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An emerging paradigm shift in bacterial pathogenesis has resulted in renewed interest in 

metabolism during infection.  The acquisition and synthesis of metabolites by pathogens in the 

host represents a critical obstacle to successful colonization and infection.   The value of 

bacterial metabolic pathways during infection remains poorly characterized for many pathogens 

and warrants further investigation.  One aspect of this, the contribution of one-carbon 

metabolism to pathogenic fitness was assessed.  This metabolic pathway primarily transfers 

single carbons and contributes to the synthesis of amino acids, DNA, and proteins.  The donated 

carbon is typically derived from 5,10-methylenetetrahydrofolate, a central compound in one-

carbon metabolism.  Since the requirement of a metabolic pathway may vary among nutritionally 

diverse sites within a host, a systemic infection involving multiple niches would be an ideal 

model to assess the contribution of these pathways.  Francisella tularensis is a gram-negative 

bacterium, a tier one bioterrorism agent, and the causative agent of a debilitating febrile illness 

known as tularemia.  Since this organism is capable of establishing a systemic infection 

throughout the host, it provides an excellent opportunity to evaluate bacterial metabolism during 

infection.  To evaluate this system in F. tularensis, mutagenesis of the two known sources of 

5,10-methylenetetrahydrofolate, the glycine cleavage system and the serine 

hydroxymethyltransferase, was performed.  Loss of either of these pathways resulted in serine 

auxotrophy, identifying one-carbon metabolism as the exclusive serine biosynthetic pathway of 
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F. tularensis.  Under standard assay conditions, neither the glycine cleavage system nor the 

serine hydroxymethyltransferase proved to be essential for intracellular replication in the virulent 

F. tularensis subsp. tularensis.  Despite this result, both 5,10-methylenetetrahydrofolate 

producing pathways contributed to pathogenesis in a murine model of pneumonic tularemia.  

Further, these pathways contributed to pathogenic fitness of Francisella to varying degrees 

throughout the host.  Critically, a significant reduction in bacteremia was associated with the loss 

of either system.  These studies highlight differing nutritional environments of distinct sites in 

the host and confirm that these sites exert variable metabolic stresses on this invasive pathogen.  

This work identifies one-carbon metabolism as a key bacterial metabolic pathway employed by 

F. tularensis to overcome nutritional limitation during infection.    
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1.0  INTRODUCTION 

1.1 FRANCISELLA TULARENSIS 

1.1.1 The Discovery of Francisella tularensis 

While examining ground squirrels for plague in 1910, McCoy observed a plague-like 

disease of unknown etiology in Tulare County, California (McCoy, 1910).  Further investigation 

of this disease suggested the causative agent was bacterial and he referred to this new organism 

as Bacterium tularense (McCoy and Chapin, 1912).  This bacterium was first recognized as a 

pathogen of man in 1914 after being isolated from a conjunctival ulcer (Wherry and Lamb, 

1914).  In 1911, clinical descriptions of a human febrile illness known as “deer-fly fever” caused 

by the bite of the deer fly appeared in Utah (Pearse, 1911).  Additional work performed by Dr. 

Edward Francis revealed that Bacterium tularense was the causative agent of deer-fly fever 

(Francis, 1919).  Dr. Francis characterized and monitored several clinical cases of this disease 

which, due to the presence of the organism in the blood, he called tularemia (Francis et al., 

1921).  In addition to this clinical work, Francis went on to confirm the presence of the 

bacterium in diseased jack rabbits and demonstrated transmission of disease by deer flies, lice, 

bed bugs and ticks (Francis and Lake, 1922; Francis et al., 1921; Parker et al., 1924).  Outside of 

the US, reports of a febrile illness associated with the consumption of hare meat have been noted 
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as early as 1837 in Japan (Ohara, 1954).  Interest in these observations emerged in 1925 when 

Dr. Hachiro Ohara began a thorough characterization of an endemic Japanese febrile illness 

associated with hares (Ohara, 1925a; Ohara, 1925b).  His observations, both clinically and 

bacteriologically were strikingly similar to those made in the United States.  This relationship 

was solidified by Dr. Francis, who obtained clinical samples from patients infected with 

“Ohara’s disease” and isolated Bacterium tularense (Francis and Moore, 1926).  Due to the 

significant contribution of Dr. Edward Francis to the understanding of this bacterium, the 

nomenclature Francisella tularensis was proposed in 1947 (Dorofeev, 1947). 

1.1.2 Taxonomy 

The proposed family Francisellaceae contains a single genus, Francisella.  The genus 

Francisella has had several nomenclatures through its history.  Originally, experimental 

observations indicated that the etiological agent of a plague-like illness in rodents was likely 

bacterial and thus the temporary genus Bacterium was applied (McCoy and Chapin, 1912).  As a 

result of further investigation using differing classifications (serological, pathological, 

bacteriological), the bacterium was subsequently referred to as Bacillus tularense, Brucella 

tularensis, Coccobacterium tularense, and most commonly, Pasteurella tularensis (Breed et al., 

1957; Topley and Wilson; Vail, 1914).  The difficulty in assigning this bacterium to an 

established category led to the proposal of a new genus, Francisella, in honor of Dr. Edward 

Francis (Dorofeev, 1947).  Despite the initial proposal occurring in 1947, the nomenclature 

Francisella was not uniformly adopted until the mid-1970s.    Francisella currently contains six 

species (F. tularensis, F. philomiragia, F. noatunensis F. halioticida, F. hispaneinsis, F. 
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guangzhouensis).  A perusal of the taxonomy of this genus generates a strong sense for the 

diverse and globalized nature of Francisella.   

1.1.2.1 Francisella tularensis 

The first Francisella species to be described and characterized was F. tularensis.  This 

nomenclature is derived from Tulare County, California, which was the location of the initial 

disease observations (McCoy and Chapin, 1912).  This species currently contains 5 subspecies 

(tularensis, holarctica, japonica, novicida, mediasiatica), which can be distinguished 

biochemically, pathologically, and geographically (Johansson et al., 2004; Vogler et al., 2009).     

Francisella tularensis subspecies tularensis is predominately found in the United States 

(Johansson et al., 2004).  In fact, it was widely believed to be confined geographically to this 

region until the recovery of this subspecies from mites in Slovakia (Gurycova, 1998).  

Subsequent studies revealed this European F. tularensis subspecies tularensis isolate was nearly 

genetically identical to a widely used laboratory strain (Chaudhuri et al., 2007).  Since related 

environmental isolates have since been recovered repeatedly, it is thought that this represents a 

laboratory release with the establishment of this subspecies in the local environment (Chaudhuri 

et al., 2007).   The tularensis subspecies has recently been further divided into two clades (A1 

and A2) each with two genotypes (A1a, A1b, A2a, and A2b) by pulsed-field gel electrophoresis 

(Farlow et al., 2005; Johansson et al., 2004; Kugeler et al., 2009; Staples et al., 2006).  

Geographically, the A1 (A-East) clade primarily occurs in the central United States while the A2 

(A-West) clade occurs predominately in the Western United States (Staples et al., 2006).  

Clinical data from humans suggests significant differences in pathogenesis and the mortality 

caused by these clades. Specifically, the AI clade is more virulent than the AII clade and the A1b 

genotype is the most virulent genotype known (Kugeler et al., 2009).  It is worth noting that the 
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most commonly used F. tularensis subsp. tularensis laboratory strain, Schu S4, was recently 

found to be an A1a genotype (Kugeler et al., 2009).    

In 1959, the presence of two distinct varieties of Francisella tularensis, F. tularensis var. 

tularensis and F. tularensis var. palaearctica was noted (Olsufiev et al., 1959). This distinction 

was reinforced by additional work by Jellison in 1961, who distinguished two types, type A (now 

subspecies tularensis) and type B (now subspecies holarctica), based on biochemical and 

pathological results (Jellison, 1961).  Francisella tularensis var. palaearctica was renamed later 

to F. tularensis subspecies holarctica to better reflect the discovery that it was not geographical 

bound to the Palearctic ecozone (Bell, 1965; Olsufjev, 1970; Olsufjev and Meshcheryakova, 

1982).  This subspecies contains two biovars which can be distinguished by erythromycin 

susceptibility (biovar I Ery
s
, biovar II Ery

r
,) (Kudelina and Olsufiev, 1980).  A strain of F. 

tularensis subsp. holarctica, known as the live vaccine strain (LVS), is a commonly used 

attenuated laboratory strain.  It is the descendant of a USSR vaccine strain that was originally 

derived by in vitro passage of a wild-type holarctica isolate (Eigelsbach and Downs, 1961; 

Tigertt, 1962). 

F. tularensis subspecies japonica was, until recently, considered a third biovar of 

subspecies holarctica.  This subspecies was described originally in 1967, is biochemically 

distinguishable from holarctica, and is isolated to the Japanese islands (Rodionova, 1967).  

Recent genetic analysis supports a distinction from holarctica and suggests it is more 

appropriately considered a distinct subspecies (Johansson et al., 2004; Vogler et al., 2009).  

Interestingly, japonica may also represent an evolutionary intermediate between tularensis and 

holarctica, as it is biochemically similar to tularensis but pathologically similar to holarctica 

(Johansson et al., 2004). 
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In 1950, an environmental water sample from Utah yielded a bacterium that caused a 

tularemia-like illness in animals, but, serologically, failed to identify as F. tularensis (Larson et 

al., 1955).  This inexplicable result, along with follow-up biochemical, bacteriological, and 

immunological studies, led to this bacterium being classified as a separate species, Francisella 

novicida (Larson et al., 1955).  The nomenclature of this organism as a separate species or a 

subspecies of F. tularensis has been the subject of significant debate (Busse et al., 2010; Hollis et 

al., 1989; Huber et al., 2010; Johansson et al., 2010; Owen et al., 1964).  Ultimately, a 

comparison of F. novicida with F. tularensis subspecies revealed an average nucleotide identity 

of ~98% (Larsson et al., 2009).  This degree of similarity exceeds a proposed 95% cutoff for 

species differentiation (Richter and Rossello-Mora, 2009).  The nomenclature F. tularensis 

subspecies novicida has been “validly published” and will be utilized in this text (Huber et al., 

2010).    

F. tularensis subspecies mediasiatica was identified in 1966 while examining an 

environmental site with ongoing tularemia in Central Asia (Aikimbaev, 1966).  Investigation of 

terrestrial animals and ticks revealed a bacterium with biochemical properties similar to 

subspecies tularensis but pathogenic properties similar to subspecies holarctica (Aikimbaev, 

1966).  This intermediate phenotype resulted in the proposal of the new subspecies, with 

nomenclature based on the geographic location of the isolates.  The mediasiatica subspecies is 

the least studied of all subspecies, due to its rare isolation since the initial studies and overall low 

clinical importance.  It has, however, served as an interesting tool in attempts to unravel the 

genetic evolution of the Francisella tularensis species (Champion et al., 2009).     
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1.1.2.2 Francisella philomiragia 

F. philomiragia was first isolated from the liver and lungs of a dying muskrat in Utah in 

1959 and subsequently from nearby environmental water samples in 1960 (Jensen et al., 1969).  

This bacterium was bacteriologically similar to both Francisella and Yersinia species but not 

identical to any known species.  The nomenclature Yersinia philomiragia was proposed due to 

early DNA hybridization assays revealing a stronger relatedness to Yersinia species than 

Francisella species and due to the observation of mirages around the collection site (Jensen et 

al., 1969; Ritter and Gerloff, 1966).  This classification was refuted in 1980, when follow-up 

studies failed to confirm any DNA relatedness between Yersinia philomiragia and other Yersinia 

species (Ursing et al., 1980).  This species was colloquially referred to as the “Philomiragia” 

bacterium, until a re-examination of DNA hybridization revealed a ~40% relatedness to 

Francisella species, which along with morphological and biochemical results, prompted its 

inclusion in the Francisella genus (Hollis et al., 1989).  This species currently contains no 

recognized subspecies. 

1.1.2.3 Francisella noatunesis 

In 2006, a causal relationship was found between a granulomatous disease in fish (Gadus 

morhua in Norway) and a bacterium that appeared morphologically and genetically similar to F. 

philomiragia  (Olsen et al., 2006).  A follow-up study proposed the nomenclature F. 

philomiragia subspecies noatunesis based on DNA hybridization assays and biochemical assays 

(Mikalsen et al., 2007).  An independent research group, also investigating the disease, proposed 

the nomenclature Francisella piscida for an isolate of the bacterium (Ottem et al., 2007). Upon 

inspection, F. piscida was found to be indistinguishable from the noatunesis subspecies (Ottem 

et al., 2009).  F. piscida is thus a taxonomic synonym of the earlier classification, F. 



 7 

philomiragia subspecies noatunesis, and is no longer valid.  The concept of a separate species, 

however, was deemed appropriate and in 2009 further genetic, phenotypic, and phylogenetic 

analysis led to the proposal of the nomenclature, F. noatunesis (Mikalsen and Colquhoun, 2009; 

Ottem et al., 2009).  Studies on disease in a different fish species (Parapristipoma trilinineatum 

in Japan) revealed a bacterium that was modestly genetically distinct and phenotypically similar 

to F. noatunesis (Kamaishi et al., 2005).  This species has been referred to as F. asiatica but a 

prior publication proposed the nomeclature F. noatunesis subspecies orientalis and thus has 

priority (Mikalsen and Colquhoun, 2009; Ottem et al., 2009).  The nomenclature of these fish 

pathogens is currently F. noatunesis subspecies noatunesis for the Norway isolates and F. 

noatunesis subspecies orientalis for the Japan isolate (Colquhoun and Duodu, 2011).   

1.1.2.4 Francisella halioticida 

In 2005, a bacterium was recovered from the hemolymph of a diseased abalone (Haliotis 

gigantea) in Japan that was genetically related to F. philomiragia and F. noatunesis (Kamaishi et 

al., 2010).  DNA-DNA hybridization assays between this isolate and F. philomiragia and F. 

noatunesis subspecies noatunesis indicated that this organism was not a subspecies and the 

nomenclature F. halioticida was proposed (Brevik et al., 2011).  This species is closely related to 

an uncultured Francisella endosymbiont found in the marine ciliate Euplotes raikovi (Brevik et 

al., 2011; Schrallhammer et al., 2011).   

1.1.2.5 Francisella hispaniensis 

In 2003, a bacterium was isolated from the urine and blood of a patient in Spain suffering 

from acute obstructive pyelonephritis (Escudero et al., 2010).  Preliminary biochemical and 

sequence results revealed that the causative agent of disease was potentially a new Francisella 
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species (Escudero et al., 2010).  These preliminary results were confirmed by DNA-DNA 

hybridization with F. tularensis subsp. holarctica, F. tularensis subsp. novicida, F. philomiragia, 

and F. noatunesis and the nomenclature Francisella hispaniensis was proposed (Huber et al., 

2010). 

1.1.2.6 Francisella guangzhouensis 

Routine investigation of air condition systems revealed a novel bacterium in water 

cooling towers in Guangzhou, China, in 2008 (Qu et al., 2009).  Biochemical analysis, along 

with 16S rRNA sequencing, revealed a strong relationship to F. philomiragia (Qu et al., 2009).  

Follow-up DNA-DNA hybridization assays on this isolate revealed that it appropriately assigned 

to the genus Francisella, but distinct enough to be classified as a new species (Qu et al., 2013).  

The nomenclature Francisella guangzhouensis was proposed (Qu et al., 2013).   

1.1.3 Tularemia 

Infection with Francisella tularensis result in a disease known as tularemia (Francis et 

al., 1921).  At the time of its discovery as a human disease, tularemia was of significance due to 

its ability to incapacitate a farmer for two to three months in the middle of harvest season 

(Francis, 1922).  Clinical descriptions of disease, prior to the development of effective antibiotic 

interventions, were compiled by various researchers (Foshay, 1940; Francis, 1922; Francis, 

1925; Francis, 1928; Pullen and Stuart, 1945; Simpson, 1928).  These studies describe tularemia 

as a febrile illness with remarkable variability and a variety of clinical manifestations which 

appeared to be related to the route of exposure.  Most routes of exposure require less than 50 

bacteria to result in disease in humans (Saslaw et al., 1961a; Saslaw et al., 1961b).  The tularemia 
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manifestations include ulceroglandular, oculoglandular, glandular, typhoidal, oropharyngeal, 

gastrointestinal, pneumonic, septicemic, and meningitic (Ellis et al., 2002; Foshay, 1937; 

Francis, 1928; Pullen and Stuart, 1945; Stuart and Pullen, 1945a, b).     

Ulceroglandular tularemia is the most common form of the disease, accounting for 

around 80% of cases (Pullen and Stuart, 1945).  This form typically results at the site of an insect 

bite or skin exposure to infected mammals (Francis, 1919, 1928; Pearse, 1911).  Outbreaks of 

human tularemia have been directly associated with various species of biting flies, ticks, and 

mosquitos (Petersen et al., 2009).  Furthermore, zoonotic transmission by several types of lice, 

fleas, and bedbugs may be important in maintaining the environmental reservoir in the over 250 

animal species susceptible to tularemia (Bell, 1965; Francis, 1928).  After two to six days 

following inoculation, the individual experiences a sudden onset of a flu-like illness (Francis, 

1928).  Symptoms most commonly include fever, chills, achiness and headache (Francis, 1928).  

This early period of the disease is associated with a transient bacteremia (Francis, 1928).   Within 

a few days of symptoms arising, the individual experiences swelling and tenderness in the local 

draining lymph nodes (Francis, 1928).  The site of infection then begins to develop into an 

inflamed papule, subsequently becoming the ulcer which is characteristic of this form of disease 

(Francis, 1928).  Without antibiotic intervention, the flu-like symptoms will persist actively for 

two to three weeks and the individual experiences weakness for several months (Francis, 1928).  

Despite the debilitating nature of this disease, ulceroglandular tularemia rarely results in the 

death of healthy individuals and carries an overall mortality rate under 5% without therapeutic 

treatment (Pullen and Stuart, 1945).   

Glandular tularemia is similar to ulceroglandular tularemia in all aspects except for the 

lack of an ulcer (Francis, 1928).  It occurs in approximately 10% of cases (Pullen and Stuart, 
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1945).   No clear explanation exists for why some patients manifest as glandular or 

ulceroglandular given similar exposure events.  It is noteworthy that contraction of tularemia can 

occur through unbroken skin, and it is plausible that penetration of intact skin lends itself to a 

glandular presentation without ulceration (Francis, 1925; Francis, 1928).  Some physicians have 

speculated that many cases classified as glandular are actually ulceroglandular and the patient 

has overlooked the ulcer (Evans et al., 1985).  This notion is supported by the observation that 

the timing of ulcer formation and symptom development can vary substantially between cases 

(Evans et al., 1985).  The overall mortality rate for glandular tularemia is also under 5% without 

antibiotics (Pullen and Stuart, 1945).  

Oculoglandular tularemia is characterized by conjunctivitis and conjunctival ulcers 

(Francis, 1928).  In addition to these ocular symptoms, the individual experiences painful local 

lymph node swelling and the flu-like symptoms described above (Francis, 1928).  Acquisition of 

this disease is thought to be largely through accidental self-inoculation by rubbing one’s eye after 

contact with contaminated material (Francis, 1928).  The oculoglandular form comprises about 

3% of all tularemia cases (Pullen and Stuart, 1945).  Without treatment, this disease 

manifestation carries an overall mortality rate of approximately 14% (Pullen and Stuart, 1945).  

Whether this represents a true increase in disease severity over ulceroglandular and glandular 

forms or an unrepresentative small population size due to the rarity of this type remains 

unknown.  In support of the former, some clinical cases of oculoglandular tularemia cases have 

involved rapid lethality (Francis, 1928). 

Typhoidal tularemia differs significantly from the previously described forms.  The route 

of transmission is unknown, no ulcers are present, and enlarged lymph nodes are absent (Francis, 

1925; Francis, 1928).  Despite missing these features, typhoidal tularemia still presents with the 
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flu-like illness symptoms described in other forms (Francis, 1925; Francis, 1928).  A patient with 

this clinical presentation would often be initially misdiagnosed with typhoid, thus the term 

typhoidal tularemia (Francis, 1928).  While this manifestation accounts for only 6% of natural 

tularemia cases, it carries a 50% mortality rate (Pullen and Stuart, 1945).  It has been proposed 

that the lack of involvement of draining lymph nodes and dermis is detrimental and that infection 

at these sites promotes either a stronger immune response or locally constrains the infection until 

clearance by an adaptive response (Blackford and Casey, 1941).    

Oropharyngeal tularemia and gastrointestinal tularemia result from the consumption of 

contaminated water or undercooked meat from an infected animal (Ellis et al., 2002).  The 

symptoms and clinical course of the oropharyngeal form is very similar to ulceroglandular 

tularemia, except for the localization of the primary lesions to the oropharynx and the additional 

symptom of a sore throat in most cases (Sencan et al., 2009).  In many clinical studies it is not 

differentiated from the ulceroglandular or glandular classification but overall appears unlikely to 

possess a significantly different mortality rate.  This form is found more frequently in Europe 

than the United States due to the close association of Francisella tularensis subspecies 

holarctica, the predominant cause of tularemia in Europe, with fresh water (McCrumb, 1961; 

Tarnvik et al., 2004).  Gastrointestinal tularemia is a very rare manifestation of disease and, 

unlike other routes of exposure, the consumption of a significant number of bacteria appears 

required (Hornick et al., 1966; KuoLee et al., 2007; Tulis et al., 1969).  Tularemia of this variety 

may lead to symptoms that are uncommon in most other forms such as diarrhea and intestinal 

ulcerations in addition to systemic effects (Beck and Merkel, 1935).  Due to the rarity of 

gastrointestinal tularemia, insufficient data are present to determine a mortality rate in the 

absence of antibiotics. 
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Pneumonic tularemia, also referred to as inhalational tularemia, pulmonary tularemia and 

respiratory tularemia, can result from either inhalation of Francisella tularensis or hematogenous 

spread associated with bacteremia (Blackford and Casey, 1941; Stuart and Pullen, 1945b).   

Respiratory symptoms may include chest pain, shortness of breath, cough, and pneumonia 

(Blackford and Casey, 1941; Stuart and Pullen, 1945b).  Pulmonary tularemia can manifest in 

two distinct forms, a glandular form with involvement of hilar lymph nodes and a typhoidal form 

lacking involvement of local lymphatic tissue (Bihss and Berland, 1943).  Individuals who 

present with localized forms of tularemia such as ulceroglandular, oculoglandular, or glandular 

are more likely to have involvement of hilar lymph node if they concurrently have pulmonary 

tularemia (Bihss and Berland, 1943).  Whether this is due to a clinical difference between the 

routes of respiratory infection (direct inhalation or secondary hematogenous spread) or due to a 

variation in individual immune response is currently unknown.  Early studies did not consider 

inhalation a likely route of tularemia exposure and thus pneumonic tularemia was typically 

considered a symptom of other forms, referred to as tularemic pneumonia (Stuart and Pullen, 

1945b).  Prior to antibiotics, individuals presenting with tularemic pneumonia had an overall 

mortality rate of approximately 30%, but some studies have reported almost 60% fatality 

(Blackford and Casey, 1941; Foshay, 1937; Stuart and Pullen, 1945b).  Importantly, no 

conclusion can be made regarding the mortality rate of individuals after direct inhalation of 

tularemia.  This is because a significant number of tularemic pneumonia cases were from 

hematogenous spread and considered to be the result of uncontrolled bacteremia prior to death 

(Blackford and Casey, 1941; Stuart and Pullen, 1945b).    In controlled experiments, inhalational 

challenge of humans with Francisella tularensis always resulted in a febrile illness, but 

roentgenographic examination revealed pneumonitis in only 25% of subjects prior to the 
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termination of the study (McCrumb, 1961).  It is thus clear that the diagnosis of pneumonia with 

tularemia is associated with worse prognosis.  Whether this is due to pneumonia being a 

symptom of a failing immune response and systemic spread or indicative of an increased 

mortality associated with inhalation of Francisella tularensis remains to be clarified.   

All forms of tularemia result in an early bacteremia but, in the vast majority of healthy 

individuals, this is a transient event (Foshay, 1937; Francis, 1928).  In patients who fail to control 

the infection, a secondary bacteremia develops, resulting in septicemic tularemia (Foshay, 1937).    

The term septicemic tularemia is occasionally used as synonymous with typhoidal tularemia 

(Sarria et al., 2003).  This is not surprising as a much larger percentage of typhoidal tularemia 

cases develop into septicemic tularemia than any glandular form (Foshay, 1937).  This may be 

explained by the local immune response thought to be existing in individuals who present with 

lymphatic involvement (glandular forms) and this immune response also constraining systemic 

spread (Blackford and Casey, 1941; Foshay, 1937).  Septicemic tularemia from bacteremia and 

the associated septic shock symptoms have been strongly implicated as the primary cause of 

death in human tularemia (Foshay, 1937).  Patients very rarely, if ever, recover from septicemic 

tularemia (Beck and Merkel, 1935).  In rare cases, the bacterium can be isolated from spinal fluid 

and tularemic meningitis is noted (Hofinger et al., 2009; Stuart and Pullen, 1945a).  Meningitic 

tularemia is almost always fatal without appropriate antibiotic therapy and involves symptoms 

such as confusion, headache, stiff neck and progression into a comatose state (Hofinger et al., 

2009; Stuart and Pullen, 1945a). 
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1.1.4   Bacteriology 

Francisella tularensis is a gram-negative bacterium which does not form spores and lacks 

modes of motility (Francis, 1928).  This organism is an obligate aerobe (Snyder et al., 1946).  It 

is well-known for its pleomorphic morphology and can appear as a bacillus or coccus 

(Eigelsbach et al., 1946; Francis, 1928; Hesselbrock and Foshay, 1945).  The lipid content of 

Francisella is remarkably high (51% in the cell membrane and 68% in the capsule), which is 

significantly higher than most other gram-negative bacteria (10-20%) (Hood, 1977).   

Furthermore, the cellular fatty acid profile of Francisella is considered a defining characteristic 

of this genus and is marked by an abundance of long-chain acids (C18 to C26) and hydroxy acids 

(3-OH C16 and 3-OH C18) (Hollis et al., 1989; Jantzen et al., 1979).  Another defining 

characteristic of this bacterium is its fastidious nature, which is associated with a dramatic in 

vitro growth enhancement following cysteine supplementation (Francis, 1923).  This phenotype 

has been suggested to be due to a genetic defect in sulfate assimilation (Larsson et al., 2005).  

The fastidious nature of Francisella has presented a challenge to the successful identification of, 

confirmation of, and cultivation from, tularemia infections (Provenza et al., 1986; Wherry and 

Lamb, 1914).  Recent work has also challenged the supposition that this feature is universal as 

rare clinical isolates have been found to lack a cysteine requirement (Bernard et al., 1994).   

