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CHARACTERIZATION OF (H2O)−n CLUSTERS USING MODEL

POTENTIAL APPROACHES

Xiaoge Su, M.S.

University of Pittsburgh, 2013

(H2O)−n clusters have attracted considerable interest since their discovery. Experimentally,

three kinds of isomers of (H2O)−n have been identified, but the relationship between the cluster

size and the distribution of the excess electron is unknown. The pathways for conversion

of the surface- to cavity-bound electron are also controversial. In this thesis, molecular

dynamics simulations are applied using a (H2O)−n model introduced by the Jordan group.

It is found that for (H2O)−6 , the tweezers structure rapidly evolves to the more stable AA

structure, however for book structure the energy barrier is much higher and formation of the

AA isomer is not observed on the picosecond time scale.
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1.0 INTRODUCTION

The hydrated electron, e−aq , has attracted considerable attention since its discovery in 1962.1

e−aq is involved in a wide range of processes, including the generation of hydrogen gas in water-

cooled nuclear reactors, corrosion reactions, breaking of DNA strands, and many catalytic

reactions, including those involved in the induced destruction of organic wastes.2 Because

of the challenges of studying e−aq many groups have turned to (H2O)−n clusters that can be

more readily characterized by experiment and theory.

Electronic absorption, photoelectron spectroscopy,3 and vibrational spectroscopy4 have

identified three different kinds of isomers of (H2O)−n clusters designated I, II and III. Isomer

I has been interpreted as binding the excess electron in the interior; while isomers II and III,

have been interpreted as binding it at the surface.5 The vertical electron detachment energy

(VDE) of isomer I is higher than that of the other two isomers, and its dependence on the size

of the cluster is also much stronger.6 Experiments have shown the photodetachment energy

of isomer I converges to that of e−aq with increasing size, as does the electronic absorption
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spectrum. The relaxation times of the electronically excited states of isomers II and III are

much longer than for isomer I.6

The cluster size where the internal state becomes energetically more favorable is con-

troversial, with estimates ranging from n = 14 to 200.7,8 Also, the pathways for conversion

of the surface- to cavity-bound electron are unknown. For small clusters the electron is

bound by the dipole field, while correlation effects tend to dominate for large clusters.9 In

the experiments,5 the temperature of the clusters is usually under 100K; which means they

are solid-like and probably “freeze in” the initial structures.10 Surface-bound excess electron

states for the clusters are also relevant to understanding the nature of an excess electron at

the interface of bulk water.11

Commonly used ab-initio methods are either not adequate or are too computationally

demanding for studies of the pathways and for simulations of the dynamics of the anions,

especially for large clusters. Recently, density-functional theory (DFT) has been applied

to this problem.9,10,12,13 However DFT suffers from self-interaction error and the failure to

describe dispersion interactions. The most viable approach for theoretical studies of (H2O)−n

clusters is to make use of one-electron model Hamiltonians.14 Ab-initio calculations carried

out in the Jordan group show that the models used in recent studies15–17 have sizable errors

due to deficiencies in both the water model and the one-electron Hamiltonian.
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In order to simulate the properties of (H2O)−n clusters, it is essential to combine a reliable

one-electron Hamiltonian and a neutral water force field with an efficient molecular dynamics

code. This has been a major goal of my research to date. Longer range goals include

using this software to map out the pathways between surface-bound and cavity-bound excess

electron states, and to extend the studies to the excess electron in bulk water.
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2.0 THEORETICAL BACKGROUND

2.1 FORCE FIELD OF NEGATIVELY CHARGED WATER CLUSTERS

2.1.1 Distributed point polarizable water model

The distributed point polarizable model, aka. DPP (Figure. 1) is first described. It is a

rigid water model with four terms:14

1. Electrostatics is represented in terms of permanent charges located at the hydrogens and

at an M site. The resulting charge-charge intermolecular interactions are

Ecoulomb =
∑
i,j

qi · qj
rij

. (2.1)

2. Polarization is described by mean of point inducible dipole, and each atom is polarizable

and mutually interacting with the polarizable sites on other atoms. The polarization
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Figure 1: DPP water model

energy is given by

Epol = −0.5
∑
i

~Ei · ~µi, (2.2)

where ~Ei is the electric field at atom i and ~µi is the dipole of atom i, given by

