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ANALYSIS OF THE EFFECTS OF PRE-PROCESSING AND

DUAL-TASKING ON GAIT ACCELEROMETRY SIGNALS

Alexandre Millecamps, M.S.

University of Pittsburgh, 2013

One-third of older adults over 65 years of age fall each year. Falls are the main cause of

injury and death among this population. Understanding the causes of falling is therefore a

necessity for gerontologists. Gait accelerometry is an important approach for the quantitative

assessment of human walking. It is an inexpensive, portable and reliable method to measure

trunk accelerations. The latter may give indications on balance control even though there

is no agreed measure of it. Accelerometry requires the measured accelerations to be pre-

processed, but previous studies have not studied thoroughly its effects on signal features. We

therefore constituted a set of features in the time, frequency and time-frequency domains

and we evaluated the impact of tilt correction and wavelet denoising – two pre-processing

operations – on these features.

Signals used in this thesis were collected on 35 participants aged 65-year-old and over:

14 were healthy controls (HC), 10 had Parkinson’s disease (PD) and 11 had peripheral

neuropathy (PN). They walked on a treadmill at preferred speed. We first applied tilt

correction and wavelet denoising separately, then we applied operations one after another.

Denoising had nearly no effect on features compared to the raw accelerations. Tilt correction

led to better discrimination between groups. Joint pre-processing operations showed trends

that were similar to the tilt correction alone.

Older adults also face increasing difficulties to perform an activity during walking and

this threatens their stability. Thus, during another trial, the same groups of subjects were

asked to press a button at hearing a tone. We observed the impact of dual-tasking on the
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features. Several features such as Lempel-Ziv complexity, bandwidth of accelerations and

harmonic ratios remained unaffected by dual-task walking while the remaining features were

affected. We also examined the impact of dual-tasking on each group. Task differences

were almost the same for every group and revealed lower harmonic ratios during dual-task

walking.

Keywords: Gait accelerometry, pre-processing effects, dual-task walking, signal features.
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1.0 INTRODUCTION

1.1 HISTORY OF GAIT ANALYSIS: A BRIEF SUMMARY

The desire to analyze movement among living creatures dates back to Aristotle (384-322

BCE) who was already emitting hypotheses about their movements, but at that time, sci-

entific reasoning was not accompanied with experimental proofs [1]. Much later, during the

Renaissance (17th century), anatomists such as Giovanni Borelli (1608-1679), a student of

Galileo Galilei (1564-1642), applied the latter’s new scientific approach. Borelli was the first

to perform experiments in gait analysis: he studied the muscle and tendon’s biomechanics,

but he made mistakes in the calculation of forces and he was unfortunately unable to use

the mechanics theory of Newton (1642-1727) before he died [1]. In the 18th and 19th cen-

tury, new ideas from several French physiologists were developed but were not followed by

experiments. On the contrary, the German brothers Willhelm Eduard Weber (1804-1891)

and Eduard Friedrich Weber (1806-1871) sustained their work with many experiments and

published the book Mechanik der Gehwerkzeuge (Mechanics of the Human Walking Appa-

ratus) in 1836 [1]. The development of photography began in the 20th century and was

used by Etienne-Jules Marey (1830-1904) in France and Edward Muybridge (1830-1904) in

the USA to perform gait analysis experiments on humans as well as animals [1, 2, 3, 4].

Nowadays the use of technology, such as video camera systems, to perform motion capture

and accelerometry, coupled with computers to accelerate data processing, is common in gait

analysis [2, 5, 6].
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1.2 HUMAN LOCOMOTION

Humans start to walk when their center of mass falls outside the base of support [7] (Figure

1). One leg is moved after another to make a certain number of steps. Therefore the action

of walking is cyclic, and its description can be done by focusing on one stride only. A stride

is equivalent to two steps. For instance, the beginning of a stride can be taken at heel strike

of one foot and ends at heel strike of the same foot. Since a stride corresponds to an entire

walk cycle it is also called a gait cycle.

Figure 1: Base of support during various activities. Courtesy of [8].

As shown on Figure 2 the gait cycle can be described as follows [9]:

1. The cycle begins with heel contact of the right foot. The left foot is still in contact with

the ground This is a double support phase and the beginning of the right stance phase.

At this point, one relies on one leg only to maintain equilibrium.

2



2. The left foot leaves the ground. This is the end of the double support phase and the

beginning of the left swing phase.

3. The left heel reaches the floor. This is the end of the left swing phase and the beginning

of the left stance phase. The right foot is still on the ground, so it is also the beginning

of a double support phase.

4. The right foot leaves the ground. This is the beginning of the right swing phase and the

end of double support.

5. The right foot hits the ground. This is the beginning of a new gait cycle.

About 60% of the gait cycle corresponds to the stance phase while the remaining of the

cycle corresponds to the swing phase. Also, the double support phases are characteristic of

walking and do not appear during running [10].

Figure 2: Gait cycle. Courtesy of http://atec.utdallas.edu/midori/Handouts/

walkingGraphs.htm

3
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This cycle is the result of complex interactions between three main sensory systems

[7, 11, 12, 13]:

• The vision system: involved in motion planning and obstacle avoidance

• The vestibular system: senses linear and angular accelerations

• The somatosensory system: senses the position and velocity of all limbs, senses contact

with the environment and senses orientation of gravity.

Impairment of one of these systems can be difficult to detect since one can compensate for

a disability with another system. For instance, subjects with vestibular disorders compensate

for them using their vision system: once they close their eyes, these subjects become unstable

[7, 13].

1.3 MOTIVATIONS BEHIND GAIT ANALYSIS

Analyzing gait has clinical applications as a tool that helps physicians quantify, record and

observe the evolution of gait of their patients and make decisions if a surgery is planned [2,

14, 5, 15, 16]. Gait impairments have various causes. They are often the result of neurological

disorders due to age [17, 18] or diseases which include Parkinson’s disease [19, 20, 21] and

peripheral neuropathy [22, 23]. For physicians, an important fact to consider is that among

the elderly population, more than one third of them fall each year and it is the main cause

of morbidity and death among this population [24, 25, 26]. Understanding the dynamics of

movement so as to predict falls and target treatments towards potential fallers is therefore

of main importance [27, 28].

1.4 RESEARCH OBJECTIVES

The use of accelerometry was introduced as an inexpensive method to measure trunk ac-

celerations with the advantage of providing the possibility to do it outside the laboratory
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environment [29]. The purpose of this technique is to measure accelerations of the center

of mass of a subject as it is known to be a indicator of motor control [7]. Many ways to

quantify gait exist, but unfortunately no agreed measure of stability has been found.

Recently, studies have begun evaluating how dual-tasking impacts elderly people’s bal-

ance control [30, 31]. Dual-task walking designates the performance of another activity

during walking and it is performed on a daily basis (e.g. listening to music, looking at a

phone or watching traffic during walking). In order to walk properly, elderly people require

higher cognitive functions or more attention which may conflict with other tasks performed

at the same time of walking and threaten their balance. Evaluating dual-tasking is therefore

a necessity to understand the interaction between the various systems involved in balance

control [30].

In our studies, we analyzed stride intervals and accelerations of the trunk from 35 subjects

aged 65-year-old and over. Although several diseases affect gait we chose to focus particularly

on Parkinson’s disease and peripheral neuropathy which are at the origin of neurological

disorders and are known to have an impact on gait. 14 subjects were healthy controls while

10 were suffering from Parkinson’s disease and 11 had peripheral neuropathy.

In gait analysis, many characteristics can be used to characterize somebody’s gait. Thus,

we processed the acceleration signals and we constituted a set of features in the time domain,

frequency domain and time-frequency domain with the purpose to answer several questions.

We wanted first to understand what was the impact on pathologies on the features. Then

we analyzed what were the effects of pre-processing on the features, since tilt correction and

wavelet denoising are two operations that may be applied to the acceleration signals. Also,

as dual-task walking happens frequently in every day life, we analyzed its effects on extracted

features. Our results and future work are detailed in this thesis.
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2.0 BACKGROUND

2.1 ASSESSING HUMAN GAIT

Gait analysis is useful when one wants to quantitatively measure the degree of stability of a

subject. In order to do so, experiments are generally led during standing and walking.

2.1.1 Postural analysis

2.1.1.1 Using force platforms Many studies have focused on postural analysis to assess

balance control (e.g. [7, 32, 33, 34, 13, 35, 23]). In postural analysis, subjects are asked to

stand on a force platform in order to measure the displacement of their center of pressure

(COP). The COP is the point where the force that opposes gravity applies (Figure 3a).

Thus, there is a COP under each foot and the position of the net COP is commonly used

[7]. During standing, the net COP lies somewhere between the two legs depending on how

much of the body weight each leg supports.

The idea behind the experiment is to use the COP as a indicator of equilibrium. Thus,

by measuring the displacement of the COP, one could measure the extent of the sway of a

subject [29]. Even if velocity, path length and frequency are features commonly used, no

agreed characteristics of the COP displacement have been found [33].