Early studies suggested this bacterium possessed something resembling a capsule 

(McCoy and Chapin, 1912).  This was further supported by biochemical studies confirming that 

capsular material was unique from the outer membrane in terms of sugar and lipid composition 

(Hood, 1977).  Recent studies have identified a polysaccharide capsule in Francisella tularensis 

which is composed of F. tularensis O-antigen subunits (Apicella et al., 2010).  In addition to this 

structure, this bacterium has also been found to possess a “capsule-like complex” which is not O-
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antigen and appears to be a glycoprotein (Bandara et al., 2011).  This capsule and potentially 

other O-antigen independent capsules have been postulated to be environmentally regulated 

which may delay their identification and characterization (Zarrella et al., 2011). 

1.1.5  Facultative Intracellular Life Cycle 

The ability of Francisella to invade and replicate within host cells was observed as early 

as 1927 (Francis, 1927).  F. tularensis has since been found to invade and replicate successfully 

within a wide variety of cell types, including  hepatocytes, dendritic cells, macrophages, and type 

II pneumocytes (Bosio and Dow, 2005; Conlan and North, 1992; Hall et al., 2007; Nutter and 

Myrvik, 1966).  Following invasion, the bacterium escapes the phagosome and replicates in the 

cytoplasm (Golovliov et al., 2003).  Egress of bacteria from host cells occurs by a poorly 

described mechanism, likely involving death of the host cell (Lai et al., 2001).  In addition to a 

very heavily studied intracellular life cycle, Francisella appears to have a relevant extracellular 

phase during infection (Forestal et al., 2007).  Despite bacteremia being a defining characteristic 

of tularemia and the majority of bacteria in the blood being outside cells, this extracellular stage 

remains poorly defined (Forestal et al., 2007; Francis et al., 1921).  A significant effort has been 

made to elucidate the mechanisms of invasion, phagosomal escape, replication, and egress in the 

macrophage, a model cell-type in F. tularensis research (Fig. 1) (Celli and Zahrt, 2013; Chong 

and Celli, 2010). 
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Figure 1. Intracellular life cycle of F. tularensis in a macrophage. 

Following looping phagocytosis, F. tularensis (green) is located within the Francisella-containing phagosome 

(FCP).  The FCP engages with early endosomes (EE) and late endosomes (LE) but not lysosomes (Lys).  F. 

tularensis subsequently escapes the phagosome and replicates robustly within the cytosol.  Infection ultimately 

results in the death of the host cell and bacterial egress occurs through a yet unknown mechanism.  In murine cells, 

F. tularensis re-enters an endosomal compartment known as the Francisella-containing vacuole (FCV).  This 

process requires host autophagy and the importance of this observation remains to be defined.  This figure was 

derived from (Chong and Celli, 2010) with permission.    

Invasion of the host macrophage begins with F. tularensis interacting with the cell 

surface.  Engagement and uptake of opsonized bacteria is largely facilitated by interactions with 

scavenger receptor A, complement receptor CR3, and Fc receptor Fc (Balagopal et al., 2006; 

Clemens et al., 2005; Pierini, 2006; Schulert and Allen, 2006).  Un-opsonized bacteria are 

primarily thought to interact with the macrophage mannose receptor (Balagopal et al., 2006; 
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Schulert and Allen, 2006).  Following these macrophage surface interactions, Francisella is 

ingested by a novel form of looping phagocytosis (Clemens et al., 2005).  This process involves 

actin remodeling, does not require live bacteria, and is characterized by the unique involvement 

of asymmetric spacious pseudopod loops (Clemens et al., 2005). 

After engulfment, the loop transforms into a less spacious phagosome surrounding the 

bacterium (Clemens et al., 2004, 2005).  The Francisella containing phagosome initially co-

localizes with the early endosomal marker, early endosome antigen 1 (EEA1) (Clemens et al., 

2004).  This early endosomal marker is lost and the phagosome subsequently acquires late 

endosomal markers such as lysosome-associated membrane glycoprotein 1 and 2 (LAMP1, 

LAMP2) and CD63 (Clemens et al., 2004).  The phagosome fails, however, to acquire other 

lysosomal markers such as cathepsin D and ultimately does not fully acidify (Clemens et al., 

2004, 2009).  Through an unknown mechanism, phagosomes containing Francisella become 

coated with a dense fibril coat and begin to fragment and bleb (Clemens et al., 2004).  The 

bacteria escape the phagosome and enter the cytosol anywhere between 1 to 4 hours after 

phagocytosis, depending on opsinization and the methodology of measuring phagosomal 

integrity (Checroun et al., 2006; Clemens et al., 2004; Geier and Celli, 2011; Golovliov et al., 

2003).  

Once Francisella has successfully been released into the host cytosol, it replicates 

exponentially (Lai et al., 2001).  This process inevitably results in bacterial egress through death 

of the infected host cell, although the exact mechanism of cell death appears to vary between 

different Francisella subspecies (Mariathasan et al., 2005; Wickstrum et al., 2009).  In addition 

to these stages, F. tularensis has been observed  re-entering the endocytic pathway after cytosolic 

replication.  This process, occurring after proliferation and prior to cell death, results in a large 
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portion of intact bacteria residing in a multi-membrane, autophagy-associated compartment 

(Checroun et al., 2006).  While the function of the compartment is unknown, this phenotype 

appears to be specific for murine cells and may suggest an important immunological difference 

between mouse and man (Akimana et al., 2010).       

1.1.6   Virulence Factors 

F. tularensis is a global bacterial pathogen that can infect a large repertoire of species 

including many protists, arthropods, and mammals (Keim et al., 2007).  Given this statement, 

one would expect this organism to possess a significant number of potent virulence factors.  

Unlike many gram-negative intracellular pathogens, F. tularensis lacks type III and type IV 

secretion systems (Kostakioti et al., 2005; Larsson et al., 2005).  This bacterium does, however, 

possess alternative virulence factors involved in immune evasion, antimicrobial peptide 

resistance, and the secretion of effector molecules (Apicella et al., 2010; Bandara et al., 2011; 

Barker et al., 2009; Forslund et al., 2010; Gil et al., 2006; Gunn and Ernst, 2007; Hager et al., 

2006; Nano et al., 2004).  Many facets of known virulence factors remain to be elucidated and 

novel virulence factors have already been discovered in the genes unique to Francisella 

(approximately 20% of annotated genes) (Brotcke et al., 2006; Fuller et al., 2008; Horzempa et 

al., 2008; Larsson et al., 2005; Milne et al., 2007; Napier et al., 2012).  The virulence of 

Francisella is also critically regulated by a variety of environmental cues including iron 

concentration, temperature, nutrient levels, and host-specific cytosolic molecules such as 

spermine (Carlson et al., 2009; Charity et al., 2007; Horzempa et al., 2008; Milne et al., 2007). 

Immune recognition of many gram-negative bacterial pathogens is facilitated by the 

interaction of the cellular protein Toll-like receptor 4 (TLR4) and bacterial lipopolysaccharide 
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(LPS) (Arbour et al., 2000; Chow et al., 1999; Hoshino et al., 1999; Poltorak et al., 1998).  This 

interaction results in a proinflammatory signaling cascade involving the activation of the 

transcription factor nuclear factor-κB (NF-κB) and the release of proinflammatory cytokines 

such as TNF-(Arbour et al., 2000; Chow et al., 1999; Rietschel et al., 1994).  LPS is often 

referred to as an “endotoxin” due its ability to evoke a potent immunological response associated 

with significant immunopathology (Rietschel et al., 1994) (Danner et al., 1991).  In contrast to 

most other gram-negative bacteria, the LPS of F. tularensis fails to interact with TLR4, does not 

induce a robust inflammatory response from mononuclear cells, and shows no evidence of 

functioning as an endotoxin in in vivo models (Barker et al., 2006; Hajjar et al., 2006; Sandstrom 

et al., 1992).  These phenotypes are likely the result of the unique and atypical structure of the 

LPS of F. tularensis (Gunn and Ernst, 2007; Okan and Kasper).  Several distinct features include 

the lack of a conserved 4’-phosphate, modification of the 1’-phosphate with galactosamine, and 

the presence of mostly free lipid A containing only four long acyl chains (Okan and Kasper).  

The removal of the 4’-phosphate and the addition of galactosamine to the 1’-phosphate of the 

lipid A results in the loss of negative surface charge and contributes to the intrinsic cationic 

peptide resistance of Francisella (Llewellyn et al., 2012; Wang et al., 2007).  Thus far, genetic 

manipulation of the F. tularensis LPS biosynthetic pathway has failed to restore recognition by 

TLR4 and a definitive mechanism behind this immunologic evasion remains unknown 

(Kanistanon et al., 2008; Okan et al., 2013; Wang et al., 2007). 

F. tularensis possesses multiple capsules that contribute to various degrees to its 

virulence by facilitating resistance to serum and antimicrobial peptides and shielding the surface 

from TLR2-mediated immune recognition (Apicella et al., 2010; Bandara et al., 2011; Clay et al., 

2008; Li et al., 2007; Zarrella et al., 2011).  The most well-studied capsule of F. tularensis is the 



 20 

O-antigen capsule which is responsible for resistance to complement-mediated lysis (Apicella et 

al., 2010; Li et al., 2007).  This capsule is similar to O-antigen capsules in other bacteria, such as 

Escherichia coli and Salmonella enterica and is comprised of polymers of the O-antigen subunit 

of lipopolysaccharide while lacking detectable lipid A and Kdo based on mass spectrometry 

(Apicella et al., 2010; Gibson et al., 2006; Goldman et al., 1982; Peleg et al., 2005).    

Complement resistance in Francisella involves rapid conversion of the essential complement 

protein C3b to C3bi, an inactive form, which prevents assembly of the membrane attack complex 

(MAC) and subsequent MAC mediated lysis (Ben Nasr and Klimpel, 2008; Clay et al., 2008).  

The mechanism by which the capsule inactivates C3b may involve the observation that factor H, 

a complement inhibitory protein that is involved in self-recognition, binds Francisella (Ben Nasr 

and Klimpel, 2008).  While the mechanism is in need of further elucidation, it requires the O-

antigen capsule and leads to opsinization of F. tularensis, mediating uptake by CR3 on host 

phagocytes (Ben Nasr and Klimpel, 2008).  Francisella uptake into human cells utilizing CR3 

has been found to facilitate immune suppression by dampening TLR2-mediated proinflammatory 

responses (Dai et al., 2013).  In addition to immunosuppression, the capsule has also been 

implicated in immune evasion by shielding the availability of surface antigens from interacting 

with host TLRs (Zarrella et al., 2011).  The capsule is also required for normal intracellular 

growth and prevents premature cell death in infected human macrophages, phenotypes likely the 

result from limiting immune stimulation (Lindemann et al., 2011). Ultimately, this O-antigen 

capsule is required for in vivo virulence in the murine model (Li et al., 2007).  In addition to this 

well-studied capsule, another surface structure, the capsule-like complex (CLC), has been 

recently described in F. tularensis (Bandara et al., 2011).  The CLC was found not to contain or 

require O-antigen, but appears to be at least partially comprised of an un-identified glycoprotein 
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(Bandara et al., 2011).  This capsule was not required for serum resistance, intracellular growth, 

or prevention of host cell death but interestingly was still required for the full in vivo virulence 

of F. tularensis (Bandara et al., 2011).  The contribution of the CLC and potentially other 

undescribed capsules has been hypothesized to be linked to general immune evasion and 

shielding of bacterial antigens (Zarrella et al., 2011).  Further experimentation is required to 

substantiate these claims.     

Type I secretion systems are responsible for the release of a wide variety of diverse 

effectors, including lipases, proteases, and toxins in a sec-system independent fashion 

(Kanonenberg et al., 2013).  This method of secretion requires three distinct proteins, an outer 

membrane protein, an ABC transporter, and a membrane fusion protein (Kanonenberg et al., 

2013).  A protein known as TolC participates both in multidrug resistance and type I secretion as 

the outer membrane protein (Kanonenberg et al., 2013; Nikaido, 1996; Wandersman and 

Delepelaire, 1990).  Mutation of a homolog of tolC in F. tularensis results in decreased 

intracellular replication, increased susceptibility to antibiotics and toxic compounds, and 

significant attenuation in a murine model (Gil et al., 2006).  Interestingly, mutation in another 

gene, known as ftlC, results in comparable increased sensitivity to antibiotics and toxic 

compounds but does not affect intracellular replication or in vivo virulence (Gil et al., 2006).  

This finding led to the hypothesis that the attenuating phenotype in tolC mutants was linked to a 

defect in type I secretion rather than a loss of efflux (Gil et al., 2006).  Follow-up studies 

demonstrated that the loss of tolC in F. tularensis results in a strain that is both proinflammatory 

and hyper-cytotoxic and found that F. tularensis subsp. novicida strains lacking tolC were 

defective for secretion of an uncharacterized hemolysin, an effector known to utilize the type I 

secretion system (Platz et al., 2010; Wandersman and Delepelaire, 1990).  These studies suggest 
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F. tularensis utilizes unknown secreted effectors that rely on type I secretion systems to limit 

immune activation and contribute to in vivo pathogenesis (Gil et al., 2006; Platz et al., 2010).  

This attenuation may also be explained, independent of type I secretion, by recent evidence that 

loss of tolC in E.coli results in membrane stress and overall metabolic shutdown resulting in 

depletion of essential metabolites in minimal media (Dhamdhere and Zgurskaya, 2010).  Thus, 

further work is required to confirm that type I secretion is a true contributor to the virulence of F. 

tularensis. 

Initial investigations demonstrated the presence of pili-like structures on the surface of F. 

tularensis (Gil et al., 2004).  Genome sequencing later revealed abundant homologs to type IV 

pili machinery, which might be linked to pili formation or a structurally related type II secretion 

system (Larsson et al., 2005).  Investigation into these genes confirmed that F. tularensis uses 

type IV pili homologs to make pili, but also uncovered a functional type II secretion system 

(Hager et al., 2006).  Distinct homologs of type IV pili were required for secretion and pili 

formation, allowing for these virulence attributes to be evaluated independently (Hager et al., 

2006; Zogaj et al., 2008).  Loss of genes required for pili formation results in a minor loss or no 

loss in virulence, depending on the subspecies of F. tularensis (Ark and Mann, 2011; Forslund et 

al., 2006; Forslund et al., 2010; Zogaj et al., 2008).  In contrast, loss of genes required for type II 

secretion appears to moderately reduce virulence in all subspecies (Ark and Mann, 2011; 

Forslund et al., 2006; Forslund et al., 2010; Zogaj et al., 2008).  Despite the apparent importance 

of type II secretion in all subspecies, type II secreted effectors, such as PepO, have only been 

characterized in F. tularensis subsp. novicida and are not all conserved in other subspecies 

(Forslund et al., 2010; Hager et al., 2006).  Investigations into the type II secretion system of 
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other F. tularensis subspecies may reveal unappreciated secreted virulence factors (Salomonsson 

et al., 2011).    

The completion of the F. tularensis genome sequence, combined with transposon 

mutagenesis, led to the discovery of the F. tularensis pathogenicity island (Gray et al., 2002; 

Larsson et al., 2005; Nano et al., 2004).  This approximately 30kb region has a significantly 

lower GC content (~27%) than the average GC content of the genome (~33%) which suggests it 

was likely acquired by horizontal gene transfer from a lower GC content organism (Larsson et 

al., 2009; Nano et al., 2004).  Interestingly, this pathogenicity island is present in a single copy in 

F. tularensis subsp. novicida but has been duplicated in all other F. tularensis subspecies 

(Larsson et al., 2009; Nano et al., 2004).  This genomic cluster of 17 genes, many of which are 

required for phagosomal escape and virulence in animal models, was suggested to encode a 

secretion system with partial homology to a known type VI secretion system (T6SS) (Barker et 

al., 2009; de Bruin et al., 2011).  Importantly, this “secretion system” of F. tularensis appears to 

be unique as many genes have relatively weak homology to their T6SS counter parts and are 

often missing critical functional domains (Barker et al., 2009; Broms et al., 2010).  Furthermore, 

while investigations into the pathogenicity island have revealed novel secreted effectors required 

for virulence, it has also been observed that secretion was independent of the normally essential 

T6SS structural homologs (Barker et al., 2009; Broms et al., 2011).  Some secreted effectors of 

the pathogenicity island were even found to be secreted in the absence of any other members of 

this virulence cluster (Barker et al., 2009).   While many members of the F. tularensis 

pathogenicity island are required for phagosomal escape and ultimately virulence, the 

mechanism of action of these genes is in need of further investigation (Broms et al., 2010; de 
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Bruin et al., 2011).  Furthermore, a role in bacterial competition has not yet been examined for 

this T6SS homolog.  

1.1.7 Francisella Metabolism 

 The ability of F. tularensis to replicate exponentially in a variety of diverse cell types, at 

multiple physiological sites, and in a large repertoire of mammalian and arthropod species 

suggests that it is adapted to the host environment (Bell, 1965; Francis, 1928; Keim et al., 2007; 

Meibom and Charbit, 2010).  Pathogens must acquire nutrients and metabolic precursors from 

the host during infection (Rohmer et al., 2011).  Interestingly, examination of multiple F. 

tularensis genomes reveals the disruption and absence of a significant number of complete 

metabolic pathways, a feature likely mediated by the abundance of insertion sequence elements 

in the genome (Larsson et al., 2005).  This genetically fragmented landscape, combined with the 

significant number of possible metabolism-related hypothetical genes, makes empiric evaluation 

of F. tularensis metabolism challenging (Larsson et al., 2005; Meibom and Charbit, 2010).  

Experimental evaluation of metabolism can be performed in vitro using a chemically defined 

media (CDM) known as Chamberlain’s chemically defined media, which was developed 

specifically for F. tularensis cultivation (Chamberlain, 1965).   While use of CDM can reveal 

basic nutritional requirements, understanding metabolism in the context of host-pathogen 

interaction, presents additional layers of complexity.  Pathogens utilize host metabolic 

intermediates, degrade host molecules, and manipulate host metabolic machinery (Fisher et al., 

2012; Lee et al., 2013; Szaszak et al., 2013).  F. tularensis also disseminates and replicates 

within various organs and also has substantial extracellular phase leading to the possibility of 

diverse site-specific metabolic requirements (Forestal et al., 2007; Meibom and Charbit, 2010).  
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Ultimately, investigation into the metabolism of F. tularensis has revealed numerous metabolic 

pathways that contribute to, or are essential, to the virulence of this pathogen (Alkhuder et al., 

2009, 2010; Barel et al., 2012; Chu et al., 2011; Napier et al., 2012; Pechous et al., 2006; 

Pechous et al., 2008; Peng and Monack, 2010; Quarry et al., 2007). 

1.1.7.1 Amino Acids 

Early attempts to develop a suitable chemically defined medium for various F. tularensis 

strains revealed that 7 of the 20 standard amino acids (alanine, asparagine, glutamate, glutamine, 

glycine, phenylalanine, and tryptophan) were not essential for in vitro growth (Nagle et al., 1960; 

Traub et al., 1955).  The definitive requirement of most of the 13 amino acids included in all F. 

tularensis CDM remains unknown.  No biosynthetic pathway for arginine, histidine, lysine, 

methionine, or tyrosine is annotated in the genome of F. tularensis (Larsson et al., 2005).  

Biosynthetic pathways for cysteine, isoleucine, threonine, and valine contain pseudo-genes and 

disruptions (Larsson et al., 2005).  Intact pathways are found for serine, aspartic acid, leucine, 

and proline but experimental evidence regarding their functionality is lacking (Larsson et al., 

2005).  Interestingly, early investigators found this pathogen notoriously difficult to culture in 

vitro and eventually this was tied to an absolute requirement for abundant cysteine (Francis, 

1923; Wherry and Lamb, 1914).  Furthermore, a requirement for cysteine supplementation is 

typically a defining feature of F. tularensis isolates, but exceptions have been noted (Bernard et 

al., 1994).  This phenotype was hypothesized to be due to a defect in adenylyl-sulfate kinase, a 

gene required for sulfate assimilation, discovered after examination of the sequenced genome 

(Larsson et al., 2005).  This hypothesis is supported by the cysteine independence of F. 

philomiragia which contains an intact adenylyl-sulfate kinase as well as the fact that mutations in 

this gene in Salmonella typhimurium led to a cysteine requirement (Collins and Monty, 1975; 
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Hollis et al., 1989).  Cysteine auxotrophy was originally thought to be compensated for by the 

abundance of cysteine in the skin, as ulceroglandular tularemia is the most common form of 

disease (Francis, 1923, 1928; Pullen and Stuart, 1945).  Recent evidence, however, demonstrated 

that F. tularensis is capable of degrading a host polypeptide, glutathione, as a source of cysteine 

(Alkhuder et al., 2009).  This activity requires a -glutamyltransferase and mutagenesis of that 

gene confirmed that it is essential for the virulence of F. tularensis (Alkhuder et al., 2009; 

Ireland et al., 2011).  Tryptophan biosynthesis was also required for the full in vivo virulence of 

Francisella (Chu et al., 2011; Peng and Monack, 2010).  The attenuation upon loss of tryptophan 

biosynthesis was found to be the result of a host protein, indoleamine 2,3-dioxygenase, which 

depletes intracellular tryptophan in response to immune activation (Peng and Monack, 2010).  

Interestingly, F. tularensis upregulates the host neutral amino acid transporter SLC1A5 and 

siRNA-mediated knockdown of this protein reduces intracellular replication (Barel et al., 2012).  

Future studies are needed to elucidate the pathogenic contribution of other intact amino acid 

biosynthetic pathways and to determine how F. tularensis utilizes the host environment to 

overcome auxotrophy for essential amino acids. 

1.1.7.2 Purines and Pyrimidines 

Purines and pyrimidines are the building blocks of DNA and their biosynthesis or 

acquisition is essential for life (O'Donovan and Neuhard, 1970).  F. tularensis contains homologs 

to all required proteins for de novo synthesis of purines and pyrimidines and it is thus 

unsurprising that these growth factors are not required in CDM (Karlsson et al., 2000; Meibom 

and Charbit, 2010; Nagle et al., 1960).  Disruption of de novo pyrimidine biosynthesis in F. 

tularensis leads to an auxotrophy that could be chemically complemented by uracil (Horzempa et 
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al., 2010a).  This is not surprising as the bacterium contains functional pyrimidine salvage 

pathways, two of which are capable of converting uracil to uridine monophosphate and thus 

bypassing de novo synthesis (Larsson et al., 2005; Moffatt and Ashihara, 2002).  Although loss 

of de novo pyrimidine synthesis dramatically attenuated intramacrophage growth, it had only a 

moderate effect on in vivo bacterial burden and a minor effect on in vivo survival kinetics 

(Horzempa et al., 2010a).  This phenotype was somewhat surprising since loss of de novo 

pyrimidine synthesis results in attenuation in several pathogens (D'Enfert et al., 1996; Fox and 

Bzik, 2002; Mahan et al., 1993; Samant et al., 2008; Schwager et al., 2013).  One possibility to 

explain this lack of attenuation is the aforementioned presence of pyrimidine salvage pathways 

through the utilization of host uracil or uridine.  In support of this mechanism, F. tularensis 

strains lacking de novo pyrimidine synthesis appeared unable to replicate within alveolar 

macrophages in vivo, a cell type that has been previously suggested to contain low levels of 

uracil and uridine (D'Enfert et al., 1996; Horzempa et al., 2010a).  Interestingly, disruption of de 

novo pyrimidine synthesis also has a minor effect on virulence in Leishmania donovani (Wilson 

et al., 2012).  Disruption of both de novo synthetic and uracil/uridine salvage pathways, 

however, dramatically attenuated this pathogen (Wilson et al., 2012).  Experiments are required 

to determine if F. tularensis primarily utilizes the salvage pathway in vivo or if, like Leishmania 

donovani, either pathway is largely sufficient for virulence (Wilson et al., 2012).  Alternatively, 

F. tularensis could hypothetically salvage pyrimidines through degradation of host RNA and 

DNA, although evidence supporting this possibility is lacking (Fox and Holtman, 1968).  In stark 

contrast to pyrimidine biosynthesis, de novo purine biosynthesis has been found to play an 

integral role in F. tularensis virulence (Pechous et al., 2006; Pechous et al., 2008; Quarry et al., 

2007; Santiago et al., 2009).  In fact, de novo purine biosynthesis appears fundamentally required 
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for intracellular replication and mutants lacking this pathway are completely attenuated (Pechous 

et al., 2006; Pechous et al., 2008; Quarry et al., 2007; Santiago et al., 2009).  The ability to 

synthesize purines facilitates full virulence in several pathogens and purines have been 

implicated as a limiting nutrient in some host environments (Appelberg, 2006; Crawford et al., 

1996; McFarland and Stocker, 1987; Samant et al., 2008).   Interestingly, F. tularensis is lacking 

several enzymes that function in alternative purine salvage pathways, which likely contributes to 

the absolute requirement of de novo purine biosynthesis for intracellular replication (Karlsson et 

al., 2000).  It remains to be determined if the aforementioned purine salvage pathways contribute 

to pathogenesis. 

1.1.7.3 Micronutrients – Elements and Vitamins 

Beyond the nutritional needs associated with protein synthesis (amino acids) and 

DNA/RNA synthesis (pyrimidines and purines), organisms require other micronutrients such as 

elements and vitamins (Mason, 2007).  A critical host-pathogen metabolic competition occurs 

over the essential trace element, iron (Drakesmith and Prentice, 2012; Skaar, 2010).  The host 

passively restricts the concentration of free iron, sequestering it in compounds such as 

transferrin, lactoferrin and heme (Drakesmith and Prentice, 2012; Ponka et al., 1998; Skaar, 

2010). This process is essential in preventing free radical production and limiting systemic 

microbial infection (Drakesmith and Prentice, 2012; Ponka et al., 1998; Skaar, 2010).  

Furthermore, the host possesses active mechanisms to further deplete iron in response to 

infection (Drakesmith and Prentice, 2012; Flo et al., 2004).  To overcome these defenses, many 

pathogens secrete high-affinity iron-binding proteins known as siderophores, and/or bind, take 

up, and degrade host iron-containing compounds (Neilands, 1995; Schmitt, 1997; Skaar, 2010).  
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The evolution of Borrelia burgdorferi, the causative agent of Lyme disease and one of the only 

known life forms that does not require iron, is likely the extreme result of this competition 

(Posey and Gherardini, 2000; Skaar, 2010).  The iron metabolism of F. tularensis involves a 

high-affinity outer membrane iron transporter and a siderophore, in addition to conserved gram-

negative inner membrane iron transport systems (Milne et al., 2007; Ramakrishnan et al., 2008; 

Ramakrishnan et al., 2012; Sullivan et al., 2006; Thomas-Charles et al., 2013).  Loss of the 

outer-membrane iron transporter moderately decreased virulence, while loss of siderophore 

production had a negligible in vivo effect (Lindgren et al., 2009; Ramakrishnan et al., 2012).  

