144.3, 141.8, 141.6, 137.8, 136.3, 130.6, 129.8, 

128.8, 127.8, 127.3, 126.7, 126.2, 103.9, 103.8, 76.5, 65.7, 65.6, 25.9, 18.5, -4.8; high resolution 

mass spectrum (ES+) calcd for C59H62O9SiNa (M+Na+) 965.4061, found 965.4152 m/z. 

 

Br
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20  

2-(4-Bromophenyl)-2-methyl-[1,3]dithiolane; compound with methane (20).  To a solution of 

4-bromoacetophenone (40.513 g, 203.5 mmol, 1.0 eq.) in toluene (250 mL) was added para-

toluenesulfonic acid (0.595 g) and 1,2-ethanedithiol (90% purity, 19.5 mL, 21.8 g, 210 mmol, 

1.05 eq.).  The solution was refluxed in a Dean-Stark apparatus for 8 hours, cooled then added to 

water (100 mL).  The organic phase was dried over MgSO4, filtered and concentrated under 
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reduced pressure.  Flash chromatography with hexanes to remove residual thiol followed by 5% 

ethyl acetate in hexanes provided 20 (52.18 g, 189.6 mmol, 93.2%) as a clear liquid.  IR (neat) 

3057, 2964, 2921, 2859, 1584, 1486, 1392, 1275, 1077, 1007, 827, 732, 684 cm -1; 1H NMR (300 

MHz, CDCl3) δ 7.65 (d, 2H, J = 8.2 Hz), 7.43 (d, 2H, J = 8.2 Hz), 3.49-3.31 (m, 4H), 2.13 (s, 

3H); 13C NMR (75 MHz, CDCl3) δ 145.0, 130.7, 128.5, 120.8, 67.8, 40.2, 33.3; high resolution 

mass spectrum (EI+) calcd for C10H11S2
79Br (M+) 273.9486, found 273.9474 m/z. 
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21  

Bis(4-dimethoxymethylphenyl)methanol (21).  To a solution of 4-bromobenzaldehyde 

dimethyl acetal (69.995 g, 302.9 mmol, 2.05 eq.) in THF (350 mL) cooled to -78 °C was added 

via cannula n-butyllithium in hexanes (2.5 M, 130 mL, 310 mmol, 2.1 eq.) over an hour.  After 

an additional hour ethyl formate (12.0 mL, 11.004 g, 148.5 mmol, 1.0 eq.) in THF (100 mL) was 

added dropwise.  The mixture was allowed to warm to room temperature overnight before it was 

quenched with water (150 mL) and stirred 45 minutes.  The aqueous phase was extracted with 

diethyl ether (2 x 50 mL).  The combined organic phases were washed with brine (100 mL), 

dried over MgSO4, filtered, and concentrated under reduced pressure.  Flash chromatography 

using 20% to 60% ethyl acetate in hexanes afforded 21 (47.05 g, 141.5 mmol, 95.3%) as a clear, 

viscous oil.  IR (film) 3435, 2990, 2938, 2904, 2829, 1608, 1509, 1354, 1210, 1101, 1052, 817, 

793 cm-1; 1H NMR (300 MHz, CDCl3) δ 7.41-7.36 (m, 8H), 5.75 (s, 1H), 5.32 (s, 2H), 3.27 (s, 

12H); 13C NMR (75 MHz, CDCl3) δ 144.1, 136.9, 126.5, 126.2, 102.8, 75.3, 52.4;  high 

resolution mass spectrum (EI+) calcd for C19H24O5 (M+) 332.1624, found 332.1612 m/z. 
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4,4’-Dimethoxybenzhydrol (22).  To a solution of 4-bromoanisole (109.65 g, 586 mmol, 2.05 

eq.) in THF (500 mL) cooled to -78 °C was added via cannula n-butyllithium in hexanes (1.6 M, 

375 mL, 600 mmol, 2.1 eq.) over an hour.  After 30 minutes ethyl formate (23.1 mL, 21.19 g, 

286 mmol, 1.0 eq.) in THF (100 mL) was added dropwise.  After 90 minutes water (200 mL) 

was added and the reaction warmed to room temperature.  The aqueous phase was extracted with 

diethyl ether (3 x 50 mL).  The combined organic phases were washed with brine (200 mL), 

dried over MgSO4, filtered, and concentrated under reduced pressure.  No further purification 

was necessary.  On standing 22 (69.78 g, 285 mmol, 99.8%) crystallized as white needles.  Clear 

prisms formed when recrystallized from a combination of petroleum ether and diethyl ether.  mp 

69.0-69.8 °C; IR (film) 3305, 3006, 2957, 2910, 2837, 1611, 1511, 1249, 1172, 1030, 812, 776 

cm-1; 1H NMR (300 MHz, CDCl3) δ 7.28 (d, 4H, J = 8.6 Hz), 6.88 (d, 4H, J = 8.6 Hz), 5.72 (s, 

1H), 3.79 (s, 6H), 2.79 (br s, 1H), in a dilute sample the benzhydryl and alcohol H appear at δ 

5.79 (d, 1H, J = 3.4 Hz), 2.09 (d, 1H, J = 3.4 Hz); 13C NMR (75 MHz, CDCl3) δ 158.7, 136.4, 

127.6, 113.6, 75.1, 55.1; high resolution mass spectrum (EI+) calcd for C15H16O3 (M+) 244.1099, 

found 244.1093 m/z. 
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36  

2-(2-(2-methoxyethoxy)ethoxy)ethyl 4-methylbenzenesulfonate (36).200  Sodium hydroxide 

(31.83 g, 796 mmol, 1.25 eq.) was dissolved in water (50 mL) and cooled to 0 °C.  A solution of 
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triethylene glycol monomethyl ether (104.52 g, 637 mmol, 1.0 eq.) in THF (50 mL) was added.  

Tosyl chloride (127.52 g, 669 mmol, 1.05 eq.) in THF (200 mL) was then added dropwise over 

the period of 60 minutes to the alcohol solution to maintain a temperature of 0 °C.  Warmed to 

room temperature and stirred 36 hours.  Addition tosyl chloride was added (15.00 g, 78.7 mmol, 

0.12 eq.) and the solution stirred an additional 24 hours.  With alcohol still present as monitored 

by TLC, sodium hydroxide (4.24 g, 106 mmol, 0.17 eq.) was added.  The reaction was monitored 

and when all the alcohol was consumed, water (200 mL) was added and the reaction made acidic 

to litmus paper by addition of 6 M sulfuric acid.  Dichloromethane (200 mL) was added and the 

layers were separated.  The aqueous layer was extracted with dichloromethane (2 x 150 mL).  