~µi = αi

[
~Ei +

∑
i 6=j

↔
T ij ·~µj

]
. (2.3)

Here αi is the isotropic polarizability for atom i and
↔
T ij is the dipole tensor with elements
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defined by

T βγij = f5(rij)
3rβijr

γ
ij

r5
ij

− f3(rij)
δβγ
r3
ij

, (2.4)

and the electric field is given by

~Ei =
∑
j 6=i

f3(rij)
qj(rij)~rij

r3
ij

. (2.5)

In (2.4) and (2.5), f3 and f5 are damping functions from Thole,18 of the form

f3(rij) = 1− exp

(
−a

r3
ij√
αiαj

)
(2.6)

f5(rij) = 1−
(

1 + a
r3
ij√
αiαj

)
exp

(
−a

r3
ij√
αiαj

)
. (2.7)

Here different a values are used in electric field and dipole damping.

3. Dispersion interactions are included between O atoms only, using

Edisp =
∑
i,j→O

f6(rij)
C6

r6
ij

, (2.8)

where f6(rij) is the Tang-Toennies damping function19 with n = 3. The general form of

the Tang-Tonnies founction is:

f2n(R) = 1−

(
2n∑
k=0

(cR)k

k!

)
exp (−cR), (2.9)
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where c is a coefficient that controls the damping.

4. Repulsion between atoms of different monomers is accounted for by a sum of exponential

terms:

Erep =
∑
i,j

Ai,j exp(−bijrij) (2.10)

The values of parameters in the various terms are given in Table 1. The charges on

hydrogen atoms and the M site are taken from the TTM2-R model;20 while the polarization

damping factors are fit to the results of MP2/aug-cc-pVTZ21 calculations.

2.1.2 One-electron polarizable model (OEPM)

To describe the binding of an excess electron to water clusters, a polarization model has

been developed.22,23 In this model the Hamiltonian for the excess electron is

HHH = −1

2
∇2 −

∑
i

Qi

ri
fpc(ri) +

∑
i

V rep
i +

∑
i

~µi · ~ri
r3
i

find(ri)−
∑
i

α

2r4
i

fpol(ri). (2.11)

The first term is the kinetic energy operator. The second and fourth terms are due to

the interaction of the electron with the charges and the induced dipoles of the DPP model.

The third term is the short-ranged repulsive potential, which accounts for orthogonality.
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Table 1: DPP Parameters

Charges (elem. charge) Polarizability (Å3)

qH 0.5742 αH 0.496

qM -1.1484 αO 0.837

Repulsion A (kcal/mol) Repulsion B (Å−1)

AO−O 1.15272× 105 BO−O 4.1679

AO−H 1.80366× 103 BO−H 3.5355

AH−H 1.19085× 105 BH−H 5.5817

Dispersion C (Å6kcal/mol) Dispersion c (kcal/mol)

-1300 2.23

Charge-dipole damping a 0.23 Dipole-dipole damping a 0.3
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The last term involves the polarization of the water by the excess electron. α is the

polarizability of a water molecule, which has been found experimentally to be 1.45 Å3.

fpol(rj) = (1 − exp(−br3
j ))

2 damps the potential to remove divergence when rj → 0. To

reduce the computational complexity, the dipoles on the atoms were collapsed to the M site.

Recently our group has introduced a new self-consistent electron-water polarization

model.24 In the new model, the Hamiltonian is modified to be

HHH = −1

2
∇2 −

∑
i

Qi

ri
fpc(ri) +

∑
i

V rep
i (ri)

− 1

2

∑
ij

[
V e−w,pol
ij (rie, rij)− V w−w,pol

ij (rij)
]
, (2.12)

where the term V e−w,pol
ij represents both new water-electron and water-water interaction.

V w−w,pol
ij is the water-water interaction term and comes from the DPP model.