Siderophore production does contribute to pathogenesis, at least secondarily, as disruption of 

both the outer-membrane transporter and the siderophore have a synergistic effect and lead to a 

dramatically attenuated strain (Ramakrishnan et al., 2012).  Interestingly, the siderophore of F. 

tularensis is specific for ferric iron, while the outer-membrane transporter is specific for ferrous 

iron (Ramakrishnan et al., 2012).  Furthermore, the outer-membrane transporter is not 

transcriptionally regulated by iron, while the siderophore is tightly controlled by iron-responsive 

transcription factors (Lindgren et al., 2009; Sullivan et al., 2006).  Iron-binding host proteins, 

such as transferrin and lactoferrin, sequester ferric iron but ferrous iron is produced when these 

proteins are degraded in an acidified lysosome (Breuer et al., 1995).  Inhibition of lysosomal 

acidification attenuates intracellular replication of F. tularensis and this phenotype can be 

reversed by iron supplementation (Clemens et al., 2009) (Fortier et al., 1995).  Together, these 

results suggest that F. tularensis primarily acquires ferrous iron from lysosomal degradation but, 

when necessary, expresses a siderophore to acquire ferric iron by chelation of iron from iron-

containing host proteins.    
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Besides investigations into iron, relatively little work has been performed to elucidate the 

biosynthesis or acquisition of micronutrients by F. tularensis.  Mutation in the major potassium 

transporter of F. tularensis did not affect in vitro intracellular replication but resulted in a 

significant in vivo virulence defect (Alkhuder et al., 2010).  In particular, the mutant was unable 

to replicate within the blood (Alkhuder et al., 2010).  The mechanism behind this site-specific 

attenuation was hypothesized to be due to low levels of potassium extracellularly (Alkhuder et 

al., 2010).  Disruption of the synthesis of biotin (Vitamin B7), a cofactor in multiple metabolic 

pathways, has been associated with phagosomal escape defects and attenuation in F. tularensis 

(Napier et al., 2012). In contrast, disruption in the synthesis of pantothenate (Vitamin B5), the 

core of the essential coenzyme A cofactor, had no measurable effect on the virulence of F. 

tularensis (Miller et al., 2013).  These results indicate that F. tularensis encounters biotin 

limitation in vivo, but is capable of scavenging sufficient levels of pantothenate or related 

compounds from the host environment through a yet unknown mechanism (Miller et al., 2013; 

Napier et al., 2012).  Thus, it is clear that these few investigations into Francisella metabolism 

have yielded important information regarding the nutritional interactions between pathogen and 

host.   

1.2 ONE-CARBON METABOLISM 

One-carbon metabolism refers to the metabolic processes surrounding the generation and 

transfer of single-carbon moieties (Dev and Harvey, 1982; Locasale, 2013; Tibbetts and Appling, 

2010).  The central carrier of one-carbon units is tetrahydrofolate (THF), a compound derived in 

bacteria from pterin, 4-aminobenzoate, and glutamate (Bermingham and Derrick, 2002).  Two 
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mechanisms, known as the serine hydroxymethyltransferase (SHMT) and the glycine cleavage 

system (GCS), facilitate THF methylation and transformation to 5’10-methylenetetrahydrofolate 

(5’10-mTHF) (Fig. 2) (Dev and Harvey, 1982; Lorio et al., 2010).  The serine 

hydroxymethyltransferase involves the degradation of serine to glycine, while the glycine 

cleavage system involves the complete degradation of the glycine to carbon dioxide and 

ammonia (Plamann et al., 1983; Plamann and Stauffer, 1983).  The absence of both pathways in 

E. coli results in a complete loss of detectable 5’10-mTHF, suggesting that these two pathways 

are essential in generating one-carbon folates (Dev and Harvey, 1982; Waller et al., 2010).  Once 

acquired, 5’10-mTHF plays an essential role as a carbon donor in downstream metabolic 

reactions involving the generation of nucleotides and various amino acids (Locasale, 2013; 

Tibbetts and Appling, 2010). 
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Figure 2. The generation of a single-carbon (C1) pool by the GCS and SHMT for one-carbon metabolism. 

5’10-methylenetetrahydrofolate (N
5
,N

10
-mTHF) can be synthesized from either serine degradation by the serine 

hydroxymethyltransferase (SHMT) or from glycine degradation by the glycine cleavage system (GcvT, GcvH, 

GcvP, LpdA).  Once generated, N
5
,N

10
-mTHF enters a single-carbon pool and is ultimately utilized for the synthesis 

of various amino acids, nucleosides, and vitamins.   This figure is adapted from (Lorio et al., 2010) with permission. 

1.2.1 5’10-methylenetetrahydrofolate (5’10-mTHF) 

The production and utilization of 5’10-mTHF is the foundation of one carbon metabolism 

(Locasale, 2013; Tibbetts and Appling, 2010).  SHMT is the main producer of the methylated co-

factor in many bacteria, while the GCS provides an alternative source (Dev and Harvey, 1982).  
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5’10-mTHF serves to donate or capture a single carbon in numerous metabolic pathways.  

Primarily, donation of a single carbon from 5’10-mTHF functions in the biosynthesis of serine, 

methionine, purines, pantothenate, formylmethionyl-tRNA and thymidine (Guillon et al., 1992; 

O'Donovan and Neuhard, 1970; Ravnikar and Somerville, 1987; Webb et al., 2004; Weissbach 

and Brot, 1991; Zhang et al., 2008).  The presence of THF as a carbon acceptor also plays a role 

in glycine biosynthesis (Stauffer and Brenchley, 1978).  Generally, the flexibility of one-carbon 

metabolism and THF affords the organism a mechanism to regulate the concentration of several 

amino acids and synthesize nucleotides (Kikuchi et al., 2008; Stauffer and Brenchley, 1978).   

One-carbon metabolism-associated enzymes can both degrade and synthesize serine 

(Ravnikar and Somerville, 1987; Stauffer and Brenchley, 1978).  The majority of 5’10-mTHF in 

most microorganisms is derived from serine degradation by SHMT (Dev and Harvey, 1982).  In 

addition, the consumption of serine by this enzyme also provides a major source of glycine (Dev 

and Harvey, 1982).  Unsurprisingly, strains lacking SHMT activity have high glycine 

requirements and are sometimes referred to as glycine auxotrophs (Bogard et al., 2012; Harder 

and Quayle, 1971; Stauffer and Brenchley, 1978).  In conditions of serine starvation, one-carbon 

mediated production of serine can occur and requires a functional SHMT, 5’10-mTHF, and 

glycine (Ravnikar and Somerville, 1987). The source of 5’10-mTHF must be from GCS-

mediated glycine degradation when serine is limiting (Dev and Harvey, 1982; Ravnikar and 

Somerville, 1987; Waller et al., 2010).  In such conditions, glycine can be acquired directly from 

the environment, or can be produced from threonine degradation (Ghrist and Stauffer, 1995; 

Newman et al., 1976).  Threonine can likewise be obtained from the environment or synthesized 

de novo (Halpern, 1974; Wormser and Pardee, 1958).  While glycine degradation by the GCS 

can facilitate serine biosynthesis, it also functions in avoiding toxic glycine accumulation 
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(Hagemann et al., 2005; Scott et al., 2008).  Glycine toxicity appears to be partially linked to the 

ability of this amino acid to chelate divalent cations and may also involve inhibition of cell wall 

synthesis in bacteria (Eisenhut et al., 2007; Hammes et al., 1973).  The GCS is induced by 

glycine, allowing this pathway to sense and limit glycine concentration (Heil et al., 2002).    

Thus, one-carbon metabolism is capable of circumventing serine starvation and regulating 

glycine concentration.   

De novo production of methionine requires the donation of a methyl group, acquired 

from one-carbon metabolism, to homocysteine (Weissbach and Brot, 1991).  Homocysteine is a 

non-protein amino acid that is synthesized from aspartate and cysteine (Chattopadhyay et al., 

1991).  The methyl group is donated primarily from 5’methyltetrahydrofolate (5’-mTHF) (Guest 

et al., 1964b).  5’-mTHF is generated from 5’10-mTHF by the activity of a 

methylenetetrahydrofolate reductase (Guest et al., 1964a).  The biosynthesis of methionine is 

tightly regulated in many bacteria and this partially occurs through the regulation of SHMT-

mediated 5’10-mTHF production (Weissbach and Brot, 1991).  The methionine precursor, 

homocysteine, is capable of inducing SHMT while the downstream methionine product, S-

adenosylmethionine is capable of repressing SHMT (Weissbach and Brot, 1991).  Overall, it is 

clear that one-carbon metabolic reactions are important to methionine production and regulation. 

Biosynthesis of most nucleotides in a de novo fashion requires one-carbon metabolism 

(Moffatt and Ashihara, 2002; O'Donovan and Neuhard, 1970; Zhang et al., 2008).  Thymidine 

monophosphate is produced from its precursor uridine monophosphate by the action of a 

thymidylate synthase (O'Donovan and Neuhard, 1970; Wahba and Friedkin, 1962).  This 

reaction requires the donation of a methyl group from 5’10-mTHF (O'Donovan and Neuhard, 

1970; Wahba and Friedkin, 1962).  Methyl donation is required for the synthesis of inosine 
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monophosphate, the precursor of both purine nucleotides (guanine monophosphate and adenine 

monophosphate) (Zhang et al., 2008).  The source of the carbon donation in this scenario is 10-

formyltetrahydrofolate (10-formylTHF) (Zhang et al., 2008).  In many bacteria, 10-formylTHF is 

derived from 5’10-mTHF by a bi-functional enzyme, which converts 5’10-mTHF into 5,10-

methenyltetrahydrofolate and subsequently into 10-formylTHF (D'Ari and Rabinowitz, 1991).  

SHMT is regulated by purine concentration, a feature that also highlights the importance of 5’10-

mTHF in purine biosynthesis (Steiert et al., 1990a).  In bacteria, 10-formylTHF is also combined 

with methionyl-tRNA to produce formylmethionyl-tRNA through the action of methionyl-tRNA 

formyltransferase (Guillon et al., 1992).  Formylmethionyl-tRNA serves as the initiator tRNA for 

protein synthesis in bacteria and the formylation is thought to increase the affinity of initiation 

factors for this tRNA (Hartz et al., 1989).  It is noteworthy that, in contrast to early dogma, 

formylation is not essential to bacterial protein synthesis and its loss may only result in a mild to 

moderate growth defect (Newton et al., 1999).  Finally, ketopantoate, a precursor of 

pantothenate, also requires 5’10-mTHF to be produced (Webb et al., 2004).    Therefore, 5,10-

mTHF is also an essential carbon donor in nucleoside, pantothenate, and formylmethionyl-tRNA 

biosynthesis.  

 

1.2.2  Serine Hydroxymethyltransferase (SHMT) 

SHMT (EC 2.1.2.1) is capable of facilitating a reversible reaction, interconverting serine 

and glycine, which can generate or consume one-carbon moieties (Stauffer and Brenchley, 

1978).  5’10-mTHF is generated from the reaction (serine + THF  glycine + 5’10-mTHF) and 

5’10-mTHF is consumed by the reverse reaction (glycine + 5’10-mTHF  serine + THF) 
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(Locasale, 2013; Tibbetts and Appling, 2010).  This metabolic enzyme is highly evolutionarily 

conserved and is present throughout many prokaryotic and eukaryotic species (Garrow et al., 

1993; Plamann and Stauffer, 1983; Tibbetts and Appling, 2010).  Bacteria typically possess a 

single copy of this gene, annotated as glyA (Plamann and Stauffer, 1983).  In contrast, eukaryotes 

have been found to possess at least two isoforms, one present in the cytosol (cSHMT or SHMT1) 

and one localizing to the mitochondria (mSHMT or SHMT2) (Garrow et al., 1993; Narkewicz et 

al., 1996; Tibbetts and Appling, 2010).  The significance of these two SHMT proteins remains to 

be fully clarified but evidence suggests that mSHMT is the major supplier of glycine and 5’10-

mTHF from serine degradation while cSHMT may function in either alternative serine synthesis 

or regulatory reactions (Narkewicz et al., 1996; Tibbetts and Appling, 2010).   

While compartmentalization and distinct isoforms may convey a sense of 

unidirectionality in eukaryotes, the regulation of bidirectionality in prokaryotic SHMT reactions 

remains unclear.  The SHMT of prokaryotes is the primary source of one-carbon units in most 

bacteria and its default directive, at least in the laboratory, appears to be serine degradation and 

5’10-mTHF production (Dev and Harvey, 1982; Stauffer and Brenchley, 1978).  In fact, SHMT 

is responsible for the majority of one-carbon units in E. coli (Dev and Harvey, 1982).  However, 

it is clear that, when required, this protein can facilitate serine synthesis from glycine and 5’10-

mTHF consumption (Ravnikar and Somerville, 1987).  The role of  SHMT in serine synthesis is 

generally confounded by the presence of another serine biosynthetic pathway, which converts 

glucose to serine (Ravnikar and Somerville, 1987).  This glucose to serine pathway requires the 

serABC genes and is generally regarded as the primary serine biosynthetic pathway of most 

bacteria (Ravnikar and Somerville, 1987; Umbarger et al., 1963).  Interestingly, it has been noted 

that binding serine results in a confirmational change in SHMT, while binding glycine seems to 
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have no effect (Florio et al., 2011).  This may help explain the apparent preference of the enzyme 

for serine degradation over serine synthesis in most settings.  It is important to note however that 

serine degradation is not always the primary function of SHMT and in some bacteria, such as 

methylotrophs, this protein serves primarily to synthesize serine and assimilate single-carbon 

compounds (Izumi et al., 1993; Miyata et al., 1993).  Overall, it is clear that the function and 

importance of SHMT depends both on the genetic landscape of the organism (i.e. the presence of 

additional serine biosynthetic pathways, the auxiliary production of one-carbon units from the 

GCS) and on nutrient availability.     

Given the role of SHMT encoded by glyA in many prokaryotes as a primary source of 

5’10-mTHF and the importance of 5’10-mTHF in DNA and protein synthesis, one would expect 

that glyA would be an important fitness factor for bacterial pathogens (Dev and Harvey, 1982).  

This gene, however, has rarely been studied in the context of virulence.  One plausible 

explanation is that mutants in this pathway suffer from a growth defect in typical laboratory 

media and are either unattainable or consciously excluded.  In support of this, glyA has been 

designated as essential in numerous bacterial species due to a lack of genetic disruption of this 

locus following transposon screens (Gallagher et al., 2007; Kobayashi et al., 2003; Simic et al., 

2002).  It is unlikely, however, that this metabolic pathway is truly essential in all these 

conditions but rather appears that these studies fail to supplement the nutritional needs of an 

auxotroph.  Indeed, glyA mutants in Escherichia coli have been generated but require glycine 

supplementation (Ravnikar and Somerville, 1987; Stauffer and Brenchley, 1978).  This 

supplementation likely promotes 5’10-mTHF production through the GCS and replaces the pool 

of glycine produced from glyA-mediated serine degradation (Dev and Harvey, 1982; Ravnikar 

and Somerville, 1987).  Mutants in glyA have been investigated in the intestinal pathogen Vibrio 
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cholerae (Bogard et al., 2012).  Strains lacking glyA required additional amino acid 

supplementation and were found to be attenuated in a murine intestinal model (Bogard et al., 

2012).  The importance of glyA has also been evaluated in the fish pathogen Edwardsiella 

ictaluri (Dahal et al., 2013). In this study, the contribution of glyA to metabolism was not 

evaluated but glyA was found to be essential for virulence in a catfish model of enteric 

septicemia (Dahal et al., 2013).  This gene has also been linked indirectly to virulence.  For 

example, mutants in glyA have reduced spore formation efficiency in Bacillus subtilis and 

regulation of glyA is linked to curli fiber formation in E. coli (Chirwa and Herrington, 2003; 

Dartois et al., 1997).  Curli fibers are involved with biofilm formation and contribute to host cell 

adhesion and invasion (Barnhart and Chapman, 2006).  While the role of glyA in many other 

bacterial pathogens remains unknown, these studies suggest that perturbation of this metabolic 

process leads to overall reduced fitness and loss of virulence.        

1.2.3 Glycine Cleavage System (GCS)  

In addition to serine degradation, 5’10-mTHF can also be acquired from glycine 

degradation (Dev and Harvey, 1982; Meedel and Pizer, 1974).  While serine degradation only 

requires a single enzyme, SHMT, glycine degradation requires at least four proteins.  These four 

proteins, referred to as the glycine cleavage system (GCS), are the glycine cleavage T-protein 

(GcvT, EC 2.1.2.10), the glycine cleavage H-protein (GcvH), the glycine cleavage P-protein 

(GcvP, EC 1.4.4.2), and the lipoamide dehydrogenase (LpdA, EC 1.8.1.4) (Kikuchi et al., 2008; 

Plamann et al., 1983) (Steiert et al., 1990b).  Interestingly, the GCS is moderately evolutionarily 

conserved and is present in many bacterial and mammal species (Bogard et al., 2012; Kikuchi et 

al., 2008; Plamann et al., 1983; Stauffer et al., 1989).  This auxiliary system contributes serine-
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independent 5’10-mTHF pools and also plays a significant role in regulating glycine 

concentration in most organisms (Hagemann et al., 2005; Kikuchi et al., 2008; Scott et al., 2008; 

Stauffer et al., 1989).  In fact, defects in the mammalian GCS are associated with 

hyperglycinemia and can lead to glycine encephalopathy (Kikuchi et al., 2008; Perry et al., 

1975).  The capacity of this system to restrict glycine concentration is likely facilitated by the 

fact that most GCS members are upregulated in the presence of excess glycine. (Heil et al., 

2002).  

In most physiologic settings, the GCS mediates a unidirectional reaction (glycine + THF 

 CO2 + NH3 + 5’10-mTHF) (Kikuchi et al., 2008).  This reaction revolves around GcvH, a 

lipoylated protein that serves as an intermediate carrier of the methyl moiety and importantly 

interacts as a substrate with every protein of the GCS (Fujiwara et al., 1979; Kikuchi et al., 

2008).  The first step in the GCS involves the decarboxylation of glycine by GcvP (Fujiwara and 

Motokawa, 1983; Kikuchi et al., 2008).  This releases carbon dioxide and subsequently transfers 

the remaining amino methyl residue to GcvH (Fujiwara and Motokawa, 1983; Kikuchi et al., 

2008).  This residue is attached to the lipoate of GcvH by the reduction of a disulfide bond 

(Fujiwara and Motokawa, 1983; Kikuchi et al., 2008).  The methylamine carrying GcvH is then 

acted upon by GcvT (Kikuchi et al., 2008; Okamura-Ikeda et al., 1982).  This next step requires 

THF as a co-factor, leads to the release of ammonia, and finally transfers the methyl group 

creating 5’10-mTHF (Kikuchi et al., 2008; Okamura-Ikeda et al., 1982).  While 5’10-mTHF can 

be utilized in downstream metabolic reactions, the GcvH remains in an unusable reduced form 

(Kikuchi et al., 2008).  Recycling of GcvH requires oxidization and regeneration of the disulfide 

bonds in the lipoate, a reaction carried out by LpdA (Kikuchi et al., 2008; Steiert et al., 1990b).  

It is important to note that, unlike the other members of the GCS, LpdA functions directly in 
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various other metabolic pathways, including multiple steps in the tricarboxylic acid cycle (Li et 

al., 2006).  Furthermore, while gcvT, gcvP, and gcvH often constitute an operon, lpdA is typically 

found unlinked and elsewhere in the genome (Okamura-Ikeda et al., 1993; Steiert et al., 1990b).   

As opposed to SHMT, the GCS does not provide the main source of one-carbon units and 

is not directly capable of amino acid biosynthesis (Dev and Harvey, 1982; Kikuchi et al., 2008).  

It is, however, capable of reducing glycine concentration and providing serine-independent 5’10-

mTHF (Hagemann et al., 2005; Kikuchi et al., 2008; Scott et al., 2008).  Importantly, SHMT-

mediated serine biosynthesis from glycine utilizes this 5’10-mTHF source (Ravnikar and 

Somerville, 1987).  Thus, the role of the GCS in bacterial fitness may be limited to nutritional 

environments with limiting serine or excess glycine.  As mentioned previously, many bacteria 

possess the serABC pathway to synthesize serine from glucose and this may provide alternatives 

to GCS-dependent metabolism (Ravnikar and Somerville, 1987; Umbarger et al., 1963).  Based 

upon this, the contribution of the GCS to virulence may vary between species and would depend 

on the pathogen’s metabolism and specific infection niche.  Mutations in lpdA have been studied 

in a wide variety of bacterial pathogens (Hallstrom et al., 2012; Herbert et al., 2003; Meibom et 

al., 2008; Smith et al., 2002; Venugopal et al., 2011).  Although these mutant strains are almost 

universally attenuated, interpretation of these findings is confounded by the role of LpdA in 

multiple metabolic pathways (Hallstrom et al., 2012; Herbert et al., 2003; Li et al., 2006; 

Meibom et al., 2008; Smith et al., 2002; Venugopal et al., 2011).  Although E. coli strains 

lacking lpdA had undetectable GCS activity, little work has been done to confirm this finding in 

other bacterial species, some of which possess additional lipoamide dehydrogenase enzymes 

(Argyrou and Blanchard, 2001; Steiert et al., 1990b).  Thus, no direct conclusion can be made 

regarding the contribution of the GCS from these studies.  Loss of GCS function alone has no 
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apparent effect on serine metabolism of wild-type E. coli (Plamann et al., 1983).  Interestingly, 

concurrent loss of the GCS and serABC pathways result in a serine auxotrophy, confirming the 

role of GCS in an alternative SHMT-mediated serine biosynthetic pathway (Ravnikar and 

Somerville, 1987).  Furthermore, GCS deficiency results in increased sensitivity to glycine in 

several organisms (Hagemann et al., 2005; Scott et al., 2008).  In regards to virulence, disruption 

of the GCS was found to have no role in a murine intestinal infection model in V. cholera 

(Bogard et al., 2012).  This study characterized the nutritional environment of the murine gut as 

serine rich but glycine limiting, a milieu that would not favor GCS function (Bogard et al., 

2012).  In contrast to V. cholerae, E. ictaluri requires a functional GCS for pathogenesis in a 

catfish model of enteric septicemia (Dahal et al., 2013; Karsi et al., 2009).  Interestingly, the 

study did not examine the metabolic contribution of the GCS but did find that mutant strains had 

significantly increased sensitivity to serum and neutrophils (Karsi et al., 2009).  While these 

phenotypes may explain the in vivo attenuation, it remains to be elucidated how GCS activity 

contributes to serum and neutrophil resistance in this bacterium.  The GCS has been identified in 

Brucella abortus as contributing to chronic infection in a murine model (Hong et al., 2000).  This 

study did not examine metabolism, but it is plausible that loss of the GCS may dampen the 

overall metabolic fitness of B. abortus and promote early clearance (Hong et al., 2000).  The 

GCS has also been investigated in the protozoa, Leishmania major (Scott et al., 2008).  In this 

pathogen, the GCS contributed to fitness in serine-limiting environments and was found to be 

attenuated in murine models of infection (Scott et al., 2008).  Importantly, L. major lacks a 

functional serABC pathway and this reduced serine biosynthetic potential is likely to contribute 

to the importance of GCS in this organism (Scott et al., 2008).  Overall, the GCS is not 
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universally required for virulence and its contribution appears to be linked to the pathogens 

metabolic pathways and life cycle.     

1.2.4 Role of one-carbon metabolism in F. tularensis 

To our knowledge, one-carbon metabolism has never been directly studied to assess its 

contribution to the pathogenesis of Francisella.  However, there are reasons to hypothesize it has 

a role in tularemia.  F. tularensis possesses homologs to all necessary proteins to facilitate 

acquisition of 5’10-mTHF through the GCS and SHMT (Larsson et al., 2005).  As mentioned, 

these one-carbons are involved in downstream metabolic reactions to synthesize glycine, serine, 

methionine, purines, pantothenate, formylmethionyl-tRNA and thymidine (Guillon et al., 1992; 

O'Donovan and Neuhard, 1970; Ravnikar and Somerville, 1987; Stauffer and Brenchley, 1978; 

Webb et al., 2004; Weissbach and Brot, 1991; Zhang et al., 2008).  Based on genetic analysis, F. 

tularensis appears to be capable of using 5’10-mTHF for all of these reactions with the exception 

of methionine synthesis (Larsson et al., 2005).  This bacterium appears to lack several proteins 

required for this pathway and is likely a methionine auxotroph (Guest et al., 1964a; Larsson et 

al., 2005).  Thus, one-carbon metabolism could be involved with glycine, serine, purine, 

pantothenate, formylmethionyl-tRNA, and thymidine biosynthesis in F. tularensis. 

The requirement of one-carbon metabolic products for Francisella pathogenesis is 

uncertain.   Although de novo pyrimidine biosynthesis plays only a minor role in a murine model 

of pneumonic tularemia, pyrimidine salvage pathways are present in the genome (Horzempa et 

al., 2010a; Larsson et al., 2005).  This salvage mechanism could provide an alternative source of 

the thymidine pre-cursor, uridine monophosphate (Moffatt and Ashihara, 2002; O'Donovan and 

Neuhard, 1970).  The conversion of uridine monophosphate to thymidine monophosphate 
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requires 5’10-mTHF and thus the pathogenic contribution of thymidine biosynthesis through 

one-carbon metabolism is not yet known (O'Donovan and Neuhard, 1970; Wahba and Friedkin, 

1962).  The prerequisite of formylmethionyl-tRNA for the initiation of protein synthesis in 

Francisella has not been investigated and it is not a universal requirement in all bacterial species 

(Guillon et al., 1992; Newton et al., 1999).  Pantothenate biosynthesis does not appear to 

contribute to the virulence of F. tularensis and auxotrophic mutants had no defects in an animal 

model (Webb et al., 2004).  On the other hand, purine biosynthesis appears essential for the 

intracellular replication and pathogenesis of F. tularensis (Pechous et al., 2006; Pechous et al., 

2008; Quarry et al., 2007).  Two steps in the biosynthesis of purines utilize carbon donations 

from one-carbon metabolism, although alternative mechanisms that use formate instead of 10-

formylTHF exist (Moffatt and Ashihara, 2002; Zhang et al., 2008).  Francisella is annotated to 

contain only one of the two required enzymes to circumvent the 10-formylTHF requirement and 

thus one-carbon metabolism is likely necessary for de novo purine biosynthesis (Larsson et al., 

2005; Zhang et al., 2008).  Importantly, this has not been experimentally demonstrated and the 

genes involved in carbon transfer for purine synthesis have not been directly investigated.  It 

remains plausible that F. tularensis circumvents a 10-formylTHF requirement for purine 

production, possibly utilizing one of its many hypothetical genes to fulfill the absent enzymatic 

activity (Larsson et al., 2005).  Thus, experimental evidence is lacking regarding the importance 

of one-carbon mediated purine, thymidine, and formylmethionyl-tRNA biosynthesis.   

