
NON-PARAMETRIC GRAPH-BASED METHODS FOR

LARGE SCALE PROBLEMS

by

Saeed Amizadeh

BS, University of Tehran, 2004

MS, University of Tehran, 2007

MS, University of Pittsburgh, 2010

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of

Arts and Sciences in partial fulfillment

of the requirements for the degree of

Doctor of Philosophy

University of Pittsburgh

2013

UNIVERSITY OF PITTSBURGH

INTELLIGENT SYSTEMS PROGRAM

This dissertation was presented

by

Saeed Amizadeh

It was defended on

August 28, 2013

and approved by

Milos Hauskrecht, PhD, Associate Professor, Computer Science

Chakra Chennubhotla, PhD, Assistant Professor, Computational and Systems Biology

Greg Cooper, MD PhD, Professor, Biomedical Informatics

Marek Druzdzel, PhD, Associate Professor, School of Information Sciences

Rebecca Nugent, PhD, Associate Professor, Department of Statistics, Carnegie Mellon

University

Shyam Visweswaran, MD PhD, Assistant Professor, Biomedical Informatics

Dissertation Director: Milos Hauskrecht, PhD, Associate Professor, Computer Science

ii

Copyright © by Saeed Amizadeh

2013

iii

NON-PARAMETRIC GRAPH-BASED METHODS FOR LARGE SCALE PROBLEMS

Saeed Amizadeh, PhD

University of Pittsburgh, 2013

The notion of similarity between observations plays a very fundamental role in many Ma-

chine Learning and Data Mining algorithms. In many of these methods, the fundamental

problem of prediction, which is making assessments and/or inferences about the future ob-

servations from the past ones, boils down to how “similar” the future cases are to the already

observed ones. However, similarity is not always obtained through the traditional distance

metrics. Data-driven similarity metrics, in particular, come into play where the traditional

absolute metrics are not sufficient for the task in hand due to special structure of the ob-

served data. A common approach for computing data-driven similarity is to somehow ag-

gregate the local absolute similarities (which are not data-driven and can be computed in

a closed-from) to infer a global data-driven similarity value between any pair of observa-

tions. The graph-based methods offer a natural framework to do so. Incorporating these

methods, many of the Machine Learning algorithms, that are designed to work with abso-

lute distances, can be applied on those problems with data-driven distances. This makes

graph-based methods very effective tools for many real-world problems.

In this thesis, the major problem that I want to address is the scalability of the graph-

based methods. With the rise of large-scale, high-dimensional datasets in many real-world

applications, many Machine Learning algorithms do not scale up well applying to these

problems. The graph-based methods are no exception either. Both the large number of

observations and the high dimensionality hurt graph-based methods, computationally and

statistically. While the large number of observations imposes more of a computational prob-

lem, the high dimensionality problem has more of a statistical nature. In this thesis, I

iv

address both of these issues in depth and review the common solutions for them proposed

in the literature. Moreover, for each of these problems, I propose novel solutions with ex-

perimental results depicting the merits of the proposed algorithms. Finally, I discuss the

contribution of the proposed work from a broader viewpoint and draw some future direc-

tions of the current work.

v

TABLE OF CONTENTS

1.0 INTRODUCTION TO GRAPH-BASED METHODS 1

1.1 Motivation: The Big Picture . 1

1.1.1 Large Number of Observations . 3

1.1.2 High Dimensionality . 4

1.2 Background . 5

1.2.1 The Basics . 5

1.2.1.1 The Similarity Graph . 5

1.2.1.2 The Laplacian of Graph . 5

1.2.1.3 Smoothness on Graphs . 6

1.2.2 The Laplacian Eigenmap . 8

1.2.3 The Diffusion Map . 8

1.2.3.1 Random Walk on Graph . 9

1.2.3.2 Random Walk and Kernel Density Estimation 10

1.2.3.3 Multiscale Random Walk . 11

1.2.3.4 Diffusion Distance . 12

1.2.3.5 Diffusion Map . 13

1.2.4 Laplacian-based Kernels And Spectral Transform 13

1.2.5 The Diffusion Operator . 15

1.2.6 Building The Similarity Graph . 17

1.2.6.1 Weighted Fully Connected . 18

1.2.6.2 k-nearest-neighbor (kNN) . 18

1.2.6.3 ε-neighborhood . 19

vi

1.2.6.4 Minimum Spanning Tree (MST) 20

1.2.6.5 Dealing With Non-vector Spaces 20

2.0 CASE STUDY: CONSTRUCTING GENERALIZED LOCALLY-INDUCED TEXT

METRICS . 22

2.1 Introduction . 22

2.2 Related Work . 24

2.3 The Graph-based Text Metric . 26

2.3.1 Term-Term Distance Metrics . 26

2.3.2 Set-Set Distance Metric . 27

2.4 Experiments . 30

2.4.1 Term Prediction . 30

2.4.1.1 Data . 30

2.4.1.2 Evaluation Metric . 30

2.4.1.3 Baselines . 31

2.4.1.4 Results . 31

2.4.2 Query Expansion . 32

2.4.2.1 Datasets . 33

2.4.2.2 Experimental setup . 33

2.4.2.3 Results . 34

2.5 Discussion . 34

3.0 LARGE N . 37

3.1 Introduction . 37

3.2 Related Work . 39

3.2.1 Node Sparsification Methods . 39

3.2.2 Edge Sparsification Methods . 40

3.2.3 Decomposition-based Methods . 41

3.2.4 Direct Methods . 41

3.2.5 Hierarchical Methods . 42

3.3 Case Study: Subsampling in The Term Space 43

3.3.1 Building The Association Graph . 44

vii

3.3.2 Eigen Decomposition of The Association Graph 44

3.3.3 Empirical Error for Ranking . 45

3.4 Large-scale Transition Matrix Approximation 45

3.4.1 The Problem Statement . 49

3.5 Fast Kernel Density Estimation . 50

3.5.1 Single-tree Approximation . 51

3.5.2 Dual-tree Approximation . 52

3.5.2.1 Variational Log-likelihood . 55

3.5.2.2 Dual-tree Block Partitioning 56

3.5.2.3 Variational Optimization . 59

3.5.3 Anchor Trees . 61

3.5.3.1 Anchor Tree Construction Algorithm 61

3.5.3.2 Time Complexity . 63

3.6 Variational Dual-Tree Transition Matrix Approximation 65

3.6.1 Variational Random Walk . 65

3.6.2 Optimizing The Bandwidth . 67

3.6.3 Fast Inference . 68

3.6.4 Partitioning and Refinement . 70

3.7 Bregman Variational Dual-Tree Framework 74

3.7.1 The Bregman Divergences and The Exponential Families 75

3.7.2 Bregman Variational Approximation 79

3.7.3 Bregman Anchor Trees . 81

3.8 Experiments . 83

3.8.1 Methods . 83

3.8.2 Efficiency and Quality vs. Problem Size 85

3.8.2.1 Data . 85

3.8.2.2 Experimental Setup . 85

3.8.2.3 Results . 86

3.8.3 The Effect of Refinement . 92

3.8.3.1 Experimental Setup . 92

viii

3.8.3.2 Results . 93

3.8.4 Computational Scalability . 98

3.8.5 BVDT For Frequency Data . 98

3.8.5.1 The Bregman Divergence For Frequency Data 99

3.8.5.2 Simulation . 102

3.8.5.3 Text Data . 108

3.9 Discussion . 114

4.0 LARGE D . 117

4.1 Introduction . 117

4.2 The Factorized Diffusion Approximation . 119

4.2.1 Motivation . 119

4.2.2 Related Work . 121

4.2.3 Convergence of Diffusion Operator . 122

4.2.4 Factorized Diffusion Maps . 124

4.2.4.1 The Factorized Approximation 124

4.2.4.2 Error Analysis . 126

4.2.4.3 Finding The Best Partition . 131

4.2.5 Experimental Results . 135

4.2.5.1 Synthetic Data . 135

4.2.5.2 Image Data . 136

4.2.5.3 SNP Data . 138

4.2.6 Discussion . 143

4.3 Infinite Dimension: Dealing With Functional Spaces 143

4.3.1 Motivation . 143

4.3.2 Vector Representation . 146

4.3.3 Large-Scale Laplacian Eigenmap . 147

4.3.4 Results and Discussion . 149

5.0 CONCLUSIONS AND FUTURE DIRECTIONS 151

5.1 Contributions . 151

5.2 Open Questions . 156

ix

5.3 Future Directions . 158

BIBLIOGRAPHY . 161

x

LIST OF TABLES

1 Different Spectral Transforms . 15

2 AUC for The Term Prediction Task . 32

3 The TREC Datasets . 33

4 The Results for the Document Retrieval Task . 34

5 The Average Number of Misplacements . 45

6 Famous Bregman Divergences . 78

7 Theoretical Complexity Analysis Results . 84

8 The Construction Time for the MAGIC Gamma Telescope Dataset 87

9 The Propagation Time for the MAGIC Gamma Telescope Dataset 87

10 The AUC for the MAGIC Gamma Telescope Dataset 88

11 The Construction Time for the MiniBooNE Dataset 88

12 The Propagation Time for the MiniBooNE Dataset 89

13 The AUC for the MiniBooNE Dataset . 89

14 The AUC During Refinement for the MAGIC Gamma Telescope Dataset 94

15 The AUC During Refinement for the MiniBooNE Dataset 95

16 Very Large-Scale Results . 98

17 The Construction Time for the Simulated Frequency Data 105

18 The Propagation Time for the Simulated Frequency Data 106

19 The Accuracy for the Simulated Frequency Data 106

20 Text Datasets . 109

21 The Accuracy vs. Labeled Data Ratio for the BBC Sport News Dataset 109

22 The Accuracy vs. Labeled Data Ratio for the BBC News Dataset 110

xi

23 The Accuracy vs. Labeled Data Ratio for the 20 Newsgroup Dataset 110

24 The Accuracy vs. Labeled Data Ratio for the NSF Research Abstracts Dataset 111

25 The Accuracy vs. Labeled Data Ratio for the Large Movie Reviews Dataset . . 111

26 Results of Greedy Partitioning . 136

xii

LIST OF FIGURES

1 The Bullseye dataset . 6

2 Electrical resistance network . 28

3 Single-tree approximation . 53

4 Dual-tree approximation . 54

5 Block Partitioning . 58

6 Refinement Process . 73

7 The efficiency and quality results for the MAGIC Gamma Telescope dataset . 90

8 The efficiency and quality results for the MiniBooNE dataset 91

9 The refinement results for the MAGIC Gamma Telescope dataset 96

10 The refinement results for the MiniBooNE dataset 97

11 The document generation model . 100

12 The term frequncies for the five simulated document topic 104

13 The efficiency and quality results for the simulated frequency data 107

14 The efficiency and quality results for the text datasets 113

15 The synthetic 3D dataset . 121

16 Clustering Results . 136

17 Speactral clustering of the SNP data . 142

18 The human brain connectome . 145

19 The embedding of brain fibers . 150

xiii

LIST OF ALGORITHMS

1 Anchor Tree Construction . 63

2 Anchor Building . 64

3 Datapoint Stealing . 64

4 Agglomeration . 65

5 Calculate Z =QY . 70

6 Collect-up . 70

7 Distribute-down . 71

8 Symmetric Refinement . 74

9 Greedy Partitioning . 132

10 Approximate Large-scale Laplacian Eigen Decomposition 148

xiv

PREFACE

During my Ph.D, I have received support from a number of people and organizations without

whom the completion of this thesis would not be possible.

First and foremost, I would like to express my deepest gratitude to my loving parents

Maryam and Ebrahim and my brothers Vahid and Farid for their unlimited, unconditional

support, encouragement and love during my whole life.

I would like to express my sincere gratitude to my Ph.D. advisor, Dr. Milos Hauskrecht,

who provided me with the best advice and directions during my Ph.D. career. I would also

like to thank my thesis committee, Dr. Chakra Chennubhotla, Dr. Greg Cooper, Dr. Marek

Druzdzel, Dr. Rebecca Nugent and Dr. Shyam Visweswaran for their valuable feedback and

discussions during my thesis defense.

The different parts of this thesis have been done in direct collaboration with individuals

inside and outside of University of Pittsburgh. In particular, I would like to thank Dr. Bo

Thiesson from Microsoft Research (currently at Aalborg University), Dr. Denver Dash and

Dr. Mei Chen both from Intel Labs Pittsburgh, Dr. Walt Schneider, Dr. Hamed Valizadegan

(currently at NASA Research) and Shuguang Wang from University of Pittsburgh for their

direct contributions in this thesis. Also I want to thank my other fellow Ph.D. students and

colleagues Dr. Iyad Batal, Dr. Michal Valko, Quang Nguyen, Charmgill Hong, Eric Heim,

Zitao Liu, Matthias Grabmair, Ian Wong, Yuriy Sverchkov and Mahdi Pakdaman for their

valuable feedback and discussions for this work.

This work would not be completed without the financial support from different institutes

and organizations. In particular, I am grateful of the grants from the National Institutes

of Health (NIH) as well as the Andrew Mellon Predoctoral Fellowship and two Arts and

Sciences (A&S) Fellowships from the Dietrich School of Arts and Sciences, University of

Pittsburgh.

Finally, I would like to thank all of my friends in the Argentine Tango community of

Pittsburgh who have shared the love of dance and music with me and helped me to improve

the quality of my life, beside my studies.

I am deeply grateful to all of you!

xv

1.0 INTRODUCTION TO GRAPH-BASED METHODS

1.1 MOTIVATION: THE BIG PICTURE

The notion of similarity/distance between observations plays a very fundamental role in

many Machine Learning and Data Mining methodologies. In many of these methods, the

fundamental problem of prediction, which is making assessments and/or inferences about

the future observations from the past ones, boils down to how “similar” the future cases are

to the already observed ones. Although in many problems, the similarity between observa-

tions can be quantified as an absolute number, independent of the context of problem, one

might be interested to modify the similarity value based on the context. For example, con-

sider the problem of developing a system that automatically clusters the students in a class-

room into groups with similar English accents for some linguistic purpose. Now imagine

two American students with native American accent: in a classroom of mostly international

students, these two students’ accents are considered pretty similar and therefore we expect

the system to put them in the same group. However, in a classroom of all American stu-

dents, the accents of the same two students might be considered quite different depending

on which regions in the U.S. they are from. Clearly, in this example, the similarity between

the students’ accents depends on the context of the classroom. This context is, in fact, the ob-

served population containing the two observations in question. This gives rise to the notion

of data-driven similarity metrics where the distance (or similarity) between two observa-

tions depends not only on those observations but also on other observations in the sample.

By definition, the data-driven similarity metrics are non-parametric that are inferred from

a given dataset of observations in the problem. Therefore, given two observations, we may

not be able to compute their data-driven similarity using a closed-form formula.

1

A common solution to this problem is to somehow aggregate the local absolute similar-

ities (which are not data-driven and can be computed in a closed-from) to infer a global

data-driven similarity value between any pair of observations. The graph-based methods

offer a natural framework to do so. In particular, using these methods, one creates a graph

that contains the local similarities between the observations (referred to as the similarity

graph), and then by using the spectral decomposition of this graph, aggregates these lo-

cal similarities to compute a global similarity metric (kernel) between the observations. A

direct consequence is that many of the Machine Learning algorithms that are designed to

work with absolute distances now can be applied on those problems with data-driven dis-

tances. Probably, clustering is the most famous platform in Machine Learning that has been

extended by the notion of data-driven distance resulting in spectral clustering frameworks

[von Luxburg, 2007, Nadler et al., 2006, Ng et al., 2001b, von Luxburg et al., 2008, Bach

and Jordan, 2004, Jin et al., 2006, Ng et al., 2001a, Zelnik-Manor and Perona, 2005, Maiker

et al., 2009, Carreira-Perpinán and Zemel, 2005, Yan et al., 2009, Wang and Dong, 2012].

The other field of Machine Learning that has been largely affected by the use of graph-

based methods is dimensionality reduction and embedding [Lafon and Lee, 2006, Belkin

and Niyogi, 2002, Zhang et al., 2012, Losada and Barreiro, 2003, He et al., 2005, Tenen-

baum et al., 2000, Roweis and Saul, 2000, Yan et al., 2007, Ham et al., 2004]. Graph-based

techniques have been also extensively used for semi-supervised learning [Chapelle et al.,

2006, Jebara et al., 2009, Fergus et al., 2009, Zhu and Lafferty, 2005, Zhu, 2005b, Zhu,

2005a, Garcke and Griebel, 2005, Zhu et al., 2006, Zhu et al., 2003, Subramanya and Bilmes,

2009, Valko et al., 2012, Liu et al., 2010].

Therefore, graph-based methods can be seen as very effective tools for many real-world

problems. Because of this very reason, I have chosen these methods as the main direction

of my PhD thesis work. In this chapter, I review the major algorithms and frameworks

developed in the literature for graph-based methods. In Chapter 2 as a case study, I show a

very successful application of these methods to compute the similarity between words with

two real-world applications in document retrieval and query expansion. As the experiments

show, the graph-based methods outperform many of the popular baseline methods in these

domains.

2

Nevertheless, the major problem that I want to address in my thesis is the scalability of

the graph-based methods. Nowadays, in nearly all fields of science and engineering there

exist huge datasets which need to be analyzed. These datasets are normally a collection of

thousands of records (or observations) each of which may consist of thousands of numerical

values (or features) describing each case. Examples of such datasets in Biomedical Sciences

are gene-expression data where each case is the expression levels for thousands of genes for

an individual, or electronic health records of patients where each patient case may include

lab tests, medications, etc. during the hospitalization period. Unfortunately, many existing

standard Machine Learning techniques do not often scale-up if they are applied to complex

large-scale datasets (i.e. datasets with either large number of records or large number of

features or both). Not surprisingly, the graph-based methods are no exception either. Both

the large number of observations and the large number of features (aka high dimensionality)

hurt graph-based methods, computationally and statistically. While the large number of

observations imposes more of a computational problem, the high dimensionality problem

has more of a statistical nature.

1.1.1 Large Number of Observations

At the core of the graph-based methods is the similarity graph that captures the local ab-

solute similarities among the observations. Depending on the characteristics of the input

space, the local similarity metric and the representation of the observations, the similar-

ity graph can be generated in numerous ways. Nevertheless, no matter how the similarity

graph is generated, a common representation to store it and operate on it is in the form

similarity matrix which in general takes O(N2) time and memory to maintain, where N is

the number of observations or nodes in the graph. With N in the order of 104 or larger, we

face a practical challenge as the demand for CPU and memory rapidly grows compared to

the computational power of many non-cluster machines. Even if we can somehow compute

and represent the similarity matrix, almost all operations on this matrix require visiting

each element at least once, which means that they have at least O(N2) computational or-

der. To address this problem, in Chapter 3, after reviewing the existing solutions in the

3

literature, I propose a variational dual-tree based framework that can effectively reduce the

order of computations to O(N log N). I show the successful application of this approach for

large-scale problems.

1.1.2 High Dimensionality

High dimensionality also imposes a big challenge before the graph-based methods. More

specifically, assuming the observations are randomly sampled from some true population,

the structure represented by the finite sample in high dimension may not be the true repre-

sentative of the population’s structure. One way to see this intuitively is as follows: as the

number of features grows the local (Euclidean) distances in the input space become larger

and as a result the difference between them becomes relatively less significant. This means

that with the fixed number of observations, as we increase the dimension, we start losing

the true (manifold) intrinsic structure in the data. Therefore, if one is interested to estimate

the quantities of the true population structure (e.g. the clusters in spectral clustering),

one needs to (exponentially) increase the number of observations as the dimensionality in-

creases, and this points to the well-known curse of dimensionality problem. To address this

issue, in Chapter 4, I propose a divide-and-conquer approach which tries to exploit the inde-

pendence structure of the input space to overcome the curse of dimensionality. I provide the

error analysis for the proposed framework as well as some experiments showing the effec-

tiveness of the proposed algorithm. Moreover, in Chapter 4, I demonstrate how graph-based

methods can deal with those problems with functional input space with infinite dimensions

in practice. I show a successful application of the proposed technique for the analysis of

human brain fibers.

Finally, in Chapter 5, I discuss the contribution of the proposed work from a broader

viewpoint and draw some future directions of the current work.

4

1.2 BACKGROUND

In this section, the required background materials for the proposed methods in this thesis

as well as the most popular graph-based methods in the literature are presented.

1.2.1 The Basics

1.2.1.1 The Similarity Graph Let D = {x1, x2, . . . , xN } represent a set of N objects (aka

observations, datapoints, records, cases, etc.). For some of the methods presented in this

proposal, we assume the members of D are real vectors in Rd, but in general, D can rep-

resent any set of objects. The similarity graph G = 〈D,E,W〉 (aka the association graph) is

a weighted graph with the members of D as its nodes, the edge set E, and W = [wi j]N×N

as its weighted adjacency matrix, where wi j is non-negative and represents the similarity

weight between xi and x j for all i, j ∈ {1, . . . , N}. Intuitively, the higher wi j, the more similar

(as defined in the context problem) xi and x j are. wi j = 0 means there is no edge between xi

and x j in G. W is also called the similarity matrix. Figure 1A shows the benchmark Bulls-

eye dataset which has three circular shape clusters (shown in different colors). Figure 1B

depicts the similarity graph on the Bullseye dataset constructed using k-nearest-neighbor

method with k = 5. For now, we assume the similarity graph is given; how one can build the

similarity graph from D is postponed to Section 1.2.6.

1.2.1.2 The Laplacian of Graph Let D = [di j]N×N be a diagonal matrix with diagonal

entries dii =∑N
j=1 wi j. The Laplacian matrices of the similarity graph G are defined as:

• The unnormalized Laplacian: L = D−W

• The symmetric normalized Laplacian: Lsym = D−1/2LD−1/2 = I −D−1/2WD−1/2

• The asymmetric normalized Laplacian (aka the random walk Laplacian): Lrw = D−1L =
I −D−1W

The following basic properties hold for the Laplacian matrices (interested readers may

refer to [Chung, 1997, von Luxburg, 2007] for more detailed properties and the proofs):

5

(A) (B)

Figure 1: (A) The Bullseye dataset consisting of three circular clusters (B) The similarity

graph constructed using kNN method with k = 5.

(a) L, Lsym and Lrw are all positive semi-definite matrices with the smallest eigenvalue

equal to 0; that is, 0=µ1 ≤µ2 ≤ . . .≤µN

(b) The corresponding eigenvector to the smallest the eigenvalue µ1 = 0 is the constant one

vector 1 for L and Lrw and D1/21 for Lsym

(c) µ is an eigenvalue of Lrw with eigenvector u iff µ is an eigenvalue of Lsym with eigen-

vector D1/2u

(d) µ is an eigenvalue of Lrw with eigenvector u iff µ and u solve the generalized eigen

problem Lu =µDu

(e) The similarity graph G consists of K connected components G1, . . . ,GK iff the multiplic-

ity of the eigenvalue µ1 = 0 of L, Lsym and Lrw is equal to K . In this case, for L and

Lrw, the eigenspace of µ1 is spanned by the indicator vectors 1G1 , . . . ,1GK . For Lsym, this

eigenspace is spanned by the vectors D1/21G1 , . . . ,D1/21GK

1.2.1.3 Smoothness on Graphs Let f : D 7→ Rm be a vector-valued function that maps

the elements of D to the m-dimensional real vectors. Given the similarity graph G with

6

weight matrix W and the matrix F = [f i j]N×m where f i j is the jth component of the vector

f (xi), the smoothness of f with respect to G is defined as:

∆G(f),
∑
i, j

wi j‖ f (xi)− f (x j)‖2
2 = tr(FTLF)=

m∑
i=1

FT
i LFi (1.1)

where Fi is the ith column of F. Since the similarity weights wi j are non-negative, ∆G(f)

is always non-negative. We say f is smooth with respect to G iff the values of function on

neighboring nodes with high similarity weight is close. Intuitively, if f is relatively smooth

with respect to G, ∆G(f) is relatively small, close to 0. For example, if f is constant over

the connected components of G, we have ∆G(f) = 0, However, if f (xi) is far from f (x j) for

two nodes xi and x j with high similarity weight wi j, the factor wi j‖ f (xi)− f (x j)‖2
2 has a

significant contribution to ∆G(f).

By plugging in the eigen-decomposition of L, i.e. L =∑N
j=1µ ju juT

j , in Eq. (1.1), we get:

∆G(f)=
m∑

i=1

N∑
j=1

µ ja2
i j (1.2)

where ai j = FT
i u j is the projection of Fi on the jth eigenvector u j of L. If one defines f

as f (xi) = uk(i), where uk(i) is the ith element of the eigenvector uk, from Eq. (1.2), one

can show that ∆G(f) = µk. In other words, those eigenvectors of L with small eigenvalues

define smooth functions on G. To generalize this result, let f : D 7→ R is defined as f (xi) =∑m
j=1α ju j(i) for some coefficients α j; that is, f is defined as a linear combination of the

first m eigenvectors. Then we have ∆G(f) = ∑m
j=1µ jα

2
j . If µm is close to 0, then ∆G(f) is

relatively small and therefore f is relatively smooth. In other words, a linear combination

of the smooth eigenvectors of L (with small eigenvalues) is also smooth on G.

7

1.2.2 The Laplacian Eigenmap

The Laplacian eigenmap [Belkin and Niyogi, 2002] is defined as the mapping M m
L : D 7→Rm

such that,

∀xi ∈D : M m
L (xi)= [u1(i),u2(i), . . . ,um(i)]T (1.3)

where u j(i) here represents the ith element of the jth eigenvector of Lrw. Intuitively, the

Laplacian eigenmap M m
L uses the first m eigenvectors of Lrw (corresponding to the m small-

est eigenvalues) to embed the nodes of the similarity graph into Rm.

It turned out that the embedding given by the Laplacian eigenmap is optimal in the

sense that it maps the nodes with high similarity in the graph to close vectors in Rm [Belkin

and Niyogi, 2002]. To see this, consider the following optimization problem:

Y ∗ ←arg min
Y∈RN×m

tr(Y TLY)

s.t. Y TDY = I (1.4)

That is, we want to find the smoothest embedding matrix YN×m (with the minimum smooth-

ness) such that the columns of Y are linearly independent in Rm (enforced by the constraint).

Also, the D matrix in the constraint ensure the nodes with higher degree (i.e. dii) are con-

sidered to be more important. One can show that the solution to above optimization can be

obtained by concatenating the first m eigenvectors (corresponding to the m smallest eigen-

values) of the generalized eigenvalue problem Lu = µDu, which are, in fact, the first m

eigenvectors of Lrw. In other words, the Laplacian eigenmap M m
L generates an embed-

ding which is optimal w.r.t. the smoothness criterion. Furthermore, [Belkin and Niyogi,

2002, Belkin and Niyogi, 2005] have shown that in the limit the Laplacian eigenmap corre-

sponds to the Laplace-Beltrami operator on manifolds.

1.2.3 The Diffusion Map

The diffusion map (aka the random walk diffusion) is another popular spectral embedding

method that has been extensively studied in the literature. In fact, the random walk diffu-

sion framework form the foundation for the proposed framework in Section 3.6 in Chapter

8

3 of this proposal. In this section, we give a brief overview of the diffusion framework; in-

terested readers may refer to [Nadler et al., 2006, Lafon and Lee, 2006, Coifman et al.,

2008, Coifman et al., 2005a, Coifman et al., 2005b, Lee and Wasserman, 2010, Amizadeh

et al., 2012b] for further details.

1.2.3.1 Random Walk on Graph Assume a random walk on the similarity graph G with

the transition probability matrix P = [pi j]N×N where pi j is the probability of jumping from

xi to x j in G given the random walker is currently standing on xi. pi j is set proportional to

the similarity weight wi j, in particular:

∀i, j : pi j =
wi j∑N

k=1 wik
= wi j

dii
(1.5)

As a result, each row i of the transition matrix P form a valid probability distribution mod-

eling the transition distribution from node xi to other nodes of the graph. In the matrix

form, we have:

P = D−1W = I −Lrw (1.6)

The following properties hold for P:

(a) The eigenvalues of P are between 0 and 1 with the greatest one λ1 (the spectral radius)

equal to 1. 1

(b) Each eigenvalue λi of P corresponds to two eigenvectors: a left eigenvector φi where

PTφi =λiφi and the right eigenvector ψi where Pψi =λiψi. That is, P =∑N
i=1λiψiφ

T
i

(c) Each left eigenvector φi is normalized as ‖φi‖2
1/φ1

=∑N
j=1

φ2
i (j)

φ1(j) = 1

(d) Each right eigenvector ψi is normalized as ‖ψi‖2
φ1

=∑N
j=1ψ

2
i (j)φ1(j)= 1

(e) The left and the right eigenvectors of P are bi-orthonormal; that is, φT
i ψi = δ(i = j),

where δ is the indicator function

(f) For each i, j, we have that ψi(j)= φi(j)
φ1(j)

(g) The first eigenvalue is λ1 = 1 and corresponds to ψ1 = 1 and φ1 = diag(D)
tr(D)

(h) λ is the eigenvalue of P with the right eigenvector ψ iff µ= 1−λ is the eigenvalue of Lrw

with eigenvector ψ

1As opposed to the eigenvalues of the Laplacian matrices, we assume the eigenvalues of P are sorted in the
descending order.

9

(i) The larger eigenvalues of P correspond to the smooth right eigenvectors w.r.t. to the sim-

ilarity graph G, with the largest eigenvalue (i.e. λ1 = 1) corresponding to the smoothest

right eigenvector ψ1 = 1 which is in fact, a constant function.

1.2.3.2 Random Walk and Kernel Density Estimation The concept of random walk

on similarity graphs is closely related to the notion of mixture modeling and kernel den-

sity estimation (KDE) [Yu et al., 2005]. As mentioned in the beginning of this chapter, the

similarity graph encodes the geometrical structure of the observed datapoints in the input

space. The probability density function that generated the data in the first place also re-

flects the structure of the data. As a result, one may wonder whether these two paradigms

are somehow related. As we argue in this section, the inherent connection between random

walk and kernel density estimation provides one way of understanding this relationship.

Later in Chapter 3, we incorporate this connection to extend the fast solutions for KDE to

large-scale graph-based problems. Let us start with the formal definition of kernel density

estimation.

Let M = {m1,m2, . . . ,mM} denote a set of kernel centers in Rd. The kernel density es-

timate for any data point x ∈ Rd is then defined by the following weighted sum or mixture

model:

p(x)=∑
j

p(m j)p(x|m j) (1.7)

where p(m j) = 1
N , p(x|m j) = 1

Zσ
k(x,m j;σ), and k is a kernel profile with bandwidth σ and

normalization constant Zσ. For the commonly used Gaussian kernel, k(x,m j;σ)= exp(−‖x−
m j‖2/2σ2) and Zσ = (2πσ2)

d
2 .

Now let us assume we want kernel density estimates for the observed datapoints D =
{x1, x2, . . . , xN } in Rd that also define the kernel centers. That is, D = M , and we use the

D and M notation to emphasize the two different roles every example xi takes - one as a

query datapoint (denoted by xi), the other as a reference kernel center (denoted by mi). Let

us exclude the kernel centered at mi from the kernel density estimate at that datapoint. In

this case, the estimate at xi ∈D can be defined as the N −1 component mixture model:

p(xi)=
∑
j 6=i

p(m j)p(xi|m j)=
∑
j 6=i

1
N −1

1
Zσ

k(xi,m j;σ), (1.8)

10

where p(m j)= 1/(N −1).

Furthermore, one can use the Bayes rule to derive the posterior membership probability

distribution p(m j|xi):

p(m j|xi)=
p(m j)p(xi|m j)∑

h 6=i p(mk)p(xi|mh)
= p(xi|m j)∑

h 6=i p(xi|mh)
= k(xi,m j;σ)∑

h 6=i k(xi,mh;σ)
, (1.9)

where the second equality comes from the fact that p(m j) = 1
N−1 for all j ∈ {1, . . . , N}. The

membership probability p(m j|xi) expresses the probability that the datapoint xi is indeed

generated by the kernel m j. p(m j|xi) defines a valid probability distribution on the kernels

m j ∈M ; that is, ∀xi ∈D :
∑N

j=1 p(m j|xi)= 1.

Now let us investigate the connection to the graph-based methods. As we will see later

in this chapter, a very common approach to build similarity graphs is to use a kernel to

transform the distance between two datapoints into similarity. In other words, using this

method, the similarity weight between xi and x j is defined to be wi j = k(xi,m j;σ), where σ

is the bandwidth parameter. This means that, the similarity weigh wi j and the likelihood

p(xi|m j) are equal up to a constant factor: p(xi|m j)= 1
Zσ

wi j. Furthermore, we have:

p(m j|xi)=
k(xi,m j;σ)∑

h 6=i k(xi,mh;σ)
= wi j∑

h 6=i wih
= pi j (1.10)

That is, the posterior membership probability p(m j|xi) is equal to the transition probability

of the random walk from datapoint xi to datapoint x j.

1.2.3.3 Multiscale Random Walk Let pt(xi, x j) represents the probability of reaching

x j after t random jumps (also referred as time steps) starting on node xi. For t = 1, we

simply have p1(xi, x j) = pi j. Then the matrix Pt is defined as Pt = [p(xi, x j)]N×N ; again

we simply have P1 = P. The matrix Pt is in fact matrix P multiplied by itself t times;

that is, Pt = P t. The discrete parameter t is referred to as the scale of the random walk.

The matrix Pt has the same left and right eigenvectors as P with the same eigenvalues

exponentiated to the power of t; that is, Pt = ∑N
i=1λ

t
iψiφ

T
i . Since, the absolute value of

the P ’s eigenvalues are strictly less than 1, by exponenting to the power of t, the smaller

eigenvalues of P (corresponding to non-smooth eigenvectors) diminish faster for Pt leaving

11

the smooth eigenvectors. As t →+∞, all the eigenvalues of Pt diminish except for the first

eigenvalues, λ∞
1 = 1∞ = 1. In this case, we get:

P∞ =
N∑

i=1
λ∞

i ψiφ
T
i =ψ1φ

T
1 = 1[diag(D)

tr(D)
]T (1.11)

That is, we have p∞(xi, x j) = φ1(j) = d j j∑N
k=1 dkk

; in other words, the elements of φ1 represent

the asymptotic probability of landing at each nodes of G regardless of the starting node.

If one views P as some kind of local similarity matrix, where high jumping probability

pi j between two neighboring nodes indicates their high similarity, then Pt can be seen as

the extension of the local similarity matrix from immediate neighboring nodes to the nodes

that are reachable within t steps. The probability pt(xi, x j) also accounts for all possible

paths from xi to x j in t steps. Therefore, if there are many paths of length t in between xi

to x j, the jumping probability (or equivalently the global similarity) is higher. This in fact

makes the whole framework robust to the noisy data.

1.2.3.4 Diffusion Distance As mentioned in the previous section, Pt can be looked at as

a sort of similarity/distance metric at scale t, but in reality, it is not a legitimate one. How-

ever, Pt can be used to define a valid multiscale distance metric called diffusion distance.

The square diffusion distance at scale t between two nodes xi and x j in graph G is defined

as:

D2
t (xi, x j)= ‖pt(xi, ·)− pt(x j, ·)‖2

1/φ1
= ∑

xk∈D

(pt(xi, xk)− pt(x j, xk))2

φ1(xk)
(1.12)

According to the diffusion distance, two nodes xi and x j must be close if the transition dis-

tributions from these nodes to the rest of the graph are similar. As mentioned before, φ1(xk)

is the probability of ending up at node xk in infinite steps. Therefore, the weight 1/φ1(xk) in

the above sum penalizes the contribution of the popular nodes (with high asymptotic land-

ing probability) in the distance. Intuitively, having a similar transition probability from xi

and x j to a popular node xk does not necessarily imply that xi and x j must be similar.

12

1.2.3.5 Diffusion Map The diffusion map at scale t is defined as the mapping M
t,m
D :

D 7→RK such that,

∀xi ∈D : M t,m
D (xi)= [λt

1ψ1(i),λt
2ψ2(i), . . . ,λt

Kψm(i)]T (1.13)

where λ’s are the eigenvalues of P with the right eigenvectors ψ’s. One can show that [Lafon

and Lee, 2006]:

D2
t (xi, x j)= ‖M t,N

D (xi)−M
t,N
D (x j)‖2

2 ' ‖M t,m
D (xi)−M

t,m
D (x j)‖2

2 for m < N (1.14)

In other words, M
t,m
D maps the graph nodes into a m-dimensional vector space in which

the Euclidean distance approximates the diffusion distance in the original graph. This is,

in fact, the main contribution of the spectral embedding methods which is transforming

the graph nodes into a vector space in which the regular Euclidean distance approximates

the the distance metric in the original space. By doing so, the spectral embedding methods

make it possible for many Euclidean-based Machine Learning algorithms to be applied on

non-Euclidean problems on the similarity graph.

1.2.4 Laplacian-based Kernels And Spectral Transform

The similarity graph G (and the Laplacian matrices derived from it) are built based upon

some absolute (non-data-driven) local similarity in the input space and therefore are only

meaningful locally. This means that if xi and x j are located in each other’s locality in the in-

put space, then the corresponding wi j entry in G is a meaningful similarity value; otherwise,

it does not convey any information regarding the similarity between xi and x j. Note that

the notion of locality is problem-dependent; for example, if the input space is an Euclidean

vector space, being in a same locality means having small Euclidean distance. Another ex-

ample is the term space (which we will see in Chapter 2). In the term space, two terms can

be seen in the same locality if they co-occure in the same sentence for instance.

To obtain a global, data-driven similarity metric which reflects a meaningful similarity

value between any pair of datapoints, we need to somehow transform the local similarity

matrix W (or equivalently L) into a global similarity kernel matrix K = [ki j]N×N . For this

13

purpose, we consider the Laplacian-based kernel Km [Zhu et al., 2006] where Km is a sym-

metric positive semi-definite kernel matrix of rank m (1 ≤ m ≤ N) whose eigenvectors are

the same as the first m eigenvectors of L (corresponding to the m smallest eigenvalues).

That is, Km = ∑m
i=1θiuiuT

i where ui ’s are the eigenvectors of L. Note that, unlike many

standard kernels in Machine Learning literature (e.g. the Gaussian kernel), the Laplacian-

based kernels are data-driven, meaning that the value of ki j not only depend on xi and x j,

it is also a function of all datapoint in the dataset D.

The eigenvalues of Km (i.e. θi ’s) cannot be chosen arbitrarily; they must satisfy certain

conditions. First off, to get a valid kernel matrix, we need Km to be positive semi-definite;

that is, the eigenvalues θi ’s should be all non-negative. Second, we require the kernel value

ki j to be high if xi and x j are locally close. This naturally translates to the smoother eigen-

vectors of Km should be assigned higher eigenvalues. Since the eigenvectors of Km are the

same as those of L, those with the smaller indices are smoother w.r.t. G. As a result, we

need the eigenvalues to satisfy the ordering condition θ1 ≥ θ2 ≥ . . . ≥ θm ≥ 0. In fact, one

can set θi as a direct function of how smooth ui is; that is, θi = g(∆G(ui)). The smoother

ui, the lower ∆G(ui) and the higher θi will be. Thus, g should be a non-increasing function

of ∆G(ui). As shown before, the smoothness of ui is simply equal to µi (the ith smallest

eigenvalue of L); therefore, we have θi = g(µi), where g :R 7→R is a non-increasing function.

Function g is referred to as spectral transform [Zhu et al., 2006].

Given a spectral transform g, one can define the general mapping M m
g : D 7→Rm as:

∀xi ∈D : M m
g (xi)= [

√
g(µ1)u1(i),

√
g(µ2)u2(i), . . . ,

√
g(µm)um(i)]T (1.15)

Using M m
g , one can show that ki j = 〈M m

g (xi),M m
g (x j)〉, where 〈·, ·〉 denotes the inner product

of two vectors. In other words, M m
g maps the graph nodes in a m-dimensional feature space

where the inner product is equal to the kernel values in the original space. Moreover, the

Euclidean in the embedded space is equal to the distance defined base on the kernel matrix

in the original space:

‖M m
g (xi)−M m

g (x j)‖2
2 = kii +k j j −2ki j (1.16)

It turns out that the eigen mappings we have discussed in this chapter along with many

others in the literature are special cases of the general mapping M m
g in Eq. (1.15) with

14

specific choices for the spectral transformation function g [Zhu et al., 2006]. Table 1 shows

some of these methods along with the choice of g in each case. Note that in all cases, g

is a non-increasing function of µ, an eigenvalue of the Laplacian matrix. The last row in

Table 1 shows the non-parametric kernel where g does not have a functional form and its

values for the eigenvalues µ are determined non-parametrically with the ordering constraint

enforced. [Zhu et al., 2006] have modeled and solved the problem of the non-parametric

kernel calculation from data as a kernel alignment problem.

