
 

ROLE OF MULTIPLE REPRESENTATIONS IN PHYSICS PROBLEM SOLVING 

 
 
 
 
 
 
 
 

by 

Alexandru Maries 

B.S., Ramapo College of New Jersey, 2009 

M.S., University of Pittsburgh, 2011 
 
 
 
 
 
 
 
 
 

Submitted to the Graduate Faculty of 

the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment  

of the requirements for the degree of 

Doctor of Philosophy 
 
 
 
 
 
 
 
 
 

University of Pittsburgh 

2013 

 



 ii 

UNIVERSITY OF PITTSBURGH 

DIETRICH SCHOOL OF ARTS AND SCIENCES 
 

DEPARTMENT OF PHYSICS AND ASTRONOMY 
 
 
 
 
 
 
 
 

This dissertation was presented 

 
by 

 
 

Alexandru Maries 
 
 
 

It was defended on 

December 3rd, 2013 

and approved by 

Dr. Robert Devaty, Associate Professor, Department of Physics and Astronomy 

Dr. Arthur Kosowsky, Professor, Department of Physics and Astronomy 

Dr. Russell Clark, Senior Lecturer, Department of Physics and Astronomy 

Dr. Larry Shuman, Professor, Department of Industrial Engineering 

Dissertation Advisor: Dr. Chandralekha Singh, Professor, Department of Physics and Astronomy 

 



 iii 

  

Copyright © by Alexandru Maries 

2013 

ROLE OF MULTIPLE REPRESENTATIONS IN PHYSICS PROBLEM SOLVING 

Alexandru Maries, PhD 

University of Pittsburgh 2013 



 iv 

ROLE OF MULTIPLE REPRESENTATIONS IN PHYSICS PROBLEM SOLVING 

Alexandru Maries, PhD 

University of Pittsburgh 2013 

 

This thesis explores the role of multiple representations in introductory physics students’ 

problem solving performance through several investigations. Representations can help students 

focus on the conceptual aspects of physics and play a major role in effective problem solving. 

Diagrammatic representations can play a particularly important role in the initial stages of 

conceptual analysis and planning of the problem solution. Findings suggest that students who 

draw productive diagrams are more successful problem solvers even if their approach is 

primarily mathematical. Furthermore, students provided with a diagram of the physical situation 

presented in a problem sometimes exhibited deteriorated performance. Think-aloud interviews 

suggest that this deteriorated performance is in part due to reduced conceptual planning time 

which caused students to jump to the implementation stage without fully understanding the 

problem and planning problem solution. Another study investigated two interventions aimed at 

improving introductory students’ representational consistency between mathematical and 

graphical representations and revealed that excessive scaffolding can have a detrimental effect. 

The detrimental effect was partly due to increased cognitive load brought on by the additional 
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steps and instructions. Moreover, students who exhibited representational consistency also 

showed improved problem solving performance. 

The final investigation is centered on a problem solving task designed to provide 

information about the pedagogical content knowledge (PCK) of graduate student teaching 

assistants (TAs). In particular, the TAs identified what they considered to be the most common 

difficulties of introductory physics students related to graphical representations of kinematics 

concepts as they occur in the Test of Understanding Graphs in Kinematics (TUG-K). As an 

extension, the Force Concept Inventory (FCI) was also used to assess this aspect of PCK related 

to knowledge of student difficulties of both physics instructors and TAs. We find that teaching 

an independent course and recent teaching experience do not correlate with improved PCK. In 

addition, the performance of American TAs, Chinese TAs and other foreign TAs in identifying 

common student difficulties both in the context of the TUG-K and in the context of the FCI is 

similar. Moreover, there were many common difficulties of introductory physics students that 

were not identified by many instructors and TAs. 
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1.0  INTRODUCTION 

The goal of physics education has been described as transitioning students from an initial state to 

a desired final state (Reif 1995). Many instructional approaches (both traditional and based on 

Physics Education Research) either explicitly or implicitly attempt to improve the problem 

solving skills of introductory physics students [1-9]. This is because in order to learn physics 

concepts thoroughly, one must manipulate and work with these concepts in many different 

contexts and representations. Physics experts develop expertise through practice [10]; therefore, 

in a typical physics course, problem solving is the main modus through which students develop a 

functional understanding of physics principles. 

1.1 PROBLEM AND PROBLEM SOLVING: DEFINITION 

Before one can discuss problem solving it is necessary to have a definition of the word 

“problem”. Some researchers have argued that the lack of clearly defining what one means by 

“problem” can lead to issues when interpreting physics education research on problem solving 

[11]. There are many definitions of what a problem is in the literature [12-16] which typically 

share features and do not necessarily provide discrepant descriptions. We adopt Newell’s 

definition that “A person is confronted with a problem when he wants something and does not 

know immediately what series of actions he can perform to get it’’ [14]. By this definition, a 
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typical end-of-chapter problem from a typical introductory physics textbook [17] constitutes a 

problem for an introductory student, but does not for a physics expert, because experts have 

much compiled knowledge [18] of principles applicable in specific situations after long-term 

practice of solving problems, and therefore immediately know what steps must be taken in order 

to solve a typical end-of-chapter problem. However, when an end-of-chapter problem presented 

to an expert is non-intuitive, it can also be a problem for a physics expert [19]. Problem solving 

would then entail devising a strategy consisting of discrete steps which would provide the 

desired goal in a reasonable amount of time [20-22], which, in an introductory physics problem, 

is typically one or several physical quantities. As mentioned earlier, the understanding of how to 

solve problems is a central part of transitioning from an initial knowledge state to the desired 

final knowledge state. 

1.2 INFLUENCES FROM COGNITIVE SCIENCE 

Problem solving is a cognitive process; therefore, much research in cognitive science has been 

devoted to problem solving, and while the findings of cognitive science may not be directly 

related to physics problem solving or classroom instruction, these findings provide important 

instructional implications [23-24]. 

1.2.1 Memory 

Problem solving is a process which takes place in Short Term Memory, also known as Working 

Memory, one of the two broad components of human memory, the other being Long Term 
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Memory (LTM) [25,26]. Working memory has a finite capacity to store information of roughly 7 

“slots” [27] while the LTM does not appear to have any limits in the amount of information it 

can store. During the problem solving process, the working memory receives inputs from 

sensory buffers (eyes, ears, hands) and information from the LTM which needs to be 

distinguished from the vast amount of other information that is stored in LTM. Since the amount 

of information that can be processed at any given time in the working memory is finite, one must 

carefully process the particular information that makes the end goal easier to reach [14]. 

1.2.2 Chunking and Cognitive Load Theory. 

Experts in a given domain can extend the limits of working memory by chunking more than one 

piece of information in one memory slot. A good example of chunking comes from chess [28]. 

Participants in a study were asked to reconstruct a chess board after viewing it briefly. The chess 

experts performed much better in this task than chess novices when the organization of the chess 

pieces on the board was from a good chess game; however, when the pieces were randomly 

placed, both the experts and novices exhibited similar performance in reconstructing the board. 

The reason argued by Chase et al. about why in the first situation the experts performed better 

than the novices is because their extended chess knowledge allowed them to “encode the position 

into larger perceptual chunks, each consisting of a familiar subconfiguration of pieces” [28]. For 

a chess expert, “pieces within a single chunk are bound by relations of mutual defense, 

proximity, attack over small distances and common color and type” [28]. Similarly, when 

engaged in problem solving, physics experts often group several pieces of information together 

into a single chunk which would take up one slot in working memory; however, for a physics 

novice (student) those pieces of information could seem disparate and require different slots in 
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order to be processed. For example, while engaged in problem solving and processing 

information in working memory, an expert could group together information about a vector such 

as its magnitude, direction, x and y components into one single memory slot because of the 

relationships that connect them. In contrast, a novice could perceive these pieces of information 

as distinct and require one slot of working memory for processing each. Thus, the amount of 

information that a novice can process at any given time while engaged in problem solving is 

reduced compared to an expert, because experts, due to their compiled knowledge acquired 

through much problem solving experience, can chunk information into one single slot, whereas 

novices typically cannot. The amount of information that must be processed at any given time 

while engaged in problem solving in order to move forward with a solution is known as 

cognitive load, and due to their reduced information processing capabilities, introductory 

students can experience cognitive overload when solving problems (the amount of information 

that must be processed overloads the processing capacity of the working memory). 

Sweller developed cognitive load theory in an effort to explain how people learn and 

extend their knowledge [29]. Cognitive load theory is based on a view that the knowledge 

structures stored in LTM are combinations of elements, otherwise known as schemas [30,31] 

which, although not known precisely, can be discerned through experimental research. 

According to Sweller [29] learning requires a change in the schemas stored in LTM because the 

main difference between experts and novices is that experts possess those schemas, while 

novices do not. As learners progress from novice to expert, their performance on problem 

solving tasks specific to the domain learned increases because the cognitive characteristics 

inherent in processing the material are altered so that the material can be processed more 

efficiently. One manner through which this occurs is chunking, which is supported by the 
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research finding that as the expertise of an individual increases in a particular field, the cognitive 

load decreases [28-29]. Sweller therefore argues that, since information is first processed in 

working memory which has a finite processing capacity, in order for a learner to acquire the 

desired schemas, instructional strategies must be designed to reduce cognitive load. Many 

instructional strategies developed by physics education researchers, although not necessarily 

based on Sweller’s cognitive load theory, are designed to reduce cognitive load [5,6,24,32-34]. 

 

1.3 CONNECTION WITH PHYSICS EDUCATION RESEARCH 

1.3.1 Knowledge structure: Novices and Experts 

The concept of schemas has been adopted by some physics education researchers [35] while 

others discuss an almost identical construct, knowledge structure [32,36], which describes how 

information about a particular domain is stored in LTM. The knowledge structure of physics 

experts is organized in terms of physics principles and is hierarchical with the most fundamental 

principles (which include applicability conditions) at the top (such as Newton’s laws of motion, 

conservation of energy principles, etc.), and less fundamental principles further down the chain 

[20,37,38]. In addition, there are many connections that link related concepts together. In 

contrast, the knowledge structure of a physics novice (typical student) is comprised of facts and 

formulas that are only loosely connected. It is important to mention that “novice” and “expert” 

are two ends of a continuous spectrum, and that individual students in an introductory physics 

class can be somewhere in the middle [39]. 



 6 

1.3.2 Problem solving strategies: Novices and Experts 

The manner in which experts and novices engage in problem solving is connected to the way 

their knowledge structure is organized [13]. Since the knowledge structure of experts is 

hierarchically organized in terms of physics principles, an expert’s problem solving approach 

begins with a qualitative analysis of the problem (which can include drawing one or several 

diagrams to ensure the problem situation is well understood) and then a decision about which 

physics principles are applicable. Experts then make a plan and implement it, occasionally 

assessing their progress. After the goal is reached, they examine it to ensure it agrees with their 

physical expectation, and reflect on the problem to determine what can be learned from the 

problem solving process and how their knowledge structure can be extended. On the other hand, 

the problem solving strategies of novices differ markedly. Since the knowledge structure of 

novices consists of loosely connected facts and formulas, novices solve problems by focusing on 

pieces of information from the problem that look familiar. Then, they search for equations that 

match the disparate pieces and often do not ensure that the equations they found are applicable. 

Novices rarely spend time planning a solution and try to convert the verbal description of a 

problem to a mathematical description directly. Novices typically apply this “formula seeking” 

strategy in a superficial manner that does not require a thorough understanding of the physics 

principles involved. 
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1.4 THEORETICAL LEARNING FRAMEWORKS FROM COGNITIVE SCIENCE 

Cognitive scientists have studied learning long before the establishment of the field of Physics 

Education Research and many of their findings provide important guidelines that the physics 

education researcher can use to design effective instructional strategies. It is therefore not a 

coincidence that many of the learning models developed by cognitive scientists are connected to 

the concept of knowledge structure outlined in the previous paragraphs. In particular, 

instructional strategies based on these learning models applied to the context of physics provide 

opportunities for learners to develop a good knowledge structure. The desired good knowledge 

structure is closer to that of an expert: organized hierarchically in terms of physics principles 

with the core physics principles at the top. In the following paragraphs, I will discuss four 

theoretical learning frameworks which informed much of my research presented in this thesis. 

Two of the frameworks were developed before the establishment of the field of physics 

education research, one was developed during its establishment and one was developed after the 

field of physics education research was well established. In particular, I will discuss how the 

application of these four learning frameworks in the context of physics improves the knowledge 

structure of the learner. The frameworks are Vygotsky’s “zone of proximal development” model, 

Piaget’s learning theory of assimilation, accommodation and optimal mismatch, the Cognitive 

Apprenticeship model and Schwartz, Bransford and Sears’s framework of preparation for future 

learning. 
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1.4.1 Zone of proximal development 

Vygotsky’s theoretical framework of learning [40] is related to the concept of zone of proximal 

development (ZPD) which is defined as the difference between what a learner can achieve 

without support (initial knowledge state) and what they can achieve under the guidance of an 

expert or in collaboration with more capable peers. In Vygotsky’s view, in order for meaningful 

learning to occur, one must stay within the ZPD of the students (which is itself dynamic). In the 

context of physics, this entails an understanding of the knowledge state of students, designing 

activities that students can actively engage in and, through scaffolding provided by an instructor 

or through collaboration with peers, the students can improve their knowledge state and by 

extension, their knowledge structure of physics principles. Through this repeated procedure, one 

can gradually move students from an initial knowledge state to a final desired knowledge state 

and, in the process, provide students with many activities designed to advance their knowledge 

structure to the level of (or close to) an expert’s knowledge structure. 

1.4.2 Assimilation, accommodation and optimal mismatch 

Piaget’s framework of learning involves the concepts of assimilation, accommodation and 

optimal mismatch [41]. This framework explains how new knowledge is internalized by learners 

as follows: if the new knowledge conforms to the pre-existing mental structures, it is assimilated 

in the learner’s knowledge structure. If the new knowledge does not conform to the pre-existing 

mental structures, the pre-existing knowledge structure must be accommodated to incorporate the 

new knowledge. This latter mode of internalizing new knowledge is more common in the context 

of physics because students often begin the study of physics with conceptions that are not 
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aligned with, and are frequently contrary to, the scientifically accepted way of reasoning about 

physics [42-44]. In Piaget’s view, the second mode of internalizing new knowledge works best 

when the state of disequilibrium between the pre-existing knowledge structure and the new 

information to be assimilated is “optimal”; in other words, the gap between what is known and 

what must be learned is neither too great, nor too little, so that the learner is motivated to resolve 

the imbalance and can do it without finding the task too cognitively demanding (i.e., experience 

cognitive overload), which might lead to frustration and giving up and would result in little or no 

meaningful learning to occur. In the context of physics, instructional activities based on this 

notion of “optimal mismatch” can improve students’ knowledge structure, because the state of 

disequilibrium between new knowledge to be learned and the existing knowledge structure can 

motivate students to modify their knowledge structure if the new knowledge is not outside of 

their learning capabilities (through expert scaffolding, guided activities, collaboration with peers, 

etc.). If the tasks are carefully chosen so as to promote conceptual thinking in students, their 

knowledge structure would be gradually improved and made to resemble the hierarchical 

knowledge structure of experts. 

1.4.3 Cognitive apprenticeship model 

The Cognitive Apprenticeship model [45] is based on the constructivist model of learning, in 

which knowledge is constructed rather than transmitted. In other words, an instructor cannot 

simply pour knowledge into students’ brains by lecturing information; instead, students construct 

their own knowledge by making sense of the material for themselves. In the cognitive 

apprenticeship model, an expert first models a task for a student, then repeatedly coaches and 

guides the student while he/she attempts to follow the model and gradually reduces the support 
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(also known as “fading”) until the student achieves independence. In the context of physics, if 

one desires to improve the knowledge structure of students so that it is closer to an expert’s (i.e., 

hierarchical and organized in terms of physics principles), during the coaching phase of problem 

solving for example, the attention of the student can be directed to processing information in the 

desired manner: start by conceptually analyzing the problem and decide which physics principles 

are applicable, devise and then implement a plan. This would have as a result the improvement 

of the knowledge structure of students because their approach to thinking about physics would be 

gradually shifted away from formula centered towards being centered on concepts and 

principles, along with their applicability conditions – similar to the approach of experts. As the 

students gradually achieve independence in this method, they can begin to practice expert-like 

problem-solving behavior on their own and require less and less support to improve their 

knowledge structure, thus gradually becoming experts. One example of the application of the 

Cognitive Apprenticeship model in physics and how it improves the knowledge structure of 

students is the Hierarchical Analysis Tool (HAT) of Mestre and Touger [24]. 

1.4.4 Preparation for future learning 

While researching transfer, Schwartz et al. [46] introduced a two dimensional learning and 

performance space which they used to propose an optimal learning trajectory. The two 

dimensions they discuss are efficiency and innovation, which they argue play a significant role 

advancing students’ learning. Efficiency “includes a high degree of consistency that maximizes 

success and minimizes failure.” [46]. In other words, in the context of problem solving, 

efficiency-oriented practice does not require in-depth understanding, but rather rote 

memorization of procedures to solve problems. Focus on efficiency can yield “routine experts” 
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who are good at solving only certain types of problems and do not know how to transfer this 

knowledge to new contexts [47]. Innovation on the other hand, requires rearranging one’s 

thinking to handle new types of problems or information. In the context of physics this means 

dealing with complex problems (such as the context-rich problems of the University of 

Washington group) which require adaptive application of knowledge of physics (rearranging 

one’s thinking) in new, unfamiliar contexts (unfamiliar in the sense of different from the typical 

abstract and non-specific contexts of typical textbook problems, e.g., an object sliding down an 

inclined plane). Tasks that focus on innovation are typically far beyond students’ prior 

knowledge and can lead to frustration and little learning. Since Schwartz et al. consider both 

dimensions as important for preparation for future learning, they argue that instruction should go 

in a diagonal direction (a direction that includes both) in this 2D plane defined by perpendicular 

axes of efficiency and transfer. In the context of physics, teaching along both the efficiency and 

innovation directions advances students towards physics experts because being able to efficiently 

carry out procedures is required in order to free up memory slots when processing information. 

Increasing the information processing capability of students would in turn make it more likely 

that they adopt a more global view of problem solving which begins with a conceptual analysis 

and development of a plan. In addition, it would make it more likely that they can assess their 

progress while implementing a problem solving approach. 

1.5 REPRESENTATIONS AND PROBLEM SOLVING 

All the learning frameworks presented in section 1.4, when applied to the context of physics are 

connected in at least one aspect: problem solving tasks are an essential part of any instructional 
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strategy whose purpose is to improve students’ knowledge structure of physics and align it with 

the way physics is represented in the minds of experts. Representations play a major role both in 

knowledge structure and in problem solving. The concepts of physics, although abstract, are 

understood by experts in some form or representation [48], and therefore their knowledge 

structure consists of many representations that are directly connected to physics concepts. This 

implies that in order to improve the knowledge structure of students, they must be guided to 

represent physical concepts in different and complementary ways. Problem solving and use of 

multiple representations are connected as many studies of physics problem solving revealed that 

students who are consistent across different representations perform better on problem solving 

tasks [49-54]. When students are taught problem solving strategies that emphasize use of 

different representations of knowledge, they construct higher quality and more complete 

representations and exhibit better performance than students who are taught traditional problem 

solving approaches [8] akin to those of typical college textbooks, e.g. Halliday and Resnick [17]. 

Furthermore, teaching students to represent problems in different ways has a significant 

influence in deterring them from following novice-like formula centered problem solving 

approaches [24]. In addition, experts employ multiple representations in their initial conceptual 

analysis stage of problem solving, thus, if the instructional goal of an introductory physics course 

is the transition of students from novices to experts, the instructional design must place 

significant emphasis on multiple representations. 

There are many reasons why using multiple representations in problem solving is 

conducive to an improved knowledge structure of physics concepts. Problem solving is the 

principal process through which students develop their understanding of physics and physics 

concepts must be represented in some form in LTM. It therefore stands to reason that using 
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multiple representations in problem solving will lead to physics concepts being understood better 

by students because in the process of using multiple representations, students can learn 

meaningful and appropriate ways of representing these concepts. Furthermore, representations 

can reduce students’ cognitive load by providing an external rather than an internal 

representation of physical information, a process known as “distributed cognition” [55]. For 

example, in one study presented in this thesis, students were given a problem which required 

addition of two vectors (non collinear). Students who explicitly drew the components of the 

vectors performed better than students who did not and interviews suggested that this may be a 

result of distributed cognition. Students who did not use an external representation, or ones who 

did not explicitly include the components of the vectors performed worse than students who did 

in part because students who did not represent the components externally had to keep more 

information in their working memory while engaged in problem solving and this may have 

increased their cognitive load. In addition, the process of drawing a diagram can provide a 

thorough understanding of the physical situation presented and greatly assist during the key stage 

of conceptual planning. This can help students focus attention on relevant concepts and increase 

the worth of their qualitative analyses. More attention devoted to the qualitative aspects of 

physics while engaged in problem solving can gradually modify the novice perspective of 

physics as a collection of facts and formulas, or what Hammer describes as “knowledge in 

pieces” [56] to a view of physics as a hierarchical construction of concepts that are 

interconnected, or what Hammer describes as viewing physics as “coherent”. The knowledge 

structure of students would therefore become more closely aligned with that of experts, i.e., 

hierarchical and organized in terms of physics principles. 
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1.6 TA AND INSTRUCTOR KNOWLEDGE OF STUDENT DIFFICULTIES 

RELATED TO REPRESENTATIONS OF CONCEPTS 

Since instruction which endeavors to improve the knowledge structure of students is greatly 

aided by emphasis on multiple representations of concepts, instructors and TAs should be aware 

of common difficulties that students encounter while learning to use various representations. 

Awareness of student difficulties is part of what Shulman defines as Pedagogical Content 

Knowledge (PCK) [57-58]. In addition, in Shulman’s view, PCK includes “a veritable 

armamentarium of alternative forms of representation” [57]. Therefore, educators should not 

only be aware of student difficulties with interpreting various representations of concepts, but 

also possess many alternative ways to represent physics concepts in order to help students 

develop mental models of the concepts that span different representations. 

TAs in particular can play a major role in teaching students multiple representations 

because, typically, they interact much more closely with students than instructors, especially at 

large universities with very high enrollments of undergraduate students in introductory physics 

courses. TA duties typically include teaching relatively small (compared to class sizes) 

recitations sections, grading assessments such as homework, quizzes and in some cases, exams, 

and holding regular office hours with students. If TAs are aware of student difficulties, they can 

guide the numerous interactions with students to address their difficulties and improve their 

knowledge structure of physics. In recitations, TAs can discuss different representations of 

concepts and pay particular attention to aspects found to be difficult by students; in grading 

homework, quizzes and exams, they can provide valuable feedback to students; and in 

interacting with students in office hours (typically with one or several students) they can pay 

individual attention to each student’s difficulties. 
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In order to assess one aspect of the PCK of teaching assistants, in particular, their 

knowledge of student difficulties with different representations of concepts, a problem solving 

task for the teaching assistants was designed in the context of the Test of Understanding Graphs 

in Kinematics, or TUG-K [59]. The task (described in chapter five of this thesis) was for first-

year teaching assistants to identify introductory students’ most common incorrect answer choices 

for each item on the TUG-K. This study revealed that the teaching assistants were unaware of 

many representational difficulties of introductory students. 

This research was extended in the context of the Force Concept Inventory, or FCI (the 

revised version, see [60] also printed in [61]) to investigate this aspect of the PCK of both 

teaching assistants and instructors because many of the items on the FCI assess student 

understanding of physics concepts posed in certain representations (e.g., Newton’s second law in 

pictorial and verbal representations, concepts of velocity and acceleration in diagrammatic 

representation, etc.) This study is the last of this thesis and it discusses many results including 

but not limited to: experience teaching an independent course does not improve the ability to 

identify student difficulties, American teaching assistants perform no better than foreign teaching 

assistants and many student difficulties are not identified by both instructors and teaching 

assistants. 

1.7 A STUDY OF THE ROLE OF REPRESENTATIONS IN PROBLEM SOLVING 

Several studies in this thesis explore the role of diagrammatic representations in problem solving 

performance. The first study examined a problem which could be solved by employing a 

diagrammatic approach almost exclusively, and revealed that the diagrammatic approach is 
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adopted by most physics experts and therefore it is the expert-like approach. Students who drew 

diagrams performed better than students who did not draw diagrams even if their chosen 

approach was primarily mathematical. In addition, mathematical difficulties of algebra-based 

students related to solving a system of equations with two unknowns were explored in detail and 

found to be in part due to a lack of transfer of mathematical knowledge to the context of physics 

which may be explicated by employing the framework of cognitive load theory. 

In the studies discussed in chapters two and three, students were prompted to draw 

diagrams via explicit instructions, given a basic diagram (similar to an initial expert sketch) or 

neither (comparison group) in quiz problems. Analysis of the results revealed that in certain 

problems, providing a basic diagram, although intended as scaffolding support, resulted in 

deteriorated performance while in the rest of the problems, it did not result in improved 

performance. Interviews carried out using a think-aloud protocol [62,63] revealed that the cause 

of this deteriorated performance could partly be attributed to reduced conceptual planning time. 

In addition, in most problems, the students prompted to draw a diagram drew more productive 

diagrams (as defined from the point of view of an expert) and regardless of the instructions 

received, students with more detailed diagrams exhibited better problem solving performance. 

These results indicate that explicit instruction to draw a diagram can lead to improved problem 

solving performance and by extension a better knowledge structure of physics and therefore this 

instruction should be incorporated in problem solving tasks given to students. 

The study discussed in chapter four investigated calculus-based students’ ability to 

translate between graphical and mathematical representations a problem solution involving the 

electric field for spherical charge symmetry. Interventions were implemented to help scaffold 

students’ representational consistency. Evaluation of the interventions revealed that a lot of 
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scaffolding, which was considered by experts to likely improve the consistency of students, had 

the opposite effect. In addition, significant student difficulties related to translating between 

mathematical and graphical representations were encountered and explored in depth via think 

aloud interviews. A lack of transfer of mathematical knowledge in the context of physics was 

determined to partly account for some of the difficulties. Cognitive load theory was found to be 

useful in providing a learning framework that could account both for the detrimental effect of 

increased scaffolding and for the representational difficulties of students. Finally, 

representational consistency was found to correlate with performance, thus confirming earlier 

research [49]. 

The two studies discussed in the last two chapters of this thesis explored how 

knowledgeable TAs and instructors are about common student representational and conceptual 

difficulties as described in section 1.6. 
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2.0  A GOOD DIAGRAM IS VALUABLE DESPITE THE CHOICE OF A 

MATHEMATICAL APPROACH TO PROBLEM SOLVING 

2.1 INTRODUCTION 

Introductory physics is a challenging subject to learn partly because students rarely associate the 

abstract concepts they study in physics with more concrete representations that facilitate 

understanding without an explicit instructional strategy aimed to aid them. They often tend to 

have formula oriented problem solving strategies that do not require understanding of physical 

concepts. Unfortunately, these inferior strategies are rewarded in a traditional introductory 

physics course [1,2]. 

There are many reasons to believe that multiple representations of concepts along with 

the ability to construct, interpret and transform between different representations that correspond 

to the same physical system or process play a positive role in learning physics. First, physics 

experts often use multiple representations as a first step in a problem solving process [1,3-8]. 

Second, students who are taught explicit problem solving strategies emphasizing use of different 

representations of knowledge at various stages of problem solving construct higher quality and 

more complete representations and perform better than students who learn traditional problem 

solving strategies [9]. Third, multiple representations are very useful in translating the initial, 

mostly verbal description of a problem into a representation more suitable to mathematical 

manipulation [10-13] because the process of constructing a representation of a problem makes it 
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easier to generate appropriate decisions about the solution process. Also, getting students to 

represent a problem in different ways helps shift their focus from merely manipulating equations 

toward understanding physics [14]. Some researchers have argued that in order to understand a 

physical concept thoroughly, one needs to be able to recognize and manipulate the concept in a 

variety of representations [11,15]. As Meltzer puts it [16], a range of diverse representations is 

required to “span” the conceptual space associated with an idea. Since traditional courses which 

don’t emphasize multiple representations lead to low gains on the Force Concept Inventory 

[17,18] and on other assessments in the domain of electricity and magnetism [19], in order to 

improve students’ understanding of physics concepts, many researchers have developed 

instructional strategies that place explicit emphasis on multiple representations [3,10,11,20-26] 

while other researchers developed strategies with implicit focus on multiple representations [27-

35]. Van Heuvelen’s approach, for example, [10,11] starts by ensuring that students explore the 

qualitative nature of concepts by using a variety of representations of a concept in a familiar 

setting before adding the complexities of mathematics. Many other researchers have stressed the 

importance of students becoming facile in translating between different representations of 

concepts [20,36-42] and that significant positive learning occurs when students develop facility 

in the use of multiple forms of representation [43,44]. However, careful attention must be paid to 

instructional use of diverse representational modes as specific learning difficulties may arise as a 

consequence [16] because students can approach the same problem posed in different 

representation differently without support [16,45]. 

One representation useful in the initial conceptual analysis and planning stage of a 

solution is a schematic diagram of the physical situation presented in the problem. Diagrammatic 

representations have been shown to be superior to exclusively employing verbal representations 
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when solving problems [4,6-8]. It is therefore not surprising that physics experts automatically 

employ diagrams in attempting to solve problems [15,46,47]. However, introductory physics 

students need explicit help understanding that drawing a diagram is an important step in 

organizing and simplifying the given information into a representation which is more suitable to 

further analysis [48]. Therefore, many researchers who have developed strategies for teaching 

students effective problem solving skills attempt to make students realize how important the step 

of drawing a diagram is in solving a physics problem. In Newtonian mechanics, Reif [1,3] has 

suggested that several diagrams be drawn: one diagram of the problem description which 

includes all objects and one diagram for each system that needs to be considered separately. 

Also, he detailed concrete steps that students need to take in order to draw these diagrams: (a) 

describe both motions and interactions, (b) identify interacting objects before forces, (c) separate 

long range and contact interactions and (d) label contact points by the magnitude of the action-

reaction pair of forces. Van Heuvelen’s Active Learning Problem Sheets (ALPS) [10,11] adapted 

from Reif follow a very similar underlying approach. Other researchers who have emphasized, 

among other things, the importance of diagrams in their approach to teaching students problem 

solving skills have found significant improvements in students’ problem solving methods 

[4,10,49]. In mathematics, Shoenfeld [50,51] advocates drawing a diagram (if possible) as the 

first step. 

Previous research shows that students who draw diagrams even if they are not rewarded 

for it are more successful problem solvers [52]. An investigation into how spontaneous drawing 

of free body diagrams (FBDs) [53] affects problem solving [54,55] shows that only drawing 

correct FBDs improves a student’s score and that students who draw incorrect FBDs do not 

perform better than students who draw no diagrams. Heckler [56] investigated the effects of 
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prompting students to draw FBDs in introductory mechanics by explicitly asking students to 

draw clearly labeled FBDs. He found that students who were prompted to draw FBDs were more 

likely to follow formally taught problem solving methods rather than intuitive methods (i.e., 

thinking about the problem conceptually) which caused deteriorated performance. 

The research presented in this study is closely related to student understanding of the 

concept of mechanical waves as it relates to harmonics of standing waves in cylindrical tubes. 

Conceptions of mechanical waves have been researched in young children [57,58], middle 

school and high-school students [59-61], introductory undergraduate students [62,63] and 

advanced undergraduate students [64]. Eshach and Schwartz [59] investigated whether Reiner’s 

[65] earlier finding that the initial knowledge that students bring to the study of science is often 

“substance based” (which Reiner termed “substance schema”) also holds for mechanical waves. 

They found that students do hold this view in some respects. However, sometimes students 

perceive the “substance” that they associate with sound waves differently from other “regular” 

substances. Wittmann [66] reported similar findings, namely that students often use reasoning 

that is focused on object-like properties when discussing waves which can be problematic to the 

goal of shifting student understanding of mechanical waves from a substance-based ontology to a 

sequence of events. In addition, Wittmann and Hrepic [67,68] were interested in identifying 

students’ mental models of mechanical waves and how knowledge of these mental models can be 

used to improve students’ understanding of mechanical waves. One tool for identifying these 

mental models is Wittmann’s Wave Diagnostic Test [69], an open-ended questionnaire. 

Tonghchai et al., on the other hand, developed a multiple choice assessment tool for mechanical 

waves [70] and used it [71] to evaluate the consistency of students’ conceptions. They found that 

students solve problems involving mechanical waves across different contexts inconsistently, 
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much like what other researchers have found for other areas of physics [72-76]. Student 

understanding of other types of waves such as light waves [77] and electromagnetic waves [78] 

has also been researched. However, the use of multiple representations and its role to 

understanding mechanical waves has not been researched in much depth. Among the few who 

have investigated the role of non-verbal representations to understanding sound waves, Eshach 

and Schwartz [59] found that students have a variety of non-verbal representations that they 

employ while explaining their understanding of sound waves. During the interviews they 

conducted with high-school students, they allowed them to draw or gesticulate to explicate their 

reasoning. They concluded this research by suggesting that these non-verbal representations 

students use could be a good starting point to help them construct the correct visual 

representations needed to fully understand wave propagation phenomena. 

The study presented here is concerned with the use of diagrammatic representations in 

the context of problem solving related to standing waves and the extent to which a diagram can 

improve student performance on problems related to standing waves in cylindrical tubes. More 

specifically, we investigated how algebra-based introductory physics students’ performance on a 

problem (given in a quiz) related to standing waves in a tube is affected when students are given 

a diagram as opposed to when they are asked to draw a diagram (without being more specific 

than that). The performance of these students was also contrasted with that of a comparison 

group which was not given any instructions related to diagrams when solving the same problem 

related to standing waves. Moreover, a second similar problem was given in a midterm exam for 

which all introductory physics students received the same instructions regarding diagrams. We 

found that students who were explicitly asked to draw diagrams drew more productive diagrams 

than students in the other two groups and that both in the quiz problem and in the midterm 
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problem students who used a mathematical approach, but also drew productive diagrams, 

performed better than students who used a mathematical approach without drawing a productive 

diagram. In addition, we found that many students employing the mathematical approach had 

difficulties manipulating two equations symbolically in the context of solving the problem 

involving standing waves in a tube. In order to investigate these findings in depth, we conducted 

think-aloud interviews with eight students enrolled in another algebra-based introductory physics 

course. The interviews were helpful in furnishing or corroborating possible interpretations of the 

quantitative results. 

2.2 METHODOLOGY 

A class of 118 introductory physics students in an algebra-based course was broken up into three 

different recitations. All recitations were taught in the traditional way in which the teaching 

assistant (TA) worked out problems similar to the homework problems and then gave a 15-20 

minute quiz at the end of the recitation. Students in all recitations attended the same lectures, 

were assigned the same homework, and had the same exams and quizzes. In the recitation 

quizzes throughout the semester, the three groups were given the same problems but with the 

following interventions: in each quiz problem, the first intervention group, which we refer to as 

the “prompt only group” or “PO”, was given an explicit prompt or instruction to draw a diagram 

along with the problem statement; the second intervention group (referred to as the “diagram 

only group” or “DO”) was given a diagram drawn by the instructor that was meant to aid in 

solving the problem and the third group was the comparison group which was not given any 
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diagram or an explicit instruction to draw a diagram with the problem statement (“no support 

group” or “NS”). 

The sizes of the different recitation groups varied from 22 to 55 students because the 

students were not assigned a particular recitation, they could go to whichever recitation they 

wanted. For the same reason, the sizes of each recitation group also varied from week to week, 

although not as drastically because most students (≈ 80%) would stick with a particular 

recitation.  Furthermore, each intervention was not matched to a particular recitation. For 

example, in one week, NS was the Tuesday recitation while another week, NS was a different 

recitation section. This is important because it implies that individual students were subjected to 

different interventions from week to week and we do not expect cumulative effects due to the 

same group of students always being subjected to the same intervention. 

In order to ensure homogeneity of grading, rubrics were developed for each problem 

analyzed and the rubrics were used to ensure that there was at least 90% inter-rater-reliability 

between two different raters. The development of the rubric for each problem went through an 

iterative process. During the development of the rubric, the two raters discussed students’ scores 

separately from the ones obtained using the preliminary version of the rubric and adjusted the 

rubric if it was agreed that the version of the rubric was too stringent or too generous. After each 

adjustment to the rubric, all the students’ scores were computed again using the improved rubric. 

Here, we discuss two similar problems involving standing waves in tubes. One was given 

in a quiz where the interventions were implemented and the other was given in a midterm where 

the interventions were not implemented and all students received the same instructions. The two 

problems are the following: 
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Quiz problem (comparison group version): 

“A tube with air is open at only one end and has a length of 1.5 m. This tube sustains a 

standing wave at its third harmonic. What is the distance between a node and the adjacent 

antinode?” 

The diagram given to the students in intervention DO along with the above description 

contained an empty tube. The intervention PO students were explicitly asked to draw a diagram 

after the above problem statement. 

 

Midterm problem: 

The midterm problem was identical to the quiz problem except that the tube was open at 

both ends instead of just one end. 

There are two approaches to solving the quiz problem (the midterm problem can also be 

solved by employing a very similar strategy for a tube that is open at both ends). One strategy is 

to draw the standing wave in question as shown in Figure 1. 

 

Figure 2.1. 3rd harmonic for a standing wave in a tube open only at one end. 

Then, for example, one can identify that three node to antinode distances fit in the tube with 

length L=1.5 m. Therefore, the distance between a node and the adjacent antinode is 1.5/3 = 0.5 

m. This diagrammatic approach is the more expert-like approach because it requires 

understanding of a physics concept in its diagrammatic representation (third harmonic of a 

standing wave) and how it applies to a tube which is open at only one end (node at the closed end 

and antinode at the open end). The second approach to solving this problem (very similar to the 
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second approach for the midterm problem) is to use the equation for the frequency of the nth 

harmonic of a standing wave in a tube of length L open at only one end 





 =

L
nvfn 4

  and the 

relation between the speed v, frequency f and wavelength of a wave, v = f λ, solve for wavelength 

λ given L and n and finally divide the wavelength obtained by 4 to get the distance between a 

node and the adjacent antinode. We refer to this latter approach as the “mathematical” approach 

because it does not necessarily require understanding the physics principles involved and the two 

equations can be used as mathematical algorithms if students have the mathematical skills 

required to manipulate them. 

Students in DO were not given the diagram in Figure 2.1 because it would have greatly 

reduced the difficulty of the problem. Instead, they were given a partial diagram: an empty tube. 

It was intended that students would regard the partial diagram as a hint to complete it and be 

more likely to follow the expert like diagrammatic approach. 

The quiz problem was also given to 26 first year physics graduate students (physics 

experts for this study) enrolled in a TA training course in order to assess how often physics 

experts use the diagrammatic approach, which was hypothesized to be a more expert-like 

approach. We also were interested in comparing the average score that graduate students 

obtained on this problem with that of introductory students. In order to make sure that the 

graduate students did not use a diagram simply because they did not remember the relevant 

equations for the frequency of a standing wave with different harmonics in a tube open at one 

end, they were given the relevant equations similar to the introductory physics students. The 

scores of the graduate students will be discussed and compared to the scores of the introductory 

students in the quantitative results section. 
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We investigated how the different interventions impacted the students in terms of how 

likely they were to draw productive diagrams. How much value one derives from drawing a 

particular type of diagram and how the person employs the diagram (and the process of drawing 

it) to solve a problem depends on the expertise of the individual. However, for the purposes of 

this research, a diagram was considered to be productive if it could have aided students in 

solving the problem based upon a cognitive task analysis of the problem. The productive 

diagrams were classified in two broad categories: diagrams of third harmonics (whether correct 

or not) and diagrams of one wavelength (whether drawn as standing or single sinusoidal waves). 

A diagram from a student attempting to draw a third harmonic was considered to be productive 

even if it did not represent a third harmonic, or the third harmonic of the correct situation (tube 

open at one end and closed at the other). This is because these diagrams can be used to solve the 

problem by use of the more expert-like approach. The second type of diagram (diagrams of one 

wavelength of a single sinusoidal/standing wave) was considered to be productive because it 

could be used to determine what fraction of a wavelength is the distance between a node and the 

adjacent antinode (the other type of productive diagram could be used to this end as well). 

Furthermore, because there are two approaches to the solution of this standing wave 

problem, one primarily diagrammatic and another primarily based on mathematical 

manipulations, rubrics were developed to score the performance of students employing each 

approach. The summary of the rubric used to score students out of 10 points who chose the 

mathematical approach (both in the quiz and midterm problem) is shown in Table 2.1. 

It is important to emphasize that a tube open only at one end can only sustain the odd 

harmonics, therefore n in the formula f(n) = nv/4L takes only odd values. However, the third 

harmonic corresponds to n = 3 (and not the third possible value for n, namely 5) because of the 
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convention that the frequency of the nth harmonic of a standing wave must be n times the 

fundamental frequency. This is a common source of confusion for both experts and novices. We 

surveyed several physics experts (including graduate students and instructors) and found that 

almost all of them do not realize that the even harmonics do not arise for a standing wave in a 

tube open at only one end and associate the third harmonic with the third possible value for n, 

namely 5, which is incorrect based on the convention. Similarly, they incorrectly believed that 

the diagrammatic representation of the third harmonic corresponds to the third possible way of 

drawing a standing wave in a tube open at only one end, which instead corresponds to the fifth 

harmonic because of the same convention. Since the majority of experts confuse the fifth and 

third harmonic, the researchers considered that one should not penalize introductory students for 

this confusion. However, we are aware that not everyone would agree with this approach so we 

also performed data analysis for when one point (out of a maximum of 10) was taken off for 

mistaking the third harmonic with the fifth or using n = 5. All of the results are identical: every 

comparison which yielded a statistically significant difference in one instance (not taking off 

points for this mistake) also yielded a statistically significant difference in the other instance 

(taking off one point for this mistake). 

Table 2.1 shows that there are two parts to the rubric: Correct Knowledge and Incorrect 

Ideas. Table 2.1 also shows that in the Correct Knowledge part, the problem was divided into 

different sections and points were assigned to each section (10 maximum points). Each student 

starts out with 10 points and in the Incorrect Ideas part, the common mistakes students made in 

each section and the number of points that were deducted for each of those mistakes are listed. It 

is important to note that each mistake is connected to a particular section (the mistakes labeled 1 

and 2 are for the first and second sections respectively, the two mistakes labeled 3.1 and 3.2 are 
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Table 2.1. Summary of the rubric used to score the performance in the quiz of students employing the mathematical 

approach out of 10 points. 

Correct Knowledge 

Section 1 1. Used given equation f(n) = nv/4L 1 p 

Section 2 2. Chose n = 3 or n = 5 1 p 

Section 3 3. Wrote down v = f λ 3 p 

Section 4 4. Solved for λ correctly 2 p 

Section 5 5. Found answer by dividing λ by 4 2 p 

Section 6 6. Correct unit for answer 1 p 

Incorrect Ideas 

Section 1 1. Used incorrect equation -1 p 

Section 2 2. Chose value for n other than 3 or 5 -1 p 

Section 3 

3.1 Did not write v = f λ -3 p 

3.2 Tried to write down v = f λ, but made a mistake (i.e., wrote something 

like v = f/ λ) 

-2 p 

Section 4 

4.1 Did not solve for λ -2 p 

4.2 Used a value for v other than that for sound wave -1 p 

4.3 Made an error and obtained incorrect λ -1 p 

4.4 Unclear how λ was found or other error -1 p 

Section 5 5. Did not divide λ by 4 to obtain the answer or did not obtain an answer -2 p 

Section 6 6. Incorrect units -1 p 

 

for the third section and so on) and that for each section, the rubric cannot be used to subtract 

more points than that section is worth. For example, the two mistakes in section 3 (3.1 and 3.2) 

are mutually exclusive. Similarly, mistake 4.1 is exclusive with all other mistakes in section 4 

and mistakes 4.3 and 4.4 are mutually exclusive. Finally, if the mistake a student made was not 

common and not in the rubric, it would correspond to the mistake labeled as 4.4. 
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A rubric was also developed to score the performance of students employing the 

diagrammatic approach. The summary of the rubric is shown in Table 2.2. 

 
Table 2.2. Summary of the rubric used to score the performance in the quiz of students employing the diagrammatic 

approach, out of 10 points. 

Correct Knowledge 

Section 1 1. Drew a diagram of a wave 4 p 

Section 2 2. Used diagram correctly to obtain the answer 5 p 

Section 3 3. Correct units for answer 1 p 

Incorrect Ideas 

Section 1 

1.1 Diagram is a sinusoidal wave that does not clearly indicate locations of 

nodes and antinodes 

-1 p 

1.2 Diagram has either two nodes or two antinodes at the endpoints -2 p 

1.3 Diagram does not represent the third or fifth harmonic* (if endpoints are 

a node and an antinode) 

-1 p 

1.4 Diagram does not represent the third harmonic** (if endpoints are both 

nodes or both antinodes) 

-1 p 

Section 2 

2.1 Answer found is not the distance between a node and an antinode, nor 

the distance between two nodes (based on student’s diagram) 

-4 p 

2.2 Used diagram correctly, but found the distance between two nodes -2 p 

2.3 Unclear how answer was obtained or other error -1 p 

Section 3 3. Incorrect units -1 p 
* Due to the confusion of experts of third and fifth harmonic for a standing wave in a tube open at only one end, 

both diagrams were considered correct. 

** For the case when the tube is open or closed at both ends, experts do not have difficulties because all harmonics 

are possible, including even ones, therefore, it was considered that students should know in those instances how the 

third harmonic should be drawn. 

 

The basic form of the summary of the rubric shown in Table 2.2 is the same as the one 

shown in Table 2.1; it has the same two main parts (Correct Knowledge and Incorrect Ideas), and 
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again the problem is broken up into sections and the common mistakes students made in each 

section are listed. In section 1, mistakes 1.4 and 1.3 are mutually exclusive and in section 2, 

mistakes 2.1 and 2.2 are mutually exclusive. Similarly to the rubric used for the mathematical 

approach, we left ourselves a small window (labeled 2.3) if a mistake of a student was not 

explicitly in the rubric (a very rare occurrence, less than 5% of the cases). 

We note that the rubrics are designed to be similar in terms of penalizing for mistakes 

that could be considered as analogous. For example, the rubric used for the mathematical 

approach treats the cases n = 3 and n = 5 as both correct because of the confusion of experts. 

Similarly, the rubric used for the diagrammatic approach does not penalize of student for 

drawing the fifth harmonic instead of the third of a standing wave in a tube open at only one end. 

Since this confusion was not penalized in one rubric, it was also not penalized in the other. 

Another example is provided by the analogy between the mistake of section 5 in the 

mathematical rubric and the mistake labeled 2.2 in the diagrammatic one. Students who use the 

mathematical approach and find the wavelength must have an understanding of what a node and 

an antinode are and divide the wavelength by four. This understanding of what a node and an 

antinode are is also required to use a diagrammatic representation of a standing wave to 

determine the distance between the two. This is why the mistakes are penalized equally (-2 

points). 

In addition to analyzing the quantitative data collected from the 118 students, interviews 

were conducted with eight students using a think-aloud protocol  [79,80] in order to obtain an in-

depth account of their difficulties while solving the quiz problem and in addition provide some 

insights that would account for the performance of these students. The results of the interviews 

will be discussed after the quantitative results section. 
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2.3 QUANTITATIVE RESULTS 

2.3.1 Comparison between introductory students and graduate students 

Before presenting the quantitative results it is important to mention that the data were analyzed 

using two grading approaches, one which penalized students for confusing the third with the fifth 

harmonic or selecting n = 5 instead of n = 3 and one which did not penalize for these mistakes. 