Moreover it has been noted that there was a certain amount of confusion between the

COP and the center of mass (COM) which is the point where the gravity force applies

when the centers of mass of every limbs has been averaged. The COM should be used as

an indicator of balance control [7]. It can be noted that the center of gravity (COG) is the

projection of the COM on the ground. Using an inverted pendulum model of the human
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body, the acceleration of the COM in the anterior-posterior and medio-lateral directions has

been shown to be proportional to the difference between the COP and the COM, and this

relationship can be used to estimate the position of the COM [36, 7]. Figure 3b shows that

the COP moves around the COM with a higher amplitude. Therefore the position of the

COM was also estimated using a low-pass filter on the COP data [37].

(a) During quiet standing
(b) Position of the COM and COP as a function
of time

Figure 3: Positions of the COM and COP. Courtesy of [7]

Despite the fact that most falls occur during a form of locomotion [38, 39, 40], risks

of falling have been evaluated during standing [17, 18, 41], which suggests that the mecha-

nisms of stability involved during standing and locomotion are related. Using a state-space

approach, evidence that it was not the case has been given [42]. Also, walking is a more

challenging task. During standing, the central nervous system (CNS), which contains the

brain and the spinal cord, has to maintain the COM in the base of support while during

walking the COM lies outside the base of support and except during the phases of double

support, balance is ensured by one limb only [7]. Thus, there is also a necessity to analyze

gait during walking [43].
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2.1.1.2 Using accelerometry The estimation of the COM’s position from COP data

was not precise enough [37] and other methods were needed to provide a better estimation.

The position of the COM varies according to the subject, but its approximate position is

known to be in the plane containing the L3 vertebra [44]. Therefore, placing an accelerom-

eter in the lumbar region, at the L3 segment level (Figure 4), allows one to have a better

estimation of the movements of the COM [33].

Figure 4: Position of the accelerometer. Adapted from http://en.wikipedia.org/wiki/

Human_vertebral_column

A 3-axis accelerometer measures accelerations in three directions. Engineers generally

denote them as
−→
X ,
−→
Y and

−→
Z . However in medical terms (Figure 5),

−→
X is the medio-lateral

direction (ML),
−→
Y is the vertical direction (V) and

−→
Z the anterior-posterior direction (AP).

8

http://en.wikipedia.org/wiki/Human_vertebral_column
http://en.wikipedia.org/wiki/Human_vertebral_column


Figure 5: Anatomical planes and anatomical directions. Adapted from http://commons.

wikimedia.org/wiki/File:Human_anatomy_planes.svg

The advantages of accelerometry are that it is precise, reliable and inexpensive [45].

Because the device is portable, experiments can also be lead in real-environment conditions

so as to challenge gait in ways that would not be possible in a gait laboratory [29].

2.1.2 Dynamic gait analysis

When one observes the gait cycle, several ways to characterize gait easily come to mind. For

instance, the step length and the stride interval are often used in studies. The step length is

the distance between the heel of the leading leg to the heel of the trailing one while the stride

interval is the time needed to perform a stride [9]. Identifying strides during an experiment

is therefore a concern in dynamic gait analysis. Foot switches can be used to do so [46, 6, 28].

These are pressure sensors attached to the insoles in the shoes of a subject. However in our

studies, they proved to be fragile thus motion capture was used to identify strides.

9
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2.1.2.1 Using motion capture Motion capture systems [47, 48, 49, 50] are based on

infrared cameras that track limbs’ positions using markers placed on a subject near bone

landmarks (Figure 6). Markers’ positions are further processed to obtain movement infor-

mation such as the angle between two limbs or the occurrence of strides using an algorithm

[51]. Motion capture avoids wearing uncomfortable measurement devices. Markers can be

placed on the trunk in order to measure its accelerations, but calculating accelerations of

markers introduces errors since the markers’ position data have to be derived twice. The

placement of markers is not precise, either, since there may be an offset between the marker

position and the bone landmark. It is, for example, impossible to point a marker exactly at

the joint of two bones.

Figure 6: Positions of markers used in our studies
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2.1.2.2 Using accelerometry The method of accelerometry has been described in the

previous section. Accelerometry can also be used to measure accelerations of the trunk

during walking. Signals show periodic patterns which are related to the phases of the walk

cycle [44, 43, 45].

The accelerations of the trunk in the vertical direction are biphasic i.e. they are periodic

with two peaks per period. Each peak reaching 1.5 g correspond to a heel strike. The

acceleration decreases to about 0.8 g after heel strike before it increases again in preparation

of another heel strike. We notice here that the signal mean is 1 because the accelerometer also

measures the gravity. Thus, mathematical procedures are necessary to correct measurements.

The accelerations in the AP direction are also biphasic and their amplitudes are smaller

than those in the vertical direction. Before heel contact, the trunk accelerates backward to

attain an acceleration of -0.5 g. Then the body accelerates forward reaching a peak of 0 g.

Accelerations decrease again before the next heel strike.

Lastly, accelerations in the ML direction show a monophasic pattern. Peak accelera-

tions can be seen after heel strike. However, accelerations in this anatomical direction have

substantial variability between each period.

11



Figure 7: Raw accelerations in the ML, V and AP directions of a healthy subject. Vertical

bars indicate heel strikes of the right foot

2.1.3 Processing of acceleration signals

2.1.3.1 Dynamic tilt correction In previous publications concerning gait analysis while

walking [52, 53], it has been argued that a correction of the acceleration measurement is

necessary due to the spine lordosis in the L3 region, the imprecise positioning of the ac-

celerometer, and the effect of the gravity component over the measured accelerations. We

performed tilt correction using the method developed by Moe-Nilssen [52]. Coordinates of

the accelerometer were rotated to earth-vertical (Figure 8).

The accelerometer is situated near the L3 lumbar vertebra which minimizes the trans-

verse plane offset rotation of the device. Therefore we assume that the AP acceleration is

situated in the sagittal plane. θAP and θML are the angles between the transverse plane and

the measured accelerations. aH−AP and aH−ML are projections of the measured accelera-
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tions in the new coordinate system. aV ′ is the temporary corrected vertical acceleration i.e

the acceleration after correcting the measured one in the AP plane and aV is the vertical

acceleration in the new coordinate system. Angles are positive above the horizontal axis and

positive axes are horizontal to the right and vertical up.

The following equations operate the coordinate transform:

In the sagittal plane

aH−AP = aAP cos(θAP )− av sin(θAP ) (2.1)

aV ′ = aAP sin(θAP ) + av cos(θAP ) (2.2)

In the coronal plane

aH−ML = aML cos(θML)− aV ′ sin(θML) (2.3)

aV = aML sin(θML) + aV ′ cos(θML)− g (2.4)

where g is the gravity vector. Since the acceleration unit is g, we have g = 1.

Moe-Nilssen [52] showed that the quantities sin(θAP ) and sin(θML) can be approximated

by the mean of the accelerations in the AP and ML directions, respectively, for a large

Sagittal plane (AP)

aAP

aH-AP

aV'av

θAP Horizontal 
plane

Coronal plane (ML)

aML

aH-ML

aV

θML Horizontal 
plane

g

aV'

Figure 8: Acceleration vectors and their projection in the earth-vertical coordinate system:

on the left accelerations in the sagittal plane; on the right accelerations in the coronal

plane. aAP , aML and av denote the measured accelerations in the AP, ML and V directions

respectively.
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number of samples. The ith sample in the jth anatomical direction ai,j (with j = {AP, ML})

can indeed be decomposed in two terms: one is the measured change of velocity ac(i,j), the

other is the static gravity component ag(i,j):

a(i,j) = ac(i,j) + ag(i,j) (2.5)

The expected value of the measured accelerations can be expressed as follows:

E[a(i,j)] = lim
n→∞

1

n

n∑
i=1

a(i,j) ≈ aj (2.6)

Replacing the acceleration by the expression of a velocity change leads to the following

expression:

E[ac(i,j)] = lim
n→∞

1

n

n∑
i=1

ac(i,j) = lim
n→∞

1

n+ 1

n+1∑
i=1

v(i,j) − v(i−1,j)

∆t
= lim

n→∞

v(n+1,j) − v(1,j)

(n+ 1)∆t
= 0

(2.7)

where ∆t denotes the sampling time. Assuming θj is constant we have:

E[ag(i,j)] = lim
n→∞

1

n

n∑
i=1

ag(i,j) = ag(i,j) (2.8)

since the gravity vector is constant. Recalling equation 2.5, we have

E[a(i,j)] = E[ac(i,j)] + E[ag(i,j)] = E[ag(i,j)] (2.9)

Hence

aj = ag(i,j) (2.10)

The gravity vector can be decomposed according to the measured accelerations:

g = − sin(θAP )aAP + cos(θAP )av (2.11)

Finally, the approximation of the angles for a large number of samples is given by:

aj = sin(θj) (2.12)

Once these values are known, the estimated accelerations can be calculated. Figure 9 shows

the results of tilt correction on acceleration signals measured on a healthy subject.
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Figure 9: Comparison of signals before and after tilt correction for a HC control

2.1.3.2 Wavelet denoising Gait accelerometry signals can be corrupted by noise gen-

erated by the measurement device. A 10-level discrete wavelet transform using Meyer’s

discrete wavelet (Figure 10) and soft thresholding [54] can be applied to the data to denoise

the signals. The wavelet analysis is a signal processing tool used to complement the Fourier

analysis for understanding the non-stationary nature of many signals, especially biomedical

signals (e.g., [55], [56], [57], [58], [59]).