Method Spectral Transform Distance Name

Laplacian eigenmaps g(µ)= 1 -

Diffusion maps∗ g(µ)= (1−µ)2t Diffusion distance

Heat diffusion g(µ)= exp(−2βµ) -

Resistance kernel g(µ)= 1/(µ+ε)2 Resistance distance

Non-parametric kernel ∀i : g(µi)≥ g(µi+1)≥ 0 -

Table 1: Different spectral graph-based methods with different spectral transforms. (*)

Unlike other methods, diffusion maps are constructed based on the eigenvalues and eigen-

vectors of Lrw and not L.

In Chapter 2, we implement and study the last three methods in Table 1 to develop a

generalized text metric.

1.2.5 The Diffusion Operator

In Section 1.2.3, the diffusion framework over the discrete set D at the discrete time scale

t was discussed. A natural generalization is the extension of the diffusion framework to

continuous compact sets with continuous time scales. For this purpose, in this section, we

study diffusion operator. Interested readers may refer to [Nadler et al., 2006, Lafon and

Lee, 2006, Lee and Wasserman, 2010] for more details. The diffusion operator and the

convergence of its eigenfunctions form the basis for our discussion and proposed framework

in Chapter 4.

15

Let the dataset D = {x(1), . . . , x(N)} be the instances of the random variables V = {X1, . . . , Xd}

sampled iid from the distribution P with compact support X ⊂Rd with a bounded, non-zero

density p. Define the similarity kernel kσ(x, y)= exp(−‖x− y‖2
2/4σ) on X . The discrete-time

diffusion operator Ap,σ : L2(X) 7→ L2(X) (where L2(X) is the class of functions f defined on

X s.t.
∫

f 2(x)dP(x)<∞) is defined as :

Ap,σ[f (x)]=
∫
X

aσ(x, y) f (y)p(y)d y, (1.17)

with asymmetric kernel aσ(x, y) = kσ(x, y)/
∫

kσ(x, z)p(z)dz. Ap,σ is a compact, positive op-

erator with the largest eigenvalue λσ,1 = 1 corresponding to the constant eigenfunction

ψσ,1 = 1. Alternatively, Ap,σ can be represented using its eigen decomposition as Ap,σ =∑∞
i=1λσ,iΠi where Πi is the orthogonal projection on ψσ,i. Moreover, aσ(x, y) can be written

as aσ(x, y) = ∑∞
i=1λσ,iψσ,i(x)ϕσ,i(y) where ϕσ,i is the eigenfunction of A∗

p,σ, the adjoint of

Ap,σ.

It is known that the principal eigenfunctions of Ap,σ with the largest eigenvalues encode

the manifold structure of data and therefore can be used for low dimensional embedding of

the original data [Lafon and Lee, 2006]. In fact, this is the basic motivation for introducing

diffusion map φσ :Rd 7→Rr for r < d:

x 7→φσ(x)= [λσ,1ψσ,1(x), . . . ,λσ,rψσ,r(x)]T (1.18)

The underlying structure of data can be studied at different scales (like in hierarchical clus-

tering). This gives rise to the notion of m-step discrete-time diffusion operator defined by

exponenting the eigenvalues of Ap,σ to the power of m as Am
p,σ = ∑∞

i=1
(
λσ,i

)m
Πi. Subse-

quently, the asymmetric kernel for Am
p,σ is derived as aσ,m(x, y) =∑∞

i=1
(
λσ,i

)m
ψσ,i(x)ϕσ,i(y).

Am
p,σ also induces the diffusion map φm

σ (·) which maps the original data to a coarser cluster

structure as m increases. Furthermore, one can extend the discrete scale of Am
p,σ (i.e. m

steps of length σ) to the continuous scale t = mσ (with σ→ 0) by defining the continuous-

time diffusion operator At
p : L2(X) 7→ L2(X) [Lee and Wasserman, 2010]:

At
p[f (x)]= lim

σ→0
At/σ

p,σ[f (x)]=
∫
X

at(x, y) f (y)p(y)d y, (1.19)

where, at(x, y) = limσ→0 aσ,t/σ(x, y). The eigenvalues and the eigenfunctions of At
p are com-

puted as: λ(t)
p,i = limσ→0λ

t/σ
σ,i and ψt

p,i = limσ→0ψσ,i, respectively.

16

1.2.6 Building The Similarity Graph

So far, we have assumed the similarity graph G is given; however, in many real problems,

one needs to build the similarity graph from the dataset D before any further analysis.

There are many methods for this task in the literature which depending on the original

problem can generate different results [Maiker et al., 2009]. In this section, we review the

basic methods for constructing the similarity graph G from dataset D.

The main goal in constructing the similarity graph is to capture the local similarities

among the members of D. In other words, we ideally want to have an edge with high simi-

larity weight between xi and x j if and only if they live in the same locality or neighborhood.

However, this is not a trivial task; almost all the proposed algorithms for this problem in

the literature face the following challenges:

(C1) There should exist a local similarity metric or equivalently a notion of locality in the

problem in order to define the similarity graph.

(C2) The local similarity metric or equivalently the locality must be meaningful w.r.t. to the

problem in question. In other words, if xi and x j live in the same locality according to the

local similarity metric, they must also be considered similar according to the problem.

(C3) How big is the locality is usually an input parameter to the algorithm. Unfortunately, in

many problems, there is no straightforward approach to set this parameter. The general

advice is to set this parameter such that the resulted graph is connected or with only a

few connected components [von Luxburg, 2007].

(C4) The computational and the memory requirements for constructing the similarity graph

for many of the existing algorithms are typically of order O(N2) where N is the size of

D. For large N, the construction of G becomes a serious practical challenge. In Chapter

3 of this proposal, we address this problem in more details.

The graph construction algorithms also depend on the nature of objects in D. A very

common type are feature vectors residing in a d-dimensional Euclidean space (i.e. D ⊂Rd).

In the following four subsections, we assume that is the case for D; later, we consider cases

where the members of D are not explicitly represented as feature vectors.

Given D ⊂Rd, (C1) can be resolved by using many famous distance metrics in Euclidean

17

spaces with the Euclidean distance being the most popular one. (C2) is also addressed by

assuming that being close in the Euclidean space induces similarity w.r.t. the problem in

question. (C3) and (C4), however, depend on the specific choice of the algorithm for graph

construction.

1.2.6.1 Weighted Fully Connected The first approach for construction of the similarity

graph is to connect all the nodes (the elements of D) and have the edges weighted according

to their distance in the Euclidean distance. Ideally, we want the similarity weights decrease

fast (e.g. exponentially) as the distance between the nodes increases. This is achieved

through using of similarity kernels which are decreasing functions of the (Euclidean) dis-

tance. The most famous similarity kernel is the Gaussian kernel, defined as:

wi j = kσ(xi, x j)= exp
(−‖xi − x j‖2

2

2σ2

)
(1.20)

Here, σ is called the bandwidth parameter and determines how fast the similarity weight

vanishes as the distance increases. In other words, σ controls the locality radius for this

method. Unfortunately, there is no intuitive way to tune this parameter. One of the contri-

butions of the proposed framework in Chapter 3 is a systematic way to set the bandwidth

parameter.

In terms of CPU and memory, the standard similarity kernel method is in the order of

O(N2) which can be very expensive for large-scale problems. Also, the similarity matrix

generated by this approach is not sparse which means that any further operation on this

matrix will not be cheap either. In Chapter 3, we see many approximate algorithms in the

literature designed to tackle this problem. In particular, we propose a fast and scalable

method to compute the transition probability matrix P introduced in Section 1.2.3 directly

without computing the similarity matrix.

1.2.6.2 k-nearest-neighbor (kNN) The basic idea of kNN is to connect each node to

its k nearest neighbors according to the distance metric. The edges in the original kNN

algorithm are assigned the similarity weight 1; however, they can be weighted using some

similarity kernel (e.g. the Gaussian kernel). The parameter k determines the connectivity

18

of the resulting graph. Although, k does not exactly determines the locality radius, it is

strongly related to that. Unfortunately, setting k is not an easy task either. The optimal

asymptotic rate when N →∞ is log N [Brito et al., 1997], however, for the moderate sample

sizes there is no “optimal” rule.

kNN tends to generate a connected graph. This is normally considered a plus unless

there exist clusters of datapoints with different densities in the input space which are not

desired to be connected to each other. In those cases, a variant of kNN called the mutual

kNN is recommended [von Luxburg, 2007]. In the mutual kNN, two nodes are connected

only if both of them are among each other’s k nearest neighbors. Note for both kNN and the

mutual kNN, the resulted graph can have some nodes with degrees not equal to k. To gen-

erate a graph with uniform node degrees, [Jebara et al., 2009] has proposed an optimization

setting called b-matching.

From the computational aspect, kNN normally takes O(kN2) CPU time and O(kN)

memory. Therefore, building a kNN graph using the standard algorithm can be costly for

large-scale problems. In Chapter 3, we will see approximate methods using metric trees

to find the kNN graph for large-scale problems. Memory-wise, however, kNN generates an

sparse graph which makes many further operations fast.

1.2.6.3 ε-neighborhood In ε-neighborhood graph, two nodes are connected if their dis-

tance is less than the ε parameter. Like kNN, the edges can further weighted by some

similarity kernel. The notion of locality is explicitly expressed in ε-neighborhood graphs

such that ε exactly encodes the radius of the locality inside which the nodes will be con-

nected. Setting ε can be very tricky specially if the datapoints have different densities at

different parts of the space. An improper value of ε can result in either a fragmented or

an overly-connected graph. Unfortunately, for finite sample sizes there is no optimal way of

setting ε. One rule of thumb is to set ε as the average distance of a typical node to its k near-

est neighbors where k ∼ log(N)+1 [von Luxburg, 2007]. For infinite sample size, [Penrose,

1999] has shown that the optimal rate for ε that preserves the connectivity of the graph is

O((log(N)/N)d). Computationally, building an ε-neighborhood graph takes O(N2) which is

again expensive for large scale problems. In terms of memory, an ε-neighborhood graph van

19

be represented via sparse matrices.

1.2.6.4 Minimum Spanning Tree (MST) Minimum spanning trees (MST) [Kleinberg,

2006] are effective tools for building similarity graphs. There are at least three main ad-

vantages gained by using MST: (1) the resulted graph is always connected, (2) the resulted

graph is sparse, and (3) there is no locality radius parameter to worry about. However, these

benefits come with some disadvantages which prevent us from using the standard MST in

many real applications. Firstly, the edge connectivity is uniform across the graph and is

equal to 1. This is not naturally desirable especially for datasets containing some clusters

because one expects not to split one cluster into two only by removing one edge inside that

cluster. Secondly and more importantly, MST algorithms can be very sensitive to the noise

in data; that is, the end result can be very different if one of the datapoints is slightly per-

turbed. This is a very crucial issue as in many Machine Learning applications, noisy data is

inevitable. To address these problems, [Carreira-Perpinán and Zemel, 2005] have proposed

two algorithms based on MST called Perturbed MST (PMST) and Disjoint MST (DMST) to

build the similarity graph. Unlike MST, PMST and DMST generate graphs which are not

trees so the edge-connectivity is more than 1. Also, by construction PMST and DMST are

very robust to noise. The downside with these algorithms is their computational complexi-

ties which is roughly O(N2 log N) and make them prohibitive for large-scale problems.

1.2.6.5 Dealing With Non-vector Spaces So far, we have assumed that the elements

of D reside in Rd. However, that is not always the case; in many real-world applications the

datapoints are not simply living in some Euclidean space. For instance, [Buchman et al.,

2009] addresses the problem of estimating the density of the hurricane trajectories. Each

datapoint (i.e. a hurricane trajectory) is a curve in 2D. Or as another example, in many

text analysis problems, the datapoints are simply the terms in the lexicon without any

feature representation attached to them; e.g. [Jin et al., 2003, Losada and Barreiro, 2003,

Caillet et al., 2004]. The major challenge in this kind of problems is one cannot easily find

a meaningful local similarity metric to define the notion of locality in these spaces. And we

illustrated before, the notion of locality is essential to building similarity graphs. To tackle

20

this problem, we note three general approaches one can take depending on the problem:

(a) One possible solution for non-vector datapoints is to somehow convert them into feature

vectors in an Euclidean space where the Euclidean distance is meaningful locally. For

example, in Chapter 4 of this proposal, we illustrate a systematic way of converting

functional spaces into (possibly high dimensional) vector spaces where we can use the

Euclidean distance to define the locality. This is based on the framework proposed in

[Rossi et al., 2005]. The other example is extracting SIFT features from image object

for various Machine Vision and Image Processing applications (e.g. [Bicego et al., 2006,

Zhou et al., 2009, Ledwich and Williams, 2004]).

(b) The other solution is to define problem-specific local distance/similarity metrics that can

define the locality in the original space. For instance, in [Buchman et al., 2009], the

authors have proposed to use sample geographical locations from each hurricane tra-

jectory and compute the sum of the Euclidean distances of the corresponding sampled

locations between two trajectories as their distance. Earth Mover Distance (EMD) is

another distance metric commonly used for non-vector objects specially functional ob-

jects and have been applied to compute the distance between images [Rubner et al.,

2000], histograms [Ling and Okada, 2007], documents [Wan and Peng, 2005], musical

signatures [Logan and Salomon, 2001] and etc. The problem with these specific distance

metrics is they are not general and therefore may not be usable in a different problem.

Also, the computational cost of calculating these metrics might be high; for instance,

EMD is known to be computationally expensive [Shirdhonkar and Jacobs, 2008].

(c) A third approach is to go around finding a local similarity metric and directly define the

locality in the problem. Note that the sole purpose of the local similarity metric is to

capture the locality in the input space; if one can somehow directly define the locality,

there would be no need to have a local similarity metric. However, this is only doable in

some problems. For example, in Chapter 2, one problem is to build a similarity graph

on the space of words that have appeared in a corpus of documents. We have considered

the locality in this problem as the scope of a sentence; that is, if two words co-occure in

a same sentence, we assume they belong to the same locality and therefore we will add

an edge between them in the similarity graph.

21

2.0 CASE STUDY: CONSTRUCTING GENERALIZED LOCALLY-INDUCED TEXT

METRICS

To demonstrate the usage of the non-parametric graph-based methods in practice, in this

chapter, we develop a graph-based framework for constructing text metrics. The framework

can be used to compare and support inferences among terms and sets of terms representing

text components such as sentences, paragraphs, abstracts or whole documents. Our metric

is derived from data-driven kernels on graphs, introduced in the previous chapter, that let

us capture global relations among terms and sets of terms, regardless of their complexity

and size. To compute the metric efficiently for any two subsets of terms, we develop an

approximation technique that relies on the precompiled term-term similarities. We demon-

strate the benefits of the whole framework on two text inference tasks: prediction of terms

in the article from its abstract and query expansion in information retrieval. It should be

noted that this case study have been accomplished in collaboration with Shuguang Wang,

Ph.D. Candidate at University of Pittsburgh. [Amizadeh et al., 2011]

2.1 INTRODUCTION

A huge number of text documents are published or shared every day in different areas of

science, technology, culture etc. Due to the huge volumes, the analysis of these documents

and their contents is becoming increasingly hard. This prompts the development of tools

that let us better analyze these texts and support various automatic inferences upon their

content.

This chapter focuses on the development of a new class of text kernels that let us cap-

22

ture complex relations between terms and sets of terms in a corpus. Such kernels can be

very useful for analysis of term relations, or to support inference tasks such as term predic-

tions, term clustering, or more applied tasks such as query expansion. The key challenge

in designing a good text kernel is to account for indirect global term relations that are not

immediate from relations explicitly mentioned in the text. As an example, there is a log-

ical relevance between ’designer’ and ’software’ and between ’designer’ and ’cloth’, while

’software’ and ’cloth’ may not ever happen together in a document while there is a weak

similarity between them as ’artifacts designed by humans’.

At the core of our methodology is the design of term-term similarity metrics (or, in other

words, term-term kernels). These metrics aim to capture abstract and often complex re-

lations among terms and their strength as they appear in the document corpus. All the

proposed metrics in this paper are derived from a graph of local associations among the

terms observed in the document corpus. We call this graph the association graph. To cover

and account for indirect relations which span multiple direct associations, we define a global

term similarity metric based on the spectral decomposition of the association graph and a

special class of graph-Laplacian kernels [Zhu et al., 2006] that assure the smoothness of the

metric across observed term associations.

The term-term similarity metric is defined on the term space. However, many useful

text inferences, e.g. query expansion, work with sets of terms. To address the problem,

we need a generalized term similarity metric that lets us represent set-set similarities. We

show how this new metric can be, in principle, built by expanding the original association

graph with N nodes (corresponding to terms) with special auxiliary nodes representing sets

of terms. However, computing the distance between any two sets would require a new graph

expansion and the recalculation of the O(N3) spectral decomposition, which is infeasible in

practice. We approach the problem by proposing and defining a new method that can

efficiently approximate the set-set similarities on-line, whenever they are needed, by com-

puting the spectral decomposition of the underlying graph only once.

The spectral decomposition of the graph Laplacian takes O(N3) time. This is prohibitive

for large N even if computed only once. One way to alleviate the issue is to benefit from

the graph structure and its disconnected components. A more principled approach requires

23

a reduction of the number of terms in the graph. In the Chapter 3, we propose and study

an approximation approach that first performs the decomposition on a randomly selected

sub-graph of the association graph, and then extends the results to the entire graph to

approximate the spectral decomposition of the full graph.

As mentioned earlier, a good metric relating terms and their sets can be used to support

various text inferences such as text clustering, query expansion, etc. We demonstrate the

benefit of our text kernels on two text inference problems: (1) prediction of terms in the full

document from terms in its abstract and (2) the query expansion for the retrieval of docu-

ments relevant to the search query [G. Cao and Robertson, 2008]. The key question we must

ask when designing these tools is: do we need a deep semantic analysis and understanding

of the text in order to support well all text related inferences? The lessons learned from

the link analysis on document collections have showed us that such analysis is not always

necessary and that the structure of references or links can reveal a great deal about each

individual document and that the analysis of these structures alone is sufficient to perform

well on many document related tasks. In our work we pursue a similar idea, but this time

we do not want to work in the document space but in the term space. Also our goal is more

ambitions: we want to support inferences among arbitrary text components, which may

correspond to individual terms, sentences, paragraphs or documents.

2.2 RELATED WORK

In this section we briefly review the related work defining and using similarities with graph-

based methods for text applications. Embedding-based methods for text metric learning

have been recently studied in the literature. In [Lebanon, 2006], parametric metrics have

been learned for text documents based on Fisher geometry. In [Cai et al., 2005], text doc-

uments are mapped into a semantic space using Locally Preserving Indexing. However, in

both frameworks, the text metrics only compare documents and not any arbitrary chunks of

texts.

Laplacian kernels and their special cases, on the other hand, have been used in various

24

machine learning problems. However, their application in text analysis is still relatively

rare. [Dillon et al., 2007] used a specific Laplacian kernel to derive the document similarity

for Machine Translation tasks. [Bordino et al., 2010] proposed to estimate the query simi-

larity using the classical spectral projection on the query flow graph. This is in fact a special

case of Laplacian embedding using step function transform which is used on the graph over

queries instead of terms. Our framework is more general than these two works and also

assures the metric is smooth in that it respects directly the observed term relations.

[Collins-Thompson and Callan, 2005] proposed to model term association using the

Markov chain (random walk) model defined on the graph over terms. The edges in the graph

are defined using multiple external sources such as the synonyms in WordNet [Moldovan

and Rus, 2001]. The analysis is performed on the term relevance graph directly instead of

its Laplacian matrix. We propose to model term relevance using a general family of graph-

Laplacian kernels.

We note that there are different ways of defining term similarity other than graph-based

methods. For example, [Wang et al., 2010] propose to apply a PHITS model, originally

designed for the link analysis of document networks, to term association graphs. The PHITS

model learned from the training data is then used to approximate the probability of a term-

term association. However, this method projects terms into a latent low-dimensional space

representing clusters of interconnected terms and the similarity for any pair is computed

in this space. In our experiments, we show that these methods are outperformed by our

graph-based similarity metrics.

For computing the similarity between sets of objects, [Kondor and Jebara, 2003] pro-

posed to compute the Bhattacharyya divergence between the densities of the sets in the

embedded space. [Bach, 2008] proposed to use efficient graph kernels to compute the ker-

nel between point clouds. Our set similarity extension is different from these methods in

that first we work with sets of terms (and not vectors) and second our work is inspired by

short-circuiting in electrical circuits.

25

2.3 THE GRAPH-BASED TEXT METRIC

We build our framework for generating text distance metrics based on the Laplacian-based

graph kernels introduced in the previous chapter. In particular, we first show how a distance

metric between the simplest elements of texts, namely terms, can be induced and then

generalize it to define a distance metric between the sets of terms.

2.3.1 Term-Term Distance Metrics

First, let us define the key ingredients of our framework.

Term association graph is a weighted graph A with nodes V corresponding to the terms

in the lexicon extracted from an input document corpus. The edges in A represent the co-

occurrence of the two terms corresponding to the edge in the same sentences. Furthermore,

each edge is assigned an association weight in R+ expressing the strength of the relation. For

the term co-occurrence relation, the strength is the number of different documents in which

the two terms co-occur in the same sentence. We note that, in general, the co-occurrence

relation and its weight can be replaced with any reasonable term-term relation and corre-

sponding statistics as long as it is easy to extract them from the input corpus.

Relevance function is defined as a vector-valued function r : V 7→Rk such that if two terms

ti and t j are considered to be relevant according to the domain of the desired task, then

‖r(ti)− r(t j)‖2
2 is small. Thus, knowing r(·) would greatly help to build a reliable term-term

distance metric. However, in general, the true r(·) is unknown for a given problem.

Now, the question is how r(·) and A are related? Our key assumption in this work is: r(·)
is relatively smooth with respect to A ; that is, the smoothness ∆A (r) in (??) is relatively small.

As a result, we can use the Laplacian-based kernels derived from A to define term-term dis-

tance metrics which are able to capture the true relevance among the terms. In particular,

we use the resistance, diffusion and non-parametric kernels in the previous chapter to build

distance metrics on terms.

As mentioned before, the parameters of these kernels can be optimized based on the

task (or equivalently the true r(·)). However, since r(·) is unknown, we can use some proxy

26

objective for this optimization. In particular, if we have the binary information whether two

terms are relevant or not on a subset of terms as training data, we can maximize the AUC

measure between the goal standard and the distance ordering derived from the kernel on

the same set of terms. Based on this objective, the optimization of single-parameter kernels,

such as the diffusion kernel, can be carried out using a simple line search procedure. For the

non-parametric kernel (with spectral transformation parameters θi subject to constraints),

we define a linear program to find the optimal θ vector as:

max
θ=(θ1,...,θn)T

∑
i j

K(ti, t j)−bθTΛ

s.t. 0≤ θi ≤ θi+1 ≤ 2 ∀i = n−1, · · · ,1 (2.1)

where the sum is over all pairs of terms which are considered relevant according to the

training data, b ≥ 0 is a regularization penalty and Λ is the vector of eigenvalues of the A ’s

Laplacian. The order constraints over θs assure that smoother eigenvectors are assigned

higher weights. Intuitively, the program tries to maximize the kernel values for the observed

relevances and at the same time (using the second term) penalize the eigenvalues of the

kernel matrix associated with large eigenvalues of Laplacian.

Now that the kernel is specified and its parameters are optimized, one can derive the

mapping φ(·) using Eq. (4.19) to define the distance between terms. In fact, φ(·) can be seen

as an approximation to the true r(·).

2.3.2 Set-Set Distance Metric

To generalize the distance measures derived in the previous subsection to the distance be-

tween sets of terms, a straightforward approach is to somehow combine the mutual term-

term distances between the two sets. To do so, the natural candidates are the max (dmax(·, ·)),
the min (dmin(·, ·)) and the average (davg(·, ·)) functions. Here, we develop a more princi-

pled approach to compute the distance between two sets of terms. We call this distance

dcollapse(·, ·).
Recall that the resistance kernel in the previous chapter approximates the total resis-

tance between two nodes in the graph if the edge weights are interpreted as reciprocal of

27

resistance. In an actual circuit, in order to compute the total resistance between two sets of

nodes S1 and S2, one should first short-circuit all the nodes in each set separately to collapse

each set to one node. Then, the total resistance between the collapsed nodes is equal to the

total resistance between S1 and S2. Figures 2(I)&(II) illustrate the idea. Figure 2(I) shows

an electrical network; Figure 2(II) is the same network after collapsing the terms (nodes) in

the set S = {A,E}.

1

1

1

1

1

1/ 2

1/ 3

1

A
B

C

D

E

F

G

Set S={A,E}

1

1

1

1/ 2
1/ 3

1

A, E

B

C

D

F

G

1/ 2

1

1

1

1

1

1/ 2

1/ 3

1

A
B

C

D

E

F

G

S’

!

!

(I) (II) (III)

Figure 2: Collapsing nodes in electrical resistance network.

Note that the electrical circuit example is just one analogy and the core idea is more

general. In fact, short-circuiting the nodes in a set S in an electrical circuit is equivalent to

adding high association (0 resistance) edges between S’s members in a more general graph.

After doing so, if a candidate node x is similar to any of S’s members then it will become

similar to all the nodes in S (due to the insertion of high association edges). This somehow

encodes an ’OR’ logic.

We extend the same idea to compute the distance between two sets of terms for any

Laplacian-based kernel. That is, to compute the distance between the term sets S1 and S2,

we collapse the corresponding terms of each set in A to one super node to obtain a new

reduced association graph A ′. After that we recompute the Laplacian-based kernel for A ′

to get the distance between the collapsed nodes. The main drawback of this approach is for

any given two subsets of nodes, we have to reshape the graph, form the Laplacian matrix

28

and compute its eigen decomposition which takes O(N3) time.

To avoid recalculations, we propose an efficient approximation that does not require us

to change the structure in the underlying association graph. The solution is based on the

following electrical circuit analogy: short-circuiting the nodes in some set S is equivalent

to adding an auxiliary node s′ to the network and connecting it to the nodes in S with zero

resistance (infinite association weight) links. The total resistance between s′ and any other

node in the graph is equivalent to the resistance between the collapsed node representing

S to these nodes. We apply the same trick on the association graph to build our approxi-

mation: instead of collapsing the terms in a set into one node, we add a new node s′ to A

and connect it to all terms in S with some high association weights (to approximate infinite

weights). This is illustrated in Figure 2(III). Now, we have to compute the eigen decomposi-

tion for the Laplacian of A ∪ s′ to find the mapping φ(s′) for the new node; however, instead

of recalculating everything from scratch, we can just extend the eigenvectors of A ’s Lapla-

cian to one more element using the Nyström approximation [Buchman et al., 2009]. More

specifically, if node s′ was included in the graph, we would have
∑

j L(s′, j)uk(j) = λkuk(s′),

for the kth eigenvector of L. Solving for uk(s′), we will get:

∀k,uk(s′)= 1
λk −L(s′, s′)

∑
j 6=s′

L(s′, j)uk(j), (2.2)

where L(s′, j) is just the negative assigned association weight between node j and the auxil-

iary node s′ (and 0 if j ∉ S). Also L(s′, s′) is the degree of s′. Having approximated uk(s′) for

all k, we can compute φ(s′) using Eq. 4.19.

Using this approximation, we propose to define and calculate the set-set kernel as fol-

lows. First, we compute and store the eigen decomposition for the term-term associations,

which takes O(N3) time and O(N2) space. This step is performed offline. The metric for any

two sets of terms S1 and S2 is then calculated online using the stored decomposition. In

fact, it only takes O(|S1|+ |S2|) to find ‖φ(s1)−φ(s2)‖2
2.

29

2.4 EXPERIMENTS

A good text similarity metric can open door to some interesting applications: predicting term

occurrences from text components, clustering of text components, query expansion, etc. In

this section, we demonstrate the merits of our framework on two applications; prediction of

terms in the document and query expansion in information retrieval. What is interesting

is that our methods does not depend on sematic analysis via NLP to acquire these abilities,

but simply relies on term co-occurrences. Hence is complementary to these methods.

2.4.1 Term Prediction

The objective of this experiment is to demonstrate that our kernel-based distance metrics

can predict the occurrence of terms in a full article from terms in the abstract. Intuitively, for

the same document, terms in the full body should be very relevant to the terms mentioned

in its abstract. Thus, given the terms in the abstract, a good similarity metric should prefer

terms that are mentioned in the full document.

2.4.1.1 Data The documents used in this experiments are from the cancer corpus [Wang

and Hauskrecht, 2008] that consists of 6,000 documents related to 10 cancer subtypes that

are indexed in PubMed. The articles were randomly divided into the training (80%) and test

(20%) sets. Only the abstracts in the training set were used to build the term association

network. Although, we could have trained our kernels using the terms in the document

bodies as well, they perform well over the entire vocabulary even just using the terms in

the abstracts. The terms extracted were the names of genes and proteins occurring in the

free text. We used LingPipe1 to identify genes and proteins. If needed, abstract-document

pairs in the training data were used to optimize kernel parameters, such as σ2 in the heat

diffusion kernel, and θs defining a non-parametric Laplacian-based kernel.

2.4.1.2 Evaluation Metric For evaluation, we first compute the distances between terms

in the abstracts to all candidate terms and rank them. If our proposed similarity metrics
1http://alias-i.com/lingpipe

30

is good, the terms in the full body of the text should be ranked higher than the rest. We

assess this using the Area Under the ROC Curve (AUC) score. More specifically, we assign

label 0 to those concepts that were not observed in the full article and 1 to those that were

observed. The ranking based on the metric is then combined with the labels and the AUC

score is calculated. Note that the optimal term ordering for this document should give a

perfect separation of 1s and 0s.

2.4.1.3 Baselines We compare our methods to three baseline methods: TF-IDF, PHITS,

and the shortest-path approach. The TF-IDF method predicts the terms in the document

body using the TF-IDF score ranking [Salton and McGill, 1983] calculated on the training

documents and is independent of the query (the terms in the abstract). The PHITS-based

approach [Wang and Hauskrecht, 2008] first learns the PHITS model [Cohn and Chang,

2000] from the term association graph and uses it to approximate the strength of the term

and set-to-term relations. The shortest path method uses the term association graph and its

reciprocal weights to calculate the shortest paths between terms in the abstract and the rest

of the terms. The shortest path lengths are then used to estimate term-term and set-to-term

similarities.

2.4.1.4 Results Table 2 summarizes the results of the experiment on the full term vo-

cabulary of 1200 test documents. For each method, the table shows the mean AUC scores

obtained for test documents and their 95% confidence intervals (CI).

Baselines vs. Kernels: All Laplacian-based metrics were statistically significantly

better than baselines when predicting the terms in full documents. This means the derived

similarity metrics are very meaningful and model the term relevance better than baselines.

Comparison of Kernels: The parameters of all kernels were optimized using either

line search (for the diffusion and the resistance kernels) or the linear program (for the

non-parametric kernel). There are small overlaps between confidence intervals of differ-

ent kernel methods. To examine the differences in the mean AUC scores more carefully,

we analyzed the methods using pair-wise comparisons. We found that the resistance kernel

performs statistically significantly better than other kernels. The diffusion kernel and the

31

Methods AUC 95% CI

TF-IDF 0.782 [0.767,0.801]

PHITS 0.781 [0.749,0.805]

shortest-path 0.745 [0.729,0.756]

KDi f f usion 0.878 [0.870,0.887]

KResistance 0.883 [0.878,0.892]

KNonpara 0.870 [0.863,0.878]

Table 2: AUCs for predicting terms on test documents. The best AUC score is in bold.

non-parametric kernel were not significantly different. We attribute the superiority of the

resistance kernel to the fact that it heavily emphasizes the smoother (smaller) eigenvalues

of the Laplacian compared to other kernels due to its functional form.

We attribute the superiority of the resistance kernel to its functional form (Section 2.3).

In particular, we observed that the first 113 eigenvalues of the Laplacian in this experiment

are less than 1e-4; in other words, the first 113 eigenvector are very smooth and encode

critical information regarding the structure of the underlying graph. The resistance kernel,

according to its functional form, puts much more spectral transformation weights on eigen-

vectors with small eigenvalues than other kernels. For example, the ratio of two spectral

transformation coefficients (for 113th and 114th eigenvalues) for the resistance kernel is

1045.7, while the same ratio for the diffusion kernel and the same set of eigenvalues is only

1.01. This shows that the resistance kernel tends to emphasize the components which are

critical for the structure more than other kernels.

2.4.2 Query Expansion

In this experiment, we test our metrics on the query expansion task. Briefly, in the query

expansion task, we seek to find a small number of terms that can help us to improve the

retrieval of relevant documents if they are added to the original query. Here, we enrich a

32

given query with the terms considered close to it according to the resistance kernel.

2.4.2.1 Datasets We use four TREC datasets2 to analyze the performance of our method

on the query expansion task: Genomic Track 2003, Genomic Track 2004, Ad hoc TREC 7,

Ad hoc TREC 8. The key properties of these datasets are summarized in Table 2.4.2.2. Each

TREC dataset comes with 50 test queries and the list of relevant documents assessed by

human experts for each query.

TREC Type # of docs N M Term type

Genomic-03 abs 500k 349K 5K gene/protein

Genomic-04 abs 4.5mil 1123K 5K gene/protein

Ad Hoc 7 doc 550k 469K 20K words

Ad Hoc 8 doc 550k 469K 20K words

Table 3: TREC datasets used in for query expansion (abs=abstract, doc=document, N = total

of terms, M = # of terms used).

2.4.2.2 Experimental setup Since there are no query expansion baselines, we use our

methods in combination with Terrier search engine 3 to rank the documents and observe its

relative performance to the baselines. Terrier is a search engine that parses and indexes the

document corpus to build its own vocabulary; its performance can be further improved by

doing query expansion first. For baselines, we use: (1) Terrier search engine without query

expansion, and (2) Terrier with the PRF-based (pseudo-relevance feedback) [Xu and Croft,

1996] query expansion. PRF methods are the state-of-the-art methods for query expansion

that use auxiliary searches to expand original queries. They use all terms in the term

vocabulary. We report the best results from the DFR-Bo1 model included in Terrier, which is

based on Bose-Einstein statistics [Macdonald et al., 2005]. In contrary to PRF, our methods

cannot scale up well due to the huge number of terms in these datasets. To address this
2http://trec.nist.gov/data.html
3http://www.terrier.org

33

problem, we have subsampled and work with a subset of the overall terms. Yet the end

results are very comparable to those of PRF. We postpone the details of the subsampling

technique used to the next chapter. Note that M in Table shows the size of the subsample

used.

2.4.2.3 Results Table 26 summarizes the result for the experiment. The statistics used

in the evaluation is a widely used document retrieval evaluation metric, the Mean Aver-

age Precision (MAP) [Buckley and Voorhees, 2005]. The table shows that our kernel-based

query expansion either outperforms or comes close to Terrier’s PRF-based expansion base-

line which is the state-of-the-art. The difference in Ad Hoc 8 can be explained by apply-

ing our method on a reduced term space which includes approximately 25% of the original

terms.

Methods Genomic 03 Genomic 04 Ad Hoc 7 Ad Hoc 8

Terrier 0.19 0.31 0.18 0.24

Terrier+PRF 0.22 0.37 0.22 0.26

Terrier+ Kresistance 0.24 0.37 0.22 0.25

Table 4: MAP of methods on document retrieval tasks on TREC data.

2.5 DISCUSSION

To show the benefits of the graph-based methods in practice, in this chapter, we developed a

graph-based framework for constructing text metrics to compare any two arbitrary text com-

ponents. One important feature of our framework is being global meaning that as opposed

to the traditional document similarity metrics, the metrics produced by our framework are

able to detect the relevance between two text components for which their corresponding

terms neither overlap nor co-occur in the same sentence/document across the corpus. This

34

property is due to the fact that our framework is based on the data-driven graph Lapla-

cian kernels on the term space which are capable of inferring global relevance beyond local

relations.

The other key feature of our framework is that it produces a consistent distance mea-

sure for two input texts regardless of their sizes (e.g., comparing a term vs. an abstract).

We achieved this property by generalizing the distance between two terms to the distance

between two sets of terms. To avoid recalculations in computing the distance between ar-

bitrary sets, we proposed an efficient approximate technique which uses the results of one-

time spectral decomposition to compute the distance between any two given sets in an online

fashion.

To show the merits of our framework in practice, we used the metrics constructed by

our framework for term prediction and query expansion. In both experiments, our metric

outperformed the traditional baselines. These very promising results justify further in-

vestigation, refinements and possible deployment of our framework for solving real world

problems in the field of text mining.

Although the real-world experiments in this chapter showed the effectiveness of the

graph-based framework compared to other popular methods for text analysis, they also re-

vealed one major restriction with the graph-based methods: they do not scale up well as the

number of nodes in the graph (e.g. terms in this chapter) increases. The main reason behind

this shortcoming lies in the representation of the main element in the graph-based methods,

the similarity graph. In order to build and store the similarity graph (the association graph

in this chapter), one needs to maintain the similarity matrix which takes O(N2) time and

memory, where N is the number of nodes. This may not be problematic for small problems,

but for datasets of size in the order of 104 or larger, the CPU and the memory will become

serious issues. Even if the similarity matrix is given to us on a machine with infinitely large

memory, many of the operations on this matrix still takes at least O(N2) time. For instance,

as we will see later in this proposal, matrix-vector multiplication is a common operator on

the similarity matrix (or its Laplacian) that is used in many applications such as Link Anal-

ysis and Label Propagation. This operation takes O(N2) time in general. Or even worse, the

full eigen-decomposition of the Laplacian matrix takes O(N3), which as we saw, is a crucial

35

step in our proposed framework in this chapter. As a result, one needs to address the “large

N” challenge in a principled way when facing real-world large-scale problems. This is the

focus of the next chapter.

36

3.0 LARGE N

3.1 INTRODUCTION

At the core of the graph-based methods is the similarity graph that captures the geometry

of the datapoints in the input space. Depending on the characteristics of the input space,

the local similarity metric and the representation of the datapoints, the similarity graph

can be generated in numerous ways as described in Chapter 1. Nevertheless, no matter

how the similarity graph is generated, a common representation to store it and operate

on it is in the form similarity matrix which, in general, takes O(N2) time and memory to

maintain, where N is the number of datapoints or nodes in the graph. With N in the order

of 104 or larger, we face a practical challenge as the demand for CPU and memory rapidly

grows compared to the computational power of many non-cluster machines. This is not

just a hypothetical problem as many of the real-world problems these days contain hundred

thousands to millions of records which poses a huge restriction in using the graph-based

methods. We refer to this problem as the Large N problem.

Unfortunately, the problem does not end here. Imagine the similarity matrix is “magi-

cally” computed and given to us on a machine with infinitely large memory. In order to use

this matrix for our further purposes, we need to perform certain operations on this matrix.

Most of these operations inherently need to visit each element of the matrix at least once.

This means that for many operations the computational order is at least O(N2). As a sim-

ple example, imagine one is interested in finding the degrees of the nodes in the similarity

graph; this quantity is in fact closely related to the density of the points in the input space.

Another example is the matrix-vector multiplication which is a common operator in Link

Analysis [Ng et al., 2001c, Ng et al., 2001d] and Label Propagation. A more complicated

37

operation is the full eigen-decomposition which takes O(N3). In fact, as we saw before, the

eigen-decomposition of the Laplacian matrix plays a crucial role in the spectral graph-based

methods. Therefore, even in those problems where the similarity matrix is pre-computed

and/or the memory is abundant, we are still facing a big computational challenge to do

operations on large-scale similarity matrices.

In this chapter, many solutions for the Large N problem are overviewed. The important

point to note here is not all these solutions are applicable in all problems. Depending on

the representation of the datapoints in the input space, the similarity/distance metric in the

input space, the quantity of interest in the problem and many other factors the appropriate

solution might be very different. However, regardless of all the differences, most of these

solutions have one common essence and that is the reduction of the similarity matrix repre-

sentation. Depending on the methodology, the reduced representation can come in different

forms: a sub-graph (sub-matrix), a sparse matrix, a cluster tree, etc.

After giving an overview of the existing approaches to the Large N problem in the lit-

erature, we focus on two specific methods. In particular, in a flashback to the text metric

problem in Chapter 2, Section 3.3 illustrates how the random subsampling method com-

bined with the Nyström-based expansion can effectively overcome the Large N problem in

our text analysis case study. In fact, we successfully used this technique in the experiments

reported in Chapter 2. In the rest of the chapter, we propose a more elaborate reduction

method that is specially useful for the problems where the datapoints are explicitly repre-

sented in a metric feature space. In particular, we develop a variational dual-tree framework

to effectively represent the transition matrix of the random walk on the graph (or equiva-

lently the random walk Laplacian matrix Lrw). The transition matrix is specifically useful

in applications such as Diffusion Analysis, Semi-supervised Learning and Link Analysis

[Ng et al., 2001c, Ng et al., 2001d]. In particular, using our proposed framework, we demon-

strate order of magnitudes speedup without sacrificing accuracy for Label Propagation tasks

on real datasets in semi-supervised learning.