The importance of serine and glycine biosynthesis and degradation by one-carbon 

metabolism in F. tularensis is unknown.  Although this bacterium lacks an intact threonine 

biosynthetic pathway, it does possess homologs to a pathway which degrades threonine to 

glycine (Larsson et al., 2005; Newman et al., 1976).  One-carbon metabolism is thus not the only 
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potential glycine source in F. tularensis.  Due to the threonine auxotrophy, conditions with 

limiting threonine would be expected to accentuate SHMT-mediated glycine production.  One-

carbon metabolism is also not likely the only source of serine for F. tularensis subsp. tularensis.  

This is due to the annotated presence of the glycolytic serine biosynthetic genes, serABC 

(Kanehisa and Goto, 2000; Larsson et al., 2005).  Since this pathway consumes glucose and the 

one-carbon metabolic pathway consumes glycine, the primary serine biosynthetic pathway may 

vary depending on environmental nutrient conditions (Ravnikar and Somerville, 1987; Umbarger 

et al., 1963).  Interestingly, F. tularensis subsp. holarctica does not possess an intact serABC 

pathway, due to a frame shift mutation in the gene annotated as serB (Champion et al., 2009; 

Kanehisa and Goto, 2000).  This suggests that one-carbon metabolism may be the only source of 

serine in the holarctica subspecies but not in the tularensis subspecies.  It is formally possible, 

however, that the two fragments of serB in holarctica remain functionally capable of facilitating 

serine biosynthesis.   Two important caveats exist regarding the serABC pathway in Francisella.   

First, SerA and SerC are not always specific for serine biosynthesis and may contribute to 

pyridoxine (Vitamin B6) biosynthesis (Lam and Winkler, 1990).  Secondly, the annotated serB 

(FTT_0568) in F. tularensis subsp. tularensis has only limited homology (26% identity over a 

common 186 amino acid region) to the serine-producing serB of E. coli (Kanehisa and Goto, 

2000; Larsson et al., 2005).  This is particularly relevant in light of recent findings that genes 

annotated as serB may serve non-metabolic virulence roles in other bacterial pathogens 

(Takeuchi et al., 2013).  A definitive role for the serABC pathway in the metabolism of F. 

tularensis subsp. tularensis remains to be confirmed.  Based on in silico analysis of F. tularensis 

genomes, one-carbon metabolism appears to be one of two glycine sources for all F. tularensis 
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subspecies, one of two serine sources for F. tularensis subsp. tularensis, and the only serine 

source for F. tularensis subsp. holarctica.   

Although the production of 5’10-mTHF by the GCS and SHMT has never been 

thoroughly investigated in F. tularensis, indirect evidence suggests these pathways may 

contribute to pathogenesis.  Global transcriptional profiling on F. tularensis during 

intramacrophage growth revealed that the GCS was induced within the host cytosolic 

environment (Wehrly et al., 2009).  Furthermore, the GCS of F. tularensis is induced by 

mammalian body temperature and is also regulated by the host specific polyamine, spermine 

(Carlson et al., 2009; Horzempa et al., 2008).  This pattern of transcriptional regulation in 

response to host conditions suggests the GCS may beneficially contribute to intracellular 

replication.  Interestingly, multiple transcriptional regulators have been described to control 

expression of the GCS and SHMT but clear homologs to these appear to be absent in F. 

tularensis (Heil et al., 2002; Landgraf et al., 1994; Larsson et al., 2005; Newman and Lin, 1995; 

Steiert et al., 1990a; Weissbach and Brot, 1991).  The regulatory mechanism behind the 

expression of these proteins may thus be distinct from E. coli and this could facilitate the 

response to specific host cues.  In support of these transcriptional profiling studies, induction of 

the GCS at the protein level was found to occur in Francisella isolated from mouse spleens 

(Twine et al., 2006).  A role in pathogenesis was further suggested by the identification of 

multiple members of the GCS in an in vivo negative selection screen in F. tularensis subsp. 

novicida (Weiss et al., 2007).  Of note, mutagenesis of lpdA in F. tularensis subsp. holarctica 

results in in vivo attenuation (Meibom et al., 2008).  As mentioned, lpdA is not only required for 

GCS activity in E. coli but also functions broadly in other critical metabolic pathways (Li et al., 

2006; Steiert et al., 1990b).  This study did not investigate any specific metabolic defects in 
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strains lacking lpdA and did not include genetic complementation (Meibom et al., 2008).  Thus, 

the GCS of F. tularensis is regulated by host environmental cues and has been indirectly 

implicated as contributing to pathogenesis.   

In contrast to the GCS, the SHMT of F. tularensis does not appear to be regulated in 

response to host environmental signals that have been tested (Carlson et al., 2009; Horzempa et 

al., 2008; Wehrly et al., 2009).  To our knowledge, the glyA homolog in F. tularensis has not 

been identified in any transcriptional profiling studies and is rarely found in virulence screens 

(Tempel et al., 2006).  Interestingly, glyA has been labeled as an essential gene in F. tularensis 

subsp. novicida as no disruptions of this locus were identified following genome-saturating 

transposon mutagenesis (Gallagher et al., 2007).  In contrast to this, another study identified a 

viable glyA transposon mutant in F. tularensis subsp. novicida while searching for mutants 

defective in intracellular growth (Tempel et al., 2006).  The later study also performed an in vivo 

screen using various strains, including the glyA transposon mutant (Tempel et al., 2006).  Data 

from this single-iteration screen revealed that two of three animals infected with this mutant 

survived a lethal dose (Tempel et al., 2006).  This study did not attempt to assess this phenotype 

by statistical analysis, nor did they seek to genetically complement this gene (Tempel et al., 

2006).  In fact, the glyA mutant was excluded from further in vivo characterization due to the 

death of one animal, as it wasn’t fully attenuated (Tempel et al., 2006).  It remains unclear why 

this gene was identified as essential but a significant in vitro growth defect may have given rise 

to a false positive (Gallagher et al., 2007).  Ultimately, the lack of genetic complementation, 

metabolic analysis, statistics, and thorough in vivo characterization leaves significant questions 

remaining regarding the role of glyA in the pathogenesis of F. tularensis. 
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1.3 STATEMENT OF THE PROBLEM  

The contribution of a metabolic pathway to bacterial pathogenesis is dependent on the 

pathogen’s niche, life cycle, and genetics (Eisenreich et al., 2010; Rohmer et al., 2011).  The 

host-pathogen metabolic interaction is of great interest to anti-bacterial drug development, 

although specific targets must be identified, validated, and studied thoroughly (Zhang and Rubin, 

2013).  One-carbon metabolic pathways are conserved among bacterial species, including many 

pathogens, indicating that inhibition of these pathways may have broad therapeutic potential (de 

Crecy-Lagard et al., 2007; Tibbetts and Appling, 2010).  Surprisingly, the contribution of 

bacterial one-carbon metabolism to pathogenesis is poorly described as little work has been 

performed to characterize this system during infection.  Ultimately, this represents an 

unacceptable gap in current knowledge and a barrier to the development of novel antibiotics.  To 

address this problem, the importance of one-carbon metabolism to the pathogenesis of 

Francisella tularensis has been investigated in this thesis.  F. tularensis is an excellent model 

organism for this study because it is capable of infecting and replicating in a large repertoire of 

distinct host niches in a murine model of tularemia (Forestal et al., 2007; Hall et al., 2008; 

Horzempa et al., 2010a).  The work detailed in this thesis has identified one-carbon metabolism 

as the exclusive serine biosynthetic pathway of F. tularensis.  It has identified a niche-specific 

contribution of this pathway during infection, specifically a previously unrecognized role in 

bacteremia.  Overall these studies have demonstrated that one-carbon metabolism contributes to 

the pathogenesis of F. tularensis and may represent a useful target for therapeutic intervention. 
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2.0  THE CONTRIBUTION OF THE GLYCINE CLEAVAGE SYSTEM TO THE 

PATHOGENESIS OF FRANCISELLA TULARENSIS 

2.1 ABSTRACT 

Biosynthesis and acquisition of nutrients during infection are integral to pathogenesis.  

Members of a metabolic pathway, the glycine cleavage system, have been identified in virulence 

screens of the intracellular bacterium Francisella tularensis but their role in pathogenesis 

remains unknown. This system generates 5,10-methylenetetrahydrofolate, a precursor of amino 

acid and DNA synthesis, from glycine degradation.  To characterize this pathway, deletion of the 

gcvT homolog, an essential member of this system, was performed in attenuated and virulent F. 

tularensis strains.  Deletion mutants were auxotrophic for serine but behaved similar to wild-type 

strains in vitro with respect to invasion, intracellular replication, and stimulation of TNF-.  

Unexpectedly, the glycine cleavage system was required for the pathogenesis of virulent F. 

tularensis in vivo.   Deletion of the gcvT homolog delayed mortality and lowered bacterial 

burden, particularly in the liver and bloodstream.  To reconcile the divergent in vitro and in vivo 

phenotypes, minimal tissue culture media was employed to mimic the nutritionally limiting 

environment of the host.  This reevaluation demonstrated that the glycine cleavage system 

contributes to the intracellular replication of virulent F. tularensis in serine limiting 
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environments.  Thus, the glycine cleavage system is the serine biosynthetic pathway of F. 

tularensis and contributes to pathogenesis in vivo. 

2.2 INTRODUCTION 

Francisella tularensis is an intracellular bacterium and a formidable pathogen.  It is 

highly infectious, requiring inhalation of only 10 to 50 bacteria to cause a febrile illness known 

as tularemia (Saslaw et al., 1961a).   The pulmonary manifestation of the disease is fatal in up to 

60% of cases without medical intervention (McCrumb, 1961).   Due to these properties, there is 

significant concern for intentional aerosolized release and misuse of this agent in the form of 

bioterrorism (Oyston et al., 2004).   As such, F. tularensis is categorized by the Centers for 

Disease Control and Prevention as a tier one select agent (Centers for Disease Control and 

Prevention (CDC), 2012). 

Often referred to as a “stealth pathogen”, F. tularensis is capable of both suppressing and 

avoiding the host immune response (Sjostedt, 2006).  Infection with Francisella evokes little to 

no proinflammatory response in vitro and a delayed proinflammatory response in vivo (Bosio 

and Dow, 2005).  While eluding detection, this bacterium has a complex intracellular life cycle 

involving invasion, phagosomal escape, cytosolic replication, and egress (Chong and Celli, 

2010).  Significant questions remain regarding the host pathogen interaction throughout its life 

cycle, but it is clear that Francisella is well suited for its intracellular niche.  In support of this, 

F. tularensis is capable of successful infection and replication in an extensive repertoire of host 

cells.  This repertoire ranges from immune cells such as dendritic cells, neutrophils, and 

macrophages to non-immune cells such as hepatocytes and type II pneumocytes (Conlan and 
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North, 1992; Hall et al., 2008).  Thus, Francisella is capable of circumventing host defense 

systems and gaining access to the cytosolic environment. 

Organisms must acquire or synthesize various metabolites in order to survive and 

replicate.  For pathogens, metabolites and metabolic precursors must be derived from the host.   

Francisella infects a wide range of host sites including the lung, liver, spleen, and blood (Conlan 

et al., 2003).  The bacterium must therefore be metabolically competent for these nutritionally 

diverse environments.  In support of this, tryptophan biosynthesis in F. tularensis has been found 

to be essential in counteracting lung specific inducible tryptophan starvation involving host 

production of indoleamine 2,3-dioxygenase (Peng and Monack, 2010).   Furthermore, the 

extracellular phase of this bacterium relies on a potassium uptake protein known as TrkH to 

grow in the potassium-limiting environment of the host’s blood (Alkhuder et al., 2010).  Cell 

type specific nutritional requirements have also been discovered as pyrimidine biosynthesis is 

required for replication in macrophages but not in epithelial cells (Horzempa et al., 2010a).   In 

contrast, purine biosynthesis is important to Francisella intracellular replication across cell types 

and loss of this pathway results in a dramatic attenuation in vivo (Pechous et al., 2006).   Thus, 

investigation into pathogen metabolism during infection has revealed important pathways 

contributing to F. tularensis pathogenesis.  Broadly, these results have also added to a growing 

understanding of the microenvironments in host tissues and the biosynthetic and nutrient 

acquisition pathways that are critical for pathogens to colonize these niches. 

Despite recent advances, a significant number of metabolic pathways remain 

uncharacterized in F. tularensis and their contribution to pathogenesis is unknown (Meibom and 

Charbit, 2010).   One particular unstudied pathway, the glycine cleavage system (GCS), has a 

variety of noteworthy properties. This system facilitates the degradation of glycine to acquire 
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5,10-methylene-tetrahydrofolate, a one-carbon donor utilized in the production of serine, 

thymidine, and purines (Kikuchi, 1973).  Therefore, this pathway is expected to contribute to 

pathogen fitness in host compartments where these metabolites, such as serine, are limiting.  The 

homologs of the GCS are transcriptionally upregulated in F. tularensis during infection of 

macrophages (Wehrly et al., 2009).  A member of this system, the homolog of gcvH, was found 

to be strongly induced at the protein level in Francisella isolated from mouse spleens (Twine et 

al., 2006).   Furthermore, this system was identified in an in vivo negative selection screen in the 

related bacterium, Francisella novicida (Weiss et al., 2007).  These data suggest that the glycine 

cleavage system may play an important role in the metabolic fitness of Francisella tularensis.   

In this report, we evaluated the contribution of the glycine cleavage system to the 

pathogenesis of F. tularensis.  To investigate this pathway, we deleted the F. tularensis homolog 

of a required member of this system, the glycine cleavage protein T (gcvT).  Following 

mutagenesis, strains were assayed for metabolic defects, in vitro virulence phenotypes, and in 

vivo pathogenesis.  Our results demonstrate that the homolog of the glycine cleavage system is 

functional, essential when serine is limited, and ultimately required for the full in vivo 

pathogenesis of virulent F. tularensis. 

2.3 MATERIALS AND METHODS 

2.3.1   Bacterial strains 

The following reagent was obtained through BEI Resources, NIAID, NIH: Francisella 

tularensis subsp. tularensis, Strain SCHU S4 (FSC237), NR-643.  Francisella tularensis subsp. 
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holarctica Live Vaccine Strain (LVS) was provided as a gift from Dr. Karen Elkins (U.S. Food 

and Drug Administration).  Routine culture of Francisella was performed by streaking frozen 

bacterial stocks onto chocolate agar (GC medium base, hemoglobin, and isovitaleX).  

Complement and vector strains were streaked onto chocolate agar supplemented with 

hygromycin (200g/mL).  Bacteria were grown on plates for three days at 37 °C with 5% CO2 

and subsequently used to inoculate overnight cultures.  Unless otherwise specified, overnight 

cultures were performed in trypticase soy broth supplemented with cysteine (TSB-C) and were 

shaken at 250 rpm at 37 °C.  All work with Schu S4 strains was performed in BSL3 containment 

with approval from the Centers for Disease Control and Prevention Select Agent Program.  

Cloning was performed using the E. coli EC100D strain. 

2.3.2 Generation of deletion mutants, complements, and vector controls 

Deletion of the gcvT homolog in LVS (FTL_0477) and Schu S4 (FTT_0407) was 

performed by allelic replacement as described previously (Horzempa et al., 2010b).  The flanks 

of gcvT share 99% identity between LVS and Schu S4, therefore we utilized a suicide vector 

(pJH1) containing the regions upstream and downstream of gcvT in LVS for deletions in both 

strains.  The upstream flank (1,053 bp) was generated using 

CATGGGATCCCCGATAGTTGCTAGCGTGG as a forward primer and 

GATCGGTACCTGCTATATGTGATTCATAAAGAGG as a reverse primer.  The downstream 

flank (1,057 bp) was generated using CTAGGGTACCGTCGAGCTAGTTAAACCTAAG as a 

forward primer and CTAGGCATGCCTCTCAAATAAGTTGGGTGTAAAGC as a reverse 

primer.  This mutational strategy is expected to remove nucleotides (38-1026) of the gcvT locus, 

while leaving behind 37 nucleotides at the 5’ end and 51 nucleotides at the 3’ end of this gene.  
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The remaining nucleotides are expected to remain in-frame as one of the homologous 

nucleotides of the 5’ end is part of the 6 bp restriction site linker connecting the two flanks.   

Loss of gcvT was confirmed by genomic PCR using 

CTAGGGATCCGCTACCAACTTTATATGCGGAAGATCC as a forward primer and 

CTAGGGTACCTGACCCACTCATGCGACTTTGTATAC as a reverse primer (Appendix 3).  

These primers are 523 bp upstream and 108 bp downstream of gcvT, respectively, and are 

expected to produce products of either 1,708 bp (wild-type locus) or 719 bp (gcvT).  Strains 

with deletions of the gcvT homolog are annotated as LVS gcvT and Schu S4 gcvT. 

Complementation of gcvT was performed in cis using a modified pJH1 suicide plasmid 

(pMB1).  pMB1 was generated by cutting pJH1 with XhoI to remove extraneous yeast genes and 

subsequent religation.  The LVS gcvT (FTL_0477) was amplified by PCR with 249 bp of 

upstream region and 108 bp of downstream region and ligated into pGEM-T, generating 

pGEMgcvT.  This was performed using 

GATCGGATCCCCTGGAGAGAAGATAACCGAAGAATC as a forward primer and 

CTAGGCATGCTGACCCACTCATGCGACTTTGTATAC as a reverse primer.  Digestion of 

pGEMgcvT with BamHI and SphI (restrictions sites present in the forward and reverse primers) 

allowed for subcloning of this sequence into pMB1 to create pMB1gcvT.  This procedure was 

repeated with a PCR amplicon containing only the 249 bp upstream region to serve as a pMB1 

vector control.  Generation of this amplicon was achieved by using 

GATCGGATCCCCTGGAGAGAAGATAACCGAAGAATC as a forward primer and 

CTAGGCATGCGAACTATCCACCTAAAAAATTATGCTCG as a reverse primer.  The 249 

bp upstream region was expected to contain the gcvT promoter and also served as the 

homologous sequence for chromosomal integration of both complement and vector control.  The 
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suicide vectors were transferred by tri-parental mating into LVS gcvT and Schu S4 gcvT as 

described previously (Horzempa et al., 2010b).  This procedure was used to generate the 

complementing strains (LVS gcvT:pMB1gcvT and Schu S4 gcvT:pMB1gcvT) and the vector 

control strains (LVS gcvT:pMB1 and Schu S4 gcvT:pMB1). 

2.3.3 Growth kinetics in broth culture 

LVS and Schu S4 strains were cultured overnight, pelleted, resuspended in PBS, and 

diluted to an OD600 of 0.1.  Chamberlain’s chemically defined media (CDM) was modified as 

stated in each figure and overall prepared as previously described (Chamberlain, 1965).  Cultures 

were shaken at 37 °C for 28 hours with serial measurements of the optical density at 600 nm 

(OD600) taken every two to four hours.   OD600 readings were performed in a cuvette (1 cm path 

length) with a CO8000 Cell Density Meter (WPA) for Schu S4 strains and in a 96-well plate 

using an M2 plate reader (Molecular Devices) for LVS strains.  

2.3.4 Generation of primary macrophages and propagation of A549 cells 

Murine macrophages were derived from the bone marrow of C57BL/6J mice as described 

previously (Russo et al., 2011).  Macrophages were propagated in Dulbecco’s Modified Eagles 

Medium (DMEM) with 20% FBS, 25 mM HEPES, 2 mM glutaMAX, 1 mM sodium pyruvate, 1 

X MEM non-essential amino acids, and 25%  L-cell supernatant.  L-cell supernatant was derived 

from L929 cells as previously described (Russo et al., 2011).   

Human macrophages were differentiated from monocytes isolated from human peripheral 

blood mononuclear cells as previously described (Carlson et al., 2007).  Briefly, buffy coats were 
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purchased from the New York Blood Bank.   Mononuclear cells were enriched from the buffy 

coat using a Ficoll gradient and monocytes were isolated using an Optiprep gradient and 

subsequent panning for adherent cells.  Following isolation, monocytes were differentiated for 

seven days in DMEM supplemented with 20% FBS, 10% AB human serum (Complement-

Replete Gem Cell; Gemini Bio-Products), 2 mM glutaMAX, and 25 mM HEPES.  After this 

differentiation, macrophages were used within three days. 

A549 (human lung carcinoma) cells were obtained from ATCC (ATCC CCL-185) and 

handled per ATCC recommendations.  Cells were propagated in Ham’s F-12 (Kaighn’s 

modification) with 10% FBS and 25 mM HEPES. 

2.3.5 Intracellular growth assays (standard) 

Cells were harvested using lidocaine (4 mg/ml)/EDTA (5 mM) in PBS for macrophages 

or 0.25% trypsin/1 X EDTA (Gibco) for A549 cells.  Cells were transferred from culture dishes 

to 96-well Primaria plates (BD biosciences) at a density of 5x10
4 

cells per well. Human 

macrophages were placed in infection media (1% AB human serum, DMEM, 2 mM glutaMAX, 

and 25 mM HEPES), while murine macrophages and A549 cells were placed in their normal 

growth medium described above.  Cells were allowed to rest at 37 °C with 5% CO2 overnight 

following harvest.  Bacteria from overnight cultures were pelleted, resuspended in PBS, and 

added to cells at an multiplicity of infection (MOI) of 500. Bacteria and cells were co-cultured 

for two hours to allow the bacteria to invade, after which the media was removed and replaced 

with HBSS containing 50 μg of gentamicin per ml.  Cells were incubated with gentamicin at 37 

°C with 5% CO2 for 30 minutes to kill extracellular bacteria.  Cells were then washed twice with 

HBSS and placed back in infection/growth media as per cell type.  Two hour time points were 
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harvested immediately following the gentamicin treatment, while 24 hour time points were 

harvested after an additional 22 hour incubation at 37 °C with 5% CO2.  To enumerate CFU at 

each time point, cells from triplicate wells were lysed with 0.02% SDS in PBS and serially 

diluted in TSB-C as performed previously (Russo et al., 2011).  Dilutions were plated onto 

chocolate agar and CFU counted after three days of growth at 37 °C with 5% CO2.          

2.3.6 Intracellular growth assays (minimal media) 

To assess the contribution of media to the intracellular replication without affecting 

invasion, the following alterations were made to the above protocol.   Murine macrophages were 

harvested, infected, and underwent a gentamicin treatment as stated above.  After the two hour 

time point, macrophages were placed in Minimal Essential Media (MEM, Gibco) with 10% FBS, 

2 mM glutaMAX, and 25 mM HEPES.  In some conditions MEM was further supplemented 

with 25 mM serine.  At 24 hours post infection, cells were lysed and CFU enumerated from 

triplicate wells using the same method as above.  

 Detection of TNF-

Bacteria and cells were prepared similarly to the intracellular growth assay.  Cells were 

co-cultured with bacteria at an MOI of 10 in triplicate wells for 24 hours at 37 °C with 5% CO2.  

These supernatants were collected and assessed by ELISA to determine TNF- concentration.    

Human TNF- was measured using DuoSets (R&D Systems) and murine TNF- was measured 

using a matched antibody pair (eBiosciences).   
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2.3.8 Mouse model of pneumonic tularemia 

To model pneumonic tularemia, 6-8 week old C57BL/6J mice (Jackson Laboratory) were 

intratracheally infected as described previously (Russo et al., 2011).  Bacteria were grown 

overnight in TSB-C broth cultures, washed with PBS, and diluted as necessary. An 

oropharyngeal installation of 100 CFU was used for all strains.  Over the course of disease, mice 

were scored using a sickness rubric and were euthanized upon achieving a predetermined score.  

All animal experiments were performed in ABSL-3 conditions with approval of the University of 

Pittsburgh Institutional Animal Care and Use Committee.   

To assess bacterial burden, mice were anesthetized with ketamine (80 mg/Kg) and 

xylazine (8 mg/Kg) four days post infection.  Blood was collected by cardiac puncture using a 

heparinized needle and syringe, diluted, and plated to enumerate CFU.  Organs were harvested, 

mechanically homogenized, diluted, and plated for quantification of CFU.  This procedure was 

described previously (Horzempa et al., 2010a).   

2.4 RESULTS 

2.4.1 The glycine cleavage system of F. tularensis is required for growth in serine limiting 

conditions 

Previous work in E. coli demonstrated that the glycine cleavage system (GCS) functions 

in glycine-dependent serine production, a phenotype only apparent when the serine biosynthetic 

pathway (serABC) is disrupted (Ravnikar and Somerville, 1987).   The serB gene of LVS 
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contains a frame shift mutation, fragmenting this gene with a stop codon.  Thus, the GCS may be 

essential for serine biosynthesis in LVS. In order to assess the contribution of the GCS to the 

metabolism and pathogenesis of F. tularensis, the homolog of gcvT, a gene required for GCS 

activity, was deleted in the attenuated live vaccine strain (LVS, FTL_0477) and in the human 

pathogenic strain (Schu S4, FTT_0407).   To examine the serine requirement of these strains, 

Chamberlain’s chemically defined media (CDM) was utilized (Chamberlain, 1965).  This media 

normally contains 3.8 mM serine and 0 mM glycine.  Removal of serine from CDM limited 

replication of wild-type LVS (Fig. 1A).  The inclusion of 25 mM glycine in serine-free CDM, 

however, compensated for the loss of serine and resulted in robust bacterial growth (Fig. 1B).  A 

functional gcvT homolog was required for LVS growth in serine-free CDM, whether or not 

glycine was provided (Fig. 1A and B).  LVS exhibited a diauxic growth curve in CDM (Fig. 1C), 

consistent with previous observations (LoVullo et al., 2012).  However, LVS failed to exhibit 

typical diauxie in serine-free CDM supplemented with glycine (Fig. 1B).  Furthermore, strains 

lacking gcvT did not exhibit diauxic growth and stopped replicating at the first plateau, 

demonstrating that the second phase of the diauxic growth curve required an intact GCS (Fig. 

1C).  Supplementing CDM with additional serine resulted in a protracted initial exponential 

phase in all strains, but a functional gcvT was still required for growth past the first plateau (Fig. 

1D).  These phenotypes are attributable to the presence of the gcvT homolog as they were 

restored by complementation (Fig. 1A-D).  These data suggest that the diauxie of LVS is related 

to the source of serine and the initial growth of LVS uses exogenous serine while the second 

growth phase breaks down glycine to produce serine in a GCS-dependent fashion.  Overall, these 

data demonstrate that LVS requires an intact GCS for growth in serine limiting environments.   
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Serine metabolism was predicted to differ in the virulent F. tularensis strain Schu S4.  