The combined organic layers were washed with saturated aqueous NaHCO3 (200 mL), water 

(200 mL), then brine (200 mL), dried over Na2SO4 and MgSO4, filtered, and concentrated to 

yield 36 (198.37 g, 623 mmol, 97.8%) as a light, yellow liquid.  1H NMR (300 MHz, CDCl3) δ 

7.57 (d, 2H, J = 8.4 Hz), 7.15, (d, 2H, J = 8.4 Hz), 3.92-3.95 (m, 2H), 3.44-3.47 (m, 2H), 3.35-

3.39 (m, 6H), 3.27-3.31 (m, 2H), 3.13 (s, 3H), 2.22 (s, 3H); 13C NMR (75 MHz, CDCl3) δ 144.1, 

132.3, 129.2, 127.1, 71.1, 69.9, 69.7, 68.8, 67.9, 58.1, 20.8; high resolution mass spectrum (ES+) 

calcd for (M+H+) C14H23O6S 319.1215, found 319.1216 m/z. 
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4-(2-(2-(2-methoxyethoxy)ethoxy)ethoxy)benzaldehyde (27).  4-hydroxybenzaldehyde (5.129 

g, 42.0 mmol, 1.0 eq.) and tosylate 36 (14.747 g, 46.3 mmol, 1.1 eq.) were dissolved in acetone 

(140 mL).  Potassium carbonate (11.610 g, 84 mmol, 2.0 eq.) was added and the reaction 

refluxed for 24 hours during which a white precipitate formed.  After cooling to room 
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temperature, diethyl ether (100 mL) and water (75 mL) were added and the layers were 

separated.  The aqueous phase was extracted with diethyl ether (2 x 50 mL).  The combined 

organic phases were washed with brine (50 mL), dried over MgSO4, and concentrated under 

reduced pressure.  Flash chromatography using 50% to 75% ethyl acetate in hexanes gave 27 

(9.880 g, 36.8 mmol, 87.7%) as a clear, colorless oil.  1H NMR (300 MHz, CDCl3) δ 9.74 (s, 

1H), 7.69 (d, 2H, J = 9.0 Hz), 6.89 (d, 2H, J = 9.0 Hz), 4.07-4.10 (m, 2H), 3.74-3.77 (m, 2H), 

3.59-3.61 (m, 2H), 3.50-3.57 (m, 4H), 3.39-3.41 (m, 2H), 3.23 (s, 3H); 13C NMR (75 MHz, 

CDCl3) δ 190.2, 163.4, 131.4, 129.6, 114.5, 71.4, 70.4, 70.2, 70.1, 69.0, 67.4, 58.5; high 

resolution mass spectrum (ES+) calcd for (M-H+) C14H19O5 267.1232, found 267.1233 m/z. 
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5,10,15,20-Tetra(4-OMTEG-phenyl)porphyrin (28).  Aldehyde 27 (4.166 g, 15.5 mmol, 1.0 

eq.) and pyrrole (1.07 mL, 1.04 g, 15.5 mmol, 1.0 eq.) were dissolved in chloroform (1.5 L) and 

purged with nitrogen for 15 minutes.  BF3·OEt2 (0.19 mL, 0.21 g, 1.5 mmol, 0.1 eq.) was added 

and the reaction stirred for 150 minutes.  DDQ (2.64 g, 11.6 mmol, 0.75 eq.) was added and the 

solution went from dark red to black.  After 60 minutes, triethylamine (2.16 mL, 1.59 g, 15.5 

mmol, 1.0 eq.) was added.  The solution was concentrated and combined with the products of 
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three similar preparations.  The combined crude mixture was loaded onto ~50 g of silica gel.  

Flash chromatography using 60:40 chloroform:ether followed by 2:68:30 then 5:65:30  

methanol:chloroform:ether yielded 28 (6.637 g, 5.3 mmol, 33.8%) as a shiny, purple solid.  1H 

NMR (300 MHz, CDCl3) δ 8.87 (s, 8H), 8.12 (d, 8H, J = 8.4 Hz), 7.30 (d, 8H, J = 8.4 Hz), 4.41-

4.47 (m, 8H), 4.05-4.08 (m, 8H), 3.87-3.91 (m, 8H), 3.79-3.83 (m, 8H), 3.74-3.77 (m, 8H), 3.62-

3.65 (m, 8H), 3.44 (s, 12H), -2.74 (s, 2H); 13C NMR (75 MHz, CDCl3) δ 158.6, 135.5, 134.8, 

131.0, 119.7, 112.9, 72.0, 71.0, 70.8, 70.7, 69.9, 67.7, 59.1. 
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Ni-porphyrin (29).  Free base porphyrin 28 (6.632 g, 5.2 mmol, 1.0 eq) and nickel(II) acetate 

tetrahydrate (6.531 g, 26.2 mmol, 5.0 eq.) were dissolved in chloroform (150 mL) and methanol 

(75 mL).  After refluxing for 24 hours, the solution was cooled to room temperature and stirred 

an additional 72 hours.  The solution was condensed and the mixture loaded onto silica.  Flash 

chromatography with 2:70:30 methanol:chloroform:ether followed by 3:70:30 and 6:70:30 of the 

same solvent system yielded 29 (6.265 g, 4.7 mmol, 90.4%) as a red-purple solid.  UV-vis 

(CH2Cl2) λmax 529 (ε = 22,500) 418 (ε = 262,581); IR (film) 2923, 2880, 1608, 1507, 1454, 1353, 

1282, 1249, 1177, 1134, 1108, 1062, 1000, 806 cm-1; 1H NMR (300 MHz, CD2Cl2) δ 8.84 (s, 
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8H), 7.93 (d, 8H, J = 8.4 Hz), 7.18 (d, 8H, J = 9.0 Hz), 4.20-4.23 (m, 8H), 3.85-3.88 (m, 8H), 

3.70-3.73 (m, 8H), 3.62-3.67 (m, 16H), 3.54-3.57 (m, 8H), 3.40 (s, 12H); 13C NMR (75 MHz, 

CD2Cl2) δ 159.0, 143.5, 135.1, 133.7, 132.4, 119.3, 113.3, 72.3, 71.1, 70.9, 70.8, 70.0, 68.0, 

59.0; high resolution mass spectrum (ES+) calcd for (M+H+) C72H85N4O16Ni 1319.5314, found 

1319.5394 m/z; Anal. Calcd for C72H84N4O16Ni: C, 65.51; H, 6.41; N, 4.24; Ni, 4.45. Found: C, 

65.47; H, 6.49; N, 4.26; Ni, 4.24. 
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Ni-Porphyin alcohol (31).  Ni-porphyrin 29 (1.2107 g, 0.92 mmol, 1.0 eq.) was dissolved in 

chloroform (30 mL).  DMF (5.11 mL, 4.83 g, 66 mmol, 72 eq.) was cooled to 0 °C.  POCl3 (5.13 

mL, 8.44 g, 55 mmol, 60 eq.) was added slowly via syringe.  After stirring 3 minutes at 0 °C, the 

flask was removed from the ice bath and the mixture stirred an additional 5 minutes.  Chloroform 

(3 mL) was then added to the viscous, dark red liquid to aid in transfer.  The Vilsmeier reagent 

was added to the porphyrin solution via syringe and the mixture was refluxed for 2.5 hours with 

a drying tube attached to the top of the condenser.  The reaction mixture was then cooled in an 

ice bath and quenched very slowly with saturated aqueous NaHCO3. The mixture was stirred 
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vigorously for 30 minutes and warmed to room temperature during which time to color changed 

from green to a dark brown/purple color.  The layers were separated and extracted with ethyl 

acetate (3 x 25 mL).  The combined organic phases were washed with water (100 mL) and dried 

over Na2SO4, filtered and concentrated to yield crude Ni-porphyrin aldehyde 30.  This was 

dissolved in THF (50 mL) and cooled to 0 °C.  Sodium borohydride (0.1392 g, 3.68 mmol, 4.0 

eq) was added carefully and the reaction allowed to warm to room temperature slowly.  After 3.5 

hours, the reaction was complete and so it was cooled again to 0 °C and quenched with water (50 

mL) and then extracted with ethyl acetate (3 x 50 mL).  The combined organic phases were dried 

over Na2SO4, filtered, and concentrated.  Flash chromatography of the crude solid loaded onto 

silica with 0:50:50, 3:50:50, then 6:50:50 methanol:ether:chloroform yielded 31 (1.1100 g, 0.82 

mmol, 89.4%) as a dark purple solid.  1H NMR (300 MHz, CDCl3) δ 8.85 (s, 1H), 8.70-8.77 (m, 