38

3.2 RELATED WORK

Based on the type of reduction, the approximate techniques for graph-based method fall into

different categories as follows.

3.2.1 Node Sparsification Methods

The key idea behind node sparsification techniques is to reduce the number of nodes in the

similarity graph (i.e. N) to M such that M ¿ N. The differences arise on how each specific

algorithm achieves this goal. The most intuitive approach is taking a random subsample of

the nodes with size M [Talwalkar et al., 2008, Kumar et al., 2009]. The main challenge with

subsampling methods is how to extend the results of the analysis to those nodes that are

left out of the sample. One common approach is to use Nystrom approximation [Buchman

et al., 2009, Kumar et al., 2009, Williams and Seeger, 2001].

The other popular idea for node reduction is building a backbone graph which captures

the general structure of the similarity graph via a reduced set of super nodes each of which

represents a subset of the original nodes. Different algorithms in the literature build the

backbone graph differently. In [Zhu and Lafferty, 2005], the authors created a mixture

model of the data and used the mixture components as super nodes. [Yu et al., 2005] has

used non-negative matrix factorization for building the backbone graph. [Valko et al., 2012]

has used the Doubling Algorithm for incremental clustering [Charikar et al., 1997] to build

a backbone graph from an online stream of data. Gridding (binning) the input space is

another method to build the backbone graph [Silverman, 1982, Garcke and Griebel, 2005].

The problem with gridding is the size of the backbone graph increases exponentially with the

dimensionality of the space. The other method is to use clustering (e.g. k-means clustering)

to pick the representatives as the nodes of the backbone graph (For example [Yan et al.,

2009, Liu et al., 2010]).

39

3.2.2 Edge Sparsification Methods

The second group of reduction methods aim at reducing the number of graph edges in-

stead of its nodes. k-nearest-neighbor graphs [von Luxburg, 2007, Zhu, 2005b] and mu-

tual k-nearest-neighbor graphs [von Luxburg, 2007] are among the most popular methods

for building sparse similarity graphs. b-matching is a similar technique to the k-nearest-

neighbor method which guarantees that all the nodes have the same degree in the sparsified

graph [Jebara et al., 2009]. A common property of all these three methods is that the node

degrees (i.e. the edge sparsity) are somewhat uniform across the graph regardless of the

density of the datapoints in the space. In contrast, ε-neighborhood graphs [von Luxburg,

2007] captures the density of the datapoints by having different node degrees depending on

the density. However, setting the k parameter in the k-nearest-neighbor method is normally

an easier task than setting the ε parameter in the ε-neighborhood approach. Rank Modu-

lated Degree (RMD) [Qian et al., 2011] is another method that takes into account the density

of the datapoints while generating a sparse graph. It should also be noted that, although

manipulating and storing the edge-sparsed similarity graph can be done efficiently, the con-

struction of such sparse graph might be still computationally expensive. Even with the

smart speed-up techniques, such as k-nearest-neighbor graphs [Liaw et al., 2010, Moore,

1991], the actual time for building the full sparse graph can vary in practice.

All the methods mentioned above (except for b-matching) can be considered as the al-

gorithmic frameworks that do not aim at optimizing any specific criterion. Optimization-

based techniques, on the other hand, try to find a (sparse) similarity graph that optimizes

an explicit objective function. For instance, Locality Preserving Projection (LPP) [Niyogi,

2004] and Neighborhood Preserving Embedding (NPE) [He et al., 2005] provide such basic

objective functions for similarity graph construction. Furthermore, Graph-optimized LPP

(GoLPP) [Zhang et al., 2010] is an immediate improvement of LPP by adding an entropy

term to the objective function. However, none of these embedding methods explicitly en-

forces sparsity on the similarity graph. Sparsity Preserving Projection (SPP) [Qiao et al.,

2010] and Graph Optimization for Dimensionality Reduction with Sparsity Constraints (GO-

DRSC) [Zhang et al., 2012] explicitly enforce sparsity by introducing an `1 penalty term in

40

the objective.

3.2.3 Decomposition-based Methods

Decomposition-based techniques view the problem of constructing the similarity graph as a

special case of the Generalized N-body Problem [Gray and Moore, 2000, Ram et al., 2009].

This problem, in a nutshell, considers the computation all the mutual effects among a set of

source and target datapoints. For example, consider the problem of computing the node de-

grees of a similarity graph which is built using the Gaussian kernel in Eq. (3.1). This prob-

lem can be easily reduced to the sums of Gaussians problem [Raykar et al., 2005]. Similar to

graph construction, this problem has the computational complexity of order O(N2). Viewing

each datapoint (or node) as both a source and a target, the key idea in decomposition-based

methods for reduction is to decompose the O(N2) mutual effects between the sources and

the targets into O(N) independent factors for each of the sources and the targets, and there-

fore reducing the computational order to O(N). The most famous method of this kind is

Fast Gauss Transform (FGT) which was first introduced in [Greengard and Strain, 1991].

An outstanding feature of FGT is that using FGT, the approximation error can be bounded.

However, the constant factor in the computational order exponentially depends on the di-

mensionality of the space which makes it impractical to apply FGT to high-dimensional

problems. Improved Fast Gauss Transform (IFGT) [Yang et al., 2003, Yang et al., 2005]

addresses this problem by using Tylor expansion and k-center partitioning algorithm. The

two main issues with IFGT is (a) its error bound is not tight and (b) there is not practical

guideline for setting the parameters of the model. [Lang et al., 2005] proposes a non-optimal

technique to set the parameters. [Raykar et al., 2005] has improved the IFGT framework so

that the parameters are set optimally and the error bound is tight. Moreover, [Lee and Gray,

2008] proposed a variation of FGT in combination with Monte Carlo Multipole method.

3.2.4 Direct Methods

This class of methods goes around the problem of finding a sparse graph representation by

trying to approximate the quantity of interest in the problem directly. For instance, manifold

41

regularization techniques [Belkin et al., 2006, Tsang and Kwok, 2006] directly find a smooth

function on the graph. For the task of eigendecomposition, [Fergus et al., 2009, Nadler

et al., 2006, Amizadeh et al., 2012b] have proposed methods that try to directly estimate the

eigen decomposition of the underlying transition matrix in the limit assuming a factorized

underlying distribution. Although these methods can be very effective in practice [Fergus

et al., 2009], they completely rely on the assumption that the underlying input space is

factorizable into a set of low-dimensional sub-spaces in each the sub-eigenfunctions can be

estimated efficiently. Clearly, this assumption may not hold in many problems. Besides,

these methods are inherently task specific.

3.2.5 Hierarchical Methods

The hierarchical methods try to take the advantage of the hierarchical cluster structure of

the data to efficiently reduce the similarity graph. Using the same notion of source and

target as in decomposition-based methods, the first group of hierarchical methods are cate-

gorized as single-tree algorithms where a single tree is built over sources and the the sum

effect is computed for each target node individually. kd-tree methods [Friedman et al.,

1977, Moore, 1991], for example, have been developed to compute the k-nearest neighbors

for each target node in the logarithmic time. Similar algorithms (e.g. [Karger and Ruhl,

2002, Krauthgamer and Lee, 2004]) provide logarithmic-time per query framework for find-

ing the nearest neighbors. However, none of these method provide any error guarantee.

Using other structures like cover trees [Beygelzimer et al., 2006], one can control the trade-

off between the accuracy and the efficiency [Ram et al., 2009].

The dual-tree methods [Gray and Moore, 2000, Gray and Moore, 2003, Ram et al., 2009]

are the direct generalization of their single-tree counterparts. Using these methods, in

addition to the source nodes, one tree is also built for the target nodes. Using these two trees,

one can model the mutual effect between the source and the target nodes at different levels

of the hierarchy. More recently, [Lee et al., 2011] have proposed a combination of dual-tree

methods with Fast Gauss Transform (FGT). Moreover, [Thiesson and Kim, 2012, Thiesson

and Wang, 2010] have used an Anchor tree-based dual-tree approach for fast mode-seeking

42

clustering and mixture modeling.

It should be noted that dual-tree methods are closely related to multi-level low-rank

approximation techniques [Wang and Dong, 2012]. For computing the transition matrix of

the random walk in specific, these methods (e.g. [Chennubhotla and Jepson, 2005, Lin,

2003]) learn a hierarchical low-rank representation of the transition matrix without using

an explicit notion of a hierarchical tree. The hierarchical low-rank structure of the resulted

matrix can be further exploited for efficient eigen-decomposition [Chennubhotla and Jepson,

2005] which is in the core of the spectral methods.

Our proposed Variational Dual-Tree (VDT) framework in this chapter belongs to the

class of dual-tree methods. The VDT framework provides a non-parametric methodology to

approximate and represent the transition matrix of the random walk on similarity graphs

in O(N1.5 log N). One big advantage of this framework to other tree-based methods is that

it directly computes the transition matrix without computing the intermediate similarity

matrix W. Another advantage of VDT is that given a distance computation of O(1) between

any two datapoints, the overall computational complexity of VDT does not depend on the

dimensionality d of the input space.

3.3 CASE STUDY: SUBSAMPLING IN THE TERM SPACE

In Chapter 2, we considered the problem of learning generalized text similarity metrics from

the data-driven co-occurrence graph A (aka the association graph) and showed its merits

compared to some well-known techniques in the literature. As mentioned there, although

the graph-based methodology introduces an elegant framework to model the text similarity,

its performance can highly degrade as the number of terms in the space grows large. In par-

ticular, if the number of terms N is large, computing the eigen decomposition over the entire

term space (in principle an operation of O(N3) time) becomes computationally demanding,

even if it is done offline and only once. As a result, in order to work with large-scale term

spaces, we have no choice other than applying one of the reduction methods described in the

previous section. However, in this specific problem, the terms are not explicitly represented

43

in a feature space ruling out some reduction methods such as tree-based methods and Fast

Gauss Transform. Therefore, to address the problem, we propose the following two-step

solution.

3.3.1 Building The Association Graph

Same as before, we build the association graph A based on the co-occurrence of the terms in

sentences by scanning over the whole corpus once. Note that since the co-occurrence matrix

is generally sparse, we use the sparse matrix representation for A so that we will not have

a memory issue. In terms of the computational complexity, due to the specific construction

method in this problem, the order will be O(d̄N), where d̄ is the average node degree in the

association graph and we expect k ¿ N. As a matter of fact, this form of representation and

construction can be put in the edge-sparsification category explained above.

3.3.2 Eigen Decomposition of The Association Graph

Although A is represented as a sparse matrix, its eigen decomposition might still be compu-

tationally demanding. Therefore, we propose to keep only a random subsampled sub-graph

of size M for the eigen decomposition purposes. By doing so, we effectively lose the values of

the eigenvectors for those nodes (terms) that are not included in the sample; however, these

values are essential for mapping those terms into the transformed metric space as well as

computing the similarity metric. To recover these values, we need a (semi-)inductive method

to map the nodes excluded from the graph into the metric space. This is not a trivial task

as the graph-based methods are inherently transductive. Nevertheless, we can always come

up with some efficient approximations. A good candidate approximation technique is in fact

the Nyström approximation as explained in the previous chapter. Using this approximation,

the total time reduces to O(M3 + d̄N), where d̄ is again the average node degree in A . This

is a significant improvement if m ¿ n.

44

3.3.3 Empirical Error for Ranking

Obviously, the eigen decomposition of a smaller graph and its Nyström-based expansion to

all nodes define an approximation of the true metric. Now, we have to show how much

this approximation affects the final distance metric. However, in many real applications

including ranking, it is the ordering over the terms induced by the distance metric that

really matters and not the actual distance values. Therefore, we can only measure how

many misplacements (in %) are introduced using the proposed approximation compared to

the ordering induced in the exact case (i.e. the gold standard order). Table 5 shows the

(normalized) number of misplacements introduced in a test set of 100 terms using different

sample sizes M for a term space and the graph of size N = 5000 we used for the analysis of

PubMed articles in Section 2.4. The experiment is repeated 5 times for each sample size and

the results are averaged. As the table shows, even for 20% of the terms (M = 1000), 16%

misplacements are introduced in average which means that the approximation is pretty

robust.

m Avg % of misplacements std deviation

20% 16.0% 0.011

40% 13.7% 0.005

60% 8.9% 0.012

80% 4.4% 0.002

Table 5: The average number of misplacements for different sample size m with standard

deviation.

3.4 LARGE-SCALE TRANSITION MATRIX APPROXIMATION

In the previous section we showed how the subsampling technique can help to build the

similarity graph for large-scale datasets. Nevertheless, in most cases, the similarity graph

45

by itself does not produce the desired solution for the problem in hand. Instead, one usually

defines a stochastic process on this graph and/or a secondary quantity derived from this

graph to capture the desired data-driven similarity among the datapoints. To this end, one

common technique is to define a random walk on the similarity graph as described in Sec-

tion 1.2.3.1. The random walk implicitly encodes the cluster structure of the input space

in terms of the data-driven similarity metric [von Luxburg, 2007]. As shown in Chapter

1, many famous methodologies in graph-based data analysis take this approach: Diffu-

sion maps [Nadler et al., 2006, Lafon and Lee, 2006, Coifman et al., 2008, Coifman et al.,

2005a, Coifman et al., 2005b, Lee and Wasserman, 2010, Amizadeh et al., 2012b], Laplacian

eigenmaps [von Luxburg, 2007, Belkin and Niyogi, 2002, Belkin and Niyogi, 2005], Label

Propagation algorithm [Zhou et al., 2003, Belkin et al., 2006] etc. are all examples of such

frameworks. To represent a random walk on a graph, one needs to maintain the transition

probabilities potentially between any pair of nodes in the graph. This means that if the

graph has N nodes (i.e. N datapoints), one would need to compute and maintain roughly

N2 probability numbers. These probabilities are typically stored in the form of a N by N

matrix, known as the transition matrix. For those problems with N in the the order of 104

or larger, computing and storing the transition matrix quickly become infeasible. The most

common solution to approach this problem is to impose sparsity on the similarity graph.

A sparse graph would clearly solve the memory problem, but the computation of a sparse

solution can be still as expensive as O(N2) or even more.

Looking at the big picture, the problem of computing the transition matrix on a large

similarity graph is an instance of the classical N-body problems. Introduced in the Com-

putational Physics [Barnes and Hut, 1986, Greengard, 1994, Carrier et al., 1988], N-body

problems are the problems whose exact solutions involve computing the mutual interac-

tions between all pairs of datapoints in a dataset. One classical example in Particle Physics

is computing the forces/charges among N particles in the space. In Machine Learning

also, many computationally intensive problems such as kernel density estimation, nearest

neighbor classification, outlier detection, etc can be seen as special cases of N-body prob-

lems [Gray and Moore, 2000, Ram et al., 2009]. To address these problems, many methods

have been proposed in Machine Learning and Computational Physics literature, of which

46

tree-based hierarchical methods [Gray and Moore, 2003, Moore, 2000, Thiesson and Kim,

2012, Thiesson and Wang, 2010, Lee et al., 2011, Beygelzimer et al., 2006, Liaw et al., 2010],

fast multipole methods [Lee and Gray, 2008, Greengard, 1994, Carrier et al., 1988] and fast

Gauss transform [Greengard and Strain, 1991, Yang et al., 2003, Raykar et al., 2005, Yang

et al., 2005, Lee et al., 2011] are among the famous ones. A subset of these methods can be

applied to N-body problems in graph-based methods which we described in Section 3.2.

In the rest of this chapter, we propose the Variational Dual-tree (VDT) framework to effi-

ciently compute the transition matrix of random walk on large-scale similarity graphs. This

framework, which is based upon the method proposed by [Thiesson and Wang, 2010, Thies-

son and Kim, 2012] for fast kernel density estimation, combines the dual-tree hierarchical

partitioning of the input space [Thiesson and Kim, 2012, Thiesson and Wang, 2010, Lee

et al., 2011] with variational approximation to approximate the transition matrix with re-

duced number of parameters. It should be emphasized that our proposed framework is

specifically designed to approximate the transition matrix whereas all the aforementioned

methods including [Thiesson and Wang, 2010, Thiesson and Kim, 2012] are designed to

solve other N-body problems specifically kernel density estimation. To efficiently compute

the transition matrix of the random walk, the most obvious solution is to build a sparse

k-nearest-neighbor (kNN) similarity graph using a N-body fast method like [Moore, 1991]

and then compute the transition probabilities on the sparse graph. Our proposed method,

on the other hand, directly computes the transition probabilities without the need to build

the similarity graph. However, the difference between VDT and kNN frameworks is more

fundamental: the underlying reduction idea in the VDT framework is parameter sharing,

whereas for the kNN method, it is sparsification. Both of these ideas work in theory; how-

ever, as we have shown in our experiments, sparsification can result in disconnectivity in

practice, which in turn causes unstable results for certain end applications such as label

propagation. Our method, on the other hand, always produces a connected underlying graph

which makes it a robust solution for the mentioned applications. Moreover, we develop a fast

multiplication algorithm for our model to be used in further applications of the transition

matrix like label propagation and eigen-decomposition.

The other important contribution in this chapter is the extension of the VDT framework

47

to non-Euclidean spaces. In almost all of the methods mentioned above, an unwritten as-

sumption is to use the Euclidean distance as the distance measure between the datapoints

and the Gaussian kernel as the kernel for density estimation (or similar tasks). Unfor-

tunately, many of these methods have no other choice because their very speed-up ideas

directly depend on the usage of the Euclidean distance and the Gaussian kernel. For in-

stance, the proposed method in [Thiesson and Wang, 2010, Thiesson and Kim, 2012] relies

on the special form the Euclidean distance to efficiently solve the variational optimization,

or the fast Gauss transform methods [Greengard and Strain, 1991, Yang et al., 2003, Raykar

et al., 2005, Yang et al., 2005] are designed to be exclusively used with the Gaussian kernel.

However, for many real datasets, these choices are not simply the best ones. One can easily

imagine a dataset that is generated through some non-Gaussian process in a non-Euclidean

space. To address this problem, we extend our proposed framework to support the class of

Bregman divergences which covers many well-known distances and divergences in Machine

Learning including the Euclidean distance. We call this general framework the Bregman

Variational Dual-tree (BVDT) framework. Through the connection between the Bregman

divergences and the exponential families, we show that BVDT also generalizes the usage of

the Gaussian kernel to general exponential family kernels. More importantly, we show that

due to the special form of the general Bregman divergences, BVDT also enjoys the speed-up

ideas in the original VDT with no further cost and yet dramatically improves the accuracy

of the framework for certain problems. In particular, for the task of document classification

using random walk on the document graph, the BVDT framework significantly outperforms

the original VDT method while maintaining the same computational complexity as shown

in our experiments. Finally, we show that VDT is in fact a special case of BVDT.

The rest of this chapter is organized as follows: in Section 3.4.1, we formally define the

problem of computing transition matrices (and subsequently random walk) on similarity

graphs. Section 3.5 gives a thorough overview of the tree-based hierarchical methods for

fast kernel density estimation. In particular, we describe the dual-tree variational approx-

imation method proposed by [Thiesson and Wang, 2010, Thiesson and Kim, 2012] in more

details. The reader should note that, for our further purposes, we have slightly changed the

presentation of this method compared to that of the original papers [Thiesson and Wang,

48

2010, Thiesson and Kim, 2012]. In Section 3.6, we present our proposed VDT framework

for approximation of the transition matrix. Section 3.7 illustrates the Bregman extension of

the proposed VDT framework, namely BVDT. To evaluate our proposed models, we have run

multiple experiments on different datasets; Section 3.8 demonstrates the results of these ex-

periments. Finally, we present and discuss some conclusion remarks in Section 3.9.

It should be noted that the proposed framework in this section have been developed in

collaboration with Bo Thiesson, Associate Professor at Aalborg University [Amizadeh et al.,

2012a, Amizadeh et al., 2013].

3.4.1 The Problem Statement

Let D = {x1, x2, . . . , xN } be a set of i.i.d. datapoints in X ⊆ Rd. The similarity graph G =
〈D,D ×D,W〉 is defined as a complete graph whose nodes are the elements of D and the

matrix W= [wi j]N×N represents the edge weights of the graph, where

wi j = k(xi, x j;σ)= exp(−‖xi − x j‖2/2σ2) (3.1)

is the similarity weight between nodes xi and x j. The closer xi and x j are in terms of the

Euclidean distance ‖xi − x j‖, the higher the similarity weight wi j will be. The bandwidth

parameter σ is a design parameter that essentially determines how sparse the graph should

be. By abstracting the input space into a graph, the similarity graph essentially captures

the geometry of the data in the input space.

Once the similarity graph is constructed, one can define a random walk on it. The tran-

sition probability distributions are in this case given by the transition matrix P= [pi j]N×N ,

where

pi j =
wi j∑

k 6=i wik
= k(xi, x j;σ)∑

k 6=i k(xi, xk;σ)
(3.2)

is the probability of jumping from node xi to node x j. Note that the elements in each row of

P sum up to 1 so that each row is a proper probability distribution. As mentioned before, the

transition matrix is the fundamental quantity used by many graph-based Machine Learning

frameworks.

49

In terms of computational resources, it takes O(N2) CPU and memory to construct and

maintain the transition matrix, which can be problematic when the number of datapoints,

N, becomes large. Dealing with large number of datapoints is, in fact, quite typical in

many real-world datasets. On the other hand, the problem is not only restricted to the

computation of the transition matrix; it is one of the most significant challenges faced by

many graph-based methods. To overcome this challenge, the key idea is to somehow reduce

the representation of the graph (or P in our problem).

3.5 FAST KERNEL DENSITY ESTIMATION

The tree-based algorithms for fast Kernel density estimation (KDE) form the foundations of

our proposed framework in this chapter; therefore, in this section, we review the KDE prob-

lem and elaborate on the tree-based approximation methods proposed to solve this problem.

Let M = {m1,m2, . . . ,mM} denote a set of kernel centers in Rd. The kernel density es-

timate for any data point x ∈ Rd is then defined by the following weighted sum or mixture

model:

p(x)=∑
j

p(m j)p(x|m j) (3.3)

where p(m j) = 1
N , p(x|m j) = 1

Zσ
k(x,m j;σ), and k is a kernel profile with bandwidth σ and

normalization constant Zσ. For the commonly used Gaussian kernel, k(x,m j;σ)= exp(−‖x−
m j‖2/2σ2) and Zσ = (2πσ2)

d
2 .

Now let us assume we want kernel density estimates for the observed datapoints D =
{x1, x2, . . . , xN } in Rd that also define the kernel centers. That is, D = M , and we use the

D and M notation to emphasize the two different roles every example xi takes - one as a

query datapoint (denoted by xi), the other as a reference kernel center (denoted by mi). Let

us exclude the kernel centered at mi from the kernel density estimate at that datapoint. In

this case, the estimate at xi ∈D can be defined as the N −1 component mixture model:

p(xi)=
∑
j 6=i

p(m j)p(xi|m j)=
∑
j 6=i

1
N −1

1
Zσ

k(xi,m j;σ), (3.4)

where p(m j)= 1/(N −1).

50

In some Machine Learning methodologies such as density estimation [Gray and Moore,

2003, Thiesson and Wang, 2010] and mode-seeking clustering [Cheng, 1995, Thiesson and

Kim, 2012], one is interested in computing the log-likelihood of the observed data using

KDE. In the mathematical terminology, this will translate to computing

log p(D)=∑
i

log p(xi)=
∑

i
log

∑
j 6=i

p(m j)p(xi | m j) (3.5)

The complexity of computing Eq. (3.5) is O(N2), which is prohibitive for large-scale datasets

with large N. There are many approximate techniques proposed in the literature to address

this problem. Here, we direct our attention to tree-based methods.

3.5.1 Single-tree Approximation

Let the kernel centers in M be clustered into K clusters, then the effects of all the kernel

centers belonging to the same cluster on computing the KDE for a query point x can be

grouped together and approximated by one number. This is the idea that, for example, has

been used in the Fast Gauss Transform (FGT) method [Raykar et al., 2005]. The compu-

tational order in this case is roughly O(NK) where the constant coefficient depends on the

dimensionality as well as the desired approximation accuracy. We refer to this method as

flat-clustering approximation (FCA). If the number of clusters grows faster than log N, FCA

can be still costly.

A direct generalization of the method described above is the single-tree approximation

(STA) [Gray and Moore, 2003]. In this method, instead of having a flat clustering, one has a

cluster binary tree on the kernel centers called the kernel tree. The kernel tree can be built

using one of the fast approximate hierarchical clustering algorithms such as Anchor Tree

method, as we will describe in Section 3.5.3. For the case D =M where query points are the

same as the kernel centers, we have the query point x to be one of the leaves in the kernel

tree. Figure 3(A) demonstrates a simple example of computing KDE for the query point x

using 5 kernel points other than x itself. In this case, one needs to compute 5 parameters

(or cell). Figure 3(B) shows the STA method for this computation which has reduced the

number of parameters down to 3. If we follow the path from the root of the tree down to the

51

given query point x (i.e. the shaded path in the figure) and cut out the other sibling subtree

at each node on the path as shown by the crosses in the figure, we will end up with L disjoint

subtrees, where L is the length of the path. For our simple example, we have L = 3. In effect,

this process generates a partitioning of the kernel centers into L disjoint clusters according

to x which can be used to reduce the complexity of computing KDE for x from O(N) to O(L).

It should be noted that computing the log-likelihood in Eq. (3.5) using STA requires us to

repeat the described process for each query point independently which takes O(NL) time in

total.

The main advantages of the STA over the FCA are as follows. First, as opposed to

the FCA techniques, the kernel center grouping is not fixed in STA and can be different

depending on the location of the query point. In particular, for the kernel centers located

closer to the query point, the clusters are finer while for the farther centers, the clusters

are coarser. This can be easily verified for our simple example in Figure 3(B). This way,

the quality of approximation can be improved without increasing the number of clusters.

Second, due to the existence of a cluster hierarchy, the quality of approximation can be

further improved by splitting the bigger clusters into smaller ones using the tree structure.

Third, for a fairly balanced cluster tree, the average length of a path from the root to a leaf

node is log N. Therefore, given the tree, Eq. (3.5) can be computed roughly in O(N log N).

3.5.2 Dual-tree Approximation

In dual-tree approximation (DTA) methods, in addition to the kernel centers, the query

points are also clustered together. In other words, the effects of a group of kernel centers on

a group of query points are approximated by one number. As a result, in DTA techniques,

we also need a cluster tree for the query points. In the case of D = M , we can use one tree

for both sets D and M . Figure 4 shows a simple example of DTA on a dataset of size 6.

All the mutual effects between the kernel centers and the query points can be organized

into a matrix as shown in Figure 4(A). Consider the shaded submatrix in Figure 4(A); this

submatrix contains all the mutual effect between 4 query points and 2 kernel centers; that

is, 8 distinct parameters. Now, if the 4 query points form the leaves of a subtree in the query

52

Figure 3: (A) Direct computation of KDE for the query point x (B) Single-tree approximation

of KDE for the query point x.

cluster tree (i.e. the subtree A in the figure) and the 2 kernel centers also form the leaves of

another subtree in the kernel cluster tree (i.e. the subtree B in the figure), DTA can be used

to approximate all those 8 mutual effects between these two groups with only one number as

shown in 4(B). This idea can be used for other query points and kernel center as well leading

to dramatic reduction in the number of parameters. We will discuss this partitioning idea

in more details later in this section.

Back to our problem, for computing Eq. (3.5), two recently proposed dual-tree-based

frameworks are Dual-tree Fast Gauss Transform [Lee et al., 2011] which is based on Fast

Gauss Transform approximation and Variational Dual-tree [Thiesson and Wang, 2010, Thies-

son and Kim, 2012] which is based on Variational Approximation. Our proposed framework

in this chapter for transition matrix approximation is closely related to the latter work.

Therefore, in this section, we illustrate the basic elements of the variational dual-tree frame-

work. Interested readers may refer to [Thiesson and Wang, 2010, Thiesson and Kim, 2012]

for further details.

53

Figure 4: (A) All the mutual interactions between query points and kernel centers in a

dataset of size 6 (B) Dual-tree approximation of the mutual effects between the two subtrees.

54

3.5.2.1 Variational Log-likelihood As mentioned before, in dual-tree-based techniques

for computing the log-likelihood in Eq. (3.5), the query points are grouped together as well

as the kernel centers. By taking a closer look at Eq. (3.5), we see that the inner sum in

the log-function is over the kernel centers and can be easily decomposed into smaller sum-

mation terms based on the grouping of the kernel centers. The same is true for the outer

sum which is over the query points; that is, one can decompose the outer sum into smaller

summation terms based on the grouping of the query points. However, due to the existence

of the log-function in between the two summations, the simultaneous decomposition of the

kernel-sum and the query-sum is not possible. This is specifically problematic because in

dual-tree methods, we need to be able to decompose both summation terms simultaneously.

This problem can be addressed by pulling the inner sum out of the log-function using the

Jensen inequality and introducing the variational parameters:

log p(D)=∑
i

log p(xi)=
∑

i
log

∑
j 6=i

p(m j)p(xi | m j)

=∑
i

log
∑
j 6=i

qi j

qi j
p(m j)p(xi | m j)

≥∑
i

∑
j 6=i

qi j log
p(m j)p(xi | m j)

qi j
, `(D) (3.6)

where, qi j ’s (i, j ∈ {1, . . . , N}) are free variational parameters with the following constraints:

∀i ∈ {1, . . . , N} :
N∑

j=1
qi j = 1,0< qi j ≤ 1, qii = 0 (3.7)

Eq. (3.6) defines a variational lower-bound on the log-likelihood. For further purposes,

we re-arrange the variational parameters qi j ’s (i, j ∈ {1, . . . , N}) into an N × N matrix Q =
[qi j]N×N . By doing some algebra, `(D) can be written as:

`(D)= log p(D)−∑
i

DKL
(
qi·‖p(·|xi)

)
(3.8)

where p(·|xi) = {p(m j|xi) | 1 ≤ j ≤ N} is the posterior membership probability distribution

for the query point xi, qi· = {qi j | 1 ≤ j ≤ N} is the i-th row of matrix Q and DKL(·||·) is

the KL-divergence between two distributions. Based on Eq. (3.8), the gap between the

variational lower-bound and the actual log-likelihood is equal to the difference between the

55

the posterior membership distributions and the variational distributions (defined by the

rows of Q) in terms of the KL-divergence. In other words, the variational parameter qi j

approximates the membership posterior p(m j|xi). Moreover, if no constraint on qi j ’s other

than the ones in Eq. (3.7) is enforced, by setting qi j = p(m j|xi), the gap will become zero;

that is, the lower-bound in Eq. (3.6) is tight.

Because of the problem with the summations in Eq. (3.5) mentioned above, one should

compute the lower-bound in Eq. (3.6) instead of the actual likelihood in Eq. (3.5) if a dual-

tree method is to be used. However, the variational matrix Q introduces N2 −N 1 distinc-

tive parameters and therefore makes it impossible to simultaneously decompose Eq. (3.6) in

terms of the query and the kernel groupings. One simple solution is to set all the parameters

to a fixed value while satisfying the constraints in Eq. (3.7); that is, qi j = 1/(N−1). The prob-

lem with this solution is the approximation gap can be pretty large depending on the data

and the final approximation will not be optimum. A smarter solution is to simultaneously

group the variational parameters as well based on the query and the kernel groupings and

force the parameters in a group to take the same value. This is referred to as the dual-tree

block partitioning of matrix Q and will be discussed in the following section.

3.5.2.2 Dual-tree Block Partitioning The dual-tree-based variational approach intro-

duced in [Thiesson and Kim, 2012] maintains two cluster trees; the query partition tree and

the kernel partition tree, that hierarchically partition the query points and the kernels into

disjoint subsets, such that an intermediate node in a tree represents a subset of the query

points or the kernels and leaves correspond into singleton sets. In this work we assume the

structure of the two trees is identical, leading to the exactly same subsets of query points

and kernels represented by the tree.

The main reason for introducing the partition tree is to define relations and permit

inferences for groups of related query points and kernels without the need to treat them

individually. More specifically, we use the partition tree to induce a block partition of the

matrix Q, where all the parameters qi j within a block are forced to be equal. We also refer

to this partition as block constraints on Q.

1Note that the diagonal elements of Q are always set to 0.

56

Formally, a valid block partition B defines a mutually exclusive and exhaustive parti-

tion of Q into blocks (or sub-matrices) (A,B) ∈ B, where A and B are two non-overlapping

subtrees in the partition tree. That is, A ∩B = ;, in the sense that query-leaves in the

subtree under A and kernel-leaves in the subtree under B do not overlap. (To maintain

the convenient matrix representation of Q, the singleton blocks representing the neutral

diagonal elements in Q are added to this partition.) Figure 5(A) shows a small example

with a valid block partition for a partition tree built for six data points (kernels). This block

partition will, for example, enforce the block constraint p13 = p14 = p23 = p24 for the block

(A,B)= (1−2,3−4) (where a−b denotes a through b).

With the formal definition of a block partition, the block constraints can be mathemati-

cally expressed as:

qi j = qAB s.t. (A,B) ∈B, xi ∈ A,m j ∈ B (3.9)

Where qAB is a single variational parameter associated with the block (A,B) ∈B. We refer

to the set of qAB’s as the set of block parameters and denote it by QB = {qAB | (A,B) ∈B}.

To represent the block-constrained Q matrix more compactly, we utilize the so-called

marked partition tree (MPT) that annotates the partition tree by explicitly linking query

groups to kernel groups in the block partition: for each block (A,B) ∈ B, the query-node A

is marked with the matching kernel-node B. Each node A in the MPT will therefore contain

a, possibly empty, list of marked B nodes. We will denote this list of marks as Amkd ,

{B|(A,B) ∈B}. Figure 5(B) shows the MPT corresponding to the partition in Figure 5(A). For

example, the mark of kernels B = 3−4 at the node representing the data A = 1−2 corresponds

to the same block constraint (A,B)= (1−2,3−4), as mentioned above. It is the only mark for

this data node, and therefore Amkd = 1−2mkd = {3−4}. As another example, the list of marks

for node A = 5 has two elements; Amkd = 5mkd = {5,6}. An important technical observation,

that we will use in the next section, is that each path from a leaf to the root in the MPT

corresponds to the row indexed by that leaf in the block-partitioned matrix Q. Moreover,

the block parameters are stored at the marks in the MPT.

57

Figure 5: (A) A block partition (table) for query partition tree (left) and the identical kernel

partition tree (top). (B) MPT representation of the block partition.

58

Clearly, there are more than one valid partitions of Q; in fact, any further refinement

of a valid partition results in another valid partition with increased number of blocks. We

postpone the discussion of how to choose an initial valid partition and how to refine it to

Section 3.6.4. For now, let us assume that we are given a valid partition B of Q with |B|
number of blocks. By enforcing the block constraints in Eq. (3.9) for all parameters in a

given block, the number of parameters in Q is effectively reduced from N2 − N to |B| (i.e.

the number of blocks or equivalently block parameters).

3.5.2.3 Variational Optimization Given a block partitioning B of Q, one needs to set

the block parameters QB before computing the lower-bound of the log-likelihood. However,

these parameters cannot be set arbitrarily; first and foremost, they need to satisfy the con-

straints in Eq. (3.7). Furthermore, we want these parameters to take values such that the

approximation gap (i.e. Eq. (3.8)) between the lower-bound and the actual log-likelihood is

minimized. This is equivalent to maximizing the lower-bound in Eq. (3.6) with respect to

the block parameters subject to the constraints in Eq. (3.7). To carry out this optimization,

first we need to rewrite the lower-bound as well as the constraints in terms of the block pa-

rameters. In other words, we need to apply the block constraints in Eq. (3.9) into Eq. (3.6)

and Eq. (3.7), resulting in:

`(D)= c− 1
2σ2

∑
(A,B)∈B

qAB ·DAB − ∑
(A,B)∈B

|A||B| · qAB log qAB, (3.10)

and, ∑
(A,B)∈B(xi)

|B| · qAB = 1,∀xi ∈D (3.11)

where

B(xi), {(A,B) ∈B | xi ∈ A} (3.12)

c =−N log
(
(2π)d/2σd(N −1)

)
DAB = ∑

xi∈A

∑
m j∈B

‖xi −m j‖2. (3.13)

Now, one can maximize Eq. (3.10) subject to the constraints in Eq. (3.11) to find the best

values for the block parameters Q that minimize the approximation gap. [Thiesson and Kim,

59

2012][Algorithm 3] has developed a recursive algorithm that solves this optimization for all

qAB, (A,B) ∈ B in O(|B|) time. Once the block parameters are computed, the lower-bound

in Eq. (3.10) can be computed in O(|B|) as an approximation to the true log-likelihood.

A very crucial element of the variational dual-tree framework is the way that the coeffi-

cients DAB,∀(A,B) ∈B in Eq. (3.10) are computed; the direct computation of the double-sum

for DAB in Eq. (3.13) takes O(|A| · |B|) time. This means that the computation of DAB for all

blocks (A,B) ∈B will take O(N2) time in total! This is clearly the antithesis of the original

motivation behind the described approximation framework. Fortunately, this problem can

be avoided thanks to the functional form of the Euclidean distance; in particular, DAB can

be written as:

DAB = |A|S2(B)+|B|S2(A)−2S1(A)TS1(B), (3.14)

where, S1(A)=∑
x∈A x and S2(A)=∑

x∈A xT x are the statistics of subtree A. These statistics

can be incrementally computed and stored while the cluster tree is being built in the Ag-

glomeration phase of the anchor tree building algorithm (Algorithm 4); more specifically, if

nodes A and B are being merged to form the parent node C; then, the statistics of node C are

computed as: S1(C) = S1(A)+S1(B) and S2(C) = S2(A)+S2(B). Using these pre-calculated

statistics, the set of coefficients DAB,∀(A,B) ∈B are then computed in O(|B|).

The crux of the reformulation in Eq. (3.14) is the de-coupling of the mutual interactions

between two clusters A and B so that the sum of mutual interactions can be computed using

the sufficient statistics pre-calculated independently for each cluster. This reformulation is

possible only because the distance metric incorporated in the framework is the Euclidean

distance. Using other distance metrics can potentially introduce a very critical challenge to

the variational dual-tree framework. We will discuss this problem in more details in Section

3.7.

Finally, given that we use the anchor tree method to build the cluster tree of the input

dataset in O(N1.5 log N) in the worst case, the variational dual-tree framework will take

O(N1.5 log N+|B|) time and O(|B|) memory in total to approximate the log-likelihood of the

data.

60

3.5.3 Anchor Trees

As mentioned in the previous sections, the tree-based methods need the hierarchical clus-

ter representation of the data at the core of their approximation methodology. We assume

this cluster hierarchy is represented as a binary tree T whose inner nodes represent the

data clusters at different granularity scales and its leaves are the actual datapoints. If T

is not given in advance, one needs to build it from the data using some hierarchical clus-

tering algorithm. The exact bottom-up agglomerative clustering algorithm is of O(N3) time

complexity and therefore is automatically omitted from the list of potential candidates. For-

tunately, there exist some approximate techniques for cluster tree construction which are

quite efficient in practice. Some well-known methods of this type include anchor tree [Moore,

2000], kd-tree [Moore, 1991] and cover tree [Ram et al., 2009, Beygelzimer et al., 2006]

construction. In this work, we have used the anchor method, known to work well with

(non-Euclidean) distance-related, low-dimensional as well as high-dimensional data with

intrinsic structure. Here, we briefly describe the anchor tree algorithm and discuss its com-

putational complexity. For a more detailed description of the algorithm, interested readers

may refer to [Moore, 2000].

3.5.3.1 Anchor Tree Construction Algorithm The anchor tree algorithm consists of

three main consecutive steps: anchor building, anchor agglomeration and recursion. Anchor

building starts by picking one of the datapoints at random (say y). Then, the algorithm sorts

the rest of points based on their Euclidean distance to y. By doing so, the algorithm creates

an anchor (or node) A with the pivot datapoint Ap = y and the radius Ar that contains all

the datapoints. Ar is set to the distance of the farthest point in A to y. Next, the algorithm

creates a new anchor Anew by picking the farthest point from the pivot in A as the pivot of

the new anchor. That is,

Anew
p = argmax

x∈A
‖x− Ap‖ (3.15)

Then Anew steals all the points in A that are closer to the pivot of Anew than that of A; that

is ∀x : ‖x−Anew
p ‖ < ‖x−Ap‖. Because the list of elements in an anchor is sorted with respect

to ‖xi − Ap‖, a significant computational gain is achieved by not evaluating the remaining

61

datapoints in the list once we discover that for the i-th datapoint in the list ‖xi−Ap‖ ≤ dthr,

where

dthr = ‖Anew
p − Ap‖/2, (3.16)

This guarantees that the elements with index j ≥ i in the list are closer to their original

anchor’s pivot and cannot be stolen by the new anchor. When a new anchor is done stealing

datapoints from older anchors, its list of elements is finally sorted. This process is repeated
p

N times (by picking the point that is farthest from all anchor pivots at each step as the

center of the new anchor) to create
p

N anchors. Note that in the anchor building step,

the goal is to cluster the datapoints into
p

N such that each point is closer to the center of

its cluster than to those of the other clusters. The k-means clustering algorithm pursues

the same goal by trying to minimize the maximum radius of all anchors (clusters). Given

enough number of re-initializations, k-means can find this optimum (if it exists), but very

expensively in terms of the computational complexity. The algorithm used in the anchor

building step (which is also referred as farthest-point clustering algorithm in the literature)

is pretty fast but still an approximation. However, [Gonzalez, 1985] has shown that the

solution found by farthest-point clustering is bounded:

Theorem 1. The maximum radius of the partition found by farthest-point clustering is at

most twice the optimal radius.

