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Colloidal semiconductor nanoparticles (NP) are emerging as a new class of solution-processable 

materials for low-cost, flexible, thin-film photovoltaic devices. The NP quantum size effect 

allows researchers to selectively tune the NP’s absorption coverage across a broad range of the 

solar spectrum. Recent advances have led to a power conversion efficiency of 7% for NP-based 

solar cells. However, exciton generation, separation, and recombination processes in these 

devices are not well-understood, which largely limit further improvement of the efficiency. Thus, 

this dissertation studies the underlying processes that control the kinetics for photogenerated 

charges in the NP-based devices. The first work in this dissertation addresses how the size-

tunable energetics of the NPs change once they are electronically coupled with a conductive 

substrate. The second study focuses on the energy architecture and alignment for the NP with 

respect to the energy levels of electron and hole transporting media. The third study explores the 

donor-acceptor interfacial charge transfer between a conjugated copolymer and a NP with the 

goal of driving efficient charge separation for inorganic/organic hybrid solar cells. The last study 

investigates the effect of thermal annealing on the photovoltaic performance for PbS NP/TiO2 

depleted heterojunction solar cells. The findings in these studies provide a deeper understanding 

of charge transfer kinetics for the NP, and may facilitate the development of the NP-based 

photovoltaics for use in next generation solar cells. 
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1.0  INTRODUCTION 

Inorganic semiconductor nanoparticles (NPs) are a new class of semiconductor materials with 

nanoscale dimensions (2-10 nm in diameter), that exhibit a wide range of size-dependent 

properties.1 Recent advances in our experimental and theoretical understanding of their 

properties have allowed rapid developments in NP-based electronic and optoelectronic devices.2 

Compared to inorganic bulk semiconductors, the bandgap of the semiconductor NPs can be 

simply tuned by varying the NP size in synthesis. This feature allows the use of a single material 

with different bandgaps to harvest a broad range of the solar spectrum. In addition, 

semiconductor NPs can be synthesized and crystallized in solution at a low temperature. Hence, 

they are compatible with the solution-processing technologies, which makes the inexpensive roll-

to-roll production possible for the NP-based devices.3 Also because of the solution-

processibility, NPs can be integrated into different types of devices, such as p-n junction solar 

cells, bulk heterojunction solar cells, or NP-sensitized solar cells.  

The extinction coefficients of the NPs at the bandgap transition range from 104 to 106 M−1 

cm−1, up to 100 times larger than that for ruthenium(II) tris(bipyridine) dyes used in most dye-

sensitized solar cells.4 Furthermore, NPs are more photostable than organic chromophores with 

comparable extinction coefficients. For instance, when used as fluorescent labels for biological 

samples, CdSe/ZnS core/shell NPs maintained their quantum yield under continuous UV 

irradiation up to 4000 times longer than a fluorescein dye.5  
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Although significant challenges remain, semiconductor nanoparticles are a promising 

material for use in the next-generation solar cells,6 because their unique features offer a simple 

and novel avenue for efficient thin-film photovoltaics and cost-effective solar electricity at the 

utility scale. This chapter starts by discussing the fundamental quantum theories and the 

synthesis of the semiconductor NPs, and it is followed by a review of recent progresses for the 

NP-based photovoltaic technologies. The next section addresses the current challenges and future 

outlooks for the NP-based photovoltaic application. This chapter ends by providing an outline of 

the scope and important findings in this dissertation. 

1.1 QUANTUM CONFINEMENT EFFECT 

Semiconductor NPs demonstrate size-dependent bandgaps and bandedges, which are normally 

termed as the quantum confinement effect.  This effect can be semi-empirically modeled by the 

effective mass approximation (EMA):7   

∆Egap = Egap
NP − Egap

Bulk =
ℎ2

2𝑑2
[

1

𝑚𝑒
∗

+
1

𝑚ℎ
∗ ] −

3.6𝑒2

4𝜋𝜖0𝜖∞𝑑
 Equation 1 

in which ∆Egap is the bandgap difference between the NP (Egap
NP ) and the bulk semiconductor 

(Egap
Bulk), ℎ is the Planck constant, 𝑑 is the NP’s diameter, 𝑚𝑒

∗  and 𝑚ℎ
∗  are the effective mass of the 

electron and hole, respectively, 𝑒 is the electron charge, 𝜖0and 𝜖∞ are dielectric constant of the 

vacuum and the semiconductor. Because the bandedge values for the bulk semiconductors are 

well-known, the EMA can also estimate those for the NPs by using Equation 2 and 3: 

ECBM = ECBM
Bulk + ∆Egap [

𝑚ℎ
∗

𝑚ℎ
∗ + 𝑚𝑒

∗
] Equation 2 
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EVBM = EVBM
Bulk + ∆Egap [

𝑚𝑒
∗

𝑚ℎ
∗ + 𝑚𝑒

∗
] Equation 3 

in which, VBM and CBM stand for the valence band maximum and conduction band minimum. 

Figure 1.1 shows the EMA results for various sizes of CdSe and CdTe NPs. It demonstrates the 

quantum confinement effect, namely, 1) the bandgaps and bandedges (VBM and CBM) of the 

NPs are strongly size-dependent; and 2) they gradually approach the bulk values as the NP size 

increases.  

 

Figure 1-1. Panels A and B show the CBM and VBM values for CdSe and CdTe NPs that the 

thesis author calculated by using EMA. The dash lines indicate the bulk CBM and VBM values. 

For CdSe, Egap
Bulk = 1.74 eV, 𝑚𝑒

∗ = 0.13, and 𝑚ℎ
∗ = 0.44, and 𝜖∞ = 4.86. For CdTe, Egap

Bulk = 1.44 

eV, 𝑚𝑒
∗ = 0.11, 𝑚ℎ

∗ = 0.35, and 𝜖∞ = 10.20.  

1.2 SYNTHESIS OF SEMICONDUCTOR NANOPARTICLES 

The quantum confinement effect can be demonstrated in experiment by synthesizing NPs with 

different sizes and monitoring their spectroscopic features. The wet synthesis is one of the 
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important advantages for the semiconductor NPs.1 After years of development for the precursors, 

surface ligands, solvents, reaction mechanisms, etc.,8 researchers now are able to easily and 

precisely control NP synthesis. Recently, an automated NP synthesis robot has become 

commercially available, which is a key step towards cheap and large-scale production for NP-

based devices.9 To date, multiple different types of semiconductor materials, including II-VI 

group (CdS, CdSe, CdTe), III-V group (InP, InAs), IV-VI group (PbS, PbSe, PbTe), and so on,10 

have been synthesized into nanoparticle form. 