6H), 7.87-7.91 (m, 6H). 7.76 (d, 2H, J = 8.4 Hz), 7.16-7.22 (m, 8H), 4.81 (s, 2H), 4.33-4.36 (m, 

8H), 3.99 (m, 8H), 3.83-3.85 (m, 8H), 3.71-3.29 (m, 16H), 3.61-3.63 (m, 8H), 3.42-3.43 (m, 

12H); 13C NMR (75 MHz, CDCl3) δ 159.1, 158.5, 147.1, 143.6, 142.9, 142.9, 142.7, 142.5, 

142.4, 141.3, 139.0, 134.6, 133.4, 133.3, 133.2, 133.1, 132.0, 118.9, 118.5, 117.5, 117.4, 113.5, 

113.0, 71.9, 70.9, 70.7, 70.6, 69.8, 67.6, 61.4, 59.0; high resolution mass spectrum (ES+) calcd 

for (M+Na+) C73H86N4O17NaNi 1371.5239, found 1371.5239 m/z.   
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Diethyl 2-(4-methoxybenzylidene)succinate (37).  4-methoxybenzaldehyde (6.085 g, 44.7 

mmol, 1.0 eq.) and diethyl succinate (10.41 mL, 10.90 g, 62.6 mmol, 1.4 eq.) were dissolved in 

THF (60 mL) and added dropwise to a solution of potassium tert-butoxide (7.025 g, 62.6 mmol, 

1.4 eq.) in THF (50 mL) over a period of two hours.  The reaction was heated to reflux for 16 

hours then cooled to room temperature.  Water (50 mL) and diethyl ether (50 mL) were added 

and the layers separated.  The organic phase was extracted with 2 M aqueous NaOH (2 x 50 mL).  

The combined aqueous layers were acidified with 6 M aqueous HCl to pH 1 (approximately 40 

mL) and extracted with dichloromethane (3 x 25 mL).  The dichloromethane phase was then 

dried over Na2SO4 and MgSO4, filtered, and concentrated.  The crude monoester was dissolved 

in ethanol (75 mL) and 10 drops of concentrated H2SO4 were added.  The solution was refluxed 

for 16 hours and cooled to room temperature.  Dichloromethane (50 mL) and water (50 mL) 

were added, and the layers were separated.  The aqueous phase was extracted with 

dichloromethane (2 x 50 mL).  The combined organic phases were washed with brine (50 mL).  

Diethyl ether (25 mL) was added to remove additional water dissolved in the organic phase due 

to remaining alcohol.  The organic phases were dried over MgSO4, filtered and concentrated to 

yield 37 (5.626 g, 19.2 mmol, 43.1%) as a bright yellow oil.  1H NMR (300 MHz, CDCl3) δ 7.83 

(s, 1H), 7.33 (d, 2H, J = 9.0 Hz), 6.91 (d, 2H, J = 9.0 Hz), 4.24 (q, 2H, J = 7.2 Hz), 4.19 (q, 2H, J 

= 7.2 Hz), 3.82 (s, 3H), 3.55 (s, 2H), 1.32 (t, 3H, J = 7.2 Hz), 1.26 (t, 3H, J = 7.2 Hz); 13C NMR 

(75 MHz, CDCl3) δ 171.2, 167.5, 160.1, 141.3, 130.8, 127.4, 124.2, 114.0, 60.9, 60.8, 55.2, 33.7, 

14.2, 14.1; high resolution mass spectrum (ES+) calcd for (M+Na+) C16H20O5Na 315.1208, found 

315.1206 m/z. 
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Diethyl 2-(4-hydroxybenzylidene)succinate (38).  Boron tribromide (1M  in dichloromethane, 

9.7 mL, 9.7 mmol, 2.0 eq.) was added to a solution of methyl ether 37 (1.4140 g, 4.84 mmol, 1.0 

eq.) in dichloromethane (30 mL) that had been cooled to 0 °C.  After stirring for one hour, the 

solution was warmed to room temperature and stirred an additional two hours.  Ethanol (4 mL) 

was added to quench the reaction.  After pouring into ice cold water (50 mL) the layers were 

separated, and the aqueous phase was extracted with dichloromethane (25 mL) then ethyl acetate 

(25 mL).  The combined organic phases were washed with brine (25 mL), dried over Na2SO4, 

filtered and concentrated.  The crude phenol was dissolved in ethanol (100 mL) to which ~1 mL 

concentrated H2SO4 was added.  The solution was refluxed for 18 hours, cooled and concentrated 

by half its original volume.  Ethyl acetate (50 mL) was added followed by saturated aqueous 

NaHCO3 (50 mL), and the layers were separated.  The aqueous phase was extracted with ethyl 

acetate (2 x 30 mL).  The combined organic phases were washed with brine (50 mL), dried over 

MgSO4, filtered, concentrated and loaded onto silica.  Flash chromatography with 5% methanol 

in chloroform yielded 38 (447.7 mg, 1.61 mmol, 33.2%) as a bright orange solid.  1H NMR (300 

MHz, Acetone-d6) δ 8.78 (s, 1H), 7.77 (s, 1H), 7.34 (d, 2H, J = 8.7 Hz), 6.91 (d, 2H, J = 8.7 Hz), 

4.21 (q, 2H, J = 7.2 Hz), 4.14 (q, 2H, J = 7.2 Hz), 3.54 (s, 2H), 1.31 (t, 3H, J = 7.2 Hz), 1.23 (t, 

3H, J = 7.2 Hz); 13C NMR (75 MHz, Acetone-d6) δ 171.5, 168.0, 141.8, 132.1, 127.3, 124.9, 

116.5, 61.3, 61.2, 34.3, 14.6, 14.5; high resolution mass spectrum (ES+) calcd for (M+Na+) 

C15H18O5Na 301.1052, found 301.1044 m/z. 
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Diethyl 2-(bis(4-methoxyphenyl)methylene)succinate (24).  4,4’-dimethoxybenzophenone 7 

(14.333 g, 59.2 mmol, 1.0 eq.) and diethyl succinate (11.81 mL, 12.36 g, 71.0 mmol, 1.2 eq.) 

were dissolved in THF (30 mL).   Potassium tert-butoxide (7.969 g, 71.0 mmol, 1.2 eq.) in THF 

(100 mL) was added dropwise.  The reaction was heated to reflux for 16 hours then cooled to 

room temperature.  Water (50 mL) and diethyl ether (100 mL) were added and the layers 

separated.  The organic phase was extracted with 2 M aqueous NaOH (2 x 50 mL).  The 

combined aqueous layers were acidified with 6 M aqueous HCl to pH 1 (approximately 30 mL) 

and extracted with dichloromethane (2 x 50 mL).  The dichloromethane phase was then dried 

over MgSO4, filtered, and concentrated.  The crude monoester was dissolved in ethanol (125 

mL) to which ~1 mL concentrated H2SO4 was added.  The solution was refluxed for 44 hours, 

cooled and concentrated by half its original volume.  Ethyl acetate (100 mL) was added followed 

by water (50 mL), and the layers were separated.  The aqueous phased was extracted with ethyl 

acetate (30 mL).  The combined organic phases were washed with saturated aqueous NaHCO3 