In the self-consistent model, the three polarizable sites of a water molecule are all consid-

ered, i.e., not collapsed to one site, in contrast to the model mentioned above. The
1

2
V e−w,pol
ij

is expanded to

1

2
V e−w,pol
ij =

1

2

∑
ij

[
~Ee
i (rie) + ~Ew

i (ri)
]
·
[
α−1
ii −

↔
T ij (rij)

]−1

·

[
~Ee
j (rje) + ~Ew

j (rj)
]
, (2.13)

where ~Ew
i and ~Ee

i is the static electric field at site i due to the charge sites of the other water
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molecules and the excess electron, respectively. α is the site polarizabilities matrix and
↔
T ij

is the interaction matrix between induced dipoles on sites i and j. To avoid the divergence at

short-range electron-water interaction calculation, rie is replaced by d

[
1

2
+
(rie
d

)3 (
1− rie

2d

)]
when rie < d, where d is the switching parameter. The electric fields on each polarizable

sites are calculated iteratively until convergenced, similar to the DPP model, making the

model self-consistent.

The new model more accurately describes the interaction between the water cluster and

the excess electron, and is used in the simulations in this thesis.

2.1.2.1 Discrete variable approximation

To solve the excess-electron Schrödinger equation, the discrete variable representation

(DVR) method25,26 was adopted. The conceptual idea of the DVR method is to break the

continuous infinite Hilbert space H into a discrete finite DVR space D, constituted by fixed

points set {x1, x2, x3, ...xn}; then, specially designed functions |∆i〉, which have the properties

of first-order derivable in H and |∆i(xj)〉 = λiδij, are chosen as a basis set, with the number

of basis functions equal to the number of DVR points.

The DVR space has the following advantage when calculating the matrix elements of the
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Hamiltonian H = T + V:

Tij = 〈∆i|TTT |∆j〉 (2.14)

which is calculated only once during all the calculations, and

Vij = 〈∆i|VVV |∆j〉

≈ Viδij (2.15)

which implies only diagonal elements in V need to be calculated.27 This is the basic approx-

imation of the DVR method, which greatly reduces the cost of matrix element calculation.

The solution of the original Schrödinger equation in H can be approximated by the corre-

sponding Schrödinger equation in DVR space D. The self-consistent field (SCF) iterative

method can be used, and it is shown the error is small.25

One of the obstacles of using the DVR approach is that in three-dimensional space

suitable basis sets |∆〉 are hard to determine, due to the DVR conditions are rather restrictive

and cannot be satisfied except on special subspaces of the Hilbert space of wavefunctions.28

To overcome this difficulty, the basis |∆〉 set is fitted by other basis sets |ϕ〉, such as sine

functions,28 Bessel functions, or tetrahedral invariant basis.29 In our implementation, sine
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functions are used22:

ϕijk(~x) =



∏
u∈{i,j,k}

√
2

Lu
sin

(
iπ(xu − xu0)

Lu

)
xu0 ≤ xu ≤ xun+1

0 otherwise

(2.16)

where u ∈ {i, j, k} indicate the three axis, xu0 and xun+1 refer to the box edges, and Lu =

xun+1 − xu0 . The DVR points are distributed in equal spaced grids to ensure 〈ϕijk|ϕuvw〉 =

δiuδjvδkw.

2.2 MOLECULAR DYNAMICS

Molecular dynamics (MD) simulations are used to simulate the time-related behavior of the

system. During the simulation, each particle follows the Hamiltonian equation:30

q̇i =
∂H
∂pi

ṗi = −∂H
∂qi

(2.17)

where i is the i-th particle in the system, qi is the position and pi is the momentum of the

particle. H is the Hamiltonian of the whole system.

The set of all possible (p1, ...pn, q1, ...qn) points defines the phase space.31 Molecular dy-
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namics then simulates the evolution of a phase point inside the defined phase space.32

The Liouville operator describes the movement of the phase point:31

ıLa = {a,H} (2.18)

where a is an arbitrary physical variable, {} is the Poisson bracket:

{a, b} =
∑
i

[
∂a

∂qi
· ∂b
∂pi
− ∂a

∂pi
· ∂b
∂qi

]
. (2.19)

The evolution of phase point a can be shown to be:32

da

dt
= ıLa

a(t0 + δt) = eıLδta(t0) (2.20)

When a is the coordinate of phase point, eıL∆t defines the time evolution operator of a from

t0 to t0 + δt.