While this results in a slight change in averages and standard deviations, the statistical 

comparisons of performance of different groups of students yielded the same exact results. We 

present the data obtained with the latter grading approach. 

As mentioned earlier, the quiz problem was also given to a group of 26 first year graduate 

students (physics experts for this study) enrolled in a TA training course. It is a straightforward 

mathematical exercise for a physics graduate student to solve for the wavelength, as previously 

described in the methodology section, using the mathematical approach. However, we found that 

76% of them elected to draw a diagram to solve the problem (and ignored the equations provided 

to them completely), thus confirming our hypothesis that experts are more likely to follow the 

diagrammatic approach to solve this problem. The performance of both introductory physics 

students and graduate students on the quiz problem is listed in Table 2.3. 

T-tests [81] reveal that graduate students who used the diagrammatic approach performed 

better than the introductory students who used the same approach. Also, the overall scores of 

graduate students were better than the scores of introductory students (both p values less 

than0.001). Interestingly, there does not appear to be a difference between the graduate students 

and the introductory physics students who used the mathematical approach. However, there were 

only 10 graduate students in this group and therefore a t-test is not appropriate. 
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Table 2.3.Number of students (N), averages (Avg.) and standard deviations (Std. dev.) for both the graduate 

students and the introductory students who used the diagrammatic approach and students who used the mathematical 

approach in the quiz problem. 

Introductory physics students N Avg. Std. dev. 

1. Used diagrammatic approach 41 7.7 2.0 

2. Used mathematical approach 77 7.8 2.0 

4. Overall average 118 7.8 2.0 

Graduate students N Avg. Std. dev. 

1. Used diagrammatic approach 16 9.4 1.0 

2. Used mathematical approach 10 8.0 1.9 

3. Overall average 26 8.8 1.6 

 

2.3.2 Quantitative results pertaining to introductory student performance and 

drawing/use of diagrams 

Students who primarily used a mathematical approach but drew productive diagrams 

performed better than students who used math without drawing productive diagrams. 

 

We investigated how drawing a diagram and/or using the diagrammatic approach vs. the 

mathematical approach impacted students’ scores both in the quiz problem and in the midterm 

problem. All the students were placed in groups based on whether they used the more expert-like 

diagrammatic approach (“Used diagram” in Table 2.4) or primarily used the mathematical 

approach. Among the students primarily using the mathematical approach (as discussed earlier), 

we classified students in two categories based upon whether they drew a productive diagram or 

not. We wanted to investigate whether a productive diagram helped improve scores or not 
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(hence, the students who used the mathematical approach were divided into two groups in Table 

2.4: “Used math, but also drew a productive diagram”, and “Used math without a productive 

diagram”). 

Comparison of the performance of students in the quiz with that on the midterm yields no 

statistically significant differences between any of the groups of students shown in Table 2.4 

(students who used a diagram, students who used math, but also drew a productive diagram etc.) 

However, both in the quiz and the midterm, students who primarily employed the mathematical 

approach but also drew a productive diagram performed better than students who chose the 

mathematical approach without drawing a productive diagram (p values for comparing these two 

groups of students are, 0.002 and 0.006 in the quiz and the midterm, respectively). 

 
Table 2.4.Number of students (N), averages (Avg.) and standard deviations (Std. dev.) for students who used an 

expert-like diagrammatic approach (without math), used math and drew a productive diagram, and used only math 

without a productive diagram both in the quiz and in the midterm. 

Quiz N Avg. Std. dev. 

1. Used diagram 41 7.7 2.0 

2. Used math, but also drew a productive diagram 45 8.3 1.7 

3. Used math without a productive diagram 24 6.7 2.1 

Midterm N Avg. Std. dev. 

1. Used diagram 29 8.1 2.0 

2. Used math, but also drew a productive diagram 68 8.8 2.0 

3. Used math without a productive diagram 24 7.3 2.3 
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Students provided with a diagram of a tube (DO) performed worse than the students asked 

to draw a diagram (PO) and the students provided with no support regarding diagrams 

(NS). 

 

The average scores on the quiz problem along with group sizes and standard deviations for the 

three different groups are shown in Table 2.5. 

 

Table 2.5.Numbers of students (N), averages and standard deviations for the two intervention groups and the 

comparison group (NS) in the quiz problem. 

Quiz N Average Standard deviation 

PO 50 8.1 1.7 

DO 39 6.9 2.4 

NS 29 8.6 1.0 

 

It can be seen from Table 2.5 that students in group DO performed worse than students in 

the other groups. We performed t-tests to determine whether these differences were statistically 

significant. Table 2.6 shows the results, which indicate that students in DO performed 

statistically significantly worse than students in the other two groups. 

 

Table 2.6. p values for comparisons between the scores of the different groups. 

Quiz PO-DO DO-NS PO-NS 

 0.007 < 0.001 0.138 
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Students in PO drew more productive diagrams than students in the other groups. 

 

Table 2.7 shows the percentages of students who drew productive diagrams. Almost all the 

students in PO drew productive diagrams compared to only 60% and 79% of students in groups 

DO and NS respectively. A chi-square test [81] shows the difference between PO and DO is 

statistically significant (p < 0.001). When comparing PO with NS, a chi-square test is not 

appropriate because some expected cell frequencies are less than 10 [82], so Fisher’s exact test 

was performed [82], which yielded a statistically significant difference (p = 0.046). 

 

Table 2.7.Percentages of students who drew productive diagrams in each group. 

Quiz PO DO NS 

Percentage 96% 60% 79% 

 

2.3.3 Quantitative data pertaining to introductory students’ mathematical difficulties 

Another important finding is that introductory physics students who primarily used the 

mathematical approach had great difficulties in solving for the wavelength without plugging in a 

value for the speed of the wave, v. They were given the equation for the frequency of the nth 

harmonic of a wave in a tube open at one end �𝑓(𝑛) = 𝑛𝑣
4𝐿
�, but they were not given the 

relationship between the speed, frequency and wavelength of a wave (v = λf). Therefore, students 

had to remember the equation v = λf in order to solve for the wavelength. Table 2.8 lists how 

many students, among those who wrote down v = λf, were able to solve for the wavelength 

correctly without plugging in a value for the speed, how many students were not able to do so, 
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and how many students plugged in some numerical value for the speed (despite the fact that it 

was not explicitly given) in order to solve for the wavelength both in the quiz problem and in the 

midterm problem. 

Table 2.8 shows that both in the quiz and the midterm, less than half of the students (48% 

in the quiz and 36% in the midterm) were able to eliminate the undesired quantities from the two 

equations and solve for the target variable without resorting to plugging in numerical information 

about speed that was not explicitly given. We note that the approach chosen by students in 

category 3 from Table 2.8 (plugging in a numerical value for the speed, v) is not necessarily an 

unproductive approach because it can help students reduce their cognitive load. However, the 

fact that so many students substituted a number for the speed of the wave in order to solve the 

quiz and midterm problems (when the speed would have canceled out between the two equations 

when solving for the wavelength) implies that a large fraction of the students in the algebra-

based introductory physics course are uncomfortable manipulating two equations symbolically in 

order to eliminate the undesired quantities and determine the target variable. 

As noted by others [83,84], students are not always facile in transferring mathematical 

knowledge to a physics context. We examined whether students in algebra based classes could 

solve an isomorphic, purely mathematical problem. The problem is as follows: 

 

In the two equations underneath, C is a constant. Solve for x in terms of C. Show your work! 







⋅=

⋅
=

yxz

zCy
4

 
 
Clearly, this is equivalent to the system of equations that students employing a purely 

mathematical approach must solve in the quiz and midterm problems if the following 

correspondences  are  made:  y ↔ f,  C ↔ n,  z ↔ v,  x ↔ λ  and  4 ↔ 4L (L was given as 1.5 so 
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Table 2.8.Numbers of students who were able to find the wavelength algebraically, who were not able to do so, and 

who plugged in a value for the speed of the wave (although not given) in order to solve for the wavelength (among 

the students who wrote down v = λf) 

Quiz N 

1. Solved correctly for λ (algebraically, i.e. without plugging in a value for v) 28 

2. Did not solve correctly for λ or did not solve at all 6 

3. Solved for λ by plugging in a numerical value for v 24 

Midterm N 

1. Solved correctly for λ (algebraically, i.e. without plugging in a value for v) 17 

2. Did not solve correctly for λ or did not solve at all 4 

3. Solved for λ by plugging in a numerical value for v 26 

 

students could plug it in to get 4L = 6). We find that 64% of algebra-based students at the 

beginning of the first semester course are able to solve this system correctly and 89% of students 

at the beginning of their second semester course are able to solve this system correctly. It may 

not be appropriate to compare these percentages with the percentages of students who solved the 

quiz and midterm problems using the mathematical approach algebraically, without plugging in a 

value for v, because in those cases students had the option of plugging in a value for one of the 

unknowns (v) which greatly simplifies the task. It is of course possible that at least some of the 

students (if not the majority) who plugged in a value for v in the equation did so because 

otherwise they would have been unable to solve the problem. However, it does appear that 

students are more adept at solving for the desired variable from the system of two equations in 

the purely mathematical context than in the physics context, especially students in the second 

semester algebra-based class. 
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2.4 QUALITATIVE RESULTS FROM INTERVIEWS 

As mentioned earlier, interviews were conducted with eight introductory physics students in 

order to get an in-depth account of their difficulties in solving the quiz problem. These students 

were at the time enrolled at the same university in an equivalent second semester algebra-based 

introductory physics course in which these concepts related to waves had been covered in the 

lectures and homework. They had also been tested (via a midterm) on concepts related to waves 

before the interviews were conducted. We found that some of their homework assignments 

involved very similar problems to the ones analyzed in this study and their first midterm 

contained a problem requiring students to draw different harmonics of standing waves in tubes. 

The interviews were conducted using a think-aloud protocol. Students were first asked to solve 

the problems to the best of their ability without interruption except they were asked to talk when 

they became quiet for a long time. After students were finished with the problem to the best of 

their ability, they were asked clarification questions if their reasoning at one point or another was 

unclear or questions related to other specific aspects of their problem solving approach. Also, 

they were asked to solve the tube problem using another approach (i.e. if a student solved it 

using the mathematical approach he/she was asked if he/she can solve it using a diagrammatic 

approach and vice-versa). If students found it difficult to solve the problem using either 

approach, they would often be asked questions intended to provide scaffolding and guide them 

(some examples will be provided below). 

This qualitative results section is broken up into two subsections, the first reports 

qualitative findings obtained via interviews that are related to the quantitative results presented 

and the second reports student difficulties in employing the diagrammatic approach observed in 

the interviews. 
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2.4.1 Qualitative results via interview related to the quantitative results 

1) Qualitative results via interview related to the quantitative results 
 

One of the main findings from the quantitative investigation is that a good diagram is valuable 

for solving a problem related to a standing wave in a tube even when a student employs a 

primarily mathematical approach to problem solving. In particular, we found that students who 

used a mathematical approach but drew a productive diagram performed better than students 

who used the mathematical approach without drawing a productive diagram. As noted earlier, 

when defining “productive diagram” for these problems, it was considered that any diagram of a 

third harmonic (whether or not correct) could be productive because it gives students an 

opportunity to perform a conceptual analysis and planning related to the problem and students 

could use the insight derived from drawing this diagram to solve the problem. Moreover, even in 

the case when primarily a mathematical approach was chosen, the process of drawing a 

productive diagram can be helpful in conceptually analyzing the problem and such a diagram 

could be used to determine what fraction of a wavelength was represented by the distance 

between a node and the adjacent antinode. Another type of diagram that could be useful and was 

considered productive was a diagram of one wavelength of a standing or single sinusoidal wave. 

Interestingly, half of the students interviewed (four) chose the mathematical approach. Most of 

these students (three) drew a diagram of one wavelength of a single sinusoidal wave in order to 

determine that the distance between a node and the adjacent antinode is one quarter of the 

wavelength (and did so correctly). One of the interviewed students who drew a diagram, drew a 

diagram of the third harmonic but did not explicitly use the diagram she drew in solving the 

problem (and only focused on the equations). This latter student divided the wavelength by three 
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(instead of four) to obtain the distance between the node and the antinode because she claimed 

that the number she needed to divide the wavelength by in order to determine the distance 

between a node and the adjacent antinode was related to the harmonic (i.e. she divided by three, 

because the problem involved the third harmonic of a standing wave). 

Among the four students who used the diagrammatic approach, only one used it exactly 

in the way that an expert would most likely use it (and consistent with the approach of graduate 

students who were asked to solve it). He determined how many distances between a node and an 

antinode would fit in the length of the tube and then divided the length of the tube by that 

number. The other three students used the diagram of the third harmonic they had drawn to 

determine the wavelength. After finding the wavelength, they were at the same point as the 

students who used the mathematical approach to determine the wavelength, and just like those 

students, they then proceeded to determine the number by which to divide the wavelength in 

order to get the distance between a node and the adjacent antinode. To this end, one of these 

three students drew an additional diagram of one wavelength of a single sinusoidal wave (and 

used it incorrectly to obtain the distance between a node and an antinode) while the other two 

students explicitly used the diagrams of the third harmonic they had drawn (and used the 

diagrams correctly to find the distance between a node and an antinode). What the interviewed 

students did on their own while solving the problem and thinking aloud and what they said when 

asked for clarification of the points they had not made earlier suggests that drawing a diagram of 

a third harmonic for the problem or even one wavelength of a single sinusoidal wave can be 

helpful in finding the relationship between the distance between a node and the adjacent antinode 

and the wavelength of a standing wave because it helps students focus on relevant information in 

order to proceed with the problem solution. As noted earlier, the interviewed student who neither 



 47 

used her diagram of the third harmonic nor drew one wavelength of a single sinusoidal wave to 

determine the distance between the node and antinode with respect to the wavelength made a 

mistake (divided the wavelength by three because the problem involved the third harmonic). 

However, out of the other students who either used their diagrams of the third harmonic or 

diagrams of one wavelength of a single sinusoidal wave to determine the distance between the 

mode and antinode, only one made a mistake (divided the wavelength by 2 instead of 4). During 

the initial think aloud process while solving the problem without interruptions and later when 

asked for clarification, these students were able to articulate how the diagram was helpful in 

shaping the problem solving process. It appears from the interviews that students who drew 

productive diagrams performed better even if their chosen approach was primarily mathematical 

because the diagram helped them think about the problem solution conceptually. 

Another finding discussed in the quantitative results section is that many algebra-based 

introductory physics students who selected the mathematical approach had difficulties in 

performing a substitution in order to eliminate the undesired quantities from the two equations,   

v = fλ and 𝑓𝑛 = 𝑛𝑣
4𝐿

, and solve for the target variable, λ, without resorting to plugging in numerical 

information for speed that was not explicitly given in the two problems. In fact, among the 

students who knew the first equation, v = fλ, the percentage of them who were able to manipulate 

these two equations algebraically without plugging a numerical value for the speed and solve for 

the wavelength went down from 48% in the quiz to 36% in the midterm. These types of 

difficulties were also observed in the interviews. Some students approached the problem 

mathematically at first, but then changed their approach to diagrammatic when they had 

difficulty determining what mathematical steps to perform next. Dan, for example plugged in 

n=3 and L=1.5 m in the equation for frequency and solved for f/v to get 1/2 (he did not write 
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down the units of 1/m). At this point he appeared to be stuck and after some thinking, he changed 

his approach to the diagrammatic one. After the think aloud part was over and Dan was probed 

further, he noted that he was aware of the other equation, v = fλ. He noted that at one point while 

solving the problem he thought about using this equation to find the wavelength. However, he 

did not explicitly write it down because he was not sure if it would help him to determine the 

wavelength. In particular, after he switched to solving the problem using the diagrammatic 

approach and attempted to solve it to the best of his abilities, the interviewer asked him if he was 

aware of the connection between speed of a wave, frequency and wavelength. At this point, Dan 

wrote this equation on the paper and identified correctly that the wavelength would equal 2 m. It 

was interesting that Dan noted that in his mind he had tried to think if he could solve for the 

wavelength using this equation v = fλ  along with f/v = 1/2 when he was solving the problem 

during the think aloud part of the interview without probing. However, he gave up on trying to 

solve the problem using these equations and did not realize that writing down the equation          

v = fλ on paper may have reduced the cognitive load during problem solving and may have 

helped facilitate the problem solving process. Furthermore, while Dan himself noted that he 

contemplated using the equation v = fλ along with f/v = 1/2 to solve for the wavelength; he was 

unable to do this and resorted to another approach. However, when he was given a system of two 

equations (without a physics context) with two unknowns of the form �𝑥 + 2𝑦 = 3
3𝑥 − 𝑦 = 2 , he was able 

to readily solve this purely mathematical problem for variables x and y without much effort. 

Another student, Karen, initially solved the problem using the diagrammatic approach 

during the think aloud part of the interview. During the second part of the interview, the 

interviewer asked her to solve the problem using the mathematical approach and gave her the 

equation v = fλ. At this point, Karen’s first step was to substitute this equation into the other 



 49 

equation provided with the problem and plug in n=3 and L=1.5. She thus obtained 𝑓 = 3(𝑓𝜆)
4(1.5)

 

which was a productive way to solve the problem. However, after this step, she was unsure about 

what to do and after some thinking, she gave up and noted that she did not know how to proceed 

(she did not realize that the frequency can be canceled from both sides of the equation). The 

interviewer then gave her a system of two equations with two unknowns (traditional x and y 

variables without the physics context) similar to the one Dan had to solve, and she was able to 

solve it correctly without much effort. In this situation, Karen was aware of what needed to be 

done next, but in the tube problem situation, after the substitution step, she was not able to 

determine what to do next. She did not realize that f was on both sides of the equation and she 

could cancel it or that she could multiply both sides of the equation by the denominator of the 

fraction on the right to get a simpler equation for the wavelength. 

Another student, Tara, approached the problem mathematically from the beginning. She 

knew the two equations that needed to be used, 𝑓 = 𝑛𝑣
4𝐿

 and v = fλ, wrote them down, and then 

said the following: 

 

Tara: If I knew v [speed of the wave] I could plug in this equation [𝑓 = 𝑛𝑣
4𝐿

], get f and then plug 

that in this equation [v=fλ] to get the wavelength. 

 

She then drew one wavelength of a travelling wave and said that she would divide the 

wavelength that she obtains by 4 to get the distance between the node and antinode. At this point 

she indicated that she was done to the best of her ability and her statement indicated that she 

could not solve this problem since the speed of the wave was not given. At this point, the 

interviewer then asked her: 
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Interviewer: Could you do this without knowing what v is? 

Tara: Could I? Probably... 

 

She then thought about how she could solve for the wavelength using the two equations 

for some time (a little less than a minute) and said: 

 

Tara: I can’t think of another way. 

Interviewer: If you look at this equation [pointing with finger to 𝑓 = 𝑛𝑣
4𝐿

] and this equation 

[pointing with finger to v=fλ]… 

 

Tara interrupted the interviewer before he could ask the question “could you solve for 

λ?”: 

 

Tara: I can plug it all in […] use substitution […] you would plug the frequency and the 

wavelength in for v [she meant plug in the frequency times the wavelength for v] in the 

equation given […] so you can solve for lambda that way. 

 

She then correctly solved for the wavelength without plugging in a value for the speed of 

the wave. It appears that even though Tara had the information about how to perform substitution 

algebraically in her long term memory, she did not retrieve this information even after being 

explicitly asked if she could solve the problem without plugging in a value for the speed. 

Moreover, the fact that after the interviewer directed her attention to the two equations that had 
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to be manipulated, Tara realized immediately what she needed to do, suggests that when she 

earlier paused (for about a minute) to think about whether she could solve the problem without 

knowing the speed, she may have not been focusing on the relevant information about the two 

equations. 

These examples from interviews suggest that students were able to solve two 

simultaneous equations without a physics context without any difficulty but there was a lack of 

transfer of the mathematical knowledge to a physics context. This difficulty in transferring from 

the mathematical context to the physics context could be due to the fact that in the physics 

context there may be other information which can distract students from processing the relevant 

information, while such distractions are not present when engaged in a purely mathematical 

exercise. Moreover, mathematics is used differently in physics courses from mathematics 

courses [83] and this could also lead to difficulties in transfer from one context to another. For 

example, solving for the wavelength from the two equations, 𝑓 = 𝑛𝑣
4𝐿

, and v = fλ may be more 

difficult for a student from solving a general 2x2 system of equations with x and y variables (as 

observed with some students in the interviews). In the first case, the symbols that go into those 

equations have physical meanings and it may be more difficult for students to focus on the 

relevant information (e.g. substitute one equation in the other, cross-multiply etc.) because the 

physical meanings add more information that is not present in the second case in which the 

variables x and y are devoid of physical meaning. This could partly account for the difficulties 

students exhibited in solving for the wavelength from the two equations without resorting to 

plugging in information that is not given, observed in the quantitative data and in the think-aloud 

interviews. 
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2.4.2 Student difficulties while using the diagrammatic approach 

Interviews also revealed some difficulties algebra-based introductory physics students 

encountered while using the diagrammatic approach to standing waves in the tube while solving 

the problem. Karen for example, stated at the beginning after reading the problem that at the 

closed end of the tube there will be a node and that at the open end of the tube, there will be an 

antinode. She then tried to draw the third harmonic of this wave, and her attempts reflected this 

knowledge. However, she had difficulty drawing the third harmonic directly and she decided to 

start with a drawing of the first harmonic on the side (not in the tube) and work up to the third. 

However, the diagrams of the harmonics she drew on the side had nodes at both ends and 

therefore corresponded to a different situation (tube closed at both ends). Karen was unaware of 

this mistake in her drawing despite the fact that she explicitly stated at the beginning after 

reading the problem statement that at one end of the tube there should be a node and at the other 

end there should be an antinode. When solving the problem, she appeared to have forgotten 

about her initial correct statement (there should be a node at one end and antinode at the other 

end) and used the incorrect third harmonic she drew on the side (which corresponded to a 

standing wave in a tube closed at both ends) to solve the problem. 

Another student, Sara, drew the 5th harmonic for the wave in the tube open at only one 

end. However, the last section of the wave she drew (last 1/4 wavelength) looked on her diagram 

to be of the same length as the other two sections of the wave (1/2 wavelength) as shown in 

Figure 2.2. 

 
Figure 2.2. Diagram of the fifth harmonic as drawn by Sara (a student). 
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Consequently, she divided the length of the tube by three to get the distance between two nodes 

and then divided that distance by two to get the distance between a node and an antinode. After 

she was satisfied with her answer and was done with the problem to the best of her ability, the 

interviewer asked her why she divided the length of the tube by three.  Here is a short excerpt: 

 

Sara: Well, from what it said about third harmonic, I drew waves so you get one node here, 

another node here [the two middle nodes] and then the rest of the wave just opens up to 

the outside of the tube. Assuming the tube was closed, I think you would get another node 

right at the end of the tube [right side]. 

Interviewer: Yeah, but it’s not closed. 

Sara: Right, but I assumed that these nodes [the two middle ones] would automatically split the 

tube into three. 

Interviewer: Okay, so you’re thinking that here as well [at the right end] you would have a 

node? 

Sara: If it was closed […] I know it’s not closed so you don’t get the node, it just kind of opens 

out, but I assumed, if it was closed you would get that node and these nodes [the two 

middle ones] would split the tube into three equal […] lengths. 

 

Instead of correcting her diagram to fit the problem situation, Sara seemed to have 

modified the problem to fit her diagram and essentially ended up solving a different problem. 

She was also aware that it was a different problem (“I know it’s not closed”) but this didn’t seem 
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contradictory enough to her to change her diagram or interpretation. At this point the interviewer 

continued with further questioning to draw attention to her mistake: 

 

Interviewer: Sure, but you’re solving a different problem, because you’re assuming it’s closed 

and it’s not. What would change if it’s open? 

Sara: So basically this [the last section on the right which should have been ¼ wavelength] is 

not the same as this and this [she pointed to the other two sections of the wave she drew]. 

 

Sara then stopped to think about her diagram and used the knowledge that the last section 

is half the length of the other two sections to correctly solve for the distance between a node the 

adjacent antinode. Similar to Karen, Sara also did not use knowledge she possessed (the last 

section of the wave was shorter than the other two sections) when she initially solved the 

problem without interruption. After the interviewer explicitly pointed her attention to the 

diagram she drew and pointed out that she had solved a different problem, Sara was able to 

retrieve the correct information and use it to solve the problem correctly based on her diagram of 

the fifth harmonic. 

Another student, Brian, used information that was not applicable in the quiz problem. He 

thought that the distance between a node and an antinode decreases as you move away from the 

closed end. The diagram Brian drew is shown in Figure 2.3 and has a standing wave in which the 

distance between nodes decreases away from the closed end of the tube. It is unclear why he 

thought this to be true, but he explicitly stated that he remembered his instructor drawing a 

diagram where this was the case. It is unlikely that the instructor drew such a diagram because 

the book the students used had no such diagram or any discussion of a situation where the 
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distance between nodes of a standing wave changes. It is possible that he misinterpreted a 

diagram drawn by the instructor. 

 

Figure 2.3. Diagram of the fifth harmonic drawn by Brian (a student). 

 

Brian did not realize that the diagram he drew cannot be correct for the situation 

presented in the problem because if his reasoning was correct, then the problem should have 

specified which node to adjacent antinode distance students had to find (this distance would be 

different for his situation depending on which node/antinode you choose). He was therefore 

unable to solve the problem using this diagram and proceeded to try the mathematical approach. 

2.5 DISCUSSION AND SUMMARY 

We found that among the students who chose primarily the mathematical approach, those who 

drew productive diagrams performed better than those who did not. It is unclear whether the 

students who drew diagrams were the ones who generally had more expert-like approaches to 

problem solving which included a conceptual analysis stage that started with or involved 

drawing a diagram or whether the process of drawing a diagram helped students regardless of 

their general problem solving approaches. However, it is important to note that the interviews 

suggested that students who did draw diagrams were attempting to make sense of the problem 

conceptually and that the students who explicitly used the diagrams they drew were less likely to 
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make mistakes than the students who did not. We therefore conclude that students should be 

explicitly taught good problem solving heuristics which include drawing a diagram in the 

conceptual planning stage and that instructors should emphasize and reward students for drawing 

diagrams. 

We note that the quiz problem was also administered to a set of graduate students for two 

reasons: to confirm that the more expert-like approach is indeed the diagrammatic approach and 

also to obtain a benchmark for what would be the upper-limit of the performance of introductory 

physics students. We found that the majority of graduate students selected the diagrammatic 

approach even when the equation for the nth harmonic frequency was provided, thus confirming 

that the diagrammatic approach is indeed a more expert-like approach. We also found that 

graduate students outperformed introductory physics students by an average of about 13%. 

Furthermore, we found that the students who were given a diagram of an empty tube 

performed statistically worse than the students who were asked to draw a diagram and worse 

than students who were not given any instructions regarding diagrams. In a previous 

investigation [85] (also discussed in chapter 3 of this dissertation), we found the same result 

while examining introductory students’ performance on two problems in electrostatics that 

involved considerations of initial and final situations. In addition, for the electrostatics problems, 

the differences in score between group DO and the other two intervention groups were even 

more pronounced (average of students given diagrams was more than 20% lower than the 

averages of the other two groups and the p values were smaller than 0.001). The research in Ref. 

[85] involved the same methodology as that described here. However, the diagrams given to 

students in group DO were very similar to what most instructors would initially draw in order to 

solve those two problems and were intended as scaffolding support. Instead of helping students 
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solve those two problems, the given diagrams had the opposite effect, statistically worsening 

their performance as compared to students in the other two groups. Unlike the diagrams that 

were provided in the earlier study involving electrostatics problems, in the research presented 

here, students in group DO were given only a partial diagram (empty tube). Providing students 

the partial diagram was intended as a hint or prompt for them to complete it and attempt to solve 

the problem in an expert-like manner (drawing a diagram of a third harmonic of a standing wave 

and using it to solve the problem). However, similar to the study involving electrostatics 

problems, here we also we find that providing the diagram of the empty tube had the opposite 

effect from what was intended. In particular, the students who were given this diagram drew 

fewer productive diagrams than those who were not provided a diagram. This may be part of the 

reason why students in group DO performed worse than students in the other intervention 

groups. 

We also found that in the context of solving the physics problem, students had great 

difficulty manipulating two equations symbolically. However, when students had to solve an 

isomorphic mathematical system of two equations devoid of physics context, the vast majority of 

them were able to perform the manipulations and solve for the target variable correctly in terms 

of other variables. This discrepancy between students’ mathematical ability in a physics context 

and their mathematical ability in a mathematical context was also observed in the interviews. 

Many students expressed the need to substitute a numerical value for the speed of the wave 

before they solved for the wavelength using the two simultaneous equations even though the 

speed would have canceled out between the two equations. When they were asked to solve a 2x2 

system of equations in a purely mathematical context, all the students were able to do so with 

little effort. One framework that can be used to partially interpret these findings is the cognitive 
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load theory [86,87]. In this framework, problems are solved by a problem solver by processing 

relevant information in the working memory [88,89]. The relevant information for a problem 

includes both the information that comes from the problem itself and the possible matches that 

are found with the relevant knowledge in the long term memory of the problem solver. Research 

has shown that working memory is finite (5-9 “slots”) for any person regardless of intellectual 

capabilities [90,91]. Therefore, in order to solve a problem, one can only process 5-9 “chunks” of 

information at a given time to move forward with the solution. Experts have a hierarchically 

organized knowledge structure in their domain of expertise [92] and are also able to “chunk” 

knowledge and focus on important features of the problem which helps them retrieve appropriate 

information from their long term memory without experiencing cognitive overload [93-95]. In 

contrast, novices do not have a robust knowledge structure and while engaged in problem 

solving, they are typically unable to chunk more than one piece of information into one short 

term memory slot and therefore have reduced information processing capabilities (as compared 

to experts). Novices are also more likely to focus on unimportant features of the problem, and 

often retrieve information that is not necessarily useful or relevant [96,97]. These constraints are 

likely to overload the working memory while a novice is solving a physics problem. 

The interviews suggest that cognitive load theory is one appropriate theoretical 

framework to reason about the mathematical difficulties exhibited by many students. In 

particular, in the initial problem solving phase of the interview, some students did not retrieve 

mathematical knowledge relevant to algebraically manipulate two simultaneous equations, even 

though this knowledge was present in their long term memory. It is possible that as a result of 

their expertise level, the physics context had too much information to be processed at a given 

time in their working memory and caused cognitive overload. Consequently, it was more 
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difficult for them to focus on the relevant information that had to be processed at one time and 

make productive decisions in order to move forward with the solution. For example, as discussed 

earlier, one interviewed student was unable to determine how to solve the problem without 

plugging in information about the speed of the wave, which was not given, even after the 

interviewer explicitly asked her to do so. However, once the interviewer directed the student’s 

attention to the two equations that had to be manipulated, that student immediately realized the 

next step (algebraic substitution) and solved the problem correctly. This interview suggests that 

while the student was thinking about how to solve the problem on her own she may have been 

allocating all of her cognitive resources at a given time to processing information related to the 

physical situation which distracted her from processing and retrieving the relevant mathematical 

information (e.g., perform a substitution). However, the fact that the interviewed students were 

able to solve two simultaneous equations not involving a physics context easily while they 

struggled to solve for the wavelength from two simultaneous equation in a physics context can 

also be interpreted as a lack of transfer of knowledge across disciplines [98,99]. In the context of 

the use of mathematics in physics it has been argued that the very fact that mathematics is used 

differently in physics courses than it is in mathematics courses may be adding to the difficulties 

encountered by students in using mathematics to solve physics problems [83]. 

In addition, in the interviews, difficulties were also observed when students were engaged 

in solving the problem using the diagrammatic approach. Some of these difficulties could also be 

interpreted using the framework of cognitive load theory. In particular, sometimes students did 

not make use of knowledge about waves that they possessed, which was explicitly mentioned 

(and, at times, even used briefly) by the same student at another stage of problem solving. 

Interviews suggest that at various points in problem solving, students had cognitive overload 
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while they focused on certain aspects of the problem, and they completely lost track of other 

important information that they had in their long term memory which led to deteriorated 

performance. 

One instructional implication of this research is that students should be encouraged to 

draw productive diagrams by rewarding them for drawing them. One of the many frameworks 

that may be useful for helping students learn to draw productive diagrams and other effective 

approaches to solving physics problems is the field tested cognitive apprenticeship model [100]. 

Within this cognitive apprenticeship model, the instructor can model productive diagrams while 

exemplifying effective approaches to problem solving, then coach students and provide feedback 

while they practice these skills and then gradually remove the support as they develop self-

reliance. Another instructional implication is that it is important for instructors to keep in mind 

that algebra-based introductory physics students can have cognitive overload while solving 

physics problems as they must manage both the mathematical manipulations and how to use the 

underlying physical principles simultaneously to proceed successfully in the vast problem space. 

Trying to juggle both these tasks at the same time can be cognitively demanding particularly for 

introductory physics students in algebra-based courses who are not facile in algebra. A major 

fraction of their working memory may be used either in comprehending the mathematical 

procedure or in processing the related physics concepts. For example, students whose significant 

cognitive resources are allocated to parsing the mathematics involved rather than in sense 

making of the underlying physics principles and why certain concepts were used, may find it 

difficult to build a good mental picture of the concepts involved and may have difficulty in 

solving physics problems successfully. Since mathematical difficulties can make it challenging 

for students to build a good knowledge structure [101] of physics, suitable scaffolding should be 
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provided to students which takes into account their physics and mathematics competencies to 

take them gradually from their initial knowledge state to the final knowledge state based upon 

the goals of the course [102]. 
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3.0  SHOULD STUDENTS BE PROVIDED DIAGRAMS OR ASKED TO 

DRAW THEM WHILE SOLVING INTRODUCTORY PHYSICS 

PROBLEMS? 

3.1 INTRODUCTION 

For a literature review of previous research related to the role of multiple representations in 

problem solving, refer to the introduction in the study presented in Chapter Two. 

In this research study we investigate how the student performance will be affected when 

students are given a diagram instead of being asked to draw it and compare their performance to 

the performance of students who are asked to draw a diagram (without being any more specific 

than that) and to the performance of a comparison group which is neither asked to draw diagrams 

nor provided a diagram. We found that students who were provided diagrams performed worse 

than the other students on two problems in electricity discussed here which involved 

considerations of initial and final conditions. One possible interpretation that we provide for this 

result is that students who were provided with a diagram were more likely to spend less time on 

the conceptual planning stage and sometimes jumped into the implementation stage without 

understanding the problem situations fully. This interpretation was evaluated by conducting 

interviews with fourteen students, six of them being conducted using a think-aloud protocol, 
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while in the others, students were observed by a researcher while solving the problems. These 

interviews provided evidence to support our interpretation. 

3.2 METHODOLOGY 

A class of 111 algebra-based introductory physics students was broken up into three different 

recitations. All recitations were taught in the traditional way in which the TA worked out 

problems similar to the homework problems and then gave a 15 minute quiz at the end of class. 

Students in all recitations attended the same lectures, were assigned the same homework, and had 

the same exams and quizzes. In the recitation quizzes throughout the semester, the three groups 

were given the same problems but with the following interventions: in each quiz problem, the 

first intervention group, which we refer to as “prompt only group” or “PO”, was given explicit 

instructions to draw a diagram with the problem statement; the second intervention group 

(referred to as “diagram only group” or “DO”) was given a diagram drawn by the instructor that 

was meant to aid in solving the problem and the third group was the comparison group and was 

not given any diagram or explicit instruction to draw a diagram with the problem statement (“no 

support group” or “NS”). 

The sizes of the different recitation groups varied from 22 to 55 students because the 

students were not assigned a particular recitation; they could go to whichever recitation they 

wanted. For the same reason, the sizes of each recitation group also varied from week to week, 

although not as drastically because most students (≈ 80%) would stick with a particular 

recitation. Furthermore, each intervention was not matched to a particular recitation. For 

example, in one week, students in the Tuesday recitation comprised the comparison group, while 
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another week the comparison group was a different recitation section. This is important because 

it implies that individual students were subjected to different interventions from week to week 

and we do not expect cumulative effects due to the same group of students always being 

subjected to the same intervention. 

In order to ensure homogeneity of scoring, we developed rubrics for each problem we 

analyzed and made sure that there was at least 90% inter-rater reliability between two different 

raters. The development of the rubric for each problem went through an iterative process. During 

the development of the rubric, the two raters also discussed a student’s score separately from the 

one obtained using the rubric and adjusted the rubric if it was agreed that the version of the 

rubric was too stringent or too generous. After each adjustment, all students were scored again 

on the improved rubric. 

In this study, we analyze two problems from electrostatics which involve consideration of 

initial and final states. The goal was to investigate if there were any statistical differences in the 

scores of the groups of students subjected to different interventions.  

The two problems discussed and the diagrams given to students in DO are the following: 

 

Problem 1 

Two identical point charges are initially fixed to diagonally opposite corners of a square 

that is 1 m on a side. Each of the two charges q is 3 C. How much work is done by the electric 

force if one of the charges is moved from its initial position to an empty corner of the square? 

Problem 2 

A particle with a mass 510− kg and a positive charge q of 3 C is released from rest from 

point A in a uniform electric field. When the particle arrives at point B, its electrical potential is 
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25 V lower than the potential at A. Assuming the only force acting on the particle is the 

electrostatic force, find the speed of the particle when it arrives at point B. 

 

Figure 3.1. Diagram for problem 1 given to students in DO. 

 

Figure 3.2. Diagram for problem 2 given to students in DO 

 

These diagrams were drawn by the instructor and they are very similar to what most 

physics experts would generally draw in order to solve the problems. Furthermore, the second 

diagram also includes an important piece of information from the problem statement that would 

normally be included in a known quantities/target quantities section of a solution. Neither 

diagram was meant to trick the students, but rather they were provided as a scaffolding support 

for them. 

As mentioned earlier, we developed rubrics for each problem. In Table 3.1, we provide 

the summary of the rubric for the first problem. The rubric for the other problem is similar. 
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Table 3.1. Summary of the rubric used for Problem 1. 

Correct Ideas 

Section 1 1. W = -qΔV or W = -ΔEPE 2 p 

Section 2 2. Obtain Vf, Vi and find ΔV = Vf - Vi or  

obtain EPEf, EPEi and find ΔEPE = EPEf –EPEi 

7 p 

Section 3 3. Correct units 1 p 

Incorrect Ideas 

Used the electrostatic force incorrectly: if provided correct units (-8 p), if no units (-10 p) 

Section 1 1. Used incorrect equation -2 p 

Section 2 

2.1 Obtained one potential or one EPE incorrectly -2 p 

2.1 Obtained both potentials or EPEs incorrectly -4 p 

2.2 Did not subtract the electric potentials/EPEs (-2 p), and/or other mistake 

(-1 p) 

-3/-1 p 

2.3. Incorrect sign -1 p 

Section 3 3. Incorrect or no units -1 p 

 

Table 3.1 shows that there are two parts to the rubric: Correct and Incorrect Ideas. Table 

3.1 also shows that in the Correct Ideas part, the problem was divided into different sections and 

points were assigned to each section (10 maximum points). Each student starts out with 10 points 

and in the Incorrect Ideas part we list the common mistakes students made and how many points 

we deducted for each of those mistakes. Using the electrostatic force for this problem is not an 

effective strategy for algebra based students (this approach involves calculus), so students who 

attempted to use the electrostatic force had to be graded separately because their approach is not 

productive. The rest of the rubric in the Incorrect Ideas part was used for grading the students 

who chose a productive approach. For each mistake, we deducted a certain number of points. We 

note that it is not possible to deduct more points than a section has (e.g., the two mistakes that are 
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both labeled 2.1 in Table 3.1 are mutually exclusive). We also left ourselves a small window 

(labeled 2.2) to account for possible mistakes not listed in the rubric. 

In order to explore further how students’ problem solving approach and reasoning can be 

affected by being provided diagrams along with the physics problems, interviews were 

conducted with fourteen students who were at the time enrolled in an equivalent algebra-based 

second semester introductory physics. It was not clear a priori how the interview protocol would 

affect students’ reasoning and sense making during problem solving. Therefore, we decided to 

use one type of interview protocol for some of the students followed by another type of protocol 

for another set of students. In particular, six of these interviews were conducted using a think-

aloud protocol, while in the other eight interviews, the students solved the problems while being 

observed by one of the researchers. In order to compare how a student approaches problems 

when diagrams are not given as opposed to when the diagrams are given, the students were asked 

to solve an additional problem which required use of the same concepts (conservation of 

energy/work, electric potential, electric potential energy, etc.) as the two problems discussed in 

this paper. However, in this additional problem, a diagram was not provided. 

 

Additional problem 
A particle of mass 410− kg and charge q1 = 1µC is shot at a speed of 10 m/s directly 

towards another particle with charge q2 = 1µC that is held fixed. If the initial distance between 

the two particles is 1m, how close does the particle with charge q1 get to q2? 
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3.3 QUANTITATIVE RESULTS 

Before discussing the findings for the two problems outlined, we note that the two problems 

analyzed in this paper were part of the same three problem recitation quiz. In the third problem 

of that quiz, we did not find any statistical differences between the different groups. 

Furthermore, students in different groups exhibited almost identical performance in midterm and 

final examinations and we therefore believe that the groups are comparable in terms of students’ 

physics problem solving abilities and any differences in student performance on these problems 

are due to the interventions. 

It is evident from Table 3.2 that students who were given the diagram (DO) performed 

significantly worse than all the others (PO and NS). In particular, their averages are lower by 

roughly 20% compared to the other intervention groups. We also performed t-tests [1] to 

investigate if the differences are statistically significant. The p-values from the t-tests are shown 

in Table 3.3. 

Table 3.2. Group sizes (N), averages and standard deviations for the scores of the two intervention groups and the 

comparison group on the two problems. 

Problem 1 N Avg. Std. dev. 

PO 26 8.5 1.88 

DO 34 6.9 2.82 

NS 51 9.0 1.39 

Problem 2 N Avg. Std. dev. 

PO 26 9.0 1.44 

DO 34 6.4 3.06 

NS 51 8.6 1.34 
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Table 3.3. p values for t-test comparisons between the different groups. 

 DO-PO DO-NS PO-NS 

Problem 1 0.015 < 0.001 0.193 

Problem 2 < 0.001 < 0.001 0.343 

 

Table 3.3 shows that students in DO (who were given the diagram) performed 

significantly worse than students in the other two groups. More noteworthy is how small the p 

values are (three of them being less than 0.001). Table 3.3 also shows that the scores of PO and 

NS are comparable on both problems. We note that, for Problem 1, virtually all students drew a 

diagram even if they were not specifically asked to do so. However, for Problem 2, only 57% of 

the students in NS drew a diagram. But within NS, there are no statistical differences between 

the performance of the students who drew a diagram and those who did not draw a diagram. We 

performed a t-test to compare the performance of students in NS who did not draw a diagram and 

all students in DO. We found that students in DO performed significantly worse (p = 0.004) than 

those in NS who did not draw a diagram. Thus, on Problem 2, students who did not draw a 

diagram performed better than those who were given a diagram (drawn by the instructor) with 

the problem statement. Some possible reasons for this surprising counter-intuitive result will be 

discussed. 

Table 3.4 shows that the percentage of students who performed poorly on this problem 

(obtained a score less than 5) from DO is significantly larger than those in PO and NS but 

percentages with an intermediate score are comparable. 
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Table 3.4. Percentages (and numbers) of students in each group who earned below 5 or (5, 6 and 7) or above 8 (out 

of 10). 

Problem 1 score ≤4 5≤ score <8 score ≥8 

PO 4% (1) 23% (6) 73% (19) 

DO 26% (9) 21% (7) 53% (18) 

NS 2% (1) 16% (8) 82% (42) 

Problem 2 score ≤4 5≤ score <8 score ≥8 

PO 4% (1) 15% (4) 81% (21) 

DO 38% (13) 21% (7) 41% (14) 

NS 2% (1) 22% (11) 76% (39) 

3.4 QUALITATIVE RESULTS 

This section is broken up into two subsections. The first subsection discusses qualitative results 

from interviews with students which suggested that the hypothesis we developed to account for 

the quantitative results may be befitting. The second subsection discusses qualitative results from 

discussions with faculty. The instructors discussed what they expect would be the consequence 

of providing diagrams for the two problems discussed in this study and their general viewpoint 

regarding diagrams and problem solving. 

3.4.1 Qualitative results from student interviews 

As mentioned earlier, interviews were conducted with students who were at the time enrolled in 

an equivalent second semester algebra-based introductory physics course. All these interviews 

occurred after students learned and were tested in their course on the relevant concepts required 
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for successfully solving these problems. The students participating in these interviews were 

asked to solve three problems. Two of the problems were the ones investigated in this research 

study, for which diagrams were provided. The students interviewed were specifically asked to 

comment on the diagrams and on being provided diagrams. None of them mentioned anything 

negative about the diagrams and in general they thought that the diagrams were helpful. A few 

students said that they didn’t necessarily gain anything from being provided diagrams because if 

they had not been provided diagrams, they would have drawn something similar anyway. 

As discussed earlier, in order to compare the problem solving approaches of students to 

problems which provide diagrams with their approaches to problems which do not provide 

diagrams, interviewed students were asked to solve an additional problem (described in the 

Methodology section earlier) which required use of the same concepts. The additional problem 

was carefully chosen by the researchers because it was considered that it should fulfill the 

following three criteria: 

1) In order to solve it one must make use of the same concepts as the other two problems 

investigated in this study. 

2) The additional problem had to be comparable in difficulty with the other two problems 

investigated in this study. 

3) The physical description of the additional problem should be such that a student could 

potentially solve it without having to draw a diagram. 

These three criteria were chosen because the goal of the interviews was to gain a better 

understanding of the reasoning behind the quantitative results discussed earlier. In particular, the 

interviews were designed to evaluate our hypothesis which we believed could partly account for 

the deteriorated performance of students who were provided a diagram with the problem 
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statement (intervention DO) compared to students who were not provided a diagram. We 

hypothesized that the deterioration may partly be due to students being more likely to spend less 

time on (or completely skipping) the important step of conceptually analyzing the problems 

when a diagram is provided compared to when it is not provided. It is possible that the diagram 

provided prompted students to jump into the implementation of problem solution early without 

adequate conceptual analysis, planning and decision making related to the problem solving. This 

may in turn make it more likely for students to follow formula centered approaches and perhaps 

use equations that are not appropriate for the given problem, which would cause deteriorated 

performance. We note that the step of drawing a diagram can be very helpful in conceptually 

analyzing a problem. In order to compare how much time students spend conceptually analyzing 

the additional problem in which a diagram was not provided with how much time they spend 

conceptually analyzing the other two problems in which diagrams were provided, the researchers 

considered that the additional problem posed during interviews had to deal with the same 

concepts since students may find some concepts more challenging than others. The additional 

problem also had to be of comparable difficulty because if the difficulty level was different from 

those of the other two problems, students will not spend the same time conceptually analyzing it 

compared to the other two problems. Finally, the additional problem was chosen such that an 

interviewed student was not necessarily compelled to draw a diagram in order to solve it. In 

particular, if the additional problem posed during the interviews would necessarily require all 

students to draw a diagram due to the physical situation presented in the problem (for example, a 

two dimensional problem, like Problem 1 investigated in this research study, for which all the 

students drew a diagram), that would be counterproductive to the goals of the interviews. 

Furthermore, the additional problem was given first to the interviewed students (before the other 
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two problems) due to a concern that had it been given last, the students’ approach to solving it 

might be somewhat influenced by the other two problems which provided diagrams with the 

problem statement. In particular, we did not want students to be prompted to draw a diagram 

because in the other two problems the diagrams were provided. Thus, the order in which the 

problems were solved by the students who participated in the interviews was: 1) Additional 

problem, 2) Problem 1 and 3) Problem 2 (as described in the Methodology section). 