(100 mL).  That aqueous phase was extracted with ethyl acetate (20 mL).  The combined organic 

phases were dried over MgSO4, filtered, concentrated, and loaded onto silica.  Flash 

chromatography with 50 % diethyl ether in hexanes yielded 24 (18.400 g, 46.2 mmol, 78.0%) as 

an orange oil.  1H NMR (300 MHz, CDCl3) δ 7.08 (d, 2H, J = 9.0 Hz), 7.04 (d, 2H, J = 8.7 Hz), 

6.85 (d, 2H, J = 8.7 Hz), 6.80 (d, 2H, J = 8.7 Hz), 4.17 (q, 2H, J = 7.2 Hz), 3.98 (q, 2H, J = 7.2 
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Hz), 3.80 (s, 3H), 3.79 (s, 3H), 3.47 (s, 2H), 1.26 (t, 3H, J = 7.2 Hz), 0.94 (t, 3H, J = 7.2 Hz); 13C 

NMR (75 MHz, CDCl3) δ 171.4, 169.9, 159.5, 159.4, 151.0, 134.8, 133.2, 130.8, 123.4, 113.5, 

113.1, 60.7, 60.4, 55.2, 38.6, 14.1, 13.6; high resolution mass spectrum (ES+) calcd for (M+H+) 

C23H27O6 399.1808, found 399.1803 m/z. 
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26  

Diethyl 2-(bis(4-hydroxyphenyl)methylene)succinate (26).  Boron tribromide (1M  in 

dichloromethane, 20.0 mL, 20.0 mmol, 4.0 eq.) was added to a solution of methyl ether 26 

(2.033 g, 5.1 mmol, 1.0 eq.) in dichloromethane (30 mL) that had been cooled to -78 °C.  After 

stirring for 3.5 hours, additional boron tribromide (5.0 mL, 5.0 mmol, 0.25 eq.) was added, the 

solution was warmed to room temperature and stirred an additional 90 minutes.  Ethanol (15 mL) 

was added to quench the reaction.  After pouring into water (50 mL) the layers were separated, 

and the aqueous phase was extracted with ethyl acetate (2 x 30 mL).  The combined organic 

phases were washed with brine (25 mL), dried over MgSO4, filtered and concentrated.  The 

crude phenol 25 was dissolved in ethanol (75 mL) to which ~0.5 mL concentrated H2SO4 was 

added.  The solution was refluxed for 16 hours, cooled and concentrated by half its original 

volume.  Ethyl acetate (50 mL) was added and the solution was washed with water (50 mL) 

followed by saturated aqueous NaHCO3 (50 mL).  The aqueous phase was extracted with ethyl 

acetate (2 x 25 mL).  The combined organic phases were washed with brine (50 mL), dried over 

MgSO4, filtered, concentrated, and loaded onto silica.  Flash chromatography with a gradient of 
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33% to 50% ethyl acetate in hexanes yielded 26 (1.2901 g, 3.5 mmol, 68.3%) as an off white 

solid.  1H NMR (300 MHz, Acetone-d6) δ 8.57 (s, 1H), 8.43 (s, 1H), 6.98 (d, 2H, J = 8.7 Hz), 

6.90 (d, 2H, J = 8.4 Hz), 6.83 (d, 2H, J = 8.4 Hz), 6.76 (d, 2H, J = 8.7 Hz), 4.11 (q, 2H, J = 7.2 

Hz), 3.89 (q, 2H, J = 7.2 Hz), 3.39 (s, 2H), 1.21 (t, 3H, J = 7.2 Hz), 0.90 (t, 3H, J = 7.2 Hz); 13C 

NMR (75 MHz, Acetone-d6) δ 171.7, 170.3, 158.4, 158.3, 151.9, 134.9, 133.3, 131.7, 131.3, 

123.9, 115.9, 115.4, 61.0, 60.6, 39.2, 14.5, 14.0; high resolution mass spectrum (ES+) calcd for 

(M+Na+) C21H22O6Na 393.1314, found 393.1307 m/z. 
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Diethyl 2-(bis(4-(2,2-bis(4-methoxyphenyl)vinyl)phenyl)methylene)succinate (39).  G1-

Ketone 9 (1.0487 g, 1.6 mmol, 1.0 eq.) and diethyl succinate (0.80 mL, 0.83 g, 4.8 mmol, 3.0 

eq.) were dissolved in THF (75 mL).   Potassium tert-butoxide (0.5502 g, 4.8 mmol, 3.0 eq.) in 

THF (100 mL) was added dropwise.  The reaction was heated to reflux for 20 hours then cooled 

to room temperature.  Water (25 mL) and diethyl ether (25 mL) were added and the layers 

separated.  The organic phase was extracted with 2 M aqueous NaOH (2 x 25 mL).  The 

combined aqueous layers were acidified with 10% aqueous HCl to pH 1 and extracted with 

dichloromethane (3 x 25 mL) then ethyl acetate (25 mL).  The organic phase was then dried over 

MgSO4, filtered, and concentrated.  The crude monoester was dissolved in 1,2-dichloroethane 
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(25 mL).  Ethanol (50 mL) and ~0.5 mL concentrated H2SO4 were added.  The solution was 

refluxed for 20 hours, cooled and concentrated by half its original volume.  Ethyl acetate (50 

mL) was added followed by water (25 mL), and the layers were separated.  The organic phases 

were washed with water (25 mL) then saturated aqueous NaHCO3 (25 mL).  That aqueous phase 

was extracted with ethyl acetate (25 mL).  The combined organic phases were dried over 

MgSO4, filtered, concentrated, and loaded onto silica.  Flash chromatography with a gradient 

from 20% to 40% to 50 % diethyl ether in hexanes removed the most polar impurities.  After 

loading onto silica, a second column with 20%, 30%, then 40% diethyl ether in hexanes yielded 

39 (498.0 mg, 0.61 mmol, 38.2%) as a yellow solid.  IR (film) 3034, 2956, 2934, 2905, 2836, 

1734, 1702, 1603, 1572, 1511, 1463, 1442, 1419, 1389, 1368, 1325, 1286, 1247, 1175, 1111, 

1033, 835, 780, 737, 703 cm-1; 1H NMR (300 MHz, CD2Cl2) δ 7.27 (d, 4H, J = 8.7 Hz), 7.12 (d, 

2H, J = 8.4 Hz), 7.12 (d, 2H, J = 8.7 Hz), 7.02 (d, 2H, J = 8.1 Hz), 6.93 (d, 2H, J = 8.4 Hz), 6.85-

6.90 (m, 14H), 4.14 (q, 2H, J = 7.2 Hz), 3.94 (q, 2H, J = 7.2 Hz), 3.84 (s, 3H), 3.83 (s, 3H), 3.81 

(s, 6H), 3.40 (s, 2H), 1.25 (t, 3H, J = 7.2 Hz), 0.96 (t, 3H, J = 7.2 Hz); 13C NMR (75 MHz, 