1.2.1 Standard synthetic protocol 

In this dissertation, the hot-injection method is primarily used for synthesizing semiconductor 

NPs.11 Typically for the synthesis of CdTe NPs, the cadmium precursor is prepared by 

decomposing CdO powder in a solvent (such as octadecene (ODE)) with surface capping ligands 

(e.g., alkylphosphonic acid or oleic acid) at 300 °C. The tellurium precursor is normally prepared 

by dissolving elemental tellurium powders in trioctylphosphine (TOP). Then, the tellurium 

precursor is injected into the cadmium precursor at 300 °C to start the NP nucleation. The size of 

the NP is primarily controlled by the precursor concentration, reaction temperature, and the 

growth time. After reaching the desired size, the reaction is quenched by removing the heating 

mantle. The NP synthesis can also be carried out in the aqueous phase by using water-soluble 

precursors (e.g., CdCl2 and NaHTe) and ligands, such as 3-mercaptopropionic acid.12 

Figure 1.2 shows the steady-state absorbance and photoluminescence spectra for the 

CdTe NPs synthesized in ODE by following the above procedure. The red-shifting of the spectra 

as the time grows demonstrates the size evolution for the CdTe NPs; namely, the quantum 

confinement effect. 
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Figure 1-2. Panels A and B show that the absorbance (OD) and photoluminescence (PL) spectra 

of CdTe NPs. 

Because of the size-tunable energetics of the NP, researchers are able to optimize the 

energy alignment in devices by tuning the energy offsets between the NP and the electrode. This 

feature can be used to achieve an optimal charge separation driving force, while maintaining 

efficient light harvesting. For example, Kamat et al13 have reported for a CdSe-NP-sensitized 

TiO2 solar cell that different electron transfer rates can be obtained by using NPs with different 

sizes, because varying the NP size also changes the CBM energy offset between the NP and the 

TiO2 layer, namely, the electron transfer driving force. 

1.2.2 Shape-controlled NP synthesis 

The shape of the NP can also be controlled by carefully selecting surface ligands, precursor 

concentration, and precursor/ligand molar ratio.10e,14 Figure 1.3 shows that spherical CdSe NPs 

are formed by using oleic acid (OA) as the ligand at a low precursor concentration, while 

elongated nanostructures, such as rods, are prepared with tetradecylphosphonic acid (TDPA) as 

the ligand and a high precursor concentration. Alivisatos et al10e,14 reported that the elongated 
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NPs are created because different NP facets have different surface energy, and the ones with 

higher surface energy tend to grow faster. Thus, the key for kinetic shape control is to use a 

facet-selective surface ligand, such as TDPA, that densely binds to the low-surface-energy facets 

while exposing the high-surface-energy facets and leading to anisotropic NP growth. 

 

Figure 1-3. It shows two transmission electron microscopy (TEM) images for the CdSe NPs 

with different shapes. 

1.2.3 Ligand exchange 

Semiconductor NPs normally have an inorganic core that is stabilized by a layer of organic 

surface capping ligands. Ligand exchange can be used to modify and functionalize the NP 

surface in the post-synthesis stage without affecting the inorganic core. For instance, water-

soluble and highly photoluminescent CdTe NPs can be prepared by replacing the initial fatty 

ligands (e.g., oleic acid (OA)) with water-soluble ligands, such as 3-mercaptopropionic acid 

(MPA). Figure 1.4 show the steady-state absorbance (solid lines) and photoluminescence (dash 

lines) spectra for hydrophobic OA-CdTe NPs (black), which are ligand-exchanged to hydrophilic 

MPA-CdTe NP (red) without significant changes of the NP size. In addition, this ligand 

exchange significantly enhances the quantum yield of the CdTe NPs, because thiol ligands are 

dots rods
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able to remove the surface trap states from the CdTe NP and thus enhance the radiative exciton 

recombination.15 Similar ligand exchange methods have been used to make pyridine/thiophene 

capped NPs;16 halide capped NP;17 conjugated oligomer grafted NPs;18 NPs with bio-compatible 

polymer coatings;19 NPs with inorganic capping,20 and even naked NPs.21 Furthermore, the 

ligand exchange can also be carried out in the solid-state with NP thin films. Several group have 

used short bidentate linkers, such as 1,2-ethanedithiol10h or hydrazine,22 to treat NP thin films. 

This treatment replaces the initial long insulating ligands on the NP surface, reduces the inter-NP 

distance, and enhances the photoconductivity of the NP films.    

 

Figure 1-4. This plot compares the steady-state absorbance (OD, solid lines) and OD-corrected 

photoluminescence (dash lines) spectra for OA-CdTe NPs (black) in chloroform and MPA-CdTe 

NP (red) in DI water. 
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1.3 NP-BASED PHOTOVOLTAICS 

As briefly mentioned above, semiconductor NPs have some unique photovoltaic properties that 

can be utilized to develop next-generation solar cells. First of all, the NP solutions or their 

hybrids with organic semiconductors are wet-processable and can be directly used as a 

photovoltaic ink to print large-scale, low-cost, and flexible thin film solar cells.10g,23 Moreover, 

NPs with different sizes can be integrated into the same device to enhance light harvesting and 

solar energy conversion by employing a synergy of electron transfer and energy transfer from the 

small NP to the large one because of the energy cascade.24 The large NP collectively 

concentrates and converts the solar energy into photo-generated carriers (electron and hole) that 

are further injected into the charge transport layers. Additionally, multiple exciton generation 

(MEG) or hot electron transfer is another important feature of semiconductor NPs that holds the 

promise for overcoming the Schockley-Queisser limit.25 Recent studies for Pb-chalcogenide NPs 

have proven the feasibility of this concept by showing an external quantum efficiency larger than 

100% at wavelengths below 400 nm.26 This section will review the latest advances for several 

different types of NP-based photovoltaic devices, and also discuss their challenges and outlooks. 