Furthermore, in order to make the interview situation similar to the quiz situation, 

students were given an equation sheet which was photocopied from the textbook’s [2] end of 

chapter summary (chapter 19, which discusses electrostatic potential and electrostatic potential 

energy). This was because in the quiz, the students were given equations from this chapter by 

their teaching assistant who wrote them on the board. 

During the first six interviews, students were asked to solve the three problems 

(Additional Problem, Problem 1, Problem 2) while thinking aloud. The amount of time students 

spent conceptually analyzing a problem was estimated by timing students from when they first 

started reading the problem until they wrote down an equation from the equation sheet provided. 

These interviews revealed that in the think-aloud setting, students spent about the same time 

conceptually analyzing each of the three problems and also spent about the same time solving 

each problem. It is possible that because they were asked to verbalize their though process, each 

student approached the three problems in very similar ways and was not influenced by having 

been given diagrams in the last two problems. Half of the interviewed students drew a diagram 

for the additional problem and made some effort to connect the diagrams given in the other two 

problems with the verbal description of those problems (i.e. they looked at the diagrams as they 

read the problem statements, occasionally adding information). The other half of the interviewed 
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students made use of more formula-centered approaches for all three problems: they did not draw 

a diagram for the additional problem and did not seem to pay too much attention to the diagrams 

provided in the other two problems. While the think-aloud setting does not reproduce the quiz 

setting very well, these six think-aloud interviews provided valuable information since they 

offered evidence that the additional problem was well chosen. In particular, students spent about 

the same time conceptually analyzing this additional problem as they did the other two problems 

and they spent about the same amount of time solving this additional problem as they did the 

other two problems. This indicated that the additional problem was of comparable difficulty. 

Also, the students who had more formula centered approaches to solving problems did not draw 

a diagram for the additional problem indicating that our third criterion for selecting the additional 

problem was met (these students did not consider that drawing a diagram was necessary to solve 

the problem). 

Since it appears that asking the students to think aloud resulted in them spending about 

the same time conceptually analyzing each problem whether or not a diagram was provided, 

more interviews were conducted which were designed to provide an environment more similar to 

the written quiz setting than the think-aloud interviews. In these interviews, students solved the 

three problems, but were not asked to talk during this time, rather, a researcher observed and 

took detailed notes about what the students were doing, what they were writing down and at 

what times. Similar to the think-aloud interviews, the amount of time students spent conceptually 

analyzing each problem was estimated by timing them from when they first started reading the 

problem until they wrote down an equation from the equation sheet provided. During these 

interviews, most students (five out of the eight interviewed) wrote down an equation noticeably 

quicker when solving the second and third problems in which the diagrams were provided than 
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when solving the first problem in which a diagram was not provided and in a few of those cases, 

in one problem or the other, this quicker focus on manipulation of equations appeared to impact 

their performance. One of these students, for example, while solving Problem 2 (which was 

given as the last problem, after the other two problems), wrote down two electric potential 

energies: EPEA = 25V and EPEB = 0V, even though the diagram provided contained an equation 

relating electric potentials (VA – VB = 25V). In the first problem, however, she was aware that 

electric potential and electric potential energy are different because she used the equation which 

relates electric potential to electric potential energy, V = EPE/q0. In addition, she explicitly 

solved for the electric potential energy using this equation (V = EPE/q0) and solved for the 

electric potential due to a point charge q at a distance r from that charge  using V = kq/r. In this 

first problem, which did not provide a diagram, she correctly obtained a different equation for 

the electric potential energy (EPE = kqq0/r) than that for electric potential. It is possible that this 

student proceeded to manipulate equations earlier in Problem 2 (which provided a diagram) 

because while solving Problem 2, this student did not spend sufficient time conceptually 

analyzing this problem. In particular, similar to four other interviewed students, almost 

immediately after reading this problem which included a diagram, she looked at the equation 

sheet and copied a formula on her paper and proceeded to solve the problem. Despite the fact 

that she had previously realized, while solving the first problem, that electric potential energy 

and electric potential are different, in Problem 2 she confused one with the other which resulted 

in an incorrect solution. 

As mentioned earlier, the fact that most students looked at the equation sheet and copied 

an equation from it to their paper noticeably more quickly while solving the second and third 

problems (Problem 1 and 2 from this study) for which diagrams were provided than while 
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solving the first problem (Additional problem) for which a diagram was not provided might be 

taken as an indication that these students were spending less time conceptually analyzing the 

problems when diagrams were provided. It is also possible that students were spending more 

time conceptually analyzing the first problem because it took them longer to recall the concepts 

which needed to be used for the first problem. We note, however, that in the six think-aloud 

interviews there was no noticeable difference and students spent about the same amount of time 

thinking about each of the three problems before writing down any equations. It is therefore 

possible that the longer time to recall the concepts in the first problem in which a diagram was 

not provided compared to the later problems in which diagrams were provided was due to a 

difference in the time for conceptual analysis and planning. 

3.4.2 Qualitative results from discussions with faculty 

To evaluate the opinions of instructors who had taught introductory physics frequently, we 

presented the three interventions for the two problems discussed here to seven physics faculty 

members and asked them to predict which group is likely to perform the best. Interestingly, some 

faculty members automatically assumed that the diagram would help and tried to answer the 

question “why would the diagrams help students” despite the fact that we asked them a neutral 

question about the group which is likely to perform the best. Also, similar to our original 

hypothesis, all seven faculty members incorrectly predicted that students in DO would perform 

the best because they were given explicit diagrams clarifying the situation. Some of them also 

mentioned that the second problem discussed here is more difficult than the first and that the 

given diagram should help more with the first problem than the second one because the first 

problem involves a situation with charges situated in two dimensions. 
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When the faculty members were told how the students actually performed, two of them 

recalled that they had observed in the past that providing a diagram had sometimes worsened 

student performance. Some of them mentioned that when they themselves solve a physics 

problem, they perform an initial conceptual analysis and often draw a diagram to make the 

situation clearer. Similar to our hypothesis, they noted that the absence of this important stage of 

problem solving when a diagram is provided to students can derail the entire problem solving 

process. Others noted that when a diagram is given, students may not read the problem statement 

carefully. Some claimed that for the first problem, students in DO were more likely to resort to a 

solution method involving force instead of energy because students are more likely to encounter 

diagrams with charges at the corner of a square or rectangle in problems involving the 

electrostatic force in books and homework problems. Furthermore, when the faculty members 

were explicitly asked whether their students would find any aspect of the diagrams confusing, 

their responses were negative. The disconnect between the faculty members’ initial predictions 

about the usefulness of providing diagram and students’ actual performance further suggests that 

the manner in which the cognitive processes of the novices was negatively affected by the given 

diagrams is quite complex. 

3.5 DISCUSSION AND SUMMARY 

Prior research has shown that students in classes which promote conceptual understanding 

through active-learning methods outperform students from traditional classes even on 

quantitative tests [3]. This finding suggests that students who perform poorly on physics problem 

solving may do so not because they have poor mathematical skills, but rather because they do not 
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effectively analyze the problem conceptually. In particular, they may not employ effective 

problem solving heuristics and transform the problem into a representation which makes further 

decision making and consideration of relevant physics principles easier. For example, converting 

a physics problem from the verbal to the diagrammatic representation by drawing a diagram is a 

heuristic that can facilitate better understanding of the problem and aid in solving it. 

One hypothesis for why students in DO who were given a diagram performed 

significantly worse than the other two groups is that, due to being provided diagrams, students in 

DO were more likely to skip or spend less time on the important step of conceptual analysis of 

the problem before implementing the plan for how to solve the problems. Therefore, they had 

difficulty in conceptualizing the problem and formulating a correct solution. The data in Table 

3.4 suggest that students in DO on average performed significantly worse and more students in 

that group than in the other groups performed very poorly. The fact that many students who were 

given the diagrams failed to understand the problem conceptually is also evident from observing 

their individual solution strategies. For example, more students in DO than in the other groups 

explicitly employed formula-based approaches and it was unclear by observing their written 

work how they arrived at the decision to use those formulas (which were sometimes not 

productive for the problems). Interviews conducted with students who solved these problems 

(and an additional one, which did not include a diagram) while being observed by a researcher 

provided evidence that is consistent with this interpretation since most students (five out of eight) 

spent less time thinking about the problem conceptually when a diagram was provided compared 

to when it was not. Some of these students looked at the equation sheet almost immediately after 

reading the problem which provided a diagram, but in the problems which did not provide a 

diagram, they spent more time thinking about the problem first (presumably performing some 
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sort of conceptual analysis or trying to understand the physical situation presented) before 

looking for a relevant equation to use. Therefore, it appears that both the qualitative and 

quantitative data presented suggest that providing a diagram can be detrimental to students’ 

problem solving performance in these types of introductory physics problems involving 

considerations of initial and final situations. 

As mentioned earlier, in Problem 2, even the students who did not draw a diagram from 

the comparison group (NS) performed better than the students who were given a diagram (DO). 

One possible reason may be that Problem 2 (actually, both problems discussed here) is not a 

difficult or multi-part problem requiring the use of many physics principles. Therefore, cognitive 

load theory [4] suggests that the cognitive load while solving the problem may not be high even 

if an explicit diagram is not drawn and algebra-based introductory physics students may be able 

to process all the relevant information in their working memory while engaged in solving the 

problem. Students’ written work from the three groups also suggests that a higher percentage of 

students who were not provided the diagram went through an explicit process of making sense of 

the problem than the students provided with the diagram. 

The interventions from this study were implemented in all the quizzes throughout the 

semester and a total of ten problems were analyzed. In only one other problem (the quiz problem 

discussed in section 2) did we find that students provided with a diagram performed worse than 

students in other groups. However, this particular problem involved the third harmonic of a 

standing wave in a tube open at only one end and students in DO were only provided with a 

partial diagram (empty tube) which was intended as a hint for them to complete it (draw the 

harmonic in question) and use the diagram to solve the problem. The two problems discussed 

here were the only ones in which providing students with a diagram similar to what most experts 
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would draw to solve the problems resulted in deteriorated performance. What makes these 

problems special in this respect is unclear. However, we note that what these two problems have 

in common other than the fact that they require use concepts from electricity is that they both 

involve considerations of initial and final conditions. This latter characteristic was not present in 

any of the other problems we analyzed. It is also important to note that in none of the other 

problems analyzed did it happen that students provided with diagrams performed better than 

students in the other intervention groups. In fact, most of the time, they performed slightly 

worse. Furthermore, students who were asked to draw diagrams were almost always statistically 

more likely to draw productive diagrams (as defined from an expert’s point of view) than 

students in the other intervention groups and usually performed slightly better. Therefore it 

appears that introductory physics students should be explicitly asked to draw diagrams while 

solving problems because this makes it more likely that they draw useful diagrams which could 

in turn prove to be a helpful step in getting students accustomed to using productive problem 

solving heuristics. 

We also found that when physics faculty members were asked which intervention group 

is more likely to perform the best, some instructors automatically assumed that providing 

diagrams would help and attempted to answer the question of how and why they would help 

despite the fact that they were asked a neutral question. In addition, all of the instructors 

incorrectly predicted that students in DO would exhibit the best performance. This discrepancy 

between instructor predictions and student outcome suggests that the manner in which providing 

diagrams for these two problems which involve considerations of initial and final conditions 

affects students’ performance is not at all intuitive and in fact quite complex. 
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4.0  TO USE OR NOT TO USE DIAGRAMS: THE EFFECT OF DRAWING A 

DIAGRAM IN SOLVING INTRODUCTORY PHYSICS PROBLEMS 

4.1 INTRODUCTION 

For a literature review of previous research related to the role of multiple representations in 

problem solving, refer to the introduction in the study presented in Chapter Two. 

In this research we investigate how prompting students to draw diagrams affects their 

performance in two electrostatics problems and how the performance is affected when students 

are provided with a diagrammatic representation of the physical situation described in the 

problems. We also investigate how the quality of a diagram affects performance and compare 

performance on identical problems dealing with electric force and electric field both immediately 

after instruction (quiz) and a few weeks after instruction (midterm) as well as performance on 

one-dimensional (1D) and two-dimensional (2D) electric force problems. Finally, think-aloud 

interviews were conducted with nine students who were taking an equivalent introductory 

algebra-based physics course at the time. The interviews provided support for some of the 

interpretations discussed and were helpful in identifying some difficulties students still exhibited 

after having learned the concepts of electric field and electric force and after having been tested 

on them in a midterm exam. 
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4.2 METHODOLOGY 

For the quantitative part of the research, a class of 111 algebra-based introductory physics 

students was broken up into three different recitations. All recitations were taught in the 

traditional way in which the TA worked out problems similar to the homework problems and 

then gave a 15 minute quiz at the end of class. Students in all recitations attended the same 

lectures, were assigned the same homework, and had the same exams and quizzes. In the 

recitation quizzes throughout the semester, the three groups were given the same problems but 

with the following interventions: in each quiz problem, the first intervention group, which we 

refer to as “prompt only group” or “PO”, was given explicit instructions to draw a diagram with 

the problem statement; the second intervention group (referred to as “diagram only group” or 

“DO”) was given a diagram drawn by the instructor that was meant to aid in solving the problem 

and the third group, the comparison group, was not given any diagram or explicit instruction to 

draw a diagram with the problem statement (“no support group” or “NS”). 

The sizes of the different recitation groups varied from 22 to 55 students because the 

students were not assigned a particular recitation; they could go to whichever recitation they 

wanted. For the same reason, the sizes of each recitation group also varied from week to week, 

although not as drastically because most students (≈ 80%) would stick with a particular 

recitation. Furthermore, each intervention was not matched to a particular recitation. For 

example, in one week, students in the Tuesday recitation comprised the comparison group, while 

another week the comparison group was a different recitation section. This is important because 

it implies that individual students were subjected to different interventions from week to week 

and we do not expect cumulative effects due to the same group of students always being 

subjected to the same intervention. 
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In order to ensure homogeneity of grading, we developed rubrics for each problem we 

analyzed and made sure that there was at least 90% inter-rater-reliability between two different 

raters. The development of the rubric for each problem went through an iterative process. During 

the development of the rubric, the two graders also discussed a student’s score separately from 

the one obtained using the rubric and adjusted the rubric if it was agreed that the version of the 

rubric was too stringent or too generous. After each adjustment, all students were graded again 

on the improved rubric. 

We analyzed two problems: the first problem is one dimensional and has two almost 

identical parts, one on electric field and the other on electric force. This problem was given both 

in a quiz (a week after learning about these concepts) and in a midterm exam (several weeks 

after learning the concepts). The second problem is a two dimensional problem on electric force 

which was given in a quiz only. The two problems and the diagrams (given only to students in 

DO) are the following: 

Problem 1 

Two equal and opposite charges with magnitude 10−7 C are held 15 cm apart. 

(a) What are the magnitude and direction of the electric field at the point midway 

between the charges? 

(b) What are the magnitude and direction of the force that would act on a 10−6 C charge 

if it is placed at that midpoint? 

 

 

Figure 4.1. Diagram for Problem 1 given only to students in DO. 
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Problem 2 

Three charges are located at the vertices of an equilateral triangle that is 1 m on a side. 

Two of the charges are 2 C each and the third charge is 1 C. Find the magnitude and direction of 

the net electrostatic force on the 1 C charge. 

 

Figure 4.2. Diagram for Problem 2 given only to students in DO. 

 

These diagrams were drawn by the instructor and they are very similar to what most 

physics experts would initially draw in order to solve the problems. Of course, subsequently they 

would most likely draw arrows to indicate the directions of electric field/force vectors. Neither 

diagram was meant to trick the students, but rather they were provided as a scaffolding support. 

As mentioned earlier, we developed rubrics for each problem. For Problem 1, one 

research objective was to compare student performance on electric field with electric force. 

Therefore, parts (a) and (b) were scored separately. In Table 4.1, we provide the summary of the 

rubric for part (a) (electric field) of the first problem. The rubric for part (b) (electric force) is 

similar. 
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Table 4.1. Summary of the rubric for part (a) of Problem 1 (“E” stands for electric field). 

Correct Ideas 

Section 1 Used correct equation for E 1 p 

Section 2 Added the two fields due to individual charges correctly 7 p 

Section 3 Indicated correct direction for net electric field 1 p 

Section 4 Correct units 1 p 

Incorrect Ideas 

Section 1 Used incorrect equation for E -1 p 

Section 2 

2.1 Did nothing in this section -7 p 

2.2 Did not find electric fields due to both charges -6 p 

2.3 Used  Pythagorean theorem (not relevant here) or obtained zero for 

electric field 

-4 p 

2.4 Did  not use r/2 to find E -2 p 

2.5 Minor mistake(s) in finding E -1 p 

Section 3 Incorrect or no mention of direction of net electric field -1 p 

Section 4 Incorrect or no units -1 p 

 

Table 4.1 shows that there are two parts to the rubric: Correct and Incorrect Ideas. Table 

4.1 also shows that in the Correct Ideas part, the problem was divided into different sections and 

points were assigned to each section. Each student starts out with 10 points and in the Incorrect 

Ideas part we list the common mistakes students made in each section and how many points were 

deducted for each of those mistakes. We note that it is not possible to deduct more points than a 

section has (the mistakes labeled 2.1 and 2.2 are exclusive with respect to all other mistakes in 

section 2 and with each other). We also left ourselves a small window (labeled 2.5) if the mistake 

a student made was not explicitly in the rubric. 

In addition to the quantitative data collected, individual interviews were conducted with 

nine students who were at the time enrolled in a second semester algebra-based introductory 
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physics course. During the interviews, students were asked to solve the problems while thinking 

aloud and, after they were finished working on the problems, they were asked short follow-up 

questions related to the physics concepts required for successfully solving the problems. The 

interviews provided qualitative data which supported some of our quantitative findings and 

helped us identify some student difficulties. These will be presented in the qualitative results 

section. 

4.3 QUANTITATIVE RESULTS 

4.3.1 Problem 1 

The overall averages on the electric field and electric force questions in the quiz are 

comparable. 

 

Table 4.2 lists the average score for each group in the two different parts when the problem was 

given in a quiz (one week after learning about electric field and electric force). 

 
Table 4.2. Number of students (N) and averages on the two parts of the quiz for the two intervention groups and the 

comparison group out of 10 points. 

Quiz N Field average Force average Problem average 

PO 29 6.9 8.6 7.8 

DO 40 7.5 6.6 7.0 

NS 51 8.0 6.7 7.3 

All students 120 7.4 7.2 7.3 
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We performed t-tests [1] on the data in Table 4.2 to determine whether there were any 

differences between the scores of the different groups on each part. PO performed better on the 

electric force part than both of the other groups (p values are 0.017 and 0.011 for comparison 

with DO and NS, respectively). However, the scores on the electric field part and the overall 

scores on the problem were not statistically different between the different groups. Moreover, the 

overall averages on the electric field and electric force parts for a given group were not 

statistically different. It appears that a week after learning the concepts of electric field and 

electric force, students show comparable performance on the problem (Problem 1) dealing with 

these two related concepts although the concept of field is more abstract than the concept of 

force. 

 

Students in PO were more likely to draw productive diagrams. 

 

We investigated differences between the groups resulting from the differences in instructions 

regarding diagrams (draw a diagram in PO, diagram given in DO, or no instructions in NS). We 

found that although all the students had a diagram drawn for this problem (some drew it 

themselves while others had it drawn for them) regardless of the instructions they received, those 

asked to draw a diagram (PO) were more likely to draw productive diagrams where we defined a 

productive diagram as follows. We considered that a productive diagram should have, in addition 

to the two charges, either two electric field or two electric force vectors or all four explicitly 

drawn at the midpoint. Any other diagram was considered unproductive (for example, a diagram 

containing just the two charges or diagrams containing the two charges and arrows drawn 

somewhere other than at the midpoint). It is worthwhile to note that students in DO were given a 
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diagram containing the two charges (unproductive). We hypothesized that some students might 

modify it by adding vectors at the midpoint that indicate the directions of electric fields or 

electric forces in order to make it productive. Therefore, in addition to investigating the number 

of students who drew productive diagrams in each group, we also investigated the number of 

students in each group who had diagrams of only the two charges. The results are shown in Table 

4.3. 

 

Table 4.3. Percentages (and numbers) of students who drew productive diagrams (“Prod. diag.”) and those who only 

drew two charges (“Only 2 charges”) in each group in the quiz. 

Quiz Prod. diag. Only 2 charges 

PO 66% (19) 14% (4) 

DO 45% (18) 48% (19) 

NS 41% (21) 33% (17) 

 

We performed Chi-squared tests [1] to investigate if the differences in Table 4.3 are 

statistically significant. The results are shown in Table 4.4 (Table 4.4 lists p values for 

comparison between groups; e.g., the value 0.036 under “PO-NS” for “prod. diag.” means the p 

value for comparison of the percentage of students who used productive diagrams in PO and NS 

is 0.036). 

 

Table 4.4. p values for comparison of percentage of students who drew productive diagrams (“Prod. diag.) with 

those who drew only the two charges (“Only 2 ch.”) in the different groups in the quiz. 

Quiz PO-DO PO-NS DO-NS 

Prod. diag. 0.092 0.036 0.190 

Only 2 ch. 0.001 0.056 0.170 
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Table 4.4 shows that students in PO are statistically more likely to draw productive 

diagrams than students in NS. It also shows that students in DO are statistically more likely than 

students in PO to only use a diagram of the two charges. Students in DO were given this diagram 

so if they were using this type of diagram, they had not modified it into a productive diagram 

(Table 4.3 shows that almost half of them did not modify it to make the diagram provided 

productive). On the other hand, Table 4.3 shows that students in PO who were asked to draw a 

diagram were more likely to draw and use productive diagrams. Below, we provide evidence that 

for Problem 1, drawing a productive diagram improves students’ scores. It appears that students 

in PO who were asked to draw a diagram performed significantly better (in the force part of the 

problem at least) perhaps because they were more likely to draw productive diagrams. 

 

In the midterm exam, students performed better on the electric force part than on the 

electric field part. 

 

Problem 1 was also given again in a midterm exam (several weeks after students learned about 

electric field and electric force). The three interventions implemented in the quiz were not 

implemented in the midterm exam and all students received the same instructions corresponding 

to NS in the quiz. The performances of students in different groups (defined earlier for the quiz 

intervention) were comparable in the midterm exam. Therefore, we only provide the overall 

midterm averages including all students in Table 4.5.  
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Table 4.5. Number of students and averages on the midterm exam on the two parts of Problem 1 out of 10 points. 

Midterm N Field average Force average Problem average 

All students 120 7.2 8.8 8.0 

 

Comparison of the quiz and midterm exam performances (shown in Tables 4.2 and 4.5) 

shows that the average on the electric field part of the problem did not improve. In the quiz, the 

overall average on electric field was 7.4 (see Table 4.2) and in the midterm it was 7.2 (see Table 

4.5). However, the average on the electric force part of the problem improved significantly from 

the quiz (7.2 – see Table 4.2) to the midterm exam (8.8 – see Table 4.5). A t-test reveals that the 

score differences between the quiz and the midterm exam on the electric force problem are 

statistically significant (p < 0.001). Thus, the performance on the electric field part of the 

problem remained stagnant from the quiz to the midterm exam while there was a significant 

increase in the performance on electric force. Furthermore, fewer students in the midterm exam 

than in the quiz used the connection between electric field and force, namely EqF


= , which is an 

efficient method for calculating the force on a point charge at a point once the electric field at 

that point due to all the other charges has been calculated. The percentage of students who used 

this connection went down from 58% for the quiz to 41% for the midterm exam, a difference that 

is statistically significant (p = 0.008). In contrast, all introductory physics instructors who have 

been asked to solve or comment on this problem have noted that EqF


= should be used to find 

the force on the charge after the field at the point has been calculated. 

 

 

 



 99 

Both in the midterm exam and the quiz, students who drew productive diagrams 

performed better on Problem 1 than those who did not. 

 

We stratified all the students into three categories based on the quality of their diagrams and 

analyzed their scores. A lower category corresponds to a lower quality diagram. The results are 

shown in Table 4.6. The different levels of diagram quality in Table 4.6 are: Diagram Quality 1 

(DQ1 in Table 4.6) is an unproductive diagram, Diagram Quality 2 (DQ2) is a diagram which 

includes either two electric field or two electric force vectors at the midpoint, but not both and 

Diagram Quality 3 (DQ3) is a diagram which includes all four vectors (corresponding to both 

field and force) at the midpoint. 

 

Table 4.6. Numbers of students (N), averages and standard deviations for groups of students with different quality 

diagrams for problem 1. 

Quiz N Average Standard deviation 

DQ1 62 6.4 2.6 

DQ2 49 8.3 2.2 

DQ3 9 8.9 1.4 

Midterm N Average Standard deviation 

DQ1 45 7.0 2.6 

DQ2 51 8.4 2.0 

DQ3 25 9.0 4 

 

We also performed t-tests on the data in Table 4.6 to compare the performance of 

students who had different categories of diagram quality. The results are shown in Table 4.7, 

which lists the p values obtained when comparing the performance of students from different 

categories (which are defined above). For example, the first value in Table 4.7 (p<0.001) is the p 
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value comparing the performance of the DQ1 group of students (students who drew an 

unproductive diagram) with the performance of the DQ2 group of students (students who drew 

either two electric field or two electric force vectors at the midpoint, but not both). Table 4.7 

shows that students who drew productive diagrams (DQ2 and DQ3) performed better than those 

who did not (DQ1). 

 

Table 4.7. p values for comparison of the performance of students with different quality diagrams (the categories are 

defined in the text right before Table 4.6) for Problem 1. 

 DQ1-DQ2 DQ1-DQ3 DQ2-DQ3 

Quiz < 0.001 < 0.001 0.284 

Midterm 0.003 < 0.001 0.133 

 

4.3.2 Problem 2 

A higher level of detail in a student’s diagram corresponds to a better performance. 

For Problem 2, a two dimensional (2D) problem given in the quiz only, there were no 

statistically significant differences between the different intervention groups (PO, DO and NS), 

both in terms of scores and in terms of percentages of students drawing productive diagrams. 

One possible explanation for this result is that Problem 2 is two dimensional and it is very 

difficult (one might say even impossible) for a novice to solve correctly without the use of a 

productive diagram which would at least include the directions of the individual electric forces 

acting on the 1C charge due to each of the other charges (before finding the net electric force). 

Therefore, students in all groups were more likely to draw productive diagrams in order to help 

them solve this problem regardless of the instructions they received involving diagrams. On the 
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other hand, we found that there was a correlation between the level of detail in students’ 

diagrams and their performance.  

We stratified the students based on three categories of diagram quality and analyzed their 

scores. Diagram Quality 1 (DQ1 in Table 4.8) corresponds to diagrams with just the three 

charges, Diagram Quality 2 (DQ2 in Table 4.8) corresponds to diagrams with the three charges 

and the two forces acting on the 1C charge and Diagram Quality 3 (DQ3 in Table 4.8) 

corresponds to diagrams with the three charges, the two forces acting on the 1C charge, and the x 

and y components of those forces. Since students were explicitly asked to indicate the direction 

of the net force acting on the 1C charge, whether or not a student drew a vector for the net force 

was not taken into consideration when determining the different levels of diagram quality. We 

only took into consideration levels of detail that the students themselves thought would help 

them solve the problem, not what they were explicitly asked to draw. The results are shown in 

Table 4.8.  

 

Table 4.8. Number of students (N), averages and standard deviations for students in different categories (by diagram 

detail) for Problem 2 which was given in a quiz. 

 N Average Standard deviation 

DQ1 27 4.1 2.5 

DQ2 58 5.7 2.9 

DQ3 33 8.0 2.2 

 

Table 4.8 shows that there is a correlation between the level of detail in the diagrams 

drawn and the score: a higher level of detail corresponds to a better score. We performed t-tests 

on the data in Table 4.8 and found that students who, in addition to the three charges, drew two 

force vectors (DQ2), outperformed the students who only drew the three charges (DQ1) (p = 
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0.008). Similarly, students who drew the two forces due to individual charges and their x and y 

components (DQ3), outperformed students who drew only the two forces (DQ 2) (p < 0.001). 

The p values for these comparisons are quite small and the differences between the averages of 

the groups are quite noticeable. Students with the highest level of detail performed better than 

students with the lowest level of detail by almost 100%! 

4.4 QUALITATIVE RESULTS FROM INDIVIDUAL STUDENT INTERVIEWS 

In order to investigate related student difficulties in more depth, individual interviews with nine 

students who were at the time taking an equivalent second semester of an introductory algebra-

based physics course were carried out using a think aloud protocol [2]. Five of these interviews 

were conducted one week after the second exam, which covered the material required for the two 

problems. The other four were carried out after the third exam, which covered material from 

Magnetism. As mentioned before, during the interviews students were asked to solve the 

problems while thinking aloud and, after they were finished working on the problems to the best 

of their ability, they were asked for clarifications and short follow-up questions related to the 

physics concepts which needed to be used in order to successfully solve the problems. Several 

related student difficulties were understood in more depth and sometimes uncovered during these 

interviews. The results from the interviews related to Problem 1 will be discussed first. 
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4.4.1 Qualitative results related to Problem 1 

1) Students encountered more difficulties with the concept of electric field than with the 

concept of electric force. 

 

This finding supports the quantitative results presented earlier which indicated that students 

performed worse on the concept of electric field than on the concept of electric force a few 

weeks after learning about these concepts on the midterm exam. John’s interview provided a 

very prominent instance of the discrepancy between facility with electric force compared to 

electric field. In the electric field part of the problem, John only included the contribution to the 

net electric field from one charge and was unable to determine the direction of the electric field 

even due to that charge. However, in the electric force part of the problem, he readily recognized 

that two interactions would affect the net force on the charge placed at the midpoint, and then 

explicitly reasoned that these interactions would cause equal forces on the charge in the same 

direction (left). After this correct reasoning, he found the magnitude and direction of the net 

force. He did make one minor mistake, however, in that he included a negative sign in the 

magnitude of the net force, which may be because he was trying to indicate direction in his 

numerical answer (i.e., this student was thinking that a negative force points to the left, in the 

negative x direction and a positive force points to the right, in the positive x direction). 

Another student, Karen, in the electric field part of the problem, identified two 

contributions to the net electric field (using the equation E = kQ/r2, plugged in the distance 

between the charges and the midpoint for r and added them together, but was visibly unsure 

about the reason because when she added the two contributions she said “you … plus them” in a 
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questioning tone of voice (the “…” indicates a short pause). After she finished the problems, she 

was asked why she decided to add the two contributions she found and she said: 

 

Karen: Cause I thought they were moving towards each other [she meant that the positive 

and negative charges are attracted to one another], so then I thought that the E 

should be added […] if this one [the negative charge] was a positive then they’d be 

moving away, and then it would be subtracting. 

 

Her reasoning is related to electric forces, not electric fields; she also did not mention the 

fact that she was calculating the electric field at the midpoint. In a nutshell, what she said was 

that the contributions to the net electric field that she found should be added because the charges 

attract one another. If she had to find the electric field on the extended straight line joining the 

two point charges at a point not between the charges but where both charges were on the same 

side of the point, her reasoning would yield an incorrect answer for the net electric field (because 

the contributions to the electric field due to the two charges with opposite signs at that point 

would subtract). Discussions with her and other interviewed students suggest that this type of 

difficulty is also related to the fact that students often do not clearly differentiate between the 

concepts of electric field and electric force; they use these words interchangeably (i.e., say 

“electric field” when they mean “electric force” and vice versa) and, in some cases, completely 

mistake one concept for the other. This difficulty is discussed in more detail later in this section. 

In contrast, in the electric force part of the problem, she encountered no difficulties and solved 

that part of the problem correctly along with providing sound reasoning. She also indicated the 

correct direction for the net force. 
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As mentioned earlier, during the think aloud interviews, after students were finished with 

the problems to the best of their ability, they were asked for clarifications and short follow-up 

questions related to the concepts required to solve the problems. Some later questions from the 

interviewer asked about simpler situations than the ones presented in the problems or presented 

modified versions of the problems and asked students if and how their solution/answer would 

change. For example, if a student only included one contribution to the electric field (due to one 

of the two charges only) in solving part (a) of the problem, he/she was asked if his/her answer 

would change if one of the charges was removed. Other questions probed for reasoning because, 

often, the reasoning presented by students during the think aloud process was either unclear or 

incorrect. Karen, for example, was asked why she added the two magnitudes she found, as noted 

earlier, because it was evident that she was unsure and she did not provide reasoning when she 

added the two contributions. After students finished solving the two problems to the best of their 

ability (and struggled to solve them), some students were asked to look back at one of the 

problems and the interviewer would ask directed questions which were intended to provide 

scaffolding support (examples will be provided below) and, in addition, help the interviewer 

understand their problem solving strategies better. Through directed questioning, we found that 

the students interviewed either found it less challenging to remember (or be reminded of) electric 

force concepts than electric field concepts or, while unable to grasp the electric field concept 

despite the hints provided, managed to reason correctly about the concept of electric force (as 

exhibited by their understanding of how these two problems can be solved). For example, after 

directed questioning, some students still did not realize that two contributions to the net electric 

field must be considered due the two charges for Problem 1, but almost immediately recognized 

this for the electric force when given a modest hint. Other times, if directed questioning was 
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successful in assisting them to recognize that two charges would contribute to the field and force 

in the two parts of Problem 1, it would take more directed (scaffolded) questioning in the electric 

field part than in the electric force part. 

One good example comes from an interview with Alex. Both in the electric field and in 

the electric force parts, Alex had only considered one contribution during the initial phase of the 

problem solving process while thinking aloud. The discussion that followed probed why he only 

considered one of the two contributions to each (after he was finished with both problems). 

Below, we give an example from the discussion between the interviewer and Alex in which the 

interviewer asks Alex about the electric field part of the problem, then moves on (when 

indicated) to the electric force part of the problem. 

 

Interviewer: If I remove this charge [the negative charge] would anything change in your 

answer? 

 

Alex answers “No”, but then provides an explanation which seems to contradict this answer: 

 

Alex: It’s still emitting the same amount of electric field from the one [positive charge] which 

decreases the farther you get away, but also increases with the other [charge], so it would 

still be equal. 

 

 

While his reasoning is not entirely clear, it appears that his explanation includes contributions 

from both charges. Therefore, the interviewer probed further: 
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Interviewer: So even if I remove this charge [the negative one], the magnitude of the electric 

field at the middle would be the same? 

Alex: Yes. 

Interviewer: What if I change the sign of this [the negative charge] from negative to positive?” 

Alex: Then it would double […] cause you would add the two together. 

Interviewer: So there’s two electric fields and you would add them together? 

Alex: Yes. 

Interviewer: And in this situation where it’s negative [the initial problem situation] you have just 

one electric field? 

Alex: Well it [the electric field] is only going in one direction […] if two positive charges were 

there, they [the two electric fields] would both be facing away from each positive charge 

so there would be two different fields. 

 

 

He then added further that if he was asked to find the electric field in this new situation he would 

simply multiply the contribution he found for one charge by two. 

 

Interviewer: Why would you multiply by two? 

Alex: Cause if it’s in the middle then it’s gonna get exactly the same electric field from both. 

 

Thus, Alex did not include the direction in determining the net electric field (if one considers the 

direction of the electric field due to each charge correctly, if both charges were positive and 

equal, the electric field midway between the charges will be zero because the contributions due 

to the two charges are in opposite directions). Interestingly though, it can be inferred from Alex’s 
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answers that, at least to some degree, he realized that the electric field has a direction. Alex was 

then asked scaffolding questions intended to help him understand that both the positive and 

negative charges affect the net force on the middle charge. 

 

Interviewer: So again, suppose I remove this [the negative charge]… 

Alex: Yea, in that case, then it would decrease because it’s only getting pushing [force from the 

positive charge] instead of pushing and pulling force. 

Interviewer: Is the fact that it’s both being pushed and pulled reflected in your answer here? 

Alex: [After a short pause] No. 

Interviewer: Why not? 

Alex: Cause the equation only accounts for two charges and I did not know how to incorporate a 

third. 

Interviewer: Would you know how to do that now? 

Alex: Yes, I guess I would just calculate the force from one on that charge and then also add the 

force from the other. 

Interviewer: Why add? 

Alex: Cause the forces are in the same direction. 

Interviewer: And what would happen if I changed the negative charge to be positive? 

Alex; Then the forces would be opposing and if it was in the center, they’d be equal and they 

would cancel. 

 

It is evident from this short discussion with Alex (and from the rest of the interview with him), 

that he had a much more difficult time understanding electric field than electric force. The 
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guiding questions are almost identical (“If I remove this negative charge, would anything change 

in your answer?”, “What if I changed the negative charge to be positive?” etc.), and while these 

questions were not sufficient in helping him correctly interpret electric field in this context, they 

were quite successful in guiding him to grasp the concept of electric force while expressing 

correct reasoning. 

Another example that points to the difficulties students have with the concept of electric 

field comes from Sam’s interview. Sam was the only student who solved Problem 2, which 

asked for the electric force by finding the net electric field at the right corner of the triangle 

(position of 1C charge) and then multiplying this field by the 1C charge at that vertex of the 

triangle. Sam found the net electric field without considering the fact that electric field is a 

vector. She did not consider adding the two electric field vectors due to each of the 2C charges 

by choosing a coordinate axis, using the x and y components of the electric field and then adding 

them vectorially. The Interviewer then asked her a few directed questions intended to help her 

realize that the electric field has a vectorial nature which must be taken into account when adding 

or subtracting two or more electric fields. After acknowledging the vector nature of the electric 

field, in response to why she had not used the vector nature of the field initially, she noted: 

 

Sam: I didn’t even think about vectors, I just saw field and I was like, oh, field, another field. 

 

As she  said “field” and “another field” she drew two ‘fields’ (reproduced in Figure 4.3) that 

looked like sinusoidal travelling waves emanating from each 2C charge reaching the vertex 

where the 1C charge was located. 
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Figure 4.3. Two 'fields' emanating from the two 2C charges as drawn by a student, Sam. 

 

It can be inferred from Sam’s comments and the picture she drew that she had a mental 

representation of electric field but her mental model was not adequate to prompt her that electric 

field is a vector while solving the problem involving electric field. Several other interviewed 

students also had mental models of field which were ineffectual in guiding them to solve the 

problems involving electric field appropriately and relate the concept of electric field with the 

concept of electric force. 

 

2) Students had difficulty differentiating between the concepts of electric field and electric 

force 

This difficulty was most evident when students had to determine the direction of the net electric 

field, or determine whether the two contributions to the net electric field at the midpoint due to 

the individual charges should be added. The example mentioned earlier from Karen’s interview 

suggests this difficulty. She struggled to differentiate between the concept of electric field and 

electric force and answered the question “Why did you add them?” (the two contributions to the 

net field that she found due to the two charges) with reasoning directly related to the electrostatic 

attraction between the two charges. Not only did her reasoning about the problem related to field 
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not mention “electric field”, but it also did not mention the midpoint where she had to calculate 

the field. 

Tara had a similar difficulty in distinguishing between the electric field and the electric 

force and sometimes used them almost interchangeably in her explanations. Initially, she had not 

indicated a direction for the net electric field. Therefore, when she was explicitly asked about the 

direction, she noted: 

 

Tara: This [the midpoint] would end up being a positive charge, so it’s gonna want to go that 

way, so to the left […] cause opposites attract and like repel. 

 

The interviewer wanted to ensure that she was not mentally placing a positive test charge at the 

midpoint and using that to determine the direction of the electric field via its definition (𝐸�⃗ = 𝐹⃗
𝑞0

) 

so he asked her: “and this would give you the direction of electric field?” (stressing the word 

“field”). In response to this explicit question about the direction of electric field, Tara 

acknowledged that her reasoning was related to electric forces, not electric fields and that she did 

not know how to find the direction of the electric field. 

Further, the interviewer asked her if she could indicate the direction of the electric field 

produced by a positive charge to the right of that charge (which is a simpler problem with only 

one charge). The interviewer drew a positive charge and indicated a specific point to the right of 

that charge. Tara could not answer this question, but she remembered that a charge should be 

placed at that point in order to find the electric field at that point. She got confused because when 

she placed a positive (test) charge at that point, she concluded that the electric field should point 

to the right but when she placed a negative (test) charge at the same point, she concluded that the 
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electric field should point to the left. She gave up because she obtained different directions for 

the electric field depending upon whether the charge placed at that point was positive or 

negative. What she did for the negative (test) charge would give her the direction of the electric 

force on the negative charge, and not the electric field because the electric force and electric field 

point in the opposite directions for a negative point charge. Unfortunately, she was unable to 

disentangle the concepts of field and force. 

Another illustrative example of the confusion between the concepts of field and force 

comes from Megan’s interview. When solving for the electric field at the midpoint between the 

charges in Problem 1 she drew two vectors on the diagram that are reproduced in Figure 4.4. 

 

 

Figure 4.4. Diagram drawn by a student, Megan, when solving part (a) of Problem 1. 

 

Then she said “I’m thinking that the electric field on q1 due to q2 would be kq/r2” after 

which she plugged in r = 15 cm instead of 7.5 cm. Not only did she draw vectors that indicated 

electrostatic forces between the two charges, she also used the distance between the charges 

rather than the distance from one charge to the midpoint. Also, the language she used throughout 

including “the electric field on q1 due to q2” indicated that she was thinking about electric forces 

and not realizing the difference between electric force and electric field. 

As mentioned earlier, even after some questioning (e.g., would your answer change if a 

charge was removed?, what if the negative charge is replaced with a positive charge? etc.), Alex 

was unable to realize that two individual contributions to the net electric field due to the two 
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charges must be considered. The interviewer then explicitly asked Alex if he was aware of a 

connection between electric field and electric force. He noted that he knew there was a 

connection, but did not remember it. The interviewer provided the equation (𝐸�⃗ = 𝐹⃗/𝑞0) and 

explained that the electric field at a point is the force that would act on a small positive test 

charge placed at that point divided by that charge. The following is an excerpt from a discussion 

after this: 

 

Interviewer: If you look at this equation [𝐸�⃗ = 𝐹⃗/𝑞0], does this cause you to change your answer 

here [pointing to part (a) of the problem] cause you included one electric field? 

Alex: Yes. (At this point, Alex was still thinking about the case when both charges are positive 

because he was previously asked what would change if the negative charge was replaced 

by a positive charge.) 

Interviewer: Why? 

Alex: Because the two electric fields would cause opposing forces meaning they would cancel 

instead of add. 

Interviewer: In this situation where it’s – and +? 

Alex: Oh, no, not in the – and + … 

Interviewer: In the + and +?” 

Alex: Yes. 

Interviewer: What about in the – and +? 

Alex: It would be double because they’d both exert a force so the field would be twice as much as 

that. 
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Further discussions also suggest that after reminding Alex about the connection between electric 

force and electric field, with minimal questioning, he was able to use it correctly to reason about 

electric field. However, Alex was a student who was quite concerned with conceptual 

understanding (a fact that was identified after a later discussion), and in general, an above 

average student (obtained an A in the first semester algebra-based physics class). Other 

interviewed students had a more difficult time using this connection correctly despite being 

reminded of it and required more scaffolded questioning. 

For example, when asked about it, John said that the direction of the electric field at some 

point away from a negative charge should be towards the charge because “charges flow from 

positive to negative”. Below, a part of the conversation between the interviewer and John during 

the interview is reproduced. 

 

Interviewer: The definition for the electric field is 𝐸�⃗ = 𝐹⃗/𝑞0. Do you remember anything about 

that? Would that cause you to change that direction [towards the positive charge]? 

John: Ok, so, E equals F over q, so then the electric field would be in the same direction as the 

force, so the field would go away from this charge. 

 

He then drew electric field lines emanating away from the positive charge. 

 

Interviewer: Why is that? 

John: If F over q is the electric field and this [the q in the formula] is a positive charge, so then 

the electric field would move in the direction of the force and this [the positive charge 

drawn on the paper] would apply a positive force outward. 
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Interviewer: Apply a force on what? 

John: If there was another charge, it would apply a force outward. 

 

He was then asked if he could answer the question about the direction of the electric field. He got 

quite confused and was unable to answer the question. The interviewer attempted to help him 

again by pointing to his picture of the electric field emanating from a positive charge and asking 

him how it would look like for a negative charge. He correctly answered that question and drew 

electric field lines pointing inward towards the negative charge. 

 

Interviewer: So if the direction of electric field due to negative charges is towards those charges 

and I was looking at this point here [middle]… 

John: Oh, so then the whole field would be towards the negative charge. 

Interviewer: Yes and why is that? 

John: […] since it’s going away from a positive and towards a negative, the whole field would 

be going that way [left]. 

 

These discussions with John and those with other students suggest that in order to help students, 

the questions must be framed to take advantage of their knowledge resources and help them 

focus on important information in order to apply their existing resources and additional 

information provided appropriately (e.g., in John’s case the statement “If the direction of electric 

field due to negative charges is towards those charges and I was looking at this point here 

[middle]” was revealing to him). Without appropriate scaffolding tailored to take advantage of 
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students’ knowledge resources, they may have a difficult time realizing what is relevant and 

should be considered, and therefore focus on information that is neither relevant nor helpful. 

 

4.4.2 Qualitative findings related to Problem 2 

 

1) Cognitive load theory may possibly explain why students who explicitly draw the 

components of the two forces perform better. 

 

Two of the students interviewed were almost identical in terms of their majors and grades (both 

in the current physics course and the previous one). Karen and Dan were both Biology majors; in 

the first semester of physics they both obtained similar grades (B+ and A-, respectively). In the 

second semester physics class, in the first exam (class average 75/100), they both obtained 

81/100 and in the second exam (class average 65/100) they also both obtained 81/100. 

When solving the second problem, Karen recognized that she needed to find the x and y 

components of both forces due to each of the 2C charges and, before she proceeded to find them, 

she drew all the components on the diagram provided as shown in Figure 4.5. 
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Figure 4.5. Forces due to the two individual charges on the 1C charge and their components as drawn by Karen 

(student). 

She then figured out all the components and combined them correctly to determine both 

the magnitude of the net force and its direction (angle below the x axis). While working on this 

problem, it was evident that Karen was focusing on only a few things at a time and was being 

systematic about the way in which she found the net force. For example, when finding the 

components of the oblique (not horizontal) force, she redrew a triangle in which this force was 

the hypotenuse and identified the angles. Karen’s only mistake was using an angle of 45° instead 

of 60° to find these components. 

Dan also immediately recognized that components should be considered and proceeded 

to find them after redrawing the 1C charge (see Figure 4.6) and the two forces acting on it due to 

the 2C charges. He worked more slowly than Karen on this problem, but after some time, he 

correctly determined the x and y components of the oblique force and wrote them down 

(trigonometric functions were still included, i.e., he wrote down the y component as 18 ×

109 cos 30). However, unlike Karen, he did not draw these components on his diagram; his 

diagram of the forces (shown in Figure 4.6) only included the two forces and their magnitudes. 
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Figure 4.6.Forces acting on the 1C charge due to the two 2C charges as drawn by Dan (student) 

 

When Dan combined the components, he made two mistakes: 1) his net y component did 

not include the trigonometric function which he had previously written down (when he found the 

y component of the oblique force). As he was figuring out the net y component he said: “this one 

[horizontal force] doesn’t have a y component, so it [the y component of the net force] is just 18 

times 109” and 2) he subtracted the x components instead of adding them (he subtracted the 

horizontal force from the x component of the oblique force). In particular, he wrote the following 

on the paper for the net x component: Net x = 18 × 109 sin 30 − 18 × 109. It is possible that 

part of the reason why he subtracted the components is because he didn’t explicitly draw the x 

component of the oblique force and perhaps, due to the fact that the oblique force is in the fourth 

quadrant (which should be dealt with carefully), he implicitly assumed that one of its 

components must be negative, or that something must be subtracted. He subtracted the horizontal 

force from the x component of the oblique force even though the picture he drew clearly 

indicated that the horizontal force is in the positive x direction. After he finished working on all 

problems to the best of his ability, in the second phase of the interview, he was asked for 

clarifications of points he had not made clear earlier and some additional questions. For example, 

Dan was asked a simpler question. He was asked to add two forces: one in the positive y 

direction, the other in the first quadrant, making an angle of 30° with the horizontal. Here too, he 

didn’t draw the components explicitly in the diagram and ended up subtracting the y components 
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of the two forces in exactly the same way in which he subtracted the x components in Problem 2 

(the triangle problem) i.e., he subtracted the vertical force from the y component of the oblique 

force. When asked why he subtracted these components he looked at the diagram for a few 

seconds and said: 

 

Dan: Actually, you’re adding […] sorry, I don’t know why [he was going to say ‘I don’t know 

why I did that’] […], you’re adding because there’s a positive y component here [vertical 

force] and a positive y component here [of the oblique force]. 