CD2Cl2) δ 171.5, 169.7, 159.9, 159.8, 159.6, 159.6, 151.2, 143.1, 142.6, 140.5, 138.8, 138.5, 

138.0, 136.5, 136.5, 133.0, 132.9, 131.8, 129.5, 129.3, 129.2, 129.2, 129.1, 128.9, 125.9, 125.7, 

125.3, 114.4, 113.9, 61.2, 60.9, 55.5, 55.5, 38.7, 14.3, 13.9; high resolution mass spectrum (ES+) 

calcd for (M+Na+) C53H50O8Na 837.3403, found 837.3383 m/z. 
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Diethyl 2-(bis(4-(2,2-bis(4-hydroxyphenyl)vinyl)phenyl)methylene)succinate (40).  Boron 

tribromide (1M  in dichloromethane, 6.0 mL, 6.0 mmol, 10.0 eq.) was added in three portions at 

ten minute intervals in a rapid dropwise  fashion to a solution of methyl ether 39 (0.4854 g, 0.60 

mmol, 1.0 eq.) in dichloromethane (10 mL) that had been cooled to -78 °C.  After stirring for 

four hours, additional boron tribromide (3.0 mL, 3.0 mmol, 5.0 eq.) was added, the solution was 

warmed to room temperature and stirred an additional 60 minutes.  The reaction was quenched 

by cooling to -78 °C and the addition of ethanol (5 mL).  After pouring into water (25 mL) the 

layers were separated, and the aqueous phase was extracted with ethyl acetate (2 x 20 mL).  The 

combined organic phases were washed with brine (25 mL), dried over MgSO4, filtered and 

concentrated.  The crude phenol was dissolved in ethanol (30 mL) to which ~0.2 mL 

concentrated H2SO4 was added.  The solution was refluxed for 16 hours, cooled and concentrated 

by half its original volume.  Ethyl acetate (50 mL) was added followed by water (25 mL), and 

the layers were separated.  The aqueous phase was extracted with ethyl acetate (2 x 20 mL).  The 

combined organic phases were washed with brine (25 mL), dried over MgSO4, filtered, 

concentrated, and loaded onto silica.  Flash chromatography with 50% ethyl acetate in hexanes 

yielded 40 (0.3830 g, 0.50 mmol, 84.1%) as an orange solid.  IR (film) 3386, 2978, 2876, 1705, 

1608, 1512, 1441, 1370, 1327, 1267, 1171, 1102, 1024, 838 cm-1; 1H NMR (300 MHz, Acetone-

d6) δ 8.44 (s, 4H) 7.16-7.20 (m, 4H), 7.04 (d, 2H, J = 8.1 Hz), 6.96-7.00 (m, 6H), 6.88 (d, 2H, J 
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= 8.4 Hz), 6.78-6.85 (m, 12H), 4.09 (q, 2H, J = 6.9 Hz), 3.87 (q, 2H, J = 7.2 Hz), 3.33 (s, 2H), 

1.21 (t, 3H, J = 6.9 Hz), 0.90 (t, 3H, J = 7.2 Hz); 13C NMR (75 MHz, Acetone-d6) δ 171.3, 

169.7, 158.2, 158.1, 157.9, 157.8, 151.3, 144.1, 143.6, 140.93, 139.2, 139.2, 138.6, 135.9, 135.8, 

132.4, 132.3, 132.2, 132.1, 129.9, 129.7, 129.6, 129.6, 129.2, 125.9, 125.4, 125.1, 116.5, 116.4, 

115.9, 61.2, 60.9, 38.8, 14.5, 14.0; high resolution mass spectrum (ES-) calcd for (M-H+) 

C49H41O8 757.2801, found 757.2722 m/z. 
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33  

1P-Dye (33).  Ni-Porphyrin alcohol 31 (0.6350 g, 0.49 mmol, 1.3 eq.), phenol 38 (0.1083 g, 0.39 

mmol, 1.0 eq.) and triphenylphosphine (0.1233 g, 0.47 mmol, 1.2 eq.) were dissolved in THF (8 

mL) and cooled to 0 °C.  DIAD (0.09 mL, 0.09 g, 0.47 mmol, 1.2 eq.) was added dropwise and 

the solution was stirred 10 minutes at 0 °C then warmed to room temperature.  The reaction was 

monitored by TLC, and after 24 hours was not complete.  The reaction was cooled to 0 °C, and a 

second portion of triphenylphosphine and DIAD equal to the first were added.  Once the reaction 

was complete, the solution was concentrated.  Flash chromatography with 2.5% methanol in 
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chloroform yielded a set of fractions with the product and triphenylphosphine.  The mixture was 

adsorbed to silica and subjected to flash chromatography with 60% ethyl acetate in hexanes 

followed by 3% methanol in chloroform yielded the mostly pure succinate diester.  This was 

dissolved in THF (20 mL) and a 1 M aqueous sodium hydroxide (10 mL) was added.  The 

mixture was refluxed for 48 hours.  An additional 10 mL of aqueous sodium hydroxide was 

added, and the solution was refluxed three hours longer.  After cooling to room temperature, 

10% HCl (20 mL) was added followed by chloroform (20 mL).  The layers were separated.  The 

aqueous phase was extracted with chloroform (2 x 20 mL).  The combined organic phases were 

concentrated onto silica.  Flash chromatography with 5% to 10% methanol in chloroform yielded 

33 (0.1480 g, 0.09 mmol, 23.2%) as a purple solid.  UV-vis (CH2Cl2) λmax 532 (ε = 29,034), 420 

(ε = 294,754); IR (film) 3445, 3034, 2877, 1704, 1637, 1606, 1573, 1507, 1453, 1409, 1352, 

1284, 1248, 1199, 1177, 1109, 1030, 1005, 945, 849, 815, 720 cm-1; high resolution mass 

spectrum (ES-) calcd for (M-H+) C84H93N4O21Ni 1551.5686, found 1551.5592 m/z. 

 

O

HO

O OH

N

N

N

NNi

MTEGO OMTEG

OMTEGMTEGO

N

N

N

N Ni

OMTEGMTEGO

MTEGO OMTEG

O O

34  

2P-Dye (34).  Ni-Porphyrin alcohol 31 (0.7358 g, 0.54 mmol, 2.3 eq.), phenol 26 (0.0878 g, 0.24 

mmol, 1.0 eq.) and triphenylphosphine (0.1367 g, 0.52 mmol, 2.2 eq.) were dissolved in THF (8 

mL) and cooled to 0 °C.  DIAD (0.10 mL, 0.11 g, 0.52 mmol, 2.2 eq.) was added dropwise and 
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the solution was warmed to room temperature over three hours.  The reaction was monitored by 

TLC, and after 72 hours was not complete.  The reaction was cooled to 0 °C, and a second 

portion of triphenylphosphine and DIAD equal to the first were added.  After 44 hours, the 

solution was concentrated and adsorbed to silica.  Flash chromatography with 2.5% methanol in 

chloroform yielded a set of fractions with the product and triphenylphosphine.  The mixture was 

adsorbed to silica and subjected to flash chromatography with 60/30/10, 50/40/10, then 25/70/6 

diethyl ether/chloroform/methanol which elutes unreacted porphyrin first followed by the 

product succinate diester (403 mg).  This was dissolved in THF (20 mL) and a 1 M aqueous 

sodium hydroxide (10 mL) was added.  The mixture was refluxed for 20 hours.  An additional 10 

mL of 2 M aqueous sodium hydroxide was added, and the solution was refluxed 18 hours longer.  