Unlike LVS, Schu S4 contains undisrupted homologs to an additional serine biosynthetic 

pathway (serABC), which prevents serine auxotrophy in the absence of GCS in E. coli (Kanehisa 

and Goto, 2000; Ravnikar and Somerville, 1987).  Therefore, we expected loss of the gcvT 

homolog (FTT_0407) to have little effect on the ability of Schu S4 to grow in CDM lacking 

serine.   Surprisingly, Schu S4 gcvT was also a serine auxotroph and failed to grow in 

conditions without (Fig. 1E) and with (Fig. 1F) glycine supplementation.  Schu S4 gcvT also 

grew less than Schu S4 with a lower OD in stationary phase in CDM (Fig. 1G).  Serine 

supplementation abolished differences between strains, confirming the higher serine requirement 

of the mutant (Fig. 1H).  These mutant phenotypes are attributable to the absence of the gcvT 

homolog as they were restored by genetic complementation (Fig. 1E-H). Therefore, the GCS of 

Schu S4 is required for growth in serine limiting environments despite the presence of another 

pathway annotated for serine biosynthesis in its genome. 
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Figure 3. The glycine cleavage system of F. tularensis is required for glycine utilization and growth during 

serine limitation.     

Overnight broth cultures of LVS (A-D) and Schu S4 strains (E-H) were pelleted, resuspended in PBS, and used to 

inoculate Chamberlain’s chemically defined media (CDM) containing 0 mM serine / 0 mM glycine (A and E), 0 
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mM serine / 25 mM glycine (B and F), 3.8 mM serine / 0 mM glycine (C and G), or 25 mM serine / 0 mM glycine 

(D and H).  The optical density at 600 nm (OD600) of each culture was measured every two to four hours.  Data are 

expressed as the mean  SEM of three independent experiments except for the four hour time point of Schu S4 

strains (E-H), which is from two independent experiments that were excluded from statistical analysis.  denotes 

time points that two comparisons (wild-type vs. gcvt, gcvT:pMB1gcvT vs. gcvT:pMB1) both achieved 

significance.  Significance was considered to be a (p < 0.05) using a two-way repeated measure ANOVA followed 

by a Bonferroni multiple comparison correction. 

2.4.2 gcvT homologs do not contribute to in vitro virulence phenotypes in standard tissue 

culture assays 

Our results indicated that the Francisella GCS conveys a fitness advantage in specific 

metabolic environments (Fig. 1).   To determine if this advantage would be relevant to 

pathogenesis, we examined the contribution of this system to several in vitro virulence-

associated phenotypes.  Assays with primary murine and human macrophages revealed no 

obvious defects in invasion or intracellular replication in LVS strains (Fig. 2A and B).  Co-

culture of LVS strains and either human or mouse macrophages also revealed no differences in 

TNF- release (Appendix A).  The loss of a gcvT homolog during LVS infection of non-immune 

cells also had no effect, as invasion and replication rates among strains were indistinguishable in 

A549 cells, a human lung epithelial cell line (Fig. 2C).  Additionally, the GCS was not required 

for complement resistance in LVS, despite previous links between this system and serum 

sensitivity (Appendix B) (Karsi et al., 2009).   Overall findings in Schu S4 were similar to LVS 

with no differences detected in invasion, replication, or stimulation of TNF- production (Fig. 

2D-F and Appendix A).   These results demonstrate that the GCS is not required for invasion or 

replication and does not affect immune stimulation in standard tissue culture assays. 
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Figure 4. The glycine cleavage system does not contribute to in vitro intracellular replication using standard 

assay conditions. 

Overnight TSB-C broth cultures of LVS (A-C) and Schu S4 strains (D-F) were pelleted, resuspended in PBS, and 

added to mouse macrophages (A,D), human macrophages (B,E), or A549 cells (C,F) at a MOI of 500.  Bacteria 

were incubated with cells for two hours and subsequently subjected to gentamicin treatment as described in the 

Materials and Methods.  At the indicated time points, cells were lysed and CFU enumerated.  Data are expressed as 

the mean  SEM of at least two independent experiments.  Significant difference (p < 0.05) was not detected with 

any cell type or time point by one-way ANOVA followed by a Bonferroni multiple comparison correction. 

2.4.3 gcvT contributes to the pathogenesis of virulent Francisella tularensis in a murine 

model  

Thus far, our results indicated that the GCS conveyed a fitness advantage in serine 

limiting broth but not in macrophages or lung epithelial cells (Fig. 1 and Fig. 2).   After infection 

of the lung, Francisella disseminates and replicates in a variety of physiologically diverse sites, 
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including the spleen, liver, and blood (Conlan et al., 2003; Horzempa et al., 2010a).  Therefore, 

we hypothesized that the GCS of F. tularensis may provide a fitness advantage in specific host 

microenviroments, similar to the blood-specific role of the potassium uptake protein, TrkH 

(Alkhuder et al., 2010).  As in vitro findings were similar between LVS and SchuS4 strains, we 

focused on the fully virulent F. tularensis strains in vivo using a murine model of pneumonic 

tularemia.  Mice infected with Schu S4 and the gcvT complement (Schu S4 gcvT:pMB1gcvT) 

had a median survival of 5.1 and 5.7 days, respectively (Fig. 3).  In contrast, infection with Schu 

S4 gcvT and the vector control (Schu S4 gcvT:pMB1) led to a median survival of 8.7 and 7.9 

days, respectively (Fig. 3).  Thus, the GCS system contributes to the virulence of F. tularensis in 

vivo.    

 

Figure 5. The glycine cleavage system contributes to the pathogenesis of virulent F. tularensis in a mouse 

model of pneumonic tularemia.   

Overnight TSB-C broth cultures of Schu S4 strains were pelleted, resuspended in PBS, and intratracheally 

administered to anesthetized mice at 100 CFU.  Mice were monitored over the course of infection and removed upon 

reaching a predetermined clinical sickness score.  Data are a combination of four experiments, two independent 

experiments compared Schu S4 to Schu S4 gcvT and two independent experiments compared Schu S4 

gcvT:pMB1gcvT to Schu S4 gcvT:pMB1.  Each strain had at least four mice per experiment and at least nine 

mice total.  Statistical significance (p 0.05) was assayed by a log-rank test (Mantel-Cox) and was achieved for 

Schu S4 vs. Schu S4 gcvT and for Schu S4 gcvT:pMB1gcvT to Schu S4 gcvT:pMB1. 
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2.4.4 gcvT increases bacterial burden at sites of dissemination  

Since the loss of gcvT significantly delayed mortality (Fig. 3), we hypothesized it may 

also alter bacterial burden.  To evaluate this possibility, organs and blood were harvested four 

days post infection and bacterial burden was assessed.  In the lungs of animals infected with 

Schu S4 or Schu S4 gcvT, bacterial burdens were within one log (Fig. 4A).  No significant 

difference was detected between the complement (Schu S4 gcvT:pMB1gcvT) and vector (Schu 

S4 gcvT:pMB1) at this site.  In contrast, other organs had substantially fewer Schu S4 gcvT 

than Schu S4: approximately 1.5 logs less in the spleen (Fig. 4B), 2.4 logs less in the liver (Fig. 

4C), and 4.2 logs less in the blood (Fig. 4D).   Complementation of gcvT significantly increased 

the CFU at these distal sites (Fig. 4B-D).  Therefore, the F. tularensis glycine cleavage system 

contributes to bacterial burden during infection in vivo and this is particularly pronounced at 

sites of dissemination such as the liver and blood.  
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Figure 6. Schu S4 strains lacking the gcvT homolog have lower bacterial burdens at distal sites. 

Overnight TSB-C broth cultures of Schu S4 strains were pelleted, resuspended in PBS, and intratracheally 

administered to anesthetized mice at 100 CFU.  Four days post infection, the lung (A), spleen (B), liver (C) and 

blood (D) were harvested, homogenized, and plated to enumerate CFU.  Data in each panel are derived from four 

experiments: two independent experiments compared Schu S4 to Schu S4 gcvT and two independent experiments 

compared Schu S4 gcvT:pMB1gcvT to Schu S4 gcvT:pMB1.  These groups of experiments are separated by a 

dotted line.  Each symbol denotes the CFU from a single mouse.  Each strain had at least four mice per experiment 

and at least eight mice total.    A  denotes statistical significance (p  0.05) by two-sided t-test.   The limit of 

detection was 50 CFU for the lung, 100 CFU for the spleen and blood, and 200 CFU for the liver. 

2.4.5 gcvT contributes to intracellular replication in vitro in serine limiting conditions 

Thus far, there is a discrepancy in which the GCS is required for the full virulence of 

Schu S4 in vivo, but it appears to be dispensable for the in vitro model of virulence.  Importantly, 
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experimentation with CDM highlighted the importance of the GCS in serine limiting conditions 

(Fig. 1).   In vitro assays will be poor indicators of in vivo attenuation for metabolic pathways if 

the metabolite of interest is supraphysiological.  Therefore, we hypothesized that a nutritionally 

minimal tissue culture media, in which serine was not abundant, would unmask in vitro 

attenuation.  Intracellular growth assays performed using a minimal media containing lower 

levels of serine revealed a clear intracellular growth defect in the Schu S4 strains lacking a 

functional gcvT homolog (Fig. 5).  This defect was specific for intracellular replication as there 

was no difference in stimulation of TNF- using minimal media (Appendix A).  Intracellular 

growth in minimal media was restored upon complementation (Fig. 5).  Furthermore, the 

intracellular growth defect in the Schu S4 mutant strains could be ablated by supplementation 

with 25 mM serine, similar to what was found in CDM (Fig. 5 and Fig. 1H).  Thus, gcvT is 

required for robust intracellular replication in serine limiting tissue culture media, reconciling the 

in vitro and in vivo phenotypes of the glycine cleavage system in virulent F. tularensis.   

 

Figure 7. A functional glycine cleavage system is required for robust intracellular replication using minimal 

media conditions.   

Overnight TSB-C broth cultures of Schu S4 strains were pelleted, resuspended in PBS, and added to mouse 

macrophages at an MOI of 500.  Bacteria were cocultured with cells for two hours and subsequently subjected to a 
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gentamicin protection assay.  Following the gentamicin treatment, minimal media or minimal media with 25 mM 

serine was added instead of standard tissue culture media.  Strains were already confirmed in Fig. 2D to not have 

any differences in invasion (two hour time point) under the same conditions used in this assay.   Cells were lysed 24 

hours post infection and CFU was enumerated.  Data are expressed as the mean  SEM of three independent 

experiments.  Significant difference (p  0.05) are denoted by a and were assessed using one-way ANOVA 

followed by a Bonferroni multiple comparison correction. 

2.5 DISCUSSION 

Pathogens employ various mechanisms to circumvent immunity and access host 

metabolites.  All host sites are not nutritionally equivalent; therefore pathogens encounter unique 

metabolic niches (Rohmer et al., 2011).  These niches will be colonized and exploited by 

pathogens with the required metabolic pathways.  In this report, we focused on a Francisella 

tularensis gcvT homolog that showed phenotypes strongly associated with the glycine cleavage 

system (GCS).  The importance of this pathway has been suggested in screens for virulence-

associated phenotypes in Francisella (Twine et al., 2006; Wehrly et al., 2009; Weiss et al., 

2007).  Francisella presents a unique opportunity to study this system in an acute bacterial 

setting because it does not have redundant serine biosynthetic pathways. Since F. tularensis 

infection results in widespread dissemination of bacteria, it also allowed examination of the role 

of glycine cleavage system throughout the host (Conlan et al., 2003).   Our results demonstrate 

that the F. tularensis GCS is essential during serine limitation and contributes to in vivo 

pathogenesis.   

This is the first report, to our knowledge, to demonstrate a role for the bacterial GCS in a 

mammalian model of acute infection (Fig. 3 and Fig. 4).  This work joins a growing body of 
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research elucidating the role of this metabolic pathway during pathogenesis.  The GCS has been 

previously correlated with successful persistence during chronic bacterial infection with Brucella 

abortus and has been implicated in the transition to latency in Mycobacterium tuberculosis 

(Hong et al., 2000; Wayne and Lin, 1982).  Previous research demonstrated that the Vibrio 

cholerae GCS does not contribute to acute colonization of infant mouse intestines (Bogard et al., 

2012).  This finding is likely explained by the presence of an additional serine biosynthetic 

pathway, but may also indicate that the gut is not a serine-limiting environment.  Surprisingly, 

our findings with F. tularensis are similar to in vitro and in vivo phenotypes in the 

trypanosomatid, Leishmania major (Scott et al., 2008).  Despite differences between prokaryotes 

and eukaryotes, these human pathogens both lack alternative serine biosynthetic pathways and 

thus appear to rely on the GCS during infection.  These results strongly suggest that the GCS 

plays a major role during serine limitation that may be obscured by other serine biosynthetic 

pathways.  Although the metabolic contribution was not examined, the glycine cleavage system 

was recently found to be required for the virulence of Edwardsiella ictaluri, the causative agent 

of enteric septicemia of catfish (Dahal et al., 2013).  Together, these studies highlight the 

importance of this metabolic pathway across biological domains and indicate knowledge of the 

GCS may broadly apply to diverse pathogenic agents. 

The Schu S4 gcvT strain was unexpectedly a serine auxotroph (Fig. 1E-H). Unlike LVS, 

Schu S4 is annotated to contain an intact serABC pathway, which would be predicted to function 

as an alternative source of serine biosynthesis (Kanehisa and Goto, 2000).  The serine 

auxotrophy following the loss of the GCS suggested that the serABC pathway was either 

insufficiently active in in vitro assays or that it was unlinked to serine biosynthesis in 

Francisella.  In support of the later, serA and serC have been previously described as 
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participating in alternative pyridoxine (vitamin B6) biosynthesis (Lam and Winkler, 1990).  

Pyridoxine biosynthesis has recently been linked to bacterial pathogenesis, although the exact 

pathway and role in Francisella virulence is currently unknown (Grubman et al., 2010).   It is 

thus plausible that F. tularensis utilizes serA (FTT_1230) and serC (FTT_0560c) for other 

metabolic pathways besides serine biosynthesis.  The gene annotated as serB in Schu S4, 

FTT_0568, contains only limited homology to the E. coli homolog with 26% identity over a 

common 186 amino acid region.  A gene annotated as serB in Porphyromonas gingivalis has 

recently been found to play a significant role in virulence, independent of metabolism, by 

facilitating invasion and suppressing the innate immune response (Takeuchi et al., 2013).  It is 

thus conceivable that serB may serve a non-metabolic role in F. tularensis.  Overall, our work 

demonstrates that the GCS is the only source of serine biosynthesis for F. tularensis and that the 

annotated serABC pathway is either inadequate for, or not involved with, serine production under 

the conditions tested.    

To our knowledge, this is the first report to reconcile the in vitro and in vivo virulence 

phenotypes of the GCS (Fig. 5).  Our initial studies demonstrated that Schu S4 strains lacking the 

gcvT homolog, FTT_0407, were attenuated in vivo despite the absence of defects in invasion, 

intracellular growth, and stimulation of TNF- in vitro.   A previous attempt to resolve 

discrepant in vivo and in vitro phenotypes with the GCS was unsuccessful (Scott et al., 2008).  

The availability of serine precursors (glycine, glucose, and pyruvate) in the low serine media 

may have confounded this previous study.  To address this possibility, we utilized a minimal 

media containing low levels of both serine and serine precursors.  In vitro assays performed in 

this serine limiting MEM medium demonstrated that the GCS of virulent F. tularensis 

significantly contributes to intracellular replication (Fig. 5).  While it is likely that these 
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phenotypes are the direct result of reduced nutrient availability, host nutritional responses, such 

as autophagy, may also vary between DMEM and MEM.  Although the replication of wild-type 

Schu S4 is comparable between these conditions and F. tularensis is thought to circumvent 

autophagy, it remains formally plausible that the GCS contributes to this resistant mechanism in 

some fashion (Fig. 2 and 5) (Checroun et al., 2006).  Regardless, these results highlight the 

potential for standard tissue culture media to mask relevant phenotypes of metabolic genes in 

vitro by providing supraphysiological levels of nutrients.   

The serine auxotrophy of the Schu S4 GCS mutant suggested it could be utilized to 

examine tissue and fluid-specific serine availability and therefore site-specific metabolic 

demands on the bacterium.  Schu S4 strains without gcvT had lower bacterial burdens in vivo, 

with the greatest defect in the liver and blood of infected animals (Fig. 4).  F. tularensis 

replicates extracellularly in murine blood and thus encounters serum nutrient concentrations 

(Forestal et al., 2007).  Amino acid levels present in serum are lower than those found 

intracellularly (Bergstrom et al., 1974; Canepa et al., 2002).  Furthermore, a reduction in amino 

acid levels has been observed in the blood of white rats following virulent F. tularensis infection 

(Woodward et al., 1954).   Based on these data, the blood represents a relatively low amino acid 

environment during infection.  Since the GCS conveys a fitness advantage in serine limiting 

environments (Fig. 1), the contribution of the GCS to bacteremia by virulent F. tularensis is 

likely linked to serine limitation at this site.  It is worth noting that previous work in other 

pathogens examining the metabolic pathways required for bacterial replication in the blood did 

not identify serine biosynthesis (Samant et al., 2008).  These studies can be reconciled by the 

presence of redundant serine biosynthetic pathways, a feature that appears to be lacking in F. 

tularensis but common in other bacteria.  A role for the GCS was also found during hepatic 
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infection (Fig. 4C).  Interestingly, activity of the mammalian GCS is restricted largely to the 

kidney, brain, and liver (Yoshida and Kikuchi, 1973).  As the liver is a major site of serine and 

glycine metabolism, a successful hepatic pathogen will encounter and perhaps exploit this 

environment.   Virulent F. tularensis may have a need for an intact GCS to overcome serine 

limitation arising from active host hepatic metabolism.  Alternatively or additionally, Francisella 

may utilize its bacterial GCS to access glycine pools destined for degradation by the host’s GCS.  

These findings suggest that, in order to successfully establish hepatic infection and bacteremia, 

pathogens encounter and must overcome serine limitation.  

In contrast to the liver and the blood, there was less than a one log difference in bacterial 

burden in the lungs of mice infected with Schu S4 or Schu S4 gcvT (Fig. 4A).   This result 

indicates that the GCS plays, at most, a minor role during pulmonary infection and further 

suggests Schu S4 has access to suitable concentrations of exogenous serine in the lung.   One 

possible source of serine could be from host polypeptide degradation since Francisella has 

already been shown to degrade a host polypeptide, glutathione, to acquire the amino acid 

cysteine (Alkhuder et al., 2009).   Infection with F. tularensis also results in degradation of the 

lung extracellular matrix from MMP-9, a lung matrix metalloproteinase, causing polypeptide 

accumulation and subsequent neutrophil recruitment (Malik et al., 2007).  Compared to wild-

type mice, MMP-9 deficient mice had decreased bacterial burden and increased survival after 

infection with F. tularensis, suggesting the bacterium benefits from MMP-9 mediated proteolytic 

cleavage (Malik et al., 2007).  The negative impact of MMP-9 is not likely explained by 

neutrophil recruitment as depletion of neutrophils during F. tularensis infection does not alter 

bacterial burden or prolong survival (KuoLee et al., 2011).  Together, these data support the 

notion that the lung is not a serine-limiting environment during infection and that host 
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polypeptide accumulation, possibly from MMP-9 cleavage, may represent a source of amino 

acids for pulmonary pathogens, such as F. tularensis.  

Pathogens must meet their metabolic requirements in the host environment.  Despite the 

critical nature of this nutritional interaction, many metabolic pathways have not been examined 

for their contribution to pathogenesis.  To our knowledge, this study identifies the first 

contribution of the bacterial GCS to pathogenesis in an acute mammalian model of infection.  

The GCS proved to be essential in serine limiting conditions and contributed to the pathogenesis 

of virulent F. tularensis.  The glycine cleavage system has now been linked to virulence in both 

acute and chronic infection in distantly related pathogens.  Our work also suggests that 

pathogens encounter and must overcome low serine environments in the liver and bloodstream.  

This report adds to the growing body of literature regarding the environment that pathogens 

encounter in vivo and what pathways are utilized to cope with these metabolic stresses.  

Conserved metabolic pathways are attractive therapeutic targets and additional knowledge of the 

metabolic interaction between pathogen and host will be essential to exploit these targets (Zhang 

and Rubin, 2013).  
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3.0   THE CONTRIBUTION OF THE SERINE HYDROXYMETHYLTRANSFERASE 

TO THE PATHOGENESIS OF FRANCISELLA TULARENSIS 

3.1 ABSTRACT 

The availability of essential nutrients during infection is a critical aspect of the host-

pathogen interaction.  Pathogens must acquire or synthesize these metabolites from the diverse 

host environments they colonize.  The serine hydroxymethyltransferase (glyA) is a highly 

conserved metabolic enzyme and may be a potential therapeutic target.  This enzyme produces 

5,10-methylenetetrahydrofolate, an important carbon donor in amino acid and DNA synthesis.  

To evaluate its contribution to pathogenesis, the glyA homolog was deleted in an attenuated and a 

virulent F. tularensis strain.  In the attenuated strain, loss of glyA resulted in serine auxotrophy 

and an increased glycine requirement that was frequently circumvented by pseudo-reversion. The 

serine hydroxymethyltransferase contributed to intracellular growth in vitro, although pseudo-

reversion and variations in culture medium altered the magnitude of this phenotype.  In the 

virulent strain, deficiency in glyA also resulted in serine auxotrophy but no major effect on 

glycine metabolism or in vitro intracellular growth was observed.  In a mouse model of virulent 

pneumonic tularemia, deletion of glyA resulted in a significant reduction in bacteremia but 

ultimately only led to a minor delay in mortality.  Thus, the serine hydroxymethyltransferase of 
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F. tularensis is required for serine prototrophy and provides a significant fitness advantage 

during bacteremia, but is not essential for lethality. 

3.2 INTRODUCTION 

The development of resistance to antibiotics is an unavoidable fact in biomedicine 

(Davies and Davies, 2010; Spellberg et al., 2008).  To keep pace with this evolving threat, novel 

therapeutics must constantly be identified, characterized, and developed (Boucher et al., 2009; 

Spellberg et al., 2008).  Conserved and essential bacterial genes may serve as excellent targets 

for pharmacological intervention (Taylor and Wright, 2008).  Bacterial metabolic pathways often 

fit the criteria of being broadly conserved but, in many cases, their requirement for in vivo 

pathogenesis has not been elucidated (Rohmer et al., 2011).  Assessment of in vivo relevance can 

be challenging due to the nutritional diversity of host niches (Alteri and Mobley, 2012).  Many 

studies of pathogen metabolism use infection models that are only representative on a single host 

niche and are thus limited in their applicability (Rohmer et al., 2011).  An ideal candidate would 

contribute to fitness in various host environments and in diverse pathogens.  Overall, bacterial 

metabolic pathways are attractive for drug development but require thorough characterization to 

evaluate the in vivo importance of each potential target.               

Although metabolic pathways are conserved among many bacteria, some species are 

remarkably limited in their metabolic potential.  Intracellular bacteria such as Rickettsia 

prowazekii, Borrelia burgdorferi, and Mycoplasma genitalium, all have dramatically reduced 

genomes and lack most biosynthetic pathways (Andersson et al., 1998; Fraser et al., 1995).  The 

discussions of a “minimal genome” often revolve around these species and genes that persist in 
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this setting likely convey a strong fitness advantage (Glass et al., 2006).  A gene known as the 

serine hydroxymethyltransferase (glyA) is among the few metabolic genes remaining intact in 

these species (Andersson et al., 1998; Fraser et al., 1995).  This enzyme catalyzes the reversible 

degradation of serine to glycine with the transfer of the one-carbon to tetrahydrofolate (THF) to 

form 5’10-mTHF (Plamann and Stauffer, 1983; Stauffer and Brenchley, 1978).  5’10-mTHF can 

serve as a precursor for downstream one-carbon metabolic reactions for protein and DNA 

synthesis (Locasale, 2013).  Interestingly, glyA is an almost universally conserved gene (de 

Crecy-Lagard et al., 2007).  Investigations into this gene have revealed conflicting results 

regarding whether it is essential in bacteria (Chaudhuri et al., 2009; Gallagher et al., 2007; Glass 

et al., 2006; Kobayashi et al., 2003; Ravnikar and Somerville, 1987; Tempel et al., 2006).  To 

our knowledge, mutagenesis of glyA, when achievable, has always resulted in a decrease in 

bacterial fitness during infection and significant attenuation (Bogard et al., 2012; Dahal et al., 

2013).  Importantly, glyA has not been assessed in diverse host niches and has only been 

investigated in limited infection models.  Ultimately, it is likely that glyA plays a core role in 

bacterial physiology through its contribution to one-carbon metabolism.  These findings suggest 

that glyA may be a promising conserved target, but that further investigation of the contribution 

of glyA in diverse environments is required.   

Francisella tularensis is the causative agent of tularemia, a debilitating febrile illness 

(Francis, 1925).  F. tularensis infects and replicates in a wide repertoire of host cell types 

including both immune and non-immune cells (Hall et al., 2008; Horzempa et al., 2010a).  A 

murine model of pneumonic tularemia involves rapid disease progression and includes infection 

and replication in the host’s lung, liver, spleen, and blood (Horzempa et al., 2010a; Schmitt et al., 

2013).  F. tularensis can thus be utilized as an excellent model to assess the role of glyA in a 
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highly pathogenic organism that encounters multiple diverse host niches.   Furthermore, 

investigation into the glyA of F. tularensis will also contribute to our understanding of one-

carbon metabolism in this pathogen.   

Whether or not glyA contributes to Francisella pathogenesis is not yet clear.  A 

transposon-site hybridization (TRASH) screen failed to identify any disruption of glyA and thus 

marked it as a candidate essential gene (Gallagher et al., 2007).  In contrast, a disruption of glyA 

by a transposon was identified in a separate screen for mutants with defects in intramacrophage 

replication (Tempel et al., 2006).  Interestingly, this study performed a small pilot experiment 

and suggested that the glyA transposon mutant may be partially attenuated in vivo (Tempel et al., 

2006).  This study did not, however, attempt to perform any metabolic characterization of the 

mutant nor did they confirm the stability of the disruption in vivo (Tempel et al., 2006).  

Furthermore, no genetic complementation was attempted to confirm the lack of a polar effect, a 

frequent concern with Francisella transposon mutants (Maier et al., 2007; Tempel et al., 2006).  

Thus, the contribution of glyA to F. tularensis metabolism and pathogenesis remains uncertain 

and requires further investigation.   