 

The approaches of these two students differed mainly in that Karen explicitly drew all 

forces and components, whereas Dan only drew the forces. Dan subtracted the x components 

without providing a reason, and when he was asked to add two forces in a simpler mathematical 

context, he made the same exact mistake for the two components that were supposed to be 

added. When questioned about why he subtracted them, he realized this mistake on his own 

almost immediately, which suggested that when he solved both problems (Problem 2 and the 

simpler mathematical problem which had similar addition of vectors) he wasn’t focusing on the 

appropriate information. Once his attention was drawn to the issue of whether the vectors should 

be added or subtracted in the simpler mathematical problem, he clearly knew that the y 

components must be added. Without being questioned, he did not draw the components of the 

oblique force and appeared to be subtracting the components automatically, without a clear 

reason. When asked why he subtracted the components, he did not start by trying to justify this 

(for example by beginning a sentence with “I subtracted them because…”), which suggested that 

there was no clear reason for why he subtracted the y components. Further discussions with Dan 
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suggest that since he had not explicitly drawn the components of the oblique force along the x 

and y directions in his diagram, he was keeping the information about the components in his 

head. However, when it was time to utilize this information about the components of the oblique 

force to find the x component of the net force, he forgot to correctly account for the x component. 

On the other hand, Karen had the components explicitly drawn on the paper as opposed to 

keeping this information in her head and she was able to look back at her components and 

account for the sign of the x component of the oblique force correctly. Cognitive load theory [3], 

which incorporates the notion of distributed cognition [4], provides one possible explanation for 

Dan’s unsuccessful and Karen’s successful addition of vectors in this context: lack of 

information about components on Dan’s diagram required him to keep this information in his 

working memory, while Karen did not need to keep this information in her working memory 

since she included the components explicitly in her diagram. As Dan’s working memory was 

processing a variety of information during problem solving, he may have had cognitive overload 

and the information about the components that he planned to use at the opportune time to find 

the components of the net force was not invoked appropriately. 

 

2) Most students (six of the nine interviewed) possessed correct mathematical knowledge 

about adding non-collinear forces that they did not use while solving Problem 2. 

 

Five out of the nine students interviewed solved Problem 2 without considering the vectorial 

nature of forces. They found the magnitudes of the two forces and added them like scalars. One 

student arbitrarily multiplied both forces by sin45° and later, when asked about why she did that, 

said “it’s on an angle, there’s a triangle”. When pressed a little further about this issue it was 



 121 

clear that there was no well thought out reason for doing this except because “it’s on an angle”. 

All these six students were asked a follow-up question that required them to add two forces that 

were non-collinear. They were given a diagram like the one shown in Figure 4.7 (not all 

diagrams were identical; sometimes there was a vertical force instead of horizontal, but there was 

always an oblique force at a given angle from the horizontal). 

 

Figure 4.7. Example of a follow-up question used to assess whether students had mathematical knowledge about 

adding vectors that they did not use in Problem 2. 

 

All the six students who had not considered adding forces by components while solving 

Problem 2, in this context similar to that shown in Figure 4.7, invoked and proceeded to find 

horizontal and vertical components of the oblique force. Some were successful, some were not, 

but all of them understood that these two forces must be added by finding their x and y 

components. In Problem 2 on the other hand, none of these six students used this systematic 

approach. The interviews suggest some possible reasons for why students used components in 

the “mathematical” context but not in the physics context (quotations are used because forces 

which are inherently related to physics are being added, but the question itself is not necessarily 

a physics question per se since no physics specific knowledge is required in order to solve it). 

The interviews suggest that in Problem 2 (physics context) some students added the magnitudes 

of the two forces instead of considering vector addition because both forces “push” the 1C 
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charge away from the configuration. They did not consider directions because they did not apply 

mathematical knowledge to find the magnitude of the net force; instead, they used intuition or 

gut feeling. John’s interview provides an interesting example of how, for some interviewed 

students, knowledge of components was retrieved correctly even in the physics context for 

predicting the direction of the net force but not applied for finding the magnitude of the net force. 

When trying to determine the direction of the net force he said: 

 

Since these [the two forces acting on the 1C charge] are both coming in at the same angle, I 

believe that one of the components will cancel out […] so it will be […] splitting it in half. 

 

What he meant by “splitting in half” is that the 60° angle will be bisected by the line along which 

the net force will be pointing. He then drew a vector that indicated the direction of the net force 

which bisected the 60° angle at the 1C charge’s corner as reproduced in Figure 13. 

 

Figure 4.8. Vector indicating the direction of the net force on the 1C charge drawn by John (student). 

 

What John did in order to figure out the direction of the net force on the 1C charge 

(which is indeed correct) is he used symmetry. For example, if the triangle is placed with the 1C 

charge at the top, the x components (horizontal) cancel out and the net force points in the +y 

direction (vertical) and the 60° angle at the top will be “spilt in half” in John’s language by the 
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line along which the force will point. It is very interesting that although John was able to use 

symmetry to determine the direction of the net force which involved reasoning related to 

components (“one of the components will cancel out”), he did not use information about the 

components of the forces due to each of the 2C charges to determine the magnitude of the net 

force (he added them like scalars). Therefore, one can argue that knowledge about how to add 

components of forces to find the net force was present in John’s memory (“components cancel”), 

and was used correctly when John determined the direction of the net force, but was not used at 

all when John determined the magnitude of the net force (added the two forces like scalars). 

Another possible reason suggested by the interviews for why students used components 

correctly to find the net force in the mathematical context but not in the physics context (Problem 

2) is that students may be prompted to use components because the angle is drawn explicitly on 

the figure for the mathematical problem but not for Problem 2. This triggering of proper protocol 

for adding vectors using components when an angle is explicitly given in the diagram might be 

due to the fact that when learning addition of vectors, many of the problems used (both in 

mathematics and physics) explicitly contain angles. For example, in the interview conducted 

with Megan, when asked why she considered components to find the net force for the 

mathematical problem she said: 

 

Megan: I just remember, we had to find components of forces before, so, I saw angle and 

assumed, maybe we’d have to do that. 
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4.5 DISCUSSION AND SUMMARY 

We found that for Problem 1, students who were explicitly asked to draw a diagram were more 

likely to draw a productive diagram. We also found that students who drew productive diagrams 

performed better than those who drew unproductive diagrams. Among the students in DO who 

were provided with a diagram (which was unproductive unless modified by the student by 

adding force and/or field arrows) less than half attempted to draw the arrows, which is 

statistically significantly lower than the fraction of students in PO who were not provided any 

diagram and explicitly asked to draw one. This finding suggests that in an algebra-based 

introductory physics course the intervention for PO is likely to provide better scaffolding for 

solving problems than that for DO and should be incorporated in helping students learn effective 

problem solving strategies. 

We also found that more detailed diagrams (in general a more detailed diagram is also a 

higher quality diagram) corresponded to better performance. In a previous investigation [5] 

related to free body diagrams and their impact on student performance, Rosengrant [5] found that 

only drawing correct FBDs improves a student’s score and that students who draw incorrect 

FBDs do not perform better than students who draw no diagrams. In the study presented here, the 

correctness of the diagrams (correctness of the vector arrows representing electric fields or 

forces) did not impact students’ scores significantly. It is possible that the reason for this 

difference between the two studies is that for both problems in this study, students who drew 

incorrect vector arrows in the diagrams had the incorrect direction of electric field or electric 

force vectors due to both charges. These students differ from the students with the correct 

direction in that they obtained a direction for the net electric field or force which was 180º from 

the correct direction. Referring back to Table 4.1, an incorrect direction would only cost a 
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student 1 out of 10 points because partial credit was given. On the other hand, Rosengrant’s 

study included multiple choice problems only and involved some problems in which students 

were often completely mistaken about the direction of the force (e.g., in an inclined plane 

problem, some students claimed that the normal force on the block is collinear with the 

gravitational force as opposed to perpendicular to the incline). Since some answer choices to the 

multiple choice problems in their study were based on common student errors, one would expect 

that the correctness of the diagrams would make a larger difference in Rosengrant’s study than in 

ours. 

As noted earlier, one theoretical framework that can provide a possible explanation for 

why students with more detailed diagrams performed better is the cognitive load theory [3,6-11], 

which incorporates the notion of distributed cognition [4]. In Problem 2, students had to add 

forces by using components, so students who did not draw the force vectors or their components 

they had to add vectorially would have to keep too much information in their working memory 

while engaged in problem solving (individual components of the two forces, angles required to 

get those components, what trigonometric function needs to be used for each component, etc.). 

This can lead to cognitive overload and deteriorated performance. Explicitly drawing the forces 

and their components can reduce the amount of information that must be kept in the working 

memory while engaged in problem solving and may therefore make the student more able to go 

through all the steps necessary without making mistakes. As noted earlier, individual think-aloud 

interviews conducted with two students who were nearly identical in terms of performance on 

class examinations also suggested that this interpretation may be appropriate. When solving 

Problem 2, both of these students were able to determine the x and y components of the two 

forces correctly. However, the student who did not explicitly draw the components in the 
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diagram made two mistakes when combining these components. Furthermore, the interview 

suggested that his incorrect choice of subtracting the x components (instead of adding them) was 

not done for any particular reason because, when explicitly asked to explain this choice and why 

he subtracted those components, he immediately realized that the two components must be 

added. This can be interpreted as an indication that this student, although aware of how 

components must be combined, had cognitive overload and did not retrieve the information 

about components from his working memory appropriately while engaged in problem solving. 

It is also important to note that these problems were given in the second semester of a one 

year introductory physics course for algebra based students. These students had done problems 

for which they had to find the net force in Newtonian mechanics, and still less than 30% of the 

students realized that they should draw the components of the electric force in Problem 2 

presented here. Also, only 42% of all students indicated a direction for the net force. This can 

partly be an indication of a lack of transfer from one context to another [12-18]. Students’ 

performance also suggests that many algebra-based introductory students do not have a robust 

knowledge structure of physics nor do they employ good problem solving heuristics and their 

familiarity with addition of vectors may also require an explicit review. Earlier surveys have 

found that only about 1/3 of the students in an introductory physics class have enough 

knowledge about vectors to begin the study of Newtonian mechanics [19]. Here we find that 

even after a semester of instruction in physics that involves quite a fair amount of vector 

addition, the fraction remains about the same and students have great difficulty dealing with 

vector addition in component form. 

The interviews also revealed that many students may not use mathematical knowledge 

about adding vectors that they possess while solving a problem in a physics context, but they can 
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apply this knowledge correctly to a vector addition problem in a mathematical context as was 

posed during interviews after students had answered all problems initially given to them to the 

best of their ability. This dichotomy between students’ facility with problems devoid of context 

and difficulty with problems with a physics context can be interpreted as a lack of knowledge 

transfer from one situation to another. This context-specific knowledge and lack of transfer can 

partly account for the finding that a small percentage of students (30%) attempted to draw the 

components of the two forces they added in Problem 2. Six out of the nine students interviewed 

did not add the two forces in Problem 2 by determining x and y components, but when asked a 

very similar force addition problem all of these six students tried to find their components in 

order to add them. Some were successful and some were not, but nonetheless, the knowledge that 

forces must be added by components was not used when solving the physics problem, even 

though students clearly had this knowledge. Interviews also suggested two possible reasons for 

why students would use this knowledge in the mathematical context, but not in the physics 

context. One reason is that several students used intuition and gut feeling when adding the forces 

rather than their mathematical knowledge about vector addition. For example, they would look at 

the situation as the two 2C charges pushing the 1C charge “away” and not take into consideration 

that the two forces due to the interaction of the 1C charge with the other charges were not along 

the same direction. When probed about why they added the magnitudes of the forces as scalars, 

some students specifically mentioned their gut feeling. A second reason is that students may be 

prompted to find components while solving the mathematical problem because an angle was 

drawn on the diagram provided; however, no angles were drawn in the physics context (Problem 

2). 
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For Problem 1, we also found that several weeks after instruction, students’ performance 

on electric force improved while their performance on electric field remained stagnant. 

Interviews with students (which were all conducted after an exam which covered these topics) 

also reveals that several weeks after instruction students exhibited more difficulties on the 

concept of electric field than on the concept of electric force. In particular, some students who 

were not able to recognize that contributions coming from each of the two charges must be 

considered when evaluating the net electric field at the midpoint, readily recognized this in the 

electric force part of the problem. Furthermore, students who exhibited difficulties in both parts 

when solving Problem 1, after finishing both problems, were asked directed (scaffolding) 

questions by the interviewer which were intended to improve students understanding of these 

concepts (at least as it pertains to these problems). Some of the students were not able to grasp 

the concept of electric field even after scaffolding support and had a difficult time determining 

the correct method for solving for the electric field part of the problem while being able to use 

the scaffolding (sometimes very little) to solve the force part of the problem. Other students 

managed to take advantage of scaffolding during the interviews to solve both parts of the 

problem; however, all of them took more time and significantly more directed questioning in the 

electric field part than in the electric force part. 

The lack of a robust knowledge structure and the abstract nature of electric field 

compared to electric force may contribute to this finding. Experts extend their knowledge by 

connecting new information with prior knowledge already stored in their long term memory. 

Moreover, after years of sense making, even abstract concepts do not appear very abstract to the 

experts. Introductory students’ knowledge about physics is fragmented. They have information 

about forces from Newtonian mechanics and it is easier for them to connect the new concept of 
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electric force with what they already know. However, prior to being introduced to the electric 

field, they have little or no knowledge of the abstract concept of fields especially in an algebra-

based course. In particular, electric fields are generally the first fields to be introduced in an 

algebra-based introductory physics course because the concept of gravitational field is skipped. 

Therefore, they have difficulty connecting this new abstract concept of electric field with their 

prior knowledge and whatever short term gain there is while practicing homework problems 

immediately before a quiz appears to be lost later in the midterm performance. It is also 

important to mention that our research suggests that the percentage of students who used the 

essential relationship ( EqF


= ) between electric field and electric force decreases as the semester 

progresses. If instructional design stresses this relationship that connects the two concepts within 

a coherent curriculum that focuses on helping students build a robust knowledge structure and 

also stresses the vectorial nature of both field and force, students may make a better connection 

between electric field and electric force and improve their performance on both while practicing 

problems. 

The fact that the relationship between electric force and electric field (𝐹⃗ = 𝑞𝐸�⃗ ) can be 

used effectively to help students develop a better understanding of the abstract concept of electric 

field by connecting it with a more familiar concept of force was also suggested by the interviews. 

Students who had a difficult time solving the electric field part of the problem were asked 

directed questions intended to help them use this connection in order to reason about electric 

field. Some students were able to use it correctly after only several questions, whereas others 

required more involved directed questioning. However, in almost all cases, starting with a simple 

situation (such as using this relationship to determine the direction of the electric field due to a 

positive charge) where the interviewer guided the student to use the equation 𝐹⃗ = 𝑞𝐸�⃗  through 



 130 

scaffolding questions (such as “What does this equation say about the direction of the electric 

field relative to the direction of the electric force?”, “Can you use this equation to figure out the 

direction of the electric field at some distance from a negative charge?” etc.) and working up to 

the more complex situation present in the original problem, students were able to reason about 

the problem correctly and understand how the concept of electric field is used to solve it. 

Finally, the interviews suggest some difficulties students have when dealing with the 

concepts of electric field and electric force. One difficulty is in developing a good mental 

representation of the concept of electric field which can be used to solve problems such as those 

discussed in this research. The abstract notion of “field” is difficult for students to conceptualize 

and they may not even have an idea what it represents. The comment (and drawing) made by one 

of the students was very representative. This student attempted to solve Problem 2 by finding the 

electric field at the corner of the 1C charge and then multiplying it by the charge. However, 

when finding the net electric field she did not consider the vectorial nature of the field. When 

asked why she did not add the electric fields due to each of the 2C charge vectorially, she said 

she wasn’t thinking of vectors and drew pictures of ‘fields’ emanating from each of the 2C 

charge towards the 1C charge that looked like travelling waves. Within this model, the student 

felt that the electric field is a scalar quantity. A second issue with which students struggled only 

adds to this first difficulty: students often did not differentiate between the concepts of electric 

field and electric force. This was evident when students would use the words “field” and “force” 

interchangeably (i.e. use “field” when they meant “force” and vice versa) or when trying to 

answer questions about why they were adding two contributions to the net electric field in the 

first part of problem 1 (because they would often use reasoning directly related to electric 

forces). Furthermore, when asked what is the direction of the electric field at a point due to a 
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point charge, students often had difficulty realizing that a non-zero electric field could exist at a 

point in empty space; many claimed that a charge must be placed at that point in order to answer 

the question. Moreover, when negative charges were placed at the point to find the electric field 

due to a positive point charge, students often got confused between the direction of the electric 

force and the electric field. 
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5.0  STUDENT DIFFICULTIES IN TRANSLATING BETWEEN MATHEMATICAL 

AND GRAPHICAL REPRESENTATIONS IN INTRODUCTORY PHYSICS 

5.1 INTRODUCTION 

For a literature review of previous research related to the role of multiple representations in 

problem solving, refer to the introduction in the study presented in Chapter Two. 

This study investigates students’ ability to transform between mathematical and graphical 

representations and how this relates to their problem solving performance. Student difficulties in 

interpreting graphical representations have been extensively researched in kinematics [1-6]. 

Instructional strategies have also been developed to remedy student difficulties [7-13]. Other 

researchers have investigated student understanding of P-V (pressure vs. volume) diagrams both 

in upper level-thermodynamics courses [14,15] as well as in introductory physics calculus-based 

courses [16]. Pollock et al. [14] also looked at student performance on similar questions devoid 

of physical context and found that some of the difficulties students exhibited in a physical 

context could be attributed to mathematical difficulties related to the concept of an integral. In a 

later study, Christensen and Thompson [17] investigated student difficulties with the concept of 

slope and derivative in a mathematical (graphical) context. 

This investigation focused on students’ ability to translate from the mathematical 

description of an electric field to the corresponding graphical representation, which is directly 
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related to the concept of function and graphing of a function. Student difficulties with the 

concept of function have been researched by mathematics education researchers [18,19]. Hitt 

[20] identified five levels in the construction of the particular concept of a function which vary 

between imprecise ideas about a concept (Level 1) to coherent articulation of different systems 

of representation in the solution of a problem (Level 5). Hitt also found that, sometimes, even 

secondary mathematics teachers cannot always articulate between the various systems of 

representation involved in the concept of a function. Vinner and Dreyfus [21] distinguished 

between a concept image and a concept definition because they saw students repeatedly misuse 

and misapply terms like function, limit, tangent and derivative. For many students, the image 

evoked by the term “function” is of two expressions separated by an equal sign [22,23]. 

Thompson found [23] that many students who had successfully passed a Calculus and a Modern 

Algebra course still saw no problem with a definition like 𝑓(𝑥) = 𝑛(𝑛+1)(2𝑛+1)
6

 because it fits 

their concept image of a function. Also, students in algebra courses often have an action 

conception of a function because a function is seen as a command to calculate and therefore they 

must actually apply it to a number before the recipe will produce anything. The way many 

introductory physics students manage equations in solving physics problems is often very 

predictable: they plug numbers into an equation and figure out an unknown which can in turn be 

plugged into another equation. This process is continued until the target variable is found. When 

numbers are not given or when students run into a situation with two equations and two 

unknowns, they have a much more difficult time solving the problem. As evidenced by these 

examples and others in [23], students’ concept images are often not consistent with concept 

definitions. However, for mathematics “experts” the concept images become tuned over time so 

that they are consonant with the conventionally accepted concept definitions. One proposed 
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instructional method of overcoming some of these difficulties involves real-world investigations 

that use realistic data and scenarios [24-27]. Mathematics education researchers have also 

investigated student difficulties in connecting various representations of functions, in particular 

graphical and algebraic [28,29] and some have stressed that this process of translating between 

the graphical and algebraic representations of functions presents one of the central difficulties for 

students to construct an appropriate mental image of a function [30]. Other mathematics 

researchers have investigated the intertwining between the flexibility of moving from one 

representation of a function to another and other aspects of knowledge and understanding [31] as 

well as students’ abilities to extract meaningful information from graphs [32]. 

In physics, there is the added difficulty of understanding the relevance of certain 

mathematical knowledge and procedures to the solution of physical problems. Students may 

have the requisite mathematical knowledge that needs to be applied to a physical situation but 

they may fail to invoke it at the appropriate time because they are unaware of its usefulness. This 

is supported by Hammer’s observation that high-school students take little out of an initial 

mathematical review of procedures divorced from physics [33] and by research on difficulties of 

transferring mathematical knowledge across disciplines [34-36]. Also, the physics context 

typically requires additional information processing, which can lead to an increased cognitive 

load and deteriorated performance [37]. In this investigation we explore the facility of students in 

a calculus-based introductory physics course in transforming a problem solution involving the 

electric field for spherical charge symmetry from mathematical to graphical representation. Our 

previous research suggests that students have great difficulty in transforming the electric field 

from one representation to another for the problem discussed in this paper and the research 

presented here provides several insights that could partly account for this difficulty. Our major 
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finding is that more scaffolding, which experts might consider should help students, can instead 

hinder students’ performance. Therefore, it is important to optimize the level of scaffolding via 

research (for students with a given prior knowledge) to ensure that they benefit from the support 

provided in the intended manner and learn to translate appropriately from a mathematical to a 

graphical representation. 

5.2 METHODOLOGY 

A class of 95 calculus-based introductory physics students was enrolled in three different 

recitations. The three recitations formed the comparison group and two intervention groups for 

this investigation. In addition, ten students in different but equivalent calculus-based introductory 

physics classes were interviewed individually in paid interviews using a think-aloud protocol 

[38,39] to understand their thought processes better while they solved the problem. Below, the 

two interventions used in two of the recitations are described first. All recitations were taught in 

a traditional manner in which the TA worked out problems similar to the homework problems 

and then students were given a 15-20 minute quiz at the end of class. Students in all recitations 

attended the same lectures, were assigned the same homework, and had the same exams and 

quizzes. Students’ difficulties in transforming the solution to the following problem (which was 

given in a quiz) from the mathematical to the graphical representation are investigated. The 

version of the problem below is the one with no scaffolding support and was given to the 

comparison group (referred to as the “scaffolding level zero group” or SL0). 
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A solid conductor of radius a is inside a solid conducting spherical shell of inner radius b 

and outer radius c. The net charge on the solid conductor is +Q and the net charge on the 

concentric spherical shell is –Q (see figure). 

 

Figure 5.1. Problem diagram provided to all students. 

(a) Write an expression for the electric field in each region. 

(i) r < a 

(ii) a < r < b 

(iii) b < r < c 

(iv) r > c 

(b) On the figure below, plot E(r) (which is the electric field at a distance r from the 

center of the sphere) in all regions for the problem in (a). 

 

Figure 5.2.Coordinate axes provided to all students for sketching the electric field in part (b). 
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Previous preliminary research in a different introductory calculus-based physics class 

suggested that students have great difficulty in graphing the electric field after writing an 

expression for the electric field in each region. In particular, a majority of students (~70% – 

80%) drew graphs that were not consistent with their mathematical expressions in one or more 

regions. Motivated by these preliminary findings, two scaffolding interventions were 

implemented in two of the recitations by giving students some scaffolding support in order to 

assess if it helps them make a better connection between the two representations. Theoretical 

task analysis from an expert perspective [40-42] of the process of transforming from 

mathematical to graphical representation was used to design the two interventions. The students 

that received the first level of scaffolding (which will be referred to as “SL1” – Scaffolding 

Level 1) were asked to draw the electric field in each region before graphing it in part (b) shown 

above. Their instructions were as follows: 

(a) Write an expression for the electric field in each region and sketch the electric field in 

that region on the coordinate axes shown (in the shaded regions, please do not draw). 

 

For each region (r<a, a<r<b, etc.) right after calculating the expression for the electric 

field in that region, they were given coordinate axes with the irrelevant parts shaded out. For 

example, for region r<a, they were given the coordinate axes shown in Figure 5.3 for drawing 

the graph of the electric field in that region. 
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Figure 5.3.Coordinate axes provided to students in the SL1 and SL2 groups for sketching the electric field 

in region r < a. 

 

Students who received the second level of scaffolding (“SL2” – Scaffolding Level 2) 

were given all the support of SL1 described above and, in addition, they were asked to evaluate 

the electric field at the beginning, mid and end points of each region before graphing it in that 

region. For example, for region r<a, they were also asked to fill in the following blanks after 

writing an expression for the electric field for that region, but before graphing it: 

When r = 0,    𝐸(𝑟 = 0) = _______________ 

When r = a/2,   𝐸 �𝑟 = 𝑎
2
� = _______________ 

When r → a,     𝐸(𝑟 → 0) = _______________ 

For convenience, a brief description of the three scaffolding levels is provided in Table 5.1. 

Both the SL1 and SL2 interventions were designed to help students perform better on 

graphing the electric field. It was hypothesized that asking students to graph the field in each 

region first, after writing an expression for the field in that region, but before constructing the 

graph for the field everywhere, may help them make a connection between the graphical and 

mathematical representations better. In particular, it was anticipated that some students would 
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Table 5.1. Brief description of the three scaffolding levels 

Scaffolding 

Level 0 (SL0) 

Asked to draw the electric field at the end, after finding an expression for it in all 

regions. 

Scaffolding 

Level 1 (SL1) 

In each region, right after finding the electric field, they are asked to draw it and 

they are provided with coordinate axes with the irrelevant regions shaded out. They 

are also asked to draw it again at the end. 

Scaffolding 

Level 2 (SL2) 

Everything given to SL1 and in addition, in each region, they were asked to 

evaluate the electric field at the beginning, mid, and endpoint of that region. They 

are also asked to draw it again at the end. 

 

realize that in this problem the electric field takes the form of a piece-wise defined function (with 

discontinuity in the electric field where one crosses a surface charge distribution) and in order to 

graph it, they must individually plot each forms of this function in the corresponding region. The 

additional support in the SL2 intervention, namely, the instructions to find the electric field at the 

beginning, mid, and end point of each region before graphing in that region were intended to, on 

the one hand, give another hint that the electric field has different forms in different regions, and 

on the other hand, help students realize that the electric field has discontinuities at charged 

interfaces and thus help them perform better on graphing it. 

The researchers jointly determined the grading rubric iteratively. After extensive 

discussions among two researchers, the way the problem was finally scored is summarized in 

Table 5.2. 

Table 5.2 shows that the region a<r<b was assigned three times as many points as each of 

the other regions. This consideration was made because region a<r<b was the only one with a 

non-zero electric field. In finding the expression for the electric field in parts (a)(i) through 

(a)(iv), students were given 80% for the correct expression and 20% for the correct reasoning 
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Table 5.2. Summary of the scores assigned to each part of the problem. 

(a) Find an expression for the electric field 

(i) r<a (ii) a<r<b (iii) b<r<c (iv) r>c 

10 points 30 points 10 points 10 points 

(b) Plot E(r) in all regions 

r<a a<r<b b<r<c r>c 

5 points 15 points 5 points 5 points 

 

that led to that expression. For example, if a student wrote 2r
kQE = for the expression without 

any explanation in region a < r < b, he/she would obtain 24/30 points. Table 5.2 also shows that 

plotting the electric field in part (b) was worth 30 points, which is half of the points assigned to 

finding the expressions for the electric field in part (a). Part (b) was broken up into individual 

regions and in each region we investigated whether the student’s graph was consistent with the 

expression found for the electric field in that region. Full credit was given if the form of the 

graph matched the expression; students were not expected to label endpoints, or even have 

correct endpoints in order to receive full credit (for graphing). For example, if a student found 

E(r) = kr/3 in region b < r < c, and drew a graph similar to the one shown in Figure 5.4 (an 

increasing linear graph that starts from the r-axis), this student would be considered to be 

consistent (and obtain the 5 points assigned to this part) because he/she selected the correct type 

of graph (linear) consistent with the expression in that region, even though the left endpoint is 

clearly incorrect (based on the expression, E(r = b) = kb/3, but in the graph E(r = b) = 0). We 

note that the maximum score that can be obtained on this problem is 90 points rather than 100. 

This is because it was considered that matching (in terms of scoring) between regions in the parts 

that required finding an expression and plotting the electric field (i.e., plotting an expression 
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correctly is worth half the points assigned to finding the correct expression) was more important 

than making the maximum 100 points. 

 

Figure 5.4. Example of a graph drawn by a student in region b<r<c. 

5.3 QUANTITATIVE RESULTS 

Before presenting the results it is worthwhile mentioning that students’ scores on the final exam 

were analyzed in order to ensure that the three groups exhibited similar performance. There were 

no differences in the performance of students in different groups on the final exam (the 

difference between the lowest and highest average performance of students in the different 

groups on the final exam was 5.4 points out of 100). 

5.3.1 Primary Finding 

The additional scaffolding given to students in the SL2 group (as compared to SL1) had the 

opposite effect to the one intended as evidenced by three factors: 

• 1) Students in the SL2 group performed worse at finding the correct expressions for 

the electric field than those in the SL1 group; 
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• 2) Students in the SL2 group performed worse at graphing the electric field than 

students in the SL1 group; 

• 3) Students in the SL2 group were also less consistent between the expressions found 

and the graphs drawn in each part. 

 

Each of the three components of the primary finding is discussed below. 

5.3.1.1 Students in the SL2 group performed worse than students in the SL1 group in 

finding the correct expressions for the electric field 

 

Table 5.3 shows the averages and standard deviations of the SL1 and SL2 groups on the first four 

parts of the quiz combined (the parts which required finding expressions for the electric field). 

Although the TA gave all students sufficient time to finish the quiz, some did not complete it 

because it was a low-stakes quiz (students received credit for one recitation quiz which counted 

for less than one percent of the course grade). Due to the fact that students in the two scaffolding 

groups had more instructions to take care of due to the scaffolding provided (e.g., draw the 

electric field in each region, find E(r → a), E(r →b) etc.), a few of those students did not work 

on more than two of those four parts. The numbers in Table 5.3 are based only on the students 

who had done work on at least two out of the four parts. A t-test [83] on the data in Table 5.3 

reveals that students in the SL2 group performed worse than students in the SL1 group 

(p=0.040). A calculation of Cohen’s d [44,45] (which yields 0.622) suggests that this difference 

corresponds to an effect size between medium and large. Cohen’s d refers to the standardized 

mean difference [44,45]. As defined by Cohen, large, quite noticeable effects correspond to a 

value for Cohen’s d around (or larger than) 0.8, medium effects correspond to 0.5 and small 
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correspond to 0.3 or less. To put this into context, an effect size of 0.8 corresponds to the height 

difference between 13 and 18 year old girls. 

 

Table 5.3. Numbers of students (N) in the SL1 and SL2 groups, averages (Avg.) and standard deviations (Std. dev.), 

renormalized for 100 maximum points, for the scores of students in the SL1 and SL2 groups on the first four parts 

combined. Only students who did work in at least two out of the four parts (a majority of students) are included in 

these statistics. 

 N Avg. Std. dev. 

SL1 27 58 33 

SL2 30 39 32 

 

The performance of the SL1 group was also compared with the performance of the SL2 

group in each individual part of the quiz. This had the benefit of eliminating a few students who 

had not done work in a part from the total pool of students and obtaining a more accurate picture 

of their performance. 

 

Table 5.4. Numbers of students (N) in the SL1 and SL2 groups, averages (Avg.) and standard deviations (St.d.) for 

the scores in parts (a)(i) through (a)(iv) of the SL1 and SL2 groups out of 10 points (part (a)(ii) was renormalized to 

10 maximum points). 

 (a)(i) (r<a) (a)(ii) (a<r<b) (a)(iii) (b<r<c) (a)(iv) (r>c) 

N Avg St.d. N Avg St.d. N Avg St.d. N Avg St.d. 

SL1 30 5.7 4.2 27 5.7 4.0 26 5.4 4.4 26 5.9 4.6 

SL2 32 2.8 3.9 30 4.7 4.1 22 2.0 3.7 19 3.4 4.6 

 

Table 5.4 shows the averages and standard deviations for the scores of students from the 

SL1 and SL2 groups in the parts of the quiz that required finding an expression for the electric 
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field (for each of the parts in Table 5.4, only those students who worked on those particular parts 

are included in the statistics, thus, the numbers of students sometimes differ in different parts). 

Comparison of these groups yields statistically significant differences (SL2 group performing 

worse than the SL1 group) in part (a)(i) (p = 0.006, Cohen’s d = 0.816) and in part (a) (iii) (p = 

0.005, Cohen’s d = 0.843). It is worthwhile to note that the SL1 group outperformed the SL2 

group by at least 20% in each part, but due to the large standard deviations, those differences are 

not statistically significant in two of the cases. 

Another measure of student performance can be obtained by investigating the number of 

students who determined that the electric field is zero inside the conductors (parts (a)(i) and 

(a)(iii)) and in region r > c (part (a)(iv)). Results are shown in Table 5.5. Chi-squared tests [83-

85] on these data reveal that students in the SL2 group underperformed students in the SL1 group 

in all three parts: (a)(i): p=0.002, (a)(iii): p=0.007, (a)(iv):p=0.047. The difference between the 

SL1 and SL2 groups in terms of percentage of correct answers (E = 0) is 30% or higher in every 

part. 

 

Table 5.5. Percentages (and numbers) of students who found that the electric field is zero and non-zero in the 

regions where it is supposed to be zero. 

 Part (a)(i) Part (a)(iii) Part (a)(iv) 

E=0 E≠0 E=0 E≠0 E=0 E≠0 

SL1 60% (18) 40% (12) 58% (15) 42% (11) 62% (16) 38% (10) 

SL2 22% (7) 78% (25) 17% (4) 83% (19) 32% (6) 68% (13) 

 

Table 5.6 shows the performance on the last part, which asked students to graph the 

electric field everywhere. A t-test on the data in Table 5.6 shows that students in the SL2 group 

performed worse than students in the SL1 group (p = 0.012, Cohen’s d = 0.732).  
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Table 5.6. Numbers of students (N) in the SL1 and SL2 groups, averages (Avg.) and standard deviations (Std. dev.) 

for the scores on graphing the electric field (renormalized to 10 maximum points). 

 N Average Std. dev. 

SL1 27 6.2 3.9 

SL2 24 3.5 3.3 

 

The score on graphing the electric field is based on how consistent the students were 

between the expressions they found and the graphs they drew in part (b), thus the results shown 

in Table 5.6 provide the first indication that students in the SL2 group were less consistent than 

students in the SL1 group. However, these scores were based on the final graph. We also 

investigated if the students were consistently plotting their expressions immediately after finding 

them. 

5.3.1.2 Students in the SL2 group were less consistent than students in the SL1 group 

between the expressions they found and the graphs they drew in three out of the four parts. 

 

Students in the two scaffolding interventions were asked to sketch the electric field in each 

region immediately after finding it, and in addition, they were provided with coordinate axes 

with the irrelevant parts shaded out. Table 5.7 shows, in each of the four parts, how many 

students plotted their expressions correctly and incorrectly by showing whether students were 

consistent between the expressions they found and the graphs they drew. Chi-squared tests on the 

data in Table 5.7 reveal that students in the SL2 group were less consistent than students in the 

SL1 group in all but the last part (p values for comparison are 0.010, 0.024 and 0.002 for parts 

(a)(i), (a)(ii) and (a)(iii) respectively; the difference in part (a)(iv) is not statistically significant). 
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Table 5.7. Percentages (and numbers) of students from the SL1 and SL2 groups who were consistent between the 

graphs they drew and the expressions they found in each of the first four parts. 

 (a)(i) consistent (a)(ii) consistent (a)(iii) consistent (a)(iv) consistent 

Yes No Yes No Yes No Yes No 

SL1 86% (24) 14% (4) 67% (18) 33% (9) 77% (20) 23% (6) 69% (18) 31% (8) 

SL2 54% (17) 46% (14) 37% (11) 63% (19) 32% (6) 68% (13) 58% (11) 42% (8) 

 

The data in Table 5.7 suggest that sometimes students were consistent in one or more 

parts, but not all. We also investigated how many students were always consistent between the 

expressions they found and the graphs they drew. This result is shown in Table 5.8. Once again, 

a chi-squared test on the data in Table 5.8, reveals that students in the SL2 group were 

significantly less consistent than students in the SL1 group (p=0.008). 

 

Table 5.8. Percentages (and numbers) of students from the SL1 and SL2 groups who were consistent in all parts. 

 Consistent in all parts 

Yes No 

SL1 59% (16) 41% (11) 

SL2 24% (7) 76% (22) 

 

It is important to keep in mind that the electric field is zero in three out of four parts in 

this problem. Therefore, a better measure of how adept students are at translating between a 

mathematical and graphical representation of electric field (consistency) can be obtained by 

investigating how adept students are at graphing non-zero electric fields, because if a student 

finds that the electric field is zero in a region, it should be relatively straightforward for this 

student to graph that electric field and be consistent. In order to investigate how well students 

could graph non-zero electric fields, one excludes students who found E = 0 in a particular 
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region and plotted it accordingly. Therefore, for each student, only the regions where the student 

found a non-zero electric field were considered (regardless of whether the electric field is 

supposed to be zero in that region or not). Then, all the times when students were (and were not) 

consistent were added up to obtain two numbers. These numbers represent the number of times 

students in each of the two scaffolding intervention groups were able (and were not able) to 

graph a non-zero electric field in a particular region. These numbers are referred to as 

“consistencies yes” and “consistencies no” in Table 5.9. A chi-squared test on the data in Table 

5.9 shows that students in the SL2 group are statistically less consistent in graphing non-zero 

electric fields than students in the SL1 group (p = 0.025). 

 

Table 5.9. Percentages (and numbers) of yes and no consistencies for the SL1 and SL2 groups. 

 Consistencies yes Consistencies no 

SL1 57% (31) 43% (23) 

SL2 38% (31) 62% (51) 

 

Students in the two scaffolding intervention groups were essentially asked to graph the 

electric field twice – immediately after finding it in each region and at the end. An expert would 

simply put together the graphs found in the individual regions to obtain the final graph. 

However, some students drew final graphs that were not consistent with the graphs they drew in 

one or more regions. For example, a student drew a graph that looks like 1/r for region a<r<b 

right after finding an expression for the electric field in that region, but in the final graph, in the 

same region, the student drew a constant non-zero electric field. Table 5.10 shows the number of 

times students from the scaffolding interventions were (and were not) consistent in this respect. 

A chi squared test is not appropriate for data in Table 5.10 because the numbers are too small 
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and not all the expected cell frequencies are larger than 10 [43]. Therefore, Fisher’s exact test 

[46] was performed, which revealed that students in the SL2 group were less consistent than 

students in the SL1 group between the graphs drawn in each part and the final graph. 

 

Table 5.10. Percentages (and numbers) of students from the SL1 and SL2 groups who were (and were not) 

consistent between graphs drawn in each part and the final graph. 

 Consistent Not consistent 

SL1 86% (19) 14% (3) 

SL2 57% (12) 43% (9) 

 

5.3.2 Secondary Findings 

Students in the SL1 group performed better at finding the correct expressions than the 

comparison group. 

 

Table 5.11 shows the average scores on the first four parts which required finding an expression 

for the electric field. Similar to the previous comparison in this respect between SL1 and SL2 

students, only the students who worked on at least two of the four parts are included. A t-test 

reveals that the difference is statistically significant (p=0.004). Also, Cohen’s d (0.843) shows a 

large effect size. 
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Table 5.11. Sizes (N), averages and standard deviations (renormalized for 100 maximum points) for the scores of 

students in the SL0 and SL1 groups on the first four parts combined (only students who did work in at least two out 

of the four parts are included in these numbers). 

 N Avg. Std. dev. 

SL0 32 34 29 

SL1 27 58 33 

 

The scores in each of the four parts were also compared. Table 5.12 shows the averages 

and standard deviations for the scores of students in the SL0 and SL1 groups. T-tests on data in 

Table 5.12 reveal that students in the SL1 group outperformed students in the SL0 group in part 

(a) (ii) (p = 0.022, Cohen’s d = 0.628) and in part (a) (iii) (p = 0.019, Cohen’s d = 0.654). 

 

Table 5.12. Numbers of students (N) in the SL0 and SL1 groups, averages and standard deviations for the scores in 

parts (a)(i) through (a)(iv) of the SL0 and SL1 groups out of 10 points (part (a)(ii) was renormalized to 10 maximum 

points). 

 (a)(i) (r<a) (a)(ii) (a<r<b) (a)(iii) (b<r<c) (a)(iv) (r>c) 

N Avg St.d. N Avg St.d. N Avg St.d. N Avg St.d. 

SL0 32 4.3 4.0 30 3.4 3.3 30 2.8 3.7 31 3.4 4.4 

SL1 30 5.7 4.1 27 5.7 4.0 26 5.4 4.4 26 5.9 4.6 

 

One last measure of performance in terms of accuracy in finding the correct expressions 

was investigated by comparing the number of correct responses (E=0) in regions (a)(i), (a)(iii) 

and (a)(iv). Table 5.13 shows the findings. A chi-square test reveals that the difference is 

statistically significant (p=0.002). 
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Table 5.13. Percentages (and numbers) of correct responses from students in the SL0 and SL1 groups in the regions 

where the electric field was zero: regions (a)(i), (a)(iii) and (a)(iv). 

 E = 0 E ≠ 0 

SL0 37% (34) 63% (59) 

SL1 60% (49) 40% (33) 

 

 

More students in the SL1 group were always consistent than students in the SL0 group. 

 

It was also investigated whether there were more students in the SL1 group who were always 

consistent than students in the SL0 group. Results are shown in Table 5.14. A chi-squared test on 

these data shows that students in the SL1 group were performing better in this respect than 

students in the SL0 group (p=0.002). 

 

Table 5.14. Percentages (and numbers) of students from the SL0 and SL1 groups who were always consistent. 

 Consistent in all parts 

Yes No 

SL0 29% (9) 71% (22) 

SL1 59% (16) 41% (11) 
 

 

Performance of students in the SL2 group was not statistically significantly better or worse 

in any respect than the performance of students in the SL0 group. 

 

We also performed t-tests and chi-square tests to compare the various aspects of performance 

mentioned so far (performance in finding expressions, performance in figuring out that the 
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electric field is zero in the three regions where it should be zero, performance in graphing the 

field in part (b) and performance in consistency between expressions found and graphs drawn). 

There were no statistically significant differences in any of these aspects.  

 

Regardless of the intervention, students who were always consistent between the 

expressions they found and the graphs they drew performed better than the other students. 

 

It was also investigated whether students who were consistent between the expressions they 

found and the graphs they drew in all parts also performed better regardless of the intervention, 

i.e., is consistency correlated with performance for all students? Since in the graphing part of the 

problem, part (b), the scores were given based on how consistent students were, one would 

expect a correlation to exist between scores and consistency on this part. Therefore, one should 

look at each one of the other parts, where the scores were based solely on the expressions 

students found. Table 5.15 shows the averages and standard deviations in each of the four parts, 

(a)(i) through (a)(iv), which were graded based on the expressions students found. The averages 

and standard deviations were computed for students who were consistent in all parts 

(“Consistent” in Table 5.15) and students who were not consistent in one or more parts (“Not 

cons.” in Table 5.15). We performed t-tests to compare the performance of students who were 

consistent with the performance of students who were not consistent and found that the students 

who were consistent outperformed the other students in every part. The p values for comparing 

these groups are also very small; three of them are less than 0.001 (for the last three parts) and 

the other is 0.002 (for the first part). The effect sizes (Cohen’s d) also show significant effects; 

three of them are above 1.0 (for the last three parts) and the other is 0.73. (Important note: 
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Cohen’s d is defined as the difference in means of the two groups one compares divided by the 

standard deviation of the population from which the samples were taken. In practice, the standard 

deviation of the population is almost never known and is most commonly estimated by the 

standard deviation of the control/comparison group. For the two groups we compare here, neither 

is a control/comparison group. In this case one can estimate the population standard deviation by 

using a pooled standard deviation based on the two standard deviations of the samples being 

compared. This pooled standard deviation is defined as 𝜎𝑝𝑜𝑜𝑙𝑒𝑑 = �(𝜎12 + 𝜎22)/2 and can be 

used as an estimation of the population standard deviation [83]. This is what was used in this 

case). 

 

Table 5.15. Numbers of students (N), averages and standard deviations in each part where the scores were based on 

expressions of students who were consistent in all parts (“Consistent”) and of  those who were not consistent in one 

or more parts (“Not cons.”). 

 Part (a)(i) Part (a)(ii Part (a)(iii) Part (a)(iv) 

N Avg. St. d. N Avg. St. d. N Avg. St. d. N Avg. St. d. 

Consistent 32 6.3 4.0 32 7.1 3.6 32 5.8 4.2 32 6.4 4.6 

Not cons. 55 3.5 3.9 55 2.9 3.3 55 1.5 3.0 55 2.0 3.7 

 

 

Comparison of the performance of students from different quiz intervention groups on the 

same problem given in the final exam in multiple choice form 

 

As noted earlier, there is no statistically significant difference on the final exam overall between 

the three groups. However, the problem discussed was also given in the final exam in a multiple 

choice format (also, the scaffolding interventions were not implemented). For each region, 
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students were asked to choose an expression for the electric field from a list of four choices or 

provide an expression if what they found for the expression was different from the choices given. 

After finding all four expressions they were asked to select the graph that represented the electric 

field in all regions from a choice of four different graphs. They were also given a fifth choice: 

blank coordinate axes similar to Figure 5.2 onto which they could draw their own graph if none 

of the four graphs given matched how they would plot the electric field. The incorrect graphs 

were based on incorrect expressions the students could choose in the previous multiple choice 

question. The sizes, averages and standard deviations are shown in Table 5.16. (The group sizes 

(N), are less than they were in the quiz because a few students from each group dropped out by 

final exam time). Table 5.16 shows that students in the SL1 group performed better than students 

in the other groups by more than 20% (although the differences are not statistically significant). 

Table 5.16. Numbers of students (N), averages and standard deviations (Std. dev.) for the scores on the final exam 

multiple choice problem for the students in the different groups. 

 N Average Std. dev. 

SL0 30 5.2 2.7 

SL1 29 6.3 3.2 

SL2 29 5.0 2.9 

 

Finally, for the multiple choice problem given in the final exam, we investigated the 

percentages of students who were consistent in all the parts in each group. Results are in Table 

5.17. 

None of the differences in Table 5.17 are statistically significant. However, it is 

interesting to note that the percentages of students who were consistent in all the parts in the no 

scaffolding group (SL0) and Scaffolding Level 2 group (SL2) did not change by much (24% and 
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Table 5.17. Numbers of students (N), percentages (and numbers) of students who were consistent in all the parts in 

the final exam multiple choice problem. 