2.2.1 Velocity-Verlet integrator

Due to the discrete nature of computer mathematics, the continuous flow of the time has

to be divided into discrete time steps. Each time step must be small enough, i.e., 1 fs, to

13



reduce numerical errors. Denoting the time step as ∆t, a(t0 + δt) is split to

a(t0 + δt) = eıLδta(t0)

= eıL∆t × eıL∆t...× eıL∆t︸ ︷︷ ︸
total δt/∆t terms

a(t0). (2.21)

Each eıL∆t term is expanded to

eıL∆t = e∆t×(a ∂
∂p

+v· ∂
∂q ), (2.22)

where a =
ṗ

m
and v = q̇, respectively. To further simplify this, the Trotter theorem is

introduced:33

e∆t×(a ∂
∂p

+v· ∂
∂q ) = e

∆t
2
×a ∂

∂pe∆t×v· ∂
∂q e

∆t
2
×a ∂

∂p +O(∆t3) (2.23)

Further expanding the exponents using Taylor series, the Velocity-Verlet algorithm is

achieved:34

pi(t+
∆t

2
) = pi(t) +

∆t

2
mia(t)

qi(t+ ∆t) = qi(t) +
pi(t+ ∆t

2
)

mi

∆t

pi(t+ ∆t) = pi(t+ ∆t/2) +
∆t

2
mia(t+ ∆t). (2.24)

The error for Velocity-Verlet algorithm is of O(∆t2), one order higher than the error

14



due to the Trotter separation. It is also a symplectic integrator,35 with the result that

the Hamiltonian of the system is conserved under a slight perturbation. This implies that

applying the integrator alone on a system containing particles without constraints will lead

to a simulation in the microcanonical ensemble.

Other algorithms, like the Beeman algorithm36(O(∆t3)), are also possible.

2.2.2 NO-SQUISH integrator for rigid bodies

The Velocity-Verlet algorithm does not preserve the rigid body structures during the inte-

gration. When rigid bodies are used to reduce the complexity of the system to be simulated,

other integrators have to be introduced. Among them, Rattle37 is perhaps the most widely

used one, and can be applied on a whole rigid body or to selected bonds. However, it is only

symplectic when the number of iterations goes to infinity.38 The NO-SQUISH39 algorithm

is a symplectic integrator for rigid bodies, which can be formulated naturally via use of a

rotational Hamiltonian and the Trotter theorem.

Unlike Rattle, NO-SQUISH does not include any corrections to velocities. Instead, it

splits the movement of the rigid bodies into transitional and rotational parts. The transi-

tional part is directly treated by applying Velocity-Verlet on the center-of-mass of the body;

meanwhile the rotational part is done using quaternions.

15



To represent the Euler rotation matrix using quaternions, the unit quaternion, q =

{q0, q1, q2, q3} with
∑

i qi = 1 is introduced. The rotation matrix from lab coordinate to

body-fixed coordinate is then given as:

A(q) =



q2
0 + q2

1 − q2
2 − q2

3 2(q1q2 + q0q3) 2(q1q3 − q0q2)

2(q1q2 − q0q3) q2
0 − q2

1 + q2
2 − q2

3 2(q2q3 + q0q1)

2(q1q3 + q0q2) 2(q2q3 − q0q1) q2
0 − q2

1 − q2
2 + q2

3


. (2.25)

The relationships between q and three Euler angles, θ, φ and ψ are:

q0 = cos

(
θ

2

)
cos

(
φ+ ψ

2

)
, q1 = sin

(
θ

2

)
cos

(
φ− ψ

2

)
,

q2 = sin

(
θ

2

)
sin

(
φ− ψ

2

)
, q3 = cos

(
θ

2

)
sin

(
φ+ ψ

2

)
.

(2.26)

The equations of motion can then be written as,40

q̇ =
1

2
S(q)ω(4),

ω̇x =
τx
Ixx

+
Iyy − Izz
Ixx

ωyωz,

ω̇y =
τx
Iyy

+
Izz − Ixx
Iyy

ωxωz,

ω̇z =
τx
Izz

+
Ixx − Iyy
Izz

ωxωy,

(2.27)
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where ω(4) = {0, ωx, ωy, ωz},

S(q) =



q0 −q1 −q2 −q3

q1 q0 −q3 q2

q2 q3 q0 −q1

q3 −q2 q1 q0


, (2.28)

and τ are the torques in the body-fixed frame and Ixx, Iyy, and Izz are the diagonalized

elements of inertia tensor.