A simple proof can be found in [Raykar et al., 2005].

Once the
p

N anchors are created, the anchor tree construction now proceeds to an-

chor agglomeration phase that assigns anchors as leaf nodes and then iteratively merges

two nodes that create a parent node with the smallest covering radius. This agglomerative

bottom-up process continues until a hierarchical binary tree is constructed over the
p

N ini-

tial anchors. Finally, recall that the leaves (i.e. the initial anchors) in this newly constructed

tree contain
p

N datapoints on average each. The whole construction algorithm is now re-

cursively called in the recursion phase for each anchor leaf to grow it into a subtree. The

recursion ends when the leaves of the tree contain only one datapoint each.

The pivot datapoint of an anchor is supposed to be the representative of that anchor.

Because of this reason, we want the pivot to be the actual mean of the datapoints in the

62

Algorithm 1: Anchor Tree Construction
1: function CONSTRUCT(A)
2: Input: Anchor node A, initially contains all the datapoints
3: Output: Anchor tree T

4: if |A| = 1 then
5: T ← A
6: else
7: tList ← {}
8: aList ← ANCHORBUILDING(A)
9: for all B ∈ aList do

10: tList ← tList∪ {CONSTRUCT(B)}
11: end for
12: T ← AGGLOMERATE(tList)
13: end if
14: return T

15: end function

anchor. For this purpose, we alter the original construction algorithm by swapping the

anchor agglomeration and the recursion steps. This way, the pivot of the parent anchor C of

the anchors A and B can be computed incrementally in the anchor agglomeration phase as:

Cp = (|A| · Ap +|B| ·Bp)/(|A|+ |B|) (3.17)

Furthermore, the radius of C is set to the minimum value that covers both anchors A and

B; that is,

Cr =max(‖Ap −Cp‖+ Ar,‖Bp −Cp‖+Br) (3.18)

Algorithms 1 - 4 show the anchor tree construction algorithm explained above.

3.5.3.2 Time Complexity The construction time for the anchor-tree method is in the

order of O(N1.5 log N) for a relatively balanced data set. To see this, we note that the anchor

building step starts by creating v = p
N anchors, which will have approximately O(

p
N)

data points in each. This step involves a sorting of all data points with order O(N log N) for

each anchor resulting in v ·O(N log N) in the worst case where every time a new anchor is

created, all the other points are absorbed (stolen) into the new anchor. This worst case can

only happen when all the datapoints are equi-distance, typically in a very large dimensional

space. However, in many problems where there is some intrinsic structure in the data, the

average complexity of the anchor building step is much lower than the worst case.

63

Algorithm 2: Anchor Building
1: function ANCHORBUILDING(A)
2: Input: Anchor node A
3: Output: List of anchors L

4: L ← {A}
5: M ←

√
|A|−1

6: for i = 1 to M do
7: Anew

p ← argmaxB∈L maxx∈B ‖x−Bp‖ // Picking the farthest point as the new pivot
8: for all B ∈L do
9: STEALDATAPOINTS(Anew,B)

10: end for
11: Sort all points x ∈ Anew in decreasing order of ‖x− Anew

p ‖
12: Anew

r ←maxx∈Anew ‖x− Anew
p ‖

13: L ←L ∪ Anew

14: end for
15: return L

16: end function

Once the v anchors are created, they are agglomeratively merged into a hierarchy in

O(v2)=O(N) operations. Following, the algorithm is now recursively called for each anchor.

Let t(N) denote the time required to build an anchor tree from N points; we then have the

following recurrence:

t(N)= v · t(
p

N)+v ·O(N log N)+O(v2) (3.19)

For v = p
N, the solution of (3.19) is at most O(N1.5 log N). Recall that this guarantee is

for a relatively balanced tree construction. The complexity will increase with the degree

of unbalance in the tree. In a rare worst case of equi-distant data points (a completely

structure-less dataset) a maximal unbalanced tree will force the complexity to O(N2).

Algorithm 3: Datapoint Stealing
1: function STEALDATAPOINTS(A,B)
2: Input: Anchor nodes A and B
3: Output: A steals datapoints from B
4: thr ←‖Ap −Bp‖/2
5: x ← sorted members of B
6: i ← 1
7: while ‖xi −Bp‖ > thr do
8: if ‖xi − Ap‖ < ‖xi −Bp‖ then
9: B ← B \{xi}

10: A ← A∪ {xi}
11: end if
12: i ← i+1
13: end while

14: end function

64

Algorithm 4: Agglomeration
1: function AGGLOMERATE(tList)
2: Input: List of subtrees tList
3: Output: Merged binary tree T

4: while |tList| > 1 do
5: (A∗,B∗)← argminA∈tList,B∈tList(Ar +Br +‖Bp − Ap‖)/2

6: C.Lef tChild ← A∗, C.RightChild ← B∗

7: Cp = (|A∗| · A∗
p +|B∗| ·B∗

p)/(|A∗|+ |B∗|)
8: Cr =max(‖A∗

p −Cp‖+ A∗
r ,‖B∗

p −Cp‖+B∗
r)

9: tList ← tList∪ {C}\ {A∗,B∗}
10: end while
11: T ← tList(1)
12: return T

13: end function

3.6 VARIATIONAL DUAL-TREE TRANSITION MATRIX APPROXIMATION

Having described the variational dual-tree framework for the fast approximation of the log-

likelihood in the previous section, we are now ready to show how this framework can be

utilized to solve the main problem in this chapter: approximating the transition matrix of

the random walk on large-scale graphs.

3.6.1 Variational Random Walk

As we saw in Section 3.5.2.1, the posterior p(m j|xi) models the membership probability

of the query point xi to the Gaussian kernel centered on m j. However, p(m j|xi) can be

interpreted from a completely different view as the probability of jumping from datapoint

xi to datapoint m j in the random walk defined on G ; that is p(m j|xi) is equal to the pi j

element of matrix P defined in Eq. (3.2). This can be easily verified by using the Bayes rule

to derive the posterior p(m j|xi). On the other hand, as we saw before, the element qi j of

matrix Q approximates p(m j|xi). Subsequently, we can conclude that matrix Q is in fact the

approximation of the transition probability matrix P using only |B| number of parameters

(or blocks); in particular, the block parameter qAB approximates the probability of jumping

from a datapoint in A to a datapoint in B. The main implication of this finding is that

although the variational dual-tree framework was originally developed to approximate the

log-likelihood of data, it can also be use to approximate the transition matrix of the random

65

walk on similarity graphs. This is specifically important because it enables us to compute

and store the transition probability matrix in O(N1.5 log N + |B|) time and O(|B|) memory

for large-scale problems.

In the light of the random walk view of Q, the lower bound log-likelihood `(D) in Eq.

(3.10) will also have a new interpretation. More precisely, the second term in Eq. (3.10) can

be reformulated as:

− 1
2σ2

∑
(A,B)∈B

qAB ·DAB =− 1
2σ2

∑
i, j

qi j · d̄i j =− 1
2σ2 tr(QD̄) (3.20)

where, qi j is defined as in Eq. (3.9), d̄i j = DAB/|A||B|,∀xi ∈ A,m j ∈ B is the block-average

distance and D̄= [d̄i j]N×N . This is, in fact, a common optimization term in similarity-graph

learning from mutual distances [Jebara et al., 2009]. In particular, the maximization of Eq.

(3.20) w.r.t. qi j under the constraints in Eq. (3.7) will assign lower qi j values to those tran-

sition pairs with large block-average distance d̄i j. However, there is one problem with the

maximization of this term: it will make each point xi only connected to its closest neighbor

x j∗ with qi j∗ = 1 (and qi j = 0 for j 6= j∗). In other words, the resulted graph will be highly

disconnected. This is where the third term in Eq. (3.10) benefits the new interpretation.

One can rewrite this term as:

− ∑
(A,B)∈B

|A||B| · qAB log qAB =−∑
i, j

qi j log qi j =
N∑

i=1
H(qi·) (3.21)

where H(qi·) is the entropy of the transition probability distribution from datapoint xi. As

opposed to Eq. (3.20), the term in Eq. (3.21) is maximized by a uniform distribution over

the outgoing probabilities at each datapoint xi; that is, a fully connected graph with equal

transition probabilities. The third term in Eq. (3.10) therefore acts as the regularizer in

the learning of the transition graph, trying to keep it connected. The trade-off between the

second and the third terms is adjusted by the coefficient 1/2σ2: increasing the bandwidth σ

will result in a more connected graph.

66

3.6.2 Optimizing The Bandwidth

Finding the transition probabilities for a random walk by the variational optimization of the

lower-bound Eq. (3.10) has a side advantage too: Eq. (3.10) is a quasi-concave function of

the bandwidth σ, which means that, given qAB’s fixed, one can find the optimal bandwidth

that maximizes the lower bound. By taking the derivative and solving for σ, the closed form

solution is derived as:

σ∗ =
√∑

(A,B)∈B qAB ·DAB

Nd
(3.22)

Note that the reason we can learn the bandwidth this way is because we are maximizing

the lower bound on the log-likelihood instead of the log-likelihood itself. In fact, the actual

log-likelihood increases indefinitely as the bandwidth goes to zero (which indeed will result

in overfitting).

In general, due to the dependence of σ∗ to qAB’s, we alternate the optimization of qAB’s

and σ in our framework. In practice, we have observed that the convergence of this alternate

optimization is fast and not sensitive to the initial value of σ. However, we can also tune the

bandwidth independent of qAB’s by maximizing a looser lower bound which does not depend

on qAB’s. In particular, using the Jensen inequality, one can write:

log p(D)≥∑
i

∑
j 6=i

p(m j) log p(xi | m j) (3.23)

Now, by maximizing the right-hand side w.r.t. σ, we get:

σ∗ = 1
N

√∑
i
∑

j 6=i ‖xi − x j‖2

d
(3.24)

Of course, the bandwidth value obtained using the latter technique is sub-optimal compared

to the one obtained using the former technique due to the fact that the bound in Eq. (3.23)

is loose.

67

3.6.3 Fast Inference

In the previous subsections, we saw how the variational dual-tree based framework can be

used to efficiently build and store a variational transition matrix Q of a random walk. We

will now demonstrate that the block structure of this transition matrix can be very useful

for further inference in similarity-graph based learning algorithms.

One common operation that is embedded in many algorithms involving transition matri-

ces is the matrix-vector multiplication. For instance, in the label propagation (LP) algorithm

used for graph-based semi-supervised learning [Zhou et al., 2003], the transition matrix

is successively multiplied by intermediate label vectors to propagate the label information

from the labeled datapoints to the unlabeled ones. More specifically, given a similarity graph

over the data points xi, the LP algorithm iteratively updates the label matrix Y = [yi j]N×C

(where C is the number of label classes) at time t+1 by propagating the labels at time t one

step forward according to the transition matrix P:

Y (t+1) ←αPY (t) + (1−α)Y 0 (3.25)

Here, the matrix Y 0 encodes the initial labeling of data such that y0
i j = 1 for label(xi)= yi = j,

and y0
i j = 0 otherwise. The coefficient α ∈ (0,1) determines how fast the label values are

updated.

As another example, many spectral graph-based methods (such as Diffusion Maps [La-

fon and Lee, 2006, Nadler et al., 2006, Coifman et al., 2008, Amizadeh et al., 2012b] and

Laplacian Eigenmaps [Belkin and Niyogi, 2002, Belkin and Niyogi, 2005, von Luxburg,

2007]) require to compute the eigen-decomposition of the transition matrix. The decom-

position is usually carried out using some numerical algorithms such as Power Method or

Arnoldi Iteration which have the matrix-vector multiplication as their basic operation. More

specifically, in order to find the eigen decomposition of P using Arnoldi or Power methods,

one needs to compute the following vector series:

b,Pb,P2b,P3b,P4b, . . .

where b is a random initial vector. Again, matrix multiplication is the key component of

these algorithms.

68

The matrix-vector multiplication, in general, has O(N2) computational complexity and

therefore is highly inefficient for large-scale problems, especially if many multiplications

need to be performed successively (as expected in all the algorithms mentioned above.)

Therefore, when dealing with large-scale problems, it is crucial for these algorithms to

speed up this operation. In this section, we propose an algorithm that multiplies the

block partitioned transition matrix Q by an arbitrary vector Y = (y1, y2, . . . , yN)T to achieve

Z = QY ' PY in O(|B|) rather than O(N2) computations. To do so, our algorithm uses the

MPT representation of Q.

Algorithms 5 - 7 describes the O(|B|) computation of Z. The algorithm assumes that

each yi is stored at the corresponding leaf xi in the MPT–e.g., by association prior to con-

structing the MPT. Alternatively, an index to the leaves can be constructed in O(N) time.

The algorithm starts with a COLLECTUP phase that traverses the MPT bottom-up and

stores incrementally computed sum-statistics at each node A, as

TA = ∑
xi∈A

yi = TA.le f tChild +TA.rightChild, (3.26)

which is an O(N) computation. With each qAB stored at the node A marked with B in the

MPT, a DISTRIBUTEDOWN phase now conceptually computes

zi =
∑

(A,B)∈B(xi)
|B|qABTA (3.27)

by following the path from each leaf to the root in the MPT. A more efficient implementation

traverses the MPT top-down, avoiding recalculations of the shared terms for the updates

by propagating the value of the shared terms through the variable py. This traversal has

complexity O(|B|). On completion of the algorithm the leaves in the MPT will contain Z =
{zi}N

i=1.

69

Algorithm 5: Calculate Z =QY
1: function MULTIPLY(Q,Y)
2: Input: the transition matrix Q and the operand vector Y
3: Output: Z =QY

4: A ← ROOT(MPT(Q)) // MPT(Q) returns the MPT representation of Q
5: COLLECTUP(A,Y)
6: DISTRIBUTEDOWN(A,0)
7: Z ← [zi]N×1,∀i ∈ LEAVES(MPT(Q))
8: return Z

9: end function

Algorithm 6: Collect-up
1: function COLLECTUP(A,Y)
2: Input: node A in the tree and the operand vector Y
3: Output: computes the sum-statistic at node A and its descendents

4: if ISLEAF(A) then
5: TA ← yA
6: else
7: COLLECTUP(A.le f tChild,Y)
8: COLLECTUP(A.rightChild,Y)
9: TA ← TA.le f tChild +TA.rightChild

10: end if

11: end function

3.6.4 Partitioning and Refinement

So far, we have assumed that a valid partition B of Q with |B| number of blocks is given. In

this section, we illustrate how to construct an initial valid partition of Q and how to further

refine it to increase accuracy of the model. We should note that the methods for partitioning

and refinement in this section are different from the ones in [Thiesson and Kim, 2012].

Let Bdiag denote the N neutral singleton blocks that appear on the diagonal of Q. The

coarsest (with the smallest number of blocks) valid partition Bc for Q is achieved when

for every block (A,B) ∈ Bc = B \ Bdiag, we have that A and B are sibling subtrees in the

partition tree. (Recall that the query and the kernel points are partitioned by the same tree.)

Any other partition will either not be a valid partition conforming with the partition tree, or

it will have a larger number of blocks. The number of blocks in Bc in this case, is therefore

equal to twice the number of the sibling pairs (or the inner nodes) in the anchor tree; i.e.

|Bc| = 2(N −1). Figure 5 is an example of a coarsest valid block partition. On the other

hand, the most refined partition is achieved when Br =B\Bdiag contains N2−N singleton

70

Algorithm 7: Distribute-down
1: function DISTRIBUTEDOWN(A, py)
2: Input: node A in the tree and the partial result py
3: Output: computes zi ’s at the leaf descendents of A

4: for all B ∈ Amkd do
5: py← py+|B|qABTA
6: end for
7: if ISLEAF(A) then
8: zA ← py
9: else

10: DISTRIBUTEDOWN(A.le f tChild, py)
11: DISTRIBUTEDOWN(A.rightChild, py)
12: end if

13: end function

blocks. In fact, this partitioning is equivalent to having the exact transition matrix P.

Hence, the number of blocks |B| in a valid partition can vary between O(N) and O(N2).

As we saw in the previous sections, |B| plays a crucial role in the computational perfor-

mance of the whole framework and we therefore want to keep it as small as possible.

On the other hand, keeping |B| too small may excessively compromise the approxima-

tion accuracy. Therefore, the rational approach would be to start with the coarsest par-

tition Bc and split the blocks in Bc into smaller ones only if needed. This process is

called refinement. As we refine more blocks, the accuracy of the model effectively increases

while its computational performance degrades. Note that a block (A,B) can be refined in

two ways: either vertically into {(A.le f tChild,B), (A.rightChild,B)} or horizontally into

{(A,B.le f tChild), (A,B.rightChild)}. Figure 6 shows these two types of refinement ap-

plied on the shaded block shown on the left column of the figure.

After any refinement, we can re-optimize (3.10) to find the new variational approxima-

tion Q for P. Importantly, any refinement loosens the constraints imposed on Q, implying

that the KL-divergence from P cannot increase. From (3.8) we can therefore easily see that

a refinement is likely to increase the log-likelihood lower bound `(D), and can never de-

crease it. Intuitively, we want to refine those blocks which increase `(D) the most. To find

such blocks, one need to refine each block in each direction (i.e. horizonal and vertical) one

at a time, re-optimize Q, find the difference between the new `(D) and the old one (aka the

log-likelihood gain), and finally pick the refinements with maximum difference. However,

this is an expensive process since we need to perform re-optimization per each possible re-

71

finement. Now the question is, whether we can obtain an estimate of the log-likelihood gain

for each possible refinement without performing re-optimization. The answer is positive

for horizontal refinements, and rests on the fact that each row in Q defines a (posterior)

probability distribution and therefore must sum to one, i.e. Eq. (3.11). Now, consider the

horizontal refinement of (A,B) into {(A,B.le f tChild), (A,B.rightChild)}. By this refine-

ment, in essence, we allow a random walk, where the probability of jumping from points

in A to the ones in B.le f tChild (i.e. qA,B.le f tChild) is different from that of jumping from

A to B.rightChild (i.e. qA,B.rightChild). If we keep the block parameters for other blocks

fixed, we can still locally change qA,B.le f tChild and qA,B.rightChild to increase `(D). Since the

sum of the outgoing probabilities from each point is 1 (see Eq. (3.11)) and the other q’s are

unchanged, the sum of the outgoing probabilities from A to B.le f tChild and B.rightChild

must be equal to that of the old one from A to B; that is

|B.le f tChild|qA,B.le f tChild +|B.rightChild|qA,B.rightChild = |B|qAB (3.28)

Under this local constraint, we can find qA,B.le f tChild and qA,B.rightChild in closed form such

that `(D) is maximized:

C ∈ {B.le f tChild,B.rightChild}, qAC = |B|exp(GAC)qAB∑
D∈{B.le f tChild,B.rightChild} |D|exp(GAD)

(3.29)

where GAB = −DAB/(2σ2|A||B|). By inserting Eq. (3.29) in Eq. (3.10), we can compute the

maximum log-likelihood gain for the horizontal refinement of (A,B) as

∆h
AB = `′(D)−`(D)= |A||B|qAB · log

(∑
C∈{B.le f tChild,B.rightChild} |C|exp(GAC)

|B|exp(GAB)

)
(3.30)

where `′(D) denotes the log-likelihood lower bound after the refinement. Note that the ac-

tual gain can be greater than ∆h
AB because after a refinement, all q-values are re-optimized.

In other words, ∆h
AB is a lower bound for the actual gain and is only used to pick blocks for

refinements. Unfortunately, for vertical refinements such a bound is not easily obtainable.

The reason is that the constraints in Eq. (3.11) will not allow qA.le f tChildB and qA.rightChildB

to change if we fix the remaining block parameters. Therefore, the local optimization that

we applied for the horizontal refinement cannot be applied to estimate the gain of a vertical

refinement. On the other hand, we cannot simply avoid vertical refinements just because

72

we cannot compute their approximate gain. To address this issue, whenever we pick a block

(A,B) for horizontal refinement, we also apply vertical refinement to its transpose counter-

part (B, A) if it also belongs to B. We call this the symmetric refinement because it leaves us

with a symmetric block-partitioning of the transition matrix.

Figure 6: (A) Horizonal refinement for the shaded block (B) Vertical refinement for the

shaded block.

By computing ∆h
AB for all blocks, at each step, we greedily pick the block with the max-

imum gain and apply the symmetric refinement. The newly created blocks are then added

to the pool of blocks and the process is repeated until the number of blocks reaches the max-

imum allowable block number |B|max, which is an input argument to the algorithm. This

greedy algorithm can be efficiently implemented using a priority queue prioritized by the

log-likelihood gain in Eq. (3.30). Algorithm 8 describes the symmetric refinement process in

73

Algorithm 8: Symmetric Refinement
1: function SYMMETRICREFINEMENT(Qu, |B|max)
2: Input: The priority queue Qu containing the initial blocks and the desired maximum number of blocks |B|max
3: Output: Split the existing blocks to increase the log-likelihood lower bound

4: while |B| < |B|max do
5: (A,B)←Qu.dequeue()
6: Qu.enqueue((A,B.le f tChild),∆h

A,B.le f tChild)

7: Qu.enqueue((A,B.rightChild),∆h
A,B.rightChild)

8: // Applying vertical refinement to the transpose block
9: if (B, A) ∈Qu then

10: Qu.remove((B, A))
11: Qu.enqueue((B.le f tChild, A),∆h

B.le f tChild,A)

12: Qu.enqueue((B.rightChild, A),∆h
B.rightChild,A)

13: end if
14: end while
15: Re-estimate the Q parameters

16: end function

more details. Note that after the refinement process, the lower bound on the log-likelihood

need to be re-optimized in order to estimate the block parameters for the new partitioning

of the Q matrix. As mentioned before, this operation can be done in O(|B|).

3.7 BREGMAN VARIATIONAL DUAL-TREE FRAMEWORK

The variational dual-tree (VDT) method described in the previous section proposes an el-

egant framework for approximating large-scale Markov transition matrices using the re-

duced hierarchical block structure. One inherent assumption in this framework is the un-

derlying distance metric in the input space should be the Euclidean distance; this is some-

what restrictive. In many real-world problems, the Euclidean distance is simply not the

best way to quantify the similarity between datapoints. As an example, for frequency data,

where each feature represents the observed counts (or frequency) of a specific event, KL-

divergence can outperform the Euclidean distance in some applications [Banerjee et al.,

2005].

On the other hand, the formulation of the VDT framework does not seem to depend

on the choice of distance metric, which makes it very tempting to replace the Euclidean

distance with a general distance metric. However, there is one problem: the de-coupling

74

in Eq. (3.14) was achieved only because of the Euclidean distance’s special form which is

not the case for a general distance metric. Unfortunately, we cannot compromise on this

de-coupling simply because, without it, the overall complexity of the framework is back to

O(N2). One solution is to use some approximation technique similar to Fast Gauss Trans-

form techniques [Yang et al., 2005] to approximately de-couple a general distance metric.

Although, this may work well for some special cases, in general, the computational burden

of such approximation can be prohibitive; besides, we will have a new source of approxima-

tion error.

So, if we cannot extend VDT for general distance metric, is there any sub-class of metrics

or divergences which we can safely use to extend the VDT framework? The answer is yes,

the family of Bregman divergences is a qualified candidate. This family contains a diverse

set of divergences which also include the Euclidean distance. By definition, the Bregman

divergence has a de-coupled form which makes it perfect for our purpose. From the ap-

plied side, Bregman divergences cover some very practical divergences and metrics such as

Euclidean distance, KL-Divergence and Logistic Loss that are widely used in many engi-

neering and scientific applications. Furthermore, the natural correspondence of Bregman

divergences with the exponential families provides a neat probabilistic interpretation for

our framework. In this section, we describe our proposed extension of the VDT framework

to the Bregman divergences; we call this framework the Bregman Variational Dual-Tree

(BVDT) framework.

3.7.1 The Bregman Divergences and The Exponential Families

Before illustrating the BVDT framework, we briefly review the Bregman divergence, its

important properties and its connection to the exponential families. Interested readers may

refer to [Banerjee et al., 2005] for further details.

Let X ⊆Rd be a convex set in Rd, ri(X) denote the relative interior of X , and φ : X 7→R

be a strictly convex function differentiable on ri(X), then the Bregman divergence dφ :

X × ri(X) 7→ [0,∞) is defined as:

dφ(x, y),φ(x)−φ(y)− (x− y)T∇φ(y) (3.31)

75

where, ∇φ(y) is the gradient of φ(·) evaluated at y. For different choices of φ(·), we will get

different Bregman divergences; φ(·) is referred to as the seed function. Table 6 lists some

famous Bregman divergences along with their corresponding seed functions. It is important

to note that the general Bregman divergence is not a distance metric: it is not symmetric,

nor does it satisfy the triangular inequality. However, we have ∀x ∈X , y ∈ ri(X) : dφ(x, y)≥
0,dφ(y, y)= 0.

Let S = {x1, . . . , xn} ⊂ X and X be a random variable that takes values from S with

uniform distribution2; the Bregman information of the random variable X for the Bregman

divergence dφ(·, ·) is defined as:

Iφ(X), min
s∈ri(X)

E
[
dφ(X , s)

]= min
s∈ri(X)

1
n

n∑
i=1

dφ(xi, s) (3.32)

The optimal s that minimizes Eq. (3.32) is called the Bregman representative of X and is

equal to:

s∗ = arg min
s∈ri(X)

E
[
dφ(X , s)

]= E[X]= 1
n

n∑
i=1

xi ,µ (3.33)

That is, the Bregman representative of X is always equal to the sample mean of S indepen-

dent of the Bregman divergence dφ(·, ·) used to compute the divergence.

The probability density function p(z), defined on set Z , belongs to an exponential family

if there exists a mapping g : Z 7→X ⊆Rd that can be used to re-parameterize p(z) as:

p(z)= p(x;θ)= exp(θT x−ψ(θ))p0(x) (3.34)

where x = g(z) is the natural statistics vector, θ is the natural parameter vector, ψ(θ) is

the log-partition function and p0 : X 7→ R+ is the base measure. Eq. (3.34) is called the

canonical form of p. If θ takes values from parameter space Θ, Eq. (3.34) defines the family

Fψ = {p(x;θ) | θ ∈Θ} parameterized by θ. If Θ is an open set and we have that Øc ∈ Rd s.t.

cT g(z) = 0,∀z ∈ Z , then family Fψ is called a regular exponential family. [Banerjee et al.,

2005] has shown that any probability density function p(x;θ) of a regular exponential family

with the canonical form of Eq. (3.34) can be uniquely expressed as:

p(x;θ)= exp(−dφ(x,µ))exp(φ(x))p0(x) (3.35)

2The results hold for any distribution on S .

76

where φ(·) is the conjugate function of the log-partition function ψ(·), dφ(·, ·) is the Bregman

divergence defined w.r.t. the seed function φ(·), and µ is the mean parameter. The mean

parameter vector µ and the natural parameter vector θ are connected through:

µ=∇ψ(θ), θ =∇φ(µ) (3.36)

Moreover, [Banerjee et al., 2005] (Theorem 6) has shown there is a bijection between the

regular exponential families and the regular Bregman divergences.3 The last column in

Table 6 shows the corresponding exponential family of each Bregman divergence. Using

Eq. (3.33), one can also show that, given the finite sample S = {x1, . . . , xn}, the maximum-

likelihood estimate of the mean parameter µ̂ for any regular exponential family Fψ is always

equal to the sample mean of S regardless of Fψ.

3Interested readers may refer to [Banerjee et al., 2005] (Definition 8) for the technical definition of regular
Bregman divergences. The well-known Bregman divergence we have considered in this chapter all belong to
this class.

77

N
am

e
X

φ
(x

)
d φ

(x
,y

)
E

xp
on

en
ti

al
Fa

m
il

y
L

og
is

ti
c

L
os

s
(0

,1
)

xl
og

x
xl

og
(x y

) +(
1
−x

)l
og

(1−
x

1−
y
)

1D
B

er
no

ul
li

It
ak

ur
a-

Sa
it

o
D

is
t.

R
++

−l
og

x−
1

x y
−l

og
(x y

) −1
1D

E
xp

on
en

ti
al

R
el

at
iv

e
E

nt
ro

py
Z
+

xl
og

x−
x

xl
og

(x y
) −x

+
y

1D
Po

is
so

n
E

uc
li

de
an

D
is

t.
R

d
‖x

‖2 /
2σ

2
‖x

−
y‖

2 /
2σ

2
Sp

he
ri

ca
lG

au
ss

ia
n

M
ah

al
on

ob
is

D
is

t.
R

d
xT
Σ
−1

x
(x

−
y)

T
Σ
−1

(x
−

y)
M

ul
ti

va
ri

at
e

G
au

ss
ia

n
K

L
-D

iv
er

ge
nc

e
d

-s
im

pl
ex

∑ d j=
1

x(
j)

lo
g

x(
j)

∑ d j=
1

x(
j)

lo
g
(x(j) y(

j)
)

-

-
in

t.
d

-s
im

pl
ex

∑ d j=
1

x(
j)

lo
g
(x(j) L

)
∑ d j=

1
x(

j)
lo

g
(x(j) y(

j)
)

M
ul

ti
no

m
ia

l

Ta
bl

e
6:

Fa
m

ou
s

B
re

gm
an

di
ve

rg
en

ce
s

al
on

g
w

it
h

th
ei

r
co

rr
es

po
nd

in
g
φ

(·)
fu

nc
ti

on
,i

ts
do

m
ai

n
an

d
th

e
co

rr
es

po
nd

in
g

ex
po

-

ne
nt

ia
lf

am
ily

di
st

ri
bu

ti
on

.

78

3.7.2 Bregman Variational Approximation

Having described the basic concepts of Bregman divergences, we are now ready to nail down

the BVDT framework. Let S = {z1, z2, . . . , zN } ⊂Z be a finite sample from the convex set Z

which is not necessarily an Euclidean space. We are interested to approximate the transi-

tion matrix P on the similarity graph of S where we know the Euclidean distance is not

necessarily the best way to encode similarity. In order to do so, we assume S is sampled

according to an unknown mixture density model p∗(z) with K components from the regular

exponential family Fψ. That is, there exists the mapping g : Z 7→ X ⊆ Rd such that p∗(z)

can be re-parametrized in the canonical form as 4:

p∗(x)=
K∑

i=1
p(θi)exp(θT

i x−ψ(θi))p0(x)=
K∑

i=1
p(µi)exp(−dφ(x,µi))exp(φ(x))p0(x) (3.37)

where, µi =∇ψ(θi) and φ(·)=ψ∗(·) is the conjugate of ψ(·).
In order to compute the transition matrix P over S using our framework, we need to

compute the log-likelihood of S where the density of each point is modeled via p∗. However,

p∗(x) in not known a priori. In particular, for a given problem, we assume we only know the

underlying regular exponential family Fψ in advance; that is, we only know the function

ψ(·) (or equivalently φ(·)). But we do not know the actual number of components K or the

value of the natural parameter vector θi (or equivalently the mean parameter vector µi)

for each component. Therefore, to model this distribution, we turn our attention to the

most well-known non-parametric density estimation technique: kernel density estimation.

To this end, let D = g(S) = {x1, x2, . . . , xN } ⊂ X be the natural statistics of sample S s.t.

xi = g(zi). We put a kernel belonging to the regular exponential family Fψ on each member

of D, where Fψ is the same family that models the components of the true mixture model

p∗ which generated the data in the first place. In particular, for each x j ∈ D, we assign

the kernel p(x | m j) = exp(−dφ(x,m j))exp(φ(x))p0(x) centered on x j; that is, m j = x j = g(zi).

Now, the likelihood of D using the kernel density estimation is derived as:

p(D)=
N∏

i=1

∑
j 6=i

p(m j)p(xi | m j)=
N∏

i=1

∑
j 6=i

p(m j)exp(−dφ(xi,m j))exp(φ(xi))p0(xi)

4For some exponential families such as the Gaussian (with known variance) and the Multinomial, the
mapping g(·) is identity.

79

Given a block partitioning B on P, we follow the similar steps in Eq. (3.6)-(3.13) to derive

the block-partitioned variational lower-bound on p(D):

`(D)= c− ∑
(A,B)∈B

qAB ·DAB − ∑
(A,B)∈B

|A||B| · qAB log qAB,

where

c =−N log(N −1)+
N∑

i=1

(
φ(xi)+ log p0(xi)

)
DAB = ∑

xi∈A

∑
m j∈B

dφ(xi,m j). (3.38)

Now we can maximize `(D) subject to the constraints in Eq. (3.11) to find the approximation

Q of P using the same O(|B|)-time algorithm in the VDT framework.

The crucial aspect of the BVDT framework is DAB in Eq. (3.38) is de-coupled into statis-

tics of the subtrees A and B using the definition of the Bregman divergence:

DAB = |B|S1(A)+|A|(S2(B)−S1(B)
)−S3(A)TS4(B) (3.39)

where for any subtree T ∈T , we define the statistics of T as,

S1(T)= ∑
x∈T

φ(x), S2(T)= ∑
x∈T

xT∇φ(x)

S3(T)= ∑
x∈T

x, S4(T)= ∑
x∈T

∇φ(x) (3.40)

Similar to the tree statistics in the original VDT framework, these statistics can be incre-

mentally computed and stored while the cluster tree is being built in Algorithm 4 (in overall

O(N) time) such that at the optimization time, DAB is computed in O(1).

Finally, by setting the seed function to φ(x)= ‖x‖2/2σ2 and doing the algebra, the BVDT

framework reduces to the Euclidean VDT framework of Section 3.6; that is, the Euclidean

VDT framework is a special case of the BVDT framework.

80

3.7.3 Bregman Anchor Trees

Recall that the approximation in the Euclidean VDT framework is based on the cluster hi-

erarchy T of the data which is built using the anchor tree method of Section 3.5.3 with the

Euclidean distance. For the BVDT framework, we can no longer use this algorithm because

the Euclidean distance no longer reflects the similarity in the input space. For this reason,

we need to develop an anchor tree construction algorithm for general Bregman divergences.

This generalization is not straightforward though, merely because a general Bregman di-

vergence is neither symmetric nor does it hold the triangle inequality. In particular, we need

to address two major challenges.

First, in the anchor agglomeration phase of the anchor tree construction algorithm (Al-

gorithm 4), at each step, the chosen anchor nodes A and B for merging are the ones that

generates a parent node C with the minimum radius in the Euclidean distance sense (i.e.

Line 5 of Algorithm 4). However, due to the asymmetry of a general Bregman divergence,

this merging criterion is no longer meaningful with Bregman input spaces. To address this

issue, we propose to use the criterion suggested in the recent work by [Telgarsky and Das-

gupta, 2012]. In particular, at each agglomeration step, anchors A and B with the minimum

merging cost are picked to merge into the parent anchor C. The cost for merging a pair of

anchors A and B is defined as:

∆(A,B)= |A| ·dφ(Ap,Cp)+|B| ·dφ(Bp,Cp) (3.41)

where Cp is the parent anchor’s pivot which is given by Eq. (3.18). [Telgarsky and Dasgupta,

2012] has shown that the merging cost in Eq. (3.41) can be rewritten as the difference of

cluster unnormalized Bregman informations before and after merging. In other words, at

each step, the algorithm merges the two clusters that decrease the Bregman information

the least.

Second, as shown before, using the halfway Euclidean distance in Eq. (3.16) as the

stealing threshold in the anchor construction phase significantly cuts the unnecessary com-

putations (i.e. Line 7 of Algorithm 3). This threshold, however, is meaningless for a general

81

Bregman divergence simply because a general Bregman divergence is not a metric. There-

fore, we need to develop an equivalent threshold for Bregman divergences to achieve a sim-

ilar computational gain in constructing Bregman anchor trees. The following proposition

addresses this problem:

Preposition 1. Let Acurr and Anew denote the current and the newly created anchors, re-

spectively, where Anew is stealing datapoints from Acurr. Define

dthr =
1
2

min
y∈X

[
dφ(y, Acurr

p)+dφ(y, Anew
p)

]
(3.42)

Then for all x ∈ Acurr such that dφ(x, Acurr
p) ≤ dthr, we will have dφ(x, Acurr

p) ≤ dφ(x, Anew
p);

that is, x cannot be stolen from Acurr
p by Anew

p . Furthermore, the minimizer of Eq. (3.42) is

equal to:

y∗ =∇φ−1
[1

2

(
∇φ(Acurr

p)+∇φ(Anew
p)

)]
(3.43)

Proof. Proof by contradiction: assume there exists x ∈ Acurr, such that:

dφ(x, Acurr
p)≤ dthr

dφ(x, Acurr
p)> dφ(x, Anew

p)

Then immediately, we will have dφ(x, Anew
p)< dthr and therefore,

1
2

[
dφ(y, Acurr

p)+dφ(y, Anew
p)

]
< 1

2
(dthr +dthr)= dthr

That is, there exists a point x for which the function in Eq. (3.42) will take a value smaller

than dthr and this contradicts the assumption that the minimum value of Eq. (3.42) is dthr.

The second part of the proof is simply obtained by differentiating Eq. (3.42) w.r.t. y and

solving for y.

Now by replacing Line 4 in Algorithm 3 by Eq. (3.42), we effectively provide a similar

speed-up mechanism for the general Bregman anchor tree construction algorithm. Note

that for the special case of Euclidean distance where φ(x) = ‖x‖2/2σ2, Eq. (3.42) reduces to

Eq. (3.16). 5

5Note that this reduction is up to power of 2, but since x2 is a strictly increasing function for x ≥ 0, we can
safely replace all the Euclidean distances in the original anchor tree construction algorithm with the squared
Euclidean distance.

82

3.8 EXPERIMENTS

In this section, we present the experimental evaluation of our framework. In particular,

we have evaluated how well our method performs for the semi-supervised learning (SSL)

task using Label Propagation (LP) illustrated in Eq. (3.25). The LP algorithm starts with a

partial vector of labels and iteratively propagates those labels over the underlying similarity

graph to unlabeled nodes (see Eq. (3.25)). After T iterations of propagation, the inferred

labels at unlabeled nodes are compared against the true labels (which were held out) to

compute Area Under Curve (AUC) for 2-class problems and Accuracy (ACC) for multi-class

problems.6

We also measure the time (in ms) taken to build each model, propagate labels and refine

each model. In our experiments, we set T = 500 and α= 0.01. It should be noted that, here

the goal is not to achieve a state-of-the-art SSL algorithm, but to relatively compare our

framework to baselines in terms of efficiency and accuracy under the same conditions. This

means that we have not tuned the SSL parameters to improve SSL; however, we use the

same parameters for all competitor methods.

3.8.1 Methods

We have compared our Variational Dual-Tree Framework, VDT, with two other methods for

building and representing P. The first method is the straightforward computation of P using

Eq. (3.2). We refer to this representation as the Exact model. In terms of computational

complexity, it takes O(N2) to build, store, and multiply an arbitrary vector by P using the

Exact method.

The second method is the k-nearest-neighbor (kNN) algorithm where each data point is

connected only to its k closest neighbors. In other words, the rows of matrix the similarity

matrix W (and subsequently P) will contain only k non-zero entries such that P can be

represented as a sparse matrix for small k’s. In other words, kNN zeros out many of the

transition probabilities to make P sparse, as opposed to our VDT method that groups and

6For multi-class problems, we concurrently run LP for all classes using the one-vs-all scheme, and then
output the class with the maximum label value for each unlabeled datapoint.

83

shares parameters in P. Note that we still assign weights to the k edges for each data point

using Eq. (3.2). This means that as we increase k toward N, the model converges to the

Exact model. Therefore, k acts as a tuning parameter to trade off between computational

efficiency and accuracy (The similar role |B| plays in VDT). In this section, we refer to k and

|B| as the trade-off parameters.