The two layers present were separated.  The aqueous phase was acidified with 1 M aqueous HCl 

and extracted with ethyl acetate (2 x 30 mL).  After concentrating the combined organic phases, 

the crude was dissolved in THF (30 mL).  Water (6 mL) and 2 M aqueous sodium hydroxide (2 

mL) was added and the mixture refluxed 20 hours.  A solution of THF (4 mL), water (4 mL), and 

2 M aqueous sodium hydroxide (1.5 mL) was added to the reaction, and it was refluxed an 

additional 18 hours at which point it was complete.  After cooling, ethyl acetate (30 mL) was 

added followed by 1 M HCl (30 mL) and the layers were separated.  The red aqueous layer was 

extracted with chloroform (2 x 30 mL) until it became clear and colorless.  The combined 

organic phases were dried over Na2SO4, filtered, concentrated, and adsorbed to silica.  Flash 

chromatography with a series of methanol/diethyl ether/chloroform mixtures: 5/35/60, 7/33/60, 

10/30/60, 13/17/70, and 1/1/4.  The diacid 34 (0.1949 g, 0.07 mmol, 27.2%) was a shiny purple 

solid.  UV-vis (CH2Cl2) λmax 532 (ε = 47,435), 420 (ε = 519,727); IR (film) 3447, 3035, 2876, 

1729, 1698, 1607, 1573, 1507, 1453, 1411, 1352, 1328, 1284, 1248, 1199, 1177, 1110, 1064, 
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1030, 1005, 943, 850, 816, 800, 720, 646 cm-1; Anal. Calcd for C163H182N8O38Ni2: C, 65.73; H, 

6.16; N, 3.76; Ni, 3.94. Found: C, 64.72; H, 6.18; N, 3.65; Ni, 3.68. 
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35  

4P-Dye (35).  Ni-Porphyrin alcohol 31 (1.1089 g, 0.82 mmol, 4.3 eq.), phenol 40 (0.1449 g, 0.19 

mmol, 1.0 eq.) and triphenylphosphine (0.2154 g, 0.82 mmol, 4.3 eq.) were dissolved in THF (20 

mL) and cooled to 0 °C.  DIAD (0.16 mL, 0.17 g, 0.82 mmol, 4.3 eq.) was added dropwise and 

the solution was stirred 10 minutes at 0 °C then warmed to room temperature for 18 hours.  The 

reaction was heated to reflux for 24 hours.  A second portion of triphenylphosphine and DIAD 

was added equal to the first.  The solution was refluxed for 18 hours, cooled to room 

temperature, concentrated and adsorbed to silica.  Flash chromatography with a series of 

methanol/diethyl ether/chloroform mixtures: 0/70/30, 5/75/20, 5/70/25, 10/60/30, and 5/30/65 

elutes the unreacted porphyrin first followed by the product diester (1.04 g), a dark purple solid.  
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This was dissolved in THF (30 mL) and a 0.5 M aqueous sodium hydroxide (4 mL) was added.  

The mixture was refluxed for 14 hours.  An additional 20 mL of 0.5 M aqueous sodium 

hydroxide was added, and the solution was refluxed for 20 hours.  After cooling to room 

temperature, 10% HCl (25 mL) was added followed by dichloromethane (50 mL).  The layers 

were separated.  The aqueous phase was extracted with dichloromethane (2 x 25 mL).  The 

combined organic phases were washed with brine (50 mL), then water (50 mL) with 10% HCl 

(25 mL) added.  The partially reacted mixture was concentrated, then redissolved in THF (30 

mL) along with 2 M aqueous sodium hydroxide (10 mL) and methanol (10 mL).  After refluxing 

18 hours, the solution was cooled before being quenched with 1 M HCl (25 mL).  

Dichloromethane (25 mL) was added and the layers separated.  The aqueous phase was extracted 

with dichloromethane (2 x 20 mL).  The combined organic layers were dried over Na2SO4, 

filtered, concentrated, and loaded onto silica.  Flash chromatography with a series of 

methanol/diethyl ether/chloroform mixtures: 5/60/35, 10/60/30, and 5/0/95 yielded 35 (0.5925 g, 

0.09 mmol, 51.7%) as a dark purple solid.  UV-vis (CH2Cl2) λmax 533 (ε = 75,714), 421 (ε = 

888,772), 333 (ε = 110,506); IR (film) 3457, 3034, 2875, 1702, 1607, 1507, 1411, 1352, 1283, 

1248, 1199, 1177, 1110, 1064, 1031, 1005, 928, 816, 719 cm-1; Anal. Calcd for 

C337H370N16O72Ni4: C, 67.11; H, 6.18; N, 3.72; Ni, 3.89. Found: C, 66.60; H, 6.11; N, 3.59; Ni, 

3.76. 
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APPENDIX A 

1H AND 13C NMR DATA 

NMR data is included in the order the compounds are presented in the experimentals.  The 1H 

spectrum is included first in all cases.  In instances where multiple spectra were collected using 

different solvents, the solvent is indicated to the lower right of the structure. 
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APPENDIX B 

X-RAY CRYSTAL DATA FOR G1-KETONE 9 

 

O O OO

O

G1-Ketone 9
 

 
This appendix contains the tables of data related to the x-ray crystal structure of G1-Ketone 9. 

 Following those tables are figures showing the structure of the compound from various 

angles compared with the minimized equilibrium geometry as calculated using B3LYP/STO-3G 

methods152 with GAMESS.89   
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Table B.1.  Crystal data and structure refinement for 9. 

Identification code  pb0701t 

Empirical formula  C45H38O5 

Formula weight  658.75 

Temperature  295(2) K 

Wavelength  0.71073 Å 

Crystal system  Orthorhombic 

Space group  Pbcn 

Unit cell dimensions a = 35.5065(16) Å α= 90°. 

 b = 12.6761(6) Å β= 90°. 

 c = 8.1714(4) Å γ = 90°. 

Volume 3677.8(3) Å
3
 

Z 4 

Density (calculated) 1.190 Mg/m3 

Absorption coefficient 0.077 mm-1 

F(000) 1392 

Crystal size 0.15 x 0.15 x 0.35 mm
3
 

Theta range for data collection 1.71 to 25.00° 

Index ranges -42<=h<=42, -15<=k<=15, -9<=l<=9 

Reflections collected 27564 

Independent reflections 3235 [R(int) = 0.0445] 

Completeness to theta = 25.00° 100.0 %  

Absorption correction Sadabs 

Refinement method Full-matrix least-squares on F
2
 

Data / restraints / parameters 3235 / 0 / 227 

Goodness-of-fit on F2 1.346 

Final R indices [I>2sigma(I)] R1 = 0.0603, wR2 = 0.1575 

R indices (all data) R1 = 0.0823, wR2 = 0.1663 

Largest diff. peak and hole 0.166 and -0.148 e.Å
-3
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Table B.2. Atomic coordinates (x 104) and equivalent  isotropic displacement parameters (Å2 x 

103) for 9.  U(eq) is defined as one third of the trace of the orthogonalized Uij tensor. 