The angular momenta are defined as

p = 2



−q1ωxIxx − q2ωyIyy − q3ωzIzz

q0ωxIxx − q3ωyIyy + q2ωzIzz

q3ωxIxx + q0ωyIyy − q1ωzIzz

−q2ωxIxx + q1ωyIyy + q0ωzIzz


. (2.29)

The corresponding rotation Hamiltonian can then be decomposed into three parts:

H(p,q) =

x,y,z∑
k

hk(p,q) + V (q), (2.30)

hx(p,q) =
1

8Ixx
(pT · {−q1, q0, q3,−q2})2, (2.31)
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hy(p,q) =
1

8Iyy
(pT · {−q2,−q3, q0, q1})2, (2.32)

hz(p,q) =
1

8Izz
(pT · {−q3, q2,−q1, q0})2, (2.33)

The symplectic integration can be done by applying the Trotter theorem on equations. 2.31,

2.32 and 2.33. Unlike the Velocity-Verlet algorithm mentioned above, the NO-SQUISH

integrator has to be decomposited into up to 10 terms.
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3.0 SIMULATION RESULTS

3.1 COMPUTATIONAL DETAILS

The molecular dynamics code used for the simulations was written by myself and is named

Homura. The DPP model14 provides the force field for the neutral water cluster; while

the OEPM model implemented in the PISCES code,24 developed in the Jordan group, is

used for describing the interaction of the excess electron with the water cluster. The OEPM

model14,24 closely reproduces the electron binding energies from ab-initio calculations. Since

the DPP model employs rigid water monomers, the NO-SQUISH integrator39 is combined for

doing the molecular dynamics simulations. In this report, the water hexamer anion observed

was chosen to test the code. This system was selected for study as it is the best char-

acterized (H2O)−n cluster, both experimentally and computationally.22,41 Three structures,

tweezers, AA (double H-bond acceptors), and book (Figure. 2), were used as the starting

structure. The book isomer of the neutral cluster is of particular interest as the Johnson

19



Tweezers AA Book

Figure 2: Initial structures of (H2O)−6 used in the simulations.

group has established that it is the precursor of the dominant (AA) form of the anion in

the experiments.42 The initial velocities of molecules in the cluster were randomly assigned

based on Maxwell-Boltzmann distributions at temperatures of 50, 100 and 150K; center-of-

mass translation and cluster rotation were not removed as they did not affect the properties

interested. NVE simulations were carried out with a time step of 0.001 picosecond.

3.2 RESULTS

The time dependence of the dipole of the neutral water cluster is shown in Figure 2, and

the VDE of the excess electron obtained from simulations starting from the tweezers, AA

and book structures are reported in Figures 3, 4 and 5. From the figures, it is seen that the
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electron binding energy (EBE) loosely tracks the dipole (Figure. 6, 7, and 8), as expected

for dipole-bound anions. The wavefunctions at time 2.0 picoseconds are shown in Figure 10.

In the simulations starting from the tweezers structure, rearrangement to the more sta-

ble AA structure occurs within 200 femtoseconds, even at temperatures as low as 50K. In

the T= 100 and 150K simulations, the cluster rearranges to a low-dipole non-AA struc-

ture around 1.8 picoseconds.42 In the simulations starting from the AA structure, the basic

structural motif is preserved for the duration of the simulations, i.e., up to ∼ 5 picosec-

onds. However there are fluctuations where the dipole moment drops about 1 Debye with a

corresponding decrease in the EBE.43 In the simulations starting from the book structure,

rearrangement to a prism structure is observed in the T=50 and 100K simulations. Sur-

prisingly, the book structure is kept in the T=150K simulations. Although the book to AA

rearrangement is seen experimentally,42 in none of the simulations starting from the book

structure was transformation to the AA structure was observed. This is apparently due to

the high rearrangement barrier, which has been calculated to be 17.6 kJ/mol.44 The evo-

lution of the dipole moment and EBE for the simulations starting with the three different

initial structures at initial temperature = 50K are reported in Figure 11.
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Figure 3:

Time evolution of (a) the dipole moment and (b) electron binding energy of (H2O)−6 in

simulations starting from the tweezers structure. The structures at 2 picoseconds at T=100

and 150K, noted as A and B are shown in Figure 10.
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Figure 4:

Time evolution of (a) the dipole moment and (b) electron binding energy of (H2O)−6 in

simulations starting from the AA structure. The structures at two specified time points, C

and D, for the simulation with initial temperature 150K are shown in Figure 9.
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Figure 5: Time evolution of (a) the dipole moment and (b) electron binding energy of (H2O)−6

in simulations starting from the book structure.
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Figure 6:

Relationship between the electron binding energy and the dipole moment of the neutral

cluster from a simulation starting from the tweezers structure.
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Figure 7:

Relationship between the electron binding energy and the dipole moment of the neutral

cluster from a simulation starting from the AA structure.
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Figure 8:

Relationship between the electron binding energy and the dipole moment of the neutral

cluster from a simulation starting from the book structure.
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C at time t=2.94 ps, Dipole = 7.99 Debyes, EBE = −280 meV

D at time t=4.35 ps, Dipole = 8.17 Debyes, EBE = −300 meV

Figure 9:

Structures C and D sampled in the T=150K simulation of (H2O)−6 starting from the AA

structure. The isosurface of excess electron wavefunction is drawn with an absolute value of

0.01e1/2 · Bohr−3/2.
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Tweezers AA Book

(1) Initial temperature: 50K

(2) Initial temperature: 100K

(3) Initial temperature: 150K

Figure 10:

Wavefunction of the excess electron at 2.0 ps, isosurface drawn with an absolute value of

0.01e1/2 · Bohr−3/2. Structures A and B in Figure 3 are shown as the leftmost pictures in

the second and the third row.
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Figure 11:

Comparison of time evolution of (a) the dipole moment and (b) electron binding energy of

(H2O)−6 in simulations starting from three structures, with initial temperature T=50K.
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4.0 FUTURE WORK

In the future one important direction is to map out the pathways for conversion of the

surface- to cavity-bound excess electron states of (H2O)−n clusters.17 An initial challenge is

to model the book to AA rearrangement of (H2O)−6 , which is evidenced by experiments42.

At present the MD simulation requires several days on a single CPU core to acquire ∼ 5

picoseconds of simulation time for (H2O)−6 . Times much longer than that are required to

overcome the barrier in the potential energy surface. Although parts of the OEPM code

have been parallelized, there is still a bottleneck at matrix diagonalization step. By use of

parallel sparse matrix eigensolvers it should be possible to achieve a speedup of 10 ∼ 20× of

the code depending on the system size. In addition, it is likely that the rate of isomerization

would be greatly enhanced upon inclusion of nuclear quantum effects, e.g., by mean of path-

integral molecular dynamics (see below). This has been found to be the case for neutral water

clusters.45–47 It is also a goal to use molecular dynamics simulations to simulate vibrational

energy redistribution following vibrational excitation of a specific OH stretch mode in a
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(H2O)−n cluster. This will require making the force field flexible. One possible approach would

be introducing intramolecular terms for O-H bonds and H-O-H angle similar to AMOEBA

force field,48 another possibility could be fitting the potential curve of one water molecule

using B-splines. A refitting of the OEPM parameters might also be necessary. The flexible

force field can then be used to theoretically predict the vibrational spectra. Since many

experimental studies have used vibrational spectroscopy6,49 on (H2O)−n , being able to predict

spectra for different isomers would be very valuable.

The excess electron in bulk water is also of interest. Periodic boundary conditions (PBC)

are needed for such simulations. Here the key quantity to calculate is the electronic absorp-

tion spectrum.50 To reduce the computational cost of such calculations, we will explore

various approximations for describing the long range electron-water interactions.11

Due to the light mass of the hydrogen nucleus, vibrational quantum effects, in partic-

ular, zero-point motion, are expected to be important in the (H2O)−n clusters. Quantum

delocalization and tunneling are also expected to be significant.47 To date all Monte-Carlo

and MD simulations of (H2O)−n clusters have ignored nuclear quantum effects. Path integral

molecular dynamics (PIMD) would be able to address these quantum effects.51,52

Finally, a long-term goal is coupling our one-electron models with traditional electronic

structure methods to treat systems such as (H2O)−n (CO2). This problem has been studied
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experimentally by the Johnson group.53 Here the CO2 would be treated all-electron and the

water molecules by means of our model potential approach. This would facilitate simulation

of the reduction of CO2 into industrial useful materials, e.g. HCOOH, CH2O or CH3OH.54,55
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