Using the kNN representation, P can be stored and multiplied by an arbitrary vector

in O(kN). For constructing a kNN graph directly, the computational complexity is O(rN2)

where r = min{k, log N}. That is, building the kNN representation can be even more ex-

pensive than building the Exact representation depending on k. For this reason, the exact

kNN graph is not a practical choice for large-scale problems. A faster approach to build

a kNN graph is to use the cluster tree of the data in order to avoid unnecessary distance

computations. [Moore, 1991] proposed a speed-up of the kNN graph construction that uti-

lizes a kd-tree. In our implementation of kNN, we have used the same algorithm with the

kd-tree replaced by the anchor tree, illustrated in Section 3.5.3. We refer to this algorithm

as fast kNN. The computational analysis of fast kNN greatly depends on the distribution

of data points in the space. In the best case, it takes O
(
N(N0.5 log N + k logk)

)
to build

the kNN graph using fast kNN. However, in the worst case, the computational order is

O
(
N(N0.5 log N+N logk)

)
. Table 7 summarizes the computational complexity orders for the

models compared in the experiments. Note that the number of parameters for the kNN

model is kN; that is, if our VDT framework has |B| = kN blocks, then the VDT and the

kNN will have the same memory and multiplication complexity.

Models Construction Memory Multiplication
Exact O(N2) O(N2) O(N2)
kNN O(rN2) O(kN) O(kN)
Fast kNN O

(
N(N0.5 log N +h logk)

)∗ O(kN) O(kN)
VDT O(N1.5 log N +|B|) O(|B|) O(|B|)

Table 7: Theoretical complexity analysis results. (*) h is equal to k in the best case and N

in the worst case.

84

3.8.2 Efficiency and Quality vs. Problem Size

In the first experiment, we compare the computational complexity and the approximation

accuracy of the competing methods against the problem size. In particular, the goal in this

experiment, as we increase the problem size N, is to study (a) the time needed to build the

Exact model, the coarsest VDT model (i.e. |B| = 2(N −1)), and the coarsest kNN model (i.e.

k = 2), (b) the time needed for vector-matrix multiplication (or equivalently the propagation

time) in these models, and (c) the AUC of the LP algorithm when each of the outlined models

is used to build the transition matrix, given 10% initial labeled data.

3.8.2.1 Data We have performed the first experiment on two UCI datasets [Bache and

Lichman, 2013]:

MAGIC Gamma Telescope Dataset: This dataset consists of Monte Carlo simulated

gamma shower images recorded by a Cherenkov gamma telescope [Bock et al., 2004]. Each

image is typically an elongated cluster of points which is described by 11 image features such

as point density, cluster orientation, etc. The task is to distinguish between the true source

of each image recording which can be either a high-energy gamma particle (the signal) or

the hadronic showers by cosmic rays (the background). There are total number of 19,020

images in this dataset (i.e. N = 19,020).

MiniBooNE Dataset: This dataset is related to the task of Particle Identification (PID)

in High Energy Physics [Roe et al., 2005]. The dataset consists of recorded events which can

be either signal or background. Each event is described by 50 distinguishing variables and

the dataset contains 130,065 events (i.e. N = 130,065).

3.8.2.2 Experimental Setup To study and compare the computational complexity and

the accuracy of the competing models, we have built and worked with each model with

different sample sizes. In particular, for each sample size s, we draw samples of size s from

each dataset and use each sample to construct a model. Once a model is built, we choose

10% of the sample randomly to be fed to the LP algorithm as the labeled partition. After

the propagation is complete, we measure the AUC of the inferred labels over the unlabeled

85

datapoints. As for the LP algorithm, the α parameter in Eq. (3.25) is set to 0.01 and the

number of iterations T is set to 500. We have repeated this experiment 5 times for each

problem size and each dataset and have reported the average results.

3.8.2.3 Results Figure 7(A) shows the construction time (in ms) for the three models over

the MAGIC Gamma Telescope Dataset, as the problem size increases from 100 to 15,000.

Also, Figure 7(B) shows the propagation time for the LP algorithm run on each of the models.

Note that both of the axes in the plot are in the log-scale. Finally, Figure 7(C) depicts the

average AUC computed over the unlabeled datapoints based on the true withheld labels as

well as the inferred labels by the LP algorithm. Figure 8 illustrates the same plots for the

MiniBooNE Dataset as the problem size increases from 1000 to 120,000. Note that for both

datasets, we did not run the Exact method for problem sizes greater than 10,000 due to the

demanding CPU and memory requirements for this method. Tables 8-13 report the results

in the tabular format along with their 95% confidence intervals.

As the results show for both datasets, the VDT and kNN methods are both orders of

magnitude faster than the Exact method in terms the construction time. Also, according to

these results, it is slightly faster to build the VDT model than the kNN representation. In

terms of the propagation time, VDT and kNN models are also orders of magnitude faster

than the Exact method; for larger problem sizes, the kNN model is slightly faster than the

VDT framework. Note that, for all three models, the propagation time is directly propor-

tional to the number of parameters used to represent the transition matrix; therefore, the

propagation time can be also regarded as a proxy for the memory usage of each model. Of

course, the computational efficiency of our proposed model as well as the kNN representa-

tion comes at a price: the average AUC of both methods are lower than that of the Exact

model and the difference is statistically significant in most cases. However, a couple of

percentage loss in terms of AUC in exchange for orders of magnitude computational gain

is a practical choice that is simply inevitable for large-scale problems. Furthermore, we

observed that in most cases our proposed VDT framework statistically significantly outper-

forms the kNN model in terms of AUC. One possible explanation for this behavior relates to

the over-sparseness of the kNN model at its coarsest level of approximation (i.e. k = 2). As

86

mentioned before, for this experiment, we have constructed and compared the coarsest VDT

and kNN models where both models have exactly 2N number of parameters. For the kNN

model, this corresponds to the 2-NN graph. The problem with the 2-NN graph is it can be

fairly disconnected depending on the geometry of data in the input space which, in turn, can

degrades the performance of the LP algorithm. Our proposed model, on the other hand, al-

ways produces a connected graph even at its coarsest level of approximation. That is, using

the VDT framework, the jumping probability between two far clusters of datapoints might

be fairly small but is still greater than 0 which means that the propagation of labels from

one cluster to another is still possible.

Problem Size VDT Fast KNN Exact
100 4±4.801 6±4.801 18±3.92
500 26±4.801 38±3.92 470±1
1,000 62±3.92 80±1 1,908±11.4287
2,000 124±4.801 178±3.92 7,654±15.9231
5,000 338±11.4287 478±7.33365 48,286±558.191
10,000 710±22.34741 1,018±7.33365 192,470±262.01
15,000 1,100±17.5308 1,602±13.0012 -

Table 8: The construction time for the MAGIC Gamma Telescope dataset in ms for VDT,

Fast KNN and the Exact method.

Problem Size VDT Fast KNN Exact
100 14±4.801 16±4.801 288±3.92
500 94±4.801 80±1.0 7,028±11.4287
1,000 210±6.19806 174±4.801 28,028±13.0012
2,000 450±10.7354 356±4.801 111,930±17.5308
5,000 1,382±39.8801 954±39.4929 694,728±6860.79
10,000 4,274±182.037 2,420±198.628 2.72216e+06±120.7271
15,000 8,166±222.233 4,302±144.483 -

Table 9: The propagation time for the MAGIC Gamma Telescope dataset in ms for VDT,

Fast KNN and the Exact method.

87

Problem Size VDT Fast KNN Exact
100 0.742664±0.079751 0.660928±0.0823052 0.780586±0.075803
500 0.739969±0.0264248 0.676194±0.037017 0.797762±0.0064706
1,000 0.735214±0.0257284 0.681188±0.0354759 0.816883±0.025055
2,000 0.77054±0.0220913 0.686289±0.0325593 0.825763±0.0229039
5,000 0.75585±0.0253655 0.700457±0.0132724 0.85324±0.015919
10,000 0.79188±0.0163628 0.741884±0.0127872 0.853419±0.00656938
15,000 0.787266±0.00870219 0.733619±0.014711 -

Table 10: The AUC for the MAGIC Gamma Telescope dataset in ms for VDT, Fast KNN and

the Exact method.

Problem Size VDT Fast KNN Exact
1,000 196±7.84 342±11.4287 5,916±19.204
5,000 1,194±44.952 2030±56.8062 155,096±104.929
10,000 2,654±249.821 4,296±41.8541 603,628±13,643.6
20,000 6,066±719.259 10,160±1103.78 -
40,000 12,070±305.848 20,906±775.838 -
60,000 20,168±1735.92 32,080±201.794 -
80,000 25,838±658.029 47,120±2970.37 -
100,000 33,754±767.099 58,266±1,112.11 -
120,000 38,656±269.997 68,140±836.119 -

Table 11: The construction time for the MiniBooNE dataset in ms for VDT, Fast KNN and

the Exact method

88

Problem Size VDT Fast KNN Exact
1,000 216±14.6673 172±7.33365 27,316±15.9231
5,000 1,410±132.789 984±54.95 680,680±25.5553
10,000 3,488±554.004 2,158±239.361 2.74238e+06±38,840.7
20,000 11,796±1,368.5 6,222±434.192 -
40,000 27,116±1,089.07 13,696±187.751 -
60,000 44,672±1,221.32 22,580±950.448 -
80,000 62,352±1,519.87 32,002±1,293.92 -
100,000 80,668±1,527.7 40,294±174.275 -
120,000 78,600±8,607.4 35,932±3,025.11 -

Table 12: The propagation time for the MiniBooNE dataset in ms for VDT, Fast KNN and

the Exact method.

Problem Size VDT Fast KNN Exact
1,000 0.816038±0.0409891 0.713576±0.0403268 0.882088±0.0221806
5,000 0.857159±0.0134527 0.787423±0.0358348 0.920793±0.00474857
10,000 0.827425±0.0264457 0.799448±0.0270987 0.924427±0.0046791
20,000 0.848092±0.025813 0.81865±0.0124414 -
40,000 0.850231±0.0105098 0.830827±0.00928963 -
60,000 0.849074±0.0181264 0.828904±0.00443242 -
80,000 0.863991±0.0129552 0.845533±0.00670458 -
100,000 0.836672±0.0541057 0.845337±0.00819934 -
120,000 0.820719±0.0411865 0.842622±0.0126979 -

Table 13: The AUC for the MiniBooNE dataset for VDT, Fast KNN and the Exact method.

89

●

VDT
Fast kNN
Exact

Problem size

C
on

st
ru

ct
io

n
tim

e
(m

s)

1e
+

00
1e

+
02

1e
+

04
1e

+
06

1e+02 1e+03 1e+04

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

A

Problem size

M
ul

tip
lic

at
io

n
tim

e
(m

s)

1e
−

02
1e

+
00

1e
+

02
1e

+
04

1e+02 1e+03 1e+04

●

●

●
●

●

●
●

●

●

●

●

●

●

●

B

1 5 10 20 50 100 150

Problem size (X 100)

A
U

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C

Figure 7: The efficiency and quality results for the VDT, the kNN and the Exact methods on

MAGIC Gamma Telescope Dataset: (A) construction time vs. problem size, (B) propagation

time for the LP algorithm vs. problem size, and (C) average AUC for different problem sizes.

90

●

VDT
Fast kNN
Exact

Problem size

C
on

st
ru

ct
io

n
tim

e
(m

s)

1e
+

02
1e

+
03

1e
+

04
1e

+
05

1e
+

06

1e+03 1e+04 1e+05

●

●

●

●

●
●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●A

Problem size

M
ul

tip
lic

at
io

n
tim

e
(m

s)

1e
−

01
1e

+
00

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e+03 1e+04 1e+05

●

●

●

●

●
●

● ● ●

●

●

●

●

●

●
●

● ●

B

1 5 10 20 40 60 80 100 120

Problem size (X 1000)

A
U

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C

Figure 8: The efficiency and quality results for the VDT, the kNN and the Exact methods

on MiniBooNE Dataset: (A) construction time vs. problem size, (B) propagation time for the

LP algorithm vs. problem size, and (C) average AUC for different problem sizes.

91

3.8.3 The Effect of Refinement

In the second experiment, we study the efficiency and the effectiveness of the refinement

process for the kNN and the VDT models. As illustrated in Section 3.6.4, through the refine-

ment process, the number of blocks (or parameters) in the block-partitioned representation

of the transition matrix is increased by splitting the existing blocks into smaller ones. By

doing so, one effectively increases the number of variational parameters, hoping to improve

the approximation accuracy at the cost of increased computational and memory complexity.

The refinement process, however, is not clear for the kNN model as there is no notion of

block representation for this model. By defining the refinement process as augmentation of

the parameter set used for representing the transition matrix, the refinement for the kNN

model boils down to adding more edges to the kNN graph. Subsequently, one can employ

different schemes to refine the kNN model; for example, at each refinement step, one can

add the shortest edge that does not exist in the edge set to the graph. Of course, this

simple algorithm is very costly since it involves sorting of all possible edges in the graph

and therefore is impractical for large-scale problems. Here, we have adopted a simpler

strategy of incrementing k by 1 at each refinement step. In other words, at each step, the

number of parameters for the kNN model is increased by N. To augment a kNN graph to

a k′NN graph where k′ > k, we experimentally observed that it would be faster to build the

k′NN graph from scratch using the Fast kNN algorithm than augmenting the old graph.

To perform a fair comparison between VDT and kNN in this section, we need to make

sure they have the same number of parameters during the whole process; that is, |B| = kN

at all times. To ensure this, we set the input argument |B|max to Algorithm 8 such that

after every call to this function, the total number of blocks in the VDT model is equal to kN.

Finally, note that both the VDT and the kNN models converge to the Exact model at their

finest level of approximation with the maximum N2 number of parameters.

3.8.3.1 Experimental Setup To compare the efficiency and the effectiveness of the re-

finement process for the VDT and the kNN models, first we build the coarsest kNN (k = 2)

and VDT (|B| = 2(N −1)) models and then gradually refine each model to higher levels of

92

refinement. At each level of refinement (where both methods have the same number of pa-

rameters; that is, |B| = kN), we run the LP algorithm using 1% initial labeled datapoints

and compute the AUC over the unlabeled data using the withheld labels. The label prop-

agation is repeated 5 times, each time with a different random initial labeled set, and the

average AUC is reported. Moreover, we have reported the time needed to refine each model

as well as the initial model construction time. The refinement for both models is stopped

when the number of parameters roughly reaches to O(N log N). This experiments has been

performed on the same datasets introduced in Section 3.8.2.1 with the same parameter set-

tings for the LP algorithm as in the first experiment. Unlike the first experiment, the two

competing models are built over the whole datasets and are gradually refined afterwards.

3.8.3.2 Results Figure 9(A) shows the construction time (in ms) for the two models over

the entire MAGIC Gamma Telescope Dataset. Also, Figure 9(B) shows the time needed for

refinement for each of the models as the a function of the current parameter number (note

that the Y -axis for both (A) and (B) plots is in the log-scale.) Finally, Figure 9(C) depicts the

average AUC after the execution of the LP algorithm as a function of the parameter number;

the margins in this plot show the 95% confidence intervals. Figure 10 illustrates the same

plots for the MiniBooNE Dataset. Tables 14-15 show the AUC results in the tabular format

along with their 95% confidence intervals.

As expected based on the results of the previous experiment, the VDT framework is

faster than the Fast kNN algorithm in terms of the initial construction time. Also, due to

the efficient implementation of the Symmetric Refinement algorithm (i.e. Algorithm 8) using

the priority queue data structure, the time spent for refinement in the VDT framework is

consistently lower than that of the kNN method. On the other hand, the average AUC has

the general trend of increasing as the two models get more refined. This is specially the case

for the MiniBooNE Dataset. For the MAGIC Gamma Telescope Dataset, the kNN model

does not seem to behave consistently as the number parameters is increased (or the model

gets more refined.) One possible explanation for such an inconsistent behavior can be the

special geometry of this dataset in the space. In particular, imagine two clusters in the data

from two different classes which are geometrically located close to each other. By adding

93

more edges to the kNN graph (i.e. the refinement process), at some point, these two clusters

will be directly connected to each other while one of them might be completely disconnected

from the rest of the graph. In this case, the label propagation results can be misleading if

one of these clusters is not represented in the initial labeled set, which in turn, leads to a

lower average AUC with larger variation depending on the initial labeled set. On the other

hand, this problem seems to be less issue if the graph is completely connected (with all the

edge weighted according to their length) as in the Exact model. That is why the VDT model

exhibits more robust behavior; because like the Exact model, the VDT framework produces

a completely connected graph. In other words, due to the connected nature of the similarity

graph representation in the VDT model, it is less sensitive to the geometry of data in the

space as the refinement process progresses.

The other important observation in this experiment is the existence of some internal

structure in both of the datasets. As the AUC plots suggest, despite some initial jumps, the

AUC curves quickly converge as the number of parameters increases. In other words, the

accuracy does not dramatically improve after a certain point which suggests that we do not

really need that many number of parameters to represent the transition matrix for these

datasets. This observation signifies the existence of some internal manifold structure in

these problems which, in turn, advocates the application of the reduction-based approxima-

tion techniques such as the VDT and the kNN models.

Number of Parameters VDT Fast KNN
38,038 0.691988±0.0330575 0.590564±0.0274645
95,098 0.696513±0.0319579 0.678875±0.0435759
133,138 0.715664±0.0165224 0.706024±0.0169628
171,178 0.681347±0.0314138 0.676082±0.0661018
209,218 0.723785±0.0214224 0.614568±0.0366122
247,258 0.725393±0.0127685 0.643211±0.0548255
285,298 0.72133±0.0157333 0.703146±0.0322503

Table 14: The AUC during refinement for VDT and Fast KNN on the MAGIC Gamma Tele-

scope dataset.

94

Number of Parameters VDT Fast KNN
260,126 0.708232±0.0323947 0.762606±0.0139435
650,318 0.847817±0.0110448 0.836029±0.00851859
910,446 0.848593±0.017566 0.838004±0.019564
1,170,574 0.841181±0.0126945 0.865347±0.0102216
1,430,702 0.858068±0.0213771 0.883521±0.00427182
1,690,830 0.86359±0.0128275 0.88284±0.00363055

Table 15: The AUC during refinement for VDT and Fast KNN on the MiniBooNE dataset.

95

●

VDT
Fast kNN

VDT Fast−kNN
C

on
st

ru
ct

io
n

tim
e

(m
s)

10
00

10
00

0

A

100000 150000 200000 250000

No. of parameters

R
ef

in
em

en
t t

im
e

(m
s)

10
0

10
00

10
00

0

●
●

●
●

● ●

B

50000 100000 150000 200000 250000

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

No. of parameters

A
U

C

●

●

●

●

●

●

●

●

●

●

●

●

●

●

C

Figure 9: The refinement results for the VDT and the kNN methods on MAGIC Gamma

Telescope Dataset: (A) the initial construction time, (B) refinement time vs. the number of

parameters for each model, and (C) average AUC vs. the number of parameters for each

model.

96

●

VDT
Fast kNN

VDT Fast−kNN
C

on
st

ru
ct

io
n

tim
e

(m
s)

1e
+

04
1e

+
05

A

800000 1000000 1200000 1400000 1600000

No. of parameters

R
ef

in
em

en
t t

im
e

(m
s)

1e
+

04
1e

+
05

●
●

●
●

●

B

400000 600000 800000 1000000 1200000 1400000 1600000

0.
70

0.
75

0.
80

0.
85

0.
90

No. of parameters

A
U

C

●

● ●

●

● ●

●

● ●

●

● ●

C

Figure 10: The refinement results for the VDT and the kNN methods on MiniBooNE

Dataset: (A) the initial construction time, (B) refinement time vs. the number of param-

eters for each model, and (C) average AUC vs. the number of parameters for each model.

97

3.8.4 Computational Scalability

In the third experiment, we explore the applicability and the scalability of the proposed

framework for very large datasets. The two data sets used in this experiment are taken from

the Pascal Large-scale Learning Challenge.7 The first data set, alpha, consists of 500,000

records with 500 dimensions. The second data set, ocr, is even larger with 3,500,000 records

of 1156 features. Both data sets consist of 2 balanced classes. Table 16 shows the construc-

tion and propagations times as well as the number of model parameters when the VDT algo-

rithm is applied. We could not apply other baseline methods for these data sets due to their

infeasible construction times. Nevertheless, by extrapolating the graphs in Figure 8(A), we

guess the Exact method, for example, would be roughly 3-4 orders of magnitude (103 −104

times) slower. It should also be stressed that this experiment is specifically designed for

showing the applicability of our framework for gigantic data sets and not necessarily show-

ing its accuracy. According to these results, as a serial algorithm, our framework takes a

reasonable time to construct and operate on these gigantic datasets. Furthermore, due to its

tree-based structure, the VDT framework has the great potential to be parallelized which

will make the algorithm even faster.

Data set N Param# Const. Prop.
alpha 0.5 M 1 M 4.5 hrs 11.7 min
ocr 3.5 M 7 M 46.2 hrs 93.3 min

Table 16: Very large-scale results.

3.8.5 BVDT For Frequency Data

In this section, we study the applicability and the performance of the Bregman extension

of the Variational Dual-Tree framework (aka BVDT). In particular, we compare BVDT with

the original Euclidean Variational Dual-Tree framework (VDT) for problems involving fre-

quency data.

7http://largescale.ml.tu-berlin.de/

98

3.8.5.1 The Bregman Divergence For Frequency Data As seen in Section 3.7, in

order to apply the BVDT framework to a real problem, the crucial step is to identify the ap-

propriate Bregman divergence and its corresponding φ(·) function in that specific problem.

Knowing the corresponding exponential family that generated the data, on the other hand,

is not necessary. However, in many problems, the choice of the appropriate Bregman diver-

gence is not clear; instead, we know that the underlying data generation process belongs to

or can be accurately modeled with exponential families. In such cases, one can systemati-

cally derive the appropriate Bregman divergence from the data generation process. This is

exactly the case for the frequency data. As a result, in this section, we use this procedure to

derive an appropriate Bregman divergence for the frequency data. However, before that, let

us start with the formal definition of the frequency data.

Given a set of d events {e j}d
j=1, the frequency dataset D consists of N feature vectors

where the j-th element of each vector represents the number of times that event e j happens

in that case for all j ∈ {1, . . . ,d}. The length of each vector is defined as the total number of

events happened in that case, i.e. L i =∑d
j=1 xi(j). For example, in text analysis, events can

represent all the terms that appeared in a text corpus, while the data cases represent the

documents. The frequency dataset in this case is the famous bag-of-words. We adopt the

term-document analogy for the rest of this section.

We start the Bregman divergence derivation procedure by constructing a generative

model for document generation. If the length of all documents was equal to constant L,

one could model the document generation process with a mixture of Multinomials, where

each mixture component had different term generation probabilities while sharing the same

length parameter [Banerjee et al., 2005]. However, having the same length for all documents

is not the case for most real datasets. To address this issue, we also model the length of doc-

ument L as a positive discrete random variable with Poisson distribution. In particular, we

propose a mixture model with K mixtures for document generation whose k-th component

99

(k ∈ [1..K]) is modeled by the following generative model:

pk(x,L;αk,λk)= p(x | L;αk)p(L;λk) (3.44)

p(x | L;αk)= L!∏d
j=1 x(j)!

d∏
j=1

αk(j)x(j)

p(L;λk)= 1
L!

e−λk (λk)L

where, the length of a document, L, has a Poisson distribution p(L;λk) with mean length λk

and given L, document x has a Multinomial distribution p(x | L;αk) with the term probabil-

ities αk = [αk(j)]d
j=1. Figure 11 shows the plate diagram for the proposed generative model.

Figure 11: The plate diagram for the proposed document generation process: X is the un-

igram representation of a document, L is the document length, α is the term probability

vector and λ is the average document length.

By doing the algebra, pk(x,L;αk,λk) can be written in the form of Eq. (3.34), where we

have:

θk = [θk(j)]d
j=1 =

[
log(λkαk(j))

]d
j=1,

ψ(θk)=
d∑

j=1
exp(θk(j)), p0(x)=

(d∏
j=1

x(j)!
)−1

(3.45)

That is, our generative model also belongs to an exponential family. By deriving the conju-

gate function of the log-partition function ψ(·), we get the φ(·) function and subsequently its

100

corresponding Bregman divergence as:

φ(x)=
d∑

j=1
x(j) log x(j)−

d∑
j=1

x(j)

dφ(x, y)=
d∑

j=1

[
x(j) log

(x(j)
y(j)

)
− x(j)+ y(j)

]
(3.46)

Moreover, the mean parameter vector µk can be derived using Eqs. (3.36) and (3.45) as:

µk =∇ψ(θk)= [
exp(θk(j))

]d
j=1 =

[
αk(j)λk

]d
j=1 =λkαk (3.47)

In other words, our proposed generative model can be reformulated in the form of Eq. (3.35)

with φ(·) and dφ(·, ·) are given by Eq. (3.46) and µk is given in Eq. (3.47). Furthermore, the

divergence in Eq. (3.46) is called the Generalized I-Divergence (GID) which is a generaliza-

tion of the KL-Divergence [Dhillon and Sra, 2005].

The key finding of the derivations in this section is that the GID is a more natural way of

encoding distance between documents than the popular Euclidean distance if the documents

are indeed generated according to the proposed generative model. The practical implication

of such conclusion is that BVDT framework customized by the GID should outperform the

traditional Euclidean VDT on the frequency data. To evaluate this hypothesis, we have run

both methods on simulated data as well as real text datasets.

It should be emphasized that the sole purpose of the probabilistic modeling in this sec-

tion is to derive the appropriate Bregman divergence for the frequency data; however, hav-

ing found this divergence, the BVDT framework does not explicitly need the proposed prob-

abilistic model to operate. This can also be corroborated by the fact that the distribution

hyper-parameters λk and αk do not appear in the derived φ(·) and dφ(·, ·) in Eq. (3.46).

101

3.8.5.2 Simulation The first step to evaluate the Bregman divergence derived from the

generative model in Eq. (3.44) is to run the BVDT framework equipped with this divergence

over the simulated data that has been actually generated from this generative model. To

this end, we have setup a simulation experiment as follows:

Data: Each datapoint in our simulated dataset is a dense vector of bag-of-words (uni-

gram) over 30 artificial terms (i.e. d = 30). The generative process is a mixture model with

5 components (i.e. K = 5) where each component represents one class and mixture weights

are uniform (= 0.2). Furthermore, each mixture component is modeled with Eq. (3.44). The

average length parameters are set as λk = 100 (k = 1..5). The term frequency vector αk for

each class is depicted in Figure 12. The X -axes in this figure represent different terms while

the Y -axes show their (normalized) frequencies. As the plots show, the 5 classes are highly

overlapping with respect to the terms, yet each class has a distinct term frequency signa-

ture. Also note that since the average length of documents in this simulation is relatively

short compared to the vocabulary size, the classes are highly overlapping in the Euclidean

space which is already a sign that the Euclidean distance may not be the best way to express

distance between the generated documents.

Methods: We have compared two methods in this experiment: (1) VDT-EUC: the origi-

nal Euclidean VDT framework, and (2) BVDT-GID: the BVDT framework customized with

the GID. It should be noted that, for this experiment, VDT-EUC and BVDT-GID are both

kept at their coarsest level of approximation with the minimal number of variational pa-

rameters 2(N −1).

Experimental Setup: The setup for this experiment is similar to that of the experi-

ment is Section 3.8.2; that is, we compute the construction and propagation times as well

as the performance of the LP algorithm for the competing methods over different problem

sizes. One difference here is since we have 5 classes in this problem, we compute and report

the average classification accuracy (ACC) instead of the average AUC. Also, in order to make

the problem more challenging, for each problem size, we only provide 1% labeled datapoints

to the LP algorithm.

Results: Figure 13(A) shows the construction time (in ms) for the two models over the

simulated dataset, as the problem size increases from 100 to 200,000. Also, Figure 13(B)

102

shows the propagation time for the LP algorithm run on each of the models. Note that both

of these axes in the plot are in the log-scale. Finally, Figure 13(C) depicts the average ACC

computed over the unlabeled datapoints based on the true withheld labels as well as the

inferred labels by the LP algorithm. Tables 17-19 show these results in the tabular format

along with their 95% confidence intervals.

In terms of construction time, the two methods are very similar with VDT-EUC slightly

faster for larger sample sizes. This difference can originate from the different tree structures

resulted from different distance metrics (i.e. the Euclidean distance vs. the GID). The

propagation time, however, is exactly the same for both methods. These results corroborate

the fact that the BVDT framework has the same computational and memory complexity

as the original VDT framework. However, in terms of accuracy, the story is completely

different. The BVDT-GID method consistently and significantly outperforms the VDT-EUC

method by over 10% margin in most cases. For the smallest sample size (i.e. 100) both

methods have the same ACC around 20% which is basically the performance of the random

classifier with 5 balanced classes suggesting a poor performance for both methods. However,

as the sample size increases, both methods start to do better with the BVDT-GID method

doing much better than the VDT-EUC model. These results show how the correct choice

of distance for a given problem can make a huge difference in terms of the accuracy of

the approximation made by the varitional dual-tree framework. Moreover, as we observed

in this simulation experiment, BVDT-GID shows a consistent behavior as the sample size

increases whereas the accuracy of VDT-EUC significantly degrades for larger sample sizes.

103

Figure 12: The term frequencies for each class in the Bregman simulation experiment for

the frequency data: the X -axes represent different terms while the Y -axes shows their

(normalized) frequencies for each class.

104

Problem Size VDT-EUC BVDT-GID
100 10±0 10±4.801
500 60±0 88±7.33365
1,000 136±7.84 239±51.3355
5,000 884±18.1763 2,027±213.397
10,000 2,032±105.44 5,046±236.617
50,000 13,310±696.834 46,914±3,157.26
100,000 30,072±722.477 120,275±3,861.28
200,000 69,696±2,692.53 317,332±23,729.9

Table 17: The construction time for the simulated frequency data in ms for VDT-EUC and

BVDT-GID.

105

Problem Size VDT-EUC BVDT-GID
100 1.22000e+02±7.33365e+00 1.20000e+02±0.00000e+00
500 8.22000e+02±1.68606e+01 8.16000e+02±9.99408e+00
1,000 1.83200e+03±2.09271e+01 1.83600e+03±1.81763e+01
5,000 9.57000e+03±2.44882e+02 9.67400e+03±1.44376e+02
10,000 2.37200e+04±6.97441e+02 2.39240e+04±6.78018e+02
50,000 2.67990e+05±1.16214e+04 2.72276e+05±7.82356e+03
100,000 6.08816e+05±1.99214e+04 6.03774e+05±1.45048e+04
200,000 1.46436e+06±2.26842e+05 1.56729e+06±2.24165e+05

Table 18: The propagation time for the simulated frequency data in ms for VDT-EUC and

BVDT-GID.

Problem Size VDT-EUC BVDT-GID
100 0.22±3.09903e−02 0.22±3.09903e−02
500 0.42±9.00150e−02 0.5856±1.04675e−01
1,000 0.6414±3.67407e−02 0.79888±3.64205e−02
1,0000 0.6653±4.94123e−02 0.82624±2.71510e−02
50,000 0.741852±1.76850e−02 0.869204±1.20239e−02
100,000 0.207320±1.00920e−03 0.865700±7.85178e−03
200,000 0.503117±6.42527e−03 0.881183±5.29533e−03

Table 19: The accuracy time for the simulated frequency data in ms for VDT-EUC and

BVDT-GID.

106

●

VDT−EUC
BVDT−GID

Problem size

C
on

st
ru

ct
io

n
tim

e
(m

s)

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05
1e

+
06

1e+02 1e+03 1e+04 1e+05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

A

Problem size

M
ul

tip
lic

at
io

n
tim

e
(m

s)

1e
−

01
1e

+
01

1e
+

03
1e

+
05

1e+02 1e+03 1e+04 1e+05

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

B

0.1 0.5 1 5 10 50 100 200

Problem size (X 1000)

A
C

C

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

C

Figure 13: The efficiency and quality results for the BVDT-GID and the VDT-EUC methods

on simulated frequency data: (A) construction time vs. problem size, (B) propagation time

for the LP algorithm vs. problem size, and (C) average ACC for different problem sizes.

107

3.8.5.3 Text Data The simulation results of the previous section clearly justifies the im-

portance of going beyond the Euclidean distance for certain problems involving the estima-

tion of transition matrix. Yet, these results are not strikingly surprising: the data used

in the previous section was exactly generated according the process which admits the GID

as the true distance measure between the generated datapoints. The real question here

is: can the BVDT-GID model still outperform the VDT-EUD model on frequency datasets

which are not exactly generated according to the process in Section 3.8.5.1, in particular

real text datasets? To answer this question, we have performed experiments on several real

text datasets and reported the results in this section. In particular, the datasets used are:

(A) BBC-Sport News Articles: This dataset contains 737 sports news articles from the

BBC Sport website from 2004-2005. Each document is represented as a unigram of 4,613

distinct terms. The main task on this data is document categorization based on the 5

topics (classes) of athletics, cricket, football, rugby and tennis [Greene and Cunningham,

2006].

(B) BBC News Articles: This dataset contains 2,225 news articles from the BBC News

website from 2004-2005. Each document is represented as a unigram of 9,636 distinct

terms. The main task on this data is document categorization based on the 5 topics

(classes) of business, entertainment, politics, sport and tech [Greene and Cunningham,

2006].

(C) 20 Newsgroup: This dataset is the train section of the well-known 20 Newsgroup

dataset and contains 11,269 news documents each of which is represented by a uni-

gram over 61,188 terms. The main task on this data is document categorization based

on the 20 topics (classes) [Lang, 1995].

(D) NSF Research Abstracts: This dataset is a subset of the original NSF Research Award

Abstracts. The dataset consists of 16,405 abstracts describing NSF awards for basic re-

search from 1990 to 2003. Each abstract is represented as a unigram of 18,674 terms.

The main task on this data is document categorization based on the 10 research pro-

grams (classes) [Deng et al., 2011].

(E) Large Movie Reviews: This dataset consists of 50,000 movie reviews where each re-

view is represented as a unigram over 89,527 terms. The task on this data is sentiment

108

classification of each review into either positive or negative sentiment. The two classes

in this dataset are uniformly distributed among the reviews [Maas et al., 2011].

Table 20 summarizes the main properties of each dataset.

Dataset N d C
BBC-Sport News Articles 737 4,613 5
BBC News Articles 2,225 9,636 5
20 Newsgroup 11,269 61,188 20
NSF Research Abstracts 16,405 18,674 10
Large Movie Reviews 50,000 89,527 2

Table 20: Summary of the text datasets used: N = number of documents, d = number of

terms, C = number of classes.

Ratio VDT-EUC BVDT-GID Exact-EUC Exact-GID
0.05 0.411669±0.0877717 0.657531±0.0641116 0.440977±0.0847812 0.832564±0.0298591
0.1 0.544912±0.0238994 0.746811±0.0340012 0.451832±0.0884955 0.879512±0.00937991
0.2 0.678155±0.0110102 0.820624±0.00566653 0.640434±0.0852056 0.903392±0.00855162
0.3 0.769064±0.0073508 0.880597±0.00901856 0.719132±0.0407943 0.933243±0.00463687
0.4 0.795929±0.0184749 0.897693±0.005489 0.824695±0.0157648 0.953053±0.00813628

Table 21: The accuracy curves vs. labeled data ratio for the BBC Sport News dataset.

109

Ratio VDT-EUC BVDT-GID Exact-EUC Exact-GID
0.05 0.452854±0.0123345 0.670652±0.0167843 0.368899±0.048935 0.784±0.00464124
0.1 0.569708±0.0177772 0.731685±0.0135412 0.441798±0.0162788 0.835056±0.0111773
0.2 0.696449±0.012843 0.80036±0.00597714 0.56791±0.0154009 0.873708±0.00644925
0.3 0.77636±0.0123408 0.841618±0.00659557 0.703371±0.0070582 0.90373±0.00474705
0.4 0.834247±0.00861933 0.879101±0.00403679 0.773573±0.0183945 0.920449±0.00327239

Table 22: The accuracy curves vs. labeled data ratio for the BBC News dataset.

Ratio VDT-EUC BVDT-GID
0.05 0.125548±0.00317266 0.205449±0.00538628
0.1 0.189476±0.00687521 0.281498±0.00486172
0.2 0.294596±0.00345168 0.393824±0.00306084
0.3 0.400089±0.000445476 0.488224±0.00283637
0.4 0.495235±0.00182368 0.577833±0.00206427

Table 23: The accuracy curves vs. labeled data ratio for the 20 Newsgroup dataset.

110

Ratio VDT-EUC BVDT-GID
0.05 0.337446±0.0100813 0.535069±0.00470248
0.1 0.451667±0.00961632 0.60239±0.00374731
0.2 0.585675±0.00687468 0.69007±0.00392903
0.3 0.679086±0.00398567 0.754648±0.00502325
0.4 0.759037±0.0048186 0.805401±0.0024182

Table 24: The accuracy curves vs. labeled data ratio for the NSF Research Abstracts dataset.

Ratio VDT-EUC BVDT-GID
0.05 0.518916±0.00294696 0.591148±0.00376547
0.1 0.562752±0.0015761 0.63286±0.00299815
0.2 0.636304±0.00148879 0.685188±0.00265278
0.3 0.68694±0.000796429 0.722364±0.00135987
0.4 0.733676±0.00141039 0.756976±0.00036655

Table 25: The accuracy curves vs. labeled data ratio for the Large Movie Reviews dataset.

Experimental Setup: In addition to the two competing methods from the previous

section, we have run two Exact methods on the text datasets described above: (1) Exact-

EUC: the Exact method of Section 3.8.1 and (2) Exact-GID: the Exact method with the

Euclidean distance replaced by the GID. For each dataset, we have built the four models

on the entire dataset and then run the LP algorithm given a subset of labeled documents.

We have gradually increased the percentage of labeled data from 5% to 40% and measured

the ACC over the unlabeled documents. For each labeled sample size, we have repeated

the experiment 5 times and have reported the average ACC. As for the LP algorithm, the α

parameter in Eq. (3.25) is set to 0.01 and the number of iterations T is set to 300.

Results: Figures 14(A-E) show the average classification accuracy vs. the percentage

of labeled data for the described datasets, respectively. The plots show the average of 5

trials with 95% confidence intervals. Although, none of the actual datasets is generated

by the generative model proposed in Eq. (3.44), the BVDT with GID method consistently

and significantly outperforms the Euclidean VDT. In particular, these results show that (a)

111

the Generalized I-Divergence derived from the proposed generative model for text data cap-

tures the document similarity much better than the Euclidean distance does, and (b) the

BVDT framework provides a straightforward mechanism to extend the variational dual-

tree method beyond the Euclidean distance to use Bregman divergences such as GID. Ta-

bles 21-25 show the accuracy results in the tabular format along with their 95% confidence

intervals.

We have also applied the Exact methods to the two smallest datasets. Not surprisingly,

the Exact method with GID has the best performance compared to other methods. However,

the Exact method with a wrong distance metric (the Euclidean distance in this case) can do

even worse than the VDT method with Euclidean distance, as observed for the second BBC

dataset. We conjecture the reason for such a behavior as the existence of block regularization

in the VDT framework which compensates for the improper distance to some degree.

Finally, we note the computational complexity of the aforementioned methods vs. the

dataset size (i.e. the number of documents) shown in Figure 14(F). Both X an Y axes in

this plot are in the log-scale. As the plot shows while Euclidean VDT and BVDT have the

same order complexity, they both are orders of magnitude faster than the Exact methods. In

other words, while significantly improving on learning accuracy, BVDT still enjoys the same

computational benefits as VDT.

112

●

VDT−EUC
BVDT−GID
Exact−EUC
Exact−GID

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
0.

4
0.

5
0.

6
0.

7
0.

8
0.

9
1.

0

Labeled %

A
cc

ur
ac

y

●

●

●

●
●

●

●

●

●
●

A

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

Labeled %

A
cc

ur
ac

y

●

●

●
●

●

●

●

●

●

●

B

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
1

0.
2

0.
3

0.
4

0.
5

0.
6

Labeled %

A
cc

ur
ac

y

●

●

●

●

●

●

●

●

●

●

C

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

Labeled %

A
cc

ur
ac

y

●

●

●

●

●

●

●

●

●

●

D

0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40

0.
50

0.
55

0.
60

0.
65

0.
70

0.
75

0.
80

Labeled %

A
cc

ur
ac

y

●

●

●

●

●

●

●

●

●

●

E

sample size

C
on

st
ru

ct
io

n
tim

e
(m

s)

1e
+

04
1e

+
05

1e
+

06
1e

+
07

1e
+

08

1e+03 1e+04

●

●

●

●

●

F

Figure 14: The accuracy curves vs. labeled data % for (A) BBC Sport News (B) BBC News (C)

20 Newsgroup (D) NSF Research Abstracts (E) Large Movie Reviews. (F) The computational

complexity of four methods vs. the dataset size.