To evaluate glyA in F. tularensis, mutagenesis was performed in both the attenuated F. 

tularensis subsp. holarctica LVS and the virulent F. tularensis subsp. tularensis Schu S4 strain.  

Following deletion of glyA, strains were assessed for defects in metabolism, in vitro virulence, 

and in vivo pathogenesis.  During characterization of glyA in LVS, a frequent pseudo-revertant 

was observed and characterized.  Our results demonstrate that the glyA homolog is not essential 

to F. tularensis but that it is required for serine biosynthesis.  Furthermore, our findings suggest 

that loss of glyA results in a modest in vivo attenuation coinciding with significantly reduced 

bacteremia.    
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3.3 MATERIALS AND METHODS 

3.3.1 Routine culture and source of bacterial strains 

The following reagent was obtained through BEI Resources, NIAID, NIH: Francisella 

tularensis subsp. tularensis, Strain SCHU S4 (FSC237), NR-643.  Francisella tularensis subsp. 

holarctica Live Vaccine Strain (LVS) was a gift from Dr. Karen Elkins (U.S. Food and Drug 

Administration).  Chocolate agar (GC medium base, hemoglobin, and isovitaleX) was used for 

routine culture of F. tularensis from frozen bacterial stocks.  Complement and vector strains 

were streaked onto chocolate agar supplemented with hygromycin (200 g/mL).  Plated bacteria 

were grown for approximately three days at 37 °C with 5% CO2 before being used to inoculate 

overnight cultures.  Broth cultures were shaken at 250 rpm at 37 °C for indicated durations.  

Schu S4 strains were utilized under BSL3 containment with approval from the Centers for 

Disease Control and Prevention Select Agent Program.  The E. coli EC100D strain was utilized 

for standard cloning. 

3.3.2 Mutagenesis of Francisella and generation of complements and vector controls 

Allelic replacement was used to delete the glyA homolog of LVS (FTL_0703) and Schu 

S4 (FTT_1241) as described previously (Horzempa et al., 2010b).  Since the flanks of glyA in 

these strains share 99% identity, a single suicide vector (pJH1) containing these regions from 

LVS was utilized to delete glyA in both strains.  The upstream flank (1,103 bp) was generated 

using CTAGGGATCCGCTTTCAATTTACTAGAAGAGTAGC as a forward primer and 

CTAGGGTACCAGCATCAAAAATCTCTTTGTCGG as a reverse primer.  The downstream 



 78 

flank (1,037 bp) was generated using GATCGGTACCTGTGATAAGCTCCCTGTTTACAAG 

as a forward primer and CTAGGCATGCCGTTAAATTCAATGGCAGTAGCG as a reverse 

primer.  This mutational strategy is expected to remove nucleotides (58-1227) of the glyA locus, 

while leaving behind 57 nucleotides at the 5’ end and 27 nucleotides at the 3’ end of this gene.  

Absence of glyA was confirmed by genomic PCR using 

GCATGGATCCCCAAATCCGGAAATTCTTGTATTAG as a forward primer and 

GCATGGTACCGATAACATTAGAAATAAAAGGATTTTGGTG as a reverse primer 

(Appendix 3).  These primers are 539 bp upstream and 118 bp downstream of glyA, respectively, 

and are expected to produce products of either 1,911 bp (wild-type locus) or 741 bp (glyA).  

Deletion mutants are annotated as LVS glyA and Schu S4 glyA. 

To create the vector for glyA complementation, an XhoI digestion of the suicide vector 

pJH1 was performed to remove extraneous yeast genes from this plasmid (Horzempa et al., 

2010b).  Following religation, this modified pJH1 plasmid (pMB1) was employed to 

complement glyA in cis.  As the glyA homolog was highly conserved (99% nucleotide identity) 

between subspecies, the same complementing construct with glyA from LVS was used for Schu 

S4 as well.  To create this construct, the LVS glyA (FTL_0703) was amplified by PCR with the 

~257 bp upstream region and 119 bp downstream region and ligated into pGEM-T.  This was 

achieved using CTAGGGATCCGCTCTTTACTTAATTCAGTCAAAGATCTACC as a forward 

primer and CTAGGCATGCTGATAACATTAGAAATAAAAGGATTTTGGTG as a reverse 

primer.  The 257 bp upstream sequence was expected to contain the glyA promoter and will also 

facilitate targeting of chromosomal integration to this homologous region. The PCR product was 

subsequently subcloned from this pGEM-T vector into the suicide plasmid pMB1 via restriction 

enzyme (BamHI and SphI) digest.  These restriction sites were added on the forward and reverse 
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primers.  This protocol was repeated with a PCR amplicon containing only the upstream region 

as a pMB1 vector control.  To generate this amplicon, 

CTAGGGATCCGCTCTTTACTTAATTCAGTCAAAGATCTACC was used as the forward 

primer and CTAGGCATGCATTTGGTAGTCTCCTGATATTTTTTAGG was used as the 

reverse primer.   Tri-parental mating was used to mobilize these suicide vectors into strains 

containing glyA deletions as described previously (Horzempa et al., 2010b).  The complementing 

strains are referred to as (LVS glyA:pMB1glyA and Schu S4 glyA:pMB1glyA) and the vector 

control strain (LVS glyA:pMB1).  An attempt to create Schu S4 glyA:pMB1 was 

unsuccessful.  

3.3.3 In vitro broth culture assays 

F. tularensis strains harvested from chocolate agar plates were used to inoculate either 

tryptic soy broth with supplemental cysteine (TSB-C) or brain heart infusion broth set to pH 6.8 

(BHI).  These cultures were pelleted and resuspended in either Chamberlain’s chemically 

defined media (CDM) lacking serine or PBS.  CDM was modified as indicated in each 

experiment but generally prepared as previously described (Chamberlain, 1965).  Cultures were 

shaken (250 rpm) at 37 °C for the stated durations prior to measurements of optical density 

(OD600).  OD600 readings were measured in a cuvette (1 cm path length) using a CO8000 Cell 

Density Meter (WPA) for Schu S4 strains.  The OD600 of LVS strains was determined in either a 

cuvette (single end-point experiments) or 96-well plate (serial measurement time course 

experiments) using a M2 plate reader (Molecular Devices).  TSB-C was sterilized by routine 

autoclaving while BHI and CDM were sterilized through filtration (0.22 m).     
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3.3.4 In vitro agar plate assays and imaging 

Bacterial growth on solid media was assessed with either chocolate agar plates or 

modified CDM agar plates.  Modified CDM agar plates were made by combining modified 

CDM (0 mM serine, 50 mM glycine) and ultrapure bacteriological agar (USB).  When indicated, 

chocolate agar plates were supplemented with 5 mM serine and 50 mM glycine.  Plates were 

incubated at 37 °C with 5% CO2 until adequate growth was achieved (typically three days post 

inoculation).  For experiments using modified CDM agar, bacteria were patched from chocolate 

agar plates.  Under no circumstances was visible growth obtained on modified CDM agar plates 

for any strains except wild-type (LVS) and complementing strains (LVSglyA:pMB1glyA, 

LVSgcvT:pMB1gcvT).  For experiments using chocolate agar plates, strains were streaked 

directly from frozen stocks.  All images were captured using a Samsung Sch-I510 camera.   

3.3.5 Generation of primary macrophages 

Bone marrow was harvested from C57BL/6J mice and used to derive primary mouse 

macrophages as described previously (Russo et al., 2011).  Murine cells were cultured in 

Dulbecco’s Modified Eagles Medium (DMEM) with 20% FBS, 25 mM HEPES, 2 mM 

glutaMAX, 1 mM sodium pyruvate, 1 X MEM non-essential amino acids, and 25% L-cell 

supernatant.  L-cell supernatant (from L929 cells) serves as a source of growth factors and was 

generated as previously described (Russo et al., 2011).   

Human monocytes, purified from human peripheral blood mononuclear cells, were 

differentiated into macrophages as previously described (Carlson et al., 2007).  Briefly, 

mononuclear cells were obtained from a buffy coat (New York Blood Bank) using gradient 
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centrifugation with Ficoll (GE Healthcare).  From this population, monocytes were further 

isolated using an Optiprep (Sigma-Aldrich) gradient and panning for adherence in tissue culture 

dishes.  Finally, macrophages were obtained through the differentiation of monocytes after seven 

days in DMEM supplemented with 20% FBS, 10% AB human serum (Complement-Replete 

Gem Cell; Gemini Bio-Products), 2 mM glutaMAX, and 25 mM HEPES.  Cells were used 

within three days of their differentiation. 

3.3.6 Measurement of invasion and intramacrophage replication 

After propagation or differentiation of macrophages, cells were harvested using lidocaine 

(4 mg/ml)/EDTA (5 mM) in PBS.  Cells were seeded at a density of 5x10
4 

cells per well in a 96-

well Primaria plates (BD biosciences).  Once in the 96-well plate, mouse macrophages were 

allowed to rest overnight (37 °C with 5% CO2) prior to infection in either a rich culture media 

(DMEM with 20% FBS, 25 mM HEPES, 2 mM glutaMAX, 1 mM sodium pyruvate, 1 X MEM 

non-essential amino acids) or a minimal culture media (Minimal Essential Media (MEM, Gibco) 

with 10% FBS, 2 mM glutaMAX, and 25 mM HEPES).  Human macrophages were placed in 

infection media (1% AB human serum, DMEM, 2 mM glutaMAX, and 25 mM HEPES) and 

infected the same day as harvest.  Overnight cultures of F. tularensis strains were pelleted, 

resuspended in the appropriate culture media, and added to cells at a multiplicity of infection 

(MOI) of 500.  Bacteria were incubated with cells for a two hour invasion period.  In order to 

eliminate extracellular bacteria after this period, a gentamicin treatment was performed.  This 

treatment lasted 30 minutes at 37 °C with 5% CO2 and involved the replacement of culture media 

with HBSS containing 50 μg of gentamicin per ml.  After the treatment, gentamicin was removed 

by gently washing the cells twice with HBSS and their respective culture media was 
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subsequently replenished.  Cells were lysed with 0.02% SDS in PBS to release intracellular 

bacteria at the indicated time points.  This lysate was serially diluted in TSB-C and plated as 

drips onto chocolate agar.  Colony-forming units (CFU) were determined by visual inspection of 

plates after three days of growth at 37 °C with 5% CO2.  Experiments were routinely performed 

using triplicate wells per condition.   

3.3.7 Indirect threonine dehydrogenase assay 

To assess the threonine dehydrogenase (TDH) activity of Francisella cultures, an 

enzymatic assay was adapted with modifications from previously described protocols (Newman 

et al., 1976; Simic et al., 2002).  Overnight cultures of LVS strains were washed with PBS, 

standardized by OD600, and resuspended in Tris-HCl (250 mM, pH 8.4).  Bacterial samples were 

chilled on ice prior to and during mechanical disruption by sonication (30 second burst on setting 

8 of a Microson XL sonicator followed by 30 seconds of rest on ice, repeated 5 times).   Lysates 

were clarified by centrifugation (7000 x g) for 20 minutes at ~ 4 °C.  The supernatant was 

removed, held on ice, and utilized henceforth as a crude F. tularensis protein lysate.  This crude 

protein preparation was diluted with Tris-HCl (250 mM, pH 8.4) and set to a volume of 625L 

prior to 125 L of DL-threonine (1 M, pH 8.4) being added.  This mixture was equilibrated for 

five minutes at 37 °C prior to the addition of 50L nicotinamide adenine dinucleotide (NAD, 

100 mM).  NAD is an essential co-factor of TDH and initiates the reaction, allowing this enzyme 

to convert the excess threonine to 2-amino-3-oxobutyrate (Newman et al., 1976).  The absence of 

excess coenzyme A prevents significant processing of 2-amino-3-oxobutyrate (Newman et al., 

1976).  This reaction was incubated at 37 °C for 30 minutes before it was stopped with the 

addition of 200L 25% trichloroacetic acid.  The sample was subsequently deproteinated by 
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centrifugation (3000 x g) for 10 minutes.  This supernatant was collected and presumably 

contains quantities of 2-amino-3-oxobutyrate proportional to the TDH activity of the bacterial 

culture.  While 2-amino-3-oxobutyrate is not readily measurable, it can be converted to 

aminoacetone, a quantifiable compound (Newman et al., 1976; Simic et al., 2002).  To achieve 

this, samples (500L) were mixed with 500 L sodium acetate buffer (2 M, pH4.6), 50 L 

sodium hydroxide (2.5 M), and 25L acetylacetone.  This mixture is boiled for 10 minutes 

before being allowed to cool to room temperature.  This procedure results in the production of 

aminoacetone from the decarboxylation of 2-amino-3-oxobutyrate (Simic et al., 2002).  To 

determine the relative aminoacetone levels in these samples, they were mixed with 1 mL 

modified Ehrlich’s reagent (0.2 g of 4-(Dimethylamino)benzaldehyde dissolved in 8.4 mL 

glacial acetic acid then 1.6 mL 70% perchloric acid was added).  This reaction results in a 

colorimetric shift depending on the quantity of aminoacetone reacting with the Ehrlich’s reagent 

(Newman et al., 1976; Simic et al., 2002).  After a 15 minute incubation at room temperature, 

this colorimetric readout was measured at 553 nM and appears visually as a red hue to an 

otherwise clear solution. 

3.3.8 Mouse model of pneumonic tularemia 

Intratrachaeal infection of 6-8 week old C57BL/6J mice (Jackson Laboratory) with Schu 

S4 is an established murine model of pneumonic tularemia (Russo et al., 2011).  To utilize this 

model with our strains, bacteria were grown overnight in TSB-C broth cultures, washed with 

PBS, and diluted as necessary.  Mice were infected with approximately 100 CFU of each strain 

via oropharyngeal installation.  Animals were monitored after infection and scored using a 

sickness rubric (Russo et al., 2011).  Upon reaching a predetermined sickness score, mice were 
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euthanized and the mortality recorded.  Approval from the University of Pittsburgh Institutional 

Animal Care and Use Committee was obtained for all animal experiments.  These studies were 

performed under ABSL-3 conditions at the University of Pittsburgh.   

Bacterial burden was assessed using a previously described protocol (Horzempa et al., 

2010a). Briefly, ketamine (80mg/kg) and xylazine (8mg/kg) were used to anesthetize animals 

four days post infection.  A heparinized needle and syringe was utilized to collect blood via a 

cardiac puncture, while other organs (lung, liver, and spleen) were harvested and homogenized.  

Once harvested, blood and organ homogenates were diluted and plated as drips onto chocolate 

agar.  After approximately three days of growth, CFU was enumerated by visual inspection. 

3.4 RESULTS 

3.4.1 The serine hydroxymethyltransferase of F. tularensis is not essential but is required 

for serine prototrophy and growth in limiting glycine 

Previous work suggested that F. tularensis possesses a single pathway for serine 

biosynthesis and that the glycine cleavage system (GCS) is required for production of this amino 

acid (Fig. 1).  In Escherichia coli, serine biosynthesis from glycine also requires the presence of 

glyA, encoding the serine hydroxymethyltransferase which catalyzes the formation of serine from 

glycine and 5’10-mTHF (Ravnikar and Somerville, 1987).  To determine if glyA was essential 

and to assess its role in F. tularensis metabolism, the homolog of glyA was deleted in the 

attenuated live vaccine strain (LVS, FTL_0703).  Analysis of the metabolic features of this strain 

was performed using Chamberlain’s chemically defined media (CDM) (Chamberlain, 1965).  
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The resultant strain (LVS glyA) was unable to grow in the absence of serine and, unlike wild-

type LVS, was unable to utilize glycine to overcome serine limitation (Fig. 6A).  This 

auxotrophy is similar to that seen in strains lacking an intact GCS (LVS gcvT) (Figure 6A).  In 

contrast to LVS gcvT, however, LVS glyA grew poorly in standard CDM (3.8 mM serine, 0 

mM glycine) (Fig. 6B).  Furthermore, supplementation of CDM with serine failed to restore the 

growth of LVSglyA to wild-type levels (Fig. 6C).  In addition to serine biosynthesis, the serine 

hydroxymethyltransferase of E. coli also serves as a major source of glycine from serine 

degradation (Pizer, 1965).  This led to the hypothesis that loss of glyA in Francisella may result 

in a requirement for both glycine and serine.  In support of this, supplementation of CDM with 

glycine and serine led to near wild-type levels of LVSglyA growth (Fig. 6C).  To confirm that 

these phenotypes were due to the loss of glyA, an in cis complement (LVSglyA:pMB1glyA) 

and in cis vector (LVSglyA:pMB1) were generated.  Modified CDM agar plates (0 mM serine, 

50 mM glycine) supported the growth of only LVS and LVSglyA:pMB1glyA (Fig. 6D).  This 

matched results performed with the GCS-associated strains, which served as a positive control 

for serine auxotrophy (Fig. 6D).  These results suggest that the serine hydroxymethyltransferase 

is not essential to the viability of F. tularensis but is required for serine biosynthesis and 

contributes significantly to glycine biosynthesis in LVS.     
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Figure 8. The serine hydroxymethyltransferase of F. tularensis is not essential but is required for serine 

prototrophy and growth in limiting glycine.   

 (A-C) Overnight TSB-C broth cultures of LVS strains were pelleted and resuspended in either serine-free 

Chamberlain’s chemically defined media (CDM) (A and B) or in PBS (C).  These suspensions were used to 
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inoculate serine-free CDM with varying glycine concentrations (A), standard CDM containing 3.8 mM serine and 0 

mM glycine (B), and CDM with all combinations of 0 mM or 50 mM serine and glycine (C).  The starting OD600 

was set at 0.05 and the data represent the measured OD600 approximately 20 hours post inoculation.  These data were 

obtained from a single experiment. (D) LVS strains were streaked out onto chocolate agar plates and grown for 

approximately three days.  Bacteria from these plates were subcultured onto CDM agar plates containing 0 mM 

serine and 50 mM glycine.  Images were obtained using a Samsung Sch-I510 camera after several days of growth.  

Side by side images are duplicate experiments performed concurrently.    

3.4.2 The discovery of two distinct variants of LVS glyA 

While loss of glyA was not lethal to F. tularensis, LVSglyA had reduced growth on 

chocolate agar (data not shown).  During characterization of this strain, it became apparent that 

the initial stock of LVSglyA contained colonies of variable size (data not shown).  To 

investigate and determine the significance of this observation, stocks were made of an isolated 

large colony and an isolated small colony.  The large variant (LV) shall be referred to as 

LVSglyA LV and the small variant (SV) as LVSglyA SV.  For size reference, LVS was 

streaked onto chocolate agar and grew as expected (Fig. 7A).  LVSglyA SV exhibited reduced 

growth on chocolate agar, observed as smaller colony size, while LVSglyA LV grew similar to 

wild-type (Fig. 7B).  Interestingly, large colonies were found at low frequency in LVSglyA SV 

(Fig. 7B and data not shown).  LV stocks demonstrated a stable large phenotype while, despite 

further attempts at isolation, large colonies consistently emerged from SV stocks (data not 

shown).  To determine if the poor growth of LVSglyA SV was due to nutrient limitation, 

chocolate agar was supplemented with 50 mM glycine and 5 mM serine.  After amino acid 

supplementation, LVSglyA SV was indistinguishable from LVSglyA LV (Fig. 7B).  The 
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characterization of LVSglyA has thus revealed two distinct variants.  These data suggest that 

large variants emerge from small variants and may have altered metabolism to facilitate growth 

in the absence of glyA.  Based on these findings, we hypothesized that the large variant of 

LVSglyA is a suppressor and the synonymous term “pseudo-revertant” will be utilized in this 

text to describe this event. 
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Figure 9. Two distinct variants of LVS glyA exist.   

 (A) LVS stocks were streaked onto chocolate agar.  (B) Stocks of the LVS glyA small variant (SV) (left column) 

and the LVS glyA large variant (LV) (right column) were streaked onto either chocolate agar (top row) or 
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chocolate agar supplemented with 5 mM serine and 50 mM glycine (bottom row).  All images were collected using 

a Samsung Sch-I510 camera and are from a single experiment after approximately three days of growth.     

3.4.3 The large variant is a pseudo-revertant that maintains serine auxotrophy despite a 

reduced glycine requirement   

Since the growth defect of the small variant could be complemented by glycine and 

serine, we hypothesized that the large variant may have altered requirements for these amino 

acids.  Although glyA is required for glycine-mediated serine production in E. coli and our initial 

results supported this, the genome of F. tularensis does possess annotated homologs of serABC, 

a glycolytic serine biosynthetic pathway (Fig. 6) (Larsson et al., 2005; Ravnikar and Somerville, 

1987).  While previous work suggested this system does not contribute to serine biosynthesis, the 

LVSglyA LV may have activated this alterative pathway to overcome serine auxotrophy.  To 

investigate the possibility that the large variants were no longer serine auxotrophs, strains were 

plated on modified CDM agar (0 mM serine, 50 mM glycine).  Only wild-type LVS and the 

complement LVS glyA:pMB1glyA were capable of growth under these conditions, suggesting 

that the large variant was still a serine auxotroph (Fig. 8A).  All strains grew well in a rich media, 

brain heart infusion broth, although LVS glyA SV maintained a minor growth defect (Fig. 8B).  

Results from standard CDM broth (3.8 mM serine, 0 mM glycine) revealed a severe growth 

defect for LVS glyA SV (Fig. 8C).  In contrast, LVS and LVSglyA:pMB1glyA grew well in 

CDM with typical growth kinetics (Fig. 8C).  Interestingly, LVSglyA LV and 

LVSglyA:pMB1 had very similar patterns of growth in CDM, matching LVS levels after a 

prolonged lag phase (Fig. 8C).  The addition of 5 mM glycine to CDM increased the growth of 

all strains and also reduced the lag phase of LVSglyA LV and LVSglyA:pMB1 (Fig. 8D).  
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Furthermore, all strains were indistinguishable after 24 hours except for LVS glyA SV, which 

exhibited a moderate growth defect (Fig. 8D).  Finally, the serine auxotrophy of all strains except 

LVS and LVSglyA:pMB1glyA was confirmed using modified CDM broth (0 mM serine, 5 mM 

glycine) (Fig. 8E).  Overall, these results indicate that the large variant is a pseudo-revertant 

which greatly reduces the glycine requirement of LVS glyA SV while maintaining serine 

auxotrophy.  Furthermore, these results suggest that the stock of the vector control, LVS 

glyA:pMB1, is also a pseudo-revertant.  This is supported by the wild-type size of this strain’s 

colonies on solid media (data not shown).   

 

Figure 10. The large variant is a pseudo-revertant that maintains serine auxotrophy despite a reduced glycine 

requirement.   
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 (A) After approximately three days of growth on chocolate agar, LVS strains were subcultured onto CDM agar 

plates containing 0 mM serine and 50 mM glycine.  A Samsung Sch-I510 camera was used to image the plates after 

approximately two days of growth.  Side by side images are duplicate experiments performed concurrently.  Colored 

boxes were added to cover up colloquial strain designations and provide contrast for numeral assignments linked to 

proper nomenclature. (B-E) Overnight BHI cultures of LVS strains were pelleted, resuspended in PBS, and used to 

inoculate BHI (B), CDM (3.8 mM serine, 0 mM glycine)  (C), CDM with  glycine (3.8 mM serine, 5 mM glycine) 

(D), and serine-free CDM with glycine (0 mM serine, 5 mM glycine) (E).  Cultures were initially set to an OD600 of 

0.03 and were monitored for OD600 changes at the indicated time points.  Data are from a single experiment. 

3.4.4 Large and small variants of LVS glyA have distinct intramacrophage growth 

phenotypes 

 While the two variants of LVS glyA were similar in their serine auxotrophy, they were 

readily distinguishable by their glycine requirement (Fig. 8).  We next sought to evaluate the 

importance of glyA and these variants to the intracellular growth of F. tularensis.  Primary mouse 

macrophages were infected and maintained using either a “nutrient rich” Dulbecco's modified 

Eagle medium (DMEM) or a “nutrient limiting” minimal essential media (MEM).  No significant 

difference in invasion after two hours was detected between LVS, LVS glyA SV, and LVS 

glyA LV in either condition (Fig. 9A and 9B).  In macrophages cultured in DMEM, LVS grew 

approximately three logs while LVS glyA LV grew approximately two logs and LVS glyA SV 

grew only one log in 24 hours (Fig. 9A).  These results were consistent with the enhanced fitness 

of the large variant on chocolate agar, brain heart infusion broth, and CDM broth (Fig. 7 and Fig. 

8).  In contrast to results using DMEM, infection of macrophages cultured in MEM yielded 

unexpected results.  LVS was only modestly more proficient at intracellular growth than LVS 

glyA SV and LVS glyA LV failed to increase in CFU over 24 hours (Fig. 9B).  To extend 
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these results to human cells, primary human macrophages were employed.   LVS glyA SV 

failed to invade as proficiently as other strains (Fig. 9C).  Since the human macrophage model 

contains fresh human serum, the sensitivity of these strains to complement was tested.  LVS and 

both variants of LVS glyA were equally resistant to complement, indicating that the reduced 

invasion is not the result of complement mediated killing (Appendix B).  Similar to invasion, all 

strains grew well within humans macrophages except for LVS glyA SV, which failed to 

increase in CFU over 24 hours (Fig. 9C).  This result also confirmed that the vector control, LVS 

glyA:pMB1, behaved similar to the large variant (Fig. 9C).  These data indicate that while the 

loss of glyA limits the intramacrophage growth of LVS, the pseudo-revertant is capable of 

overcoming a significant portion of this defect.  Furthermore, the altered metabolism of this 

pseudo-revertant appears to require a nutritionally rich media and may be otherwise detrimental. 

 

Figure 11. Large and small variants of LVS glyA have distinct intramacrophage growth phenotypes. 
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(A-B) Mouse macrophages were harvested and placed in either rich media (A) (DMEM with 20% FBS, 25 mM 

HEPES, 2 mM glutaMAX, 1 mM sodium pyruvate, 1 X MEM non-essential amino acids) or minimal media (B) 

(MEM with 10% FBS, 25 mM HEPES, 2 mM glutaMAX).  (C) Human macrophages were harvested and placed in 

human infection media (DMEM, 1% AB human serum, 2 mM glutaMAX, and 25 mM HEPES).   Overnight TSB-C 

broth cultures of LVS strains were pelleted, resuspended in either rich media (A), minimal media (B), or human 

infection media (C) and added to cells at an MOI of 500.  Bacteria were incubated with cells for two hours before a 

gentamicin treatment as described in the Materials and Methods.  Cells were lysed and the CFU enumerated at the 

indicated time points.  Data represent the mean SD value of triplicate wells from one experiment.  Statistical 

significance (p < 0.05) for each time point was determined using a one-way ANOVA followed by a Bonferroni 

multiple comparison correction.  A * is used to denote time points where statistical significance was achieved 

between LVS and LVSglyA SV or LVSglyA SV and LVSglyA LV.   