1.3.1 Hybrid organic/inorganic bulkheterojunction (BHJ) solar cells 

Hybrid organic/inorganic bulkheterojunction (BHJ) solar cells, normally consisting of p-type 

conductive polymers (CP) and n-type semiconductor NPs, are a rapidly growing area for 

developing next-generation solar cells,18,27 because they combine the complementary advantages 

of both CPs and NPs.8,28 Figure 1.5 shows that hybrid BHJ cells normally have a PEDOT:PSS 

coated ITO electrode as the hole transport layer, on top of which a blended layer of NP and CP 
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are spin-coated from their mixed solution. A shallow work function metal (e.g. Al) is then 

evaporated as the back contact for electron collection. Although the hybrid cells have a similar 

working principle as the organic BHJ cells, such as CP/C60 systems, using semiconductor NPs as 

the electron acceptor (instead of C60) can enhance the light harvesting because of their high 

extinction coefficient and good absorption coverage in the solar spectrum. The NPs can also 

lower the exciton binding energy by providing a higher dielectric constant.29 However, the power 

conversion efficiencies30 (~ 5%) reported for organic/inorganic hybrid devices, such as 

P3HT/CdSe NP BHJ cells, are significantly lower than that for inorganic devices and organic 

devices. Such a low efficiency is believed to arise largely because of rapid charge recombination 

at the hybrid interface.31 Thus, the challenge is to enhance the charge transfer and charge 

separation at the organic/inorganic donor-acceptor (D-A) heterojunction.18,27 

 

Figure 1-5. Panel (a) illustrates the general device structure for the hybrid BHJ solar cells. Panel 

(b) and Panel (c) shows a real device and an energy diagram for the device in Panel (a). Figures 

adapted from reference 32.32 

NP

NP
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1.3.2 NP-sensitized solar cells 

Similar to dye-sensitized solar cells (DSCs),33 semiconductor NP sensitized solar cells (NPSC) 

(Panel c in Figure 1.6) operate by a similar principle but replace organic dye molecules with NPs 

as the sensitizer. Most of the NPSC devices reported to date use cadmium chalcogenide NPs as 

the sensitizer.6 Figure 1.6C shows that the NPSC generally has a NP-decorated TiO2 layer on a 

fluorine-doped tin oxide electrode (FTO), an electrolyte with the hole scavenger redox couple 

(e.g., polysulfide), and a Pt-based counter electrode. Under illumination, an electron-hole pair is 

generated in the NP, which then separately injects the photogenerated electron and hole into the 

TiO2 layer and the redox couple in the electrolytes. Recent development of NPSCs has increased 

their efficiency to above 5%,34 which is still much lower than that (~ 14 %) of the DSCs.35 

Several groups36 suggested that this difference is caused by the sluggish hole transfer at the 

NP/electrolyte interface, including the hole injection rate, the redox couple diffusion rate and 

regeneration rate, which leads to multiple charge recombination processes because of the back 

electron transfer. Thus, increasing the hole transfer rate is the key step to improve the efficiency 

for the NPSCs. Besides, the anodic corrosion of the NP by the electrolytes also plays a role in the 

overall performance of the NPSC.37  
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Figure 1-6. A schematic representation of the device structure and working principle for NP-

based Schottky cell (Panel a), depleted heterojunction cell (Panel b), and sensitized cell (Panel 

C). Figure taken from reference 38.38  

1.3.3 Depleted heterojunction solar cells 

Solid-state depleted heterojunction solar cells (Panel b in Figure 1.6) are the most efficient NP-

based photovoltaic technology to date.39 Lead chalcogenide NPs are the most used materials in 

this type of cell because of their low bandgaps, high exciton Bohr radius, and low exciton 

binding energy.25,40 A recent work by Sargent’s group39b achieved an efficiency of 7 % for a 

PbS-NP depleted heterojunction cell. Similar to the NPSC, Figure 1.6 (Panel b) shows that the 

depleted heterojunction cells also have a FTO/TiO2 electrode as the electron transport layer, 

above which a thin film (~200-400 nm) of the NP is spin- or dip-coated from the solution. The 
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Au back contact evaporated on top of the NP layer provides an ohmic contact to the hole 

transfer. The advantages of the depleted heterojunction cell over the NPSC are: 1) eliminating 

the corrosion of the NP by employing a solid-state approach; 2) simplifying the hole transfer 

process, and thus enhances hole transfer rate and inhibits charge recombination; and 3) 

accelerating the charge separation by using both donor-acceptor energy offsets and a built-in 

electric filed in the depletion region.   

1.3.4 Schottky cells 

Compared to the depleted heterojunction cells, the Schottky cells (Panel a in Figure 1.6) have a 

thin film of NPs sandwiched between a transparent conductive electrode (e.g., ITO) and a 

shallow work function metal back contact, such as Al. The photoinduced charge separation 

occurs at the NP/Al Schottky junction in which the Schottky barrier favors the extraction of 

electrons from the NP film, while blocking the hole transfer.2a,10h However, the largest limitation 

for the Schottky solar cells is that the charge separation interface is far away from the 

illumination front side (ITO/NP interface), which indicates that the excitons generated by the 

highest light intensity at the ITO/NP interface have to diffuse through the entire NP film before 

they reach the Schottky junction. This process significantly increases the probability for charge 

recombination. Moreover, the open circuit voltage (Voc) of the Schottky cell is normally limited 

by Fermi-level pinning because of the presence of NP surface traps.2a,10h 
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1.4 CHALLENGES AND OUTLOOKS 

Despite the rapid improvement for the efficiency, NP-based photovoltaics still have to overcome 

many challenges in order to meet the requirement of large-scale commercialization and long-

term usage. Reducing the photovoltaic cost can be potentially achieved by using solution-

processing methods, flexible substrates, and earth-abundant semiconductor materials, such as 

Pb(S, Se), PbI2, and In(Sb, As), etc.41 Further improvement for the efficiency has to reply on 

some transformative research breakthroughs, especially in a few largely unexplored areas as 

discussed below. 

1.4.1 Trap states 

Better surface-passivation and film-packing strategies are needed for making trap-free NPs and 

their PV devices.42 To exceed power-conversion efficiencies of 10% in a single-junction planar 

cell, a material’s electron and hole mobility should exceed 1 cm2 V–1 s–1 and its bandgap should 

be as trap-free as possible (< 1014 cm–3).43 This requirement demands a deep understanding of the 

electronic coupling between the NP and its surface ligands. Much progress has been made 

towards this objective by using different bidentate ligands (or linker), such as ethanedithiol 

(EDT), benzenedithiol, and 3-mercaptopropionic acid (MPA). Sargent et al39b have recently 

reported that hybrid passivation with atomic chloride ligands and the MPA linkers reached an 

efficiency of 7% for a PbS-NP depleted heterojunction device, which is the highest reported to 

date. Time-resolved infrared spectroscopy revealed that the high efficiency was reached because 

the hybrid passivation reduced the density of trap states to a scale of 1016 cm–3, which is still two 

orders of magnitude higher than the desired value, however. 