Indeed the Fourier transform decomposes a signal in terms of complex exponential func-

tions eiωt using the following formula:

f̂(ω) =

∫ +∞

−∞
f(t)e−iωtdt (2.13)

where f is a signal and f̂ its Fourier transform.
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Figure 10: Meyer’s mother wavelet

In wavelet theory, the complex exponential function is replaced by a function ψ(t) called

the mother wavelet having defined characteristics [60]:∫ +∞

−∞
|ψ(t)|dt = 0 (2.14)∫ +∞

−∞
|ψ(t)|2dt <∞ (2.15)

The first equation sets a zero-mean condition on the mother wavelet while the second one

indicates it has finite energy. The mother wavelet is scaled and shifted, giving new wavelets

which will be used to correlate the signal to analyze [60, 61]:

Cu,s =

∫ +∞

−∞
f(t)ψ∗u,s(t)dt (2.16)

where

ψu,s(t) =
1√
s
ψ(
t− u
s

) (2.17)

The coefficients Cu,s are the results of a continuous wavelet transform (CWT). However,

the CWT implies an infinite number of dilatation and translation operations, which makes
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it almost impractical in reality. Hence, there was a need for a method that would use a

reduced number of dilatation and translation operations, while being able to obtain a good

reconstruction of the original signal. In 1989, Mallat proposed an algorithm that implements

a fast discrete wavelet transform by using a combination of high- and low-pass filters [62].

This technique is also known as sub-band coding in the signal processing community. Figure

11 describes how the algorithm was designed.

s

High-pass 2

Low-pass 2

D1

A1

High-pass 2

Low-pass 2 A2

D2

...

...

Figure 11: Fast wavelet transform algorithm: the signal s goes through a high-pass and a

low-pass filter. The resulting signals are downsampled (one sample out of 2 is kept) so as to

avoid data redundancy. The approximation signal A1 and the detail signal D1 are obtained.

The n-level decomposition of the signal is computed by performing the same operation on

the approximation signals obtained successively. The decomposition of the signal is given by

the sequence [AnDnDn−1 . . . D1].

Mallat’s algorithm provides a signal representation in terms of the decomposition coeffi-

cients. These coefficients can be then manipulated to process the signal. Wavelet denoising

is a signal operation consisting of applying a threshold on each signal coefficient [54], [63].

The threshold T is based on the 1st-level detail signal d1 and was calculated as follows [57]:

T =
med(|d1|)

√
2 log n

0.6745

where med is the median function and n is the length of the signal. The idea is that

the coefficients associated with noise are below the threshold value, while the coefficients

associated with the signal are above the threshold value. Thus, wavelet denoising is a more

powerful tool compared to the classical low-pass filtering (e.g. using a Butterworth filter) as

it enables the removal of noise from the whole frequency spectrum.
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2.2 KNOWN GAIT CHARACTERISTICS OF CLINICAL POPULATIONS

Age and diseases have an impact on gait. Many studies have been carried out to determine

gait characteristics of clinical populations.

2.2.1 Individuals with Parkinson’s disease

Individuals with Parkinson’s disease (PD) are known to walk with a stooped posture, make

small shuffling steps and have difficulties initiating movements [21]. Because of this, it is

expected that individuals with PD will have a less smooth walk than do controls [64]. Also,

falls occur more frequently for PD subjects compared to controls: 1-year follow-up studies

have shown that 70% of the subjects reported a fall during the study [19]. Postural sway

in lateral directions is increased compared to age-matched controls [35] and fallers have

increased stride-time variability [21].

2.2.2 Individuals with peripheral neuropathy

Peripheral neuropathy (PN) is a disease that affects nerves of the peripheral nervous sys-

tem (PNS). The PNS is responsible for transmitting sensorimotor information to the brain.

Symptoms of peripheral neuropathy include numbness or loss of sensitivity in the extremi-

ties. Individuals with PN have a higher risk of injuries during walking or standing [22]. Their

gait is characterized by a lower walk speed, shorter steps and increased time spent in double

support than their age-matched controls [65, 66]. PNs have an increased postural sway [23],

their gait variability is increased, the smoothness of their walk is lower than controls and

these effects increase in challenging environments [66].
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3.0 METHODOLOGY

3.1 DATA ACQUISITION

A total of 35 patients aged 65 years old and older were enrolled in the experiment: 14 were

healthy controls (HC), 10 had Parkinson’s disease (PD) and 11 had peripheral neuropathy

(PN). All of them could walk without human or mechanical assistance for at least 3 min-

utes. Details of participants have been reported in a previous study [67]. All subjects were

assessed using a structured history and physical exam to ensure they met the general in-

clusion/exclusion criteria for the study. Potential subjects were excluded if they had any

undiagnosed neurological (e.g. abnormal neurological examination such as spasticity, or se-

vere paresis), musculoskeletal or cardiopulmonary conditions, or inadequate hearing or vision

that would interfere with walking. Additionally, eligibility for HCs required no diagnosed

neurological, vestibular or sensory disorders plus a biothesiometer reading at the malleolus

< 20 v bilaterally. PDs had an established neurologist diagnosis of Parkinson’s disease for at

least one year according to the Hoehn and Yahr scale rating of 2 or 3, and a bioesthesiome-

ter measure reading at the malleolus < 20 v bilaterally. Subjects were on a stable dosing

schedule of Parkinson’s medications for the prior three months. Subjects with PN had bioth-

esiometer readings of ≥ 40 v bilateraly, indicating lose of vibratory sense. Subjects meeting

the inclusion criteria completed the baseline assessments that included an overground walk

used to determine self-selected treadmill speed.
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Subjects meeting the inclusion/exclusion criteria walked on a computer-controlled tread-

mill (1.2 m wide by 2 m long). Safety was ensured by a harness system. An accelerometer

was attached firmly to each patient over the L3 segment of the lumbar spine using a belt

and a 4-inch wide elastic bandage wrapped over the accelerometer and the trunk (Figure

12). Linear accelerations were measured along the medial-lateral (ML), vertical (V) and

anterior-posterior (AP) directions and sampled at 100 Hz.

Figure 12: Experiement set up: a security harness, a 3-axis accelerometer and markers are

placed on subjects

3.1.1 Tasks performed during the first study

After being accustomed to the instrumentation as well as walking on the treadmill, the

subjects performed a 3-minute walk at a desired (usual) pace.

3.1.2 Tasks performed during the second study

After being accustomed to the instrumentation as well as walking on the treadmill, the

subjects performed two walking trials. The first one, referred to as the normal task, consisted
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of a 3-minute walk at a desired pace. The second trial, referred to as the dual task (DT),

consisted of another 3-minute walk coupled with an auditory task. During this trial the

subjects had to press a button in response to hearing a tone. The response time was measured

before the trial while the patients remained seated. During the first 60 seconds of the second

trial, the subjects walked at a desired pace (DT 1) and during the last two minutes they

additionally performed the auditory task (DT 2).

3.2 DATA PRE-PROCESSING

3.2.1 Stride information retrieval

The algorithm developed by [51] was used to extract stride intervals from motion capture

data.

3.2.2 Pre-processing in the first study

In the first study, we wanted to study the impact of pre-processing on the features we intended

to extract. Therefore we applied tilt correction, wavelet denoising and a combination of these

pre-processing operations, i.e. tilt correction then wavelet denoising, and wavelet denoising

then tilt correction.
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3.2.3 Pre-processing in the second study

In the second study, we applied tilt correction and wavelet denoising.

3.3 FEATURE EXTRACTION

In this section we describe the features we extracted from our signals.

3.3.1 Features common to both studies

3.3.1.1 Statistical features A general form of signal can be defined asX = {x1, x2, . . . , xn}.

Then, the following parameters can be extracted [68]:

• The standard deviation which characterizes the variability of signals was defined as fol-

lows:

σX =

√√√√ 1

n− 1

n∑
i=1

(xi − µX)2 (3.1)

with µX being the mean of the signal.