113

3.9 DISCUSSION

In this chapter, we proposed a scalable approximation framework based on a variational

dual-tree method to compute large-scale transition matrices of random walk on large-scale

data graphs. As we showed, using our framework, the transition matrix of random walk

can be constructed in O(N) if a hierarchical clustering of data is given. If the hierarchy

is not given, one can build the cluster hierarchy using some fast approximate methods. In

this work, we used anchor trees which take O(N1.5 log N) construction time in average. In

terms of the memory complexity, as we discussed, our proposed method can take as low

as O(N) space to maintain the transition matrix. Compared to O(N2) computational and

memory complexity of the direct method for computing transition matrices, our framework

makes a huge difference for large-scale problems. Furthermore, we developed an unsuper-

vised optimization technique to find the bandwidth for the Gaussian similarity kernel used

in building the transition matrix. Algorithmically, we extended the variational dual-tree

framework with a fast multiplication algorithm which is the crucial operation in using ran-

dom walk on graphs. As we showed, using our framework, the transition matrix can be

multiplied by an arbitrary vector as cheap as O(N) compared to the O(N2) complexity of the

direct multiplication. This fast multiplication algorithm then can be used in applications

such as large-scale label propagation and eigen-decomposition of the transition matrix.

The key idea behind scalability of our framework is hierarchical parameter sharing. The

other common technique for the same scalability purpose is sparsification. To compare these

two general ideas, we compared our framework with the well-known k-nearest-neighbor

(kNN) method which represents the latter idea in the domain of graphs. To this end, first

we provided a theoretical complexity comparison between the two methods. Then, in the

experiments, we demonstrated that while both the kNN based method and our method

come close in terms of the construction and inference (propagation) times (with our method

slightly better in terms of the construction time), our method significantly outperforms the

kNN method in terms of the quality of approximation. We also experimentally showed that

our method exhibits more robust behavior in the refinement process compared to the kNN

model. We attributed the success of our proposed framework to the fact that its underlying

114

graph representation is always connected. However, for the kNN framework, depending on

the data, the resulted graph can be disconnected which in turn produces unstable results

for certain applications such as label propagation. For such applications, our parameter

sharing framework has a clear advantage over the sparse graphs which are inherently prune

to disconnectivity. Furthermore, to verify its practicality, we showed that our framework is

able to scale up to gigantic data sets with millions of records.

In the last part of this chapter, we extended our proposed framework to non-Euclidean

spaces to use the general class of Bregman divergences (of which the Euclidean distance is

a member). We call this general framework the Bregman Variational Dual-Tree framework

(BVDT). The key advantage of the BVDT framework is it covers a large class of distances

and divergences used in Machine Learning and therefore makes the variational dual-trees

accessible to many non-Euclidean large-scale datasets. The crucial aspect of our generaliza-

tion to Bregman divergences is, unlike generalizing VDT to an arbitrary distance metric, it

comes with no extra computational cost; that is, its computational order is the same as that

of the VDT framework. This is very important to the development of whole framework since

the variational dual-trees are originally designed to tackle large-scale problems. To achieve

this, we utilized the functional form of the general Bregman divergence to design a bottom-

up mechanism to cut unnecessary distance computations similar to that of the Euclidean

VDT framework.

Furthermore, by exploiting the connection between the Bregman divergences and the

exponential families, we provided a probabilistic view of our model. By a walk-through

example, we showed that this probabilistic view can be used to derive the appropriate Breg-

man divergence for those domains where the best choice of distance in not apparent at the

first glance. This example also provides us with a powerful construction procedure to de-

velop the appropriate Bregman divergence for a given problem. Specifically, we used this

procedure to derive the Generalized I-Divergence (GID) for the frequency data. We showed

that by incorporating GID in the BVDT framework, our model significantly improved the

accuracy of learning for semi-supervised learning on various text datasets as well as simu-

lated data, while maintaining the same order of complexity as the original VDT framework.

Although in our experiments, we used the BVDT framework with only one type of Bregman

115

divergence, the proposed model is general and can be customized with any member of the

Bregman divergence family.

Finally, it should be noted that although the focus of this work is the approximation

of transition matrices, our results also open the door to fast solutions for other large-scale

problems in Machine Learning. For example, one immediate byproduct of the proposed

Bregman Variational Dual-tree framework is that it can be used for fast kernel density es-

timation and/or approximation of the log-likelihood for large-scale non-Euclidean problems.

Also, the Bregman extension of anchor trees can be used for building partition-trees over

the large-scale non-Euclidean data for many applications which require a fast algorithm for

hierarchical clustering.

116

4.0 LARGE D

4.1 INTRODUCTION

As mentioned in the previous chapter, the high dimensionality can hurt many of the meth-

ods proposed for the Large N problem. The complexity of some methods such as kd-trees

directly depends on the dimensionality while for other methods like cover-trees and anchor-

trees, this dependence is of more indirect nature through the intrinsic (manifold) structure

of the data. In particular, if there exists a low-dimensional structure in the data, many of

the approximation techniques proposed for the Large N problem can result in an accurate

approximation while keeping the computational costs low. Conversely, if such structure does

not exist or is high-dimensional, getting a good approximation may require costly computa-

tional resources.

However, the problem is even more fundamental and in fact has a statistical nature.

More specifically, assuming the datapoints are randomly sampled from some true popula-

tion, the structure represented by the finite sample in high dimension may not be the true

representative of the population’s structure. One way to see this intuitively is as follows:

as the number of features grows the (Euclidean) distances in the input space become larger

and as a result the difference between them becomes relatively less significant. This means

that with the fixed number of datapoints, as we increase the dimension, we start losing the

true (manifold) intrinsic structure in the data. Therefore, if one is interested to estimate

the quantities of the true population structure (e.g. the clusters in spectral clustering), one

needs to (exponentially) increase the number of datapoints as the dimensionality increases,

and this points to the well-known curse of dimensionality problem which we refer to as the

“Large d” problem in this chapter.

117

The very first solution to the Large d problem is to reduce the dimensionality. Many

classical methods for dimensionality reduction, however, are not suitable for our problem

just because they do not preserve the intrinsic structure in the data. Graph-based methods

which preserve the intrinsic structure do not seem to be practical either. The reason is that

given a fixed sample size in high dimension, the similarity graph does not represent the true

manifold structure of the data based on the argument presented above. In fact, trying to

naively use the graph-based methods in this case, creates a chicken and egg problem. As a

result, the Large d problem for graph-based methods seems hopeless unless we have some

extra information about the input space that can help us defeat the curse of dimensionality.

In particular, as we see in this chapter, knowing the independence relations among the

covariates in the input space can be statistically very helpful dealing with graph-based

methods in high dimension.

In this chapter, we restrict our analysis and discussion to a specific class of the graph-

based methods called diffusion maps (previously introduced in ??). Diffusion maps are

among the most powerful Machine Learning tools to analyze and work with complex high-

dimensional datasets. In a nutshell, a diffusion map defines a lower dimensional embedding

of the data that preserves the cluster structure of the data at different resolutions. This

methodology has been successfully applied to a variety of clustering and semi-supervised

learning tasks [von Luxburg et al., 2008, Bach and Jordan, 2004, Ng et al., 2001a, Shi

and Malik, 2000, Zelnik-Manor and Perona, 2005, Valizadegan et al., 2008, Zhou et al.,

2003, Zhu et al., 2003]. Unfortunately, the estimation of these maps from a finite sample is

known to suffer from the curse of dimensionality. Motivated by other machine learning mod-

els for which the existence of structure in the underlying distribution of data can reduce the

complexity of estimation, we study and show how the factorization of the underlying distri-

bution into independent subspaces can help us to estimate diffusion maps more accurately.

Building upon this result, we propose and develop an algorithm that can automatically fac-

torize a high dimensional data space in order to minimize the error of estimation of its

diffusion map, even in the case when the underlying distribution is not decomposable. Ex-

periments on both the synthetic and real-world datasets demonstrate improved estimation

performance of our method over the standard diffusion-map framework.

118

As a side step, later in this chapter, we discuss the graph-based methods for the case

of functional spaces where the dimensionality is infinite. In particular, we consider the

problem of clustering the human brain fibers where each datapoint (i.e. a fiber) is a 3D

curve with a variable length that is not described by a fixed-length feature vector.

4.2 THE FACTORIZED DIFFUSION APPROXIMATION

4.2.1 Motivation

Recent theoretical studies have shown that under some reasonable regulatory conditions,

the data-based diffusion (Laplacian) matrix asymptotically converge to certain operators

defined based on the true distribution of data [Lee and Wasserman, 2010, von Luxburg

et al., 2008, Singer, 2006, Gine and Koltchinskii, 2006]. In fact, the eigenfunctions of these

asymptotic operators encode the cluster structure of the underlying density of data. An

important question is how well we can estimate these eigenfunctions from a finite sample.

Unfortunately it has turned out that the rate of convergence of the finite-sample approxima-

tions to true eigenfunctions is exponential in the dimension of the data, hence the problem

suffers from the curse of dimensionality [Lee and Wasserman, 2010].

One possible way to alleviate the curse of dimensionality problem is based on the fac-

torization of the input space into independent subspaces. Nadler et al. [Nadler et al., 2006]

showed that when the underlying distribution is decomposable, it leads to the decompo-

sition of the diffusion eigenfunctions. This idea was later used by Fergus et al. [Fergus

et al., 2009] to implement scalable semi-supervised learning in large-scale image datasets.

However, the scope of that work is somewhat limited. First, it assumes fully decomposable

distributions. Second, it does not provide any insight on the quality of eigenfunctions built

using the decomposition.

In this section, we study how the factorization of the underlying distribution into inde-

pendent subspaces can help us to approximate the true eigenfunctions from a finite sample

more accurately. We show that if the underlying distribution is factorizable, we can get

119

significant reductions in the error bound for estimating the major eigenfunctions. In fact,

this is analogous to machine learning criteria and models that rely on the underlying dis-

tribution structure to compensate for the insufficient sample size. It should be noted that

the proposed framework in this section have been developed in collaboration with Hamed

Valizadegan, Postdoc at University of Pittsburgh [Amizadeh et al., 2012b].

To clarify this idea, consider the synthetic 3D dataset shown in Figure 19 with four

clusters. The first row in the figure shows the four major diffusion eigenfunctions of a

sample with 1000 points where the color code shows the sign of the eigenfunctions. Each

eigenfunction effectively separates the clusters from a different angle so that as a whole

these eigenfunctions discovers the overall cluster structure in the data. Now, if we decrease

the sample size to a half, the eigenfunctions and therefore the clustering result will be

perturbed (as shown in the second row). However, this specific dataset is generated in a way

that the Z coordinate is independent of X and Y . If we incorporate this information using

the framework proposed in this paper, we get the same result as the first row but now only

with 500 points (as shown in the third row).

As the above example shows, having a factorizable underlying distribution can speed

up the convergence of the empirical eigenvectors to true eigenfunctions. However, the dis-

tributions of real-world data may not factorize into independent subspaces. In this case,

the key question is how much error on diffusion eigenfunctions is introduced if we impose

such independence assumptions upon non-decomposable distributions. This idea is similar

to imposing structural assumptions for model selection in order to decrease the parameter

learning complexity. In this chapter, we study the trade-off between the estimation error

of diffusion eigenfunctions and the approximation error introduced by imposing the inde-

pendence assumptions on the underlying distribution. We propose and develop a greedy

algorithm which considers different independence assumptions on the distribution in order

to find a factorizable approximation that minimizes the error in estimates of diffusion eigen-

functions. To show the merits of our framework, we test it on clustering tasks using both

synthetic and real-world datasets.

120

Figure 15: The synthetic 3D dataset with coordinate Z independent of X and Y .

4.2.2 Related Work

The framework presented in this chapter is related to a large body of existing work that

utilize the Laplacian-based spectral analysis [Chung, 1997] of the similarity matrix of the

data to find a low dimensional embedding of data. Such methods cover a wide range of

learning tasks such as dimensionality reduction [Belkin and Niyogi, 2002, Lafon and Lee,

2006], data clustering [von Luxburg et al., 2008, Bach and Jordan, 2004, Jin et al., 2006, Ng

et al., 2001a, Shi and Malik, 2000, Zelnik-Manor and Perona, 2005], and semi-supervised

learning [Valizadegan et al., 2008, Zhou et al., 2003, Zhu et al., 2003]. While the focus

of early works was more on developing new algorithms based on the spectral analysis of

similarity metric [von Luxburg et al., 2008, Bach and Jordan, 2004, Jin et al., 2006, Ng

et al., 2001a, Shi and Malik, 2000, Zelnik-Manor and Perona, 2005, Valizadegan et al.,

2008, Zhou et al., 2003, Zhu et al., 2003], more recent works study the theoretical aspects

of such analysis [Belkin and Niyogi, 2005, Lee and Wasserman, 2010, Nadler et al., 2006,

121

Subramanya and Bilmes, 2009, Gine and Koltchinskii, 2006, Singer, 2006], leading to the

development of the new algorithms [Belkin et al., 2006, Fergus et al., 2009].

Laplacian-based methods can be categorized into two major groups: locality-preserving

methods [Belkin and Niyogi, 2002] and diffusion maps [Nadler et al., 2006], both of them are

based on a similarity graph of data. These two groups differ in how they use the similarity

metric. Locality-preserving methods aim at finding a mapping of data points to real values

by minimizing the local variations of the mapping around the points. These methods can be

considered as special cases of kernel PCA [Lee and Wasserman, 2010]. Diffusion maps are

based on the random walk on the similarity graph of data and can be considered as non-

linear version of Multidimensional Scaling (MDS) [Cox and Cox, 1994] technique. Many of

these methods are built upon a similarity graph on the datapoints in the input space which

has to be constructed based on the distance metric in the input space. One popular method

to build the similarity graph is to transform the Euclidean distances into the similarity

weights using the Gaussian similarity kernel with bandwidth σ.

Several authors study the convergence rate of the laplacian-based methods, either by

assuming that data lie exactly on a lower dimensional Riemannian manifold in the original

space [Gine and Koltchinskii, 2006, Singer, 2006, Belkin and Niyogi, 2005], or considering

a general underlying distribution that generates data [von Luxburg et al., 2008, Lee and

Wasserman, 2010, Fergus et al., 2009]. Our framework is built upon the result of the later

group. For a fixed kernel bandwidth σ, von Luxburg et. al. [von Luxburg et al., 2008]

showed that the normalized Laplacian operator converges with rate O(1/
p

N). Lee and

Wasserman [Lee and Wasserman, 2010] study the rate of convergence for σ→ 0 and large

sample size N and showed that the optimal rate is dependent on d, the dimension of data.

This result, i.e. the dependency of the convergence rate to d, is the main inspiration for our

work.

4.2.3 Convergence of Diffusion Operator

In this section, we study the convergence of the diffusion operator previously introduced in

Section 1.2.5 of Chapter 1. As mentioned before, the diffusion map induced by the eigen

122

decomposition of At
p is a powerful tool for data embedding at different continuous scales

t. However, in practice, we have to estimate the eigen decomposition of At
p from the finite

sample D by computing the matrix [Âσ]N×N = [kσ(x(i), x(j))/
∑n

l=1 kσ(x(i), x(l))]N×N with the

eigen decomposition Âσûσ,i = λ̂σ,i ûσ,i. The empirical eigenfunctions are then computed

from the eigenvectors ûσ,i using the Nyström approximation [Lee and Wasserman, 2010]:

ψ̂σ,i(x)=
∑N

j=1 kσ(x, x(j))ûσ,i(x(j))

λ̂σ,i
∑N

j=1 kσ(x, x(j))
(4.1)

The eigenvalues and eigenfunctions of Âσ estimate their counterparts for Ap,σ by estimat-

ing P with the empirical distribution p̂ = 1/n (denoted by Âσ → Ap,σ as N →∞) [Lee and

Wasserman, 2010]. Since Ât/σ
σ → At/σ

p,σ as N →∞ , we can estimate the eigenspaces of At
p

by those of Ât/σ
σ . An important concern is how fast the rate of convergence is as N →∞. To

answer this question, von Luxburg et. al. [von Luxburg et al., 2008] showed that the normal-

ized Laplacian operator converges with rate O(1/
p

N) given that σ is fixed. This result can

be easily extended to the diffusion operator as well. The good thing about this rate is that

it does not depend on the dimension d. However, to find the optimal trade-off between bias

and variance, we need to let σ→ 0 as the sample size N increases. Lee and Wasserman [Lee

and Wasserman, 2010] showed that the optimal rate for σ is (log N/N)2/(d+8) and therefore

the eigenfunctions converge as [Lee and Wasserman, 2010, Giné and Guillou, 2002]:

‖ψt
p,i − ψ̂σ,i‖2

2 =OP

(t
p

d

µ(t)
i

[log N
N

]2/(d+8))
(4.2)

where, µ(t)
i =min2≤l≤i log(λ(t)

p,l−1/λ(t)
p,l) is the multiplicative eigengap of At

p and we have ‖ f ‖2
2 =∫

X f 2(x)p(x)dx. Unfortunately, this rate depends on the dimension exponentially which

makes it a hard problem to estimate the eigenfunctions of At
p from a finite sample. Through-

out the rest of this section, we drop the subscript σ for the empirical operators assuming it

is implicitly computed using the optimal rate above.

123

4.2.4 Factorized Diffusion Maps

4.2.4.1 The Factorized Approximation Let Tk = {T1,T2, . . . ,Tk} be a partition of the

variables in V into k disjoint subsets. Each Ti defines a subspace of V with dimension

di = |Ti|. With a little abuse of notation, we also use Ti to refer to the subspace induced by

the variables in Ti. We define the marginal diffusion operator At
pi

: L2(X) 7→ L2(X):

At
pi

[gz(x)]=
∫

Ti

at(x, y)gz(y)pi(y)d y,

x, y ∈ Ti, z ∈V\Ti (4.3)

where gz(x) = f ([x z]T) assumes the variables in z are constants and pi is the marginal

distribution over the subspace defined by Ti. In other words, At
pi

treats the input variables

of f (·) which do not belong to Ti as constants. Furthermore, the partition Tk defines the

factorized distribution qTk = ∏k
i=1 pi. To simplify the notation, for a fixed Tk, we refer to

qTk simply by q. We also define the factorized diffusion operator At
q the same as Eq. (1.19)

with the true distribution p is replaced by the factorized distribution q. We have:

Lemma 1. Let Λt
i = {λ(t)

i,m | 1 ≤ m ≤∞} and Ψt
i = {ψt

i,m | 1 ≤ m ≤∞} be the set of eigenvalues

and eigenfunctions of At
pi

, respectively. Then the sets:

Λt
q =

{ k∏
i=1

ξi | ξi ∈Λt
i

}
,Ψt

q =
{ k∏

i=1
ϕi |ϕi ∈Ψt

i

}

are respectively the eigenvalues and eigenfunctions of the factorized diffusion operator At
q.

Proof. Let Tk = {T1,T2, . . . ,Tk} be a partition of the variables in V and q(V) = ∏k
i=1 pi(Ti).

Now assume x = [x1, x2, . . . , xk]T and y = [y1, y2, . . . , yk]T are two random vectors partitioned

according to Tk (note that xi ’s and yi ’s are sub-vectors). Then we will have:

aε(x, y)=
k∏

i=1
aε(xi, yi)

and therefore,

at(x, y)= lim
ε→0

aε,t/ε(x, y)= lim
ε→0

k∏
i=1

aε,t/ε(xi, yi)=
k∏

i=1
at(xi, yi)

124

Now let ψt(x)=∏k
i=1ψ

t
i,mi

(xi) and λ(t) =∏k
i=1λ

(t)
i,mi

where At
pi

[ψt
i,mi

(xi)]=λ(t)
i,mi

ψt
i,mi

(xi), then

we will have:

At
q[ψt(x)]=

∫
at(x, y)ψt(y)q(y)d y

=
k∏

i=1

∫
at(xi, yi)ψt

i,mi
(yi)pi(yi)d yi

=
k∏

i=1
λ(t)

i,mi
ψt

i,mi
(xi)=λ(t)ψt(x)

Therefore, ψt(x) is an eigenfunction of At
q with eigenvalue λ(t).

Lemma 1 explicitly relates the eigenvalues and the eigenfunctions of the factorized dif-

fusion operator At
q to eigenvalues and the eigenfunctions of the marginal diffusion operators

At
pi

. We refer to the eigenvalues and the eigenfunctions based on the factorization as mul-

tiplicative eigenvalues and eigenfunctions.

The above decomposition also gives a recipe for computing the eigenfunctions of At
q from

eigenfunction estimates in each subspace Ti. In particular, we can estimate the eigenfunc-

tions in each subspace Ti independently and then multiply the results over all subspaces.

This construction procedure is of special practical significance if p, in fact, factorizes ac-

cording to Tk; that is, p = q. In that case, the principal eigenfunctions of At
p (with largest

eigenvalues) can be estimated from a finite sample D (more accurately), if we make use of

the fact that p is factorizable.

The multiplicative eigenvalue and eigenfunction estimates on the full variable space

using q come with the following properties. First, the largest eigenvalue λ̂(t)
i,1 in each sub-

space Ti is λ̂(t)
i,1 = 1 and is associated with the constant eigenfunction ψ̂t

i,1 = 1. Therefore, the

largest multiplicative eigenvalue of At
q (according to Lemma 1) will be λ̂q,1(t) = ∏k

i=1 1 = 1

with a constant eigenfunction ψ̂t
q,1 = ∏k

i=1 1 = 1. Next, the second largest multiplicative

eigenvalue of At
q will be λ̂(t)

q,2 = λ̂ j,2×∏
i 6= j 1 with the eigenfunction ψ̂t

q,2 = ψ̂t
j,2×

∏
i 6= j 1 where

j = argmaxr λ̂
(t)
r,2. That is, the second eigenfunction of At

q can be obtained from only one

subspace (i.e. T j) with a reduced dimensionality (d j). Finally, the m-th multiplicative

eigenvalue and eigenfunction λ̂m(t) and ψ̂t
m will be estimated using at most lgm marginal

eigenfunctions on subspaces.

125

Lemma 2. Suppose p factorizes according to Tk and the eigen decomposition of At
p is con-

structed using the procedure suggested by Lemma 1 then the m-th eigenfunction of At
p asso-

ciated with its m-th largest eigenvalue is the multiplication of the marginal eigenfunctions

from “at most” min(k,dlgme) subspaces in Tk.

Proof. Suppose ψ is the m-th eigenfunction of At
p associated with the m-th largest eigen-

value λ constructed using Lemma 1. That is, we have that ψ = ∏k
i=1ψi and λ = ∏k

i=1λi

where ψi is an eigenfunction of At
pi

in the subspace Ti associated with eigenvalue λi. Now

suppose, ψ consists of eigenfunctions from only `< k subspaces; that is, only ` of the eigen-

functions in the product above are non-constant (non-trivial) with eigenvalues strictly less

than 1, while the rest of them are constant with eigenvalues equal to 1. Now if any of these

` eigenfunctions is replaced by the constant eigenfunction (and its corresponding eigenvalue

with 1) we will have a new valid pair of eigenvalue and eigenfunction 〈λ′,ψ′〉 for At
pi

where

λ′ > λ. Using this replacement method, we can generate 2` new pairs with eigenvalues all

greater than λ. However, since λ is the m-th largest eigenvalue of At
p, we must have m ≥ 2`

or equivalently ` ≤ dlgme. On the other hand, the number involved subspaces ` cannot be

greater than k which means that `≤min(k,dlgme).

From the estimation point of view, this result has a significant implication in that the

estimation error of the m-th eigenfunction over the whole space can be reduced to the es-

timation error from at most lgm subspaces, each of which has a smaller dimension. To

illustrate this, consider the second principal eigenfunction ψ̂t
q,2 described above. Since it

depends only on one of the subspaces (with a reduced dimensionality), its rate of conver-

gence, according to [Lee and Wasserman, 2010], should be faster. Hence its estimation

error bound is reduced and equal to the error bound for that subspace. This observation

further motivates the analysis of error for estimating the factorized diffusion map.

4.2.4.2 Error Analysis In the previous subsection, we saw that if the underlying dis-

tribution p is factorizable, then we can decrease the estimation error bound of the m-th

principal eigenfunction using the factorization to independent subspaces. However, in re-

ality, p may not factorize at all; then, the question is how much error is introduced if we

126

approximate p with q, and under which problem settings we get smaller error bounds by

enforcing such a factorization. Suppose Ât
q is the estimated factorized diffusion operator

from a sample of size N with the factorization according to Tk. Let ψt
p,m, ψt

q,m and ψ̂t
q,m

represent the m-th eigenfunction of At
p, At

q and Ât
q, respectively. We want to approximate

ψt
p,m with ψ̂t

q,m and to study the error ‖ψt
p,m − ψ̂t

q,m‖2
2. We have the following inequality:

E total(q,m, t), ‖ψt
p,m − ψ̂t

q,m‖2
2 ≤ 2‖ψt

p,m −ψt
q,m‖2

2 +2‖ψt
q,m − ψ̂t

q,m‖2
2 (4.4)

The first term on the right-hand side is the approximation error or bias which is due to

approximating ψt
p,m (i.e. p) with ψt

q,m (i.e. q). Clearly, in case p = q, the approximation

error is 0 and the inequality becomes an equality. Note that the approximation error is also

a lower bound on E total(q,m, t). The second term on the right-hand side is the estimation

error of the factorized eigenfunction from the finite sample. We can bound these errors from

above as follows:

Theorem 2. Upper bound on the approximation error: Let sup f :‖ f ‖2≤1 ‖ f ‖∞ = ` <∞,

supx,y at(x, y)=  <∞ and δm =λ(t)
p,m −λ(t)

p,m+1 then

Eapp(q,m, t), ‖ψt
p,m −ψt

q,m‖2
2 ≤ C ·DKL(p‖q),Uapp(q,m, t) (4.5)

where C = 32 2`2 ln2/δ2
m and DKL(·‖·) denotes the Kullback-Leibler divergence.

Proof. From [Zwald and Blanchard, 2005], we have that:

‖ψt
p,m −ψt

q,m‖2
2 ≤

16
δ2

m
‖At

p − At
q‖2 (4.6)

127

where

‖At
p − At

q‖2 = sup
‖ f ‖≤1

‖At
p[f (x)]− At

q[f (x)]‖2
2

= sup
‖ f ‖≤1

∥∥∥∫
at(x, y) f (y)p(y)d y−

∫
at(x, y) f (y)q(y)d y

∥∥∥2

2

= sup
‖ f ‖≤1

∥∥∥∫
at(x, y) f (y)[p(y)− q(y)]d y

∥∥∥2

2

= sup
‖ f ‖≤1

∫ (∫
at(x, y) f (y)[p(y)− q(y)]d y

)2
p(x)dx

≤ sup
‖ f ‖≤1

∫ (∫
|at(x, y)|| f (y)||p(y)− q(y)|d y

)2
p(x)dx

= sup
‖ f ‖≤1

∫ (∫
|p(y′)− q(y′)|dy′×

∫
|at(x, y)|| f (y)| |p(y)− q(y)|∫ |p(y′)− q(y′)|d y′

d y
)2

p(x)dx

≤ sup
‖ f ‖≤1

∫ ((∫ |p(y′)− q(y′)|d y′
)2 ×

∫
a2

t (x, y) f 2(y)
|p(y)− q(y)|∫ |p(y′)− q(y′)|dy′

d y
)
p(x)dx

≤
∫ ((∫ |p(y′)− q(y′)|d y′

)2 ×
∫
2`2 |p(y)− q(y)|∫ |p(y′)− q(y′)|d y′

d y
)
p(x)dx

=
∫
2`2‖p− q‖2

1 p(x)dx = 2`2‖p− q‖2
1 (4.7)

On the other hand we have the following inequality [Cover and Thomas, 2000]:

‖p− q‖1 ≤
√

2ln2 ·DKL(p‖q) (4.8)

Therefore, we have:

‖ψt
p,m −ψt

q,m‖2
2 ≤

16
δ2

m
‖At

p − At
q‖2 ≤ 16

δ2
m
2`2‖p− q‖2

1 ≤
32ln2
δ2

m
2`2 ·DKL(p‖q) (4.9)

Theorem 2 translates the distance between the true and the approximated eigenfunction

to the distance between the true underlying distribution and its factorized approximation.

128

Theorem 3. Upper bound on the estimation error: Let q factorizes according to Tk and

sup f :‖ f ‖2≤1 ‖ f ‖∞ = ` <∞. Define Sm = {
(j1, . . . , jk) | ∀i ∈ [1..k] : 1 ≤ j i ≤ m and

∏k
i=1 j i ≤ m

}
and the multiplicative eigengap µ(t)

i, j =min2≤l≤ j log(λ(t)
i,l−1/λ(t)

i,l) then we have:

Eest(q,m, t), ‖ψt
q,m − ψ̂t

q,m‖2
2

≤ max
(j1,..., jk)∈Sm

`2(k−1)
k∑

i=1
2i‖ψt

i, j i
− ψ̂t

i, j i
‖2

2

=OP

(
max

(j1,..., jk)∈Sm
`2(k−1)

k∑
i=1
j i 6=1

2i t
√

di

µ(t)
i, j i

[log N
N

]2/(di+8))
,Uest(q,m, t) (4.10)

where n is the sample size and di is the dimensionality of the subspace Ti. Furthermore, the

sum in the last equality is over at most min(k,dlgme) sub-spaces.

Proof. Let Tk = {T1,T2, . . . ,Tk} be a partition of the variables in V into k subspaces. Also,

let Λt
i = {λ(t)

i,m | 1≤ m ≤∞} be the set of eigenvalues of the marginal diffusion operator At
pi

on

subspace Ti for all 1 ≤ i ≤ k. Assume the members of Λt
i are sorted in the decreasing order

with the first (the largest) eigenvalue λ(t)
i,1 = 1 associated with the constant eigenfunction

ψt
i,1 = 1.

Using Lemma 1, the eigenvalues (and their associated eigenfunctions) of At
q are con-

structed by picking one eigenvalue from each set Λt
i for all 1 ≤ i ≤ k and multiply them

together; that is, the λ(t)
q,m = ∏k

i=1λ
(t)
i, j i

is the m-th largest eigenvalue of At
q. For each m, we

can find the index tuple (j1, . . . , jk) indicating which eigenvalue is exactly picked in each sub-

space to construct the m-th largest eigenvalue of At
q. If we know the index tuple (j1, . . . , jk)

for the m-th eigenfunction, we can find the upper bound on the estimation error as follows:

‖ψt
q,m − ψ̂t

q,m‖2
2 =

∥∥ k∏
i=1

ψt
i, j i

−
k∏

i=1
ψ̂t

i, j i

∥∥2
2

≤ 2
∥∥ k∏

i=1
ψt

i, j i
−ψt

1, j1

k∏
i=2

ψ̂t
i, j i

∥∥2
2 +2

∥∥ψt
1, j1

k∏
i=2

ψ̂t
i, j i

−
k∏

i=1
ψ̂t

i, j i

∥∥2
2

= 2
∥∥ψt

1, j1

(k∏
i=2

ψt
i, j i

−
k∏

i=2
ψ̂t

i, j i

)∥∥2
2 +2

∥∥(ψt
1, j1

− ψ̂t
1, j1

)
k∏

i=2
ψ̂t

i, j i

∥∥2
2

≤ 2`2 ·∥∥ k∏
i=2

ψt
i, j i

−
k∏

i=2
ψ̂t

i, j i

∥∥2
2 +2`2(k−1) · ‖ψt

1, j1
− ψ̂t

1, j1
‖2

2 (4.11)

129

Using the above derivation recursively, we get:

‖ψt
q,m − ψ̂t

q,m‖2
2 ≤ `2(k−1)

k∑
i=1

2i‖ψt
i, j i

− ψ̂t
i, j i

‖2
2 = `2(k−1)

k∑
i=1
j i 6=1

2i‖ψt
i, j i

− ψ̂t
i, j i

‖2
2 (4.12)

The equality in Eq. (4.12) comes from the fact that for j i = 1, ψt
i, j i

= ψ̂t
i, j i

= 1. Since we do not

know the true eigenvalues in each subspace, we cannot identify the index tuple (j1, . . . , jk)

for a given index m. As a result the above bound is replaced by the worst case scenario

across all possible index tuples, that is:

‖ψt
q,m − ψ̂t

q,m‖2
2 ≤ max

(j1,..., jk)
`2(k−1)

k∑
i=1
j i 6=1

2i‖ψt
i, j i

− ψ̂t
i, j i

‖2
2

However, because ψt
q,m is associated with the m-th largest eigenvalue of At

q (i.e. λ(t)
i,1), not

all combinations for the index tuple should be considered in taking the maximum. More

precisely, if we replace any of the indices j i in the index tuple (j1, . . . , jk) with a smaller

index j′i < j i, the resulted multiplicative eigenvalue will become larger; this is because of

the fact that smaller indices in each set Λt
i correspond to larger eigenvalues. The total

number of such replacements for the index tuple (j1, . . . , jk) is
∏k

i=1 j i. This means that if

the index tuple for the m-th largest eigenvalue of At
q is (j1, . . . , jk), m must be greater than∏k

i=1 j i. In other words, the valid index tuples for the m-th largest eigenvalue must satisfy∏k
i=1 j i < m. If Sm denotes the set of such tuples, we can improve the bound as:

‖ψt
q,m − ψ̂t

q,m‖2
2 ≤ max

(j1,..., jk)∈Sm
`2(k−1)

k∑
i=1
j i 6=1

2i‖ψt
i, j i

− ψ̂t
i, j i

‖2
2

Now, using Eq. (4.2), we get:

‖ψt
q,m − ψ̂t

q,m‖2
2 =OP

(
max

(j1,..., jk)∈Sm
`2(k−1)

k∑
i=1
j i 6=1

2i t
√

di

µ(t)
i, j i

[log N
N

]2/(di+8))

Moreover, using Lemma 2, there at most min(k,dlgme) non-constant eigenvectors contribut-

ing in constructing ψt
q,m which means the sum in the above bound has at most min(k,dlgme)

terms.

130

Roughly speaking, the above result states that in estimating the m-th eigenfunction of

the factorized operator At
q, the error is bounded by sum of the estimation errors in at most

dlgme subspaces each of which has a reduced dimensionality from d to di.

The main implication of the above theorems can be summarized as follows: suppose the

underlying distribution p is equal or close to the factorized distribution q. If the proce-

dure in Lemma 1 is used to estimate the principal eigenfunctions of At
p, the upper bound

on the approximation error of these eigenfunctions will be small because p and q are close

(Theorem 2). Moreover, the upper bound on the estimation error will involve only a few inde-

pendent subspaces induced by q each of which has a reduced dimensionality and therefore

has an exponentially faster convergence rates (Theorem 3). As a result, we get smaller total

error upper bound Utotal(q,m, t) = Uapp(q,m, t)+Uest(q,m, t) compared to the error bound

for the standard diffusion map (Note that using the trivial partition T1 = {V } is equivalent

to the standard diffusion map).

4.2.4.3 Finding The Best Partition So far, we have assumed that for the given problem

a good partition of variables is known. This is a reasonable assumption in those problems

where the (unconditional) independencies among the variables are known in advance. For

instance, in object recognition problem, one may consider the edge and the texture fea-

tures of the input images to be almost independent. However, in many other problems, the

independencies and week dependencies among variables (and therefore the optimal parti-

tioning) are not a priori known and need to be discovered from the data. To this end, we

need an optimization criterion to evaluate the goodness of different partitions w.r.t. the task

in hand. In this section, we use the estimated total error for estimation of the major eigen-

functions to find a nearly optimal partition of the variables for factorized diffusion mapping.

More formally, given an unlabeled dataset D, we want to find the partition that minimizes

E total(q,m, t). However, we face the following two big challenges to solve this optimization

problem. First, since we do not know the true eigenfunctions, we cannot directly compute

the total error and need to estimate it. One approach to estimation of E total is to use the

upper bound Utotal as a proxy for E total . However, the problem with this solution is we need

to estimate the constants for error bounds in Theorems 2 and 3 as well as the true multi-

131

Algorithm 9: Greedy Partitioning
1: input: dataset D with features V
2: output: the optimal partitioning T ∗
3: k ← 1, T1 ←V
4: loop
5: for all Ti ∈Tk do
6: {T̃i1,Ti\T̃i1}←Qu(D,Ti)
7: ∆i ←∆total ({T̃i1,Ti\T̃i1} |Tk)
8: end for
9: j ← argmax1≤i≤k∆i

10: if ∆ j > 0 then
11: Tk ←Tk\{T j}∪ {T j1,T j2}
12: k ← k+1
13: else
14: T ∗ ←Tk ; stop
15: end if

16: end loop

plicative eigengaps which is not easy in general for real problems; let alone the fact that

these bounds are not tight anyway. To get around these problems, in our framework, we use

a bootstrapping algorithm to estimate E total(q,m, t). More precisely, from the given sample

D of size N, we draw b bootstrap subsamples D1, . . . ,Db of size N/2 each. Then the total

error for the given partition Tk is estimated as:

Ê total(q,m, t)= 1
b

b∑
i=1

‖ût
p,m,D − ût

q,m,Di
‖2

2 (4.13)

Here, ût
p,m,D is the estimated eigenvector over the sample D using no partitioning whereas

ût
q,m,Di

denotes the estimated multiplicative eigenvector over the bootstrap subsample Di if

the partitioning Tk is applied.

Second, even after estimating the total error, we still need to find the optimal partition

that minimizes the estimated error which is an NP-hard problem. To address this issue,

we develop a greedy algorithm that recursively splits the variable set V into disjoint sub-

sets and and stops when Ê total(q,m, t) cannot be decreased anymore. Let us start with the

following definitions:

Definition 1. Denoted by T ′
k+1 Âi Tk, T ′

k+1 is defined to be an immediate refinement of Tk

on the subset Ti ∈Tk if

T ′
k+1 =Tk\{Ti}∪ {Ti1,Ti2}

132

where Ti1,Ti2 6=φ, Ti1 ∪Ti2 = Ti and Ti1 ∩Ti2 =φ.

Definition 2. Suppose T ′
k+1 Âi Tk with the split {Ti1,Ti\Ti1} of Ti. The error gain of the

split {Ti1,Ti\Ti1} applied on Tk is defined as:

∆total({Ti1,Ti\Ti1} |Tk), Ê total(qTk ,m, t)− Ê total(qT ′
k+1

,m, t) (4.14)

Furthermore, the optimal error gain of splitting Ti in Tk is defined to be:

∆∗
total(Ti |Tk),∆total({T∗

i1,Ti\T∗
i1} |Tk) (4.15)

where

T∗
i1 = arg max

Ti1⊂Ti
∆total({Ti1,Ti\Ti1} |Tk) (4.16)

For now, suppose we can efficiently compute ∆∗
total(Ti | Tk) for all Ti ∈ Tk. Then given

the current partition Tk, the greedy algorithm picks the subset Ti ∈Tk with the maximum

gain ∆∗
total(Ti | Tk) to be split into {T∗

i1,Ti\T∗
i1} and generates T ′

k+1 for the next iteration.

The algorithm stops when the gains for all subsets in the current partition are negative.

Of course, this algorithm is based on the assumption that ∆∗
total(Ti | Tk) is efficiently com-

putable which is not the case because of the intractable set maximization problem in Eq.

(4.16). To address this problem, first we define the gain for the approximation error upper

bound obtained from splitting Ti into {Ti1,Ti\Ti1} as:

∆U
app({Ti1,Ti\Ti1} |Tk),Uapp(qTk ,m, t)−Uapp(qT ′

k+1
,m, t)

=−C ·MI(Ti1,Ti\Ti1) (4.17)

where MI(X ,Y) denotes the mutual information between the random vectors X and Y and

C is the constant defined in Theorem 2. The equality in Eq. (4.17) can be obtained from the

result of Theorem 2 using some basic algebra. We propose to use ∆U
app instead of ∆total in

Eq. (4.16) to find the split {T̃i1,Ti\T̃i1} as an approximation to {T∗
i1,Ti\T∗

i1}; that is,

T̃i1 = arg max
Ti1⊂Ti

∆U
app({Ti1,Ti\Ti1} |Tk)

= arg min
Ti1⊂Ti

MI(Ti1,Ti\Ti1) (4.18)

133

Using this heuristic, finding the best splitting inside each subset reduces to finding the most

independent bi-split of the subset. The benefit of using this heuristic is that the optimization

function in Eq. (4.18) is a symmetric submodular function which can be minimized using

the Queyranne algorithm in O(|Ti|3) [Narasimhan and Bilmes, 2004]. The disadvantage

is, at the level of finding the best split inside each subset, we do not exactly maximize the

estimated total error anymore. However at one level higher, when the algorithm decides

which subset in the current partition should be split, it looks at the estimated total error,

which is the original objective function we aim to minimize.

Once the split {T̃i1,Ti\T̃i1} is found, we can plug it in Eq. (4.15) to compute ∆̃total(Ti |
Tk) as an approximation to ∆∗

total(Ti |Tk) for all Ti ∈Tk. Algorithm 9 above summarizes the

greedy partitioning algorithm. Note that Qu(D,Ti) in Algorithm 9 denotes the Queyranne

algorithm which finds the splitting of Ti into {T̃i1,Ti\T̃i1} that minimizes ∆U
app.