 14 

1.4.2 Device architectures 

Novel device architectures are needed to enhance light absorption and charge extraction for 

semiconductor NPs.43 Because of the size-tunable bandgap and bandedge, various sizes (or 

types) of the NPs can be integrated into a tandem cell, which has the ability of capturing a wide 

range of light. Researchers recently reported a tandem cell44 comprising a visible-absorbing front 

cell (with 2 nm diameter PbS NP) and an infrared-absorbing back cell (with 4 nm diameter PbS 

NP). A recombination layer placed between these two cells provided a favorable energy 

alignment for hole current from the front cell and electron current from the back cell, while 

adding their open-circuit voltages without causing significant loss. Compared to the single 

junction device, the tandem cell showed a 40% improvement in the power conversion efficiency.  

In addition, nanostructured electrodes can be used to enhance the charge extraction 

efficiency for the NP-base devices by providing a larger charge-separating interface.23c,43 For 

instance, it has been recently demonstrated for a depleted heterojunction cell that a n-type TiO2 

layer with nanopillar structures can infiltrate into the PbS-NP film and form a “depleted bulk 

heterojunction”,45 which extends the volume of the depletion region into the NP film and 

enhances the charge separation and extraction efficiency. Moreover, the depleted bulk 

heterojunction with extended depletion region allows the use of a thicker NP film so that more 

light can be captured. 

1.4.3 Fundamental physics 

While much progress has been made in terms of the device optimization, many fundamental 

physical aspects remain largely unexplored for the NP-based photovoltaics. For example, despite 
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the well-reported size-dependent energetics for isolated semiconductor NPs, it is incorrect to 

assume that these quantum properties will remain the same once the NPs are incorporated into 

the device, because the electronic couplings between the NP and its surroundings (e.g., 

neighboring NPs, ligands/linkers, or charge transport media) may alter the quantum confinement 

of the NPs by extending or squeezing the carrier wavefunctions. Thus, accurate determination of 

the NP energetics with the presence of those couplings is highly important. Several workers15b,46 

have found that the electronic interaction between the NP and the conductive substrate can pin 

the HOMO (or LUMO) of the NP to the Fermi level of the substrate. This finding is very 

important because the change of the NP bandedge can strongly affect charge transfer and charge 

separation dynamics.  

In addition, the charge separation and charge recombination dynamics are not well-

understood for the NP-based devices. Conventional Si-based solar cells use a built-in electric 

field in a depletion region to separate charges and inhibit recombination. In contrast, most NP-

based devices are excitonic so that charge separation is mostly driven by the donor-acceptor 

energy offset. However, their charge separation efficiency largely suffers from germinate and/or 

non-germinate charge recombination processes,31,47 originating from limited exciton diffusion 

length,48 back charge transfer,23c and surface trap states.27c,49 One way to overcome this challenge 

is to optimize the energy alignment and energy architecture of the NP with respect to the other 

components in the device.   

Another way to enhance the charge separation for NP-based photovoltaics is via robust 

interfacial engineering at the donor-acceptor heterojunction. Researchers50 have found a way to 

create an internal electric field between a NP donor and a NP acceptor. This field has a similar 

function as the built-in electrical field in conventional p-n junction solar cell, namely, enhancing 
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charge separation and inhibiting charge recombination. The internal electric field was generated 

by placing opposite surface charge on the ligands of the donor and acceptor NPs, which are 

CdTe NPs and CdSe NPs in their study. When CdTe and CdSe NPs are negatively (-) and 

positively (+) charged respectively, their electrostatic assemblies in solution possessed an 

internal electrical field with a direction from (+)CdSe NP to (-)CdTe NP. Photoluminescence 

quenching experiments show a rapid charge transfer across the donor-acceptor junction for this 

assembly, because their internal electric field drives the charge separation in the same direction 

as the donor-acceptor energy offset. However, no significant charge transfer can be observed 

under the same condition with a reversed internal field, that is, for the assembly of (+)CdTe/(-

)CdSe. Their results suggest that a dual charge-separation driving force can be utilized for the 

NP-based devices by combining the D-A energy offsets and the internal electrical field. 

1.5 SCOPE OF THE DISSERTATION 

In order to gain more insights about the fundamental physics for the semiconductor NPs and 

advance NP-based photovoltaic technologies, the studies included in this thesis aim to 

systematically study 1) the NP energetics in a model system when the effect of the surroundings 

comes into play; 2) the relation between the energy architecture/alignment and charge transfer 

rate for NP-based donor-acceptor systems; 3) the effect of the internal electric field on the charge 

transfer rate for an organic/inorganic (polymer/NP) hybrid donor/acceptor system; and 4) the 

interfacial engineering for facilitating charge transfer in NP-based PV devices. The ultimate goal 

of this thesis is to explore new strategies for enhancing charge separation, while inhibiting 

charge recombination for NP-based donor-acceptor systems and devices. 
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Chapter 2 discusses our work on determination of the size-dependent electronic 

energetics for CdSe and CdTe NP assemblies on Au electrodes. It reveals that the electronic 

coupling between the NP and the Au substrate produces an interfacial dipole that pins the 

HOMO of the NP to the Fermi level. Multiple characterization methods, including 

electrochemical, photoelectrochemical, and single/two-photon photoemission techniques, have 

been used in parallel to measure the energetics for various sized CdSe and CdTe NPs. The results 

from different methods are in good agreement with each other, and they are helpful for the 

following studies in which the energy architecture and alignment for NP-based donors and 

acceptors becomes important.   

Chapter 3 addresses the relation between the energy architecture and the charge transfer 

rate for a CdTe-CdSe NP donor-acceptor system. First this work optimizes the energy 

architecture and alignment for the NP donor and NP acceptor with respect to the electron and 

hole transporting medium by tuning the NP size. Then, the photocurrent generated by the NP 

donor and acceptor, as an indicator for the charge transfer rate, is measured in two different 

systems, namely, one in an electrochemical cell and the other one in a p-n junction device. The 

results from both systems reveal that the spatial order of the NP donor and acceptor determines 

overall energy alignment within the device, and thus affects the charge transfer rate. This work 

demonstrates an idea of electrochemically-guided photovoltaic devices, in which the results from 

the electrochemical cell help to optimize the energy alignment in a real device.    