• The skewness which characterizes the asymmetry of signals was defined as follows:

ξX =
1
n

∑n
i=1(xi − µX)3

( 1
n

∑n
i=1(xi − µX)2)

3
2

(3.2)

• The kurtosis which characterizes the behavior of extreme data points was defined as

follows:

γX =
1
n

∑n
i=1(xi − µX)4

( 1
n

∑n
i=1(xi − µX)2)2

(3.3)

• The cross-correlation coefficient at the zeroth lag defined as follows:

ηXY =

∑n
i=1(xi − µX)(yi − µY )√∑n

i=1(xi − µX)2
√∑n

i=1(yi − µY )2
(3.4)

with µX and µY being the mean of signals X and Y.
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3.3.1.2 Frequency features The following characteristics were identified in the fre-

quency domain [69]:

• The peak frequency defined by:

fp = arg max
f∈[0,fmax]

|FX(f)|2 (3.5)

where FX(f) is the Fourier transform of the signal and fmax is the sampling frequency

(100 Hz in this experiment)

• The spectral centroid defined by:

fc =

∫ fmax

0
f |FX(f)|2df∫ fmax

0
|FX(f)|2df

(3.6)

• The bandwidth defined by:

BW =

√√√√∫ fmax

0
(f − fc)|FX(f)|2df∫ fmax

0
|FX(f)|2df

(3.7)

• Calculating harmonic ratios is a way to assess smoothness of walking [70]. More recently,

it has been suggested that harmonic ratios actually measure how symmetric a walk is

[71]. Therefore we computed the harmonic ratios of low-pass filtered acceleration signals

in every anatomical direction for each stride. The cutoff frequency of the filter was set

to 30 Hz. First the discrete Fourier transform was calculated:

astride =
N−1∑
n=0

Cn sin(nω0t+ φn) (3.8)

where Cn is the harmonic coefficient, ω0 is the stride frequency and φn is the phase. We

then summed the first 20 harmonic coefficients to compute the harmonic ratios. The

latter are defined as follows:

HRAP and V =

〈∑20
n=2,4,6,...Cn∑20
n=1,3,5,...Cn

〉
(3.9)

HRML =

〈∑20
n=1,3,5,...Cn∑20
n=2,4,6,...Cn

〉
(3.10)

where 〈
∑
Cn/

∑
Cn〉 is the average ratio over all strides.
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3.3.1.3 Time-frequency features We also took into account features in the time-

frequency domain. A 10-level discrete wavelet transform was applied using discrete Meyer’s

wavelet [72]. The decomposition can be written as WX = [a10 d10 d9 . . . d1] where a10 is the

approximation signal and dk is the kth-level detail signal.

• The relative energy in each wavelet decomposition level was computed as follows:

The expression of the approximation signal energy is

Ea10 = ‖a10‖2 (3.11)

‖ • ‖ being the Euclidean norm.

The kth-level detail signal energy is expressed as follows:

Edk = ‖dk‖2 (3.12)

The total energy in the signal is:

ET = Ea10 +
10∑
k=1

Edk (3.13)

Finally the relative energy in each decomposition level is:

Φa =
Ea10

ET

× 100% (3.14)

Φd =
Edk

ET

× 100% (3.15)

• Using the previously computed wavelet energy features, the wavelet entropy was calcu-

lated as follows:

ΘX = −Φa10 log2 Φa10 −
10∑
k=1

Φdk log2 Φdk (3.16)
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3.3.2 Additional features extracted in the second study

3.3.2.1 Stride-interval-based features The maximum Lyapunov exponent λL was cal-

culated using the signal values x(n) and forming the state-space representations [73]:

Z(n) = [x(n), x(n+ T ), . . . , x(n+ (dE − 1)T )] (3.17)

where Z(n) is the dE-dimensional state vector, T is the time delay, and dE is the embedding

dimension. The time delay was estimated using the autocorrealtion function [74] and the

embedding dimension was estimated using the method of false neighbors [75]. dE was set

to 5 as it was done in previous publications [76]. We estimated the maximum finite-time

Lyapunov exponents using the formula

ln(dj(i)) ≈ λL + ln(Dj) (3.18)

where dj(i) was the Euclidean distance between the jth pair of nearest neighbors after i

discrete time steps and D is the initial average separation between neighboring trajectories

[77]. The λL were estimated from the slopes of linear fits to curves defined by:

y(i) =
1

∆t
〈ln(dj(i))〉 (3.19)

where 〈ln(dj(i))〉 represents the average over all values of j.
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3.3.2.2 Information-theoretic features

• The Lempel-Ziv complexity (LZC) determines the predictability of a signal [78, 79, 80].

Accelerations signals were quantized then decomposed into k blocks. The normalized

LZC was computed using the following expression [80]:

LZC =
k log100 n

n
(3.20)

Since the signal was quantized using 100 symbols we used a logarithmic base of 100.

Large values of LZC indicate complex data.

• The entropy rate (ρ) measures the extent of regularity in a signal [81, 82]. The measure

is particularly useful when a relationship among consecutive data points is anticipated.

The first step is to to normalize X to zero mean and unit variance, by subtracting µX

and dividing by σX . The normalized X was then quantized into 10 equally spaced levels

represented by integers from 0 to 9, ranging from the minimum to maximum value. Using

the quantized signal, X̂ = {x̂1, x̂2, . . . , x̂n}, sequences of consecutive points in X̂ of length

L, 10 ≤ L ≤ 30, were coded as a series of integers, ΩL = {w1, w2, . . . , wn−L+1}, according

to the following:

wi = 10L−1x̂i+L−1 + 10L−2x̂i+L−2 + · · ·+ 100x̂i (3.21)

This implies that wi ranged from 0 to 10L − 1 and base 10 was used because there were

10 quantization levels. The Shannon entropy of L was defined as follows:

SE(L) =
10L−1∑
j=0

pΩL
(j) ln pΩL

(j) (3.22)

where pΩL(j) represents the probability of the value j in ΩL, approximated by the corre-

sponding sample frequency. The normalized entropy rate was then computed as follows:

NER(L) =
SE(L)− SE(L− 1) + SE(1)perc(L)

SE(1)
(3.23)
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where perc(L) is the percentage of the coded integers in ΩL that occurred only once.

Finally, an index of regularity, ρ, was calculated as the entropy rate feature in this study:

ρ = 1−min(NER(L)) (3.24)

which ranged from 0 (maximum randomness) to 1 (maximum regularity).

• Extending the entropy rate measure, the cross-entropy rate (ΛX|Y ) quantifies the entropy

rate between two stochastic processes [82, 83]. This measure describes the predictability

of a data point in one signal given a sequence of current and past data points in the

other signal. First, both X and Y were normalized, quantized, and coded using the same

methodology as for the entropy rate feature, yielding ΩX
L and ΩY

L , respectively, with

10 ≤ L ≤ 30. In addition, Ω
X|Y
L L was constructed as follows:

w
X|Y
i = 10L−1x̂i+L−1 + 10L−2ŷi+L−2 + · · ·+ 100ŷi (3.25)

where x̂i and ŷi are the quantized samples of X and Y. Then, with SEX(L), SEY (L),

and SEX/Y (L) representing the Shannon entropies of ΩX
L , ΩY

L , and Ω
X|Y
L , respectively,

the normalized cross-entropy of X given Y was computed as follows:

NCERX|Y (L) =
SEX|Y (L)− SEY (L− 1) + SEX(1)percX|Y (L)

SEX(1)
(3.26)

where percX|Y (L) is the percentage of the elements in Ω
X|Y
L that occurred only once.

Next, the uncoupling function was defined as follows:

UFX,Y (L) = min(NCERX|Y (L), NCERY |X(L)) (3.27)

Finally, the following index of synchronization was computed and utilized as the cross-

entropy rate feature in this study:

ΛX|Y = 1−min(UFX,Y (L)) (3.28)

which ranged from 0 (X and Y are completely uncoupled) to 1 (perfect synchronization).
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3.4 SUMMARY

Table 1 summarizes the content of our studies.

Table 1: Summary of tasks and signal processing performed in our studies

Study 1 Study 2

Goal What are the effects of pre-processing on features? What are the effects of dual-tasking?

Tasks

Walk at self-selected speed during 3 min

Walk at self-selected speed during 3 min (Normal)

Walk at self-selected speed during 1 min (DT 1)

Walk + push button at hearing a tone during 2 min (DT 2)

Pre-processing None

Tilt correction + Wavelet denoising

Tilt correction

Wavelet denoising

Tilt correction + Wavelet denoising

Wavelet denoising + Tilt correction

Extracted features Stride-interval-based features

None

Maximum Lyapunov exponent λL

Mean Stride Interval MSI

Coefficient of variation CV

Statistical features

Standard deviation σ

Skewness ξ

Kurtosis γ

Cross-correlation η

Information-theoretic features

None

Lempel-Ziv Complexity LZC

Entropy rate ρ

Index of synchronization Λ

Frequency features

Peak frequency fp

Spectral centroid fc

Bandwidth BW

Harmonic ratio HR

Time-frequency features

Relative energy φa,φd

Wavelet entropy Θ
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4.0 RESULTS AND DISCUSSION

4.1 RESULTS FROM THE FIRST STUDY

The results of our analysis are summarized hereafter. Features are analyzed for each pre-

proccesing operation and are compared to the original data.