______________________________________________________________________________ 

 x y z U(eq) 
______________________________________________________________________________ 
O(1) 0 12872(2) 2500 111(1) 
O(2) 703(1) 5350(1) 2093(2) 84(1) 
O(3) 3171(1) 8223(2) 1870(3) 100(1) 
C(1) 783(1) 9880(2) 2786(3) 55(1) 
C(2) 435(1) 10336(2) 2930(3) 54(1) 
C(3) 364(1) 11342(2) 2306(3) 54(1) 
C(4) 661(1) 11866(2) 1561(3) 59(1) 
C(5) 1009(1) 11413(2) 1435(3) 58(1) 
C(6) 1082(1) 10401(2) 2022(3) 52(1) 
C(7) 0 11905(2) 2500 64(1) 
C(8) 1467(1) 10000(2) 1883(3) 61(1) 
C(9) 1606(1) 9011(2) 1916(3) 59(1) 
C(10) 1366(1) 8056(2) 1912(3) 52(1) 
C(11) 1083(1) 7904(2) 774(3) 58(1) 
C(12) 856(1) 7020(2) 785(3) 61(1) 
C(13) 908(1) 6261(2) 1965(3) 59(1) 
C(14) 1188(1) 6394(2) 3119(3) 65(1) 
C(15) 1418(1) 7264(2) 3070(3) 59(1) 
C(16) 400(1) 5203(2) 996(4) 87(1) 
C(17) 2018(1) 8832(2) 1931(3) 62(1) 
C(18) 2263(1) 9488(2) 2768(3) 71(1) 
C(19) 2649(1) 9323(2) 2768(3) 76(1) 
C(20) 2795(1) 8479(2) 1920(3) 73(1) 
C(21) 2558(1) 7819(2) 1079(4) 88(1) 
C(22) 2178(1) 7989(2) 1104(3) 79(1) 
C(23) 3426(1) 8907(3) 2627(5) 101(1) 
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Table B.3.  Bond lengths [Å] and angles [°] for 9. 

O(1)-C(7)  1.226(4) 
O(2)-C(13)  1.369(3) 
O(2)-C(16)  1.411(3) 
O(3)-C(20)  1.375(3) 
O(3)-C(23)  1.398(3) 
C(1)-C(2)  1.370(3) 
C(1)-C(6)  1.399(3) 
C(1)-H(1A)  0.9300 
C(2)-C(3)  1.396(3) 
C(2)-H(2A)  0.9300 
C(3)-C(4)  1.388(3) 
C(3)-C(7)  1.484(3) 
C(4)-C(5)  1.367(3) 
C(4)-H(4A)  0.9300 
C(5)-C(6)  1.394(3) 
C(5)-H(5A)  0.9300 
C(6)-C(8)  1.461(3) 
C(7)-C(3)#1  1.484(3) 
C(8)-C(9)  1.348(3) 
C(8)-H(8A)  0.9300 
C(9)-C(10)  1.480(3) 
C(9)-C(17)  1.479(3) 
C(10)-C(11)  1.383(3) 
C(10)-C(15)  1.392(3) 
C(11)-C(12)  1.380(3) 
C(11)-H(11A)  0.9300 
C(12)-C(13)  1.374(3) 
C(12)-H(12A)  0.9300 
C(13)-C(14)  1.382(3) 
C(14)-C(15)  1.373(3) 
C(14)-H(14A)  0.9300 
C(15)-H(15A)  0.9300 
C(16)-H(16A)  0.9600 
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Table B.3.  (continued) 

 
C(16)-H(16B)  0.9600 
C(16)-H(16C)  0.9600 
C(17)-C(18)  1.384(3) 
C(17)-C(22)  1.386(3) 
C(18)-C(19)  1.386(3) 
C(18)-H(18A)  0.9300 
C(19)-C(20)  1.376(4) 
C(19)-H(19A)  0.9300 
C(20)-C(21)  1.371(4) 
C(21)-C(22)  1.370(4) 
C(21)-H(21A)  0.9300 
C(22)-H(22A)  0.9300 
C(23)-H(23A)  0.9600 
C(23)-H(23B)  0.9600 
C(23)-H(23C)  0.9600 
 
C(13)-O(2)-C(16) 117.9(2) 
C(20)-O(3)-C(23) 118.0(2) 
C(2)-C(1)-C(6) 121.7(2) 
C(2)-C(1)-H(1A) 119.2 
C(6)-C(1)-H(1A) 119.2 
C(1)-C(2)-C(3) 121.1(2) 
C(1)-C(2)-H(2A) 119.4 
C(3)-C(2)-H(2A) 119.4 
C(4)-C(3)-C(2) 117.4(2) 
C(4)-C(3)-C(7) 118.6(2) 
C(2)-C(3)-C(7) 123.9(2) 
C(5)-C(4)-C(3) 121.2(2) 
C(5)-C(4)-H(4A) 119.4 
C(3)-C(4)-H(4A) 119.4 
C(4)-C(5)-C(6) 122.0(2) 
C(4)-C(5)-H(5A) 119.0 
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Table B.3. (continued) 

 
C(6)-C(5)-H(5A) 119.0 
C(5)-C(6)-C(1) 116.5(2) 
C(5)-C(6)-C(8) 117.9(2) 
C(1)-C(6)-C(8) 125.5(2) 
O(1)-C(7)-C(3) 118.74(13) 
O(1)-C(7)-C(3)#1 118.74(13) 
C(3)-C(7)-C(3)#1 122.5(3) 
C(9)-C(8)-C(6) 131.6(2) 
C(9)-C(8)-H(8A) 114.2 
C(6)-C(8)-H(8A) 114.2 
C(8)-C(9)-C(10) 123.3(2) 
C(8)-C(9)-C(17) 120.3(2) 
C(10)-C(9)-C(17) 116.38(19) 
C(11)-C(10)-C(15) 117.0(2) 
C(11)-C(10)-C(9) 122.3(2) 
C(15)-C(10)-C(9) 120.73(19) 
C(12)-C(11)-C(10) 122.2(2) 
C(12)-C(11)-H(11A) 118.9 
C(10)-C(11)-H(11A) 118.9 
C(13)-C(12)-C(11) 119.6(2) 
C(13)-C(12)-H(12A) 120.2 
C(11)-C(12)-H(12A) 120.2 
O(2)-C(13)-C(12) 124.9(2) 
O(2)-C(13)-C(14) 115.7(2) 
C(12)-C(13)-C(14) 119.4(2) 
C(15)-C(14)-C(13) 120.4(2) 
C(15)-C(14)-H(14A) 119.8 
C(13)-C(14)-H(14A) 119.8 
C(14)-C(15)-C(10)       121.3(2) 
C(14)-C(15)-H(15A) 119.3 
C(10)-C(15)-H(15A) 119.3 
O(2)-C(16)-H(16A) 109.5 
O(2)-C(16)-H(16B) 109.5 
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Table B.3. (continued) 