Chapter 4 studies the effect of an internal electric field on the charge-separation 

efficiency for a hybrid polymer-NP donor-acceptor system. An internal charge-separating 

electric field is created by placing opposite surface charges on the polymer and NP surface. 

Thus, the electrostatic assemblies of the polymer and NP have an internal electric field at the 
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donor-acceptor heterojunction, whose direction can be aligned with the donor-acceptor energy 

offsets. The combination of the internal electric field and the energy offsets generates a dual 

charge-separation driving force, which can help achieve efficient charge separation and inhibit 

charge recombination. This work sheds light on developing “smart” donor-acceptor materials for 

hybrid bulkheterojunction solar cells by combining donor-acceptor energy offsets and the 

internal electric field. 

Chapter 5 shows our recent work about the effect of thermal annealing on the 

heterojunction microstructure and energy conversion efficiency for a TiO2/PbS NP depleted 

heterojunction solar cell. Nanoscale structure and composition analysis have revealed that 

thermal annealing causes intermixing of the TiO2 and PbS NP phase at the heterojunction. This 

intermixing leads to the formation of a depleted bulk heterojunction (DBH) which increases the 

depleted volume and promotes the carrier extraction from PbS NP to TiO2. In addition, the 

thermal annealing causes inter-particle necking between PbS NPs and increases the crystallinity 

of the PbS NP film; and thus enhances the photoconductivity. Compared to unannealed PbS/TiO2 

heterojunction solar cells, the formation of the DBH and the necking between PbS NPs led to a 

doubling of the short-circuit current (Jsc) and an improved energy conversion efficiency by 39%.  
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2.0  DETERMINATION OF THE ELECTRONIC ENERGETICS OF 

SEMICONDUCTOR NANOPARTICLE 

This work has been published as Wang, Y.; Xie, Z.; Gotesman, G.; Wang, L.; Bloom, B. P.; 

Markus, T. Z.; Oron, D.; Naaman, R.; Waldeck, D. H. The Journal of Physical Chemistry C 

2012, 116, 17464. The thesis author prepared all the samples, conducted electrochemical and 

photocurrent measurements, analyzed data, and prepared the manuscript. The supporting 

information for this chapter is provided in Appendix A. 

 

This work explores the electronic states of CdTe semiconductor nanoparticles (NPs) that 

are immobilized on a polycrystalline Au film through an organic linker (dithiol). The HOMO 

and LUMO energies of the CdTe NPs were determined by using photoelectron spectroscopy and 

cyclic voltammetry. The results from these measurements show that the HOMO energy is 

independent of the nanoparticle size and is pinned to the Fermi level, while the LUMO energy 

changes systematically with the size of the NP. Studies with different capping ligands imply that 

the dithiol ligand removes surface states and enhances the optoelectronic properties of the NPs.  
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2.1 INTRODUCTION 

The electronic structure of semiconductor nanoparticles (NPs) is important for their use in 

optoelectronics,1 photovoltaics,2 and photocatalysis.3 In order to optimize performance of the NP 

in these applications, it is necessary to understand and control the alignment between the energy 

levels of the NPs and the substrates (or electrodes), e.g., at the interface of NPs and a TiO2 

substrate in a quantum dot sensitized solar cell,4 or at the interface of NPs and a back metal 

contact in a Schottky photovoltaic device.5 Although much is known from the solid-state physics 

literature about semiconductor and metal-semiconductor interfaces, relatively few works have 

addressed the metal-semiconductor nanoparticle interface. This work uses photoelectron 

spectroscopy and electrochemistry methods to probe the electronic states of CdTe NPs that are 

assembled into a monolayer film on a polycrystalline Au film by a dithiol linker.  

In an earlier study, we used photoelectron spectroscopy and cyclic voltammetry to 

investigate the electronic states of CdSe NPs that were adsorbed on a polycrystalline Au film via 

a dithiol (DT) organic linker.6 That study showed that the HOMO energy of the CdSe NP was 

independent of its size (for sizes greater than 2.8 nm diameter), and it was pinned at ~1.25 eV 

below the Fermi level of the Au.  In contrast, the LUMO energy of the CdSe NP changed 

systematically with its size. A similar effect was reported by us for the case of CdSe/ZnS 

core/shell NPs.7 Also, in the case of CdSe8  and PbSe9 NPs, it has been reported that the HOMO 

is ‘pinned’ to the Fermi level of a ZnO semiconductor substrate, when a short organic linker, 

such as 3-mercaptopropionic acid or ethanedithiol, is used to tether them. Presumably, the 

pinning results from a high density of interfacial states at the metal-nanoparticle interface.6,10 

Given these reports for the Fermi level pinning of CdSe NPs and the chemical similarities 

of CdSe and CdTe, it is interesting to explore the nature of the CdTe NP interaction with Au and 
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whether the HOMO of CdTe NPs are pinned relative to the Fermi level of Au. Two earlier 

studies have examined the electronic states of CdTe NPs at electrode interfaces. Haram et al11 

used cyclic voltammetry to determine the HOMO and LUMO energies of CdTe NPs diffusing in 

solution. Under these conditions, the electrochemical and optical determinations of the HOMO-

LUMO gap were in excellent agreement, and they found that the HOMO energy changed with 

the size of the NP – presumably because it was not immobilized on the electrode. Jasieniak et 

al.12 used a photoelectron spectroscopy in air method to examine the electronic states of CdSe 

and CdTe NPs in drop cast films on indium-tin oxide electrodes. Their data suggest a weak 

dependence of the HOMO energy on the particle size for both CdSe and CdTe NPs. The HOMO 

and LUMO energies that were assigned to the CdTe NPs in these two studies differ by 0.5 to 1.0 

eV.  Part of this energy difference may be caused by the different capping ligands on the NPs 

used in those two works; it has been reported that the dipole moment of the ligand can affect the 

energetics of the NPs.13 Another complicating feature of the comparison is the different 

substrate/electrode that was used in these two studies.9  

This work examines the electronic states of CdTe NPs on Au electrodes by 

photoemission and cyclic voltammetry. The same substrate, the same capping ligand, and the 

same sample preparation method are used for the photoelectron spectroscopy and cyclic 

voltammetry measurements to ensure that the two systems are quantitatively comparable. This 

work provides a rigorous determination of the HOMO and LUMO energies of CdTe NPs and 

demonstrates consistency between the photoelectron and cyclic voltammetry methods. This 

study finds that the HOMO of the CdTe NPs is pinned with respect to the Fermi level and that 

the capping ligands affect the exciton lifetime of the CdTe NPs. 
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2.2 EXPERIMENTAL METHODS AND MATERIALS 

2.2.1 Materials 

Cadmium oxide and trioctyl phosphine (TOP) were purchased from Strem Chemicals. 