4.1.1 Time and stride interval related features

Tables 2 and 3 summarize the differences found for the time domain features.

4.1.1.1 Original data We did not observe any differences between groups in any direc-

tions when considering the variability of signals σ (p > 0.10). When considering the skewness

of signals, we found no statistical differences between groups along every direction (p > 0.09).

Kurtosis values did not differ significantly for any group (p > 0.29) either. Finally, we found

that ηML,V values were different between PD and PN subjects (p < 0.02). HC subjects also

had greater harmonic ratios than PD subjects along every anatomical direction (p < 0.03).
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Table 2: Group differences for features in the time domain. Legend - N.S: Not Significant;

×: no difference compared to raw data; 4: HC vs. PN; ♦: HC vs. PD; �: PD vs. PN; +/-:

feature added/removed compared to original data.

Original Corrected Denoised Corrected + denoised Denoised + corrected
Standard deviation

σML N.S. × × × ×
σV N.S. × × × ×
σAP N.S. × +HC > PD × ×

Skewness
ξML N.S. +PN > HC × +PN > HC +PN > HC
ξV N.S. × × × ×
ξAP N.S. × × +HC > PD ×

Kurtosis
γML N.S. × × × ×
γV N.S. × × × ×
γAP N.S. × × × ×

Cross-correlation
ηML,V PD > PN −� × −� −�
ηML,AP N.S. × × × ×
ηV,AP N.S. × × × ×

Harmonic ratio
HRML HC > PD × −♦ −♦ −♦
HRV HC > PD +PN > PD × +PN > PD +PN > PD
HRAP HC > PD +HC > PN × +HC > PN +HC > PN

Variability of signals statistically differed between anatomical directions for each group

(p < 0.01). When we examined skewness of signals we found differences between every

anatomical direction for each group (p� 0.01) except between ξML and ξAP for PD subjects

(p > 0.26). For HC patients, the behavior of extreme points was different between the ML

and V directions (p < 0.02). Also, differences between ηML,V and ηV,AP as well as between

ηML,AP and ηV,AP were identified for HC and PN subjects (p� 0.01). Each group had higher

harmonic ratios in the V direction than in the ML direction (p� 0.01). Moreover, HCs and

PNs had greater ratios in the AP direction than in the ML direction (p� 0.01). Finally, PN

patients had a greater ratio in the V direction rather than in the AP direction (p < 0.02).
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4.1.1.2 Corrected data As shown in Figure 9, the correction shifted the signals to zero

mean. The variability and kurtosis of signals followed the same trend as the uncorrected

signals. Few changes between original and corrected data were noticed when analyzing

asymmetry of signals (ξ feature). A difference between HC and PN participants was present

in the corrected data along the ML axis (p < 0.01). Lastly, for ηML,V we did not find

differences between PD and PN (p > 0.92). We also found that HCs had higher harmonic

ratios than PNs in the AP direction (p < 0.04). Moreover the ratio along the V-axis was

found higher for PNs than for PDs (p < 0.04).

The standard deviations of signals in the ML and AP directions were not different for

PN and PD groups after correction (p > 0.14). We examined skewness of signals but did

not find differences between the ML and AP directions for PN subjects (p > 0.73) anymore.

The comparison of ηML,V and ηML,AP lead to no significant difference (p > 0.68). Lastly, the

statistical difference for harmonic ratios between ML and AP disappeared for PN participants

(p > 0.15). A new significant difference for HC controls and PD subjects was noticed: the

ratio in the vertical direction was higher than in the anterior-posterior direction (p < 0.01).

4.1.1.3 Denoised data When considering the statistical features, we noticed a difference

in standard deviations between HC and PD participants along the AP direction (p < 0.05)

compared to the raw data. Skewness, kurtosis and cross-correlations followed the same trend

as for the raw signals. For harmonic ratios, we found no difference between HC subjects and

PD ones (p > 0.10) along the ML direction.

No changes in values for standard deviation, skewness and cross-correlation, and har-

monic ratios could be noticed after denoising. The kurtosis difference between the ML and

V directions did not appear anymore for HC patients (p > 0.14). For the PN group, γAP

was different from γML (p < 0.05).

4.1.1.4 Corrected and denoised data Skewness values were different between HCs

and PNs (p < 0.01) along the ML-axis and between HCs and PDs along the AP-axis (p <

0.05). PD and PN groups were not significantly different for ηML,V values (p > 0.70).

Harmonic ratios were not statistically different between HCs and PDs along the ML-axis
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(p > 0.1). We also found that HC controls had greater harmonic ratios than PN subjects in

the AP direction (p < 0.03). Moreover, PNs had a greater harmonic ratio than PDs in the

vertical direction (p < 0.05).

Our results showed that standard deviations were not statistically different in in the

ML/AP directions for PN (p > 0.56) nor for PD groups (p > 0.45). No difference was

observed for PN subjects when comparing ξML and ξAP (p > 0.81). The kurtosis of signals

measured in all three directions were different for PNs (p < 0.03) and PD subjects (p < 0.05).

No difference in kurtosis values could be observed between the V and ML directions for HC

patients (p > 0.24). Finally for PD patients, ηML,V and ηV,AP were not statistically different

(p > 0.43). Harmonic ratios were not different between the ML and AP directions for PNs

(p > 0.51). We also observed that HC and PD subjects had a greater harmonic ratio in the

vertical direction than in the anterior-posterior one (p < 0.02).

4.1.1.5 Denoised and corrected data The results were almost identical to the results

obtained when performing tilt correction followed by denoising, except that skewness of

signals measured along the ML-axis was different between HC and PN groups (p < 0.01).

Similar results to tilt correction followed by denoising were obtained for this preprocess-

ing step. However, no statistical differences between the values of ηML,V and ηML,AP were

observed for PD subjects.

4.1.2 Frequency features

Tables 4 and 5 summarize the differences found for the frequency domain features.

4.1.2.1 Original data No statistical differences for the peak frequencies were observed

between groups (p > 0.10). The spectral centroids exhibited differences between HC and PD

subjects for signals acquired along the AP-axis (p < 0.03). We finally noticed that signals

measured on HC and PD subjects had different bandwidths in the ML and AP directions

(p < 0.03).
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Table 4: Group differences for frequency features. Legend - N.S: Not Significant; ×: no

difference compared to raw data; 4: HC vs. PN; ♦: HC vs. PD; �: PD vs. PN; +/-:

feature added/removed compared to original data

Original Corrected Denoised Corrected + denoised Denoised + corrected

Peak frequency

fpML N.S.
+HC > PD

× × ×
+HC > PN

fpV N.S. × × × ×

fpAP N.S. × × × ×

Centroid

fcML N.S. × × × ×

fcV N.S. × × × ×

fcAP PD > HC +PN > HC −♦ +PN > HC +PN > HC

Bandwidth

BWML PD > HC × × × ×

BWV N.S. × × × ×

BWAP PD > HC +PN > HC +PN > HC +PN > HC +PN > HC

When we analyzed peak frequencies, we observed statistical differences for PNs and PDs

between the ML and V directions and between the ML and AP directions (p < 0.02). The

spectral centroids were statistically different between the ML and V directions for all groups

(p < 0.02) and between the V and AP directions for PN and PD groups (p� 0.01). Finally,

we observed differences for all groups between bandwidths of signals acquired along the V

and AP directions (p� 0.01) as well as between the ML and V directions (p� 0.01).

4.1.2.2 Corrected data In the ML direction we found that signals retrieved from HC

subjects had greater peak frequencies than PD (p < 0.02) and PN (p < 0.03) patients.
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For spectral centroids, we observed a difference between PN and HC groups (p < 0.04) when

looking at fcAP . Lastly, BWAP values were different for PN and HC volunteers (p < 0.04).

HC subjects had different spectral centroids when we compared signals along the AP-axis

and V-axis (p < 0.03). For PNs, we also found that fcAP was greater than fcML (p < 0.03).

Differences between bandwidths of signals in the AP and ML directions were found for PN

(p < 0.03) and PD groups (p < 0.05).

4.1.2.3 Denoised data No differences for fcAP were found between HC and PD groups

after denoising signals (p > 0.05). PN and HC groups had different bandwidths along the

AP-axis (p < 0.02).

After denoising signals, we did not observe differences for any group between the ML and

V directions when we analyzed spectral centroids (p > 0.05). However, we observed different

centroid values between signals in the AP and ML directions for PN subjects (p < 0.04).

Bandwidths for signals along the ML and V directions were not statistically different for

HCs (p > 0.06). Signals from PN subjects had different bandwidth values in the AP and

ML directions (p < 0.04).