Final N % (number) 

SL0 30 27% (8) 

SL1 29 45% (13) 

SL2 29 31% (9) 

 

29%, respectively, in the quiz as shown in Table 5.8 and Table 5.14 and 31% and 27%, 

respectively, in the final exam as shown in Table 5.17), whereas the percentage of students from 

the Scaffolding Level 1 group who were consistent in all the parts went from 59% in the quiz 

(see Table 5.8) to 45% in the final exam multiple choice problem (see Table 5.17). 

5.3.2.1 Graduate students’ performance 

One would not expect differences between graduate students who take this quiz that 

include the two different scaffolding levels because graduate students are not very likely to 

require any support in order to perform well on this problem. In order to ensure that graduate 

students are not affected negatively by the second scaffolding intervention as opposed to the first 

(as we found for introductory physics students discussed earlier), SL1 and SL2 versions of the 

problem were also given to a group of 26 first-year graduate physics students enrolled in a TA 

training class. Roughly half (14) of them (GrSL1 – Graduate Scaffolding Level 1) were 

randomly assigned to solve the version of the quiz that included Scaffolding Level 1 and the 

other half (GrSL2 – Graduate Scaffolding Level 2) solved the version of the quiz that included 

Scaffolding Level 2 (as described in Table 5.1). The graduate students were graded in the same 

manner as the introductory students. No statistically significant differences between the scores of 

the two groups of graduate students were found, both in each individual part of the problem and 
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overall. Comparison (t-tests) with the corresponding introductory physics student groups reveals 

that graduate students performed statistically significantly better (both p values are less than 

0.001). Table 5.18 lists the overall scores of the two graduate student groups on the problem. 

 

Table 5.18. Numbers of graduate students (N), averages (Avg.) out of 10 points, and standard deviations (Std. dev.) 

for the scores of different groups of graduate students on the problem. 

 N Avg. Std. dev. 

GrSL1 14 8.5 2.3 

GrSL2 12 8.9 0.8 

 

5.4 QUALITIATIVE RESULTS FROM INDIVIDUAL STUDENT INTERVIEWS 

5.4.1 Qualitative results relevant to the main quantitative finding 

In the quantitative section we discussed that the fact that students in the SL2 group were less 

consistent than students in the SL1 group is surprising because those interventions differ by 

something that was intended to make students in group SL2 better at graphing, not worse. We 

also found it puzzling that students in the SL2 group obtained lower scores than students in the 

SL1 group. It was difficult to come up with a reasonable hypothesis that would explain these 

unexpected findings. Therefore, we conducted in-depth individual interviews using a think-aloud 

protocol with six students in order to obtain a better grasp of what may be hindering their 

(students in the SL2 group) reasoning and to figure out what may be causing their poor 

performance. 
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Interviews provided a possible explanation for students’ poor performance in the SL2 

group. One cognitive framework that can explain this poor performance is cognitive load theory 

[47,48] (short term memory or STM). In this framework problems are solved by processing 

relevant information in the working memory or STM [49-52]. However, working memory has 

been shown to be finite (5-9 “slots”) for any person regardless of their intellectual capabilities 

[53,54]. In order to solve a problem one has to figure out the relevant information that must be 

processed at a given time in order to move forward with a solution. Some of the relevant 

information to solve a problem must be retrieved from long term memory (for example,  relevant 

principles, e.g., Newton’s second law, conservation of energy, physics concepts, mathematical 

information, etc.) Experts generally solve problems by focusing on important features of the 

problem and by retrieving the appropriate information from their long-term memory [55-59], 

which has a well-organized knowledge hierarchy in their domain of expertise. Novices do not 

have a robust knowledge structure and they are more likely to focus on unimportant features of 

the problem and retrieve information that is not necessarily useful [60-63]. Since their 

knowledge chunks are smaller, novices are also more likely to have cognitive overload while 

solving problems if there is too much information to keep track of during problem solving.  

The Scaffolding Level 2 (SL2) group task included the extra instructions (as compared to 

SL1) to find the electric field at the beginning, mid and endpoint of each interval. A cognitive 

task analysis from an expert point of view suggests that these are good things to calculate before 

graphing a function because they give you explicit information about the function which is 

helpful for graphing it. Discussions with the graduate students in the TA training class after they 

had solved the two different versions indicated that they thought these instructions (although 

they did not need them) would definitely be helpful for introductory physics students. However, 
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the interviews suggested that the introductory physics students in the SL2 group for whom the 

additional instructions were included did not discern the relevance of these instructions to 

graphing the function in the next part, and to them, evaluating the function at various points in a 

given interval was just another chore. For example, asking them to calculate E (r → a) in region     

a < r < b implies they had to “find the limit of E as r approaches a from the right” (we will 

henceforth refer to these instructions, i.e. E(r → a), E(r → b), etc. as “limits”). While asking 

introductory students these additional questions before graphing was meant to provide 

scaffolding for graphing the function, interviews suggested that these additional questions may 

have caused cognitive overload since they required additional information processing.  

Interviews suggested that these students were more likely to lose track of important, relevant 

information and sometimes even omitted reading instructions carefully. Every single student 

interviewed who had to evaluate the electric field at three points in each interval before graphing 

it did not read the instructions carefully at one point or another. Some forgot to graph the electric 

field in a particular region, some went straight to evaluating the limits even before finding an 

expression for the electric field in that region. An interesting example of losing track of 

important information comes from an interview with John. In finding the limits of the function in 

regions r < a and a < r < b, John did not plug in the corresponding values for r. For example, he 

wrote E(r → a) = kQ/r2 without plugging r = a into the expression. But then when he got to the 

first limit in region b < r < c (E(r→b)), after writing down an initial expression in which he did 

not plug in r = b,  he  suddenly realized,  without  the  interviewer saying anything, that he 

should plug in r = b. 

 

John: Oh, should I plug in […] ‘cause it’s r approaching b? 
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Researcher: I can’t tell you that. […] What do you think? 

John: I’ll just write it to be safe. 

 

He then went back and changed all the previous limits where he had not plugged in the 

corresponding values for r. Thus, it appears that the piece of information “when you find a limit 

of a function, you have to plug in the value for the variable in that function” was present in his 

long term memory but he did not retrieve it until a particular point. He appeared to be focusing 

on and processing other information in the problem that was not helpful for figuring out the 

limits correctly. As noted earlier, every single student interviewed overlooked something in a 

somewhat similar manner while solving the different parts of the problem and the intended 

scaffolding involving explicit evaluation of the function at three points in each region did not 

help them in transforming the equation for the electric field in a particular region to the graphical 

representation correctly. 

All of the interviewed introductory physics students made some mistakes in finding some 

limits (the most common one was copying down a limit from a previous region without thinking 

about what the expression of the electric field is in the region they were working in – for 

example copying down E(r → b) from region a < r < b for E(r → b) in region b < r < c even 

though the expressions for the electric field in those two regions do not match). After they were 

done with the problem, the students were asked to answer a follow-up question related to limits 

before discussing their solutions to the problem. They were given a piece-wise defined function 

in three different regions and were asked for three limits as follows: 
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Region 1: lim𝑥→𝑎 𝑓(𝑥) 
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Region 2: lim𝑥→𝑎 𝑓(𝑥) 

Region 3: lim𝑥→𝑏 𝑓(𝑥) 

 

Even though students had to apply the same reasoning to determine the limits in the 

electric field problem and none of them managed to find them correctly there for all parts as 

discussed earlier, nearly all students solved this problem correctly without much trouble. One 

student solved it correctly after reasoning about this task for a long time; he did not readily figure 

it out. This is an indication of the difficulty students sometimes have with connecting physics 

and mathematics. The difference in performance on these two problems (one in the physics 

context and one without a physics context) suggests that while students were working on the 

limits in the electric field problem, they may have had difficulty processing the appropriate 

information systematically. This difficulty may partly be due to cognitive overload because they 

were focused on various details of the problem that were not relevant for computing the limits in 

a given region and they did not comprehend that evaluating the function at various points should 

be useful for graphing it. 

 

5.4.2 Qualitative results from interviews relevant to the secondary quantitative results 

Another surprising finding was that students provided with Scaffolding Level 1 exhibited 

improved performance in determining the correct expressions for the electric field in the 

different regions (they were more successful because they were typically outperforming students 

in the other groups in the first four parts of the problem, and the scores on those parts were based 

solely on the accuracy of the expressions). This was surprising because the intervention given to 
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students in this group was intended to help them graph better and not at all aimed towards 

helping them find these expressions. It was also found that students in the SL1 group were more 

consistent, and although this was not surprising because the intervention was intended to make 

them more consistent, we wanted to identify how the intervention was causing their improved 

performance in terms of consistency. Therefore, we conducted another four interviews using a 

think-aloud protocol with students taking a similar second semester calculus-based introductory 

physics class in which we asked them to solve the SL1 version of the quiz. Unfortunately, we 

were unable to identify through these interviews how the intervention impacted them and helped 

them be more successful in finding the correct expressions and be more consistent. However, 

these interviews did provide some valuable insights into some possible reasons for the poor 

performance of students, both in finding expressions and in being consistent. 

One of our findings from these interviews (observed also in some of the six earlier 

interviews where the problem given contained Scaffolding Level 2) was that some students were 

reluctant to think that E = 0 is not an acceptable mathematical expression. In these interviews, 

some students applied Gauss’s law qualitatively correctly (most commonly in region b < r < c) 

which implied that the electric field vanishes, but instead of writing down E = 0 and moving on 

to the next region, they attempted to find a mathematical expression with variables in it (or 

constants from the problem, i.e., a, b, c, Q). Sara’s interview provided one of the clearest 

examples of this because, when she got to region b < r < c, she said: 

 

Sara: In there it should be zero because it’s within a conductor. 

Then, after a short pause: 

Sara: Now, if only I could find an expression for that. 
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Instead of writing down E = 0 she tried to use Gauss’s law mathematically, did so 

incorrectly and obtained 𝐸 = −4𝜋𝑐2 + 4𝜋𝑏2. She then explicitly said: 

 

Sara: The electric field will be equal to negative four pi c squared minus four pi b squared, and  

it will be equal to zero, I just know that. 

 

It was very interesting to observe how some students did not observe the inconsistency of 

trying to find an expression other than E = 0 for a vanishing electric field. Even more interesting 

was the fact that Sara was aware that her expression was not consistent with what she was 

expecting (E = 0) because she said: 

 

Sara: Hmm… that’s not always gonna work out, that four pi c squared and four pi b squared will  

cancel  out in the equation to give zero […] but  I  don’t  have  anything better  in my head  

right now. 

 

In Sara’s case, this reluctance to take E = 0 as an acceptable expression was partly 

influenced by her reluctance to believe her qualitative (conceptual) reasoning using Gauss’s law. 

She was more inclined to trust a result after it followed from a mathematical procedure. This is 

why she wrote 𝐸 = −4𝜋𝑐2 + 4𝜋𝑏2 instead of E = 0 in region b < r < c. She also did something 

similar in the first region, r < a, where she initially used Gauss’s law qualitatively to obtain that 

the electric field was zero. But instead of trusting this result, she tried to solve this part in a 

different, more mathematical way. She incorrectly remembered that E = qF (she was trying to 
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recall the connection between electric field and electric force, namely F = qE) and then noted 

that because the charge is zero, E will be zero. This second approach, although incorrect, was 

more mathematical and Sara trusted the result more now than when she used qualitative 

reasoning. She even made a comment that indicated she was not very sure that the equation she 

remembered, E = qF, was correct, but still trusted this more. She then noted “either way, you get 

zero”, which indicates that she was aware that she solved this part with two different approaches, 

both of which yielded the same result. When these two approaches resulted in different answers, 

she trusted the mathematical result more (as she did in region b < r < c).  When asked about this 

(after the interview) she noted the following: 

 

Sara: Sometimes, I need the conceptual to pull me into the math, but when they don’t line up,  

[…] you just have to go with the math. 

 

These types of reasoning can partly account for the poor performance exhibited by 

students in regions r < a, b < r < c and r > c. At most 60% of students wrote that E = 0 in any of 

these regions (for students in the SL1 group); however, in the SL0 and SL2 groups, the 

percentages were much lower (sometimes as low as 17% for SL2  as shown in Table 5.5; and 

37% for the SL0 group as shown in Table 5.13). 

Interviews also suggested a reason which can partly account for the lack of consistency. 

In particular, when graphing the electric field students sometimes did not trust the results coming 

from the mathematical procedure/approach (i.e. graphing their expressions), and graphed the 

behavior they expected from qualitative reasoning. Sara, for example, in region b < r < c, even 

though her expression was 𝐸 = −4𝜋𝑐2 + 4𝜋𝑏2, graphed a zero electric field because she knew 
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that it was supposed to vanish. Similarly in region a < r < b, her expression was 𝐸 = −4𝜋𝑏2 +

4𝜋𝑎2, but instead of graphing this she said: 

 

Sara: For r between distances a and b […] we dropped off with E being proportional to 1/r2 

 

She then graphed a function that decreases in this way instead of graphing her expression (a 

constant negative function). 

 

Another interviewed student, Joe, had very similar approaches. In region b<r<c, he found 

a non-zero mathematical expression, k|Q||ρ |/r2, (in this formula, ρ refers to volume charge 

density) but when he had to graph it in this region, he said the following: 

 

Joe: There’s gonna be no electric field inside this region because the charges [–Q] are all on 

this [inner] surface. 

 

Even though he was aware that the electric field should vanish (“no electric field inside this 

region”) he trusted the mathematical expression he found and did not modify his expression to    

E = 0. Similarly to Sara, when he graphed the electric field in this region, he also graphed a zero 

electric field instead the expression he found (~1/r2). 

Thus, some students were aware that the electric field vanished in a region (r < a,            

b < r < c or r > c), but they did not believe that E = 0 was an acceptable expression and 

attempted to find “the real” expression by using a mathematical procedure (either using Gauss’s 

law mathematically, or trying to remember a formula that may be applicable). If the attempt 
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resulted in the same answer (E = 0) students would write it down. However, more often 

(especially for regions b < r < c and r > c) the attempts resulted in non-zero mathematical 

expressions which most of the interviewed students trusted despite the fact that they were aware 

at least at some point in the problem solving process that the electric field should vanish in those 

regions. This may be a factor contributing to the poor performance exhibited by students in these 

regions. A few students encountered a similar difficulty in the region which had a non-zero 

electric field (a < r < b) for which the mathematical procedure did not result in the expected 

behavior of the electric field (~1/r2, or constant in the case in which the student considered the 

situation as a spherical capacitor and used contributions both from the inside and the outside and 

thought that as one contribution gets stronger, the other gets weaker, but the sum is constant). 

Being unable to reconcile the two approaches, qualitative and mathematical, students trusted the 

mathematical approach more. As mentioned before, when some students graphed the electric 

field, instead of graphing the corresponding functions obtained from their mathematical 

procedures, they graphed the expected behaviors obtained from qualitative reasoning. This can 

account for the lack of consistency observed. In other words, some students are not inconsistent 

between the expressions they find and the graphs they draw not because they do not know how 

various functions (~r, ~r2, ~1/r, constant etc.) are supposed to be graphed, but because they are 

not graphing those functions. Instead, they are graphing other functions which they did not write 

down, that were obtained through qualitative reasoning. 
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5.5 DISCUSSION AND SUMMARY 

We found that providing calculus-based introductory physics students with additional scaffolding 

(by asking them to evaluate the electric field at the beginning, mid, and endpoint of each 

interval), although intended to help students be more consistent in graphing the electric field, had 

an adverse effect on their performance (both in terms of score and consistency). On the other 

hand, the graduate students in a TA training course who were randomly given the SL1 and SL2 

versions of the problem did not exhibit any statistically significant differences in their 

performance on the two versions. Discussions with graduate students after 14 of them solved the 

SL2 version of the problem indicated that, similar to the researchers, they also thought that these 

additional instructions were good instructions to include when one is asked to sketch the electric 

field. During the discussions, some of the graduate students who were given the SL1 version 

noted that they implicitly calculated the electric field at various points using the functional form 

in order to graph it in the relevant region. On the other hand, conducted think-aloud interviews 

with introductory physics students suggested that they did not discern the relevance of these 

additional instructions in the SL2 version and showed signs of having cognitive overload due to 

the additional instructions while engaged in solving this problem. 

We also found that asking introductory students to graph the electric field in each region 

immediately after finding an expression for it in that region (the SL1 intervention) impacted 

students positively, resulting in better performance in determining the correct expressions for the 

electric field and improved likelihood of being consistent in graphing the expressions they found. 

We hypothesized that giving introductory students coordinate axes with the irrelevant regions 

shaded out may have focused their attention on the relevant information in the problem that must 

be taken into account while finding the expressions for the electric field. Often, introductory 
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students may focus on pieces of information that are not necessarily helpful for solving a 

problem, which can in turn cause cognitive overload due to finite capacity of working memory 

and less chunking of knowledge related to physics for beginning students. Therefore, if students’ 

attention is drawn mostly to the relevant information (as interviews suggested was the case in 

intervention SL1) and they do not have a cognitive overload they would be more effective 

problem solvers. Thus, cognitive load theory is one framework which can partly account for their 

improved performance in terms of finding the correct expressions for the electric field for 

students in intervention SL1. In terms of consistency, asking students to draw the electric field in 

each region immediately after writing an expression for the electric field in that region, and 

shading out the irrelevant regions, was an attempt to help them keep track of information related 

to graphing in a more expert-like manner, which would entail making sense of the different 

functions in the different regions and drawing each of those functions carefully on the graph. It 

appears that more students in the SL1 group, due to their much higher rates of consistency, 

followed an expert-like way of graphing a piece-wise defined function. This may account for 

why these students were more consistent than students in the comparison group. In addition, we 

found that students who were always consistent in plotting the expressions they found were 

outperforming the other students. Both the p values and the effect sizes showed large significant 

differences. 

Another finding was that the percentages of students from the SL2 and comparison 

groups who always drew graphs consistent with the expressions they found did not change from 

the quiz to the final exam (see Tables 5.8, 5.14 and 5.17). This finding may partly be due to the 

fact that in the class, graphing was not emphasized and this type of exercise was not common in 

the quizzes or class examples. Therefore, the performance of these two groups in this respect is a 
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baseline for what students can achieve without instruction. It is interesting that for students in the 

SL1 group, the story is very different. In the quiz, their performance on consistency (see Tables 

5.8 and 5.14) is significantly better than the other two groups. Not only that, but even though the 

quiz was virtually the only time students received some help (via the intervention) with graphing 

the function, in the final exam, although their performance decreased, it did not drop back down 

to the baseline (see Table 5.17). Therefore, it appears that the effects of the intervention have 

stuck somewhat with some of the students for quite some time. It is possible that, while solving 

the quiz problem, these students were learning more about graphing and what they learned was 

more likely to be remembered later because they learned it on their own. One could even go one 

step further and hypothesize that if there had been more problems both in class and recitations 

that dealt with graphing, and more quiz problems with the same intervention, by the end of the 

semester, the performance of students in the SL1 group may have gotten better in the final exam 

compared to the quiz instead of worse. These hypotheses will be investigated in future research. 

Also, think-aloud interviews conducted with students asked to solve the version of the 

quiz containing SL1 (which asked them to graph the electric field in each region immediately 

after finding an expression) provided some reasons for the poor performance of students in terms 

of consistency and finding an expression for the electric field. In particular, we found that some 

students were aware that the electric field is supposed to vanish in a region (either from using 

Gauss’s law qualitatively or from remembering that the electric field is always zero inside a 

conductor) but were reluctant to think that E = 0 is an acceptable expression and tried to find a 

mathematical expression with variables and constants from the problem. While writing down an 

expression, they preferred the mathematical, non-zero expression (despite concluding intuitively 

at the beginning that the electric field should vanish), but while graphing the electric field, they 
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preferred the expression agreeing with the behavior that they expected (E=0). This would lead to 

a lower score because the scores in the first four parts are based on the expressions and lower 

rates of consistency (as well as lower scores on the graphing part), since we investigated how 

consistent students were between the expressions they found and the graphs they drew. 

Another finding from the interviews which corroborates previous research done on 

students’ understanding of electricity and magnetism concepts [64,65] is the inability or 

reluctance of students, even high achieving ones, to use Gauss’s law mathematically. Only one 

out of the ten interviewed students applied Gauss’s law correctly. Students either tried to 

remember a formula derived in class for spherical symmetry or, when they tried to apply Gauss’s 

law for a spherically symmetric charge distribution, they made mistakes, mostly because they 

ended up evaluating an integral that they were not sure how to simplify by symmetry arguments 

(i.e., their integral did not reduce to 𝐸𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒 as it should in this case with a spherically 

symmetric charge distribution). Also, sometimes they applied the boundaries of the region they 

were working in as the lower and upper limits of the integral (i.e., in region a<r<b they used r=a 

as the lower limit and r=b as the upper limit) and evaluated a definite integral by making use of 

those limits instead of choosing a Gaussian sphere with a radius equal to the distance from the 

center of the sphere where the electric field was to be calculated. One instructional implication is 

that Gauss’s law is challenging to apply correctly to calculate the magnitude of the electric field 

for a highly symmetric charge distribution, e.g., spherically symmetric distribution, even for 

high-achieving students. Students should be guided to understand how Gauss’s law simplifies in 

highly symmetric cases if a Gaussian surface is chosen appropriately and symmetry arguments 

are used to infer the direction of the electric field and how this simplification is essential in order 

for it to be useful to find the magnitude of the electric field (in most, if not all cases discussed in 
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a typical introductory physics class). It may be helpful to stress that Gauss’s law is always true 

for electric flux through any closed surface, but rarely helpful to find the magnitude of the 

electric field, and ask students to consider physical situations in which the law is not useful for 

finding the magnitude of electric field because there may be a lack of symmetry, or one cannot 

find a Gaussian surface such that the flux through each part of the surface is either zero or can 

easily be written in terms of the magnitude of the electric field and the area of that part of the 

Gaussian surface. One example of this would be to ask students if Gauss’s law can easily help us 

find the magnitude of electric field inside and outside a configuration of charges equal in 

magnitude and sign placed at the corners of a cube. Despite the apparent symmetry, finding a 

Gaussian surface that can simplify the problem is virtually impossible and if one attempts to use 

the obvious choice (the surface of a cube with a larger side having the same center) the 

requirements of the Gaussian surface in order for it to be useful to find the magnitude of the 

electric field due to the charge distribution are not satisfied. Other approaches to teaching 

Gauss’s law are discussed in [65]. 
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6.0  EXPLORING ONE ASPECT OF PEDAGOGICAL CONTENT KNOWLEDGE OF 

TEACHING ASSISTANTS USING THE TEST OF UNDERSTANDING GRAPHS IN 

KINEMATICS 

6.1 INTRODUCTION 

The Test of Understanding Graphs in Kinematics (TUG-K) [1] is one of many multiple-choice 

tests designed to assess conceptual understanding in introductory physics [2-11]. Some of these 

tests, e.g., the Force Concept Inventory [3], have been widely used by instructors and education 

researchers for various purposes, for example, to identify student difficulties [2,12], to compare 

the effectiveness of curricula and pedagogies [13], and to investigate gender differences [14,15]. 

The TUG-K was developed by Beichner to assess students’ understanding of kinematics graphs 

after early physics education research which revealed that introductory physics students have 

many difficulties with constructing and interpreting graphs in kinematics [1,16-24]. Helping 

introductory physics students become facile with different representations of concepts is a 

critical component of the development of expertise in physics. Facility with graphical 

representations is particularly important and thus, graphical representation have been emphasized 

extensively in research-based instructional tools, e.g., in multimedia learning modules [25-27]. 

The TUG-K was developed by taking the common difficulties of introductory students in 

interpreting graphs, revealed by research, into consideration and many items on the test include 
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strong distractor choices which uncover that some difficulties are very common. Beichner 

subjected the test to much statistical analysis (including calculation of KR-20, point biserial 

coefficients, Ferguson’s delta and others) to ensure that it is a reliable instrument for assessing 

understanding of kinematics graphs. In addition, in the construction phase of the test, he asked 

many educators at different institutions for feedback on the items on the test in order to ensure 

content validity. 

There are several theoretical frameworks that inspire our research and focus on the 

importance of instructors familiarizing themselves with students' prior knowledge (including 

what students learn from traditional instruction) in order to scaffold their learning with 

appropriate curricula and pedagogies. In the context of this study, they point to the importance of 

being knowledgeable about student difficulties in order to help students learn better. For 

example, Piaget [28] emphasized “optimal mismatch” between what the student knows and 

where the instruction should be targeted in order for desired assimilation and accommodation of 

knowledge to occur. A related framework is Posner et al.’s theory of conceptual change [29]. In 

this model, they suggest that conceptual changes or “accommodations” can occur when the 

existing concepts students have are not sufficient for or inconsistent with new phenomena. They 

also suggest that these accommodations can be very difficult for students, particularly when 

students are firmly committed to their prior understanding. This model suggests that it is 

important for instructors to be knowledgeable about student ideas, which, when applied to 

particular physics contexts can lead to difficulties. Within this model, if students are motivated 

by an anomaly which provides a cognitive conflict that illustrates how their conceptions are 

inadequate for explaining a newly encountered physical situation, they can become dissatisfied 

with their current concepts and improve their understanding. But instructors must be aware of 



 178 

what conceptions students have, and what difficulties these conceptions can lead to in order to 

design a task that produces the desired cognitive conflict. 

The research presented here uses the TUG-K (along with the original student data in Ref. 

[1]) to explore one aspect of the pedagogical content knowledge of first-year graduate students, 

namely, knowledge of common introductory student difficulties. The graduate students were 

enrolled in a semester long TA training course at the University of Pittsburgh (Pitt). Towards the 

end of the semester, the graduate students performed a task which used the TUG-K survey to 

investigate how knowledgeable the graduate students are about common student difficulties 

related to graphical representations of motion. For each item on the TUG-K, the graduate 

students were asked to identify which one of the four incorrect answer choices was, in their view, 

the most common incorrect answer choice of introductory physics students if they did not know 

the correct answer after instruction in relevant content. The graduate students first carried out 

this task individually followed by repeating the task in groups of two or three. A class discussion 

related to their responses followed these exercises. 

Pedagogical content knowledge (PCK) is a term coined by Shulman [30,31] to mean the 

subject matter knowledge for teaching and many researchers in K-16 education have used this 

construct [32-36]. Shulman defines PCK as “a form of practical knowledge which guides the 

pedagogical practices of educators in highly contextualized settings” [30]. According to 

Shulman, PCK is comprised of the most useful forms of representations of the topics and 

concepts, powerful analogies, illustrations and examples, and “understanding of what makes the 

learning of specific topics easy or difficult” [30]. Therefore, knowledge of student difficulties is 

an important aspect of PCK and the research presented here was designed to explore this aspect 

of the PCK of graduate students: knowledge of common introductory student difficulties with 
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kinematics graphs identified by the TUG-K. We refer to this as the “TUG-K related PCK” of 

graduate students. The graduate students who teach recitations for introductory physics courses 

typically have a closer association with introductory students than the course instructors because 

they hold regular office hours and interact with introductory students in the physics resource 

room at Pitt where they help introductory students. In addition, recitation sizes are usually much 

smaller than the sizes of lecture classes taught by instructors. Therefore, TAs who are 

knowledgeable about introductory student difficulties in interpreting kinematics graphs can play 

a significant role in improving introductory student understanding of kinematics and they can 

address these difficulties directly in their interactions with students. Of course, it is also 

important for instructors to be knowledgeable of student difficulties in order to design instruction 

to effectively address and remedy these difficulties. 

 

Research questions: Performance of graduate students at identifying introductory physics 

students’ difficulties related to kinematics graphs on the TUG-K 

 

The following research questions were developed for the purpose of investigating the TUG-K 

related PCK of graduate students: 

 

I. To what extent are American physics graduate students, who have been exposed to 

undergraduate teaching in the United States, better at identifying introductory student 

difficulties than foreign physics graduate students? 

Graduate programs across the United States are populated by many foreign graduate students. 

According to recent AIP statistics, almost half of the first-year physics graduate students in US 
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universities are non-US citizens [37], and more than half of the awarded physics PhDs are to 

non-US citizens [38]. A majority of physics departments in the United States require that 

graduate students become TAs for undergraduate courses at least for one or two semesters. Since 

the influence of foreign graduate students in physics undergraduate education is becoming 

commensurate (at least in terms of numbers of TAs) with that of American graduate students, it 

is worthwhile comparing the knowledge that these two different groups of graduate students 

have regarding introductory student difficulties with physics. The educational backgrounds of 

these two groups of graduate students are very different and it is unclear whether these 

backgrounds have a significant effect on developing an understanding of the difficulties of 

introductory physics students with physics content, in particular, with kinematics graphs for our 

research presented here. 

 

II. To what extent do graduate students identify introductory students’ difficulties more 

often when working in groups than when working individually (i.e., do discussions improve 

graduate students’ understanding of introductory students’ difficulties with kinematic 

graphs?) 

Peer discussions have been found to be productive in the context of learning physics [12,39]. It is 

useful to investigate if discussions with peers are also productive in the context of learning about 

student difficulties related to kinematics concepts. 

 

III. To what extent do graduate students identify ‘major’ introductory student difficulties 

compared to ‘moderate’ ones? (Major and moderate difficulties are defined later.) 

Research in physics education has shown that introductory students encounter many common 
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difficulties in learning physics that must be taken into account in the design of curricula and 

pedagogies  to help students build good mental models. These difficulties are of varying degrees, 

and while one may assume that the more common difficulties are easier to identify, this may not 

be true. In particular, in a particular content area, cognitive task analysis of the underlying 

knowledge from the expert perspective can fail to identify common difficulties that are actually 

found via research. Therefore, in the context of difficulties with kinematics graphs, we 

investigated to what extent the major difficulties of introductory students were identified by 

graduate students compared to the moderate ones. 

 

IV. To what extent do graduate students identify specific introductory student difficulties 

with kinematic graphs? Is their ability to identify these difficulties context dependent? (A 

particular graphical concept is probed in different contexts in different questions on TUG-

K) 

The TUG-K reveals several different types of student difficulties with kinematics graphs which 

are identified by student responses to several questions. We investigated the extent to which 

graduate students are able to identify specific difficulties of introductory students. Physics 

education research has shown that introductory student performance is context dependent, i.e., 

correct application of physics concepts depends on the contexts of the questions posed. Here, we 

investigate whether the ability of graduate students to identify common introductory student 

difficulties is also context dependent. 

For multiple choice questions, the context is comprised of both the physical situation 

presented in the problem and the answer choices because different answer choices can change 

the difficulty of a question. For example, a multiple-choice question is easier for introductory 
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students if the incorrect answer choices are not chosen to reflect common student difficulties, 

and are challenging for students when they are chosen to reflect common difficulties [2-3]. For 

the TUG-K, our use of the term context refers to the type of graph presented (position, velocity, 

acceleration), the type of task (conceptual vs. quantitative) and the answer choices. A conceptual 

and a quantitative question posed with the same type of graph provide different contexts (for 

example, items 2 and 6 on the TUG-K). Similarly, two quantitative questions with the same type 

of graph provide different contexts if their answer choices do not reflect the same type of student 

difficulties (for example, items 6 and 7 on the TUG-K: item 6 provides an answer choice which 

corresponds to the student difficulty related to computing slopes by calculating y/x instead of  Δ𝑦
Δ𝑥

, 

but item 7 does not use this type of answer choice). 

6.2 METHODOLOGY 

6.2.1 Materials and Participants 

The materials used for this study were the TUG-K survey developed by Beichner along with the 

data in Beichner’s original paper [1], which was collected from more than 500 college and high-

school students. 

The participants of this study were twenty-five first-year physics graduate students 

enrolled in a TA training class in their first semester in graduate school. The TA training class is 

a pedagogy oriented semester long course which is required of all first-year graduate students at 

Pitt. The course meets once a week for two hours and is designed to help graduate students be 

more effective teachers. During the course, students learn about cognitive research and physics 
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education research (PER) and discuss their instructional implications. Students are also 

introduced to curricula and pedagogies based on physics education research which stress the 

importance of being knowledgeable about introductory students’ difficulties in order to help 

them transition toward expertise. Each graduate student also discusses the solution of a physics 

problem in the class in the manner in which they would discuss it if they were teaching 

introductory students and they receive feedback from the other graduate students and the 

instructor. Also, during the course, students complete various reflective exercises aimed at 

helping them perform their TA duties in a student-centered manner. 

All but three of the graduate students who participated in this study were teaching 

introductory physics recitations or labs for the first time. Two of the three who were not teaching 

had physics teaching experience as undergraduates, either as a teaching assistant or as a tutor for 

introductory physics courses. Only one student did not have teaching experience with physics, 

but this student tutored mathematics as an undergraduate. Also, in the TA training course 

introductory student difficulties were discussed, however, not in the specific context of 

interpreting kinematics graphs (until after students completed all tasks related to the TUG-K as 

described below). 

6.2.2 Methods 

Toward the end of the TA training class (so that a majority of graduate students had almost a 

semester worth of teaching experience), the graduate students were asked to complete three 

different tasks related to the TUG-K: (1) while working individually, they were asked to identify 

the correct answers for each question; (2) while working individually, for each question on the 

TUG-K, they were asked to identify which one of the four incorrect answer choices, in their 
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view, would be most commonly selected by introductory physics students after instruction in 

relevant concepts if the introductory students did not know the correct answers and (3) they 

repeated the second task, except working in groups of two or three. The graduate students 

performed task (1) first, then task (2) and finally task (3) followed by a class discussion during a 

two hour TA training class. We refer to tasks (2) and (3) as individual and group TUG-K related 

PCK tasks. The graduate students were allowed as much time as they needed for each task. All 

graduate students finished the first task within the first 30 minutes and the second task within the 

first hour. The third task (group work) was completed by all groups within 40 minutes followed 

by a full class discussion about the PCK task.  

In order to investigate the TUG-K related PCK of graduate students, scores were assigned 

to each graduate student as follows: a graduate student who selected a particular answer choice 

in a particular question received a score which was the fraction of introductory students who 

selected that particular answer choice. If a graduate student selected the correct answer choice, 

they would be assigned a score of zero because they were explicitly asked to indicate which 

incorrect answer choice is most commonly selected by introductory students. For example, on 

question 1, the percentages of introductory students who selected A, B, C, D and E are 40%, 

16%, 4%, 22% and 17% respectively (see Table A1 in appendix A). Answer choice B is correct, 

thus, the score assigned for each answer choice on question 1 was 0.4, 0, 0.04, 0.22 and 0.17 (A, 

B, C, D and E). The score a graduate student would obtain on this PCK task for the whole test 

can be obtained by summing over all of the questions. A mathematical description of how this 

calculation was performed is included in the appendix. 

In order to determine whether the graduate students performed better than random 

guessing on the TUG-K related PCK task, a population of random guessers was generated. The 
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population was generated by choosing N = 24 ‘random guessers’ in order to have a reasonable 

group size when performing t-tests [40]. Random guessing on this task would correspond to 

selecting one of the four incorrect answer choices for each question with equal probability 

(25%). Therefore, one quarter of the random guessers always selected the first incorrect answer 

choice, one quarter selected the second incorrect answer choice, etc. Since the graduate students 

were not told the correct answers before they performed the TUG-K related PCK task, random 

guessing would not perfectly correspond to selecting one of the four incorrect answer choices 

with equal probability. For a particular question, there is a small probability that a graduate 

student does not know the correct answer. However, our data indicate that this probability is very 

small because in all but two questions, at least 24 out of 25 graduate students knew the correct 

answers. In the other two questions, 23 out of 25 and 22 out of 25 of the graduate students knew 

the correct answers (see table A1 in appendix A). Moreover, since for a given question, one 

quarter of the random guessers selected each of the four incorrect answer choices, one can 

calculate a mean and a standard deviation that can be used to perform comparison with the 

graduate student scores. Furthermore, our choice of random guessers maximizes the standard 

deviation.   

We note that our approach to determine the TUG-K related PCK score of graduate 

students weighs the responses of graduate students by the percentage of introductory students 

who selected a particular incorrect response. This weighing scheme was chosen because the 

more prevalent an introductory student difficulty is, the more important it is for the graduate 

students to be aware of it and take it into account in their instruction. 
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6.2.3 Approach for answering the research questions 

Performance of graduate students at identifying introductory physics students’ difficulties 

related to kinematics graphs on the TUG-K 

 

The researchers analyzed whether graduate students performed better at identifying introductory 

students’ difficulties on the TUG-K than random guessing by performing statistical analysis. 

 

I. To what extent are American physics graduate students, who have been exposed to 

undergraduate teaching in the United States, better at identifying introductory student 

difficulties than foreign physics graduate students? 

 

Out of the twenty-five first year graduate students who participated in this study, nine were 

American, nine were Chinese and seven were from other foreign countries (Asia and Europe). 

The PCK scores of three groups of graduate students were compared (American, Chinese and 

other foreign students). The reason we divided the graduate students into three groups is because 

the American graduate students were exposed to teaching in the United States as opposed to the 

foreign students, who were not exposed to US teaching practices before graduate school and 

many were taught physics in their own native languages. The nine Chinese graduate students 

were placed in a separate group because, although they fit the category of foreign graduate 

students, it is possible that their backgrounds are different from the backgrounds of most of the 

other foreign graduate students. 
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II. To what extent do graduate students identify introductory students’ difficulties more 

often when working in groups than when working individually? (i.e., do discussions 

improve graduate students’ understanding of introductory students’ difficulties with 

kinematic graphs?) 

 

Previous studies have found that introductory students exhibit improved performance and 

conceptual understanding after engaging in discussions with one another [12,39]. We 

investigated whether discussions among graduate students related to introductory student 

difficulties improve their PCK performance related to kinematics graphs. Since the graduate 

students first performed the TUG-K related PCK task individually and then in groups, we 

investigated if their PCK performance increased in the group exercise compared to the individual 

exercise. In addition, we investigated whether the discussions shifted graduate students’ 

selections towards more common introductory student incorrect answer choices. In particular, we 

identified how often two or three graduate students who worked together in the group TUG-K 

related PCK task, when completing the individual task, did not select the same answer as the 

most common difficulty with that question and when completing the group task, selected an 

answer choice which was connected to a more common (by 5% or more) introductory student 

difficulty. 

 

III. To what extent do graduate students identify ‘major’ introductory student difficulties 

compared to ‘moderate’ ones? 

Most of the questions on the TUG-K have strong distractor choices that are selected by many 

introductory students even after instruction. The researchers selected a heuristic such that an 



 188 

incorrect answer choice was connected to a ‘major’ student difficulty if more than 33% (or 1/3) 

of introductory students selected that answer choice. An incorrect answer choice was considered 

to be connected to a ‘moderate’ difficulty if between 20% and 33% of the introductory students 

selected that answer choice. In order to answer this research question, the average TUG-K 

related PCK scores of graduate students on questions that had major difficulties were compared 

to the average scores on questions that had moderate difficulties. However, for each question, the 

minimum and maximum possible scores are different because they correspond to the smallest 

and largest fraction of introductory students who select a particular incorrect answer choice. 

Therefore, for each question, the average score of graduate students was normalized to be on a 

scale from zero to a maximum possible score of 100 in order to make a comparison between 

different questions (see Table A2). This was done for each question in the following manner: 

grad student normalized score = 100 * (grad student average PCK score – minimum possible 

score) / (maximum possible score – minimum possible score). The normalized graduate student 

score on a particular question on the TUG-K is then zero if they obtained the minimum possible 

score and 100 if they obtained the maximum possible score. 

 

 

IV. To what extent do graduate students identify specific introductory student difficulties 

with kinematic graphs? Is their ability to identify these difficulties context dependent? 

 

This question was answered by identifying common introductory student difficulties on different 

questions and analyzing graduate students’ PCK performance in identifying these common 

difficulties in different contexts. 
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6.3 RESULTS 

Analysis of the PCK performance of the graduate students was performed on each of the 

questions on the TUG-K which revealed a moderate or major introductory student difficulty and 

it is shown in Tables A1 and A2 (included in Appendix A). Table A1 shows the percentages of 

introductory physics students and graduate students who selected each answer choice in each 

question on the TUG-K. The introductory students were asked to identify the correct answers, 

and the graduate students were asked to identify the incorrect answers which, in their view, were 

most common among introductory students for each question after instruction in relevant 

concepts. In Table A1, correct answers are indicated by the green shading, major introductory 

student difficulties (incorrect answer choices selected by more than 33% of the introductory 

students) are indicated by red shading and moderate difficulties are shown in red font. In 

addition, the second column (>RG) indicates whether the graduate students performed better 

than random guessing on each question (Yes/No). 

Table A2 shows the normalized average TUG-K related PCK score (on a scale from 0 to 

100) for the graduate students on each question that had moderate or major difficulties. The 

TUG-K related PCK performance of the graduate students on a given question was considered 

‘good’ (and shaded green) if their normalized average PCK score is 67% or more of the 

maximum possible score, ‘moderate’ (and shaded yellow) if their normalized average PCK score 

is between 50% and 67% of the maximum possible score and ‘poor’ (shaded red) if their 

normalized average PCK score is less than 50% of the maximum possible score. These cutoffs 

were selected based on the normalized scores of the graduate students. The scores were put in 

order from smallest to largest and the bottom 1/3 of the scores correspond to poor performance, 

the middle 1/3 correspond to moderate performance and the top 1/3 of the scores correspond to 
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good performance. Moreover, in Table A2, for questions that had moderate difficulties, the 

question numbers are in red font and for questions that had major difficulties, the question 

numbers are shaded red. 

 

I. To what extent are American physics graduate students, who have been exposed to 

undergraduate teaching in the United States, better at identifying introductory student 

difficulties than foreign physics graduate students? 

In order to answer this question, we compared the average PCK scores of different subgroups of 

graduate students. As noted earlier, the maximum PCK score on this task for any given question 

that a graduate student could obtain is the largest percentage of introductory students who 

selected a particular incorrect answer choice. The maximum PCK score on this task for the 

whole test is the sum of all these percentages which turns out to be 6.70. 

 

Table 6.1. Numbers of American/Chinese/Other foreign graduate students, their averages (and percentage of those 

averages out of the maximum PCK score) and standard deviations (Std. dev.) for the PCK scores obtained for 

determining introductory student difficulties on the TUG-K out of a maximum PCK score of 6.70. 

   N  Average  Std. dev. 

 American  9  4.00 (60%)  0.54 

 Chinese  9  4.24 (63%)  0.55 

 Other foreign  7  4.46 (66%)  0.59 

 

Table 6.1 shows the averages and standard deviations of the PCK scores of the three different 

groups of graduate students. The group sizes are too small for meaningful statistics to be 

extracted from the data. However, it appears that the averages of the American, Chinese and 

Other foreign graduate students (60%, 63% and 66% of the maximum PCK score, 6.70, 
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respectively) are comparable. Therefore, it appears that American graduate students do not 

perform better at identifying introductory student difficulties (in fact, their average performance 

was somewhat lower than the performance of the foreign graduate students). 

 

II. To what extent do graduate students identify introductory students’ difficulties more 

often when working in groups than when working individually? (i.e., do discussions 

improve graduate students’ understanding of introductory student difficulties with 

kinematics graphs?) 

 

1) Graduate student TUG-K related PCK performance is significantly better when they 

worked in groups compared to when they worked individually. 

Table 6.2 shows that the performance of graduate students when they worked in groups was 

better than when they worked individually. A t-test indicates that the difference in performance 

is statistically significant (p=0.033). In addition, calculation of Cohen’s d [40] gives a reasonable 

effect size of 0.78. 

 

Table 6.2. Number of graduate students/groups, averages (and percentage of those averages out of the maximum 

PCK score) and standard deviations for the PCK scores obtained for identifying the most common introductory 

student difficulties on the TUG-K out of a maximum PCK score of 6.70. 

Individual N Average Std. dev 

25 4.21 (63%) 0.57 

Group N Avg. Std. dev 

12 4.67 (70%) 0.59 
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2) Discussions among graduate students tend to converge on a more common introductory 

student difficulty. 

We investigated how often graduate students who selected different answers in the individual 

TUG-K related PCK task, while working in groups, selected a ‘better’ answer (i.e., an incorrect 

answer choice which was connected to a more common, by 5% or more, introductory student 

difficulty). There were 74 instances in which two or three graduate students who did not all 

select the same answer in the individual TUG-K related PCK task (while identifying common 

introductory student difficulties) converged to one answer. In 45 of those instances (61%), they 

selected an incorrect answer which was more common (by 5% or more) among introductory 

students who did not know the correct answer. It therefore appears that discussions among 

graduate students were productive and led to a better understanding of introductory student 

difficulties related to kinematics graphs. 

 

III. To what extent do graduate students identify ‘major’ student difficulties compared to 

‘moderate’ ones?  

 

As mentioned earlier, ‘moderate’ difficulties were considered to be connected to incorrect 

answer choices selected by between 20% and 33% of introductory students, while ‘major’ 

difficulties were those had by more than 33% of introductory students. There are 17 questions on 

the TUG-K which fit at least one of these two criteria (see Table A1 or A2 in Appendix A), eight 

of which have major introductory student difficulties and nine of which have moderate 

difficulties. Table A2 shows that the four questions on the TUG-K with the lowest graduate 

student PCK performance (questions 6, 8, 9 and 17) all contain a major introductory student 
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difficulty. Moreover, the average PCK score of graduate students on the questions that had major 

difficulties is 48% compared to 61% on the questions that had moderate difficulties. It appears 

that the average graduate student TUG-K related PCK performance is better by 13% on 

questions with moderate introductory student difficulties than on questions with major ones. In 

other words, overall, graduate students identified moderate difficulties better than major ones. 

 

IV. To what extent do graduate students identify specific introductory student difficulties? 

Is their ability to identify these difficulties context dependent? 

 

These questions was answered by identifying common introductory student difficulties along 

with the questions in which these difficulties occurred and analyzing the graduate student TUG-

K related PCK performance on those questions. Whenever a particular difficulty occurred in 

more than one question, it was investigated whether the PCK performance of graduate students 

was context dependent in that it was significantly different on different questions which had 

different contexts. We note that any interpretation of student difficulties presented here is taken 

from the original TUG-K paper. The focus of this research is not to discuss these difficulties, but 

to discuss the performance of the graduate students in identifying them. 

 

Very few graduate students identified the common introductory student difficulty that 

graphs of time dependence of different kinematics variables that correspond to the same 

motion should look the same. 
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Table 6.3. Introductory student difficulty that graphs of time dependence of different kinematics variables that 

correspond to the same motion should look the same, items on the TUG-K which uncover this difficulty (TUG-K 

item #), percentage of introductory students who answer the items incorrectly (% overall incorrect), incorrect answer 

choices which uncover this difficulty, percentage of introductory students who have this difficulty based on their 

selection of these answer choices (% intro. stud. diff.) and percentage of graduate students who select these answer 

choices as the most common incorrect answer choices of introductory students (GS %). For convenience, short 

descriptions of the questions are given underneath. 

 Introductory student difficulty  TUG-K 
item # 

 % 
overall 
incorrect 

 Incorrect 
answer 
choices 

 % intro  
 stud. diff 

 GS % 

 Graphs of time dependence of 
different kinematics variables that 
correspond to the same motion 
should look the same 

 11  64%  A  28%  8% 
 14  52%  A  25%  16% 
 15  71%  B  24%  8% 

 11. Given a displacement-time graph, identify the velocity vs. time graph that represents the 
same motion. 

 14. Given a velocity-time graph, identify the acceleration vs. time graph that represents the same 
motion. 

 15. Given an acceleration-time graph, identify the velocity vs. time graph that represents the 
same motion. 
 

As mentioned by Beichner in Ref. [1], the common difficulty of students in distinguishing 

between different kinematics variables is evidenced by the fact that some students claimed that 

the time dependence of different kinematics variables that correspond to the same motion should 

look the same. Table 6.3 shows that this difficulty was identified by very few graduate students 

on each of the three questions in which it occurs. The answer choices which uncover this 

difficulty (choice A for questions 11 and 14, and choice B for question 15) were selected by 

roughly 25% of introductory students; however, these answer choices were rarely selected by 

graduate students in the PCK task (see Table 6.3). The highest percentage of graduate students 

who selected any of these three incorrect answer choices was 16% on question 14. Beichner 

noted in Ref. [1] that these three questions are the ones with the highest discrimination indices 
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(introductory physics students who answered these questions correctly performed well on the 

whole test), and he argued that this could be interpreted to mean that this difficulty is the one 

most critical to address to improve introductory students’ understanding of kinematic graphs. 