 
H(16A)-C(16)-H(16B) 109.5 
O(2)-C(16)-H(16C) 109.5 
H(16A)-C(16)-H(16C) 109.5 
H(16B)-C(16)-H(16C) 109.5 
C(18)-C(17)-C(22) 116.5(2) 
C(18)-C(17)-C(9) 122.3(2) 
C(22)-C(17)-C(9) 121.2(2) 
C(19)-C(18)-C(17) 122.1(2) 
C(19)-C(18)-H(18A) 119.0 
C(17)-C(18)-H(18A) 119.0 
C(20)-C(19)-C(18) 119.4(2) 
C(20)-C(19)-H(19A) 120.3 
C(18)-C(19)-H(19A) 120.3 
C(21)-C(20)-C(19) 119.7(2) 
C(21)-C(20)-O(3) 115.8(2) 
C(19)-C(20)-O(3) 124.4(2) 
C(22)-C(21)-C(20) 120.1(2) 
C(22)-C(21)-H(21A) 120.0 
C(20)-C(21)-H(21A) 120.0 
C(21)-C(22)-C(17) 122.2(2) 
C(21)-C(22)-H(22A) 118.9 
C(17)-C(22)-H(22A) 118.9 
O(3)-C(23)-H(23A) 109.5 
O(3)-C(23)-H(23B) 109.5 
H(23A)-C(23)-H(23B) 109.5 
O(3)-C(23)-H(23C) 109.5 
H(23A)-C(23)-H(23C) 109.5 
H(23B)-C(23)-H(23C) 109.5 
 
Symmetry transformations used to generate equivalent atoms:  
#1 -x,y,-z+1/2       
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Table B.4. Anisotropic displacement parameters (Å
2
x 10

3
) for 9.  The anisotropic displacement 

factor exponent takes the form:  -2π
2
[ h

2
 a*

2
U11 + ...  + 2 h k a* b* U12 ] 

______________________________________________________________________________  
 U11 U22  U33 U23 U13 U12 
______________________________________________________________________________  
O(1) 87(2)  43(2) 203(3)  0 36(2)  0 
O(2) 96(1)  70(1) 85(1)  11(1) -8(1)  -26(1) 
O(3) 53(1)  116(2) 129(2)  -40(1) 5(1)  -5(1) 
C(1) 59(1)  48(1) 57(1)  6(1) -4(1)  -1(1) 
C(2) 55(1)  52(1) 56(1)  2(1) -1(1)  -8(1) 
C(3) 60(1)  43(1) 58(1)  -2(1) -3(1)  -4(1) 
C(4) 70(2)  41(1) 66(1)  2(1) 0(1)  -5(1) 
C(5) 62(2)  49(1) 64(1)  -3(1) 8(1)  -10(1) 
C(6) 55(1)  48(1) 54(1)  -4(1) -2(1)  -7(1) 
C(7) 68(2)  42(2) 81(2)  0 3(2)  0 
C(8) 56(1)  60(1) 69(2)  -2(1) 2(1)  -11(1) 
C(9) 57(1)  59(1) 61(1)  -7(1) -2(1)  -3(1) 
C(10) 48(1)  54(1) 56(1)  -6(1) 0(1)  5(1) 
C(11) 63(1)  57(1) 54(1)  6(1) -6(1)  -6(1) 
C(12) 59(1)  65(1) 58(1)  0(1) -10(1)  -7(1) 
C(13) 65(2)  53(1) 58(1)  0(1) 4(1)  -4(1) 
C(14) 74(2)  56(1) 64(1)  7(1) -7(1)  6(1) 
C(15) 55(1)  59(1) 62(1)  -7(1) -9(1)  12(1) 
C(16) 86(2)  84(2) 91(2)  -9(2) -1(2)  -31(2) 
C(17) 58(2)  63(1) 66(1)  -12(1) 1(1)  -5(1) 
C(18) 62(2)  66(2) 84(2)  -17(1) -3(1)  0(1) 
C(19) 63(2)  77(2) 88(2)  -19(1) -9(1)  -12(1) 
C(20) 52(2)  84(2) 83(2)  -20(1) 8(1)  -7(1) 
C(21) 57(2)  95(2) 112(2)  -46(2) 11(1)  -3(2) 
C(22) 57(2)  92(2) 89(2)  -39(2) 3(1)  -10(1) 
C(23) 59(2)  120(3) 126(3)  -19(2) -9(2)  -19(2) 
______________________________________________________________________________  
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Table B.5. Hydrogen coordinates (x 10
4
) and isotropic displacement parameters (Å

2
x 10

3
) for 9. 

   

 x  y  z  U(eq) 

H(1A) 821 9207 3208 65 
H(2A) 242 9969 3453 65 
H(4A) 623 12539 1139 71 
H(5A) 1203 11791 943 70 
H(8A) 1648 10521 1747 74 
H(11A) 1044 8414 -26 70 
H(12A) 669 6938 -1 73 
H(14A) 1222 5890 3933 77 
H(15A) 1613 7326 3825 71 
H(16A) 281 4538 1216 130 
H(16B) 493 5209 -107 130 
H(16C) 221 5762 1134 130 
H(18A) 2166 10057 3348 85 
H(19A) 2807 9779 3335 91 
H(21A) 2657 7254 490 106 
H(22A) 2021 7524 546 95 
H(23A) 3677 8637 2502 152 
H(23B) 3367 8962 3770 152 
H(23C) 3410 9591 2129 152 
______________________________________________________________________________ 
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Figure B.2. Comparison of structures of G1-Ketone as viewed from x-axis. 
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Figure B.3. Comparison of structures of G1-Ketone as viewed from y-axis. 
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Figure B.4. Comparison of structures of G1-Ketone as viewed from z-axis.  X-ray structure in 

back with minimized structure over top with decreased opacity. 
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APPENDIX C 

ADDITIONAL UV-VISIBLE ABSORPTION AND FLUORESCENCE DATA FOR 

PHENYLENE VINYLENE DENDRONS 

Experimental Conditions 

Solvent: dichloromethane 

Solution Concentrations: 

 G0-Ketone 7 1.4 x 10-5 M 

 G1-Ketone 9 5.3 x 10-6 M 

 G1-Acetal 8 5.2 x 10-6 M 

 G2-Acetal 10 5.5 x 10-6 M 

 G0-OTBS 16 5.6 x 10-6 M 

 G1-OTBS 19 5.3 x 10-6 M 
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Figure C.1. UV-visible absorption spectra of G0- & G1-Ketone dendrons adjusted to reflect a common 

concentration and normalized. 
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Figure C.2. UV-visible absorption spectra of G1- & G2-Acetal dendrons adjusted to reflect a common 

concentration and normalized. 
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Figure C.3. UV-visible absorption spectra of G0- & G1-OTBS dendrons adjusted to reflect a common concentration 

and normalized. 
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Figure C.4. Fluorescence excitation and emission spectra of G1-Ketone dendron. 
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Figure C.5. Fluorescence excitation and emission spectra of G2-Acetal dendron. 

 

 

 

 

 

 

0

0.2

0.4

0.6

0.8

1

200 250 300 350 400 450 500 550 600 650 700

N
or

m
al

iz
ed

 F
lu

or
es

ce
nc

e 

Wavelength (nm) 

emission (285 nm)

emission (350 nm)

excitation (464 nm)



 

213 

 

Figure C.6. Fluorescence excitation and emission spectra of G1-OTBS dendron. 
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APPENDIX D 

ADDITIONAL FLUORESCENCE DATA FOR DYES 

Experimental Conditions 

Solvent: dichloromethane 

Solution Concentrations: 

 Ni-Por 29 1.4 x 10-6 M 

 1P-Dye 33 3.8 x 10-6 M 

 2P-Dye 34 4.7 x 10-6 M 

 4P-Dye 35 2.7 x 10-6 M 
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Figure D.1. Fluorescence excitation spectra as recorded of porphyrin 29 and dyes 33-35 as observed at wavelengths 

shown in legends.   
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