4.1.2.4 Corrected and denoised When comparing centroids for the corrected-denoised

data and the raw data, we found that spectral centroids were different between PN and HC

groups for signals measured in the AP direction (p < 0.05). The same trend could be

observed for the bandwidth of these signals (p < 0.01).

We noticed that spectral centroids fcML did not differ significantly from fcV for PN

(p > 0.49) and PD subjects (p > 0.05) after pre-processing signals. However, statistical

differences between the ML and AP directions were observed for PN subjects only (p < 0.02).

Bandwidths of signals in the AP and ML directions were different for PN and PD subjects

(p < 0.01).
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4.1.2.5 Denoised and corrected data The same results were obtained as for perform-

ing tilt correction followed by denoising.

Significant differences were observed between peak frequencies of signals in the V and AP

directions for PN subjects (p � 0.01). Otherwise the same trend as the corrected-denoised

data was observed.

4.1.3 Time-frequency features

The four last detail level coefficients held nearly no energy. Thus, we did not consider these

levels any further. Denoising did not affect the energy in the time-frequency bands. However

applying correction changed the repartition of the energy. Indeed in the vertical direction

the energy of the approximation signal decreased whereas the one in the 10th to the 5th detail

signal increased. Depending on the decomposed signal studied differences between groups

and anatomical directions were also observed. When both pre-processing operations were

applied we could observe similar results to the ones we observed when applying correction

only.

4.1.3.1 Original data We did not observe significant groups differences in any time-

frequency band for accelerations measured along the medio-lateral axis (p > 0.06). More

than 99% of the energy of the V acceleration signals was concentrated in the approximation

level. We discarded the rest of the coefficients in the V direction as the detail signals contained

insignificant amounts of energy. However, no group differences could be seen along this axis

(p > 0.98) or the AP axis (p > 0.40). No group differences were observed for the wavelet

entropy of signals (p > 0.17).

For all groups, the a10 coefficients from the V direction contained higher energy than the

same coefficients in the ML (p � 0.01) and AP direction (p < 0.04). Also, HCs had higher

energy contained in a10 coefficients in the AP direction than in the ML direction (p < 0.04).

d8 coefficients contained higher energy in the ML direction than in the V direction for all

groups (p < 0.04) and in comparison to the AP direction for the HC group (p � 0.01).

Signals from PD subjects had higher energy in the AP direction compared to the signals in
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the V direction (p < 0.04). In the 7th decomposition level, the energy was higher for signals

retrieved along the ML-axis compared to those along the V direction (p� 0.01) and the AP

direction (p < 0.03) for HC subjects. However no difference was noticed when we compared

the signals in the V and AP directions (p > 0.08). In any direction, no differences were

noticed for the other groups (p > 0.2). We noticed that the energy was lower for d6 signals

along the V-axis compared to those along the AP-axis for HCs (p < 0.01). For all groups,

the energy in d5 signals was higher along the ML-axis than the V-axis (p < 0.04). For PD

subjects, we noticed that signals in the ML direction had higher energy compared to the AP

direction (p < 0.05). We did not observed any difference when we compared signals in the

V and AP directions (p > 0.22).

Interestingly we noticed that for each group the entropy values in the V direction were

close to 0 while they were higher in the other directions (p � 0.01). We also noticed that

ΘML was higher than ΘAP for HCs (p < 0.01) and PD subjects (p < 0.02), while we observed

no difference for PN subjects (p > 0.1).

4.1.3.2 Corrected data After the correction step, we noticed that the energy in wavelet

decomposition levels was repartitioned for every group in every direction. HCs had higher

energy than PD subjects along the ML-axis in the d7 signal (p � 0.01). The same results

were obtained for HCs and PNs when we analyzed the d7 (p < 0.02) and d5 (p < 0.05) detail

signals along the same direction. In the V direction, while most of the energy was concen-

trated in the approximation signal for the raw data, the energy in the approximation signal

after correction diminished and increased in the first 6 detail signals ΦVd10
,ΦVd9

, . . . ,ΦVd5

(p � 0.01). However, we did not notice any group differences along the V-axis. Statisti-

cal differences along the AP-axis were observed in the d7 signals between HC and PD/PN

subjects (p < 0.02) and in the d6 detail signals between HCs and PNs (p < 0.05).

Overall the entropy in the V direction was lower than in the other directions. However

for PN and PD subjects it was not statistically different from the entropy in the ML direction

(p > 0.19) and from the entropy in the AP direction for PN patients (p > 0.06). Finally

ΘML and ΘAP were not statistically different for any group (p > 0.28).
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After correction there were no significant differences between a10 signals in the V and

ML direction and signals in the V and AP directions for all groups (p > 0.05). However, we

observed that signals from PDs had higher energy in the ML direction than the AP direction

(p < 0.04). The energy in the d8 signals was not distinguishable between the ML and V

directions for PDs (p > 0.26) and PNs (p > 0.44). For PDs, we were unable to distinguish

between the V and AP directions (p > 0.59). HCs had no statistical differences in d7 signals

between ML and V/AP directions (p > 0.09). PDs had higher energy for the signals along

the V-axis than for signals along the ML-axis (p < 0.05). We also observed that signals for

all three groups in the 6th decomposition level had higher energy in the V direction than in

the ML direction (p� 0.01). The same results were obtain when we compared signals in the

AP and ML directions (p� 0.01). For HCs in particular, there were no difference between

signals in the V and AP directions (p > 0.45). For PN subjects, energy in the V direction

was higher than in the AP direction (p� 0.01). Finally the energy was higher in d5 signals

in the ML direction than in the AP direction for PN patients (p� 0.01) but we were unable

to distinguish between signals in the ML and V directions for HCs and PDs (p > 0.14) nor

between signals in the ML and AP directions for PD subjects (p > 0.29).

We found no significant difference between ΘML and ΘV for PD and PN subjects after

correction (p > 0.19), nor between ΘML and ΘAP for HC and PD subjects (p > 0.28) nor

between ΘAP and ΘV for PN subjects (p > 0.06).

4.1.3.3 Denoised data The energy repartition for denoised data was similar to the

original signal. We still had more than 99% of the energy concentrated in the approximation

signal ΦV a10 . The energy and the entropy of the signals followed the same trend as the

original ones.

When we analyzed the a10 signals there was no significantly different energy between

signals in the V and AP directions for PD and PN subjects (p > 0.05). For healthy subjects

we were not able to distinguish between signals in the AP and the ML directions (p > 0.06).

Similarly for PD subjects, we were not able to distinguish between signals along the V-axis

and the ML-axis (p > 0.05). The signals in the 8th decomposition level followed the same

trend as the corresponding corrected signals while d7 and d6 signals followed the same same

39



trend as the corresponding raw signals. Lastly we analyzed d5 signals and we noticed for

PNs that energy was higher in signals in the ML direction compared to accelerations in the

AP direction (p < 0.04). This was not case however for PD patients (p > 0.07).

The entropy of signals in the ML direction was not significantly different from the one of

signals in the AP direction for the PD group (p > 0.25). Otherwise the entropy of denoised

signals followed the same trend as the raw signals.

4.1.3.4 Corrected and denoised data Similarly to the corrected signals the repartition

of the energy was different. In the ML direction, the energy in the approximation signal a10

was higher for PD subjects than for HC ones (p < 0.04). On the contrary, there was more

energy in the d7 (p � 0.01) and d6 (p < 0.04) signals for healthy controls than for PD

patients. The energy in the d8 (p < 0.04) and d7 (p � 0.01) signals was also higher for

healthy controls than for PN subjects. Still along the ML-axis, PN patients had higher

energy than HCs in the d5 signal (p < 0.02). In the V direction the relative energy of the d6

signal was lower for PDs than for PNs (p < 0.01). In the d5 signal the opposite was observed

(p < 0.01). In the AP direction the energy in the d7 and d6 signals was higher for the HC

group than for the PD (p < 0.04) and PN groups (p < 0.02). Also, the energy in the d5

signal was higher for PD subjects compared to PNs (p < 0.03).

No difference between groups were observed when we analyzed entropies in every direction

(p > 0.18). We did not observed differences between anatomical directions neither for PDs

and PNs (p > 0.15). Only signals from healthy controls had a larger entropy along the

ML-axis (p < 0.05) and AP-axis (p < 0.04) compared to the V-axis.
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The energy in the a10 signals was similar to the energy in signals after correction. However

for PN subjects, we observed that signals in the V direction contained less energy than signals

in the ML direction (p < 0.04). For the same group of subjects, the energy along the V-axis

was also lower than energy in signals along the AP-axis (p < 0.05). In the d7 signals PD

subjects had higher energy in the V direction than in the ML (p < 0.03) and AP directions

(p < 0.04). Results for the d8, d6 and d5 signals were the same as the corresponding signals

after the correction step. The same trend as for corrected signals was observed when we

examined the wavelet entropy differences, except that ΘAP and ΘV were not statistically

different for PDs (p > 0.15).