Tetradecylphosphonic acid (TDPA) was purchased from PolyCarbon Industries. All of the other 

chemicals were purchased from Sigma Aldrich and were used without further purification, unless 

mentioned otherwise. 

2.2.2 Synthesis of NPs 

TDPA-CdTe nanoparticles (NPs) were synthesized by using previously published methods.14 

Briefly, a solution of the tellurium precursor (0.2 mmol Te/ 1 ml TOP) was hot-injected into a 

solution of the cadmium precursor (0.4 mmol CdO/ 0.8 mmol TDPA/ 5 ml 1-octadecene) at 300 

°C. The sizes of the NPs were controlled by the duration of the reaction and by extra injections 

of the cadmium and tellurium precursors. Figures 2.1A and 2.1B show the steady-state 

absorption and photoluminescence spectra measured in toluene for the small (S), medium (M), 

and large (L) CdTe NPs used in this work. By inputting the wavelength of the first excitonic 

peak into an established model,15 the average size of the NPs is calculated to be about 3.71 nm 

for S, 4.15 nm for M, and 6.00 nm for L NPs.      
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Figure 2-1. Panels A and B show the steady-state absorption (OD) and photoluminescence (PL) 

spectra for the small (S, black), medium (M, red), and large (L, blue) CdTe NPs in toluene. 

Panels C to F show the SEM images for the bare Au substrate (C), Au/DT/S-NP (D), Au/DT/M-

NP (E), and Au/DT/L-NP (F). All scale bars are 100 nm. 

2.2.3 Sample preparation 

The Au substrate was either 150 nm thick Au films on silicon (100) for photoelectron 

spectroscopic measurements, or it was Au ball electrodes for cyclic voltammetry and 

photocurrent measurements in an electrochemical cell. The same procedure was used to make 

NP assemblies in both cases. Namely, the clean Au substrate was immersed overnight in a 

methanol solution of 1 mM 1,9-nonanedithiol (DT) to create a monolayer of DT on the Au 

surface. The Au-dithiol substrate (Au/DT) was then placed into a toluene solution of CdTe NPs 

C D E F
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(optical density around 0.2) for 0.5 to 3 h to immobilize the NPs on the surface, creating a 

Au/DT/NP assembly. This assembly process was characterized by scanning electron microscopy 

(SEM). Panels C through F of Figure 2.1 show SEM images for the bare Au substrate, the small 

NPs on Au (Au/DT/S-NP), the medium NPs on Au (Au/DT/M-NP), and the large NPs on Au 

(Au/DT/L-NP). These images reveal the roughness features of the evaporated Au film and 

illustrate that different NP sizes are adsorbed onto the Au/DT substrate in the three cases. Based 

on the SEM images, the surface coverage of the NPs on Au is estimated to be about 750/m2 for 

the S-NPs, 1250/m2 for the M-NPs, and 2500/m2 for the L-NPs. For studies requiring a 

capping layer of DT on the CdTe NPs, the Au/DT/NP assemblies were immersed into the DT 

solution again to create an assembly of Au/DT/NP/DT. 

2.2.4 Photoelectron spectroscopy 

Both single photon and two photon photoelectron techniques were used to determine the band-

edge energies of CdTe NPs. The Au/DT/NP assemblies were placed in an ultrahigh vacuum 

chamber (<10-8 Torr) where an incident laser pulse excited the samples and the energy of the 

photoelectron was measured by a time-of-flight spectrometer. More details of the apparatus can 

be found in reference 18. Because the Au substrate is grounded and the laser intensity and 

repetition rate (10 Hz) are kept low, the samples do not retain any significant amount of net 

charge between laser pulses. This was verified by observing a stable electron energy spectrum 

which does not vary with time.  

For the single-photon low-energy photoelectron transmission spectroscopy (LEPET, 

Scheme 2.1A), the photon energy is higher than the work function of the sample, so that the 

photoelectrons are directly ejected from states below the Fermi level to above the vacuum level 
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and transmitted to the detector. This measurement provides information on the sample’s density 

of states below the Fermi level, including the HOMO of the NP and surface states of the 

substrate and the NPs.16 

The two-photon photoelectron spectroscopy (TPPE, Scheme 2.1B) uses photons with an 

energy lower than the work function of the sample. The first photon, the “pump” photon, excites 

electrons from below the Fermi level to unoccupied states (i.e., the “intermediate” states) above 

the Fermi level but below the vacuum level. Although most of the electrons relax fully to the 

Fermi level, some fractions are captured by the lowest unoccupied state (the LUMO) of the 

nanoparticle where they can be trapped for a longer time.  If a second laser photon (the ‘probe’ 

photon) arrives on the sample before all of the trapped electrons recombine back into the metal 

substrate, then some fraction of these electrons can be excited to above the vacuum level.  Thus, 

the measured kinetic energy of these photoelectrons provides information about the energy of the 

metastable state, LUMO of the NPs.  

 

Scheme 2-1. A schematic description of the photoelectron spectroscopic techniques used in this 

study. A) The low energy photoelectron transmission spectroscopy (LEPET) for measuring the 

HOMO. B) The two photon photoelectron spectroscopy (TPPE) for measuring the LUMO. 
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2.2.5 Cyclic voltammetry 

The cyclic voltammetry was performed in a three electrode electrochemical cell with a CHI 

618B potentiostat. A chemically modified Au ball electrode (e.g., Au/DT/NP) was used as a 

working electrode, a Pt wire was used as a counter electrode, and Ag/AgNO3 was used as a 

reference electrode (0.54 V vs. NHE). The supporting electrolyte was a 100 mM acetonitrile 

solution of tetrabutylammoniumhexafluorophosphate (TBAPF6). The scan rate was 0.05 V/s. 