However, our analysis suggests that graduate students are largely unaware that this difficulty 

exists and they are therefore unlikely to address it directly while performing their teaching duties 

as TAs. Many graduate students expressed astonishment in the discussions that followed the task 

that introductory physics students would have these difficulties. 

 
 

The introductory students’ difficulty that determining slopes does not require examining 

initial conditions was identified by very few graduate students, while other difficulties 

related to determining slopes were identified by more graduate students. 

 

Table 6.4 shows that both questions 6 and 17 had incorrect answer choices selected by 46% of 

introductory students but identified by few graduate students. Again, discussions with the 

graduate students after they carried out the TUG-K related PCK task suggest that many of them 

were very surprised that introductory students would often not examine initial conditions when 

determining slopes (i.e., they computed the slope as y/x instead of Δy/Δx). The graduate students 

were more likely to think that the most common introductory student difficulty is to ignore the 

kinematics variables (axes) and read-off the corresponding ordinate value for a given abscissa 

value rather than compute the slope, i.e., slope-height confusion (incorrect answer choices E in 

both questions 6 and 17, selected by 36% and 44% of graduate students in this TUG-K related 

PCK task, but only 16% and 19% of introductory physics students as shown in Table A1). The 

performance of graduate students on 
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Table 6.4. Introductory student difficulties related to determining slopes, items on the TUG-K which uncover these 

difficulties (TUG-K item #), percentage of introductory students who answer the items incorrectly (% overall 

incorrect), incorrect answer choices which uncover these difficulties, percentage of introductory students who have 

these difficulties based on their selection of these answer choices (Intro stud. diff.) and percentage of graduate 

students who select these answer choices as the most common incorrect answer choices of introductory students (GS 

%). For convenience, short descriptions of the questions are given underneath. 

 Introductory student difficulty  TUG-K 
item # 

 % overall 
incorrect 

 Incorrect 
answer 
choices 

 % intro 
 stud. 

diff. 

 GS % 

 Determining slopes does not require 
examining initial conditions 

 6  74%  A  46%  20% 
 17  79%  B  46%  16% 

 Slope-height confusion in Ref. [1] (i.e., 
reading off the value from the vertical 
axis instead of computing the slope 
appropriately) 

 2  37%  C  24%  52% 

 7  69%  D  28%  36% 

 Not taking into account the scales of the x 
and y axes when determining slope (i.e. 
slope = 2 units/1unit = 2m/s rather than 
2*5m/1*10s = 1m/s) on question 7 

 7  69%  B  20%  28% 

 2. Given velocity-time graph, identify at which point/interval the acceleration is most negative. 
 6. Given a velocity-time graph, identify the acceleration at a particular time (must determine the slope 

of a straight line which does not go through the origin). 
 7. Given a velocity-time graph, identify the acceleration at a particular time (must estimate the slope of 

a straight line which does not pass through the origin). 
 17. Given displacement-time graph, identify the velocity at a particular time (must determine the slope 

of a straight line which does not go through the origin). 
 

the other two questions related to slopes in which there were common introductory student 

difficulties is better; however, there is room for improvement even in those contexts. On question 

2, 52% of graduate students identified the common difficulty of 37% of introductory students of 

confusing slope with height (see Table 6.4). On question 7, there were two common difficulties: 

the slope-height confusion (difficulty of 28% of introductory students, identified by 36% of 

graduate students as shown in Table 6.4) and not taking into account the scale of the x and y axes 
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when determining the slope (difficulty of 20% of introductory students, identified by 28% of 

graduate students as shown in Table 6.4). 

 

The performance of graduate students in identifying common introductory student 

difficulties related to determining areas under curves (including area-slope and area-height 

confusion in Ref. [1]) is context dependent. 

Table 6.5. Introductory student difficulties related to determining areas under curves, items on the TUG-K 

which uncover these difficulties (TUG-K item #), percentage of introductory students who answer the items 

incorrectly (% overall incorrect), incorrect answer choices which uncover these difficulties, percentage of 

introductory students who have these difficulties based on their selection of these answer choices (% intro. stud. 

diff.) and percentage of graduate students who select these answer choices as the most common incorrect answer 

choices of introductory students (GS %). For convenience, short descriptions of the questions are given underneath. 

 Introductory student difficulty  TUG-K 
item # 

 % overall 
incorrect 

 Incorrect 
answer 
choices 

 % intro 
 stud. 

diff. 

 GS % 

 Area-slope and/or area-height confusion  1  84%  A, D  63%  96% 
 4  72%  C  23%  40% 
 10  70%  C  62%  56% 
 16  78%  B, C  70%  84% 
 18  54%  C  32%  58% 

 Finding area by multiplying y*x (i.e. 
distance traveled by an object until 
point (3m/s, 2s) is 6m 

 4  72%  E  32%  44% 

 1. Given 5 acceleration vs. time graphs, identify the graph in which the object has the greatest 
change in velocity during the time interval. 

 4. Given a linearly increasing velocity vs. time graph, identify the distance covered in the first few 
seconds. 

 10. Given 5 acceleration vs. time graphs, identify the graph in which the object has the smallest 
change in velocity during the time interval. 

 16. Given a linearly increasing acceleration vs. time graph, identify the object’s change in velocity 
in the first few seconds. 

 18. Given a linearly increasing velocity vs. time graph, describe how you would find the distance 
covered in the first few seconds (read off y value, find the area under line segment, find the slope 
etc.) 
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There are five questions on the TUG-K (items 1, 4, 10, 16 and 18) which require students to 

determine the area under a particular graph and which reveal major or moderate introductory 

student difficulties. Table 6.5 shows that the performance of graduate students in identifying 

these difficulties is context dependent. On questions 1, 4 and 16 the vast majority of graduate 

students identified these difficulties (96%, 84% and 84% in questions 1, 4 and 16 respectively as 

shown in Table 6.5), however, on questions 10 and 18, fewer graduate students identified the 

area-slope confusion of introductory students. This is interesting because questions 1 and 10 are 

posed in similar contexts: the five graphs of acceleration vs. time are almost identical; the most 

salient difference is that question 1 asks for the greatest change in velocity, whereas question 16 

asks for the smallest change in velocity. Although on question 1, graduate students 

overwhelmingly selected answer choices A and D which correspond to graphs which have the 

highest slopes, on question 10, only 52% of them identified the most common introductory 

student difficulty and 28% of them selected an answer choice (D) which was selected by only 

3% of introductory students (see Table A1). On question 18, 58% of graduate students identified 

the common area-slope confusion of 32% of introductory students (see Table 6.5). Based upon 

these variations, it appears that the PCK performance of graduate students in identifying the 

area-slope and area-height confusion of introductory students is context dependent. 
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Many introductory students match the verbal description of a motion with a graph 

superficially, without regard for the axes: this difficulty was identified by graduate 

students in the context of straight-line graphs, but not in the context of more complex 

graphs. 

 

Table 6.6. Introductory student difficulty related to interpreting straight-line and more complex graphs, items on the 

TUG-K which uncover this difficulty (TUG-K item #), percentage of introductory students who answer the items 

incorrectly (% overall incorrect), incorrect answer choices which uncover this difficulty, percentage of introductory 

students who have this difficulty based on their selection of these answer choices (% intro. stud. diff.) and 

percentage of graduate students who select these answer choices as the most common incorrect answer choices of 

introductory students (GS %). For convenience, short descriptions of the questions are given underneath. 

 Introductory student difficulty  TUG-K 
item # 

 % 
overall 
incorrect 

 Incorrect 
answer 
choices 

 % intro.  
 stud. 

diff. 

 GS % 

 Matching verbal description 
superficially with graph without 
regard for the axes in straight-line 
graphs 

 3  38%  C  20%  72% 

 21  82%  B  73%  79% 

 Matching verbal description 
superficially with graph without 
regard for the axes in more complex 
graphs 

 8  63%  C  37%  8% 

 9  76%  B  57%  28% 

 3. Given linearly increasing distance-time graph, select correct verbal description. 
 8. Given multi-part distance-time graph, select correct verbal description. 
 9. Given multi-part verbal description of motion (constant positive acceleration for some time, 

constant velocity after), select correct graph of position vs. time. 
 21. Given linearly decreasing velocity-time graph, select correct verbal description. 

 

Questions 3 and 21 both ask students to interpret a straight-line graph. In question 3, the graph is 

of position vs. time (positive slope), and in question 21 the graph is of velocity vs. time (negative 

slope). On both of these questions, the most common introductory student selection essentially 

ignores the kinematic variable on the vertical axis and these students are matching the verbal 



 200 

description of a motion with a graph superficially, without regard for the vertical axis. On 

question 3, 20% of introductory students claimed that the graph represents an object moving with 

uniformly increasing velocity (which would be true if the vertical axis represented velocity 

instead of position) and on question 21, 73% of introductory students claimed that the graph 

represents an object moving with a uniformly decreasing acceleration (which would be true if the 

vertical axis represented acceleration instead of velocity). On both of these questions, the 

majority of graduate students identified this difficulty (72% and 79% in questions 3 and 21, 

respectively, as shown in Table 6.6). It is interesting that the performance of introductory 

students in interpreting graphs is vastly superior in the context of a position vs. time graph than 

in the context of a velocity vs. time graph (38% incorrect in question 3, compared to 82% 

incorrect in question 21 as shown in Table 6.6). This implies that introductory students find the 

concept of acceleration more difficult than the concept of velocity. 

The fact that introductory students have greater difficulty in the context of acceleration 

than velocity is also supported by an examination of questions 12 and 19. The five graphs 

displayed in both of these questions are identical; however, question 12 asks them to identify the 

graphs that represent constant velocity and question 19 asks them to identify the graphs that 

represent constant acceleration. The introductory student performance on the acceleration 

question is much worse than the performance on the velocity question (37% compared to 63% 

correct). On question 19, almost 3/4 of the TAs performed well and identified the two most 

common incorrect answer choices (choices A and E). On question 12, there were no moderate or 

major introductory student difficulties. 

Question 8 displays a more complex displacement vs. time graph and asks for the verbal 

description of this motion, and question 9 provides a verbal description of a motion and asks for 
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the correct graph. As shown in Table 6.6, on both of these questions, the most common difficulty 

of introductory students is to match the verbal description of a motion with its graphical 

representation superficially without regard for the graph axes (identical to the difficulty in 

questions 3 and 21 which provide straight-line graphs). On question 8, 37% of introductory 

students select a description (choice C) which would be correct if the graph was of velocity vs. 

time rather than displacement vs. time; and on question 9, 57% of introductory students select a 

graph (choice B) that would be correct if it was of velocity vs. time rather than position vs. time 

(see Table 6.6). Few graduate students (8% and 28%, respectively) identify these answer choices 

as the most common incorrect choices of introductory students. Also, the PCK performance of 

graduate students on these two questions was the lowest among all TUG-K questions. During the 

whole class discussion after the task, many graduate students noted that they did not expect that 

introductory students would have this difficulty. 

6.4 SUMMARY 

 
In this research study, we explore one aspect of the pedagogical content knowledge of first year 

graduate students enrolled in a TA training course at the end of the course as it relates to 

knowledge of student difficulties with kinematics graphs revealed by the TUG-K. Most of the 

graduate students were teaching recitations or labs for introductory physics courses, and out of 

the three that were not, two had experience as teaching assistants or tutors for introductory 

physics courses and one had tutored mathematics in her undergraduate career. For each question 

on the TUG-K, the graduate students were asked to identify the most common incorrect answer 



 202 

choice selected by introductory students who did not know the correct answer after instruction in 

relevant concepts. The graduate students first performed this task while working individually and 

then while working in groups of two or three after which there was a class discussion about the 

task and specific introductory student difficulties. 

 

The ability to identify introductory student difficulties on the TUG-K does not appear to be 

dependent on familiarity with US teaching practices. 

 

We find that American graduate students who have been exposed to undergraduate teaching in 

the US and had been taught physics in English do not perform better at identifying the most 

common introductory student difficulties than foreign graduate students. The discussions in the 

TA training class related to this TUG-K related PCK task suggest that the foreign graduate 

students were similar to American graduate students in this regard. However, it is difficult to 

explain why these groups exhibit comparable PCK performance when identifying common 

student difficulties with kinematic graphs as revealed by the TUG-K despite their different 

backgrounds. 

 

Discussions among graduate students improved their PCK performance in identifying 

common introductory student difficulties on the TUG-K. 

 

The performance of graduate students in identifying introductory student difficulties with 

kinematics graphs as revealed by the TUG-K was significantly better when they worked in small 

groups compared to when they worked individually. In addition, when the individual answers of 
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graduate students working in a group disagreed, discussions more often shifted towards the more 

common introductory student difficulty than the less common one. Furthermore, the class 

discussion with the graduate students after they performed the TUG-K related PCK tasks 

suggested that they found the tasks challenging but worthwhile. Many graduate students noted 

that they were surprised by the frequency of incorrect responses of introductory students in some 

of the questions and that they had not expected that introductory students would have certain 

difficulties with kinematics graphs. These findings suggest that performing individual and group 

activities about introductory student difficulties in the contexts of conceptual assessments like 

the TUG-K could prove to be beneficial in improving the pedagogical content knowledge related 

to common student difficulties of the participants and should be incorporated in professional 

development activities for TAs and instructors. In addition, this type of research should be 

carried out with other conceptual assessments to further explore the pedagogical content 

knowledge of instructors and/or teaching assistants related to understanding of common student 

difficulties in other areas. 

 

Identifying some common introductory student difficulties related to kinematics graphs 

was very challenging for graduate students. 

 

The three questions on the TUG-K with the highest discrimination indices (questions 11, 14 and 

15) revealed a common introductory student difficulty that graphs of time dependence of 

different kinematics variables that correspond to the same motion should look the same. This 

difficulty was identified by very few graduate students. These questions have the highest 

discrimination indices according to Ref. [1] and introductory physics students who answered 
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these questions correctly performed well on the whole test. Since these questions have the 

highest discrimination indexes, Beichner [1] noted that this difficulty might be the most critical 

to address to improve introductory students’ understanding of graphs in the context of 

kinematics. However, we find that many graduate students are unaware that introductory 

students have this difficulty, and are therefore very unlikely to address this difficulty during 

instruction. 

Another common difficulty of introductory students that determining slopes does not 

require examining initial conditions uncovered in question 6 and 17 was identified by few 

graduate students. Graduate students were more likely to think that on these questions, 

introductory students would read-off the corresponding ordinate value for a given abscissa value 

instead of trying to compute the slope, which was a difficulty much less common among 

introductory students. 

Another common difficulty in interpreting more complex graphs than straight-line graphs 

of introductory students in questions 8 and 9 is to match the verbal description of the motion 

superficially with a graph without regard for what the axes represent. For example, on question 

8, which provided a displacement vs. time graph, introductory students selected the verbal 

description which treated the graph as though it was of velocity vs. time. Very few graduate 

students were aware of this difficulty and their average PCK performance on these questions was 

the lowest of all questions. 
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For the common introductory student difficulties which were uncovered in more than one 

question, the ability of graduate students to identify them was context dependent. 

 

When examining the PCK performance of graduate students in identifying introductory student 

difficulties in particular contexts (such as determining areas under curves, determining slopes, 

interpreting graphs, etc.) we find that the ability of graduate students to identify the most 

common difficulties is almost always context dependent. For example, difficulties of 

introductory students related to determining areas under curves or difficulties related to 

determining slopes were identified by very few graduate students on some questions, but by 

more graduate students on other contexts. 

 

Graduate students, on the average, exhibited lower PCK performance when identifying 

major introductory student difficulties on the TUG-K than when identifying moderate 

ones. 

 

There are 17 questions on the TUG-K which uncover moderate (nine questions) or major (eight 

questions) introductory student difficulties, and the graduate students performed better than 

random guessing on eight of these 17 questions. Moreover, graduate students had more difficulty 

in identifying major difficulties compared to moderate difficulties of introductory students. 

Furthermore, the analysis of the PCK score of the graduate students (as a percentage of the 

maximum possible score) on each question shows that on all four questions on which the average 

PCK score of graduate students was the lowest, there were major introductory student 

difficulties. 
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This result can be interpreted to mean that it is challenging to identify what introductory 

students would find difficult in a particular context. In other words, it is challenging for 

instructors to understand their students’ perspective on what specific aspects of physics are 

difficult unless they have explicitly focused on these issues of student difficulties in their own 

classes or are familiar with physics education research which discusses student difficulties. The 

graduate students took introductory physics at least three or four years prior to this study and 

they may have lost track of what they found confusing during the learning process. It is even 

possible that most graduate students are not typical introductory physics students and did not 

have the same difficulties that many introductory students have. Therefore, activities like the one 

presented here, especially if they are designed to promote discussions about student difficulties, 

can prove valuable in preparatory courses for prospective physics instructors. 
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7.0  EXPLORING ONE ASPECT OF PEDAGOGICAL CONTENT 

KNOWLEDGE OF PHYSICS INSTRUCTORS AND TEACHING 

ASSISTANTS USING THE FORCE CONCEPT INVENTORY 

7.1 INTRODUCTION 

7.1.1 Background on previous research involving the Force Concept Inventory 

The Force Concept Inventory (FCI) is a multiple choice survey developed in 1992 by Hestenes, 

Wells and Swackhammer [1] and later revised [2] after many early observations made by 

Halloun and Hestenes [3] and other physics education researchers [4-7] that many students enter 

and leave physics classes with conceptions that are not consistent with the scientifically accepted 

concepts taught in the physics classes. The FCI was designed to assess student understanding of 

the fundamental mechanics concepts related to force and motion and has been widely used for 

this purpose by many educators and physics education researchers. Similar assessments in 

mechanics have been designed for the same purpose by other physics education researchers [8-

12]. Although the conclusion that the FCI consistently measures Newtonian thinking was subject 

to some debate [13-16], the general consensus is that the FCI score is a good indicator of 

Newtonian thinking [17-20]. Some researchers have investigated the validity of the items on the 

FCI using Item Response Analysis [17-19]. Morris et al. [18] have argued that Item Response 
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Analysis can be used to identify answer choices which do not discriminate between students in 

different ability groups (ability was mainly defined by them using FCI scores). Their analysis 

was also used to investigate student performance in more detail and gain some insights into 

student difficulties for some of the items on the FCI. Other researchers studied the FCI using the 

Rasch model [20] and concluded that the FCI “has succeeded in defining a sufficiently uni-

dimensional construct for each population” (non-Newtonian and predominantly Newtonian). The 

analysis by Planinic et al. suggested that “the items in the test all work together and there are no 

grossly misfitting items which would degrade measurement” [20]. 

The FCI has played a key role in convincing many educators that traditional teaching 

methods which are primarily lecture oriented and do not actively engage students in the learning 

process do not promote conceptual and functional understanding [21-23]. Several studies have 

demonstrated that many students enter and leave introductory physics courses with the same 

alternate conceptions that are inconsistent with the accepted scientific ways of reasoning. Indeed, 

the use of the FCI in traditionally taught classes (even those taught by popular instructors) gave 

an impetus to the field of physics education research (PER) as educators increasingly realized 

that traditional methods were not working as intended, and consequently began to develop and 

evaluate instructional strategies designed to promote functional understanding of physical 

phenomena [21-24]. The FCI has often been used to assess whether a particular instructional 

strategy is effective in promoting conceptual and functional understanding. Hake [21] used the 

FCI for this purpose and found that courses that make use of research based instructional 

approaches such as collaborative peer instruction [25-27], modeling [28-30], concept tests [24], 

microcomputer-based labs [31-33], active-learning problem sheets (ALPS) [34,35] and others 

[36,37] result in higher normalized gains on the FCI than courses which employ traditional 
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methods such as standard lectures. The average normalized gain is defined as the ratio of the 

change in the average post-test score (after instruction of Newtonian concepts) with respect to 

the average pre-test score (before instruction of Newtonian concepts) to the average maximum 

possible change from the average pre-test score, i.e., average normalized gain <g> = (<post 

percent>–<pre percent>)/(100%–<pre percent>). Hake’s study included more than six thousand 

students from both college and high-school classes. 

The FCI has also been used to explore gender differences in understanding of Newtonian 

concepts related to force and motion [38-41]. Typically, in a particular introductory course, 

males outperform females on the FCI. However, in other course assessment measures such as the 

final exam, the males and females exhibit comparable performance. The gender gap observed on 

the FCI can be effectively reduced [38,40], although not necessarily removed [41], through PER 

based teaching strategies including but not limited to peer instruction, cooperative problem 

solving or using tutorials such as Tutorials in Introductory Physics by the University of 

Washington group. Other researchers have argued that the worse performance of females on the 

FCI can be partly attributed to the context of the questions which is mostly masculine and/or 

abstract [42]. Previous research indicated that females are more successful when questions are 

phrased using real-life contexts [43]. Therefore McCullough developed a “gender” version of the 

FCI [44] in which the items were rephrased from formal or male-oriented contexts to daily-life 

and female-oriented contexts. McCullough showed [42,44] that there was significant context 

dependence in the performance of both males and females for some questions. However, on 

individual questions different trends were observed  (e.g., male performance improved and 

female performance declined on some revised questions, performance of both stayed the same on 

some, and females improved and males declined on other revised questions) Overall, there was a 
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decline in the overall performance of males, but the performance of females stayed about the 

same. Other researchers [45] have used differential item functioning to investigate whether some 

questions favor one gender over another (i.e., if a male student is statistically more likely than a 

female student of the same ability to answer a question correctly) and concluded that five 

questions may have a gender bias. Context dependent performance on FCI questions was also 

investigated by Dancy [46], who developed an animated version of the FCI and found 

differences in performance on seven questions. 

Other researchers have used the FCI to investigate correlations between FCI scores and 

various other indicators of student performance: normalized gain on the FCI [47], problem 

solving ability [48], scientific reasoning ability [47,49], mathematics preparation [50], SAT 

scores [51], representational consistency [52], etc. In almost all these instances, significant 

positive correlations were found. 

The FCI has often been administered by physics education researchers and curriculum 

developers as a pre-test to determine what initial knowledge students bring to the learning of 

physics. Knowing the initial knowledge state of students is important because instructional tools 

and pedagogies can be designed to take advantage of the knowledge resources students have and 

to effectively address the alternate conceptions which are not consistent with the accepted 

scientific way of reasoning about physical phenomena. In addition, the FCI has been 

administered as a post-test, e.g., to determine what concepts are difficult for students even after 

instruction and how effective instruction was at addressing student difficulties. 
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7.1.2 Focus of this study: Pedagogical Content Knowledge related to student difficulties 

revealed by the FCI 

The study presented here used the FCI to explore one aspect of the pedagogical content 

knowledge of instructors and graduate teaching assistants (TAs), namely, knowledge of student 

difficulties related to mechanics concepts as revealed by the FCI. The instructors who 

participated in the study had varying degrees of experience teaching introductory physics 

courses. For each item on the FCI, the instructors and TAs at the University of Pittsburgh (Pitt) 

were asked to identify the most common incorrect answer choice of introductory physics 

students. We also discussed the responses individually with a few instructors and had a 

discussion with the TAs, who at the time of the study were enrolled in a TA training class at Pitt. 

Pedagogical content knowledge (PCK) was defined by Shulman [53,54] as the subject 

matter knowledge for teaching and many researchers in K-16 education have adapted this 

construct [55-58]. According to Shulman, PCK is a form of practical knowledge used by experts 

to guide their pedagogical practices in highly contextualized settings. In addition to the 

knowledge of the most useful forms of representation of the topics, use of powerful analogies, 

illustrations and examples, etc., Shulman included in pedagogical content knowledge, 

“understanding of the conceptions and preconceptions that students bring with them to the 

learning of those most frequently taught topics and lessons” [54]. Our research presented here 

explores the aspect of PCK of the physics instructors and graduate TAs related to their 

knowledge of introductory physics students’ alternate conceptions related to force and motion as 

revealed by the FCI. We refer to this as the “FCI related PCK” of instructors and TAs. In 

particular, we investigate whether instructors and graduate students are able to identify the 

common alternate conceptions of students on individual items in the FCI. Knowledge of the 
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alternate conceptions which are inconsistent with the scientifically accepted way of reasoning 

about the concepts can be helpful in devising the curricula and pedagogical strategies to improve 

student understanding. Much physics education research has been devoted to devising and 

assessing such strategies. 

 We note that, in order conduct the research related to the FCI related PCK of instructors 

and TAs, we needed introductory student data for each answer choice on individual items on the 

latest version of the FCI from large populations of students. It is most appropriate to analyze 

instructor and graduate student PCK data at Pitt by comparing it to introductory physics students’ 

FCI data at the same institution, which is a large, typical state related university of about 18,000 

undergraduate students. Therefore, data were collected over a few years both in pre-tests (before 

instruction) and post-tests (after instruction) from about 900 algebra-based students and over 300 

calculus-based students. The courses were all taught using traditional instructional methods at 

Pitt. These data were used to determine the common student alternate conceptions related to each 

item on the FCI and thus to assess the FCI related PCK of physics instructors and TAs. 

7.2 RESEARCH QUESTIONS 

7.2.1 Primary research questions – FCI related PCK of instructors and TAs 

P.1. To what extent does teaching experience influence (if at all) the ability to identify 

introductory students’ alternate conceptions? 
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P.2. To what extent are American physics graduate students, who have been exposed to 

undergraduate teaching in the United States, better at identifying introductory students’ alternate 

conceptions than foreign physics graduate students? 

 

P.3. To what extent do instructors and/or graduate students identify ‘strong’ student alternate 

conceptions compared to ‘medium’ level ones? 

 

P.4. To what extent do graduate students identify introductory students’ difficulties more often 

when working in groups than when working individually (i.e., do discussions improve graduate 

students understanding of introductory students’ alternate conceptions related to force and 

motion as revealed by the FCI)? 

 

P.5. To what extent do instructors/graduate students identify specific alternate conceptions of 

introductory physics students? Is their ability to identify these alternate conceptions context 

dependent? 

7.2.2 Secondary research questions – Introductory student FCI performance 

In order to answer the primary research questions, we needed data on the performance of 

students on individual items on the FCI (the revised version of the test from 1995). Therefore, we 

collected FCI data from about 900 students in algebra-based and more than 300 students in 

calculus-based introductory physics courses at Pitt. Subsequently, the following secondary 

research questions emerged, which were related to analysis of introductory student performance 
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on individual questions on the FCI and comparison of the pre-test and post-test data for both 

algebra-based students and calculus-based students. 

 

S.1. Which questions on the FCI pose significant challenges for students? 

 

S.2. Are there any questions on the FCI for which there is little improvement (small normalized 

gain) from pre-test to post-test? 

 

S.3. Are there any shifts in the most common alternate conceptions from the pre-test to the post-

test? 

 

S.4. On which questions do calculus-based students perform better than algebra-based students 

by 20% or more? Are there any questions in which the most common alternate conceptions 

of algebra-based students are different from the most common alternate conceptions of 

calculus-based students? 

7.3 METHODOLOGY 

7.3.1 Materials and Participants 

The materials used in this study are the FCI and the pre-post introductory student data collected 

from 900 algebra based and more than 300 calculus based introductory physics courses at Pitt 

(see Tables B3 and B4 included in Appendix B). We compare the algebra-based and calculus-
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based classes in the results section. All classes from which these data were collected were taught 

in a traditional manner and the average unmatched (all students who took the pre-test and post-

test were included regardless of whether they took both the pre-test and post-test) normalized 

gain was 0.26 for the algebra-based classes and 0.36 for calculus-based classes (almost identical 

to the matched normalized gains). These gains are close to gains for courses that do not employ 

PER based instructional strategies as reported by Hake [21]. 

The participants of this study were thirty physics instructors and twenty five first year 

graduate students. The instructors varied widely in terms of introductory physics teaching 

experience. In particular, some instructors were relatively new and had only taught introductory 

courses a few times, while others were emeritus professors who had not taught for many years 

(but had taught a long time ago) and yet others were instructors who taught introductory physics 

courses on a regular basis. 

The graduate students were enrolled in a semester long pedagogy oriented TA training 

class. This course is required of all first year graduate students. The course meets once a week 

for two hours and is designed to help graduate students be more effective teachers. During the 

course, students learn about cognitive research and physics education research (PER) and discuss 

their instructional implications. Students are also introduced to curricula and pedagogies based 

on physics education research which stress the importance of being knowledgeable about 

introductory students’ difficulties in order to help them transition toward greater expertise in 

physics. Each graduate student also discusses the solution of a physics problem in the class in the 

manner in which he/she would discuss it if he/she were teaching introductory students and they 

receive feedback from the other graduate students and the instructor. Also, during the course, 
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students complete various reflective exercises aimed at helping them perform their TA duties in a 

student-centered manner. 

All but three of the graduate students who participated in this study were teaching 

introductory physics recitations or labs for the first time. Two of the three who were not teaching 

had physics teaching experience as undergraduates, either as a teaching assistant or as a tutor for 

introductory physics courses. Only one student did not have teaching experience in physics, but 

this student tutored mathematics as an undergraduate. Also, the TA training course included 

discussions of introductory student difficulties, however, not in the specific context of the FCI 

(until after students completed all tasks related to the FCI as described below). 

7.3.2 Methods 

The physics instructors were given the FCI survey and for each question, they were asked to 

identify which one of the four incorrect answer choices, in their view, would be most commonly 

selected by introductory physics students after instruction in relevant concepts if the students did 

not know the correct answers (we refer to this as the “FCI related PCK task”). The instructors 

were asked to complete the task at their convenience. Also, the task was originally given to 33 

physics instructors at Pitt but three of them did not complete the task in a reasonable amount of 

time even after multiple reminders. After the instructors had completed the task, we discussed 

the reasoning for their responses individually with some of them, especially for the questions in 

which the reasoning was not explicitly provided (and subsequently with the graduate students in 

a class discussion). 

Towards the end of the TA training class (so that a majority of graduate students had 

almost a semester worth of teaching experience), the graduate students were asked to complete 



 220 

three different tasks related to the FCI: (1) while working individually, they were asked to 

identify the correct answers for each question; (2) while working individually, they were asked 

to complete the FCI related PCK task; and (3) they repeated the FCI related PCK task, except 

working in groups of two or three. The graduate students performed task (1) first, then task (2) 

and finally task (3), followed by a class discussion during a two hour TA training class. The 

graduate students were allowed as much time as they needed for each task. All graduate students 

finished the first task within the first 30 minutes and the second task within the first hour. The 

third task (group work) was completed by all groups within 40 minutes followed by a full class 

discussion about the FCI related PCK task and why knowledge of student difficulties is critical 

for teaching and learning to be effective in general. The graduate student population at Pitt is 

consistent with that of a typical research focused state university and the nationality of the 

graduate students varied: nine graduate students were from the United States, nine were from 

China and the other seven were from other countries (Asian and European). 

We note that the task given to the instructors and graduate students was framed such that 

they had to identify the most common incorrect option for each multiple choice question that 

introductory physics students would select after instruction if they did not know the correct 

answer (rather than before instruction), because individual discussions with some faculty 

members who had taught introductory physics before giving them the task indicated that they felt 

that they had no way of knowing the “pre-conceptions” of  introductory physics students. Their 

reluctance to contemplate introductory physics students’ preconceptions about force and motion 

before instruction motivated us to ask them to identify the most common incorrect answer choice 

for each question if the student did not know the correct answer after instruction in relevant 

concepts. Although asking them to identify the most common alternate conception in a post-test 
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made the task easier to complete, some faculty members who participated in the study were 

concerned about their ability to identify students’ difficulties and explicitly noted that they have 

no way of knowing the most common difficulty of introductory students for each question.  

We also note that it does not make a significant difference whether the question is 

phrased to the instructors and graduate students about introductory physics students’ difficulties 

with each question in the post-test or pre-test because the common alternate conceptions of 

introductory students rarely changed after traditional instruction. Instead, typically, fewer 

students held the same common alternate conceptions (this was found to be true when we 

compared the pre-test and post-test data of introductory students). Therefore, the performance of 

experts (instructors and graduate TAs) at identifying these alternate conceptions provides an 

indication of their knowledge of the initial knowledge state of introductory students.  

In order to compare the FCI related PCK performance of the physics instructors with that 

of the graduate students (and also to compare the FCI related PCK performance of different 

subgroups of instructors/graduate students), scores were assigned to each instructor/graduate 

student. An instructor/graduate student who selected a particular incorrect answer choice as the 

most common incorrect choice in a particular question received a PCK score which was equal to 

the fraction of introductory students who selected that particular incorrect answer choice. If an 

instructor/graduate student selected the correct answer choice as the most common incorrect 

answer (a rare occurrence), he/she was assigned a score of zero because he/she was explicitly 

asked to indicate the incorrect answer choice which is most commonly selected by introductory 

students if they did not know the correct answer. For example, in question 2, the fractions of 

algebra-based students who selected A, B, C, D and E are 0.44, 0.25, 0.06, 0.21 and 0.04, 

respectively (see Table B1 included in Appendix B). Answer choice A is correct, thus, the score 
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assigned to instructors or graduate students for each answer choice if they selected it as the most 

common incorrect answer would be 0, 0.25, 0.06, 0.21 and 0.04 (A, B, C, D and E). The total 

score an instructor/graduate student would obtain on the task for the entire FCI can be obtained 

by summing over all of the questions. A mathematical description of how this calculation was 

performed is included in Appendix B. 

In order to determine whether the instructors/graduate students performed better than 

random guessing on the FCI related PCK task, a population of random guessers was generated. 

The population was generated by choosing N = 24 ‘random guessers’ in order to have a 

reasonable group size when performing t-tests [59]. Random guessing on this task would 

correspond to choosing one of the four incorrect answer choices for each question with equal 

probability (25%). Therefore, one quarter of the random guessers always selected the first 

incorrect answer choice, one quarter selected the second incorrect answer choice, etc. Since the 

instructors and graduate students were not provided with the correct answers before they 

performed the FCI related PCK task, random guessing would not perfectly correspond to 

selecting one of the four incorrect answer choices with equal probability. For a particular 

question, there is a small probability that an instructor/graduate student does not know the 

correct answer. However, our data indicate that this probability is very small (see table B1 in 

Appendix B). Moreover, since for a given question, one quarter of the random guessers selected 

each of the four incorrect answer choices, one can calculate a mean and a standard deviation for 

their scores which can be used to perform comparison with the graduate student scores. 

Furthermore, our choice of random guessers maximizes the standard deviation. 

We note that our approach used to determine the PCK score related to FCI appropriately 

weighs the responses of instructors/graduate students by the fraction of introductory students 
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who selected a particular incorrect response. This weighing scheme was chosen because the 

more prevalent an introductory student difficulty is, the more important it is for an 

instructor/graduate student to be aware of it and take it into account in his/her instruction. 

7.3.3 Approach for answering the primary research questions 

The researchers analyzed whether instructors and/or graduate students performed better at 

identifying introductory students’ alternate conceptions than random guessers by performing 

statistical analysis. The analysis of the FCI related PCK performance was carried out with both 

the algebra based and calculus based student data yielding nearly identical results. We present 

the analysis with the algebra based student data. 

 

P.1. To what extent does teaching experience influence (if at all) the ability to identify 

introductory students’ alternate conceptions? 

In order to answer this question, we compared the average FCI related PCK score of all 

instructors with the average FCI related PCK score of all graduate students and also compared 

the FCI related PCK scores of instructors who had recently taught introductory mechanics (either 

algebra-based or calculus-based) with those who had not taught introductory mechanics recently. 

The PCK scores of instructors (all of whom had taught some introductory physics course 

in the near or distant past and several had taught them many times) were compared with the PCK 

scores of graduate students enrolled in the TA training course (at the end of the course) who had 

never taught an introductory physics course as lecturers before. All of the graduate students were 

at the time in their first semester in physics graduate school and most were doing a teaching 

assistantship for the first time. Since the teaching experience as lecturer of the graduate students 
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was very limited compared to the teaching experience of most of the instructors who had taught 

some introductory courses, this comparison may provide some indication for whether teaching 

experience as lecturer influences the ability to identify student alternate conceptions. We note 

however, that the first year physics graduate students in the TA training course had taken 

introductory physics only a few years prior to the study as undergraduates and a majority of them 

were TAs for introductory recitations and laboratories, graded homework, quizzes and exams 

and held regular office hours in addition to spending time weekly in the resource room at Pitt to 

help introductory students throughout the semester. These experiences may help the graduate 

students understand the difficulties of introductory students and therefore increase their ability to 

identify introductory students’ alternate conceptions. As a result, it is difficult a priori to predict 

how they will perform compared to the instructors (most of whom did minimal grading and had 

minimal direct contact with students in the large introductory classes) regardless of the fact that 

instructors had significantly more independent classroom teaching experience. 

Therefore, we also compared the FCI related PCK scores of instructors who had taught 

introductory mechanics recently with those who had not taught it or had not taught it in the last 

seven years. Half of the instructors who participated in this study had taught introductory 

algebra-based or calculus-based mechanics courses at least a few times in the past seven years, 

while the other half had not taught these courses or taught them more than seven years prior to 

the study. This analysis was designed to investigate if recent teaching experience in introductory 

algebra-based or calculus-based mechanics courses played a role in the instructors’ ability to 

identify introductory students’ alternate conceptions about force and motion. 
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P.2. To what extent are American physics graduate students, who have been exposed to 

undergraduate teaching in the United States, better at identifying introductory students’ 

alternate conceptions than foreign physics graduate students? 

Out of the twenty-five first year graduate students who participated in this study, nine were 

American, nine were Chinese and seven were from other foreign countries (Asia and Europe). 

The FCI related PCK scores of three groups of graduate students were compared (American, 

Chinese and other foreign students). The reason we divided the graduate students into three 

groups is because the American graduate students were exposed to teaching in the United States 

as opposed to the foreign students, who were not exposed to US teaching practices before 

graduate school and most were taught physics in their own native languages. The nine Chinese 

graduate students were placed in a separate group because, although they fit the category of 

foreign graduate students, it is possible that their backgrounds are different from the backgrounds 

of most of the other foreign graduate students, and it is unclear whether these differences in 

backgrounds translate to differences in performance on the FCI related PCK task. 

 

P.3. To what extent do instructors and/or graduate students identify ‘strong’ student 

alternate conceptions compared to ‘medium’ level ones? 

Many of the questions on the FCI contain strong distractor choices that are selected by large 

numbers of introductory students even in a post-test. The researchers determined that an 

incorrect answer choice can be attributed to a ‘strong’ student alternate conception if more than 

1/3 of introductory algebra-based students selected that answer choice. An incorrect answer 

choice was considered connected to a ‘medium’ level alternate conception if between 19% and 

34% of the students selected that answer choice (initially, the lower cutoff was chosen to be 
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20%, but there were three questions on the FCI in which 19% of introductory students selected 

an incorrect answer choice, and the researchers considered that two of them were worth 

discussing, thus 19% was selected to be the lower cutoff). 

In order to answer whether physics instructors or graduate students are better at 

identifying strong alternate conceptions than medium level ones, we compared how often 

instructors or graduate students performed better than random guessing on questions which 

contained strong alternate conceptions with how often they performed better than random 

guessing on questions which contained medium level alternate conceptions. 

 

P.4. To what extent do graduate students identify introductory students’ difficulties more 

often when working in groups than when working individually (i.e., do discussions improve 

graduate students understanding of introductory students’ alternate conceptions related to 

force and motion as revealed by the FCI)? 

Previous studies have found that student discussions improve performance on conceptual 

examinations [24, 60]. Mazur’s Peer Instruction [24] approach has been developed because 

student discussions tend to converge to the correct answers rather than the incorrect answers. In 

particular, research suggests that if two students individually select different answers and one of 

them is correct, the student with the correct answer is more likely to convince the student with 

the incorrect answer through a discussion than otherwise. In addition, in the context of 

introductory calculus-based electricity and magnetism, Singh found that even if both students 

initially select an incorrect answer choice, in 29% of the cases, discussions among introductory 

students lead them to the correct answer [60]. We investigated whether discussions among 
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graduate students that are centered on introductory students’ alternate conceptions helped them 

identify the more common alternate conceptions. 

The graduate students completed three tasks related to the FCI in a two hour long TA 

training class toward the end of the semester: first they were asked to provide the correct answers 

to the FCI, second, they individually performed the FCI related PCK task (identified the 

incorrect answers most commonly selected by introductory students), and third, they repeated the 

FCI related PCK task in groups of two or three. It was investigated whether discussions among 

graduate students improved their knowledge of introductory student alternate conceptions. Two 

factors would indicate that discussions improve graduate students’ understanding of introductory 

students’ alternate conceptions: 

• 1) better FCI related PCK performance and 

• 2) convergence to a more common introductory student alternate conception. 

The second factor warrants further explanation: if in the individual PCK task, two graduate 

students selected two different incorrect answer choices (that they thought would be most 

common among introductory students who did not know the correct answer), and at least one of 

the incorrect answer choices is connected to a common student alternate conception, we 

investigated how often the two graduate students agreed on the incorrect answer choice which is 

selected by more introductory students. In order to answer this question, we identified all the 

instances in which two (or three) graduate students who selected different incorrect choices in 

the individual PCK task, while working in a group, agreed on one of the incorrect answers. Then, 

we determined how often the incorrect answer selected in the group PCK task was more 

common (by 5% or more) among introductory students than the other answers selected by the 

graduate students in the individual PCK task. 
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P.5. To what extent do instructors/graduate students identify specific alternate conceptions 

of introductory physics students? Is their ability to identify these alternate conceptions 

context dependent? 

 

These questions were answered by identifying particular alternate conceptions (e.g., constant 

force implies constant velocity) in different questions and analyzing instructor/graduate student 

PCK performance in identifying these common alternate conceptions in different questions. 

7.3.4 Approach for answering the secondary research questions 

S.1. Which questions on the FCI pose significant challenges for students? 

This question was answered while analyzing the PCK performance of instructors and graduate 

students at identifying students’ alternate conceptions because this analysis was restricted to the 

alternate conceptions held by at least 19% of introductory students. For each alternate 

conception, the question in which it appears and the percentage of introductory students who 

hold the particular alternate conception was identified. 

 

S.2. Are there any questions on the FCI in which there is very little improvement from pre- 

to post-test? 

Introductory student performance in a post-test is not the sole indicator of how difficult a 

question is. If the percentage of introductory students who answer a question correctly does not 

improve significantly after instruction in the relevant concepts, it is an indicator of the difficulty 

of the question regardless of the percentage correct in the post-test. The determination of 

questions with “little” improvement from pre-test to post-test was done based on two criteria: the 
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average normalized gain (see Table B3) and improvement in the percentage of students who 

harbor an alternate conception. For normalized gain, the questions were ordered from lowest to 

highest and the researchers determined that “little” improvement occurred in the bottom 1/3 of 

the questions. For the second criteria, it was considered that “little” improvement occurred in 

questions in which the improvement in the percentage of students who hold the most common 

alternate conception is less than 5%. 

 

S.3. Are there any shifts in alternate conceptions from the pre-test to the post-test? 

Previous research has found that many students enter introductory mechanics classes with naïve 

interpretations of real world phenomena that are inconsistent with physics principles [1-10]. One 

may expect that after instruction, the performance of introductory students on individual items 

would improve and the incorrect answers which were selected most commonly in the post-test 

would largely remain the same as the ones that would be selected most commonly in the pre-test, 

except by smaller percentages of students in the post-test. However, students might shift from 

one incorrect answer choice in the pre-test to another incorrect answer choice in the post-test. For 

example, in question 5 (identify all the forces that act on a ball while it is moving in a 

frictionless, circular channel), before instruction, many students do not know that the channel 

exerts a force on the ball, but know about the force of gravity and hold the alternate conception 

that in order for an object to be moving in a certain direction, a distinct force must be acting on it 

in the direction of motion. It is possible that after instruction, most of these students learn that the 

channel must exert a force on the ball, but do not abandon the idea that a distinct force must exist 

in the direction of motion. The post-test response based upon these notions would still be 

incorrect; however, the alternate conception will now be different than on the pre-test. 
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In order to determine whether algebra-based introductory students hold different alternate 

conceptions after instruction compared to before instruction we analyzed questions which had 

two or more common alternate conceptions either in the pre-test or the post-test. In these 

questions, it was considered that a shift occurred if either the following changes transpired from 

the pre-test to the post-test: 

• 1) the percentage of introductory students who selected one of these incorrect answer 

choices decreased (by 10% or more) while the percentage of introductory students who 

selected the other incorrect answer choice(s) remained the same or increased or  

• 2) the percentage of introductory students who selected one of the incorrect answer 

choices remained the same, while the percentage of introductory students who selected 

the other incorrect answer choice(s) increased. 

 

S.4. On which questions do calculus-based students perform better than algebra-based 

students? Are there any questions in which the alternate conceptions of algebra-based 

students are different from the alternate conceptions of calculus-based students? 

Previous research has found that students in calculus-based classes perform better than students 

in algebra-based classes on the FCI [21,61] and other conceptual assessments [8,58]. However, it 

is possible that on some FCI questions the differences are less pronounced than on others. We 

investigated on which questions on the FCI the calculus based students performed better than the 

algebra based students and on which questions the differences were small. In addition, we 

investigated whether there were any questions for which the most common alternate conceptions 

of algebra-based students were different from the common alternate conceptions of calculus-

based students. 
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7.4 RESULTS 

Many instructors and graduate students noted that the task of thinking from a student’s point of 

view was challenging; some even confessed that they did not feel confident about their 

performance in identifying the most common incorrect answers. Also, the task was posed as the 

identification of the most common incorrect answer of introductory physics students for each 

FCI question after instruction if students did not know the correct answer. Thus, the primary data 

analysis in this section involves comparison of the instructors’ and graduate students’ responses 

with introductory physics responses on each FCI question after instruction. However, our 

analysis revealed that the introductory students’ alternate conceptions are generally the same, 

except more pronounced before instruction compared to after instruction. 

This section is broken up into two subsections. In the first, we discuss the primary 

research questions which focused on investigating one aspect of the pedagogical content 

knowledge of instructors and graduate students, namely, knowledge of common student 

difficulties related to force and motion as revealed by the FCI. In the second, we discuss the 

secondary research questions which focused on the performance of introductory students on the 

FCI. 

7.4.1 Results: Primary research questions 

There are 24 questions on the FCI which reveal strong and/or medium alternate conceptions: 

items 2, 4, 5, 9 and 11-30. Analysis of the FCI related PCK score of both instructors and 

graduate students was conducted on each of these questions and the results are displayed in 

Tables B1 and B2 (included in Appendix B). 
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Table B1 shows the percentages of introductory physics students who selected each 

answer choice when asked to select the correct choice for each question, and instructors and 

graduate students who selected each answer choice for what would be the most common 

incorrect choice of introductory physics students if they did not know the correct answer on each 

of the 24 questions in which strong or medium level alternate conceptions were identified. 

Correct answers are indicated by the green shading in Table B1, strong student alternate 

conceptions (incorrect answer choices selected by more than 1/3 of the introductory students) are 

indicated by red shading and medium alternate conceptions are written in red. In addition, the 

second column (titled >RG) in Table B1 indicates whether instructors and/or graduate students 

performed better than random guessing. For each question, “I” in the second column of Table B1 

indicates that instructors performed better than random guessing, “GS” indicates that graduate 

students performed better than random guessing and “I, GS” indicates that both instructors and 

graduate students performed better than random guessing in identifying introductory physics 

students’ most common incorrect answer for a particular question. If the field in the second 

column (titled >RG) of Table B1 is blank then neither instructors nor graduate students 

performed better than random guessing. 