3.4.5 The activity of the threonine dehydrogenase is not dramatically different in the 

large variant 

Pseudo-reversion is not an uncommon event when manipulating bacterial metabolism and 

may involve overexpression of related enzymes or pathways (Patrick et al., 2007).  Interestingly, 

manipulation of serine biosynthesis and glyA in E. coli also leads to identifiable pseudo-

revertants (Fraser and Newman, 1975; Ravnikar and Somerville, 1987).  Several of these pseudo-

revertants were found to have increased activity of an enzyme known as the threonine 

dehydrogenase (TDH) (Fraser and Newman, 1975).  This enzyme is essential in the production 

of glycine from threonine and functionally may suppress the glycine requirement of glyA 

mutants (Newman et al., 1976).  In theory, increased TDH activity could be the result of a 

variety of factors ranging from protein mutations to altered transcriptional regulation.  To assess 

enzymatic activity of TDH, a colorimetric assay can be utilized to quantify aminoacetone levels 
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from bacterial lysates (Boylan and Dekker, 1981; Newman et al., 1976).  Aminoacetone can be 

produced by decarboxylation of 2-amino-3-oxobutyrate, the immediate product of the TDH, and 

thus serves as an indirect but reliable measure of the TDH activity in a sample (Boylan and 

Dekker, 1981; Newman et al., 1976).   In E. coli, supplementation of culture media with glycine 

(a downstream TDH product) and threonine (the TDH substrate) do not alter TDH activity but 

leucine is a potent inducer of TDH activity through transcriptional regulation (Newman et al., 

1976).  TDH activity was readily detected in CDM-grown LVS lysates but was reduced in 

lysates from LVS grown in CDM with supplemental 50 mM glycine or 50 mM threonine (Fig. 

10A).  Furthermore, the addition of 50 mM leucine to CDM failed to increase the relative level 

of TDH activity (Fig. 10A).  Boiled lysate from CDM grown LVS failed to produce any 

detectable TDH activity, establishing the baseline of this assay and requirement for enzymatic 

activity in the lysate (Fig. 10A).  Some pseudo-revertants of the glyA mutation in E. coli possess 

constitutively high levels of TDH activity that circumvent transcriptional regulation (Newman et 

al., 1976).  We thus hypothesized that LVS glyA LV may possess higher levels of TDH activity 

than LVS or be resistant to a reduction in activity following growth in glycine.  In contrast to this 

expectation, LVS glyA LV did not possess higher levels of TDH activity in CDM nor was this 

strain resistant to glycine inhibition of TDH activity (Fig. 10B).  TDH activity following growth 

in BHI was lower in LVS glyA LV than LVS glyA SV, but both strains were below LVS 

levels (Fig. 10C).  Previously, LVS glyA SV was found to possess only a small growth defect in 

BHI and a moderate to severe defect in CDM with or without supplemental glycine (Fig. 8B-D).  

Comparison of these strains from lysates grown in either CDM or CDM with 5 mM glycine 

indicated that, in these conditions, LVS glyA LV had slightly higher TDH activity than LVS 

glyA SV (Fig. 10D).  Interestingly, both variants had lower levels of TDH activity in CDM 



 96 

when compared to wild-type LVS (Fig. 10D).  Additionally, 5 mM glycine failed to inhibit TDH 

activity in either LVS glyA LV or LVS glyA SV (Fig. 10D).  Finally, examination of lysates 

from F. tularensis strains grown on chocolate agar revealed slightly higher TDH activity in LVS 

and LVS glyA LV when compared to LVS glyA SV (Fig. 10E).  Thus, the activity of the TDH 

was not dramatically different between the LVS glyA variants but did appear to be slightly 

higher in the large variant when cultured in conditions where this strain has fitness advantage 

over the small variant. 

 

Figure 12. The activity of the threonine dehydrogenase is not dramatically different in the large variant. 

(A-D) LVS strains were harvested from overnight cultures of (A) CDM or CDM with 50 mM glycine, leucine, or 

threonine, (B) CDM or CDM with 50 mM glycine, (C) BHI, and (D) CDM or CDM with 5 mM glycine. (E) LVS 
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strains were harvested directly off of a chocolate agar plate.  Bacteria were harvested from these conditions, washed 

with PBS, and a crude Francisella protein lysate was prepared by sonication as described in the Materials and 

Methods.  Samples were standardized by OD600.  Boiled lysate refers to an LVS protein lysate from a CDM 

overnight culture that was boiled for 10 minutes to inactivate enzymes.  These lysates were utilized in an indirect 

threonine dehydrogenase assay, which culminated in the relative comparison, colormetrically (OD553), of 

aminoacetone levels.  Aminoacetone is derived proportionally from 2-amino-3-oxobutyrate, the product of the 

threonine dehydrogenase.   This procedure is described in further detail in the Materials and Methods.  Data are 

derived from a single assay.       

3.4.6 Mutation of the glyA homolog in the F. tularensis subsp. tularensis Schu S4 strain 

results in serine auxotrophy but no glycine requirement 

To determine if these findings in LVS would translate to F. tularensis subsp. tularensis, 

deletion of the glyA homolog was performed in the fully virulent Schu S4 strain (Schu S4, 

FTT_1241).  Similar to LVS glyA strains and the Schu S4 GCS mutant, Schu S4 glyA was a 

serine auxotroph and could not utilize glycine for serine biosynthesis (Fig. 11A).  Interestingly, 

Schu S4 did not require supplemental glycine for respectable levels of growth without serine, 

although a dose response could still be observed (Fig. 11A).  This was in contrast to LVS and 

may highlight a metabolic difference between these subspecies (Fig. 6A).  Of interest, streaking 

Schu S4 glyA on chocolate agar resulted in colonies that were similar in size to wild-type and 

no variants could be readily distinguished (data not shown).  In addition to chocolate agar, no 

apparent difference could be detected in CDM broth between Schu S4 and Schu S4 glyA (Fig. 

11B).  An in cis complement (Schu S4 glyA:pMB1glyA) was capable of restoring serine 

prototrophy (Fig. 11C).  These data suggest that the serine hydroxymethyltransferase is required 

for serine biosynthesis in both LVS and Schu S4.  Furthermore, these findings suggest that our 
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initial stock of Schu S4 glyA appears to mimic, at least with respect to serine and glycine 

metabolism, the large variant of LVS glyA. 

 

Figure 13. Mutation of the glyA homolog in the F. tularensis subsp. tularensis Schu S4 strain results in serine 

auxotrophy but no glycine requirement.   

Overnight TSB-C cultures of Schu S4 strains were pelleted, resuspended in serine-free CDM and used to inoculate 

(A) serine-free CDM with various glycine concentrations, (B) standard CDM (3.8 mM serine, 0 mM glycine), or (C) 

Serine-free CDM with glycine (0 mM serine, 5 mM glycine).  All cultures were set to an initial OD600 of 0.05 and 

were measured after approximately 16 hours (A and B) or 19 hours (C) of growth.  These data are a single replicate 

and are derived from a single culture. 

3.4.7 The loss of glyA in Schu S4 has almost no effect on intramacrophage replication 

Due to the similarities between LVS glyA LV and Schu S4 glyA, we were particularly 

interested in evaluating the intramacrophage growth phenotypes of the Schu S4 mutant. LVS 

glyA LV is attenuated for intramacrophage replication in murine cells, particularly when the 
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assay was performed in minimal nutrient conditions (MEM) (Fig. 9).  Unexpectedly, Schu S4 

glyA grew proficiently within mouse macrophages and was similar to Schu S4 in terms of 

growth and invasion in both DMEM and MEM culture conditions (Fig. 12A and B).   The serine 

hydroxymethyltransferase is thus not required for efficient intracellular replication of Schu S4, 

regardless of exogenous nutrient availability.  Additionally, this result suggests serine 

biosynthesis is dispensable for intramacrophage growth of Schu S4.  Finally, these data 

phenotypically distinguish the Schu S4 glyA strain from both LVS glyA variants and suggest 

underlying metabolic differences between LVS and Schu S4.   

 

Figure 14. The loss of glyA in Schu S4 has almost no effect on intramacrophage replication.   

Mouse macrophages were harvested and placed in either rich media (A) (DMEM with 20% FBS, 25 mM HEPES, 2 

mM glutaMAX, 1 mM sodium pyruvate, 1 X MEM non-essential amino acids) or minimal media (B) (MEM with 

10% FBS, 25 mM HEPES, 2 mM glutaMAX).  Overnight TSB-C broth cultures of Schu S4 strains were pelleted, 

resuspended in either rich media (A) or minimal media (B) and added to cells at an MOI of 500.  Bacteria were 

incubated with cells for two hours before a gentamicin treatment as described in the Materials and Methods.  Cells 

were lysed and the CFU enumerated at the indicated time points.  Data represent the mean SD value of triplicate 

wells from one experiment.  Statistical significance (p < 0.05) for each time point was determined using a two-tailed 

Student’s t-test.  A * is used to denote time points where statistical significance was achieved. 
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3.4.8 Loss of glyA results in a modest attenuation in the virulence of Schu S4 

The loss of glyA in Schu S4 led to serine auxotrophy but had no measurable effects on 

growth on chocolate agar, in CDM broth, or within murine macrophages (Fig. 11 and 12).  These 

results suggest that the serine hydroxymethyltransferase may be dispensable to Francisella 

pathogenesis.  To evaluate the contribution of glyA to the virulence of F. tularensis, we 

employed a murine model of pneumonic tularemia.  Using this model, infection with Schu S4 led 

to mortality with a median survival time of approximately six days (Fig. 13).  Interestingly, 

murine mortality following infection with Schu S4 glyA was statistically significantly delayed, 

albeit by a modest one day (Fig. 13).  The minor role of glyA in the pathogenesis of Schu S4 was 

nonetheless surprising and defied in vitro results. 

 

Figure 15.  Loss of glyA results in a modest attenuation in the virulence of Schu S4.   

Overnight TSB-C cultures of Schu S4 strains were pelleted, resuspended in PBS, and used to infect mice.  

Approximately 100 CFU was intratracheally administered per anesthetized mouse.  Following infection, mice were 

monitored and removed upon reaching a predetermined clinical sickness score.  Data represent a single experiment 

with five mice per group.  Statistical significance (p < 0.05) was determined by a log-rank test (Mantel-Cox).  Data 

for the wild-type Schu S4 strain are also represented within (Fig. 3) as these experiments were performed 

concurrently. 
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3.4.9 Deletion of the serine hydroxymethyltransferase decreases bacterial burden, 

especially at sites of dissemination 

 Since Schu S4 glyA was a serine auxotroph, we hypothesized that this strain may be at a 

disadvantage in particular host niches where serine may be limiting.  To evaluate this hypothesis, 

bacterial burden was assessed at multiple host sites four days after infection with Schu S4 or 

Schu S4 glyA.  Overall, loss of glyA reduced bacterial burden following infection, however the 

magnitude of this phenotype varied per site (Fig. 14).  The initial site of infection, the lung, was 

also the site with the smallest difference in burden as wild-type and mutant strains were less than 

one log apart (Fig. 14).  Examination of bacterial numbers present in the spleen and liver 

revealed that Schu S4 reached levels approximately one and a half logs higher than Schu S4 

glyA (Fig. 14B and 14C).  The largest difference in bacterial burden, however, was clearly in 

the blood of the animals as Schu S4 glyA burden was over three logs lower than Schu S4 (Fig. 

14D).  These data are consistent with the survival data and suggest that a functional glyA 

modestly enhances the virulence of F. tularensis.  Furthermore, the presence of glyA appears to 

be of great benefit in the blood, of moderate benefit in the liver and spleen, and of minor benefit 

in the lung.   
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Figure 16.  A functional serine hydroxymethyltransferase leads to increased bacterial burden, especially at 

sites of dissemination. 

Overnight TSB-C cultures of Schu S4 strains were pelleted, resuspended in PBS, and used to infect mice.  

Approximately 100 CFU was intratracheally administered per anesthetized mouse.  Four days post infection, the 

lung (A), spleen (B), liver (C), and blood (D) were harvested, homogenized, and plated to enumerate CFU.  Data are 

the combination of two independent experiments with at least four mice per group per experiment.  Each symbol 

represents the CFU of a single mouse.  The line represents the mean SD of the combined data set.  Statistical 

significance (p < 0.05) was determined using a two-tailed Student’s t-test.  A * is used to denote host sites where 

statistical significance was achieved.  Data for the wild-type Schu S4 strain are also represented within (Fig. 4) as 

these experiments were performed concurrently. 
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3.5 DISCUSSION 

Pathogen metabolism varies accordingly with unique life styles and the infection of 

nutritionally variable and distinct host niches (Alteri and Mobley, 2012; Rohmer et al., 2011). 

Diversity and redundancy typically precludes rational therapeutic intervention targeting pathogen 

metabolism broadly (Becker et al., 2006; Steeb et al., 2013).  We hypothesized a highly 

conserved metabolic enzyme known as the serine hydroxymethyltransferase (GlyA) may be an 

exception to this.  Homologs to this protein exist in the vast majority of bacterial pathogens and 

persist even in the highly reduced genomes of Rickettsia prowazekii, Borrelia burgdorferi, and 

Mycoplasma genitalium (Andersson et al., 1998; de Crecy-Lagard et al., 2007; Fraser et al., 

1995).  To evaluate the role of the serine hydroxymethyltransferase in pathogenesis, we 

investigated the glyA homolog of F. tularensis.  In terms of host niches, F. tularensis is 

promiscuous and exposure to this agent results in a disseminating infection involving multiple 

cell-types, organs, and even an extracellular bacteremic phase (Forestal et al., 2007; Hall et al., 

2008; Horzempa et al., 2010a).  Thus, F. tularensis was a reasonable choice to determine if glyA 

is important for virulence at multiple host sites, a critical feature in the search for therapeutic 

targets against diverse pathogens.  Our findings suggest that, despite its attractive conservation 

among pathogens, the serine hydroxymethyltransferase is not essential for the virulence of F. 

tularensis.  It is, however, required for serine prototrophy and contributes to pathogenesis in 

vivo. 

The glyA homolog of F. tularensis was successfully deleted in both LVS and Schu S4, 

and resulted in a serine auxotrophic strain (Fig. 6 and Fig. 11).  This work confirmed our earlier 

findings with gcvT and suggests that F. tularensis relies on the GCS and GlyA for serine 

prototrophy.  This pathway facilitates the degradation of glycine to obtain 5’10-mTHF by the 
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GCS and the subsequent utilization of this 5’10-mTHF to synthesize serine from glycine by 

SHMT (Ravnikar and Somerville, 1987).  This appears to phenotypically distinguish Francisella 

as the loss of glyA does not typically result in strict serine auxotrophy (Bogard et al., 2012; Pizer, 

1965).  Furthermore, the successful deletion and characterization of glyA in F. tularensis 

demonstrates that this enzyme is not essential for bacterial viability.  This is in contrast to a 

previous study in F. tularensis subsp. novicida which labeled glyA as a candidate essential gene 

(Gallagher et al., 2007).  This finding may have been a false-positive in this screen, perhaps due 

to the slow growth phenotype of some glyA deficient strains (Fig. 6-8).  Alternatively, it remains 

possible that glyA is essential in the novicida but not the holarctica (LVS) or tularensis (Schu 

S4) subspecies. 

While loss of glyA was not lethal to F. tularensis, two phenotypically distinct variants 

were identified in LVS glyA (Fig. 7).  These variants were initially distinguished by their 

appearance on chocolate agar (Fig. 7).  Importantly, these variants were both serine auxotrophs 

and the primary metabolic distinction between these strains appeared to be related to glycine 

(Fig. 8).  Indeed, the large variant appeared to not require exogenous glycine for growth, while 

the small variant exhibited very poor growth without supplementation (Fig. 8).  Importantly, 

GlyA is typically a major source of glycine biosynthesis in other bacteria and deficiency in this 

enzyme often results in glycine auxotrophy (Bogard et al., 2012; Pizer, 1965).  Furthermore, 

previous work on glyA mutants in E. coli identified spontaneous pseudo-revertants that restored 

glycine prototrophy (Fraser and Newman, 1975).  Based on this study and our results with F. 

tularensis, pseudo-reversion may be a common confounding variable in studies on glyA.  None 

theless, these data suggest LVS glyA LV is a pseudo-revertant that retains serine auxotrophy 

while overcoming an exogenous glycine requirement. 
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Metabolic pathways can be circumvented through a variety of mechanisms, often 

involving conditional enzymatic redundancy (Patrick et al., 2007).  Thus, one plausible 

mechanism behind the LVS glyA LV phenotype involves glyA-independent glycine 

biosynthesis.  The upregulation of an alternative glycine biosynthetic pathway in the large 

variant may facilitate glycine independence while preserving serine auxotrophy.  To our 

knowledge, the only other source of glycine biosynthesis in F. tularensis is a pathway involving 

the threonine dehydrogenase (TDH) (Newman et al., 1976).  Thus, we hypothesized that 

upregulation of TDH may account for the suppression of phenotypes in the LVS glyA LV 

strain.  In support of this, similar pseudo-revertants in E. coli were found to upregulate this 

pathway and had up to 60-fold higher levels of TDH activity (Newman et al., 1976)  In contrast 

to our expectations and the previous E. coli results, the TDH activity of the F. tularensis pseudo-

revertant strain was relatively similar to both wild-type and the isolated small variant (Fig. 10).  

This was true in all conditions tested and suggested that increased TDH activity is not the 

mechanism of suppression in F. tularensis.  It remains plausible, however, that the TDH is still 

involved with this process.  For example, it has been proposed that mutations that increase the 

intracellular pool of threonine may help facilitate the TDH reaction during replication (Fraser 

and Newman, 1975).  This would not alter TDH activity in a bacterial lysate but would provide 

additional substrate for TDH activity during growth.  Ultimately, the mechanistic explanation for 

the pseudo-reversion of LVS glyA LV remains unknown.   

As far as we are aware, this is the first report that attempts to distinguish and evaluate a 

glyA pseudo-revertant for in vitro virulence phenotypes.  This is a particularly relevant 

endeavor, as the ability to circumvent a highly conserved gene is not only surprising but also 

hampers its viability as a drug target.  Our findings strongly suggest that the pseudo-revertant 
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phenotype is relevant during intramacrophage replication as significant differences were found 

between the large and small variant of glyA in all conditions (Fig. 9).  The large variant was 

capable of significantly higher levels of intracellular replication in both primary mouse 

macrophages and human macrophages in standard culture conditions (Fig. 9A and 9C).  This 

finding was in line with our previous results in broth culture suggesting an enhanced fitness of 

the large variant (Fig. 8).  Interestingly, this pattern did not hold true when the two variants were 

cultured in nutritionally limiting media (Fig. 9B).  In these conditions, the small variant grew 

significantly better than the large variant, which failed to increase in CFU after invasion (Fig. 

9B).  This result was somewhat puzzling and suggests that the underlying mechanism of pseudo-

reversion is not universally beneficial in all nutritional environments.  Further, these results 

suggest that the pseudo-reversion phenotype is conditionally detrimental and can impede the 

intracellular replicative capacity of LVS glyA.  One plausible mechanism may be that the 

pseudo-revertant aberrantly and uncontrollably degrades essential nutrients.  For example, 

mutations that facilitate the degradation of threonine into glycine may partially repress glyA 

phenotypes but would consequently demand higher threonine concentrations.  This increased 

threonine demand is likely met in standard DMEM culture conditions, where the cells are 

abundantly supplied with high levels of nutrients.  This level of threonine, however, may not be 

accessible during intramacrophage replication in nutritionally minimal (MEM) culture 

conditions.  Since F. tularensis appears to be a threonine auxotroph and threonine is required for 

protein synthesis, the aberrant degradation of threonine in MEM may be disastrous. 

The virulent F. tularensis subsp. tularensis Schu S4 is metabolically distinct from the 

attenuated F. tularensis subsp. holarctica LVS.  Studies in broth culture revealed that Schu S4, 

unlike LVS, was capable of robust growth in serine-free media even without the supplementation 
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of glycine (Fig. 6A and 11A).  This result suggests that Schu S4 is less reliant on exogenous and 

serine-derived glycine and may have an increased capacity for threonine-derived glycine 

production.  Interestingly, the Schu S4 glyA strain was phenotypically identical to the LVS 

glyA LV strain in CDM (Fig. 8 and 11).  Indeed, both of these glyA deficient strains were serine 

auxotrophs but had no requirement for exogenous glycine supplementation (Fig. 8 and 11).  Two 

possibilities exist to explain this finding.  The first is that our Schu S4 glyA isolate is already a 

pseudo-revertant, while the second is that metabolic differences between LVS and Schu S4 

preclude the necessity for reversion.  Critically, Schu S4 glyA was capable of intramacrophage 

replication comparable to wild-type in both DMEM and MEM (Fig. 12.)  This feature 

distinguishes this strain from both LVS variants, which have growth defects in either DMEM or 

MEM (Fig. 9A and B).  This strongly suggests that the Schu S4 glyA is not simply a pseudo-

revertant and is phenotypically distinct as a result of metabolic differences between LVS and 

Schu S4.  Several metabolic differences between these subspecies are known, including 

differences in iron metabolism and alanine biosynthesis (Miller et al., 2013) (Lindgren et al., 

2011).  Despite these known differences, no clear explanation is available to account for the 

reduced glycine requirement of the Schu S4 strain in CDM.  It remains plausible that the 

regulation and expression level of glycine biosynthetic genes differs in Schu S4 and favors 

threonine degradation.  In addition to the bacterial side of metabolism, these subspecies may 

differ in their manipulation of host metabolism.  Indeed, Schu S4 utilizes the recently discovered 

host mechanism known as ATG5-independent autophagy to acquire nutrients while LVS appears 

to rely on ATG5-dependent processes during intracellular replication (Steele et al., 2013).  

Although further studies are needed, these subspecies clearly differ in their strategies of nutrient 

acquisition and thus may encounter different metabolic environments during intramacrophage 
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replication.  These differences may contribute to the distinct intracellular growth phenotypes of 

LVS and Schu S4 glyA-deficient strains observed in this study.       

The primary goals of this study were to assess the role of glyA in the metabolism of F. 

tularensis and to determine if this conserved enzyme is fundamental for pathogenesis throughout 

the host.   While loss of glyA resulted in in vitro attenuation of intracellular growth in LVS, glyA 

appeared largely dispensable for intracellular replication of Schu S4 (Fig. 8 and Fig. 12).  Recent 

studies have challenged the predicative value of in vitro intramacrophage replication and several 

strains have been found to be attenuated in the absence of intramacrophage growth defects 

(Alkhuder et al., 2010; Russo et al., 2011).  Further, a strain that appeared entirely incapable of 

intramacrophage replication was only modestly attenuated in vivo (Horzempa et al., 2010a).  

Despite this possibility, glyA only modestly contributed to the in vivo virulence of F. tularensis 

(Fig. 13).  Of note, glyA contributed in a site-specific manner to bacterial burden and provided 

the largest fitness advantage in the blood (Fig. 14).  Since Francisella is primarily extracellular 

in the blood, this may be due to the lower levels of amino acids in plasma in comparison to the 

cytosol (Bergstrom et al., 1974; Canepa et al., 2002; Forestal et al., 2007).  Interestingly, glyA-

mediated metabolism also appeared to contribute to fitness moderately in the liver and spleen 

and slightly in the lung (Fig. 14).  This suggests that while serine biosynthesis and other glyA 

reactions do not contribute to in vitro intracellular growth, they may contribute to replication in 

vivo.  Alternatively, the reduced burden at this time may simply be a result of the greater than 

three log reduction in bacteremia.  Overall, serine auxotrophy as a result of loss of glyA may 

significantly impair bacteremia but ultimately appears largely inconsequential to the lethality of 

F. tularensis.      
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While potentially attractive therapeutic targets, the requirement of many metabolic 

pathways for pathogenesis at nutritionally diverse host niches remains unknown.  To our 

knowledge, this study represents the first time the bacterial serine hydroxymethyltransferase 

(glyA) has been characterized systemically during infection.  Utilizing F. tularensis as a model, 

the role of glyA at various host niches was observed.  This metabolic enzyme contributed to 

pathogen fitness minutely in the lung, moderately in the liver and spleen, and greatly in the 

blood.  As the glyA of F. tularensis was found to be essential for serine prototrophy, these 

findings may fail to translate to pathogens with redundant serine biosynthetic pathways.  It may 

remain feasible, however, to target redundant mechanisms of serine biosynthesis with the goal of 

inducing serine auxotrophy.  Despite the conserved nature of glyA and its contribution to 

bacteremia, this enzyme proved to be ultimately dispensable for the lethality of F. tularensis.  

Thus, while the targeting of glyA and serine biosynthesis may cripple pathogens that facilitate 

lethality through bacteremia, this provides little reprieve to infections at other sites.  This study 

contributes to the growing understanding of host-pathogen metabolic interactions and 

underscores the importance of examining the contribution of bacterial metabolism at multiple 

host niches. 
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4.0  SUMMARY AND DISCUSSION 

In order to grow successfully and replicate, living organisms must acquire nutrients from 

their surroundings.  For bacterial pathogens, this environment is often one of a multitude of host 

niches.  Pathogens must therefore possess the metabolic pathways required to exploit and thrive 

within their respective host site.  As anatomical locations are nutritional distinct, it stands to 

reason that pathogens that colonize different host niches will require different metabolic 

pathways (Rohmer et al., 2011).  Despite this complexity and the obvious importance of 

metabolism, the host-pathogen interaction over nutrients lacks sufficient clarity.  Further, little is 

known in regards to which metabolic pathways contribute to pathogen fitness in these variable 

host environments.  Increased knowledge of bacterial metabolism during infection may provide 

useful insights for rational therapeutic interventions (Zhang and Rubin, 2013).  For instance, a 

specific niche, such as the lung, may enforce a particular metabolic requirement on the pathogen 

and therapeutics targeting this avenue would not only be effective but may also spare other sites 

with beneficial commensals, such as the gut.  In contrast, certain metabolic pathways would be 

expected to be beneficial or essential in multiple environments, providing targets for systemic 

infections.  Overall, the metabolic pathways that contribute to pathogen fitness require further 

investigation, specifically in regards to the nutritional diversity of host sites.     