2.2.6 Photocurrent measurement 

Photocurrent measurements at a controlled bias potential were performed in the same 

electrochemical cell. In these studies triethanolamine (TEA) was added into the supporting 

electrolyte solution at a concentration of 20 mM to act as a hole scavenger and ensure a stable 

photocurrent. The illumination was provided by a 75 W Xe arc lamp coupled with a multimode 

optical fiber. At a working distance of 2.54 cm, this setup provided an illumination area of 7 

mm2. The illumination was chopped at 1 Hz by a motorized shutter. See reference 3 for more 

details. 
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2.3 RESULTS 

2.3.1 Photoemission Studies 

LEPET. Figure 2.2A shows LEPET spectra for the dithiol coated gold electrodes (Au/DT) and 

three different gold/dithiol/nanoparticle (Au/DT/NP) assemblies when excited by 6.42 eV 

photons. Because the LEPET method measures the density of states below the Fermi level, the 

high kinetic energy cutoff (3.05 ± 0.05 eV) corresponds to the photoelectrons ejected from just 

below the Fermi level.  For the Au/DT reference substrate, the work function is 4.6 ± 0.1 eV 

(given by the photon energy minus the total width of the spectrum, ~ 1.8 eV).  The Au/DT/NP 

assemblies exhibited a strong peak at a kinetic energy of about 1.3 eV, which is not present in the 

Au/DT reference sample. The photoelectron signal of this peak increases as the surface coverage 

of the NP increases (see Figure A1 in Appendix A). Thus, the peak at 1.3 eV is assigned to 

photoelectrons ejected from the filled levels of the NPs. Figure 2.2B shows the photoelectron 

signal of the Au/DT/NP assemblies after the signal from the Au/DT reference has been 

subtracted, and Figure 2.2C shows a plot in which the resultant spectra are rescaled to the same 

peak height. Using the rescaled spectra in Figure 2.2C, the HOMO (or band edge) energy of the 

NP was determined by linearly extrapolating on the high kinetic energy side to determine a 

cutoff energy. For all three sizes of NPs, the photoelectron distribution has the same cut-off 

kinetic energy of 2.25 ± 0.05 eV. This value is 0.80 ± 0.05 eV below the Au/DT Fermi level and 

is assigned to the HOMO energy of the CdTe NPs. In Figures 2.2A and 2.2B, the size-dependent 

variations in the spectral intensity and width are likely caused by the difference in the NP surface 

coverage on Au and/or the NP absorption cross-section.  
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Figure 2-2. Panel A shows the LEPET spectrum for Au/DT (dark yellow), Au/DT/S-NP (black), 

Au/DT/M-NP (red), and Au/DT/L-NP (blue). L, M, and S indicate the nanoparticle size – large, 

medium, and small, respectively. Panel B shows the corresponding spectra after the subtraction 

of the Au/DT spectrum. Panel C shows the spectra in Panel B after scaling them to the same 

signal height, and it shows the extrapolation to the high kinetic energy cutoff. 

The LEPET data in Figure 2.2 demonstrate that the HOMO energy of the CdTe NPs does 

not change over the NP size range of 3.7 nm to 6.0 nm. Although differing in details, these data 

are similar to that reported earlier for CdSe NPs immobilized on Au electrodes.6-7 A quantitative 

comparison with the previous CdSe NP result shows that the HOMO energy of CdTe NPs 

assembled on Au/DT is about 0.4 ± 0.1 eV higher than that of CdSe NPs. This difference is 

similar to that reported by Jasiniek12 for drop cast films of CdSe NPs and CdTe NPs on ITO.  

TPPE. Because the HOMO/LUMO bandgap changes with the NP size and the HOMO 

energy is not changing with the NP size, one expects that the LUMO energy should shift with the 

size of the NPs.6 Unfortunately, the TPPE spectra (see Figure A2 in the Appendix A) for the 

assemblies of Au/DT/NP do not show a clear signal from the LUMO of the NP. This result 

suggests that the excited electron on the LUMO level recombines too rapidly for a sufficient 

population of metastable electrons to be created. Attempts to increase the population by 

increasing the laser intensity were not successful because of the onset of direct non-linear 
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photoemission. In order to increase the population of trapped electrons in the nanoparticle’s 

LUMO, the organic capping ligand was exchanged in order to change the surface state 

distribution on the NP and decrease the surface recombination rate.17 Because thiol ligands are 

known to extend the exciton lifetime for the CdTe NPs,17a a second monolayer of dithiol (DT) 

molecules was used to replace the TDPA from the immobilized NPs (Scheme 2.2).  

 

Scheme 2-2. This scheme shows the ligand exchange process from Au/DT/NP to 

Au/DT/NP/DT.  

After replacing the TDPA ligand with a thiol ligand, the TPPE spectra showed a clear 

spectral signature from metastable electronic states. Figure 2.3 compares the normalized TPPE 

spectrum of Au/DT/M-NP (the black line) with that of Au/DT/M-NP/DT (the red solid line). 

These data show that a shoulder appears at a high kinetic energy for the assembly of Au/DT/M-

NP/DT after the ligand exchange. If one subtracts the signal of Au/DT/M-NP from that of 

Au/DT/M-NP/DT, the shoulder can be separated; it is shown as the red dashed line in Figure 2.3. 

It has a peak located at 1.00 ± 0.05 eV above the Fermi level.  

AuAu

Ligand

exchange

: P

O

C14H29

O O
:

SH

SH

Au/DT/NP Au/DT/NP/DT



 34 

 

Figure 2-3. This figure compares the TPPE spectra for M-NP assemblies before (black solid) 

and after (red solid) the ligand exchange. The red-dashed line is generated by subtracting the 

black solid line from the red solid one. 