Table B2 shows, for each question, the normalized average FCI related PCK scores of the 

instructors and graduate students. Their FCI related PCK scores were normalized on a scale from 

zero to 100 because for each question on the FCI there is a minimum and a maximum possible 

score, which correspond to the smallest and largest fractions of introductory students who 

selected a particular incorrect answer choice among the four incorrect answer choices. The 

normalization was done in the following manner: normalized FCI related PCK score = 100 * 

(average FCI related PCK score – minimum possible score) / (maximum possible score – 
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minimum possible score). The normalized FCI related PCK score is then zero if the 

instructors/graduate students obtained the minimum possible score and 100 if they obtained the 

maximum possible score. This also provides a way to compare the FCI related PCK performance 

in different questions which have different minimum and maximum possible FCI related PCK 

scores. Table B2 also shows the difficulty of each of these questions via the percentage of 

introductory algebra-based students who answered each question correctly in a post-test, 

normalized gain and strength of the alternate conception(s), i.e.,  medium level or strong. The 

questions which contained a strong alternate conception are indicated by the red shading and 

those which contained a medium level alternate conception are written in red. Also, the 

performance of instructors and graduate students is considered ‘good’ (and shaded green) if their 

normalized FCI related PCK score is more than 2/3 of the maximum possible score, ‘medium’ 

level (and shaded yellow) if their normalized score is between 1/2 and 2/3 of the maximum 

possible score and ‘poor’ (horizontal stripes) if their performance is less than 1/2 of the 

maximum possible score. Examination of Table B2 indicates that the strength of an alternate 

conception is not correlated with the FCI related PCK performance of instructors and/or graduate 

students. Table B2 shows that there are questions with strong alternate conceptions in which both 

instructors’ and graduate students’ FCI related PCK performance is poor, other questions with 

strong alternate conceptions in which their FCI related PCK performance is medium level and 

yet others in which their performance is good. A similar observation can be made for questions 

in which there is a medium alternate conception. These results are discussed in more detail 

below, where we provide the results which helped answer research question P.3. 
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P.1. To what extent does teaching experience influence (if at all) the ability to identify 

introductory students’ alternate conceptions? 

In order to answer this question, one analysis involved comparison of the overall FCI related  

PCK scores of instructors, who on the average had significant experience teaching introductory 

physics courses as lecturers, with the FCI related PCK scores of graduate students enrolled in the 

TA training course, who had limited or no experience teaching introductory physics courses as 

lecturers. The maximum possible FCI related PCK score of instructors or graduate students on 

each question would be equal to the maximum fraction of introductory students who selected an 

incorrect answer choice. The maximum possible FCI related PCK score on the whole survey is 

9.21, which is the sum of these fractions for all the questions. Table 7.1 shows that the average of 

instructors (68% of the maximum possible FCI related PCK score) and the average of graduate 

students (65% of the maximum possible FCI related PCK score) are very close. Also, t-tests 

revealed no significant difference between instructors and graduate students in terms of their FCI 

related PCK scores. Although, their overall PCK performance is the same, there were many 

differences observed in the performance of identifying specific student alternate conceptions. 

However, both the instructors and graduate students performed significantly better on the FCI 

related PCK task than random guessing (both p values when comparing instructors to random 

guessing and graduate students to random guessing were less than 0.001). We note that since the 

graduate students had taken introductory physics only four years prior to this study as 

undergraduates and the vast majority of them were TAs in an introductory recitation or 

laboratory class, did weekly grading of quizzes, homework and exams and held office hours in 

which they helped introductory students individually, they may identify with introductory 

physics students’ difficulties related to FCI concepts. 
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Table 7.1. Numbers of instructors/graduate students/random guessers, averages and standard deviations (Std. dev.) 

for the FCI related PCK scores obtained (in determining student alternate conceptions on the FCI) out of a 

maximum of 9.21. 

 N Average Std. dev. 

Instructors 30 6.25 0.90 

Graduate students 25 6.01 0.78 

Random guessing 24 3.71 0.93 

 
 

We also investigated whether recent teaching experience in algebra-based or calculus-

based introductory mechanics course was related to the ability of instructors to identify students’ 

alternate conceptions that emerge in the FCI. The average of the instructors who had taught 

introductory mechanics courses in the past seven years was nearly identical to the average of 

instructors who had not taught those introductory physics courses recently (see Table 7.2). It 

appears that recent teaching experience of these instructors in introductory mechanics is not 

related to their ability to identify introductory students’ alternate conceptions. 

 
Table 7.2. Numbers of instructors who had taught and who had not taught introductory mechanics in the past seven 

years, their averages and standard deviations (Std. dev.) for the scores obtained for determining students’ alternate 

conceptions on the FCI out of a maximum of 9.21. 

 N Average Std. dev. 

Have taught in the past 7 years 15 6.33 0.77 

Have not taught in the past 7 years 15 6.17 1.03 
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P.2. To what extent are American physics graduate students, who have been exposed to 

undergraduate teaching in the United States, better at identifying introductory students’ 

alternate conceptions than foreign physics graduate students? 

Our analysis suggests that it was not the case that American graduate students performed better 

than the others. In particular, the averages of these three groups of graduate students (American, 

Chinese, other foreign) were very similar as shown in Table 7.3. Statistical analyses using t-tests 

are not appropriate here because the group sizes are small, but it does appear that the averages 

are not very different. The Chinese students were placed in a separate group because they 

comprised more than half of the foreign graduate students and we did not want the performance 

of foreign graduate students to be skewed because of this. 

 

Table 7.3. Numbers of American/Chinese/Other foreign graduate students, their averages and standard deviations 

(Std. dev.) for the scores obtained in determining student alternate conceptions on the FCI out of a maximum of 

9.21. 

 N Average Std. dev. 

American 9 6.20 0.70 

Chinese 9 6.04 0.76 

Other foreign 7 5.71 0.91 

 

P.3. To what extent do instructors and/or graduate students identify ‘strong’ student 

alternate conceptions compared to ‘medium’ level ones? 

There are 11 questions on the FCI in which at least 1/3 of the introductory physics students 

selected a particular incorrect answer choice (see Table A1). The instructors’ PCK score was 

better than random guessing on eight of these questions (73%) while the graduate students’ PCK 

score was better than random guessing on five (45%) of these questions. In the other 13 
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questions (which contained ‘medium level’ alternate conceptions, i.e. conceptions held by 19%-

33% of introductory students in a post-test), both instructors’ and graduate students’ PCK scores 

were better than random guessing on seven of them (54%). These numbers are too small to 

perform meaningful statistics, but it appears that instructors identified ‘strong’ misconceptions 

somewhat better than ‘medium level’ ones (73% compared to 54%), whereas for graduate 

students, the difference is minor (45% as compared to 54%). 

 

P.4. To what extent do graduate students identify introductory students’ difficulties more 

often when working in groups than when working individually (i.e., do discussions improve 

graduate students understanding of introductory students’ alternate conceptions related to 

force and motion as revealed by the FCI)? 

 

1. Graduate student FCI related PCK performance is better when they work in groups compared 

to when they work individually. 

Table 7.4 shows the graduate students’ FCI related PCK performance when they worked 

individually and in groups of two or three. A t-test shows that the group performance is better 

than the individual performance (p = 0.040). 

 
Table 7.4. FCI related PCK performance of graduate students in the individual and in the group PCK tasks: number 

of graduate students/groups (N), averages (Avg.) and standard deviations (Std. dev.) 

Graduate students’ FCI related PCK performance 

Individual N Avg. Std. dev. 

25 6.01 0.78 

Group N Avg. Std. dev. 

12 6.59 0.79 
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2. Discussions among graduate students often tend to lead them to agree on a more common 

introductory student alternate conception 

There were 98 instances in which two or three graduate students who did not all select the same 

incorrect answer choice in the individual PCK task, when working in groups, converged to one 

of their original answers pertaining to introductory students’ common difficulties. In 73 of those 

instances (74%) the graduate students converged to the ‘better’ option (i.e., the more common 

incorrect answer choice of introductory students by 5% or more) and in 25 of those instances 

(26%), they did not converge to the ‘better’ answer choice. It therefore appears that discussions 

among graduate students tend to lead them to agree on a more common introductory student 

alternate conception. 

 

P.5. To what extent do instructors/graduate students identify specific alternate conceptions 

of introductory physics students? Is their ability to identify these alternate conceptions 

context dependent? 

These questions were answered by identifying student alternate conceptions, the questions in 

which these alternate conceptions are connected to incorrect answer choices and analyzing the 

FCI related PCK performance of instructors and graduate students in those questions. Similar 

alternate conceptions were grouped whenever it was deemed appropriate by the researchers (e.g., 

alternate conceptions related to Newton’s third law, alternate conceptions related to particular 

tasks, such as identifying all the distinct forces that act on an object, etc.) and, if a particular 

alternate conception appeared in more than one context, it was investigated whether instructors 

and/or graduate students performed better at identifying it in some contexts than in other 

contexts. For multiple choice questions, the context is comprised of both the physical situation 
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presented in the problem and the answer choices, because different answer choices can modify 

the difficulty of a question. For example, a multiple-choice question is easier for introductory 

students if the incorrect answer choices are not chosen to reflect common student difficulties, 

and is challenging for students when they are chosen to reflect common difficulties [2-3]. 

We now turn to discussing the performance of instructors and teaching assistants in 

identifying specific introductory student alternate conceptions which arise in more than one 

context. 

 

1) Newton’s third law: The alternate conceptions of students related to Newton’s third 

law and the performance of both instructors and graduate students in identifying 

the most common alternate conceptions are both context dependent. 

 

Table 7.5 shows that in some contexts, introductory students hold alternate conceptions related to 

Newton’s third law more strongly (questions 4, 15 and 28 for which at least 32% of introductory 

students hold an alternate conception) than in other contexts (question 16, in which only 19% of 

introductory students hold an alternate conception). Thus, these alternate conceptions are context 

dependent and they arise more often in certain contexts than in others. This is similar to the 

finding by Redish [61] that students can answer paired questions about the same concept 

differently in different contexts: in one context most students answer it correctly, while in 

another context the most common incorrect answer involves a common student alternate 

conception. 
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Table 7.5. Introductory students’ alternate conceptions related to Newton’s 3rd law, questions in which these 

alternate conceptions arise (FCI item #), percentage of introductory students who answer the questions incorrectly in 

the pre-test (% overall incorrect pre) and in the post-test (% overall incorrect post), incorrect answer choices on each 

question which uncover these alternate conceptions (incorrect answer choices), percentage of introductory students 

who hold the alternate conceptions based on their selection of these answer choices in the pre-test (Intro stud. alt. 

pre) and in the post-test (Intro stud. alt. post.) and percentage of instructors (Ins.) and graduate students (GS) who 

identify them as the most common incorrect answer choices. For convenience, brief descriptions of the problems are 

given underneath. 

 

In addition, it appears that the FCI related PCK performance of both instructors and 

graduate students is also context dependent. For example, the vast majority of both instructors 

and graduate students identified the alternate conception related to Newton’s third law in a 

typical context (question 4 – truck colliding with car – see Table 7.5), but they did not identify it 

as often in the other three contexts (question 15 – car pushing truck and speeding up, question 16 

– car pushing truck at constant speed and question 28 – student “a” pushing student “b”). Also, 

in question 15, 10% of instructors and 12% of graduate students selected the correct answer 

choice as the most common incorrect answer choice selected by introductory students (see Table 

Introductory student 
alternate conceptions 

FCI 
item 
# 

% overall 
incorrect 
pre 

% overall 
incorrect 
post 

Incorrect 
answer 
choices 

Intro 
stud. 
alt. pre. 

Intro 
stud. 
alt. post 

Ins. GS 

Newton’s 3rd: while both 
objects exert forces on one 
another, if both objects are 
active (i.e., collision), the larger 
object exerts the larger force; if 
only one is active (i.e., car 
pushing truck), the active object 
exerts a larger force on passive 
object than vice versa 

4 74% 40% A 73% 39% 97% 84% 

15 75% 56% C 61% 48% 60% 40% 

16 45% 27% C 37% 19% 37% 16% 

28 76% 41% D 61% 32% 38% 52% 

Questions 
4. Truck colliding with car. 
15. Car pushing truck and speeding up. 
16. Car pushing truck and moving at constant speed. 
28. Student “a” puts his feet on student “b” and pushes against student “b”. 
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B1 in Appendix B). It is likely that, in this context, they have the same alternate conception as 

introductory students, namely, that while the car is speeding up, it exerts a larger force on the 

truck than vice versa. In addition, as noted earlier, the graduate students were first asked to 

identify the correct answers on the FCI before performing the FCI related PCK task and 24% of 

them incorrectly selected this answer choice as the correct one (this was one of the two questions 

with the lowest graduate student performance when asked to select the correct answers for the 

FCI questions). The fact that even some experts hold this alternate conception after many years 

of practicing physics points out how strong this alternate conception is and how difficult it is to 

overcome it in this particular context. Question 16, although relatively easy for introductory 

students (73% of them answered it correctly in a post-test), revealed a medium level alternate 

conception, namely that the force the car exerts on the truck is larger than the force the truck 

exerts on the car. On the other hand, both instructors and graduate students performed very 

poorly on this question on the FCI related PCK task. In particular, a majority of them (60% of 

instructors and 76% of graduate students) selected answer choices B, D and E which were 

selected by only 8% of introductory students (see Table B1 in Appendix B). Similarly, in 

question 28, many instructors and graduate students performed poorly on the FCI related PCK 

task of identifying the most common alternate conception and selected answer choice B (45% 

instructors and 36% graduate students – see Table B1) which stated that student “a” exerts a 

force on student “b”, but student “b” does not exert a force on student “a”. However, very few 

introductory students selected this answer choice (2%) and the vast majority of them knew that 

both students exert forces on one another (91% who selected answer choice C, D or E). 
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2) Identification of distinct forces: In the following questions, which ask introductory 

students to identify all the distinct forces acting on an object, neither instructors nor 

graduate students identified the most common student alternate conceptions and 

many graduate students, and even more instructors, selected answer choices which 

either ignored contact forces or all forces altogether, inconsistent with introductory 

students’ most common incorrect answer choices. 

 
Table 7.6. Student alternate conceptions related to identifying forces, questions in which these alternate conceptions 

arise (FCI item #), percentage of introductory students who answer the questions incorrectly in the pre-test (% 

overall incorrect pre) and in the post-test (% overall incorrect post), incorrect answer choices on each question 

which uncover these alternate conceptions (incorrect answer choices), percentage of introductory students who hold 

the alternate conceptions based on their selection of these answer choices in the pre-test (Intro stud. alt. pre) and in 

the post-test (Intro stud. alt. post.) and percentage of instructors (Ins.) and graduate students (GS) who identify them 

as the most common incorrect answer choices (Ins.). For convenience, brief descriptions of the problems are given 

underneath. 

 

Introductory student 
alternate conceptions 

FCI 
item 
# 

% overall 
incorrect 
pre 

% overall 
incorrect  
post 

Incorrect 
answer 
choices 

Intro 
stud. 
alt. 
pre 

Intro 
stud. 
alt. 
post 

Ins. GS 

Do not know about any forces 
(including the force of gravity) 

11 86% 65% E 3% 4% 20% 0% 
29 58% 29% E 4% 1% 45% 44% 

Do not know about contact 
forces (normal force, tension) 

5 90% 76% A, C, E 64% 32% 70% 60% 
11 86% 65% A, B, E 41% 17% 60% 40% 
18 88% 72% A, C, E 62% 30% 70% 48% 
29 58% 29% A, E 19% 3% 69% 64% 

Moving objects are acted on by 
a distinct force in the direction 
of motion 

5 90% 76% C, D, E 86% 73% 80% 100% 
11 86% 65% B, C 76% 56% 63% 80% 
18 88% 72% C, D, E 86% 71% 84% 96% 

Questions 
5. Identify the forces acting on a ball while moving in a frictionless, circular channel. 
11. Identify the forces acting on a puck while moving on a frictionless surface. 
18. Identify the forces acting on a boy while swinging on a rope. 
29. Identify the forces acting on a chair at rest on a floor. 
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Table 7.6 shows that the majority of both instructors and graduate students are aware that 

introductory students have the alternate conception that moving objects are acted on by a distinct 

force in the direction of motion. However, in all these questions, many instructors and graduate 

students claimed that introductory students will not identify contact forces (normal and tension 

forces), and to a lesser extent they will not identify any forces (including the force of gravity) 

even in the post-test. However, contrary to what instructors and graduate students claimed, 

introductory students rarely selected answer choices which correspond to these alternate 

conceptions. For example, in question 5, 70% of instructors and 60% of graduate students 

selected answer choices A, C and E which do not include the force that the channel exerts on the 

ball; however none of these choices was selected by 19% or more introductory students (see 

Table B1). Similarly, in question 11, 60% of instructors and 40% of graduate students selected 

choices A, B and E which do not include the normal force; however, these answer choices 

combined were only selected by 17% of introductory students (see Table 7.6). Moreover, in 

question 29, it is very interesting that almost half of both instructors (45%) and graduate students 

(44%) claimed that the most common incorrect answer choice selected by introductory students 

in the post-test is choice E, which states that no forces act on the ball because it is at rest (see 

Table B1). On the other hand, this answer choice was selected by only 1% of introductory 

students. Furthermore, 24% of instructors and 20% of graduate students selected choice A, which 

only included the force of gravity, an answer choice selected by only 2% of introductory students 

(see Table B1). Thus, instructors and graduate students did not identify introductory students’ 

alternate conceptions related to identification of distinct forces in different contexts very well. 
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3) Constant force implies constant velocity: This alternate conception of introductory 

students and the performance of both instructors and graduate students in 

identifying it are both context dependent. 

 

Table 7.7. Alternate conception that constant net force implies constant velocity, questions in which this alternate 

conception arises (FCI item #), percentage of introductory students who answer the questions incorrectly in the pre-

test (% overall incorrect pre) and in the post-test (% overall incorrect post), incorrect answer choices on each 

question which uncovers this alternate conception (incorrect answer choices), percentage of introductory students 

who hold the alternate conception based on their selection of these answer choices in the pre-test (Intro stud. alt. pre) 

and in the post-test (Intro stud. alt. post.) and percentage of instructors (Ins.) and graduate students (GS) who 

identify them as the most common incorrect answer choices (Ins.). For convenience, brief descriptions of the 

problems are given underneath. 

 

Examination of Table 7.7 reveals that this alternate conception in introductory students’ 

responses to different questions arises more or less often depending on the context. Table 7.7 

shows that, on FCI questions 17 and 26, the vast majority of students (72% and 73%) select 

Introductory student 
alternate conception 

FCI 
item 
# 

% overall 
incorrect 
pre 

% overall 
incorrect  
post 

Incorrect 
answer 
choices 

Intro 
stud. 
alt. pre 

Intro 
stud. 
alt. post 

Ins. GS 

Constant net force implies 
constant velocity (also: 
zero net force implies 
decreasing velocity) 

17 92% 76% A, D 82% 72% 90% 88% 
21 65% 67% C 23% 38% 43% 44% 
22 70% 55% A 37% 33% 67% 28% 
24 37% 30% C 25% 22% 70% 68% 
25 88% 77% D 58% 53% 57% 44% 
26 97% 86% A, B 83% 73% 87% 74% 
27 46% 42% A 31% 26% 63% 68% 

Questions 
17. Elevator being pulled up by a cable at constant speed. 
21. Rocket drifting horizontally, constant thrust applied vertically, find path followed by the rocket. 
22. What is the speed of the rocket during this time (constant, increasing, etc.)? 
24. What is the speed of the rocket after thrust drops to zero (constant, increasing, etc.)? 
25. Constant horizontal force exerted on a box which causes it to move at constant speed. 
26. Force in question 25 is doubled, what happens to speed of box? 
27. Force is removed. The box will (A) immediately come to stop, (B) continue moving at constant speed 
for a while and then slow to a stop, etc. 
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answer choices which imply that a constant net force would cause a constant velocity. In 

question 25, about half answered that the force exerted by the woman has to be greater than the 

total force which resists the motion of the box in order for the box to move at a constant velocity. 

In questions 21 and 22, the fraction of students who selected answer choices corresponding to 

this alternate conception was about one third and in question 24, the fraction was about one fifth. 

Thus, this alternate conception is observed in introductory students’ responses more or less 

frequently depending on the context. 

Table 7.7 suggests that the performance of both instructors and graduate students in 

identifying this alternate conception, constant force implies constant velocity, is also context 

dependent and their performance varies significantly depending on the question. For example, 

the contexts of problems 17 and 25 are similar and in both cases an object is acted upon by two 

forces, one of which is applied in the direction of motion, and the other opposite to it. In question 

17, they are the force exerted by the cable and the weight of the elevator and in question 25 they 

are the force exerted by the woman and the total force which resists the motion of the box. 

However, the performance of instructors and graduate students at identifying the alternate 

conception in these two questions is very different. In particular, in question 17 nearly all of 

them identified it (90% of instructors and 88% of graduate students – see Table 7.7) whereas in 

question 25, 57% of instructors and 44% of graduate students identified it. The rest of their 

choices regarding the most common incorrect answer of introductory students were spread over 

answer choices A, B and E, none of which was selected by more than 12% of introductory 

students (see Table B1 in Appendix B). 

In addition, the performance of instructors and graduate students related to the “constant 

force implies constant velocity” alternate conception is not only context-dependent, but it is also 
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not well correlated with the strength of the alternate conception. While instructors and graduate 

students performed well in the two questions in which more than 70% of introductory students 

selected answer choices which revealed this alternate conception, they performed better in the 

question with a medium level alternate conception (question 24) than in other questions in which 

this alternate conception was strong. In particular, in question 21 and question 25, many 

instructors and graduate students, and in question 22, many graduate students had difficulty in 

identifying this alternate conception as shown in Table 7.7). 

We note that there is a large discrepancy between the performance of instructors and 

graduate students in question 22. While the majority of instructors (67%) correctly identified the 

alternate conception that constant net force implies constant velocity on this question, fewer 

graduate students identified it (28%) and a large percentage of them (40%) thought that the most 

common alternate conception is that the speed of the rocket would increase for a while and be 

constant thereafter, an answer choice (choice D) selected by fewer introductory students (see 

Table B1 in Appendix B). In addition, 24% of the graduate students mistakenly selected the 

correct answer choice as the most common incorrect answer chosen by the introductory students 

for this question. 

 

4) Confusion between position and velocity and velocity and acceleration: Graduate 

students are better than instructors at identifying that some introductory students 

confuse position with velocity, while instructors are somewhat better than graduate 

students at identifying that some introductory students confuse velocity with 

acceleration. 
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Table 7.8. Student difficulties with interpreting strobe diagrams of motion, questions in which these difficulties 

arise (FCI item #), percentage of introductory students who answer the questions incorrectly in the pre-test (% 

overall incorrect pre) and in the post-test (% overall incorrect post), incorrect answer choices on each question 

which uncover the difficulties (incorrect answer choices), percentage of introductory students who have these 

difficulties based on their selection of these answer choices in the pre-test (Intro stud. alt. pre) and in the post-test 

(Intro stud. alt. post) and percentage of instructors (Ins.) and graduate students (GS) who identify them as the most 

common incorrect answer choices (Ins.). For convenience, brief descriptions of the problems are given underneath. 

 

Table 7.8 shows that in question 19, graduate students performed better than instructors 

at identifying that the most common difficulty of introductory students is confusion between 

position and velocity. In particular, they selected answer choice D much more frequently than 

instructors (76% compared to 38%). Answer choice D states that the instances when the two 

blocks have the same speed are when the two blocks have identical positions. The answers of the 

instructors were spread over other answer choices which were selected by 12% or fewer 

introductory students (see Table B1 in appendix B). 

Introductory student 

difficulties 

FCI 

item 

# 

% overall 

incorrect 

pre 

% overall 

incorrect  

post 

Incorrect 

answer 

choices 

Intro 

stud. 

alt. pre 

Intro 

stud. 

alt. post 

Ins. GS 

Confusing position with 

velocity 

19 46% 49% D 26% 29% 38% 76% 

Confusing velocity with 

acceleration 

20 68% 51% C 36% 27% 72% 56% 

Questions 

19. Diagrams of positions of two blocks at regular, successive time intervals. One block is accelerating, 

the other has constant velocity. Do they ever have the same speed? 

20.  Diagrams of positions of two blocks at regular, successive time intervals. Both blocks move at 

constant velocities, one smaller than the other. Compare the accelerations. 
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In question 20, instructors performed better (although not significantly so) at identifying 

that the most common difficulty of introductory students is confusion between velocity and 

acceleration. In particular, more instructors selected answer choice D compared to the graduate 

students (72% instructors compared to 56% graduate students as shown in Table 7.8). Answer 

choice D states that the acceleration of block “b” is greater than the acceleration of block “a”, 

while the strobe diagram implies that the velocity of block “b” is greater than the velocity of 

block “a” (both velocities are constant). 

We note that for question 19 there is virtually no change in the performance of algebra-

based students from the pre-test to the post-test (54% in the pre-test, 51% in the post-test). There 

was an improvement in the performance of introductory students in question 20 (17% 

improvement from 32% correct to 49% correct). One reason why it is more difficult for students 

to improve in performance in question 19 compared to question 20  is due to the fact that in 

question 19, one motion is accelerated whereas for question 20, both blocks move at a constant 

velocity [1-3]. 

 

5) Instructors’ and graduate students’ difficulties in identifying other common 

alternate conceptions of introductory students 

 

The student alternate conception related to an impetus view of motion identified in question 13 is 

that after a boy throws a ball in the air vertically, on the way up, in addition to the force of 

gravity, a steadily decreasing force also acts on the ball. On the way down, only the force of 

gravity acts on the ball. This alternate conception (which is held by 50% of introductory 

students) was identified by about half of the instructors (47%), but very few graduate students 
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Table 7.9. Three other common alternate conceptions/difficulties, questions in which these difficulties arise (FCI 

item #), percentage of introductory students who answer the questions incorrectly in the pre-test (% overall incorrect 

pre) and in the post-test (% overall incorrect post), incorrect answer choices on each question which uncover the 

difficulties (incorrect answer choices), percentage of introductory students who have these difficulties based on their 

selection of these answer choices in the pre-test (Intro stud. alt. pre) and in the post-test (Intro stud. alt. post.) and 

percentage of instructors (Ins.) and graduate students (GS) who identify them as the most common incorrect answer 

choices (Ins.). For convenience, brief descriptions of the problems are given underneath. 

 

(16%) as shown in Table 7.9. A sizeable percentage of both instructors (30%) and graduate 

students (44%) thought that the most common incorrect answer choice of introductory students 

for question 13 is choice B (see Table B1 in Appendix B) in which, on the way down, the force 

of gravity steadily increases. Only 11% of introductory students selected this answer choice. In 

addition, 20% of instructors and 36% of graduate students selected answer choice A as the most 

common alternate conception, which does not make a distinction between the forces acting on 

the object on the way up and on the way down (downward force of gravity along with a steadily 

Introductory student alternate 
conceptions/difficulties 

FCI 
item 
# 

% overall 
incorrect 
pre 

% overall 
incorrect  
post 

Incorrect 
answer 
choices 

Intro 
stud. 
alt 
pre 

Intro 
stud. 
alt. 
post 

Ins. GS 

Ball thrown vertically in the air: on 
the way up - steadily decreasing 
upward force and gravity, on way 
down, only gravity 

13 88% 65% C 64% 50% 47% 16% 

Relative velocity and reference 
frame difficulties 

14 64% 39% A 35% 19% 17% 20% 

If a constant force acts on an object 
for some time and then it is 
removed, the object will eventually 
go back to the direction in which it 
was originally moving 

23 71% 61% D 28% 23% 23% 24% 

Questions 
13. Ball thrown vertically in the air, no air resistance. Find the forces acting on the ball while in the air. 
14. Bowling ball rolls off a plane while plane is travelling horizontally. Find the path of the ball. 
23. Rocket moving horizontally. Constant thrust applied vertically for some time, then removed. Find the path 
of the rocket after thrust drops to zero. 



 250 

decreasing upward force), and which was selected by only 4% of introductory students (see 

Table B1). Thus, the responses of instructors and graduate students suggest that they do not have 

a good understanding of introductory physics students’ difficulty in this situation. 

Question 14 reveals an interesting introductory student difficulty. Although the question 

was somewhat easy for introductory students in the post-test (61% correct), 19% of introductory 

students selected the trajectory which arches backwards even in the post-test. This question is 

one for which the reasons for explicitly selecting the answers are not provided, and it would be 

worthwhile knowing students’ reasoning. We therefore added reasons for the each answer choice 

and administered the question as part of a final exam in a large algebra-based introductory 

physics class with 400+ students. The reasons for the path that arches backwards were (A) 

“because by the time it strikes the ground, the plane will cover some horizontal distance” and (B) 

“due to air resistance”. Choice (C) in this multiple-choice question provided a justification for 

path (2) which goes straight down: “the force of gravity is the only force acting on the ball after 

the ball falls from the plane and it causes the ball to fall vertically downwards”. These 

justifications increased the percentage of students who selected these answer choices by 5% 

each. The percentages of students who selected each incorrect answer choice (A), (B) and (C) 

are: 17%, 7% and 14%. It appears that the main reason students select the path that arches 

backwards is because they are having difficulty viewing the motion of the ball from the 

perspective of a person on the ground. They are implicitly in the airplane thinking that it keeps 

travelling after the bowling ball falls out and therefore covers more horizontal distance. In the 

FCI version of the question, few instructors (17%) and graduate students (20%) identified that 

the most common incorrect choice would be (A), the path which arches backwards. Both groups 

selected choices B (straight down) and C (straight oblique line) much more often (see Table B1 
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in Appendix B), and these answer choices were selected by fewer introductory students (10% 

and 9% – see Table B1). 

Question 23 reveals another interesting student alternate conception. For this question, 

the most commonly selected answer choice (by 23% of introductory students) is choice D. The 

path described by choice D is one in which the direction of the velocity of the rocket gradually 

returns to its original orientation (to the right). This implies that students who selected this choice 

thought that forces which act for a finite time do not change the direction of motion indefinitely 

and the rocket eventually returns to its original orientation. Only about one quarter of both 

instructors and graduate students (23% and 24% – see Table 7.9) identified this as the most 

common incorrect answer choice. The answers of graduate students appear to suggest that they 

are random guessing (percentages between 20% and 28% for each incorrect answer choice – see 

Table B1), while 47% of instructors selected answer choice C (vertical path), which was selected 

by only 18% of introductory students. Thus, in this context also, the instructors and graduate 

students struggled to identify the most common difficulties of introductory physics students. 

7.4.2 Results: Secondary research questions 

S.1. Which questions on the FCI pose significant challenges for students even after 

instruction (poor performance)? 

We note that the original paper describing the development of the FCI has a discussion of 

students’ difficulties on the original version of the FCI even after instruction. For the later 

version of the FCI that we employed in our research, this question about introductory physics 

students’ difficulties in post-test was answered earlier while discussing which introductory 

student alternate conceptions were correctly identified by instructors and graduate students. One 
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can also refer back to Table B1 (in Appendix B) which provides the performance of introductory 

students on the post-test on the questions in the FCI in which at least one incorrect answer choice 

was selected by 19% or more introductory students. 

 

S.2. Are there any questions on the FCI in which there is little improvement (less than 

10%) for algebra-based students from pre- to post-test? 

The researchers decided that “little” (not noteworthy) improvement occurred from pre- to post-

test in questions in which the normalized gain was less than 0.173 (i.e. normalized gain is in the 

lower 1/3 based on the average normalized gain of 0.26), and questions in which the percentage 

of introductory students who hold a particular alternate conception decreased by 5% or less. 

There were twelve questions on the FCI (shown in Table 7.10) which fit at least one of these two 

criteria. Table 7.10 also shows the percentage of introductory students who answered each 

question incorrectly both in the pre-test and in the post-test, the normalized gain, the incorrect 

answer choices corresponding to the most common alternate conceptions and the percentage of 

introductory students who hold those alternate conceptions both in the pre-test and in the post-

test. 

Constant net force implies constant velocity and zero net force implies decreasing velocity 

The most prevalent difficulty observed was that introductory students have a very difficult time 

abandoning the notion that a constant net force implies a constant velocity. In the questions 

which can be used to test for this alternate conception (questions 17, 21, 22, 24, 25, 26 and 27), 

there was either less than 0.173 normalized gain, and/or the percentage of students who hold this 

alternate conception did not decrease by more than 5% (see Table 7.10). In question 21, there 

was a slight shift in alternate conceptions because in the pre-test, students selected answer choice  
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Table 7.10. The 12 questions on the FCI on which there was little improvement (less than 0.173 normalized gain 

and/or difference of 5% or less in the percentages of introductory physics students harboring a particular alternate 

conception), student alternate conceptions/difficulties associated with these questions, percentage of introductory 

students who answered them incorrectly in the pre-test (% overall incorrect pre) and in the post-test (% overall 

incorrect post), normalized gain (Norm. gain), most common incorrect answer choices which uncovered these 

alternate conceptions/difficulties (incorrect answer choices), percentage of students who have these alternate 

conceptions/difficulties based on their selection of those incorrect answer choices in the pre-test (Intro stud. alt. pre) 

and in the post-test (Intro stud. alt. post). For convenience, short descriptions of the questions are given underneath. 

FCI 
item 
# 

Introductory student alternate 
conceptions/difficulties 

% overall 
incorrect 
pre 

% overall 
incorrect 
post 

Norm. 
gain 

Incorrect 
answer 
choices 

Intro 
stud. 
alt. 
pre 

Intro 
stud. 
alt. 
post 

5 Moving objects have a distinct force in the 
direction of motion 

90% 76% 0.16 C, D, E 86% 73% 
30 88% 74% 0.16 B, D, E 87% 71% 
9 Difficulties with addition of perpendicular 

velocities 
57% 47% 0.17 C 20% 19% 

19 Confusing position with velocity 46% 49% -0.06 D 26% 29% 
23 If a constant force acts on an object for 

some time and then it is removed, the 
object will eventually go back to the 
direction in which it was originally moving 

71% 61% 0.14 D 28% 23% 

17  92% 76% 0.17 A 60% 62% 
21  65% 67% -0.02 C 23% 38% 
22 Constant net force implies constant 70% 55% 0.22 A 37% 33% 
24 velocity (also: zero net force implies  37% 30% 0.20 C 25% 22% 
25 decreasing velocity) 88% 77% 0.13 D 58% 53% 
26  97% 86% 0.11 A 41% 41% 
27  46% 42% 0.09 A 31% 26% 
Questions 
5. Identify the forces acting on a ball while moving in a frictionless, circular channel. 
9. Puck sliding horizontally with speed “v0”. Kicked vertically (if at rest kick would give the puck speed “vk”. 
What is the speed of the puck just after the kick? 
17. Elevator being pulled up by a cable at constant speed. 
19. Diagrams of positions of two blocks at regular, successive time intervals. One block is accelerating, the other 
has constant velocity. Do they ever have the same speed? 
21. Rocket drifting horizontally, constant thrust applied vertically. Find path followed by the rocket. 
22. What is the speed of the rocket during this time (constant, increasing, etc.)? 
23. Path of the rocket after thrust drops to zero. 
24. What is the speed of the rocket after thrust drops to zero (constant, increasing, etc.)? 
25. Constant horizontal force exerted on a box which causes it to move at constant speed. 
26. Force in question 25 is doubled, what happens to speed of box? 
27. Woman stops applying horizontal force (from question 26). The box will: immediately come to a stop, 
immediately start slowing to a stop, etc. 
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i.e., implying that constant vertical force results in constant vertical speed) equally (21% and 

23%). However, in the post-test, more students selected choice C than choice B (38% compared 

to 13%). It appears that some students have learned that the initial motion of the rocket must be 

taken into account when determining the path after the engine of the rocket was turned on, but 

they still harbor the alternate conception that a constant force implies a constant velocity. 

 

Moving objects are acted upon by a distinct force in the direction of motion 

When it comes to this alternate conception, it appears that introductory students improved in 

some contexts after instruction, but not in others. Out of the four questions in which this alternate 

conception can be identified, the normalized gain was less than 0.173 in two (questions 5 and 30 

– see Table 7.10). However, even in the other two questions in which the normalized gain was 

not in the lower one third, it was not very large (question 11 – puck sliding across a frictionless 

surface: normalized gain = 0.24 and question 18 – boy swinging on a rope – normalized gain = 

0.19 – see Table B3 in Appendix B). 

 

Difficulties with addition of perpendicular velocities 

In question 9, it appears that the same number of students (20% in the pre-test and 19% in the 

post-test) noted that the final speed of the puck will be the arithmetic sum of “v0” (initial speed 

of the puck) and “vk” (the speed the kick would have imparted, had the puck been stationary). 

These students had difficulty realizing that the Pythagorean Theorem must be applied to add the 

two perpendicular velocities. Even after instruction, only about half of the introductory students 

30. Tennis player hits a tennis ball against strong wind. Identify the forces acting on the tennis ball while in the 
air. 
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correctly reasoned that the final speed will be greater than either of the speeds “v0” and “vk”, but 

less than their sum. 

 

Confusing position with velocity 

In question 19, which assesses students’ ability to extract information about speed from strobe 

diagrams of motion, the percentage of correct answers decreased from 54% before instruction to 

51% after instruction. In addition, the percentage of introductory students who confused position 

with velocity (choice D: the two objects have the same speed at points 2 and 5 on the strobe 

diagram, at which points they have the same position) remains approximately the same (26% in 

the pre-test and 29% in the post-test). Interestingly, in question 20, which assesses students’ 

ability to extract information about acceleration from strobe diagrams of motion, the normalized 

gain was 0.25 (see Table B3 in Appendix B). 

 

If a constant force acts on an object for some time and then it is removed, the object will 

eventually return to the direction in which it was originally moving before the constant 

force was applied. 

Many introductory physics students incorrectly believe this. In addition to low normalized gain 

on question 23, which assessed understanding of this concept (normalized gain = 0.14 – see 

Table B3), the percentage of students who hold this alternate conception decreased by only 5% 

from the pre-test to the post-test. 
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S.3. Are there any shifts in the most common alternate conceptions from the pre-test to the 

post-test? 

 

1) Identify all of the distinct forces that act on an object 

 

For questions 5, 11 and 18, the answer choices which include the force of gravity and a force in 

the direction of motion are choices C, B and C, respectively, while the answer choices which 

include the force of gravity, the contact force and a force in the direction of motion are choices 

D, C and D, respectively. Table 7.11 shows that the percentage of introductory students who 

selected these incorrect answer choices in each question are comparable in the pre-test (question 

5: C – 31%, D – 25%; question 11: B – 31%, C – 45% and question 18: C – 14% and D – 27%). 

In the post-test, the incorrect answer choices shift significantly towards the answer choices which 

include the force of gravity, the contact force and a force in the direction of motion (question 5: 

44% compared to 12%, question 11: 48% compared to 8%, question 18: 42% compared to 4%). 

It appears that, before instruction, some students are not aware of contact forces (normal force, 

tension force), and after instruction they are aware of them. However, introductory students often 

do not abandon the alternate conception that if an object is moving in a certain direction, a 

distinct force must be acting on it in that direction. 

The only major shift in alternate conceptions of introductory algebra-based students 

which occurred for more than one question was observed on questions which asked students to 

identify all the distinct forces that act on an object. Before instruction, algebra-based students 

selected incorrect answer choices which corresponded to the force of gravity and force in the 

direction  of  motion  with  similar  frequency  compared  to the incorrect answer choices which 
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Table 7.11. Introductory students’ alternate conceptions related to identifying all the distinct forces that act on an 

object and alternate conceptions related to question 2, the questions in which these alternate conceptions occurred, 

the percentage of introductory students who answered the questions incorrectly in the pre-test (% incorrect pre) and 

in the post-test (% incorrect post), the most common incorrect answer choices which uncovered these alternate 

conceptions and the percentage of students who hold these alternate conceptions based on their selection of those 

incorrect answer choices in the pre-test (Intro stud. alt. pre) and in the post-test (Intro stud. alt. post). For 

convenience, short descriptions of the questions are given underneath. 

 

corresponded to the force of gravity, contact forces and force in the direction of motion. After 

instruction, they overwhelmingly selected the latter compared to the former (this is also true for 

calculus-based students). The only other shift occurred on question 2, for which, before 

instruction, more algebra-based students thought that the ball twice as heavy will strike the floor 

considerably closer compared to students who thought that the ball twice as heavy will strike the 

floor at exactly half the distance of the lighter ball, whereas after instruction the percentages of 

students who held these alternate conceptions are about the same. Table 7.11 shows these 

Introductory student alternate 
conceptions 

FCI 
item 
# 

% overall 
incorrect 
pre 

% overall 
incorrect  
post 

Incorrect 
answer 
choices 

Intro 
stud. 
alt. 
pre 

Intro 
stud. 
alt. 
post 

Force of gravity and force in the direction of 
motion 

5 90% 76% C 31% 12% 
11 86% 65% B 31% 8% 
18 88% 72% C 14% 4% 

Force of gravity, contact force and force in 
the direction of motion 

5 90% 76% D 25% 44% 
11 86% 65% C 45% 48% 
18 88% 72% D 27% 42% 

Ball twice as heavy that rolls off horizontal 
table travels half as far 

2 73% 56% B 21% 25% 

Ball twice as heavy that rolls off horizontal 
table travels considerably less, but not half 

2 73% 56% D 37% 21% 

Questions 
2.  Two metal balls, same size, one twice as heavy as the other, roll off a horizontal table: (A) both balls 
hit the floor at the same distance, (B) heavier ball hits the floor at half the distance of the lighter ball, etc. 
5. Identify the forces acting on a ball while moving in a frictionless, circular channel. 
11. Identify the forces acting on a puck while moving on a frictionless surface. 
18. Identify the forces acting on a boy while swinging on a rope. 
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alternate conceptions, the questions in which they occur, the percentage of incorrect answers 

both in the pre-test and in the post-test along with the incorrect answer choices corresponding to 

the most common alternate conceptions and the percentage of students who hold these alternate 

conceptions. 

2) Two metal balls roll off a horizontal table 

The other shift in alternate conceptions occurred in question 2. In the pre-test, more students 

thought that the heavier ball hits the floor considerably closer than the lighter ball, but not 

necessarily half the horizontal distance, compared to students who thought that it hits the floor at 

half the distance of the lighter ball (37% compared to 21% – see Table 7.11). In the post-test 

however, the percentages of students who selected these choices are about the same (21% and 

25%). 

 

S.4. On which questions do calculus-based students perform better than algebra-based 

students? Are there any questions in which the alternate conceptions of algebra-based 

students are different from the alternate conceptions of calculus-based students? 

Due to the large population sizes, any difference of 5% or more turned out to be statistically 

significant by means of chi-square tests [59]. However, a difference of 5% in performance from 

the pre-test to the post-test does not have much practical significance. Instead, questions which 

were answered correctly by 20% or more of calculus-based students compared to algebra-based 

students were chosen as a heuristic by the researchers to be indicative of significantly better 

performance of calculus-based students compared to algebra-based students. The question about 

whether the alternate conceptions of algebra-based students are different from the alternate 

conceptions of calculus-based students was answered by investigating whether there were any 
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questions in which the most common incorrect answer choice(s) of algebra-based students was 

(were) different from the most common incorrect answer choice(s) of calculus-calculus based 

students. It turned out that there were no such questions. For all questions which included only 

one common incorrect answer choice, this was most common for both algebra-based and 

calculus-based students (in addition, the fraction of calculus-based students who selected that 

particular incorrect answer choice was always smaller than the fraction of algebra-based students 

– see Tables B3 and B4 included in Appendix B). Similarly, for the questions which included 

two common incorrect answer choices, they were common for both algebra-based and calculus-

based students (see Tables B3 and B4). Moreover, only one question had three common incorrect 

answer choices and these three answer choices were the most common incorrect answers for both 

algebra-based and calculus-based students. It therefore appears that in the pre-test, the algebra-

based students harbor the same alternate conceptions as calculus-based students. However, 

algebra-based students hold the same alternate conceptions more strongly than calculus-based 

students. 

 
1) Pre-test comparison of performance of algebra-based and calculus-based students 

Calculus-based students correctly answered every single question on the FCI more frequently 

than algebra-based students in the pre-test. Differences of 10% or more occurred on 26 questions 

and differences of 20% or more occurred on 8 questions (see Tables B3 and B4 included in). We 

will focus on the questions in which the differences were of 20% or more (questions 1, 3, 12, 13, 

14, 20, 22 and 28). Table 7.12 shows the percentages of algebra-based and calculus based 

students who answer these questions incorrectly, the incorrect answer choices which uncover an 

alternate conception and the percentages of algebra-based and calculus-based students who 

harbor these alternate conceptions. 
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Table 7.12. Questions in which calculus-based students outperformed algebra-based students in the pre-test, the 

most common alternate conceptions/difficulties uncovered by these questions, percentage of incorrect answers for 

both algebra-based (% overall incorrect algebra) and calculus-based (% overall incorrect calculus) introductory 

students, incorrect answer choices which correspond to the most common alternate conceptions/difficulties 

(incorrect answer choices) and percentages of algebra-based (Alg. alt.) and calculus-based (Calc. alt.) students who 

harbor/have these alternate conceptions/difficulties. 

 

 

FCI 
item 
# 

Pre-test introductory student alternate 
conceptions 

% overall 
incorrect 
algebra 

% overall 
incorrect  
calculus 

Incorrect 
answer 
choices 

Alg. 
alt. 

Calc. 
alt. 

1 Time it takes an object to fall freely through 
a certain distance is proportional to mass 

47% 18% C 25% 8% 

3 Freely falling objects reach terminal 
velocity a short time after release 

60% 34% A 31% 17% 

12 An object fired horizontally will not 
immediately descend and continue to move 
horizontally for some time 

41% 16% C 32% 14% 

13 Ball thrown vertically in the air: on the way 
up - steadily decreasing upward force and 
gravity, on way down, only gravity 

88% 67% C 64% 5`% 

14 Relative velocity and reference frame 
difficulties 

64% 37% A 35% 21% 

20 Confusing velocity with acceleration 68% 46% C 36% 22% 
22 Constant net force implies constant velocity 70% 49% A 37% 27% 
28 Newton’s third law: the active object exerts 

more force on the passive than vice versa 
76% 56% D 61% 45% 

Questions 
1. Two metal balls, same size, one twice as heavy as the other are dropped from the same height. The 
time it takes the balls to fall is (A) half as long for heavier ball, (B) half as long for lighter ball (C) same, 
etc.  
3. The two balls from question 1 roll off a horizontal table. (A) distance same for both balls, (B) distance 
of heavier ball is half the distance of lighter ball, etc. 
12. Ball fired horizontally from cannon. Determine the path it follows. 
13. Ball thrown vertically in the air, no air resistance. Find the forces acting on the ball while in the air. 
14. Bowling ball rolls off a plane while plane is travelling horizontally. Find the path of the ball. 
20.  Diagrams of positions of two blocks at regular, successive time intervals. Both blocks move at 
constant velocities, one smaller than the other. Compare the accelerations. 
22. Rocket drifting horizontally, constant thrust applied vertically. Speed of rocket during this time 
(constant, increasing, etc.)  
28. Student “a” puts his feet on student “b” and pushes against student “b”. 
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Significantly better performance of calculus-based students compared to algebra-based 

students is context dependent 

An interesting finding suggested by Table 7.12 is that calculus-based students answer questions 

involving particular force and motion concepts significantly better than algebra-based students 

(by 20% or more) in some contexts, but not in others. For example, 20% more calculus-based 

students than algebra-based students correctly interpreted Newton’s third law in the context of 

problem 28 (one student pushing another). However, in the other two questions with the alternate 

conception that the active object exerts more force on the passive object than vice versa 

(question 15 – car pushing truck and accelerating and question 16 – car pushing truck at constant 

speed) calculus-based students did not outperform algebra-based students by more than 20%. In 

fact, the difference in question 15 is merely 4% (see Tables B3 and B4 in Appendix B). 