4.1.3.5 Denoised and corrected data The results were very similar to the ones we

found in the previous step. Energy in signals from PD subjects was higher than in signals

measured on HCs in the V direction (p < 0.05).

The same trend was observed compared to accelerations in the previous step except

that we did not observe a significant difference of energy between signals in the AP and V

directions for PN subjects in the a10 approximation signal (p > 0.05) nor for PD subjects in

the d7 detail signal (p > 0.07). The entropy after the denoised-corrected step followed the

same trend as the previous step.

4.2 DISCUSSION ON THE EFFECTS OF PRE-PROCESSING

We successfully extracted features in time, frequency and time-frequency domains. The

presented results led us to believe that applying tilt correction and analyzing the corrected

data could lead to further discrimination between the three groups.

In the time domain, by applying the tilt correction, we were able to distinguish between

healthy controls and subjects with Parkinson’s disease and peripheral neuropathy. Specifi-

cally, we observed greater skewness for subjects suffering from peripheral neuropathy than

for healthy controls in the medio-lateral direction. Nevertheless, no difference between par-

ticipants having Parkinson’s disease and peripheral neuropathy could be observed using this
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feature. Concerning harmonic ratios, using the original data the only group differences found

were between healthy controls and persons with Parkinson’s disease, where controls exhib-

ited greater walking symmetry in all directions of motion. The tilt correction led to further

discrimination between the groups and showed that participants with peripheral neuropathy

had a greater symmetry than those with Parkinson’s disease, whereas healthy controls had a

greater symmetry than subjects with peripheral neuropathy. Also, the tilt correction showed

that every group had a harmonic ratio higher in the vertical than in the anterior-posterior

direction.

In the frequency domain and after tilt correction was applied, peak frequencies in the

medio-lateral direction and the spectral centroids in the anterior-posterior direction allowed

to distinguish between controls and clinical groups. Also, the bandwidth of signals for

subjects with peripheral neuropathy was greater than for healthy controls in the anterior-

posterior direction after applying tilt correction.

Time-frequency features were the most difficult to analyze. An obvious observation is that

the application of tilt correction changed the energy repartition for every group especially in

the vertical direction. The energy was transferred from the approximation signal representing

low frequencies to the first six detail signals representing higher frequencies. However it was

difficult to distinguish between groups using the features in this domain.

Denoising had practically no effect on the calculated characteristics since, as shown in

Figure 9, the signals had a low level of noise. Finally, when applying both correction and

denoising we observed that most of the time our corrected and denoised results were the

accumulation of the results found when we applied the preprocesses separately.
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4.3 RESULTS FROM THE SECOND STUDY

4.3.1 Stride-interval-based features

We noticed no statistical group differences when we used maximum Lyapunov exponents as

features (p > 0.05). Within group comparisons showed that HCs had a higher Lyapunov

exponent in the ML direction during NT in comparison to DT1 (p < 0.05). PNs and PDs

had a higher Lyapunov exponent in the medio-lateral direction during NT in comparison to

DT 2 (p < 0.01).

During NT, PNs had a higher harmonic ratio than PDs in the vertical direction (p <

0.05). During all tasks, HCs had a higher harmonic ratio than PDs in the V and AP

directions (p < 0.02) and PNs in the AP direction (p � 0.01). HCs and PNs had a higher

harmonic ratio in all three anatomical directions when performing NT in comparison to DT1

(p < 0.01) and DT2 (p < 0.02). PDs had a higher harmonic ratio in all three anatomical

directions when performing NT in comparison to DT2 (p < 0.04). They also had a higher

harmonic ratios in the V and AP directions during NT in comparison to DT1 (p < 0.01).

There were no group differences using the mean stride interval (p > 0.33). HCs had a

higher MSI when performing DT2 in comparison to NT (p < 0.01).

No group differences were observed using the coefficient of variation for the stride intervals

(p > 0.19). HCs had a higher CV when performing NT (p � 0.01) and DT1 (p < 0.03)

in comparison to DT2. PNs had a higher CV when performing NT in comparison to DT2

(p < 0.05).

4.3.2 Statistical features

There were no statistical group differences using standard deviation (p > 0.11). All three

groups had a higher standard deviation in the V direction when performing NT in compari-

son to DT1 (p < 0.01). PNs also had higher values of standard deviation in the ML direction

during N compared to DT1 (p < 0.04) and in the V direction during N compared to DT2

(p� 0.01).
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During NT, we observed that PNs had a higher skewness than HCs in the ML direction

(p < 0.01), while HCs had a higher skewness than PDs in the AP direction (p < 0.05). HCs

also had a higher skewness than PNs in the AP direction (p < 0.01) during DT1 and DT2.

Within group comparisons showed that HCs had a higher skewness in the ML direction

when performing DT2 in comparison to NT (p < 0.04). All three groups had a higher

skewness in the V direction when performing NT in comparison to DT1 (p < 0.01) and DT2

(p < 0.01). PNs also had a higher skewness in the AP direction when performing NT in

comparison to DT1 (p < 0.01) and DT2 (p < 0.01). During DT1 and DT2, we observed

that PNs had a higher kurtosis than HCs in the AP direction (p� 0.01).

In within group comparisons, HCs and PNs had a higher kurtosis in the ML direction

when performing DT1 (p� 0.01) and DT2 (p < 0.01) in comparison to NT, while PDs had

a higher kurtosis in the ML direction only when performing the DT1 task in comparison to

NT (p < 0.04). HCs and PDs had a higher kurtosis in the AP direction when performing

DT1 (p� 0.01) and DT2 (p < 0.01) in comparison to NT.

We saw no group differences using cross-correlation (p > 0.43) and no task differences

(p > 0.12).

4.3.3 Information-theoretic features

During NT and DT1, HCs had a higher LZ complexity than PDs and PNs in the ML direction

(p < 0.01) and the AP direction (p < 0.02). During DT2, HCs had a higher LZ complexity

than PDs and PNs in the AP direction (p < 0.02) and a higher LZ complexity than PNs in

the ML direction (p < 0.01).

Within group comparisons showed that HCs and PDs had a higher LZ complexity in the

V direction when performing DT1 in comparison to NT (p < 0.02).

During DT1, we observed that PDs had a higher entropy rate than HCs in every anatom-

ical direction (p < 0.03). PNs had a higher entropy rate than HCs in the ML direction only

(p < 0.01).

Within group comparisons showed that all groups had a higher entropy rate in all anatom-

ical directions (p < 0.01) during NT in comparison to DT1. When they performed NT, HCs
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(p < 0.04) and PDs (p < 0.02) had a higher entropy rate in the V direction in comparison

to DT2. PNs had a higher entropy rate in the AP direction during NT compared to DT2

(p < 0.02) while PDs had a higher entropy rate in the ML direction (p < 0.01).

During DT1, PDs had a higher synchronization index between the ML and AP directions

than HCs (p < 0.04).

Within group comparisons showed that HCs had a higher synchronization index between

the ML and AP directions when performing NT in comparison to DT1 (p < 0.01).

4.3.4 Frequency features

During DT2, we observed that the PN group had a higher peak frequency than HCs in the

AP direction (p < 0.03).

During group comparisons, HCs had a higher peak frequency in the V and AP directions

when performing NT compared to the DT2 task (p� 0.01).

PNs had a higher centroid than HCs (p� 0.01) and PDs (p < 0.03) in the AP direction

during DT1 and higher centroids than HCs during DT2 (p� 0.01).

Within group comparisons revealed that all three groups had a higher centroid in the ML

and AP directions when performing DT1 (p < 0.01) and DT2 (p < 0.01) in comparison to

NT. HCs and PNs also had a higher centroid in the V direction during DT1 in comparison

to NT (p < 0.04), with PNs also maintaining this relationship even when comparing DT2

and NT(p < 0.01).

During NT, PDs had a higher bandwidth than HCs in the ML direction (p < 0.03)

and the AP direction (p < 0.01), while PNs had a higher bandwidth than HCs in the AP

direction (p < 0.03). During DT1, PNs and PDs had a higher bandwidth than HCs in

the AP direction (p � 0.01), while PNs also had a higher bandwidth than HCs in the ML

direction as well (p < 0.01). During DT2, PNs had a higher bandwidth than HCs in the ML

direction (p < 0.02) and the AP direction (p � 0.01). Moreover during the same task, we

observed that the PD group had a higher bandwidth than HCs in the AP direction (p < 0.01).
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Within group comparisons revealed that all groups had a higher bandwidth in all anatom-

ical directions when performing DT1 (p < 0.01) and DT2 (p < 0.01) in comparison to NT.

4.3.5 Time-frequency features

In the time-frequency analysis, we discarded energy levels which contained less than 5% of

energy. In our results, these were the d10, d9 and d4 to d1 decomposition levels.