There are a couple of points regarding the proposed algorithm in this section to be clari-

fied.

(1) Although the estimation error Eest is not used in finding the best splitting of each Ti, it

is implicitly included in ∆∗
total and therefore is used to decide which Ti should be split in

the next iteration.

(2) ∆U
app(Ti |Tk) only depends on the subsets Ti1 and Ti\Ti1 inside Ti and does not change

if we refine other T j ’s. However, this isn’t true for ∆∗
total(Ti | Tk); that is, ∆∗

total(Ti |
Tk) depends on the whole partition Tk and will change if any members of Tk is split.

Because of this, we cannot apply the splitting in all Ti ’s at the same time; in fact, any

new split will change ∆∗
total(Ti |Tk) for all Ti ’s.

(3) In practice we need a robust method to estimate the mutual information between dif-

ferent subsets of continuous random variables from the sample D. One candidate is the

Maximum Likelihood Density Ratio method [Suzuki et al., 2008] which roughly has the

convergence rate of Op(N− 1
2) [Suzuki et al., 2009].

(4) Depending on the size of problem and the method used for estimating mutual informa-

tion, the optimization in Eq. (4.18) might be still too slow. To alleviate this problem

in practice, one can substitute line 6 in Algorithm 9 with any method that finds nearly

independent partitions of variables (e.g. partitioning of the covariance matrix).

134

(5) One needs to decide for which eigenfunction (i.e. which m) Ê total(q,m, t) should be

minimized in the greedy partitioning algorithm. In our experiments, we have used a

weighted average error over the first four principal eigenfunctions.

4.2.5 Experimental Results

4.2.5.1 Synthetic Data In the first experiment, our goal is to cluster the synthetic 3D

dataset in Figure 19 (two balls surrounded by two rings) using spectral clustering. In par-

ticular, we applied K-means in the embedded spaces induced by the factorized diffusion map

and the standard diffusion map. The dimension of the embedded spaces for both mappings

is 3 using the first three non-trivial eigenvectors of the corresponding operators. Assuming

the independence X ,Y ⊥ Z is known in advance, we passed the partition T2 = {{X ,Y }, {Z}}

to the factorized diffusion mapping algorithm (induced by Lemma 1). To assess the perfor-

mance of mappings, we measure the divergence of the clustering result in each case from

the true cluster labels. To do so, we have used the normalized variation of information

which is a distance metric between two clusterings [Meila, 2003]. This metric measures the

conditional entropy of cluster labels given the true labels and vice versa (the smaller this

metric is, the closer two clusterings are). Figure 16(A) shows the variation of information

for the two methods with the true cluster labels as the sample size changes. We also show

the performance of standard K-means without any spectral embedding (the black curve).

The curves are averages over 20 repetitions with the error bars showing the 95% confidence

intervals.

As the results show, for small sample sizes there is no difference between the perfor-

mance of the two spectral methods. However, as we increase the sample size, our method

starts to outperform the standard diffusion map leading to significantly smaller variation

of information with the true cluster labels. As we continue increasing the sample size, the

difference between the two methods starts decreasing with both methods eventually reach-

ing the perfect clustering given the sample size is sufficiently large (700 for our method).

According to these observations, we conclude that the extra knowledge regarding the under-

lying distribution of data (i.e. the independence relation) is particularly useful for mid-range

135

200 400 600 800 1000

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

(A)

Sample Size

V
ar

ia
tio

n
of

 In
fo

rm
at

io
n

● ●

●

●

●

●
●

●
● ● ●

●
● ●

●
● ●

●

● ●
●

●

●

●
● ● ● ● ● ● ● ● ●

Factorized DM
Regular DM
K−means

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 (B)

5 10 15

−
9

−
8

−
7

−
6

−
5

−
4

−
3

−
2

(C)

Partition #

E
st

im
at

ed
 lo

g−
to

ta
l e

rr
or

140
280
700

Figure 16: (A) Clustering results on synthetic data (B) Covariance matrix (C) The bootstrap-

ping error for different partitions on the image data of features in the image data set.

sample sizes and can significantly improve the results of spectral clustering. However, for

very small or very large sample sizes, this extra piece of information may not make a signifi-

cant difference. Also, the standard K-means performed very poorly compared to the spectral

methods.

4.2.5.2 Image Data In the second experiment, we have applied our framework on the

image segmentation dataset 1. This dataset consists of 2310 instances. Each instance was

drawn randomly from a database of seven outdoor categories. The image, a 3×3 region, was

1http://archive.ics.uci.edu/ml/datasets/Image+Segmentation

n k∗ Baseline α Factorized α

140 5 0.727±0.007 0.755±0.007

280 3 0.707±0.006 0.748±0.007

700 2 0.704±0.005 0.764±0.006

Table 26: Results of Greedy Partitioning on image data set for different sample sizes.

136

hand-segmented to create a classification for each region. The seven classes are brickface,

sky, foliage, cement, window, path, and grass. Each of the seven categories is represented

by 330 instances. The extracted features are 19 continuous attributes that describe the po-

sition of the extracted image, line densities, edges, and color values. We have treated this

classification problem as a clustering task with each class regarded as one cluster. The main

reason for choosing this dataset is the features conceptually seem to be divided into nearly

independent subsets (e.g. the position vs. the edge features). Figure 16(B) also shows the

empirical covariance matrix of this dataset with nearly blocked structure which again in-

dicates the existence of independent feature subsets. However, there might still exist some

non-linear dependencies among features and therefore we cannot completely trust on the

block structure suggested by the covariance matrix as the true partitioning. This observa-

tion motivates utilizing the proposed Greedy Partitioning algorithm to automatically find

the best partition for factorized diffusion mapping of the data.

Figure 16(C) shows the optimization paths of the Greedy Partitioning algorithm for dif-

ferent sample sizes (the plots are averaged over 10 runs). The x-axis shows the number

subsets in the partitioning on the variables while the y-axis is the total error estimated us-

ing bootstrapping in the log-scale (with the minimums marked on the plots). As the figure

shows, all of the plots have the same general trend: namely as we start partitioning the

features, there is a significant drop on the estimated total error until the total error reaches

a minimum. We attribute this behavior to the decrease in the estimation error while intro-

ducing very small approximation error. However, if we continue refining the partitioning,

the increase in the approximation error will dominate the decrease in the estimation error

and therefore the total error starts increasing again. It is also apparent from the plots that

as the sample size increases the estimated total error decreases for a fixed number of par-

titions. Finally, note that the position of minimum is shifted to the left (i.e. toward smaller

partition numbers) as we increase the sample size. This observation, in fact, shows that

for smaller sample sizes, the algorithm automatically regularizes more by imposing more

independence assumptions (i.e. more refined partitioning) in order to get more accurate

estimation of eigenfunctions.

Having found the optimal partitioning and used it for the factorized diffusion mapping,

137

we can feed the resulted mapping to K-means to find the clusters. To evaluate the result of

clustering given the true cluster labels, one option is to use the variation of information score

as before. However, we observed that the results of K-means were more sensitive to initial

centers in this real-world problem. To alleviate this issue, we develop a new evaluation

metric called separation which assesses how separated the true cluster are in the embedded

space, independent of the initial cluster positions for K-means. To compute this metric:

given the new coordinates of data in the embedded space {z(1), . . . , z(N)} and the true cluster

labels, we compute the center µi for cluster Ci in the embedded space. Each Ci has Ni data

points; we define wi to be the number of data points among the Ni closest points to µi which

actually belong to the cluster Ci (using the true labels). The separation is computed as

α=∑
i wi/N which is a number in [0,1]. For α= 1, we have the perfect separation meaning

that given a good set of initial points, K-means can completely separate the clusters based on

the true labels. In fact, this metric is equivalent to clustering purity metric when K-means

generates the ideal clustering by finding clusters centered at µi ’s. Table 4.2.5.1 summarizes

the optimal number of partitions k∗ found for each sample size as well as the separation

α (and its 95% CI) for both standard and factorized diffusion maps. All the results are

the average over 10 runs. As the results show, using factorized diffusion embedding, the

separation of clusters in the embedded space is significantly improved.

4.2.5.3 SNP Data In the third experiment, we have applied the factorized diffusion map-

ping on a SNP dataset. A SNP represents a certain location on the human DNA which is an

unordered pair of alleles from the alphabet {A,C,G,T}, for example AA, AC, GT, etc. The

genetic code for an individual is represented by a set of SNPs locating at different positions

on the human genome. Subsequently, in a SNP dataset, each record (or feature vector) rep-

resents the genetic code for an individual where the features are the SNPs. Across different

individuals, each SNP is restricted to take values from only two distinct alleles; for exam-

ple, SNP1 may only take values from {A,C} which means that the only legitimate values for

this SNP are AA, AC and CC. One of these two alleles is the major allele meaning that it

appears with much higher frequency across the population for that specific allele, whereas

the allele is the result of genetic mutation and happens with much lower frequency. This

138

means that if in our previous example for SNP1, A is the major allele and C is the minor

one, the pair AA happens with the highest frequency, the pair AC is the result of one ge-

netic mutation and happens with lower frequency than AA across the population. The pair

CC in this example is the result of two genetic mutations and is even rarer than AC. In

our SNP dataset, the most frequent pair (AA in our example) is coded by 0 while the rarest

pair (CC in our example) is coded by 2 and the one in between (AC in our example) is coded

by 1. In other words, the features (i.e. the SNPs) in our dataset take values from the set

{0,1,2}. Although the features are discrete, it is easy to see from the description above that

the Euclidean distance between two indviduals over the same set of SNPs is meaningful;

that is the order of feature values makes sense.

The dataset we worked on in this section consists of 1,411 individuals each of which

are the SNP values over 88,709. That is, we have 1,411 datapoints in a space with the di-

mensionality of 88,709. Furthermore, each individual is labeled by a binary label showing

whether he/she has the Alzheimer’s disease. In this dataset, we have 860 healthy individu-

als vs. 551 individuals with Alzheimer.

Like many other biomedical datasets, this dataset suffers from high dimensionality com-

pared to its sample size. Therefore, dimensionality reduction seems inevitable before any

further Machine Learning task can be done. Due to our experimental goals, here we focus on

the Diffusion Maps to carry out dimensionality reduction. Due to the shortage of examples

compared to the dimensionality, the empirical eigenfunctions of the diffusion operator will

be far from the true eigenfunctions as discussed before in this chapter. This means that our

proposed factorized diffusion mapping framework can be a good solution in this case. To this

end, first we need to partition the SNPs into (almost) independent subsets. One option is to

use the algorithm proposed in Section 4.2.4.3. However, that algorithm is computationally

expensive in terms of the number of dimensions such that having 88,709 dimensions makes

it infeasible to apply this algorithm. Instead, we rely on the domain knowledge to partition

the SNPs. In particular, we know each SNP belongs to a gene which covers a certain region

on the DNA; that is, a gene is consecutive sequence of SNPs on the DNA. Therefore, genes

provide a partitioning of SNPs into disjoint subsets. Now, the question is whether these sub-

sets are independent of each other. From the domain knowledge, it is commonly believed

139

that the SNPs belonging to the same gene exhibit much stronger dependence among each

other than to the SNPs on other genes. As a result, we use this knowledge to partition the

SNPs in our dataset into almost independent subsets based on the genes. In this datasets,

we have 11,509 genes which generate 11,509 SNP subsets (or subspaces).

We have first computed the eigenvalues and the eigenfunctions of the empirical diffusion

operator in each subspace independently and then found the Cartesian product of these

values and functions to form the eigenvalues and the eigenfunctions of the entire space as

described in Lemma 1. The resulted eigenfunctions are sorted according to the decreasing

order of the resulted eigenvalues. We then used the first C eigenfunctions to embed the

feature vectors into a C-dimensional space. As a baseline approach, we have also used the

first C eigenfunctions of the regular diffusion map to embed the data.

In order to evaluate the regular and the factorized diffusion maps on the SNP data, we

have run the K-means clustering algorithm in the embedded spaces generated by the two

methods to cluster the datapoints into two groups. Then we computed the distance between

the clustering result and the true labels in terms of the variation of information as described

before in this section. Since, K-means is sensitive to initial cluster centers, we have repeated

the clustering 5 times with different random initial centers. The reported results are the

average variation of information. Figure 17 shows the average variation of information

along with its 95% confidence interval for two methods as we change C (the number of

dimensions in the embedded space) from 1 to 1,000 (Note that the X -axis is in the log-scale).

As the plot shows, in all cases, using the factorized diffusion mapping according to the gene

partition decreases the average variation of information; that is, by using the factorized

eigenfunctions, we could decrease the distance between the true clustering (according to the

true labels) and the result of K-means. Moreover, this difference is statistically significant

in most cases. This results show that by using the factorized diffusion maps according to

the gene partitioning of the SNPs, we could improve the result of clustering by decreasing

the distance between the clustering results and the true labels.

An interesting question is how did the clustering result using the factorized diffusion

maps get closer to the clustering induced by the true labels while we know that diffusion

maps are inherently unsupervised techniques? To answer this question, we refer the reader

140

to the analysis provided in the proof of Lemma 2. According to this analysis many top

eigenfunctions of the factorized diffusion map correspond to one or only a few independent

subspaces; that is, these eigenfunctions are the product of the second eigenfunction(s) with

highest eigenvalue(s) from a (few) subspace(s) by the constant eigenfunctions corresponding

to eigenvalue of 1 from other subspaces. Since we have a large number of (almost) indepen-

dent subspaces in our problem (i.e. 11,509), we observed that many of the top eigenfunc-

tions indeed correspond to only one subspace (or equivalently one gene). In other words, the

factorized diffusion map reduces the dimensionality by effectively abstracting the feature

vectors in the SNP space into lower-dimensional vectors in the gene space. This means that

the feature values in the embedded space model the variation across the population at the

gene level. On the other hand, some medical conditions and diseases like the Alzheimer’s

disease are known to have genetic risk factors which may not be well captured in the higher-

dimensional SNP space with small set of examples. However, abstracing to the gene level

can reduce the dimensionality while preserving the discriminant signal at the same time at

the gene level and therefore improve the discrimination between the two classes of control

and disease. It should be emphasized that the gene space is still high dimensional and far

from perfect in terms of class discrimination. However, applying our proposed framework is

still a significant improvement compared to the regular diffusion maps.

141

1 5 10 50 100 500 1000

0.
6

0.
8

1.
0

1.
2

1.
4

C

V
ar

ia
tio

n
of

 In
fo

rm
at

io
n

● ● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●●

●

●

●

●

●

●

●●
●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●
●

●

●

Regular DM
Factorized DM

Figure 17: Speactral clustering of the SNP data: the average variation of information be-

tween the clustering resulted by the Regular & the Factorized Diffusion Mappings and the

true labels vs. the dimensionality of the embedded space.

142

4.2.6 Discussion

In this section, we utilized the existence of independence structure in the underlying dis-

tribution of data to estimate diffusion maps. In particular, we studied the reduction on

the estimation error of diffusion eigenfunctions resulting from a factorized distribution. We

showed that if the underlying space is factorized into independent subspaces, the estima-

tion error of the major eigenfunctions can be decomposed into errors in only a subset of these

subspaces each of which has a much smaller dimensionality than the original space. Since

in many real problems, the factorized distribution either does not exist or is not known in

advance, we studied how much bias is introduced if we impose the factorized distribution

assumption. To find the optimal trade-off between the approximation bias and the estima-

tion error, we developed a greedy algorithm for finding a factorization that minimizes the

estimated total error. The experimental results showed that the factorized approximation

can significantly improve the results of spectral clustering on both the synthetic and real

datasets.

The fundamental intuition underlying the framework proposed in this chapter is that

the density estimation problem and the spectral analysis of data are closely related. Hence,

the same structural assumptions that can help us to reduce the complexity of learning for

density estimation purposes, can also help us for the empirical spectral analysis.

4.3 INFINITE DIMENSION: DEALING WITH FUNCTIONAL SPACES

4.3.1 Motivation

So far, we have considered the case of applying the graph-based methods for problems with

high-dimensional input feature space. Although the feature vector for each datapoint can

be high-dimensional, the assumption is it has the same finite length for all examples. This

assumption holds in many real-world problems; however, there are some cases where the

feature vectors for different examples have different lengths. In particular, we consider the

case where the input dataset is composed of functional objects instead of feature vectors.

143

For example in [Buchman et al., 2009], the authors consider the problem of estimating

the density of hurricane tracks where each datapoint is given as a sequence of geographical

locations which represent the trajectory of a hurricane. The problem with this setting is two-

fold: (a) different tracks might be represented by different number of geographical location

depending on the distance that is traversed by the hurricane, and (b) even if two tracks have

the same number of locations (features), it is not an easy task to match their features; as a

result, many element-wise distance metrics (like the Euclidean distance) are not applicable.

In fact, it is quite a difficult task to define a distance metric between the tracks in this

problem. By taking a closer look at this problem, it becomes apparent that we are actually

dealing with functions which are sampled at different number of points. Therefore, in theory,

the input space is a functional space and infinite-dimensional. The main question is how we

can represent these infinite-dimensional objects in a meaningful finite-dimensional feature

space with a meaningful distance metric.

In this section, we propose a method for converting functional datapoints to fixed-length

and meaningful feature vectors. In particular, we consider the problem of transforming the

human brain fibers into a low-dimensional vector space. This problem is motivated by recent

advances in Magnetic Resonance Imaging called Diffusion Weighted Imaging [Mori and van

Zijl, 2002] that are capable of quickly and non-invasively imaging hundreds of thousands of

over 150,000 km of myelinated nerve fibers present in the human brain. The Connectome

(the set of all fibers in one brain) determines the information transmission between areas,

and thus is important for obtaining a fundamental understanding of connectivity between

regions of gray matter in the brain (Figure 18(A)). These fibers are not arbitrarily devel-

oped in the brain but mostly organized in a bundled structure such that in some cases the

bundle is actually associated with a specific functionality of the brain (Figure 18(B)). Unfor-

tunately, this structure is not fully known, and therefore, applications like fiber clustering,

fiber density estimation and fiber visualization arise for the Connectome data. However,

many of the standard methods for these applications do not handle functional data and/or

large-scale datasets. This would motivate our methodology to transform functional input

data into a low-dimensional vector representation such that the result becomes usable for

standard Machine Learning algorithms. Automatic mining of the brain fibers also serves an

144

important practical purpose of aiding in preserving critical brain function during neurosur-

gical tumor removal. In such case it is important to know how to avoid cutting the major

cables connecting critical brain functions such as language motor control and visual input.

Thus we would like to perform probabilistic data analysis such as density estimation and

data visualization on this infinite-dimensional, large-scale dataset.

The transformation process presented in this section consists of two steps: in the first

step, the functional objects are converted into high-dimensional but meaningful fixed-length

feature vectors. In the second step, the high-dimensional feature vectors are transformed

into a low-dimensional space that maintains the cluster (bundle) structure in the original

fiber space. For the second step, we have used the Laplacian Eigenmaps, presented in

Chapter 1, to reduce the dimensionality while preserving the cluster structure of the fiber

space. However, since the number of datapoints (fibers) in our problem is 250,000, we are

facing the Large N problem here. As a result, the application of the standard Laplacian

Eigenmaps are not feasible. To address this issue, we have developed and applied a large-

scale version of the Laplacian Eigenmaps, which is in fact a solution to the Large N problem.

Figure 18: (A) The full Connectome (B) The bundles associated with brain functions.

145

4.3.2 Vector Representation

The Connectome dataset is a set of brain fibers each of which can be seen as a smooth

3D curve. Technically speaking, this would imply that the input space is infinite dimen-

sional. However, in practice, each curve C(i) is represented by a sequence of qi 3D points

{[x(i)
k y(i)

k z(i)
k]T | 1 ≤ k ≤ qi} in the dataset. In order to support comparisons of these objects

and their analyses, we need to represent the curves compactly in a meaningful vector space

with a well-defined distance measure.

A trivial approach of concatenating all 3D points that form the curve into a linear vector

is not a promising solution since curves with different lengths will become vectors of differ-

ent sizes, making hard to analyze. Instead, we build upon a technique originally introduced

in functional data analysis (FDA) to process 1D functional datasets [Rossi et al., 2005]. In

particular, we assume each coordinate of a curve is a parametric function of a (time) param-

eter t such that as t changes from 0 to 1, [x(i)(t), y(i)(t), z(i)(t)]T generates C(i). Then every

point [x(i)
k y(i)

k z(i)
k]T associated with one of the curves in the dataset can be thought of as a

3D point sampled from the original curve at time t(i)
k = (k−1)/(qi −1). Furthermore, we as-

sume every curve can be represented in terms of basis m functions Ψ= {ψ1, . . . ,ψm}; that is,

x(i)(t) = ∑m
j=1α

(i,x)
j ψ j(t) =

[
α(i,x)]T

Ψ(t), where α(i,x) = [
α

(i,x)
1 , . . . ,α(i,x)

m
]T . 2 Using the sample

3D points associated with C(i), one can estimate the coefficients α(i) = {[α(i,x)
j ,α(i,y)

j ,α(i,z)
j]T |

1≤ j ≤ m} by minimizing the sum of squared errors (SSE):

α(i,x) ← argmin
α

qi∑
k=1

(
x(i)

k −αTΨ(t(i)
k)

)2 (4.19)

In FDA, the L2 distance between two functions f and g over Γ is defined as ‖ f − g‖2
2 =∫

Γ(f − g)2dx. Similarly, we can define the distance between two curves C(i) and C(j) as the

sum of L2 functional distances between their corresponding coordinates:

‖C(i) −C(j)‖2
2 ,

∫ 1

0

(
x(i)(t)− x(j)(t)

)2dt+
∫ 1

0

(
y(i)(t)− y(j)(t)

)2dt+
∫ 1

0

(
z(i)(t)− z(j)(t)

)2dt (4.20)

Representing the curve coordinates in basis Ψ, each term in (4.20) then can be written as:∫ 1

0

(
x(i)(t)− x(j)(t)

)2dt = [
α(i,x)]T

Φα(i,x) + [
α(j,x)]T

Φα(j,x) −2
[
α(i,x)]T

Φα(j,x) (4.21)

2Notice that, for simplicity, we show the formulations only for the x coordinate; the same applies to y and z
coordinates

146

where Φ= [∫ 1
0 ψi(t)ψ j(t)dt

]
m×m is the mass matrix for the basis Ψ on [0,1]. If Ψ is chosen

to be an orthonormal basis, then Φ becomes the identity matrix. In this case, (4.20) reduces

to:

‖C(i) −C(j)‖2
2 = ‖α(i,x) −α(j,x)‖2

2 +‖α(i,y) −α(j,y)‖2
2 +‖α(i,z) −α(j,z)‖2

2 = ‖α(i) −α(j)‖2
2 (4.22)

That is, the L2 functional distance between C(i) and C(j) is equivalent to the Euclidean

distance between their coefficient vectors α(i) and α(j). Therefore, the mapping C(i) 7→ α(i)

can be seen as a transformation from the functional space of curves to the vector space of

their coefficient vectors which captures the L2 functional distance in the original space by

the Euclidean distance in the new space. As a result, each curve C(i) is represented by the

vector α(i) of size d = 3m regardless of its length (where m is the number of basis functions).

4.3.3 Large-Scale Laplacian Eigenmap

Our goal here is to embed the high dimensional functional space of fibers into a low di-

mensional vector space such that if two fibers belong to roughly the same bundle (cluster),

their low dimensional representations are close in terms of Euclidean distance. We partly

achieved this goal in the previous section by reducing the infinite dimensional function

space into a high-dimensional vector space. For further dimensionality reduction (< 10) and

preserving the clustering structure at the same time, we chose the Laplacian Eigenmaps

[Belkin and Niyogi, 2002] framework described in Chapter 1. Just to review, by defining

the similarity weight between two fibers C(i) and C(j) as wσ(i, j) = exp(−‖α(i) −α(j)‖2
2/2σ2),

one can compute Laplacian matrix, L = D−W where W = [wσ(i, j)]N×N and D is a diagonal

matrix with diagonal entries dii =∑N
j=1 wσ(i, j). The eigenvalues of Laplacian matrix are all

non-negative with the smallest one equal to 0 (i.e. 0 = λ0 ≤ λ1 ≤ . . . ≤ λN−1) [von Luxburg,

2007]. Defining vk(i) as the i-th element of the eigenvector of L associated with λk,

φg(C(i)), [
√

g(λ1)v1(i),
√

g(λ2)v2(i), . . . ,
√

g(λK)vK (i)]T (4.23)

is the K-dimensional Laplacian embedding of C(i) with non-increasing spectral transfor-

mation function g [Zhu et al., 2006]. For g(·) = 1, φg(·) is called the Standard Laplacian

147

Eigenmap. The dimension of the output space, K , is usually determined using spectral gap

analysis. The assumption is then the optimal K is much smaller than the original dimen-

sion, d. Given g, one can find the low-dimensional embedding of the input data by finding

the eigen decomposition of L.

The Large N arises when the number of datapoints (fibers in our case), N, on which L is

defined, is so large that storing L in memory and computing its eigen decomposition become

intractable. In our Connectome dataset, each brain image contains N = 250,000 fibers which

is large enough to cause the problem. In the previous chapter, we saw many solutions to deal

with the large-scale datasets for the graph-based methods. The most intuitive solution is

to use subsampling to compute L only on a random subset of datapoints. The problem with

this method is we may get very different results depending on the random sample [Kumar

et al., 2009]; also, we only get the embedding for the datapoints inside the selected sample.

Algorithm 10: Approximate Large-scale Laplacian Eigen Decomposition
1: Partition data into R partitions using K-means
2: Compute LR over the cluster centers
3: Find the first K eigenvectors of LR
4: for all i = 1..N and k = 1..K do
5: find the set of T nearest centers for C(i)

6: approximate vk(i) using (4.24)
7: end for

8: Return the augmented eigenvectors

To address this problem, we have developed a robust method to approximate the eigen-

vectors of L over all datapoints. Algorithm 10 describes the proposed algorithm. The idea

is to first partition the whole datapoints into R ¿ N clusters using K-means clustering al-

gorithm which is relatively fast and does not need O(N2) memory space. To minimize the

dependency of the output on the initial positions of the cluster centers, we repeat the process

several times with different initial positions and pick the one with the smallest clustering

risk. Then we compute the weight matrix, WR , and subsequently LR over the cluster cen-

ters which are now of size R instead of N. Having computed the eigenvectors of LR (which

are R-dimensional), we extend the values of these eigenvectors from cluster centers to the

whole datapoints by interpolation. More specifically, for a given datapoint C(i), we find the

set Ni of T nearest cluster centers, then we approximate the full eigenvector by the weighted

148

average,

∀k = 1..K , ∀i = 1..N, vk(i)←
∑

u∈Ni wσ(i,u)vk(u)∑
u∈Ni wσ(i,u)

(4.24)

To summarize, we have developed a two-stage framework: in the first stage, we transform

the infinite-dimensional space of 3D curves into a (possibly high-dimensional) vector space

in which the coordinates as well as the Euclidean distance are meaningful (each resulted

coordinate reveals the contribution of a specific basis function in formation of the curve).

This might be sufficient for applications like clustering which only need a good distance

measure. However, for other applications such as density estimation that are sensitive to

the dimensionality of input space, it is essential to reduce the dimensionality without losing

the cluster structure. One standard solution is to use Laplacian eigenmaps; however, we

need a large-scale version of it since we have too many datapoints (fibers) in the dataset.

That is what we have developed in the second stage of the framework.

4.3.4 Results and Discussion

Customizing our framework for the Connectome data, a good candidate for the basis Ψ

will be orthonormal B-splines since fibers are known to be smooth non-periodic 3D curves,

which are piece-wise polynomial functions with local support. The number of pieces be-

tween [0,1] (a.k.a. resolution) on which the B-splines are defined determines the number

of basis functions, m. Increasing resolution will increase m which in turn makes the curve

approximation more accurate. By performing leave-one-out cross validation, we pick m = 32

resulting in 96-dimensional space for the vector representation of fibers (i.e. d = 96). For the

second stage parameters, we have set R = 1000 and T = 3. Also, we have chosen the output

dimension, K = 10.

Figure 19 (left) shows the first 3 dimensions of the resulted embedding of a specific brain.

Each point represents a fiber in the original space. Fibers in the embedded space form a

geometrical shape with highly concentrated vertices connected by edges (continuous paths)

between them. We also observed that the fibers mapped to the vertices actually form visible

bundles (clusters) in the original Connectome image. Figure 19 (right) shows the bundles

corresponded to some of the vertices on the left side. Due to the preservation of similarity

149

Figure 19: (Left) The embedded fibers (Right) The fibers corresponded to vertices.

in the embedded space, the fibers corresponded to nearby points along the edges are very

similar in terms of shape and location and in fact show the gradual shape transition paths

from one bundle (vertex) to another one (e.g. S1 → S2 → S3 in Figure 19 (left)). Furthermore,

these transition paths also reveal that the shape transition between two bundles in the brain

cannot be arbitrary; that is, it can only happen through one of the plausible paths uncovered

in the embedded space. In our dataset, we have cluster labels for a small portion of fibers.

We used these labels to compare the separation of these fibers in vector space resulted from

the first stage with the embedded space(s) resulted from the second stage. Separation in

96-dimensional space is 95.89% while the same quantity is 71.75%, 94.01%, 96.06%, using

only the first 2, 3 and 10 dimensions of the embedded space, respectively. This shows that

separation is preserved while dimensionality can be significantly reduced to 3, making the

entire dataset approachable for applications such as density estimation and classification.

150

5.0 CONCLUSIONS AND FUTURE DIRECTIONS

5.1 CONTRIBUTIONS

In this thesis, we started with the detailed description of some of the famous graph-based

methods in Machine Learning and their applications. We showed the applicability and

the effectiveness of these methods on the real problem of computing data-driven similarity

among (chunks) of terms in the text analysis domain. In particular, the proposed methodol-

ogy features some important and practical characteristics:

(a) The induced similarity/distance is completely data-driven and therefore can adapt itself

to different text or topic domains.

(b) The similarity/distance can be computed between any two terms even if they did not

co-occur in the same sentence/paragraph/document.

(c) The similarity/distance can be computed not only between two terms but also between

any two sets of terms with arbitrary sizes. We referred to this feature as the set-set

similarity.

(d) The proposed framework is general and gives us the flexibility of choosing the similarity

kernel.

(e) Using some techniques like the Nystrom approximation, the computation of set-set sim-

ilarities is carried out in the linear time and therefore, it makes the proposed framework

very efficient for practical purposes.

(f) By further usage of the Nystrom approximation in combination with the subsampling

techniques, we showed the framework can scale up to large-scale term spaces without

losing significantly in terms of the accuracy.

151

(g) The proposed framework showed its merits in practice by outperforming state-of-the-art

baseline methods for two tasks of document retrieval and query expansion.

After making our case about the importance of graph-based methods in Machine Learn-

ing and their main advantages, we directed our attention to the problem of scalability for

the graph-based methods when facing large-scale datasets. In particular, we focused on two

main challenges: dealing with large number of datapoints (aka the Large N problem) and

dealing with high dimensionality (aka the Large d problem).

As we stated in this thesis, large number of datapoints poses mainly a computational

problem for the graph-based methods. The inherent quadratic computational and memory

complexity of the graph-based methods makes them impractical choices for the real-world

large-scale datasets. As we discussed before, this is a special case of the classical N-body

problems. After reviewing the existing methods in the literature that address these prob-

lems for graph-based methods, we proposed our Variational Dual-tree (VDT) framework to

address a specific problem in the graph-based methods: approximating the large-scale tran-

sition matrices of the random walk on similarity graphs. As we illustrated through this

thesis, the random walk transition matrix plays the key role for many graph-based tech-

niques such as Diffusion Maps, Laplacian Eigenmaps, label propagation on graphs, etc. The

proposed VDT framework approaches the problem hierarchically reduce the transition ma-

trix into blocks and estimating the block values using the variation approximation. The

main features of this framework are as follows:

(a) The number of parameters in the transition matrix is reduced from O(N2) to O(|B|),
where |B| is the number of blocks used to approximate the transition matrix and can be

as small as O(N). This is a huge gain in terms of the memory complexity.

(b) The construction time of the transition matrix is reduced from O(N2) to O(N1.5 log N +
|B|) if we use the Anchor Tree method for building the cluster hierarchy. If the cluster

hierarchy is given, the construction time will be O(|B|) which again can be as small as

O(N) depending on the desired accuracy.

(c) The proposed framework is independent of the hierarchical clustering method used;

therefore, one can use other metric trees than the anchor trees like kd-trees, ball trees,

152

etc.

(d) The proposed framework provides a fast matrix-vector multiplication algorithm that can

relieve the crucial matrix-vector bottleneck in many applications such as label propaga-

tion and eigen decomposition.

(e) The proposed framework provides an optimization-based technique to adjust the band-

width parameter of the Gaussian kernel for the similarity graph construction.

(f) The refinement process included in the framework provides a systematic mechanism to

adjust the trade-off between approximation accuracy and computational complexity of

the model.

(g) As opposed to the sparsity-based methods such as k-nearest-neighbor (kNN), the re-

sulted matrix (graph) from VDT is always connected. This is a crucial property for

applications such as label propagation or diffusion on graphs where disconnectivity can

hurt the end result. This property is in fact the direct result of the parameter sharing

idea rather than sparsification behind our framework.

(h) By applying VDT on real datasets, we observed that while VDT pays a couple of per-

cent in terms of accuracy, it gains orders of magnitude in terms of time and memory

complexity compared to the exact method for computation of transition matrices.

(i) Due the connectivity of its resulted graph, VDT showed more robust behavior during the

refinement process compared to its rival kNN method in the experiments.

(j) We showed that VDT can scale up to gigantic datasets with millions of datapoints.

The VDT framework is restricted to the Euclidean spaces where the local similarity

between the datapoints is derived from the Euclidean distance. However, as explained in

the thesis, this is a major restriction especially for those datasets where the Euclidean dis-

tance is simply not the best way to express similarity. On the other hand, replacing the

Euclidean distance with an arbitrary distance can seriously endanger the efficiency of the

VDT framework as discussed in more details before. To address this problem, we extend the

VDT framework to support the big class of Bregman divergences of which the Euclidean dis-

tance is a special case. We called this general framework the Bregman Variational Dual-tree

(BVDT) framework. The main features of BVDT can be summarized as:

153

(a) The class of Bregman divergences covers a large set of distances and divergences in Ma-

chine Learning such as Euclidean distance, KL-Divergence, Generalized I-Divergence

(GID), Itakura-Saito distance, Logistic Loss, Mahalanobis Distance, etc. Therefore by

extending VDT to BVDT, we effectively extend our proposed framework to all these dif-

ferent distances and divergences.

(b) Due to the special form of the general Bregman divergence, BVDT still keeps the same

computational complexity as VDT and therefore stays a fast method for transition ma-

trix computation.

(c) By utilizing the connection between the Bregman divergences and the exponential fam-

ilies, BVDT provides a neat probabilistic interpretation.

(d) The connection to the exponential families can be further used to derive the proper

Bregman divergence for a given problem using the probabilistic modeling of the data

generation process. We specifically used this procedure in our experiments to derive the

GID for the frequency data.

(e) As a byproduct, BVDT extends the Euclidean anchor tree construction algorithm to sup-

port Bregman spaces.

(f) VDT is in fact a special case of BVDT where the Bregman divergence used is the Eu-

clidean distance.

(g) The experiments on the simulated frequency data as well as the real text datasets show

that BVDT can dramatically improve the accuracy of the VDT model while still enjoying

the same computational benefits gained by the original VDT framework.

Finally, in the last part of this thesis, we focused our attention on the problem of high-

dimensionality which has a statistical nature. As we explained, the graph structure resulted

from a finite set of datapoints in a high-dimensional space can be quite different from the

true manifold structure of the population in that space. In diffusion maps, this difference

is reflected in terms the error between the eigenfunctions of the empirical and the true dif-

fusion operators. This error exponentially depends on the dimensionality which signals the

classical curse of dimensionality. To address this problem for diffusion maps, we proposed

the factorized diffusion maps which uses the independence assumptions in the underlying

154

distribution to conquer the curse of dimensionality. In particular, we showed that if the un-

derlying distribution is factorizable into independent subspaces, then the eigenfunctions of

the diffusion operator can be computed as the product of the eigenfunctions in the subspaces.

The factorized diffusion framework provides the following features:

(a) The key idea of the proposed framework is to use the structure in the underlying distri-

bution to compensate for the lack of enough examples.

(b) In case the underlying distribution is factorizable, the factorized diffusion framework ex-

ponentially decreases the estimation error of the eigenfunctions in the low-dimensional

subspaces.

(c) In case the underlying distribution is almost factorizable, the factorized diffusion frame-

work exponentially decreases the estimation error of the eigenfunctions in the low-

dimensional subspaces while introducing a bounded approximation error (or bias).

(d) We derived theoretical upper bounds for the estimation and the approximation errors.

(e) In case the factorization is not known a priori, the framework provides an algorithm to

automatically find the best factorization that minimizes the empirical bootstrap error to

find an optimal trade-off between the estimation and approximation errors.

(f) In our experiments on synthetic and real datasets, we showed that the results of spectral

clustering can be improved by using the factorized diffusion framework.

Furthermore, we proposed some practical techniques to deal with infinite dimensional

spaces. In particular, we considered functional spaces where each datapoint is a function.

Our proposed technique involves expressing each functional datapoint in a fixed size func-

tional basis. To evaluate the applicability of our method, we apply it on the human brain

connectome data. The human brain connectome consists of the brain fibers where each fiber

is a 3D smooth curve. By considering each fiber as datapoint, one typical task on such a

dataset is to cluster the fibers into fiber bundles. However, this is a non-trivial task due

the functional nature of datapoints. By applying our technique combined with the Lapla-

cian embedding, we could embed the human brain connectome into a low-dimensional space

which can be further fed to a clustering algorithm.

155

5.2 OPEN QUESTIONS

The proposed frameworks in this thesis are complete and self-contained in the sense that

they provide theoretical solutions for the problems they are designed for, and at the same

time they are equipped with a toolset of useful techniques to deal with some practical is-

sues in practice. However, these methods have their own limitations and open questions

which are either dictated by the scope of the problems or left unanswered due to our time

constraints. In this section, we list a set of more important open questions for the two main

proposed frameworks for the Large N and the Large d problems.

Starting with the Large N problem, the main proposed frameworks in this thesis to

address this problem for the graph-based methods were the VDT and its generalization the

BVDT. Although, these methods performed well for the designated tasks, we still face some

open questions:

(a) The VDT and the BVDT frameworks are essentially designed for the computation of

large-scale transition matrices and they cannot be used to compute other types of ma-

trices in the graph-based methods such as the similarity matrix.

(b) The fundamental assumption in these methods is the data resides in a metric space with

a valid Euclidean distance or Bregman divergence. Therefore, it is not clear yet how to

apply these methods to those problems with non-vector datapoints.

(c) The cluster tree construction phase can be quite sensitive to the structure of data in the

input space such that in extreme cases the complexity of the proposed frameworks can

be severely degraded due to the lack of structure in a high-dimensional input space.

(d) Although the proposed frameworks are independent of the cluster tree construction al-

gorithm, we did not use other kinds of trees than the anchor trees in the current work.

It can be worthwhile to use other types of trees like kd-trees or Ball trees and compare

the results.

(e) More importantly, the tree construction phase is purely algorithmic and not directly

encoded in the objective function of the variational approximation. Yet, we know that

the quality of the cluster tree heavily affects the quality of the final approximation.

156

Therefore, one crucial question is how to directly incorporate the structure of the cluster

tree in the optimization.

(f) With regard to the refinement process, we assumed that the maximum allowed num-

ber of blocks is an input parameter to the framework; that is, the user can specify the

available budget in terms of the computational resources; then the proposed refinement

algorithm tries to split the blocks in a way to maximize the accuracy until it reaches the

maximum budget. However, we did not provide any error guarantee. More precisely,

does the proposed technique for refinement give us an error upper bound for a given

tree structure and a maximum budget? The other interesting question is can we de-

sign a refinement algorithm that accepts an error requirement as the input and find a

partitioning with minimum number of blocks that meets the requirement.

(g) In our experiments for evaluating VDT and BVDT, we focused on label propagation for

the semi-supervised learning problem. It would be interesting to evaluate the perfor-

mance these methods in other Machine Learning applications such as eigen decomposi-

tion of the transition matrix for spectral clustering or low-dimensional embedding.

(h) In terms the baseline methods used in the experiments, we could not compare our frame-

works with some of the methods in the N-body problems literature. The main reason

for this is most of these methods are designed for fast kernel density estimation and

not the transition matrix computation. Therefore, an interesting future investigation

is to see whether these methods can inspire new fast algorithms for transition matrix

approximation.