A similar observation can be made by examining the questions related to the alternate 

conception that a constant net force implies a constant velocity (questions 17, 21, 22, 24, 25, 26 

and 27). We find that 21% more calculus-based students than algebra-based students answered 

question 22 correctly. However, in the other questions involving the same concept, the smallest 

difference in the performance of calculus-based and algebra-based students was 11% (i.e., 

calculus-based students always performed better, but not always by 20% or more). 

 

Understanding of freely falling objects 

The better performance of calculus-based students compared to algebra-based students in 

questions 1 and 3 (by 29% and 26% respectively) in the pre-test indicates that calculus-based 

students have a better understanding of the physics of freely falling objects before instruction. 
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An object fired horizontally will not immediately descend, but continue to move 

horizontally for some time. 

The data in Table 7.12 show that algebra-based students performed worse than calculus-based 

students on question 12, which uncovered this alternate conception, by 25%. 

 

Relative velocity and reference frame difficulties 

In question 14, it appears that algebra-based students find it difficult to view the motion of the 

bowling ball falling from the airplane from the correct frame of reference. Many introductory 

students thought that the path of the ball falling from the plane arches backwards because they 

have difficulty viewing the path of the ball as ground observers [1-3]. 

 

Impetus view of motion 

Question 13 indicates that many algebra-based (64%) and calculus-based (51%) students have an 

impetus view of motion before instruction (ball thrown vertically in the air, on the way up will be 

acted upon by a steadily decreasing upward force and the force of gravity, and on the way down, 

will only be acted upon by the force of gravity), however, 21% more calculus-based than 

algebra-based students answer this question correctly. 

 

Confusion between velocity and acceleration 

Question 20, which was answered correctly by 22% more calculus-based students than algebra-

based students, indicates that calculus-based students are more likely to correctly interpret 

acceleration from strobe diagrams of motion. The most common incorrect answer choice for both 
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groups is choice C (acceleration of “b” is greater than that of “a”) which indicates that many 

introductory students confuse acceleration with velocity of an object. 

 

2) Post-test comparison of performance between algebra-based and calculus-based 

students 

 

Similar to the pre-test, calculus-based students outperformed algebra based students on all but 

one question (item 15) after instruction (post-test). Differences of 10% or more occurred on 26 

questions and differences of 20% or more occurred on 14 questions (more than in the pre-test for 

which differences of 20% or more occurred on only 8 questions). These questions are 5, 9, 10, 

11, 13, 17 through 23, 25 and 26. Question 10 is not included in Table 7.13 because although 

calculus-based   students   performed   better   than   algebra-based   students   by   20%,   there 

were no incorrect answer choices selected by 19% or more of either calculus-based or algebra-

based students in the post-test, and therefore no strong or medium level common alternate 

conceptions were uncovered by this question. Table 7.13 shows the percentages of algebra-based 

and calculus based students who answer these questions incorrectly, the incorrect answer choices 

which uncover an alternate conception and the percentage of algebra-based and calculus-based 

students who harbor these alternate conceptions in the pre-test. 

 

Identifying all of the distinct forces that act on an object 

Questions 5, 11 and 18 all ask students to identify all of the distinct forces acting on an object. 

Comparison of algebra-based students’ alternate conception shifts in these questions indicated 

that  on  the  pre-test  many of them had failed to identify contact forces, while on the post-test, 
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Table 7.13. Questions on which calculus-based students outperformed algebra based students in the post-test, the 

most common alternate conceptions/difficulties uncovered by these questions, percentage of incorrect answers for 

both algebra-based (% overall incorrect algebra) and calculus-based (% overall incorrect calculus) introductory 

students, incorrect answer choices which correspond to the most common alternate conceptions/difficulties 

(Incorrect answer choices) and percentages of algebra-based (Alg. alt.) and calculus-based (Calc. alt.) students who 

have these alternate conceptions/difficulties. 

FCI 
item 
# 

Post-test introductory student alternate 
conceptions/difficulties 

% overall 
incorrect 
algebra 

% overall 
incorrect  
calculus 

Incorrect 
answer 
choices 

Alg. 
alt. 

Calc. 
alt. 

5 Moving objects have a distinct force in the 
direction of motion 

76% 53% C, D 56% 42% 
11 65% 39% B, C 56% 30% 
18 72% 45% C, D, E 71% 46% 
17 Constant net force implies constant velocity 

(also: zero net force implies decreasing 
velocity) 

76% 56% A, D 72% 52% 
21 67% 43% C 38% 23% 
22 55% 33% A 33% 20% 
25 77% 49% D 53% 38% 
26 86% 58% A, B 73% 48% 
9 After performing an action on an object, its 

speed depends only on the action, not the 
previous motion 

47% 27% B, C 39% 23% 

13 Ball thrown vertically in the air: on the way 
up - steadily decreasing upward force and 
gravity, on way down, only gravity 

65% 39% C 50% 31% 

19 Confusing position with velocity 49% 25% D 29% 12% 
20 Confusing velocity with acceleration 51% 29% C 27% 16% 
23 If a constant force acts on an object for some 

time and then it is removed, the object will 
eventually return to the direction in which it 
was originally moving 

61% 36% D 23% 14% 

5. Identify the forces acting on a ball while moving in a frictionless, circular channel. 
9. Puck sliding horizontally with speed “v0”. Kicked vertically (if at rest kick would give the puck speed 
“vk”. What is the speed of the puck just after the kick? 
11. Identify the forces acting on a puck while moving on a frictionless surface. 
13. Ball thrown vertically in the air, no air resistance. Find the forces acting on the ball while in the air. 
17. Elevator being pulled up by a cable at constant speed. 
18. Identify the forces acting on a boy while swinging on a rope. 
19. Diagrams of positions of two blocks at regular, successive time intervals. One block is accelerating, the 
other has constant velocity. Do they ever have the same speed? 
20.  Diagrams of positions of two blocks at regular, successive time intervals. Both blocks move at constant 
velocities, one smaller than the other. Compare the accelerations. 
21. Rocket drifting horizontally, constant thrust applied vertically, find path followed by the rocket. 
22. Speed of the rocket during this time (constant, increasing, etc.)? 
23. Rocket moving horizontally. Constant thrust applied vertically for some time, then removed. Find the 
path of the rocket after thrust is removed. 
25. Constant horizontal force exerted on a box which causes it to move at constant speed. 
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they do identify them. However, they retain the alternate conception that moving objects are 

acted upon by a distinct force in the direction of motion. Comparison of performance of algebra-

based students with calculus-based students for the post-test indicates that more algebra-based 

than calculus-based students, even after instruction, still claim that if an object is moving in a 

certain direction, a distinct force must be acting on the object in the same direction. Question 30 

is similar, and in this question as well, more algebra-based students than calculus-based students 

think that there is a force of the “hit” that continues to act on the ball even when the tennis ball 

loses contact with the racquet. In particular, the calculus-based students outperformed the 

algebra-based students by 18% on this question. 

 

Constant net force implies constant velocity and zero net force implies decreasing velocity 

Calculus-based students outperformed algebra-based students by at least 20% in almost all 

questions on the FCI in which this alternate conception is uncovered (see Table 7.13). 

Furthermore, the largest discrepancies between students in the calculus-based and algebra-based 

courses on all FCI questions occurred in questions 25 and 26 (28%). It appears that calculus-

based students are better than algebra-based students at discarding the alternate conception that 

constant net force implies constant velocity and improving their performance in questions 

dealing with Newton’s 2nd law. In particular, on the pre-test, calculus-based students 

outperformed algebra-based students on only one question (question 22), which dealt with the 

alternate conception that constant net force implies constant velocity, but in the post-test, on all 

these questions, they improved more than algebra-based students, both in the percentage of 

26. Force in question 25 is doubled, what happens to speed of box? 
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correct answers and in the percentage of students who hold this alternate conception (see Tables 

B3 and B4 in Appendix B). 

 

After applying a force on an object, its speed depends only on the applied force, and not on 

the previous motion. 

On question 9, more algebra-based students retained the alternate conceptions that the speed of 

the puck after receiving the kick would be the same as the speed the kick would impart if the 

puck was stationary and independent of the original speed of the puck. Calculus-based students 

performed better than algebra-based students on this question by 20% (see Table 7.13). 

 

Impetus view of motion 

On question 13, the performance of calculus-based students was better in the pre-test (by 21%) 

as well. The discrepancy in performance is slightly higher in the post-test (26%).  

 

Interpreting strobe diagrams of motion 

Calculus-based students outperformed algebra-based students in both questions 19 and 20, which 

assess students’ ability to extract information about velocity and acceleration from strobe 

diagrams of motion. In particular, algebra-based students are more likely than calculus-based 

students to confuse position with velocity (in question 19) and velocity with acceleration (in 

question 20). 
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3) Post-test comparison of alternate conceptions between algebra-based and calculus-

based students 

 

Similar to the pre-test, in the post-test, the most common alternate conceptions were the same for 

algebra-based and calculus-based students. However, on almost all questions, algebra-based 

students held these alternate conceptions more strongly than calculus-based students (see Tables 

B3 and B4 in Appendix B). 

7.5 DISCUSSION AND SUMMARY 

7.5.1 Instructor and graduate student performance in identifying common introductory 

student alternate conceptions related to force and motion as revealed by the FCI 

Awareness of introductory physics students’ difficulties and being able to understand the way 

they reason about physics is an important aspect of pedagogical content knowledge because 

instruction can take advantage of students’ initial knowledge and pedagogical approaches and 

curricula can explicitly account for these difficulties. Our investigation used the FCI to evaluate 

this aspect of the pedagogical content knowledge of both instructors and Teaching Assistants 

(TAs) with varying degrees of teaching experience. For each item on the FCI, the instructors and 

TAs were asked to identify the most common incorrect answer choice of introductory physics 

students. We also discussed the responses individually with a few instructors and in a class 

discussion with the graduate students. 
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The ability to identify common introductory students’ alternate conceptions in the FCI 

does not appear to be dependent on teaching experience or familiarity with US teaching 

practices 

We find that the instructors, who on the average had significantly more teaching experience as 

lecturers, did not perform better at identifying common introductory student alternate 

conceptions than graduate students, who had limited teaching experience as lecturers. We note 

however, that graduate students had taken introductory physics only four years prior to this study 

as undergraduate students and a majority of them were TAs in an introductory recitation or 

laboratory class, graded quizzes, homework and exams, and held office hours in which they 

helped introductory students individually (or in small groups). These experiences may have, on 

average, improved their ability to identify introductory physics students’ difficulties related to 

force and motion. Among both instructors and graduate students, some of them performed very 

well, while others performed poorly. Moreover, the ability to correctly identify students’ 

difficulties was not correlated with the teaching experience of the physics instructors in 

introductory algebra-based and calculus-based mechanics courses. In particular, the performance 

among instructors was not better for those who had taught these courses recently (last seven 

years) compared to those who had not taught recently. One possible reason for why there was no 

statistically significant difference between the two groups of instructors is that all instructors 

who taught introductory mechanics employed traditional methods, most had minimal contact 

with students in the large introductory classes, and did not grade introductory students’ 

homework and quizzes which may have provided some insight into students’ common 

difficulties (the grading was done by the TAs).  Moreover, even instructors in the other group 

who had not taught introductory mechanics had taught other introductory courses in which force 
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concepts were relevant and many of these instructors had taught introductory mechanics more 

than seven years ago. 

We also investigated whether the ability of American graduate students to identify 

introductory students’ alternate conceptions was better than that of foreign graduate students and 

found that this was not the case. The numbers of graduate students in the different groups 

(American – 9, Chinese – 9 and other foreign – 7) were too small to perform meaningful 

statistics, but it appears that their average performance in identifying common student alternate 

conceptions is very similar. The discussions with graduate students from different countries in 

the TA training class about this FCI related PCK task suggested that foreign students were 

similar to American students in this regard, but it is difficult to justify why their performance in 

identifying student difficulties are comparable despite their different backgrounds. 

 

Instructors appear to identify ‘strong’ student alternate conceptions better than ‘medium’ 

level ones, while graduate students exhibit similar performance in identifying ‘strong’ and 

‘medium’ alternate conceptions 

An alternate conception was considered ‘strong’ if it is held by more than 1/3 of introductory 

students. ‘Medium’ level alternate conceptions were connected to incorrect answer choices 

selected by a percentage of introductory students between 19% and 33%. We found that 

instructors were able to identify the strong alternate conceptions somewhat more often than the 

medium level ones while graduate students exhibited similar performance. 

 

Discussions among graduate students improved their PCK performance in identifying 

common student alternate conceptions. 
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The graduate students identified what they thought to be the most common introductory student 

alternate conceptions first individually and then in groups of two or three. Their group 

performance was statistically significantly better than their individual performance. In addition, 

when the individual answers of graduate students working in a group disagreed, discussions 

more often shifted towards the more common alternate conception (74% of the time) than on the 

less common one. This implies that discussing student difficulties with other TAs/instructors 

leads to a better understanding of students’ initial knowledge state (and difficulties). Therefore, 

exercises which encourage such discussions in the context of conceptual assessments could be 

beneficial and should be incorporated into teacher preparation and/or training courses. 

 

For most alternate conceptions which appear in more than one question, the ability of both 

instructors and graduate students to identify them is context dependent. 

We find that while both physics instructors and TAs, on average, performed better than random 

guessing at identifying introductory students’ alternate conceptions related to force and motion, 

they did not identify many common difficulties that introductory physics students have even 

after traditional instruction and their ability to identify them was context dependent. For 

example, for Newton’s third law alternate conceptions, the vast majority of both instructors 

(97%) and graduate students (84%) identified the most common alternate conception in the 

typical context (truck colliding with car), but fewer identified it in other contexts (for example 

car pushing truck and accelerating – 60% of instructors and 40% of graduate students identified 

the most common student alternate conception that the car exerts the larger force). 

Similarly, identifying the common alternate conception that a constant force implies a 

constant velocity was also context dependent. For example, questions 17 (elevator being pulled 
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up by a cable at constant speed) and 25 (constant horizontal force applied on a box which causes 

it to move at constant speed) are similar. However, both instructors and graduate students 

correctly selected the alternate conception in question 25 much less frequently than in question 

17 (90% compared to 57% for instructors and 88% compared to 44% for graduate students). 

Similar observations can be made while examining the other five questions involving this 

alternate conception. 

For alternate conceptions related to identifying all distinct forces that act on an object, 

there was no context dependence in the ability of both instructors and graduate students to 

identify the most common student alternate conceptions; however, their PCK performance leaves 

a lot of room for improvement. In particular, the largest percentage of instructors who identified 

the most common alternate conception related to identification of distinct forces in any of these 

questions was 40% and for graduate students it was 60%. 

 

Alternate conceptions for which the PCK performance of instructors and graduate 

students leaves a lot of room for improvement 

 

As noted earlier, neither instructors nor graduate student TAs performed well at identifying 

student alternate conceptions related to identifying distinct forces (questions 5, 11, 18, 29 and 

30). This is because in almost all these questions (all except for question 30), a sizeable majority 

of instructors and graduate students selected answer choices which did not include contact forces 

or any forces, which was inconsistent with introductory student choices. In question 28, for 

example, (chair at rest on the floor), 44% of instructors and 45% of graduate students thought 
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that the most common student alternate conception is that no forces act on the chair because it is 

at rest, an answer choice selected by only 1% of introductory students. 

For introductory student difficulties related to interpreting strobe diagrams of motion, the 

majority of instructors did not identify that introductory students confuse position with velocity 

(only 38% of instructors identify this difficulty), and only half of the graduate students identify 

that introductory students confuse velocity with acceleration. 

Alternate conceptions related to Newton’s third law are identified by both instructors and 

graduate students in a typical context (truck colliding with car), but not in less typical contexts 

(questions 15, 16 and 28) for which the largest percentage of instructors who identify the most 

common alternate conception is 60% and for graduate students 52%. A similar observation can 

be made for the alternate conception that constant force implies constant velocity. However, in 

these questions instructors and graduate students perform reasonably well in more than half of 

them (5/7 questions for instructors and 4/7 questions for graduate students). 

There are three other alternate conceptions/difficulties which are not identified by the 

majority of instructors or graduate students (for two of them, the largest percentage of instructors 

or graduate students who identify them is 24%). These occur on questions 13 (ball thrown 

vertically in the air on which students have to identify all the forces), question 14 (bowling ball 

rolls off a plane while the plane is moving horizontally, on which students have to determine the 

path of the ball as viewed from the ground) and question 23 (rocket moving horizontally, with 

constant thrust applied vertically for some time and then removed, on which students have to 

determine the path of the rocket after the thrust is removed). 

In summary, there were many alternate conceptions held by more than 19% of 

introductory students (strong or medium level) that were not identified very often by both 
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instructors and graduate students. Even instructors who teach introductory courses on a regular 

basis struggled to identify some common alternate conceptions. In addition, some instructors and 

graduate students explicitly noted that this task was challenging and it was difficult for them to 

think about physics questions from a student’s perspective and expressed concern about their 

performance (a few noted that they were confident that they have performed poorly on this task). 

7.5.2 Introductory student FCI performance – most prevalent difficulties 

The performance of introductory physics students is discussed at length in the results section, 

which discusses introductory student FCI performance (section 7.5.2); here we will summarize 

the most important results. 

Introductory students have a very difficult time abandoning the alternate conception that 

a constant force implies constant velocity. In all the questions which can be used to test for this 

alternate conception (questions 17, 21, 22, 24, 25, 26 and 27), either the normalized gain was less 

than 0.175 or the percentage of introductory students who hold this alternate conception did not 

decrease by more than 5% from pre-test to post-test. 

The introductory students’ performance on questions which can be used to uncover the 

alternate conception that moving objects are acted upon by a distinct force in the direction of 

motion (questions 5, 11, 18 and 30) improved on some questions, but not on others. Two of the 

questions had normalized gains less than 0.173 and the other two had larger normalized gains, 

but not by much (they were 0.19 and 0.24). 

Confusing between position and velocity (question 19) was the difficulty most resistant to 

change, and 3% more students had this difficulty in the post-test. In the other question which 

required interpretation of strobe diagrams of motion (question 20), the normalized gain was 0.25. 
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Introductory student shifts in alternate conceptions from pre-test to post-test 

There was only one major shift in alternate conceptions which occurred in more than one 

question (in questions 5, 11, 18 and 29, which asked students to identify all the distinct forces 

that act on an object). In the pre-test, many students were unaware of contact forces and believed 

that moving objects are acted upon by a distinct force in the direction of motion, while in the 

post-test, most students were aware of contact forces. However the alternate conception that 

there must be a distinct force in the direction of motion was still present. 

 

Comparison of performance and alternate conceptions of algebra-based with calculus-

based students 

 

In the pre-test, calculus-based students answered every question correctly more frequently than 

algebra-based students and in the post-test, they answered every question correctly more 

frequently except for one (question 15). The differences appeared to get larger between these two 

populations in the post-test compared to the pre-test. In particular, in the pre-test, there were 8 

questions in which differences were 20% or larger while in the post-test there were 14 such 

questions. 

In addition, the better performance of students in the calculus-based courses compared to 

the algebra-based courses was context dependent. For example, calculus-based students 

answered a Newton’s third law question better (by 20%) than algebra-based students in the 

context of question 28 (in which one student was pushing another), but they did not perform 

better in the other three questions involving the same concept. In fact, in question 15 (a car 

pushing a truck and accelerating) the percentages of calculus-based and algebra-based students 
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who answered correctly are identical. A similar observation can be made while examining the 

alternate conception that a constant net force implies constant velocity, in that the better 

performance of calculus-based students compared to algebra-based students in questions which 

can be used to uncover this alternate conception is context dependent. In the post-test, algebra-

based students consistently answered most questions involving two common alternate 

conceptions correctly less often (by 20% or more) than calculus-based students. These questions 

are related to the alternate conceptions that moving objects are acted upon by a distinct force in 

the direction of motion and that constant net force implies constant velocity. There are other 

common alternate conceptions which occur on only one question (questions 9, 13, 19 and 20) 

which are held more strongly by algebra-based students than calculus-based students. 

We also investigated whether algebra-based students hold different alternate conceptions 

than calculus-based students. We found that this was not the case both on the pre-test and on the 

post-test. On all of the questions, the most common alternate conceptions of algebra-based 

students and calculus-based students were the same; the difference was that on almost all the 

questions, more algebra-based students than calculus-based students have these common 

alternate conceptions both on the pre-test and on the post-test. 

Previous studies have found that calculus-based students are more adept than algebra-

based students at performing identical tasks that are primarily conceptual [8,61,62,64,65]. The 

present study corroborates this result because the performance of calculus-based students on the 

FCI, which is a conceptual assessment, is better than the performance of algebra-based students. 

It is possible that the better mathematical preparation of calculus-based students helps them 

develop a better conceptual understanding. In particular, while learning physics, one must 

process information both about the conceptual and mathematical aspects of physics. A student 
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with a better mathematical preparation can use fewer cognitive resources while engaged in 

problem solving and learning to process the mathematical aspects, and allocate more cognitive 

resources to the conceptual aspects. Since working memory is finite, the mathematical facility 

can reduce the cognitive load [66, 67] and provide more opportunities to build a robust 

knowledge structure of physics. In contrast, a student lacking the requisite mathematical 

preparation might spend a significant portion of his/her cognitive resources in processing 

mathematical information, both while engaged in problem solving and while examining problem 

solutions. This increased cognitive load can hinder reflection and building of good knowledge 

structure. Therefore, a better mathematical preparation can help improve conceptual 

understanding of physics; however, more research is needed to understand the connection 

between mathematical preparation and conceptual understanding. 
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8.0  FUTURE OUTLOOK 

The studies presented in this thesis can be extended in several different ways. In the studies 

discussed in chapters two, three and four, students in different recitations were given different 

instructions regarding diagrams (draw a diagram, given a diagram, no instructions) in each quiz 

problem. However, the interventions were not matched to particular recitations and the same 

group of students received different instructions regarding diagrams from week to week. 

Therefore, we did not expect cumulative effects due to the same group of students being given 

the same instruction regarding diagrams in each quiz problem. It would be interesting to 

investigate whether these cumulative effects do arise. For example, the midterm and final exams 

could have no instruction to draw a diagram (nor provide one) and it is possible that the students 

who are always asked to draw diagrams in the quizzes end up drawing more diagrams than the 

other students even when the instruction to draw a diagram is omitted. If that is indeed the case, 

one could also investigate whether the students asked to draw a diagram in the quizzes exhibit 

improved performance compared to the other students in midterm and final exams in which the 

instructions are omitted. If that is not the case and students who are asked to draw diagrams in 

quizzes do not end up drawing more diagrams than the other students when the instruction is 

omitted, one could implement one or two more involved interventions than the ones in these 

studies to investigate the extent of scaffolding needed for positive cumulative effects to arise. 
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In the study discussed in chapter three, we found that students provided with diagrams 

that looked very similar to what most experts would initially draw in the conceptual planning 

stage performed worse than students who were not given those diagrams. This outcome was 

found to be strong for two problems which involved considerations of initial and final situations. 

A future study could investigate if the same effect happens in other problems which also involve 

initial and final situations. If the same outcome is found, the study could investigate in depth why 

this outcome is strong in this type of problems but not others. 

In the study in chapter four, we found that students who drew more detailed diagrams 

performed better than students who did not. In the future, a more in depth study could investigate 

which students benefit most from drawing more detailed diagrams, the high, mid or low 

achieving students. The categories of high, mid and low achieving could be made either by 

conceptual pre- or post-tests (such as FCI, MCE, CSEM etc.), by performance on exams, or by 

other considerations. 

In the study discussed in chapter five, we found that the additional instructions (higher 

level of scaffolding compared to the first level of scaffolding), while intended to improve 

students’ representational consistency, had the opposite effect. Interviews suggested that students 

did not discern the relevance of the additional instructions and to them, completing those 

instructions was another chore which increased their cognitive load. In a future study, the second 

level of scaffolding could be improved by adding hints intended to reduce cognitive load, for 

example, by helping students focus on only a few pieces of information at a time and gradually 

go through the process of solving the problem. In addition, hints intended to help students 

perceive the relevance of the additional instructions could be provided. Or, since the first level of 

scaffolding was found to be beneficial, one could start there and use cognitive task analysis to 
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determine how it could be improved. Then, the extent to which the newly developed level of 

scaffolding is beneficial in improving students’ representational consistency could be 

investigated. In addition, the study in chapter five found evidence (although not very strong) that 

the effects of the first level of scaffolding which was used only once in one quiz stuck with some 

students for quite some time because they exhibited somewhat improved representational 

consistency in the same problem in the final exam (in the multiple-choice format). It is possible 

that if this intervention (scaffolding level 1) is used multiple times during the course, the effects 

of this intervention could be much stronger in the long term. Therefore, a future study could 

implement this intervention multiple times during the semester and investigate whether long term 

effects become stronger (in the final exam, or perhaps several months after the course). 

In the study in chapter six, TAs were asked to identify the most common student 

difficulty on each item on the TUG-K. This study could be extended to include instructors who 

have taught introductory physics courses recently and instructors who have not. Then, it could be 

investigated if similar results to the study in chapter seven occur (experience teaching 

independent courses does not correlate with better performance on the task and neither does 

recent teaching experience, instructors do not perform better than TAs at identifying common 

student difficulties, etc.) 

In the study in chapter seven, instructors and TAs were asked to identify the most 

common student difficulties. However, this task did not provide information about how 

knowledgeable instructors are about the difficulty of the questions from the point of view of the 

students. Instructors and TAs could be asked to also predict the percentage of students who 

answer each question correctly, in addition to being asked to identify the most common incorrect 

answer choice. This would make the task more challenging, but it would provide richer data. 
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However, many questions include more than one common incorrect answer choice. Therefore, an 

even more difficult problem solving task could be given to instructors and TAs: predict the 

percentages of introductory students who would select each answer choice, including the correct 

one. This would be a more in-depth way to investigate the knowledge instructors and TAs have 

of student difficulties (the study in chapter six could be extended in this manner as well). 

However, even in the study in chapter seven in which instructors and TAs were asked to select 

only the most common incorrect answer choice, it took some instructors a long time (several 

weeks) to complete the task and many were sent reminders repeatedly. Comments from 

instructors indicate that many of them found this task challenging, which might partly account 

for the slow response. We suspect that if the task is modified to ask instructors to predict the 

percentage of introductory physics students who would select each answer choice, this task will 

be extremely challenging for many instructors which may drastically reduce their response rate. 
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APPENDIX A 

MATHEMATICAL DESCRIPTION OF THE CALCULATION OF THE TUG-K 

RELATED PCK SCORES AND DATA TABLES FOR THE TUG-K STUDY                                                                                                           

(CHAPTER SIX) 

Mathematical description of how the TUG-K related PCK scores were calculated 

We define indices i, j and k that correspond to the following: 

• i: index of graduate student (25 graduate students; it takes values from 1 to 25); 

• j: TUG-K question number (21 questions; it takes values from 1 to 21); 

• k: incorrect answer choice number (4 incorrect answer choices; it takes values from 1 to 

4). 

Then, let Fjk be the fraction of introductory physics students who select incorrect answer choice k 

on item j (e.g. F11 = 0.4, F12 = 0.04, F13 = 0.22, F14 = 0.17). Let GSijk correspond to whether 

graduate student i selected incorrect answer choice k on item j (for a given graduate student i and 

TUG-K item j, GSijk=1 only for the incorrect answer choice k, selected by graduate student i on 

item j, otherwise GSijk=0). Then, the PCK score of the ith graduate student on item j (referred to 

GSij) is: 𝐺𝑆𝑖𝑗 = ∑ �𝐺𝑆𝑖𝑗𝑘 ∗ 𝐹𝑗𝑘�4
𝑘=1 . Then, the PCK score of the ith graduate student on the whole 

survey (GSi) can be obtained by summing over all the questions: 
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𝐺𝑆𝑖 = �𝐺𝑆𝑖𝑗 =
21

𝑗=1

���(𝐺𝑆𝑖𝑗𝑘 ∗ 𝐹𝑗𝑘)
4

𝑘=1

�
21

𝑗=1

 . 

Also, the average score of all the graduate students on item j (referred to as 𝐺𝑆𝚥����) is: 

𝐺𝑆𝚥���� =
1

25
�𝐺𝑆𝑖𝑗 =
25

𝑖=1

1
25

���(𝐺𝑆𝑖𝑗𝑘 ∗ 𝐹𝑗𝑘)
4

𝑘=1

�
25

𝑖=1

 . 

 

A similar approach can be adopted for random guessing: 

• RGij = PCK score of ith random guesser on item j; 

• RGi = PCK score of ith random guesser; 

• 𝑅𝐺𝚥����� = PCK score of random guessing on item j). 

 

The PCK score of each graduate student and random guesser (GSi, RGi as described above) were 

used to obtain averages and standard deviations in order to perform t-tests to compare the 

performance of graduate students with random guessing on the whole survey (and to compare 

different subgroups of graduate students). 

 

In order to compare the performance of these different groups on individual items, the averages 

and standard deviations of the PCK scores on that particular item (e.g., for question j on the 

TUG-K: GSij, RGij) were used to perform t-tests. 
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Table A1. Questions on the TUG-K for which at least 20% of introductory students selected on incorrect 

answer choice in a post-test, percentages of introductory physics students (Intro. stud. choices) who selected each 

answer choice A through E in a post-test (they were asked to select the correct answer for each question) and 

graduate students (Grad student choices) who selected each answer choice A through E (they were asked to select 

the most common incorrect answer for each question if introductory students did not know the correct answer). The 

first column of the table lists the TUG-K question numbers and the second column titled >RG indicates whether the 

graduate students on average performed better than random guessing. 

TUG-K 
item # 

>RG Intro stud. choices  Grad student choices 
 A B C D E 

 
A B C D E 

1 Yes 41 16 4 22 17 1 36 0 0 60 4 
2 Yes 2 10 24 2 63 2 0 40 52 4 4 
3 Yes 8 0 20 62 10 3 24 0 72 0 4 
4 Yes 2 14 23 28 32 4 0 16 40 0 44 
6 No 46 26 6 6 16 6 20 4 20 20 36 
7 No 31 20 10 28 10 7 0 28 28 36 8 
8 No 11 11 37 37 5 8 40 40 8 4 8 
9 No 7 57 5 7 24 9 40 28 16 12 4 

10 Yes 30 2 62 3 3 10 12 4 56 28 0 
11 No 28 17 11 36 8 11 8 64 8 8 12 
14 No 25 48 15 9 3 14 16 0 28 56 0 
15 No 29 24 13 8 26 15 8 8 16 16 52 
16 Yes 1 39 31 22 7 16 4 16 68 4 8 
17 No 21 46 8 7 19 17 4 16 16 20 44 
18 Yes 7 46 32 4 10 18 17 4 58 0 21 
19 No 19 9 37 12 23 19 21 13 4 13 50 
21 Yes 18 73 2 5 2 21 4 79 8 8 0 

 x  Correct answer 
 x  x > 33 – major difficulty (more than 1/3 of introductory students chose it) 
 x  20 ≤ x ≤ 33 – moderate difficulty 
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Table A2. Questions on the TUG-K on which at least 20% of introductory students selected one incorrect answer 

choice after instruction, percentages of introductory students who answered each question correctly (% intro. 

correct), minimum possible TUG-K related PCK score (Min. pos. PCK score), maximum possible TUG-K related 

PCK score (Max. pos. PCK score), graduate students’ average PCK score (GS avg. PCK score), graduate students’ 

normalized average PCK score on a scale from 0 to 100 (Norm. GS avg. PCK score). 

 TUG-K 
item # 

 % intro. 
 correct 

 Min. pos. 
PCK 
score 

 Max. pos. 
PCK 
score 

 GS avg. 
PCK score 

 Norm. GS 
avg. PCK 
score 

 1  16  0.04  0.41  0.29  68 
 2  63  0.02  0.24  0.17  68 
 3  62  0.00  0.20  0.17  85 
 4  28  0.02  0.32  0.26  80 
 6  26  0.06  0.46  0.17  28 
 7  31  0.10  0.28  0.19  50 
 8  37  0.05  0.37  0.12  22 
 9  24  0.05  0.57  0.20  29 
 10  30  0.02  0.62  0.36  57 
 11  36  0.08  0.28  0.15  35 
 14  48  0.03  0.25  0.13  45 
 15  29  0.08  0.26  0.19  61 
 16  22  0.01  0.39  0.28  71 
 17  21  0.07  0.46  0.18  28 
 18  46  0.04  0.32  0.22  64 
 19  37  0.09  0.23  0.18  64 
 21  18  0.02  0.73  0.58  79 
 #  Question in which there was a moderate difficulty 
 #  Question in which there was a major difficulty 
 x  Grad students’ TUG-K related PCK score is less than 1/2 of maximum possible 
 x  Grad students’ TUK-K related PCK score is between 1/2 and 2/3 of maximum possible 
 x  Grad students’ TUG-K related PCK score is more than 2/3 of maximum possible 

 
 



 290 

APPENDIX B 

MATHEMATICAL DESCRIPTION OF THE CALCULATION OF THE FCI RELATED 

PCK SCORES, DATA TABLES AND COPY OF THE FCI FOR THE FCI STUDY                              

(CHAPTER SEVEN) 

Mathematical description of how the FCI related PCK scores were calculated 

We define indices i, j and k that correspond to the following: 

• i: index of instructor (30 instructors; it takes values from 1 to 30); 

• j: FCI question number (30 questions; it takes values from 1 to 30); 

• k: incorrect answer choice number for each question (4 incorrect answer choices; it takes 

values from 1 to 4). 

Then, we let Fjk be the fraction of introductory physics students who selected incorrect answer 

choice k on item j (e.g. F21 = 0.44, F22 = 0.06, F23 = 0.21, F24 = 0.04). We let Iijk correspond to 

whether instructor i chose incorrect answer choice k on item j (for a given i and j, Iijk=1 only for 

the incorrect answer choice k, selected by instructor i on item j, otherwise Iijk=0). Then, the PCK 

score of the ith instructor on item j (referred to Iij) is: 𝐼𝑖𝑗 = ∑ �𝐼𝑖𝑗𝑘 ∙ 𝐹𝑗𝑘�4
𝑘=1 . Then, the total PCK 

score of the ith instructor (Ii) on the whole survey can be obtained by summing over all of the 

questions: 
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𝐼𝑖 = �𝐼𝑖𝑗 =
30

𝑗=1

���(𝐼𝑖𝑗𝑘 ∗ 𝐹𝑗𝑘)
4

𝑘=1

�
30

𝑗=1

. 

Also, the PCK score of all of the instructors on item j (referred to as 𝐼𝚥�) can be obtained by 

summing over the instructors: 

𝐼𝚥� = �𝐼𝑖𝑗 =
30

𝑖=1

���(𝐼𝑖𝑗𝑘 ∗ 𝐹𝑗𝑘)
4

𝑘=1

�
30

𝑖=1

. 

A similar approach can also be adopted for the graduate students (GSij – PCK score of the ith 

graduate student on item j; GSi – PCK score of the ith graduate student on the whole survey; 𝐺𝑆𝚥���� 

– PCK score of all graduate students on item j) and for random guessers (RGij – PCK score of ith 

random guesser on item j; RGi – PCK score of ith random guesser; 𝑅𝐺𝚥����� – PCK score of random 

guessers on item j). The PCK scores of each (i) instructor/graduate student/random guesser (Ii, 

GSi, RGi as described above) were used to obtain averages and standard deviations in order to 

perform t-tests to compare the FCI related PCK performance of instructors with that of the 

graduate students and random guessers on the whole survey (and to compare different subgroups 

of instructors and graduate students). In order to compare the PCK performance of these 

different groups on individual items, the averages and standard deviations of the PCK scores on 

that particular question (e.g., for question j on the FCI: Iij, GSij, RGij) were used to perform t-

tests. 

(Note, Tables B3 and B4 also list normalized gains for each question which are defined as 

(%correct post - %correct pre)/(100% - %correct pre). 
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Table B1. Questions on the FCI in which at least 19% of introductory algebra-based students selected one 

incorrect answer choice in a post-test, percentages of introductory algebra-based physics students who selected each 

answer choice A through E in a post-test (they were asked to select the correct answer for each question), instructors 

and graduate students who selected each answer choice A through E (they were asked to select the most common 

incorrect answer for each question if introductory physics students did not know the correct answer). The first 

column of the table lists the FCI question numbers and the second column titled > RG shows an “I” when the 

instructors on average performed better than random guessing, “GS” when the graduate students on average 

performed better than random guessing; and “I, GS” when both instructors and graduate students performed better 

than random guessing. 

FCI 
# 

>RG Intro student choices Instructor choices Grad student choices 
A B C D E A B C D E A B C D E 

2 I, GS 44 25 6 21 4 13 53 7 27 0 4 68 0 24 4 
4 I, GS 39 1 0 0 60 97 0 0 3 0 84 0 4 12 0 
5  3 24 12 44 17 20 0 27 30 23 0 0 32 40 28 
9 I, GS 4 20 19 5 53 0 40 54 3 3 12 8 76 0 4 
11 I, GS 5 8 48 35 4 17 23 40 0 20 20 20 60 0 0 
12 I, GS 1 77 19 2 1 10 3 64 3 20 28 0 68 0 4 
13 I 4 11 50 35 0 20 30 47 0 3 36 44 16 0 4 
14  19 10 9 61 0 17 57 23 0 3 20 44 36 0 0 
15 I 44 7 48 1 0 10 7 60 20 0 12 20 40 28 0 
16  73 2 19 2 4 3 17 37 23 20 8 12 16 28 36 
17 I, GS 62 24 1 10 3 87 3 0 3 7 72 0 0 16 12 
18 GS 1 28 4 42 25 16 0 47 30 7 4 0 16 52 28 
19 GS 12 3 5 29 51 24 14 21 38 3 8 4 12 76 0 
20 I, GS 16 4 27 49 4 7 3 72 3 14 40 4 56 0 0 
21 I 7 13 38 9 33 7 40 43 7 3 0 20 44 36 0 
22 I 33 45 3 16 2 67 0 7 26 0 28 24 4 40 4 
23  15 39 18 23 5 20 7 47 23 3 20 4 28 24 24 
24 I 70 2 22 2 5 7 3 70 0 20 0 16 68 12 4 
25 I 3 9 23 53 12 10 17 0 57 16 24 24 0 44 8 
26 I 41 32 3 9 14 60 27 0 13 0 52 32 0 12 4 
27 I, GS 26 13 58 2 0 63 27 0 7 3 68 16 4 4 8 
28 GS 1 2 6 32 59 7 45 10 38 0 4 36 8 52 0 
29  2 71 3 23 1 24 3 0 28 45 20 8 0 28 44 
30 I, GS 3 10 26 2 59 3 0 0 3 94 4 4 0 4 88 
x Correct answer 
x x > 33 – strong alt conception (more than 1/3 of intro students chose it) 
x 19 ≤ x ≤ 33 – medium level alternate conception 
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Table B2. Questions on the FCI in which at least 19% of introductory algebra-based students selected one 

incorrect answer choice in a post-test, percentages of introductory algebra-based students who answer each question 

correctly (% intro. alg. correct), normalized gain (Intro. alg. norm. gain), maximum possible FCI related PCK score 

(max. pos. PCK score), Average FCI related PCK score of instructors (Ins. avg. PCK score) and graduate students 

(GS avg. PCK score), percentage of maximum possible score of the instructors’ average FCI related PCK score (Ins. 

% max score) and of the graduate students average FCI related PCK score (GS % max score). 

FCI 
item 
# 

% intro. 
alg. 
correct 

Intro. alg. 
norm. 
gain 

Min. pos. 
PCK 
score 

Max. pos. 
PCK 
score 

Instructors Graduate students 
Ins. avg.  
PCK score 

Norm Ins. 
avg. PCK 
score 

GS avg.  
PCK score 

Norm GS 
avg. PCK 
score  

2 44 0.23 0.04 0.25 0.19 71 0.22 86 
4 60 0.46 0 0.39 0.38 97 0.33 85 
5 24 0.16 0.03 0.44 0.21 44 0.26 56 
9 53 0.17 0.04 0.20 0.18 88 0.17 81 
11 35 0.24 0.04 0.48 0.23 43 0.31 61 
12 77 0.43 0.01 0.19 0.12 61 0.13 67 
13 35 0.27 0 0.50 0.27 54 0.14 28 
14 61 0.39 0 0.19 0.11 58 0.11 58 
15 44 0.25 0 0.48 0.30 63 0.21 44 
16 73 0.40 0.02 0.19 0.09 41 0.05 18 
17 24 0.17 0.01 0.62 0.54 87 0.47 75 
18 28 0.19 0.01 0.42 0.16 37 0.30 71 
19 51 -0.06 0.03 0.29 0.15 46 0.24 81 
20 49 0.25 0.04 0.27 0.21 74 0.22 78 
21 33 -0.02 0.07 0.38 0.23 52 0.23 52 
22 45 0.22 0.02 0.33 0.26 77 0.16 45 
23 39 0.14 0.05 0.23 0.17 67 0.15 56 
24 70 0.20 0.02 0.22 0.16 70 0.16 70 
25 23 0.13 0.03 0.53 0.34 62 0.27 48 
26 14 0.11 0.03 0.41 0.34 82 0.33 79 
27 58 0.09 0 0.26 0.20 77 0.20 77 
28 59 0.6 0.01 0.32 0.14 42 0.18 55 
29 71 0.50 0.02 0.23 0.07 24 0.07 24 
30 26 0.16 0.02 0.59 0.55 93 0.53 89 
# Question in which there was a medium level alternate conception 
# Question in which there was a strong student alternate conception 
x Ins./grad students’ FCI related PCK score is less than 50% of maximum possible 
x Ins./GS score FCI rel. PCK score is between 50% and 67% of maximum possible 
x Ins./GS FCI related PCK score is more than 67% of maximum possible 
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Table B3. Percentages of algebra-based introductory physics students who selected each answer choice for each 

item on the FCI when it was given in a pre-test and in a post-test and normalized gain (Norm. gain) on each item on 

the FCI. The percentages on the pre-test are based on data from 601 students taught by two different instructors in 

two different semesters and the percentages on the post-test are based on data from 899 students taught by 4 

different instructors over several years. The green shaded boxes indicate correct answers. All the courses were 

taught in a traditional manner which did not incorporate PER based teaching strategies. 

FCI  
item # 

Pre-test algebra Post-test algebra Norm. 
gain A B C D E A B C D E 

1 13 6 53 25 4 10 4 78 8 1 0.53 
2 27 21 7 37 8 44 25 6 21 4 0.23 
3 31 16 40 3 10 15 13 63 5 5 0.38 
4 73 0 0 1 26 39 1 0 0 60 0.46 
5 4 10 31 25 29 3 24 12 44 17 0.16 
6 25 68 5 2 0 16 79 3 1 1 0.33 
7 17 57 9 5 11 12 74 6 3 4 0.40 
8 20 47 1 13 18 14 66 0 8 11 0.36 
9 4 26 20 6 43 4 20 19 5 53 0.17 

10 54 1 11 19 15 71 2 7 13 7 0.36 
11 7 31 45 14 3 5 8 48 35 4 0.24 
12 1 59 32 5 2 1 77 19 2 1 0.43 
13 4 21 64 12 0 4 11 50 35 0 0.27 
14 35 18 11 36 0 19 10 9 61 0 0.39 
15 25 10 61 3 0 44 7 48 1 0 0.25 
16 55 3 37 4 1 73 2 19 2 4 0.40 
17 60 8 1 22 9 62 24 1 10 3 0.17 
18 2 12 14 27 46 1 28 4 42 25 0.19 
19 14 3 3 26 54 12 3 5 29 51 -0.06 
20 19 6 36 32 8 16 4 27 49 4 0.25 
21 7 21 23 14 35 7 13 38 9 33 -0.02 
22 37 30 4 26 2 33 45 3 16 2 0.22 
23 16 29 21 28 7 15 39 18 23 5 0.14 
24 63 1 25 3 6 70 2 22 2 5 0.20 
25 3 8 12 58 19 3 9 23 53 12 0.13 
26 41 42 4 11 3 41 32 3 9 14 0.11 
27 31 13 54 1 0 26 13 58 2 0 0.09 
28 0 6 8 61 24 1 2 6 32 59 0.46 
29 15 42 1 37 4 2 71 3 23 1 0.50 
30 1 7 12 1 79 3 10 26 2 59 0.16 

 Avg. normalized gain 0.26 
 
 
 
 

x Correct answer 
x x > 33 – strong alternate conception (more than 1/3 of intro students chose it) 
x 19 ≤ x ≤ 33 – medium level alternate conception. 
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Table B4. Percentages of calculus-based introductory physics students who selected each answer choice for each 

item on the FCI when it was given in a pre-test and in a post-test. The percentages on the pre-test are based on data 

from 364 students taught by three different instructors over several semesters and the percentages on the post-test 

are based on data from 296 students taught by two different instructors during two different semesters. The green 

shaded boxes indicate correct answers. All the courses were taught in a traditional manner which did not incorporate 

PER based teaching strategies. 

FCI  
item # 

Pre-test calculus Post-test calculus Norm. 
gain A B C D E A B C D E 

1 8 3 82 6 1 7 1 86 6 1 0.24 
2 39 24 4 26 7 55 27 4 15 1 0.25 
3 17 8 66 4 5 15 4 76 3 2 0.30 
4 59 1 0 0 39 23 0 1 0 76 0.60 
5 5 23 20 27 25 3 47 13 29 9 0.31 
6 17 79 3 1 1 12 86 2 1 0 0.32 
7 9 76 4 3 7 7 85 3 1 5 0.39 
8 11 62 0 12 17 8 74 0 8 10 0.33 
9 2 20 20 6 53 1 9 14 3 73 0.44 

10 70 3 6 12 8 91 1 3 3 3 0.69 
11 8 16 42 30 4 6 2 28 61 3 0.44 
12 0 84 14 2 0 0 90 10 0 0 0.41 
13 4 12 51 33 0 3 5 31 61 0 0.42 
14 21 12 5 63 0 14 9 5 72 0 0.25 
15 29 6 63 2 0 42 5 52 0 1 0.19 
16 72 1 23 2 3 86 2 7 1 4 0.50 
17 63 21 1 12 4 46 44 2 6 2 0.29 
18 3 27 9 34 29 0 55 2 33 11 0.38 
19 11 3 3 20 62 8 2 3 12 75 0.35 
20 11 4 22 54 6 9 2 16 71 3 0.36 
21 6 11 26 11 46 4 6 23 11 57 0.20 
22 27 51 2 19 1 20 67 2 11 1 0.34 
23 9 48 16 24 3 5 64 13 14 3 0.32 
24 74 1 18 2 4 87 1 9 1 3 0.48 
25 2 9 29 51 10 3 6 51 38 2 0.31 
26 35 29 1 14 20 20 28 3 7 42 0.28 
27 22 7 66 4 1 14 6 75 3 1 0.28 
28 2 4 6 45 44 1 3 3 20 72 0.51 
29 6 61 2 27 3 1 83 1 13 2 0.56 
30 3 7 30 1 59 3 7 44 1 45 0.20 

 Avg. normalized gain 0.36 
 

 

x Correct answer 
x x > 33 – strong alternate conception (more than 1/3 of intro students chose it) 
x 19 ≤ x ≤ 33 – medium level alternate conception 
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