Francisella tularensis is an intracellular pathogen and the causative agent of a systemic 

debilitating disease known as tularemia (Francis, 1925).    Utilizing this bacterium as a model, 
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the contribution of a metabolic pathway can be assessed during intracellular infection of multiple 

cell-types, of various organs (lung, liver, spleen), and during an extracellular bacteremic phase 

(Forestal et al., 2007; Hall et al., 2008; Horzempa et al., 2010a).  Thus, evaluation of the role of 

metabolism in pathogen fitness using F. tularensis provides a distinct advantage over other less 

promiscuous pathogens with narrow host niche specificity.  Taking advantage of this, I examined 

the contribution of one-carbon metabolism to the pathogenesis of F. tularensis.  One-carbon 

metabolism involves the generation of 5’10-methylenetetrahydrafolate (5’10-mTHF) and its 

utilization for DNA synthesis, protein translation, and the production of various amino acids 

(Dev and Harvey, 1982; Kikuchi et al., 2008).   5’10-mTHF is the product of two metabolic 

pathways within one-carbon metabolism, the glycine cleavage system (GCS) and the serine 

hydroxymethyltransferase (SHMT) (Dev and Harvey, 1982; Kikuchi et al., 2008; Pizer, 1965).  

Previously, the GCS of F. tularensis was found to be transcriptionally upregulated during 

intramacrophage replication, to be induced at the protein level in bacteria harvested from mouse 

spleen, and has been identified in an in vivo negative selection screen (Twine et al., 2006; 

Wehrly et al., 2009; Weiss et al., 2007).  The SHMT enzyme of F. tularensis was listed as a 

candidate essential gene but also has been loosely linked to intramacrophage replication and in 

vivo virulence by transposon mutagenesis in the novicida subspecies (Tempel et al., 2006; Weiss 

et al., 2007).  These indirect screens suggested one-carbon metabolism may contribute to 

Francisella virulence.  As such, direct investigation of the role of one-carbon metabolism in F. 

tularensis pathogenesis was warranted to establish the pathogenic value of this pathway 

throughout the host.   

One potential source of 5’10-mTHF, the one-carbon donor that is at the core of one-

carbon metabolism, is through GCS-mediated glycine degradation (Dev and Harvey, 1982; 
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Kikuchi et al., 2008).  In chapter 2, the contribution of the GCS to Francisella metabolism, in 

vitro virulence, and in vivo pathogenesis was investigated.  Mutagenesis of the glycine cleavage 

system protein T (gcvT), an essential member of this pathway, was performed in LVS, an 

attenuated strain, and Schu S4, a fully virulent strain.  Through the utilization of these mutants, it 

was revealed that the GCS was required for serine prototrophy in both LVS and Schu S4 (Fig. 1).  

Further, it was demonstrated that, despite its effects on metabolism, the GCS of F. tularensis had 

no role in cellular invasion, intracellular replication, complement resistance, or immune 

stimulation when evaluated in standard tissue culture medium (Fig. 2 and Appendix A and B).  

In contrast to the unimportance of the GCS in our initial in vitro virulence assays, the GCS was 

found to contribute to pathogenesis in a murine model of pneumonic tularemia (Fig. 3).  Strains 

deficient in gcvT resulted in significantly lower bacterial burden in the spleens, liver, and blood 

of infected animals (Fig. 4).  In order to reconcile the in vivo and in vitro results, I evaluated the 

role of the GCS during in vitro intracellular replication in a minimal culture medium (Fig. 5).  In 

this environment, the GCS significantly contributed to the intracellular replication of F. 

tularensis in a serine-dependent fashion (Fig. 5).  Overall, the work performed in chapter 2 

characterized a previously unappreciated contribution of the GCS to the pathogenesis of F. 

tularensis.  To our knowledge, this is the first time the GCS has been found to contribute to 

bacterial pathogenesis during mammalian infection.  Finally, this chapter also raises an important 

cautionary note regarding nutritionally replete tissue culture medium employed in most standard 

in vitro assays.      

In addition to the GCS-mediated glycine degradation, 5’10-mTHF can also be generated 

through SHMT-mediated serine degradation (Dev and Harvey, 1982; Pizer, 1965).  In chapter 3, 

the role of the SHMT in F. tularensis metabolism and virulence was assessed.  Successful 
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mutagenesis of the SHMT (glyA) homolog in LVS and Schu S4 revealed that this gene was 

clearly not required for viability.  The glyA gene was, however, required for serine prototrophy in 

both LVS and Schu S4 (Fig. 6, 8, and 11).  Furthermore, loss of glyA in LVS appeared to result 

in an increased glycine requirement that was frequently suppressed by pseudo-reversion (Fig. 6-

8).  The glyA-deficient variants in LVS had distinct phenotypes in regards to intracellular 

replication as pseudo-reversion proved to be beneficial in nutritionally rich media, while 

detrimental in nutritionally minimal media (Fig. 9).  The mechanism of pseudo-reversion 

remains unknown, but does not appear to directly involve manipulation of threonine 

dehydrogenase activity (Fig. 10).  In contrast to LVS, deletion of glyA in Schu S4 did not result 

in variant formation and failed to alter the bacterium’s glycine requirement or level of 

intracellular replication in either nutritionally rich or nutritionally minimal culture media (Fig. 11 

and 12).  The contribution of glyA to the pathogenesis of virulent F. tularensis was found to be 

quite modest in a mouse model of pneumonic tularemia (Fig. 13).  While ultimately only 

contributing modestly to mortality, an intact glyA was associated with increased bacterial burden 

at all host sites (Fig. 13).  The magnitude of this phenotype varied per site, however, with a 

minor effect on lung burden, a moderate effect on spleen and liver burden, and a large effect on 

bacteremia (Fig. 13).  The findings of chapter 3 thus clarify the essentiality of glyA while 

providing insight into the contribution of this gene to F. tularensis.  To our knowledge, this study 

represents the first time glyA has been characterized at various host sites during a systemic 

bacterial infection.  The capacity of this bacterium to maintain close to wild-type virulence upon 

the loss of glyA also highlights an unexpected metabolic robustness of F. tularensis. 

One of the most basic findings of this work is that disruption of either the GCS or the 

SHMT leads to serine auxotrophy in F. tularensis (Fig. 1 and 6).  This result suggests that F. 
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tularensis exclusively utilizes a system known as the threonine utilization (Tut) cycle to facilitate 

serine production (Ravnikar and Somerville, 1987).  This pathway begins with the degradation of 

threonine to 2-amino-3-oxobutyrate by the threonine dehydrogenase (TDH), which is 

subsequently converted to glycine by a 2-amino-3-oxobutyrate CoA ligase (Ravnikar and 

Somerville, 1987).  The glycine derived by this process is utilized in two down-stream reactions.  

First, a portion of this glycine pool is degraded into 5’10-mTHF, carbon dioxide, and ammonia 

by the GCS (Ravnikar and Somerville, 1987).  Secondly, remaining glycine is combined with 

5’10-mTHF to generate serine, a reaction facilitated by SHMT (Ravnikar and Somerville, 1987).  

This cycle was initially described as an alternative serine biosynthetic pathway in E. coli and 

could only be assessed in the absence of the major serine biosynthetic pathway, serABC 

(Ravnikar and Somerville, 1987; Umbarger et al., 1963).  This system likely explains the ability 

of F. tularensis to grow, albeit somewhat poorly, in CDM lacking both serine and glycine, as 

both of these can be derived from threonine (~17 mM in standard CDM) with the Tut cycle (Fig. 

1) (Chamberlain, 1965).  To our knowledge, this is the first time the Tut cycle has been 

implicated as the primary and exclusive serine biosynthetic pathway in a bacterial pathogen.  

Interestingly, these results defied our initial expectations.  Members of the F. tularensis subsp. 

holarctica, such as LVS, have intact homologs to serA and serC but harbor a frameshift mutation 

in the serB homolog (Champion et al., 2009).  In contrast, members of the F. tularensis subsp. 

tularensis, such as Schu S4, are annotated to possess intact homologs of serABC (Champion et 

al., 2009; Larsson et al., 2005).  Despite this difference, both strains required the GCS and 

SHMT to maintain serine prototrophy, indicating that these proteins were, at least in these assay 

conditions, failing to contribute to serine biosynthesis (Fig. 1 and 6).  Future studies should be 

devoted to understanding the contribution of the serA and serC homolog in F. tularensis.  While 
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the data presented herein suggest that these proteins do not produce serine, it is plausible that 

they contribute to other metabolic reactions.  In fact, serA and serC have been found to 

contribute to certain mechanisms of pyridoxine (vitamin B6) synthesis (Lam and Winkler, 1990).  

Pyridoxine biosynthesis has been found to contribute to the virulence of bacterial pathogens and 

ultimately this may provide a rational explanation as to the presence of these proteins in F. 

tularensis (Grubman et al., 2010).  Only the highly virulent subspecies, tularensis, possesses an 

intact serB homolog (Champion et al., 2009).  Intriguingly, a bacterial homolog of serB has 

recently been identified as directly suppressing host cell immune signaling, independent of any 

role in metabolism (Takeuchi et al., 2013).  Given the abundant mechanisms of immune 

modulation in Francisella, it is tempting to postulate that the homolog of serB in the tularensis 

subspecies may function in a similar fashion. This gene thus warrants future investigation and 

should be evaluated for a possible non-metabolic role in F. tularensis subsp. tularensis.  In 

conclusion, the Tut cycle is the sole serine biosynthetic pathway in F. tularensis. 

While investigating one-carbon metabolism, several metabolic differences between LVS 

and Schu S4 were noted: 1) Schu S4 grew substantially better than LVS in CDM lacking serine 

and glycine (Fig. 1, 6, and 11); 2) LVS exhibited a diauxic shift in CDM, which was alleviated 

with supplemental glycine, while Schu S4 exhibited no such shift (Fig. 1); 3) loss of the GCS 

resulted in a growth defect in CDM in both strains but could be completely restored by 25 mM 

serine in only Schu S4 (Fig. 1); 4) loss of SHMT in LVS resulted in poor growth on chocolate 

agar and in CDM broth, which was frequently suppressed by a pseudo-revertant, while no such 

defects were present in Schu S4 (Fig. 7, 8, and 11).  Interestingly, no clear genetic difference 

exists between these strains that would explain these phenotypes and the definitive mechanism 

remains unknown.  Hypothetically, however, all of these phenotypes could be explained by an 
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increase in glycine acquisition or a decrease in glycine requirement.  Thus, future studies should 

compare these strains by examining the contribution of the TDH, which supplies glycine through 

threonine degradation (Fraser and Newman, 1975).  To our knowledge, this enzyme represents 

the only other source of glycine besides SHMT in F. tularensis and may thus be required to 

facilitate differences between LVS and Schu S4.  Ultimately, even if the TDH is required for 

these differences, it may prove challenging to rationally identify the exact mechanism behind 

this.  Alterations in intracellular amino acid content, amino acid transport, or feed-back inhibition 

could all alter TDH functionality without affecting the level of TDH transcripts or protein.  

Therefore, it may be more suitable to investigate these differences through a genome-wide assay, 

such as a microarray, comparing LVS and Schu S4 in CDM broth.  Finally, since the pseudo-

revertant of LVS appears to possess a SchuS4-like glycine requirement, genome sequencing of 

this variant may provide valuable insight into this phenomenon.   

One-carbon metabolism provided a pathogenic fitness advantage in F. tularensis which 

varied substantially between host niches.  In a mouse model of pneumonic tularemia, one-carbon 

metabolic reactions were required for wild-type kinetics of mortality as the loss of either the 

GCS or the SHMT delayed mortality (Fig. 3 and 13).  Taking advantage of the systemic nature 

of this infection, distinct host sites including the lung, liver, spleen, and blood of infected 

animals were evaluated.  Enumeration of bacterial burden at various host sites indicated that loss 

of either 5’10-mTHF producing branch (GCS or SHMT) led to a negligible effect in the lung, a 

moderate decrease in the spleen and liver, and a pronounced reduction in the blood (Fig. 4 and 

14).  It is likely that the large reduction in bacterial burden in the blood is the result of F. 

tularensis being primarily extracellular in this compartment (Forestal et al., 2007).  Indeed, the 

nutritional content of the blood is significantly below that of the cytosol, a fact that is likely to 
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put great stress on a metabolic mutant (Bergstrom et al., 1974; Canepa et al., 2002).  While this 

ultimately may rationalize the drastic reduction in the blood, it fails to explain the difference 

between organs.  It is intriguing that the lung represents an environment where the loss of GCS 

or SHMT in F. tularensis has little consequence during infection (Fig. 3 and 14).  It is plausible 

that host proteases which are known to be activated in the lung during Francisella infection, 

provide a nutritional source to a bacterium capable of degrading host peptides (Alkhuder et al., 

2009; Malik et al., 2007).  Although it is somewhat unlikely, it is also plausible that the infected 

host cells of the lung possess a distinct nutritional content that accommodates GCS or SHMT 

deficient F. tularensis strains.  Overall, a definitive mechanism for this site specific contribution 

remains to be identified but is likely linked to the general availability of nutrients at each site.   

Since one-carbon metabolic reactions may be contributing to the synthesis of glycine, 

serine, purines, thymidine, pantothenate, and formylmethionyl-tRNA in F. tularensis, identifying 

the attenuating metabolic defects in GCS or SHMT deficient strains may prove complex and 

challenging (Guillon et al., 1992; O'Donovan and Neuhard, 1970; Ravnikar and Somerville, 

1987; Stauffer and Brenchley, 1978; Webb et al., 2004; Weissbach and Brot, 1991; Zhang et al., 

2008).  However, evaluation of the available information on F. tularensis metabolism provides 

some indication of the relative importance of these metabolites.  For instance, a defect in 

pantothenate production is not likely as a contributing factor since a Schu S4 pantothenate 

auxotroph is fully virulent during murine infection (Miller et al., 2013).  F. tularensis Schu S4 

strains that are purine auxotrophs are entirely avirulent in mouse models and so it remains 

plausible that a reduction in purine biosynthesis could be associated with the phenotypes of GCS 

or SHMT deficient strains (Pechous et al., 2008).  In regards to amino acid biosynthesis, our 

studies indicate that one-carbon metabolic reactions are essential to serine prototrophy in F. 
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tularensis (Fig. 1, 6 and 8).  To our knowledge, no direct assessment of thymidine or 

formylmethionyl-tRNA biosynthesis has been performed in Francisella.  Future studies could 

address the contribution of these compounds to F. tularensis virulence by mutagenesis.  For 

instance, genetic disruption of thymidylate synthase and methionyl-tRNA formyltransferase 

would be expected to result in thymidine auxotrophy and loss of formylation of methionyl-tRNA 

respectively (Guillon et al., 1992; O'Donovan and Neuhard, 1970).  Thus, while it is clear that 

loss of the GCS or the SHMT leads to serine auxotrophy, the effect on other metabolites remains 

unknown.  Determining the contribution of these down-stream metabolites will help clarify the 

role of one-carbon metabolism in F. tularensis pathogenesis. 

While the two branches of 5’10-mTHF production are both required for the full virulence 

of F. tularensis, the GCS provides greater pathogenic fitness to F. tularensis than SHMT.  Upon 

comparison of the mutant strains (Schu S4 gcvT v.s. Schu S4 glyA), the loss of the GCS was 

found to result in a greater delay in mortality in our murine model (Fig. 3 and 13).  Further, while 

these mutant strains were indistinguishable in the lung and spleen, Schu S4 gcvT infected 

animals had at least a half log lower bacterial burden in the liver and blood (Fig. 4 and 14).  This 

finding suggests that hepatic burden and bacteremia may be useful predictors of lethality from F. 

tularensis infection in this mouse model.  Interestingly, this inequality suggests that F. tularensis 

preferentially utilizes GCS-mediated glycine degradation as a source of 5’10-mTHF in the liver 

and blood of the host instead of SHMT-mediated serine degradation.  In the blood, this 

possibility is supported by the availability of these amino acids, as the levels of glycine are 

higher than those of serine in plasma (Sumiyoshi et al., 2004).  Thus, in the nutritionally limited 

environment of the blood, a higher relative availability of glycine over serine may favor GCS 

activity.  Furthermore, it is plausible that F. tularensis obtains glycine from the host indirectly.  
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For example, F. tularensis has been found to uptake and degrade the host molecule, glutathione 

(Alkhuder et al., 2009; Ireland et al., 2011).  While these studies focused on the acquisition of 

cysteine from glutathione degradation, it is important to recognize that degradation of 

glutathione also provides glycine to the bacterium (Alkhuder et al., 2009; Ireland et al., 2011).  

Importantly, glutathione is present in the plasma and is also abundant specifically in the liver 

(Michelet et al., 1995; Wu et al., 2004).  Thus, it would not be surprising that 5’10-mTHF 

production at these sites favors degradation of the more abundant amino acid, glycine.  It is also 

possible that the increased attenuation of Schu S4 gcvT is associated with serine utilization. 

While the Schu S4 gcvT and Schu S4 glyA strains are both serine auxotrophs, they may have 

different serine requirements (Fig. 1, 6, and 8).  For example, Schu S4 gcvT must acquire 

sufficient exogenous serine for both protein synthesis and 5’10-mTHF production through 

SHMT-mediated serine degradation.  In contrast, Schu S4 glyA only requires exogenous serine 

to synthesize proteins and must rely on GCS-mediated glycine degradation to supply 5’10-

mTHF.  The dual-use of serine for protein and 5’10-mTHF synthesis upon GCS deficiency 

would be expected to further hobble a serine auxotroph in serine-limiting environments, such as 

the host’s blood.  This hypothesis is further supported by the observation that Schu S4 gcvT is 

strongly attenuated for intracellular replication when the assay is performed in serine-limiting 

culture medium, while Schu S4 glyA exhibits no such defect (Fig. 5 and 12).  Regardless of the 

exact mechanism behind this inequality, it is clear that one-carbon metabolic products provide a 

fitness advantage in vivo and their presence is required for wild-type levels of bacterial burden.   

Future studies should examine the feasibility of creating a F. tularensis strain deficient in 

both the GCS and SHMT.  If obtainable, this double mutant would provide a useful tool to 

confirm several hypotheses.  For one, this strain would allow confirmation that the GCS and the 
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SHMT pathways are the only sources of 5’10-mTHF in F. tularensis.  If this is the case, this 

strain should be a serine auxotroph, a thymidine auxotroph, a pantothenate auxotroph, lack de 

novo purine biosynthesis, and lack formylation of methionyl-tRNA (Guillon et al., 1992; 

O'Donovan and Neuhard, 1970; Ravnikar and Somerville, 1987; Stauffer and Brenchley, 1978; 

Webb et al., 2004; Weissbach and Brot, 1991; Zhang et al., 2008).  Further, since Francisella 

strains deficient in de novo purine biosynthesis are completely attenuated, a Schu S4 strain 

lacking both these pathways would be expected to also be completely attenuated (Pechous et al., 

2008).  This warrants particular interest since neither GCS-deficient nor SHMT-deficient Schu 

S4 strains are attenuated for lethality (Fig. 3 and 13).  Ultimately, any discrepancies in these 

results may indicate unique features in F. tularensis metabolism or possible novel nutritional 

host-pathogen interactions.  Of interest, initial attempts to generate a double deletion of these 

pathways in LVS using homologous recombination have been unsuccessful.  Since this strain is 

expected to be auxotrophic for several nutrients, it is plausible that the double deletion is not 

obtainable on standard chocolate agar.  Future attempts should thus focus on generation of this 

strain on supplemented chocolate agar containing abundant purines, thymidine, serine, glycine, 

and pantothenate.  In support of this approach, a mutant deficient in both of these pathways has 

been recently reported in E. coli and was maintained with thymidine supplementation (Waller et 

al., 2010). 

The knowledge gained from studying one-carbon metabolism in F. tularensis may be of 

medical benefit.  While inhibition of either the GCS or SHMT did not ablate lethality following 

murine infection, it resulted in an over three log reduction in bacteremia (Fig. 3,4,13 and 14).  

Interestingly, human lethality from tularemia is substantially slower than mouse lethality and 

uncontrolled bacteremia has been implicated as the primary cause of death in human disease 
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(Foshay, 1937).  Mutation of either the GCS or SHMT may thus be useful in the generation of a 

safe rationally attenuated vaccine strain.  Additionally, pharmacological disruption of one-carbon 

metabolism in F. tularensis may provide a directed therapy against bacteremia and lethality in 

humans.  Therapeutics that target host one-carbon metabolism and related folate metabolism are 

currently being developed as cancer treatments and these therapies should be evaluated for 

efficacy against bacterial metabolism (Locasale, 2013).  Furthermore, the results of this work 

strongly highlight the nutritional stress on bacteria that are extracellular in the host’s blood.  To 

our knowledge, our work on one-carbon metabolism is the first to suggest that serine auxotrophy 

is associated with a dramatic limitation of bacteremia.    Since many bacteria possess not only 

one-carbon metabolism but also a glycolytic serine biosynthetic pathway serABC, a 

combinatorial approach will likely be required to achieve serine auxotrophy.  Thus, future 

studies should initially evaluate whether or not other pathogens are similarly attenuated by serine 

auxotrophy in bacteremia models.  Since bacteremia caused by antibiotic resistant strains is a 

major public health concern and novel antibiotics are desperately needed, this weakness should 

be thoroughly examined for possible exploitation (Wisplinghoff et al., 2004).  

The strengths of this study include the use of two F. tularensis subspecies, the generation 

and utilization of deletion mutants with accompanying genetic complementation, and the 

robustness of the in vivo phenotypes.  Limitations include the lack of biochemical and enzymatic 

assays for the GCS and SHMT and the use of a mouse model of pneumonic tularemia.  While 

mice are the most common animal model for tularemia, one must acknowledge that they are far 

more susceptible to F. tularensis infection than humans (Stundick et al., 2013).  In light of these 

strengths and weaknesses, the contribution of one-carbon metabolism to the pathogenesis of F. 

tularensis was assessed.  The GCS and SHMT of Francisella were functionally required for 
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serine biosynthesis in our studies.  This establishes the first time, to our knowledge, that one-

carbon metabolism has been linked to serine prototrophy in a bacterial pathogen.  Further, this 

body of work identifies the first example of the GCS providing a pathogenic fitness advantage to 

a bacterium in a mammalian infection model.  SHMT was found to provide only a modest 

advantage to F. tularensis during infection, a contribution weaker than that of the GCS.  As far 

as we are aware, the SHMT has previously always been the predominant source of bacterial 

5’10-mTHF.  Ultimately, the GCS and SHMT represent metabolic pathways that enhance the 

fitness of F. tularensis during infection.  Critically, the utilization of an F. tularensis infection 

model has revealed a site-specific role for one-carbon metabolism.  Indeed, the GCS and SHMT 

played a major role in bacteremia, contributed moderately to splenic and hepatic bacterial 

burden, and appeared largely inconsequential in the lungs.  These findings highlight the value of 

investigating the metabolic interaction between host and pathogen at nutritionally distinct host 

niches.  Future studies must be designed to continue to strengthen our understanding of bacterial 

metabolism during mammalian infection with the hopes of exploiting this critical interaction. 
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APPENDIX A 

CYTOKINE RELEASE FOLLOWING EXPOSURE TO F. TULARENSIS STRAINS 

 

Figure 17. The glycine cleavage system of F. tularensis is not required to limit TNF-alpha release in vitro. 
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Overnight TSB-C broth cultures of LVS (A-C) and Schu S4 strains (D-F) were pelleted, resuspended in PBS, and 

added to mouse macrophages (A,D,G), human macrophages (B,E), or A549 cells (C,F) at a MOI of 10.  Bacteria 

were incubated with cells for approximately 24 hours in either 20% FBS, 25 mM HEPES, 2 mM glutaMAX, 1 mM 

sodium pyruvate, and 1 X MEM non-essential amino acids (A,D), 1% AB human serum, DMEM, 2 mM glutaMAX, 

and 25 mM HEPES (B,E), Ham’s F-12 (Kaighn’s modification) with 10% FBS and 25 mM HEPES (C,F) or 

Minimal Essential Media (MEM, Gibco) with 10% FBS, 2 mM glutaMAX, and 25 mM HEPES (G).  After this 

incubation, supernatants were harvested and an ELISA was performed to determine the concentration of TNF-alpha.  

The Human TNF-alpha ELISA was performed using DuoSets (R&D Systems) while the murine TNF-alpha ELISA 

employed a matched antibody pair (eBiosciences).  The limit of detection of these assays was approximately 15 

pg/mL.  Values below this concentration were set at the limit of detection.  Data are expressed as the mean  SEM 

of at least two independent experiments.  No significant difference (p < 0.05) was detected between strains in any 

cell type or culture condition by one-way ANOVA followed by a Bonferroni multiple comparison correction. 
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APPENDIX B 

COMPLEMENT RESISTANCE OF F. TULARENSIS STRAINS 

 

Figure 18. The glycine cleavage system and the serine hydroxymethyltransferase do not contribute to 

complement resistant in F. tularensis. 

Overnight TSB-C broth cultures of LVS strains (A) were pelleted, resuspended in DMEM, and diluted to 

approximately 1 x 10
6 

bacteria/mL in either DMEM or DMEM with 20% AB human serum (Complement-Replete 

Gem Cell; Gemini Bio-Products).  Bacteria were then incubated at 37 °C with shaking (250 RPM) for approximately 

one hour.  After this period, cultures were serially diluted and plated as drips on chocolate agar.  CFU were 

enumerated by visual inspection following colony formation.  LVS wbtA::pJH1wbtA(640-1250) was generated by Dr. 

Joseph Horzempa and contains a disruption of wbtA.  This disruption was created through the genomic integration of 

a suicide vector, pJH1wbtA(640-1250), which contains internal homology to the wbtA gene of LVS (nucleotide 640 to 

1250).  As disruption of wbtA results in loss of the O-antigen capsule, the primary mechanism of complement 

resistance in F. tularensis, this strain serves as a positive control.  These data are from a single experiment. 
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APPENDIX C 

GENETIC CONFIRMATION OF MUTAGENESIS 

 

Figure 19. PCR analysis of candidate deletion mutants. 

Screening of candidate deletion mutants in LVS (A-B) and Schu S4 (C-D) was performed on isolated colonies 

following resolution of merodiploids as previously described (Horzempa et al., 2010b).  Primers (see Materials and 

Methods in Chapter 2 (gcvT) and Chapter 3 (glyA)) were designed flanking gcvT (523 bp upstream, 108 bp 

downstream) and glyA (539 bp upstream, 118 bp downstream).  For gcvT (A, C), a wild-type locus is expected to 

amplify a 1,708 bp product and a mutant locus is expected to amplify a 719 bp product.  For glyA (B, D), a wild-type 

locus is expected to amplify a 1,911 bp product and a mutant locus is expected to amplify a 741 bp product.  In some 
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instances, glyA primers yielded a non-specific band of approximately 350 bp in addition to the expected wild-type 

product size.  Of note, this banding pattern was also observed with wild-type LVS genomic DNA (data not shown).  

Determination of resolution pattern is indicated above each well (WT = wild-type,  = deletion mutant, L = 1 Kb 

Plus DNA Ladder (Invitrogen)).  Deletion mutants utilized in these studies were selected from those strains with a 

() PCR designation (indicated above each well). 
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