As for the Large d problem, the main proposed framework in this thesis was the factor-

ized diffusion maps. In spite of its successful performance in our empirical evaluations, this

framework also comes with some restrictions and unanswered questions. Here are some of

the important ones:

(a) The current work is exclusively designed for diffusion maps. A natural extension is to

extend the framework for other graph-based methods as well.

(b) The proposed framework essentially uses the unconditional independences in the un-

derlying distribution for the factorization. One interesting question is whether one can

157

somehow extend the framework to benefit from more general conditional independence

assumptions as well.

(c) In those problems, where the factorization of the space is not given a priori, one needs

to use the proposed partitioning algorithm; however, this algorithm is computationally

expensive specially for high dimensional problems.

(d) Also, with limited number of examples, the empirical estimation of mutual informations

used in the partitioning algorithm is highly inaccurate for high dimensional problems.

(e) Although the derived upper bounds on the estimation and the approximation errors

give an insight on how fast the error terms grow, they are not tight and contain constant

factors that are not computable in practical cases.

(f) The computational order of finding all the eigenvalues and the eigenfunctions of the fac-

torized diffusion map with K subspaces is O(NK). This is clearly infeasible for problems

with large K .

5.3 FUTURE DIRECTIONS

The presented methodologies and algorithms in this work open the door to new directions

both in terms of the theoretical research and the applied side. Of course, the most immediate

and natural extension of the current work is to resolve or improve the limitations presented

in the previous section. However, in this section, we draw more general and fundamental

future directions that can profoundly revolutionize the applicability and the performance of

the proposed methods in this thesis. In particular, we have found the following directions to

be the most promising:

(a) The key essence of the proposed methodologies to improve the computational complexity

in this work is approximation. The other fundamental idea that can be incorporated for

this purpose independent of approximation is parallelization. With cutting-edge tech-

nology in distributed computing and widespread usage of parallel processors, incorpo-

rating parallelization in our models opens a new avenue to speed up already-developed

158

scalable solutions. For example. it is not hard to see that in the proposed factorized dif-

fusion maps the computations in different subspaces can be done completely in parallel.

Another interesting observation is that the underlying data structure for the proposed

VDT and BVDT frameworks is binary tree which has a recursive structure by defini-

tion. Therefore, one can naturally think of parallelizing these frameworks by assigning

different subtrees to different processors.

(b) The other fundamental assumption made through all the methods in this thesis was

that we have the whole dataset in batch. However, this is not the case when one has

to work with data streams or real-time systems. In most cases, the high computational

cost of learning and modeling prohibits us from re-learning the model every time a new

example arrives. This observation, in fact, signifies the importance of online learning.

However, online learning can be quite challenging both algorithmically and statistically

for the graph-based methods. Another closely-related observation is that the graph-

based methods are inherently non-parametric and therefore transductive. Yet in many

Machine Learning paradigms such as classification, a desired method needs to be induc-

tive in order to be able to deal with future cases in timely manner.

(c) In this thesis, we studied the large N and the Large d problems in isolation. An interest-

ing question is what if we have to deal with both at the same time? How can we integrate

a system that applies both sets of solution simultaneously? Of course, the main dilemma

here is how these two sets of solutions interact with each other. Unfortunately, they can

go against each other sometimes. For example, for the Large d problem, the more dat-

apoints we have in the dataset, the more statistically accurate analysis can be done to

conquer the curse of dimensionality. However, more datapoints means a worsened Large

N problem.

(d) The Large d problem or equivalently the curse of dimensionality is not specific to the

graph-based methods. In fact, this problem has been studied deeply in other fields of

Statistical Machine Learning such as density estimation. Therefore, another interesting

future direction is to investigate the exact relationship between these two paradigms,

namely the eigenfunctions of the similarity graph (or its variants) and the underlying

density function. Moreover, the fact that both the density function and the similarity

159

graph encode the structure of data in the input space, give us another sign that the

graph-based methods might be inherently related to the density function. Note that we

already used this connection to some extent to develop the VDT framework in Chapter

3.

(e) Throughout this thesis, whenever we referred to graphs, we meant data graphs whose

node are the datapoints. However, these are not the only type of graphs in Machine

Learning. A very famous counter-example is a graphical model whose nodes represent

the variables (or features) in the problem. Although, graphical models are used for

a completely different purpose, a very exciting question is whether we can somehow

link these two paradigms. If such a connection exists, we might be able to move over

many of the methods developed for one paradigm to the other one. For example, can we

somehow use the scalable methods in this thesis for fast structure learning and inference

in graphical models.

The items (a)-(c) have more practical implications, while (d)-(e) raise more interesting

theoretical questions. Either way, these directions introduce new insights into the current

work and help the interested researchers and practitioners in the field to further expand

the reach of the methods proposed in this dissertation.

160

BIBLIOGRAPHY

[Amizadeh et al., 2012a] Amizadeh, S., Thiesson, B., and Hauskrecht, M. (2012a). Varia-
tional dual-tree framework for large-scale transition matrix approximation. In the 28th
Conference on Uncertainty in Artificial Intelligence (UAI-12), pages 64–73.

[Amizadeh et al., 2013] Amizadeh, S., Thiesson, B., and Hauskrecht, M. (2013). The breg-
man variational dual-tree framework. In the 29th Conference on Uncertainty in Artificial
Intelligence (UAI-13), pages 22–31.

[Amizadeh et al., 2012b] Amizadeh, S., Valizadegan, H., and Hauskrecht, M. (2012b). Fac-
torized diffusion map approximation. Journal of Machine Learning Research - Proceed-
ings Track, 22:37–46.

[Amizadeh et al., 2011] Amizadeh, S., Wang, S., and Hauskrecht, M. (2011). An efficient
framework for constructing generalized locally-induced text metrics. In Proceedings of
the Twenty-Second international joint conference on Artificial Intelligence-Volume Volume
Two, pages 1159–1164. AAAI Press.

[Bach, 2008] Bach, F. (2008). Graph kernels between point clouds. In ICML.

[Bach and Jordan, 2004] Bach, F. R. and Jordan, M. I. (2004). Learning spectral clustering.
In Advances in Neural Information Processing Systems 16.

[Bache and Lichman, 2013] Bache, K. and Lichman, M. (2013). UCI machine learning
repository.

[Banerjee et al., 2005] Banerjee, A., Merugu, S., Dhillon, I. S., and Ghosh, J. (2005). Clus-
tering with bregman divergences. JMLR, 6:1705–1749.

[Barnes and Hut, 1986] Barnes, J. and Hut, P. (1986). A hierarchical o (n log n) force-
calculation algorithm.

[Belkin and Niyogi, 2002] Belkin, M. and Niyogi, P. (2002). Laplacian eigenmaps for dimen-
sionality reduction and data representation. Neural Computation, 15:1373–1396.

[Belkin and Niyogi, 2005] Belkin, M. and Niyogi, P. (2005). Towards a theoretical founda-
tion for laplacian-based manifold methods. In Computational Learning Theory, pages
486–500.

161

[Belkin et al., 2006] Belkin, M., Niyogi, P., and Sindhwani, V. (2006). Manifold regulariza-
tion: A geometric framework for learning from labeled and unlabeled examples. Journal
of Machine Learning Research, 7:2399–2434.

[Beygelzimer et al., 2006] Beygelzimer, A., Kakade, S., and Langford, J. (2006). Cover trees
for nearest neighbor. In Proceedings of the 23rd international conference on Machine
learning, ICML ’06, pages 97–104, New York, NY, USA. ACM.

[Bicego et al., 2006] Bicego, M., Lagorio, A., Grosso, E., and Tistarelli, M. (2006). On the
use of sift features for face authentication. In Computer Vision and Pattern Recognition
Workshop, 2006. CVPRW’06. Conference on, pages 35–35. IEEE.

[Bock et al., 2004] Bock, R., Chilingarian, A., Gaug, M., Hakl, F., Hengstebeck, T., Jiřina,
M., Klaschka, J., Kotrč, E., Savickỳ, P., Towers, S., et al. (2004). Methods for multidi-
mensional event classification: a case study using images from a cherenkov gamma-ray
telescope. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 516(2):511–528.

[Bordino et al., 2010] Bordino, I., C. Castillo, D. D., and Gionis, A. (2010). Query similarity
by projecting the query-flow graph. In SIGIR ’10, pages 515–522. ACM.

[Brito et al., 1997] Brito, M., Chavez, E., Quiroz, A., and Yukich, J. (1997). Connectivity
of the mutual k-nearest-neighbor graph in clustering and outlier detection. Statistics &
Probability Letters, 35(1):33–42.

[Buchman et al., 2009] Buchman, S. M., Lee, A. B., and Schafer, C. M. (2009). High-
Dimensional Density Estimation via SCA: An Example in the Modelling of Hurricane
Tracks. Statistical Methodology, 8(1):18–30.

[Buckley and Voorhees, 2005] Buckley, C. and Voorhees, E. M. (2005). Retrieval system
evaluation. TREC: experiment and evaluation in information retrieval.

[Cai et al., 2005] Cai, D., He, X., and Han, J. (2005). Document clustering using locality
preserving indexing. IEEE Trans. Knowl. Data Eng, 17(12):1624–1637.

[Caillet et al., 2004] Caillet, M., Pessiot, J., Amini, M., and Gallinari, P. (2004). Unsuper-
vised learning with term clustering for thematic segmentation of texts.

[Carreira-Perpinán and Zemel, 2005] Carreira-Perpinán, M. and Zemel, R. (2005). Proxim-
ity graphs for clustering and manifold learning. Advances in neural information process-
ing systems, 17:225–232.

[Carrier et al., 1988] Carrier, J., Greengard, L., and Rokhlin, V. (1988). A fast adaptive
multipole algorithm for particle simulations. SIAM Journal on Scientific and Statistical
Computing, 9(4):669–686.

[Chapelle et al., 2006] Chapelle, O., Schölkopf, B., and Zien, A., editors (2006). Semi-
Supervised Learning. MIT Press, Cambridge, MA.

162

[Charikar et al., 1997] Charikar, M., Chekuri, C., Feder, T., and Motwani, R. (1997). Incre-
mental clustering and dynamic information retrieval. In Proceedings of the twenty-ninth
annual ACM symposium on Theory of computing, pages 626–635. ACM.

[Cheng, 1995] Cheng, Y. (1995). Mean shift, mode seeking, and clustering. Pattern Analysis
and Machine Intelligence, IEEE Transactions on, 17(8):790–799.

[Chennubhotla and Jepson, 2005] Chennubhotla, C. and Jepson, A. (2005). Hierarchical
eigensolver for transition matrices in spectral methods. Advances in Neural Information
Processing Systems, 17:273–280.

[Chung, 1997] Chung, F. R. K. (1997). Spectral Graph Theory. Amer Mathematical Society.

[Cohn and Chang, 2000] Cohn, D. and Chang, H. (2000). Learning to probabilistically iden-
tify authoritative documents. In ICML ’00, pages 167–174.

[Coifman et al., 2008] Coifman, R. R., Kevrekidis, I. G., Lafon, S., Maggioni, M., and Nadler,
B. (2008). Diffusion maps, reduction coordinates, and low dimensional representation of
stochastic systems. Multiscale Modeling & Simulation, 7(2):842–864.

[Coifman et al., 2005a] Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B.,
Warner, F., and Zucker, S. W. (2005a). Geometric diffusions as a tool for harmonic analysis
and structure definition of data. part i: Diffusion maps. (102):7426–7431.

[Coifman et al., 2005b] Coifman, R. R., Lafon, S., Lee, A. B., Maggioni, M., Nadler, B.,
Warner, F., and Zucker, S. W. (2005b). Geometric diffusions as a tool for harmonic analysis
and structure definition of data. part ii: Multiscale methods. (102):7432–7438.

[Collins-Thompson and Callan, 2005] Collins-Thompson, K. and Callan, J. (2005). Query
expansion using random walk models. In CIKM ’05, pages 704–711.

[Cover and Thomas, 2000] Cover, T. M. and Thomas, J. A. (2000). Elements of Information
Theory. Wiley-Interscience, New York, USA.

[Cox and Cox, 1994] Cox, T. and Cox, M. (1994). Multidimensional Scaling. Chapman &
Hall.

[Deng et al., 2011] Deng, H., Han, J., Zhao, B., Yu, Y., and Lin, C. X. (2011). Probabilistic
topic models with biased propagation on heterogeneous information networks. In KDD,
pages 1271–1279.

[Dhillon and Sra, 2005] Dhillon, I. and Sra, S. (2005). Generalized nonnegative matrix ap-
proximations with Bregman divergences.

[Dillon et al., 2007] Dillon, J., Mao, Y., Lebanon, G., and Zhang, J. (2007). Statistical trans-
lation, heat kernels, and expected distance. In UAI, pages 93–100.

163

[Fergus et al., 2009] Fergus, R., Weiss, Y., and Torralba, A. (2009). Semi-supervised learn-
ing in gigantic image collection. In NIPS.

[Friedman et al., 1977] Friedman, J., Bentley, J., and Finkel, R. (1977). An algorithm for
finding best matches in logarithmic expected time. ACM Transactions on Mathematical
Software (TOMS), 3(3):209–226.

[G. Cao and Robertson, 2008] G. Cao, J. Y. Nie, J. G. and Robertson, S. (2008). Selecting
good expansion terms for pseudo-relevance feedback. In SIGIR ’08, pages 243–250.

[Garcke and Griebel, 2005] Garcke, J. and Griebel, M. (2005). Semi-supervised learning
with sparse grids. In Proc. of the 22nd ICML Workshop on Learning with Partially Clas-
sified Training Data.

[Giné and Guillou, 2002] Giné, E. and Guillou, A. (2002). Rates of strong uniform consis-
tency for multivariate kernel density estimators. Ann. Inst. Henri Poincaré (B), 38(6):907–
921.

[Gine and Koltchinskii, 2006] Gine, E. and Koltchinskii, V. (2006). Empirical graph lapla-
cian approximation of laplace–beltrami operators: Large sample results. the IMS Lecture
Notes Monograph Series by the Institute of Mathematical Statistics, 51.

[Gonzalez, 1985] Gonzalez, T. F. (1985). Clustering to minimize the maximum intercluster
distance. Theoretical Computer Science, 38(2–3):293–306.

[Gray and Moore, 2003] Gray, A. and Moore, A. (2003). Nonparametric density estimation:
Toward computational tractability. In Proceedings of the third SIAM International Con-
ference on Data Mining, volume 112, page 203. Society for Industrial & Applied.

[Gray and Moore, 2000] Gray, A. G. and Moore, A. W. (2000). ‘N-body’ problems in statistical
learning. In NIPS, pages 521–527. MIT Press.

[Greene and Cunningham, 2006] Greene, D. and Cunningham, P. (2006). Practical solu-
tions to the problem of diagonal dominance in kernel document clustering. In ICML,
pages 377–384.

[Greengard, 1994] Greengard, L. (1994). Fast algorithms for classical physics. Science,
265(5174):909–914.

[Greengard and Strain, 1991] Greengard, L. and Strain, J. (1991). The fast gauss trans-
form. SIAM Journal on Scientific and Statistical Computing, 12(1):79–94.

[Ham et al., 2004] Ham, J., Lee, D., Mika, S., and Schölkopf, B. (2004). A kernel view of
the dimensionality reduction of manifolds. In Proceedings of the twenty-first international
conference on Machine learning, page 47. ACM.

164

[He et al., 2005] He, X., Cai, D., Yan, S., and Zhang, H. (2005). Neighborhood preserving
embedding. In Computer Vision, 2005. ICCV 2005. Tenth IEEE International Conference
on, volume 2, pages 1208–1213. IEEE.

[Jebara et al., 2009] Jebara, T., Wang, J., and Chang, S. (2009). Graph construction and b-
matching for semi-supervised learning. In Proceedings of the 26th Annual International
Conference on Machine Learning, ICML 2009, Montreal, Quebec, Canada, June 14-18,
2009, volume 382, page 56. ACM.

[Jin et al., 2003] Jin, Q., Zhao, J., and Xu, B. (2003). Query expansion based on term sim-
ilarity tree model. In Natural Language Processing and Knowledge Engineering, 2003.
Proceedings. 2003 International Conference on, pages 400–406. IEEE.

[Jin et al., 2006] Jin, R., Ding, C., and Kang, F. (2006). A probabilistic approach for optimiz-
ing spectral clustering. In Advances in Neural Information Processing Systems 18.

[Karger and Ruhl, 2002] Karger, D. and Ruhl, M. (2002). Finding nearest neighbors in
growth-restricted metrics. In Proceedings of the thiry-fourth annual ACM symposium
on Theory of computing, pages 741–750. ACM.

[Kleinberg, 2006] Kleinberg, J. (2006). Algorithm design. Pearson Education India.

[Kondor and Jebara, 2003] Kondor, R. I. and Jebara, T. (2003). A kernel between sets of
vectors. In ICML, pages 361–368. AAAI Press.

[Krauthgamer and Lee, 2004] Krauthgamer, R. and Lee, J. (2004). Navigating nets: sim-
ple algorithms for proximity search. In Proceedings of the fifteenth annual ACM-SIAM
symposium on Discrete algorithms, pages 798–807. Society for Industrial and Applied
Mathematics.

[Kumar et al., 2009] Kumar, S., Mohri, M., and Talwalkar, A. (2009). Sampling techniques
for the nystrom method. Journal of Machine Learning Research - Proceedings Track,
5:304–311.

[Lafon and Lee, 2006] Lafon, S. and Lee, A. B. (2006). Diffusion maps and coarse-graining:
A unified framework for dimensionality reduction, graph partitioning, and data set pa-
rameterization. IEEE Trans. Pattern Analysis and Machine Intelligence, 28(9):1393–1403.

[Lang et al., 2005] Lang, D., Klaas, M., and de Freitas, N. (2005). Empirical testing of fast
kernel density estimation algorithms. UBC Technical repor, 2.

[Lang, 1995] Lang, K. (1995). News weeder: Learning to filter netnews. In Machine Learn-
ing International Workshop, pages 331–339. Morgan Kufmann Publishers, Inc.

[Lebanon, 2006] Lebanon, G. (2006). Metric learning for text documents. IEEE Trans. Pat-
tern Analysis and Machine Intelligence, 28(4):497–508.

165

[Ledwich and Williams, 2004] Ledwich, L. and Williams, S. (2004). Reduced sift features
for image retrieval and indoor localisation. In Australian conference on robotics and au-
tomation, volume 322. Citeseer.

[Lee and Wasserman, 2010] Lee, A. B. and Wasserman, L. (2010). Spectral connectivity
analysis. Journal of the American Statistical Association.

[Lee and Gray, 2008] Lee, D. and Gray, A. (2008). Fast high-dimensional kernel summations
using the monte carlo multipole method. Advances in Neural Information Processing
Systems, 21.

[Lee et al., 2011] Lee, D., Gray, A., and Moore, A. (2011). Dual-tree fast gauss transforms.
arXiv preprint arXiv:1102.2878.

[Liaw et al., 2010] Liaw, Y., Leou, M., and Wu, C. (2010). Fast exact k nearest neighbors
search using an orthogonal search tree. Pattern Recognition, 43(6):2351–2358.

[Lin, 2003] Lin, J. (2003). Reduced rank approximations of transition matrices. In Proceed-
ings of the Sixth International Conference on Artificial Intelligence and Statistics, pages
3–6.

[Ling and Okada, 2007] Ling, H. and Okada, K. (2007). An efficient earth mover’s distance
algorithm for robust histogram comparison. Pattern Analysis and Machine Intelligence,
IEEE Transactions on, 29(5):840–853.

[Liu et al., 2010] Liu, W., He, J., and Chang, S. (2010). Large graph construction for scalable
semi-supervised learning. In Proceedings of the 27th International Conference on Machine
Learning, pages 679–686.

[Logan and Salomon, 2001] Logan, B. and Salomon, A. (2001). A music similarity function
based on signal analysis. In ICME 2001, pages 745–748.

[Losada and Barreiro, 2003] Losada, D. and Barreiro, A. (2003). Embedding term similarity
and inverse document frequency into a logical model of information retrieval. Journal of
the American Society for Information Science and Technology, 54(4):285–301.

[Maas et al., 2011] Maas, A. L., Daly, R. E., Pham, P. T., Huang, D., Ng, A. Y., and Potts, C.
(2011). Learning word vectors for sentiment analysis. In Proc. of 49th An. Meeting of the
Assoc. for Comp. Ling., pages 142–150.

[Macdonald et al., 2005] Macdonald, C., He, B., Plachouras, V., and Ounis, I. (2005). Univer-
sity of glasgow at trec 2005: Experiments in terabyte and enterprise tracks with terrier.
In TREC ’05.

[Maiker et al., 2009] Maiker, M., v. Luxburg, U., and Hein, M. (2009). Influence of graph
construction on graph-based clustering measures.

166

[Meila, 2003] Meila, M. (2003). Comparing clusterings by the variation of information. In
COLT: Proceedings of the Workshop on Computational Learning Theory, Morgan Kauf-
mann Publishers.

[Moldovan and Rus, 2001] Moldovan, D. and Rus, V. (2001). Explaining answers with ex-
tended wordnet. In ACL ’01.

[Moore, 1991] Moore, A. W. (1991). An introductory tutorial on kd-trees. Technical Report
No. 209, Computer Laboratory, University of Cambridge.

[Moore, 2000] Moore, A. W. (2000). The anchors hierarchy: Using the triangle inequality to
survive high dimensional data. In Proceedings of the 16th Conference on Uncertainty in
Artificial Intelligence, pages 397–405.

[Mori and van Zijl, 2002] Mori, S. and van Zijl, P. C. M. (2002). Fiber tracking: principles
and strategies - a technical review. NMR in Biomedicine.

[Nadler et al., 2006] Nadler, B., Lafon, S., Coifman, R. R., and Kevrekidis, I. G. (2006).
Diffusion maps, spectral clustering and reaction coordinates of dynamical systems. In
Applied and Computational Harmonic Analysis: Special issue on Diffusion Maps and
Wavelets.

[Narasimhan and Bilmes, 2004] Narasimhan, M. and Bilmes, J. A. (2004). PAC-learning
bounded tree-width graphical models. In UAI-04, pages 410–417. AUAI Press.

[Ng et al., 2001a] Ng, A., Jordan, M., and Weiss, Y. (2001a). On spectral clustering: Analysis
and an algorithm. In Advances in Neural Information Processing Systems 14.

[Ng et al., 2001b] Ng, A. Y., Jordan, M. I., and Weiss, Y. (2001b). On spectral clustering:
Analysis and an algorithm. In NIPS ’01, pages 849–856.

[Ng et al., 2001c] Ng, A. Y., Zheng, A. X., and Jordan, M. I. (2001c). Link analysis, eigenvec-
tors and stability. IJCAI, pages 903–910.

[Ng et al., 2001d] Ng, A. Y., Zheng, A. X., and Jordan, M. I. (2001d). Stable algorithms for
link analysis. In SIGIR ’01: Proceedings of the 24th annual international ACM SIGIR
conference on research and development in information retrieval, pages 258–266. ACM
Press.

[Niyogi, 2004] Niyogi, P. (2004). Locality preserving projections. Advances in neural infor-
mation processing systems, 16:153–160.

[Penrose, 1999] Penrose, M. (1999). A strong law for the longest edge of the minimal span-
ning tree. The Annals of Probability, 27(1):246–260.

[Qian et al., 2011] Qian, J., Saligrama, V., and Zhao, M. (2011). Graph construction for
learning with unbalanced data. arXiv preprint arXiv:1112.2319.

167

[Qiao et al., 2010] Qiao, L., Chen, S., and Tan, X. (2010). Sparsity preserving projections
with applications to face recognition. Pattern Recognition, 43(1):331–341.

[Ram et al., 2009] Ram, P., Lee, D., March, W. B., and Gray, A. G. (2009). Linear-time algo-
rithms for pairwise statistical problems. In Advances in Neural Information Processing
Systems 22: 23rd Annual Conference on Neural Information Processing Systems 2009,
Vancouver, British Columbia, Canada, pages 1527–1535.

[Raykar et al., 2005] Raykar, V. C., Yang, C., Duraiswami, R., and Gumerov, N. (2005). Fast
computation of sums of gaussians in high dimensions. Technical Report CS-TR-4767,
Department of Computer Science, University of Maryland, CollegePark.

[Roe et al., 2005] Roe, B. P., Yang, H.-J., Zhu, J., Liu, Y., Stancu, I., and McGregor, G. (2005).
Boosted decision trees as an alternative to artificial neural networks for particle identi-
fication. Nuclear Instruments and Methods in Physics Research Section A: Accelerators,
Spectrometers, Detectors and Associated Equipment, 543(2):577–584.

[Rossi et al., 2005] Rossi, F., Delannay, N., Conan-Guez, B., and Verleysen, M. (2005). Rep-
resentation of functional data in neural networks. Neurocomputing, 64:183–210.

[Roweis and Saul, 2000] Roweis, S. and Saul, L. (2000). Nonlinear dimensionality reduction
by locally linear embedding. Science, 290(5500):2323–2326.

[Rubner et al., 2000] Rubner, Y., Tomasi, C., and Guibas, L. (2000). The earth mover’s dis-
tance as a metric for image retrieval. International Journal of Computer Vision, 40(2):99–
121.

[Salton and McGill, 1983] Salton, G. and McGill, M. J. (1983). Introduction to modern infor-
mation retrieval. McGraw-Hill.

[Shi and Malik, 2000] Shi, J. and Malik, J. (2000). Normalized cuts and image segmenta-
tion. IEEE Transactions on Pattern Analysis and Machine Intelligence, 22(8):888–905.

[Shirdhonkar and Jacobs, 2008] Shirdhonkar, S. and Jacobs, D. (2008). Approximate earth
moverÕs distance in linear time. In Computer Vision and Pattern Recognition, 2008.
CVPR 2008. IEEE Conference on, pages 1–8. IEEE.

[Silverman, 1982] Silverman, B. (1982). Algorithm as 176: Kernel density estimation using
the fast fourier transform. Journal of the Royal Statistical Society. Series C (Applied
Statistics), 31(1):93–99.

[Singer, 2006] Singer, A. (2006). From graph to manifold laplacian: The convergence rate.
Applied and Computational Harmonic Analysis, 21:128–134.

[Subramanya and Bilmes, 2009] Subramanya, A. and Bilmes, J. (2009). Entropic graph reg-
ularization in non-parametric semi-supervised classification. In NIPS.

168

[Suzuki et al., 2008] Suzuki, T., Sugiyama, M., Sese, J., and Kanamori, T. (2008). Approxi-
mating mutual information by maximum likelihood density ratio estimation. Journal of
Machine Learning Research - Proceedings Track, 4:5–20.

[Suzuki et al., 2009] Suzuki, T., Sugiyama, M., and Tanaka, T. (2009). Mutual information
approximation via maximum likelihood estimation of density ratio. In Proceedings of the
2009 IEEE international conference on Symposium on Information Theory - Volume 1,
pages 463–467. IEEE Press.

[Talwalkar et al., 2008] Talwalkar, A., Kumar, S., and Rowley, H. A. (2008). Large-scale
manifold learning. In CVPR, pages 1–8.

[Telgarsky and Dasgupta, 2012] Telgarsky, M. and Dasgupta, S. (2012). Agglomerative
bregman clustering. arXiv:1206.6446.

[Tenenbaum et al., 2000] Tenenbaum, J., De Silva, V., and Langford, J. (2000). A global
geometric framework for nonlinear dimensionality reduction. Science, 290(5500):2319–
2323.

[Thiesson and Kim, 2012] Thiesson, B. and Kim, J. (2012). Fast variational mode-seeking.
In Proceedings of the Fifteenth International Conference on Artificial Intelligence and
Statistics 2012, JMLR 22: W&CP 22. Journal of Machine Learning Research.

[Thiesson and Wang, 2010] Thiesson, B. and Wang, C. (2010). Fast large-scale mixture mod-
eling with component-specific data partitions. In Neural Inform. Process. Syst, volume 22.
Citeseer.

[Tsang and Kwok, 2006] Tsang, I. W. and Kwok, J. T. (2006). Large-scale sparsified manifold
regularization. In NIPS, pages 1401–1408. MIT Press.

[Valizadegan et al., 2008] Valizadegan, H., Jin, R., and Jain, A. K. (2008). Semi-supervised
boosting for multi-class classification. In Principles of Data Mining and Knowledge Dis-
covery, pages 522–537.

[Valko et al., 2012] Valko, M., Kveton, B., Huang, L., and Ting, D. (2012). Online semi-
supervised learning on quantized graphs. arXiv preprint arXiv:1203.3522.

[von Luxburg, 2007] von Luxburg, U. (2007). A tutorial on spectral clustering. Statistics
and Computing, 17(4):395–416.

[von Luxburg et al., 2008] von Luxburg, U., Belkin, M., and Planck, M. (2008). Consistency
of spectral clustering. Annals of Statistics, 36:555–586.

[Wan and Peng, 2005] Wan, X. and Peng, Y. (2005). The earth mover’s distance as a se-
mantic measure for document similarity. In Proceedings of the 14th ACM international
conference on Information and knowledge management, pages 301–302. ACM.

169

[Wang and Dong, 2012] Wang, L. and Dong, M. (2012). Multi-level low-rank approximation-
based spectral clustering for image segmentation. Pattern Recognition Letters.

[Wang and Hauskrecht, 2008] Wang, S. and Hauskrecht, M. (2008). Improving biomedical
document retrieval using domain knowledge. In SIGIR ’08, pages 785–786. ACM.

[Wang et al., 2010] Wang, S., Hauskrecht, M., and Visweswaran, S. (2010). Candidate gene
prioritization using network based probabilistic models. In AMIA TBI.

[Williams and Seeger, 2001] Williams, C. and Seeger, M. (2001). Using the nystrom method
to speed up kernel machines. Advances in neural information processing systems, pages
682–688.

[Xu and Croft, 1996] Xu, J. and Croft, B. W. (1996). Query expansion using local and global
document analysis. In SIGIR ’96, pages 4–11. ACM.

[Yan et al., 2009] Yan, D., Huang, L., and Jordan, M. (2009). Fast approximate spectral clus-
tering. In Proceedings of the 15th ACM SIGKDD international conference on Knowledge
discovery and data mining, pages 907–916. ACM.

[Yan et al., 2007] Yan, S., Xu, D., Zhang, B., Zhang, H., Yang, Q., and Lin, S. (2007). Graph
embedding and extensions: A general framework for dimensionality reduction. Pattern
Analysis and Machine Intelligence, IEEE Transactions on, 29(1):40–51.

[Yang et al., 2005] Yang, C., Duraiswami, R., Davis, L., et al. (2005). Efficient kernel ma-
chines using the improved fast gauss transform. Advances in neural information process-
ing systems, 17:1561–1568.

[Yang et al., 2003] Yang, C., Duraiswami, R., Gumerov, N., and Davis, L. (2003). Improved
fast gauss transform and efficient kernel density estimation. In Computer Vision, 2003.
Proceedings. Ninth IEEE International Conference on, pages 664–671. IEEE.

[Yu et al., 2005] Yu, K., Yu, S., and Tresp, V. (2005). Blockwise supervised inference on large
graphs. In Proc. of the 22nd ICML Workshop on Learning.

[Zelnik-Manor and Perona, 2005] Zelnik-Manor, L. and Perona, P. (2005). Self-tuning spec-
tral clustering. In Advances in Neural Information Processing Systems 17, pages 1601–
1608.

[Zhang et al., 2012] Zhang, L., Chen, S., and Qiao, L. (2012). Graph optimization for dimen-
sionality reduction with sparsity constraints. Pattern Recognition, 45(3):1205–1210.

[Zhang et al., 2010] Zhang, L., Qiao, L., and Chen, S. (2010). Graph-optimized locality pre-
serving projections. Pattern Recognition, 43(6):1993–2002.

[Zhou et al., 2003] Zhou, D., Bousquet, O., Lal, T. N., Weston, J., and Schölkopf, B. (2003).
Learning with local and global consistency. In NIPS. MIT Press.

170

[Zhou et al., 2009] Zhou, H., Yuan, Y., and Shi, C. (2009). Object tracking using sift features
and mean shift. Computer Vision and Image Understanding, 113(3):345–352.

[Zhu, 2005a] Zhu, X. (2005a). Semi-supervised learning literature survey. Technical Report
1530, Computer Sciences, University of Wisconsin-Madison.

[Zhu, 2005b] Zhu, X. (2005b). Semi-supervised learning with graphs. PhD thesis, Carnegie
Mellon University, Pittsburgh, PA, USA.

[Zhu et al., 2003] Zhu, X., Ghahramani, Z., and Lafferty, J. (2003). Semi-supervised learn-
ing using gaussian fields and harmonic functions. In ICML.

[Zhu et al., 2006] Zhu, X., Kandola, J., Lafferty, J., and Ghahramani, Z. (2006). Graph ker-
nels by spectral transforms. Semi-supervised learning, pages 277–291.

[Zhu and Lafferty, 2005] Zhu, X. and Lafferty, J. D. (2005). Harmonic mixtures: combin-
ing mixture models and graph-based methods for inductive and scalable semi-supervised
learning. In ICML: Proceedings of the Twenty-Second International Conference on Ma-
chine Learning, pages 1052–1059. ACM.

[Zwald and Blanchard, 2005] Zwald, L. and Blanchard, G. (2005). On the convergence of
eigenspaces in kernel principal component analysis. In NIPS.

171

	TITLE PAGE
	COMMITTEE MEMBERSHIP PAGE
	ABSTRACT
	TABLE OF CONTENTS
	LIST OF TABLES
	1. Different Spectral Transforms
	2. AUC for The Term Prediction Task
	3. The TREC Datasets
	4. The Results for the Document Retrieval Task
	5. The Average Number of Misplacements
	6. Famous Bregman Divergences
	7. Theoretical Complexity Analysis Results
	8. The Construction Time for the MAGIC Gamma Telescope Dataset
	9. The Propagation Time for the MAGIC Gamma Telescope Dataset
	10. The AUC for the MAGIC Gamma Telescope Dataset
	11. The Construction Time for the MiniBooNE Dataset
	12. The Propagation Time for the MiniBooNE Dataset
	13. The AUC for the MiniBooNE Dataset
	14. The AUC During Refinement for the MAGIC Gamma Telescope Dataset
	15. The AUC During Refinement for the MiniBooNE Dataset
	16. Very Large-Scale Results
	17. The Construction Time for the Simulated Frequency Data
	18. The Propagation Time for the Simulated Frequency Data
	19. The Accuracy for the Simulated Frequency Data
	20. Text Datasets
	21. The Accuracy vs. Labeled Data Ratio for the BBC Sport News Dataset
	22. The Accuracy vs. Labeled Data Ratio for the BBC News Dataset
	23. The Accuracy vs. Labeled Data Ratio for the 20 Newsgroup Dataset
	24. The Accuracy vs. Labeled Data Ratio for the NSF Research Abstracts Dataset
	25. The Accuracy vs. Labeled Data Ratio for the Large Movie Reviews Dataset
	26. Results of Greedy Partitioning

	LIST OF FIGURES
	1. The Bullseye dataset
	2. Electrical resistance network
	3. Single-tree approximation
	4. Dual-tree approximation
	5. Block Partitioning
	6. Refinement Process
	7. The efficiency and quality results for the MAGIC Gamma Telescope dataset
	8. The efficiency and quality results for the MiniBooNE dataset
	9. The refinement results for the MAGIC Gamma Telescope dataset
	10. The refinement results for the MiniBooNE dataset
	11. The document generation model
	12. The term frequncies for the five simulated document topic
	13. The efficiency and quality results for the simulated frequency data
	14. The efficiency and quality results for the text datasets
	15. The synthetic 3D dataset
	16. Clustering Results
	17. Speactral clustering of the SNP data
	18. The human brain connectome
	19. The embedding of brain fibers

	LIST OF ALGORITHMS
	1. Anchor Tree Construction
	2. Anchor Building
	3. Datapoint Stealing
	4. Agglomeration
	5. Calculate Z=QY
	6. Collect-up
	7. Distribute-down
	8. Symmetric Refinement
	9. Greedy Partitioning
	10. Approximate Large-scale Laplacian Eigen Decomposition

	1.0 INTRODUCTION TO GRAPH-BASED METHODS
	1.1 Motivation: The Big Picture
	1.1.1 Large Number of Observations
	1.1.2 High Dimensionality

	1.2 Background
	1.2.1 The Basics
	1.2.1.1 The Similarity Graph
	1.2.1.2 The Laplacian of Graph
	1.2.1.3 Smoothness on Graphs

	1.2.2 The Laplacian Eigenmap
	1.2.3 The Diffusion Map
	1.2.3.1 Random Walk on Graph
	1.2.3.2 Random Walk and Kernel Density Estimation
	1.2.3.3 Multiscale Random Walk
	1.2.3.4 Diffusion Distance
	1.2.3.5 Diffusion Map

	1.2.4 Laplacian-based Kernels And Spectral Transform
	1.2.5 The Diffusion Operator
	1.2.6 Building The Similarity Graph
	1.2.6.1 Weighted Fully Connected
	1.2.6.2 k-nearest-neighbor (kNN)
	1.2.6.3 -neighborhood
	1.2.6.4 Minimum Spanning Tree (MST)
	1.2.6.5 Dealing With Non-vector Spaces

	2.0 CASE STUDY: CONSTRUCTING GENERALIZED LOCALLY-INDUCED TEXT METRICS
	2.1 Introduction
	2.2 Related Work
	2.3 The Graph-based Text Metric
	2.3.1 Term-Term Distance Metrics
	2.3.2 Set-Set Distance Metric

	2.4 Experiments
	2.4.1 Term Prediction
	2.4.1.1 Data
	2.4.1.2 Evaluation Metric
	2.4.1.3 Baselines
	2.4.1.4 Results

	2.4.2 Query Expansion
	2.4.2.1 Datasets
	2.4.2.2 Experimental setup
	2.4.2.3 Results

	2.5 Discussion

	3.0 LARGE N
	3.1 Introduction
	3.2 Related Work
	3.2.1 Node Sparsification Methods
	3.2.2 Edge Sparsification Methods
	3.2.3 Decomposition-based Methods
	3.2.4 Direct Methods
	3.2.5 Hierarchical Methods

	3.3 Case Study: Subsampling in The Term Space
	3.3.1 Building The Association Graph
	3.3.2 Eigen Decomposition of The Association Graph
	3.3.3 Empirical Error for Ranking

	3.4 Large-scale Transition Matrix Approximation
	3.4.1 The Problem Statement

	3.5 Fast Kernel Density Estimation
	3.5.1 Single-tree Approximation
	3.5.2 Dual-tree Approximation
	3.5.2.1 Variational Log-likelihood
	3.5.2.2 Dual-tree Block Partitioning
	3.5.2.3 Variational Optimization

	3.5.3 Anchor Trees
	3.5.3.1 Anchor Tree Construction Algorithm
	3.5.3.2 Time Complexity

	3.6 Variational Dual-Tree Transition Matrix Approximation
	3.6.1 Variational Random Walk
	3.6.2 Optimizing The Bandwidth
	3.6.3 Fast Inference
	3.6.4 Partitioning and Refinement

	3.7 Bregman Variational Dual-Tree Framework
	3.7.1 The Bregman Divergences and The Exponential Families
	3.7.2 Bregman Variational Approximation
	3.7.3 Bregman Anchor Trees

	3.8 Experiments
	3.8.1 Methods
	3.8.2 Efficiency and Quality vs. Problem Size
	3.8.2.1 Data
	3.8.2.2 Experimental Setup
	3.8.2.3 Results

	3.8.3 The Effect of Refinement
	3.8.3.1 Experimental Setup
	3.8.3.2 Results

	3.8.4 Computational Scalability
	3.8.5 BVDT For Frequency Data
	3.8.5.1 The Bregman Divergence For Frequency Data
	3.8.5.2 Simulation
	3.8.5.3 Text Data

	3.9 Discussion

	4.0 LARGE D
	4.1 Introduction
	4.2 The Factorized Diffusion Approximation
	4.2.1 Motivation
	4.2.2 Related Work
	4.2.3 Convergence of Diffusion Operator
	4.2.4 Factorized Diffusion Maps
	4.2.4.1 The Factorized Approximation
	4.2.4.2 Error Analysis
	4.2.4.3 Finding The Best Partition

	4.2.5 Experimental Results
	4.2.5.1 Synthetic Data
	4.2.5.2 Image Data
	4.2.5.3 SNP Data

	4.2.6 Discussion

	4.3 Infinite Dimension: Dealing With Functional Spaces
	4.3.1 Motivation
	4.3.2 Vector Representation
	4.3.3 Large-Scale Laplacian Eigenmap
	4.3.4 Results and Discussion

	5.0 CONCLUSIONS AND FUTURE DIRECTIONS
	5.1 Contributions
	5.2 Open Questions
	5.3 Future Directions

	BIBLIOGRAPHY