During NT, we observed a higher relative energy for PDs in comparison to HCs in the

ML direction (p < 0.03) while there was a higher energy for PNs in comparison to HCs in

the AP direction (p < 0.04). During DT2, PNs had a higher energy than HCs in the ML

direction (p < 0.05).

We observed that HCs had a higher energy than PNs in the ML direction (p < 0.01).

Within group comparisons showed that HCs had a higher energy in all anatomical direc-

tions when performing NT in comparison to DT1 (p < 0.01) and DT2 (p < 0.01). PNs had

a higher energy in the V direction when performing NT in comparison to DT1 (p < 0.01)

and DT2 (p < 0.01). PNs also had a higher energy in the AP direction when performing NT

compared to DT1 (p < 0.02).

During NT and DT2, HCs had a higher energy than PDs and PNs in the ML (p < 0.01)

and the AP directions (p < 0.01). During DT1, HCs had a higher energy than PNs and PDs

in the ML direction (p < 0.04) and the AP direction (p� 0.01).

Within group comparisons showed that HCs had a higher energy in the ML and AP

directions when performing NT compared to DT1 (p < 0.01) and DT2 (p < 0.01). All three

groups had a higher energy in the V direction when performing NT compared to DT1 only

(p < 0.02), and PDs and PNs also had a higher energy in the AP direction (p < 0.01). PNs

had a higher energy in the ML direction when performing NT compared to DT2 (p < 0.04).

During NT, HCs had a higher energy than PDs in all anatomical directions (p < 0.03)

and a higher energy than PNs in the AP direction (p < 0.01). PNs also had a higher energy

than PDs in the V direction (p� 0.01).
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Within group comparisons showed that HCs had a higher energy in the AP direction

when performing NT compared to DT2 (p < 0.03) while PDs had a higher energy in the the

same direction when performing NT in comparison to DT1 (p < 0.01).

During NT, PNs had a higher energy than HCs in the ML direction (p� 0.01). Further-

more, PDs had a higher energy than PNs in the V direction (p < 0.02) and the AP direction

(p < 0.01). During DT1, HCs (p < 0.01) and PDs (p < 0.05) had a higher energy than PNs

in the AP direction.

Within group comparisons showed that HCs and PDs had a higher energy in the ML

direction when performing NT compared to DT1 (p < 0.03). On the contrary, HCs had a

higher energy in the V direction when performing DT1 compared to the NT (p� 0.01). PNs

had a higher energy in the V direction when performing DT1 (p < 0.01) and DT2 (p� 0.01)

compared to NT. PDs also had a higher energy in the AP direction when performing NT

compared to the DT2 task (p < 0.03).

No group differences were noticed when we used wavelet entropy (p > 0.05).

Within group comparisons revealed that PN participants had a higher entropy in the V

direction (p < 0.04) and the AP direction (p < 0.03) when performing DT2 in comparison to

NT. PDs had a higher entropy in the ML direction when performing NT compared to DT1

(p < 0.05).
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4.3.6 Summary

Tables 6 and 7 summarize our results.

4.4 DISCUSSION ON THE EFFECTS OF DUAL-TASK WALKING

In this study, we considered signal features from stride interval time series and gait accelerom-

etry signals during walks that involved walking at normal speed and dual-task walking.

Table 6 summarized group differences for different tasks. Regardless of walking condi-

tions, the maximum Lyapunov exponents, mean stride intervals, coefficients of variation for

stride intervals, standard deviations, cross-correlations and wavelet entropies did not distin-

guish among groups. The results thus suggest that these features are not adequate to reveal

pathologies.

Group differences, however, were observed when using the rest of the feature set. In this

set, several features showed almost the same group differences for each task. This was the

case with the Lempel-Ziv complexity, harmonic ratios, bandwidth of accelerations and the

d7 level of wavelet decomposition, which were therefore unaffected by dual-tasking. HCs had

a higher harmonic ratio than PDs in the V and AP directions, indicating that participants

with Parkinson’s disease had a less symmetric walk than controls. Similarly, HCs had a

more symmetric walk than PNs as a higher harmonic ratio in the AP direction for controls

indicated.

Other features highlighted differences for specific tasks. In the case of skewness, which is

a measure of the symmetry of a distribution, this feature allowed us to distinguish between

controls and clinical groups during NT. Furthermore, we observed a statistical difference

between controls and subjects with peripheral neuropathy during the DT1 and DT2 tasks.

The differences we observed were visible when analyzing accelerations in the AP and ML

directions during the normal task, but they were visible in the AP direction only during the

other tasks.
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Interestingly, depending on the task performed, differences concerning controls and PN

subjects had a different meaning, and were observed in different anatomical directions. In-

deed, PNs had a higher skewness than controls in the ML direction during the normal task.

However, during the other tasks, controls had a higher skewness than PN participants in the

AP direction. Thus, the tasks performed had an impact on the feature, and the changes in

this feature should be interpreted cautiously.

Kurtosis, a measure of “peakedness” of a distribution, did not allow us to discriminate

among groups during the normal task. On the contrary, during the DT1 and DT2 tasks, the

kurtosis of accelerations in the AP direction were different between PNs and HCs.

PNs had higher spectral centroids than HCs during DT1 and DT2. Spectral centroids

divide the power spectrum into two equal parts. An increased spectral centroid value means

that more high-frequency components are present in the spectrum of a signal. This result

was anticipated, since PNs generally have a less stable walk due to the loss of sensitivity

in the extremities. More oscillations were therefore captured by the accelerometer. During

DT1, our results suggest the effects of this instability were stronger than the tremor of PDs,

since PNs had statistically higher spectral centroids than PDs.

Group differences for entropy rate and synchronization index were noticed during DT1

specifically. The entropy rate measures the regularity of patterns in a signal, and our results

showed an increased entropy rate for PDs compared to controls in all anatomical directions.

Increased regularity in biomedical signals has been associated with pathologies in previous

studies [81].

Relative energy in the d6 level of decomposition showed group differences during the

normal task, but not during the other tasks. Therefore, dual-tasking also had an impact on

group comparisons for these features.

In conclusion, three features stood out for the constancy in the differences they showed:

the Lempel-Ziv complexity, the bandwidth of accelerations and harmonic ratios. Other

features were affected by the task that was performed.
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Table 7 summarizes task differences for the three groups. Across all groups of subjects,

we did not notice differences using cross-correlation or the relative energy in the a10 level

of decomposition. With the rest of the features, practically the same task differences were

observed for each group.

We analyzed the accelerations in the ML direction and noticed that the maximum Lya-

punov exponent was higher during the normal task than during the other tasks for all groups.

This result indicates that subjects were less stable during the normal task compared to the

other tasks. It is possible that subjects became habituated to the task they performed and

gained assurance, hence the higher instability during the normal task, which corresponds to

the beginning of the experiment. For HCs, the coefficient of variation of stride intervals was

higher during the normal task compared with the DT1 task, which correlates with a higher

instability. However, no differences could be seen for the other tasks. Similarly, PNs had a

higher coefficient of variation during the normal task compared with the DT2 task. No such

differences were visible for PDs.

HCs also walked with a higher mean stride interval during DT2 compared with the normal

task, but this was not the case for the other groups. All groups had a more symmetric walk

during the normal task compared with the other tasks. This result was visible when analyzing

the accelerations in every anatomical direction, and it shows a decrease in performance while

the subjects were performing another task while walking.
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5.0 CONCLUSIONS AND FUTURE WORK

5.1 CONCLUSIONS

In the first study, we pre-processed gait accelerometry signals using different techniques in

order to understand the impact on the extracted signal features in time, frequency and time-

frequency domains. Specifically, we examined the effects of tilt correction and denoising as

well as their combined effects. The results have shown that pre-processing may yield addi-

tional discrimination between the considered groups. Hence, future studies should consider

pre-processing gait accelerometry signals before extracting any features.

It is of primary importance that researchers use a common base of signal features when

performing gait analysis. In the second study we extracted time, frequency, time-frequency

and information-theoretic features from stride intervals and accelerometry signals, and we

analyzed the impact of dual-task walking on them. We found that the differences between

healthy controls and clinical groups revealed by Lempel-Ziv complexity, bandwidth of signals

and harmonic ratios were not impacted by the fact that another task was performed, but

other features were impacted. We also found that all subjects had lower harmonic ratios

when dual-task walking, which shows a degradation in performance. Future studies should

confirm if this is an age-related issue. Future publications should also continue using a wide

base of features in order to choose relevant ones and use them in a clinical context.
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5.2 FUTURE WORK

In the future, studies about quiet standing and dynamic gait analysis should be compared

so as to confirm and eventually find new conclusions about stability of subjects. Moreover,

our studies have focused on accelerations of the trunk during walking, but the latter involves

interactions with different systems. Monitoring these interactions (e.g. measuring oxygen

consumption) may be useful to obtain more insights about the mechanisms of gait and the

different strategies used to minimize the energy consumed during a walk.
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