As discussed elsewhere,8 the kinetic energy of the photoelectrons, which arise from the 

LUMO in the TPPE measurement, should shift one-fold with the change of the probe photon’s 

energy. As can be seen in Figure 2.4B, the separated peak shifts linearly with the probe photon’s 

energy, and thus it is assigned to the LUMO of the M-NP. The TPPE spectra for Au/DT/S-

NP/DT and Au/DT/L-NP/DT assemblies show the same general behavior, namely a shoulder 

arising at a high kinetic energy that shifts linearly with the probe photon energy, see Figures 

2.4A and 4C. From these data, the LUMO energies are determined to be 1.07 ± 0.05 eV for S-

NPs, 1.00 ± 0.05 eV for M-NPs, and 0.88 ± 0.05 eV for L-NPs, above the Fermi level of the Au 

substrate. Details of this calculation are provided in the supplemental information (see Figures 

S2.2 and S2.3). In Figure 2.4, the spectral width for the L-NPs is narrower than that of the M-

NPs or S-NPs.  This difference is attributed to the low kinetic energy peak in the TPPE spectra 

being more dominant for the L-NPs than for the S- or M-NPs.  As a result it is more difficult to 

observe the high kinetic energy shoulder in the L-NPs TPPE spectra after the subtraction and the 

normalized spectrum appears narrower.  
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The ligand exchange with DT was found to increase the exciton lifetime of the NPs, as 

well as the lifetime of trapped electrons in the NPs LUMO. This fact was demonstrated by 

comparing surface photoluminescence (PL) spectra for the assemblies of Au/DT/NP and 

Au/DT/NP/DT. While a significant photoluminescence signal from the assemblies of 

Au/DT/NP/DT could be obtained (see Figures S2.4), no measurable signal could be collected 

from the Au/DT/NP assemblies. This result supports the hypothesis that the DT ligands change 

the surface state distribution in a way that extends the exciton lifetime. The peak energies of the 

photoluminescence spectra provide a direct measure of the optical band gap of the NPs. A 

comparison of this optical band gap with the band gap computed from the LUMO and HOMO 

energy assignments are in excellent agreement (see Table 2.1). This latter observation 

substantiates the assignment of the HOMO and LUMO energies to the features in the 

photoelectron spectra. 

 

 

Figure 2-4. Panels A to C present the TPPE spectra for the assemblies of Au/DT/S-NP/DT, 

Au/DT/M-NP/DT, and Au/DT/L-NP/DT; the black (4.13 eV), red (4.07 eV), and blue line (4.00 

eV) are the three different second photon energies used in the TPPE measurements (see legend).   
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Table 2.1. The band gap of the NPs measured by PL and PES 

NP 
Bandgap (eV) 

∆𝑃𝐿 ∆𝑃𝐸𝑆 

S-NP 1.94 1.87 

M-NP 1.86 1.80 

L-NP 1.69 1.68 

∆𝑃𝐸𝑆 has an error of ± 0.1 eV. 

Despite its effect on the recombination rate and the energy distribution of surface states, 

the DT ligand exchange does not affect the HOMO energies of the NPs. LEPET spectra were 

collected for the Au/DT/NP/DT assemblies and the HOMO energies were determined to be the 

same as those for the Au/DT/NP assemblies. Note that the ligand exchange did change the work 

function for the NP assemblies from 4.2 ± 0.1 eV (for Au/DT/NP) to 4.3 ± 0.1 eV 

(Au/DT/NP/DT). These data are provided in the Supplemental Information (see Figure A5). This 

fact indicates that the HOMO level pinning is controlled by the dithiol linker between the NPs 

and the Au substrate. Figure 2.5 plots the density of electronic states distributions obtained by 

PES for the three different sizes of Au/DT/NP/DT assemblies as a function of the electron 

binding energy. The procedure used for obtaining the density of states has been described 

elsewhere.18 The zero of energy is set at the Fermi level. These data provide the density of 

electronic states for the NPs, and show that the HOMO is pinned at 0.80 ± 0.05 eV below the 

Fermi level, while the LUMO is size-dependent. 
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Figure 2-5. This figure plots the LEPET and TPPE spectra together as a function of binding 

energy versus the Fermi level, for the three assemblies of Au/DT/NP/DT. 

2.3.2 Voltammetry studies 

Because oxidation and reduction potentials can be directly related to the HOMO and LUMO 

energies of NPs,6,19 cyclic voltammetry was used to determine the energy of the HOMO for the 

TDPA-capped CdTe NPs. Figure 2.6A shows cyclic voltammograms for the Au/DT/S-NP 

(black), Au/DT/M-NP (red), Au/DT/L-NP (blue), and Au/DT (SAM, dark yellow) assemblies. 

All of the assemblies, including the Au/DT reference system, show a weak peak near 1.0 V vs 

Ag/AgNO3, and it is assigned to oxidation of the Au/DT.  Each of the three assemblies with 

CdTe NPs show two strong oxidation peaks: one at ~ 0.50 V vs Ag/AgNO3 (O1) and one at ~ 

0.75 V vs Ag/AgNO3 (O2). The peak potentials do not shift with the size of the NP, but the 

magnitude of the current varies significantly with size. In fact, the signal increases as the size of 

the NP increases, which correlates to the increase in NP surface coverage with increasing the NP 

size that was observed in the SEM data (see Fig 2.1).  

Because the strength of the peak at 0.50 V vs Ag/AgNO3 (O1) varied significantly with 

the particular batch of NPs and the surface ligand, it is assigned to surface states of the CdTe 
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NPs. This peak was not observed in cases where thiol-capped CdTe NPs20 were directly 

synthesized with thiol ligands and used in the voltammetry studies (see Figure A6), rather than 

ligand exchange from TDPA capped NPs. Ligand exchange (Scheme 2.2) from TDPA to DT 

does not remove this peak, and likely indicates that the ligand exchange may not be complete. It 

is important to note that the ligand exchange and different syntheses gave the same peak 

potential for O2. These observations are consistent with the view that thiol ligands suppress the 

interband surface states of the CdTe NPs. A similar observation and assignment was reported by 

Gaponik and coworkers.21 Lastly, we note that the separation of 0.25 V between the peaks O1 

and O2 agrees well with the energy separation (~ 0.30 eV) between the surface states and the 

valence band for CdTe NPs that was reported by Bawendi et al.17b  

 

Figure 2-6. This figure shows the voltammetry measurement in acetonitrile for the assembly of 

Au/DT/S-NP, Au/DT/M-NP, Au/DT/L-NP, and Au/DT. 

The peak at 0.75 V vs Ag/AgNO3 (O2) is assigned to the oxidation of the filled valence 

band of the NPs, and its onset oxidation potential probes the HOMO level of the NPs. Because 

the HOMO is the valence band maximum (or edge), it should be the first state oxidized in the 

voltammetry measurement, in the absence of surface states.22 Because that the onset potential for 

the peak O2 overlaps with the peak O1 from the surface states, three steps were performed to 
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determine it. First, the peaks O1 and O2 were extracted from the measured voltammogram by 

subtracting a simulated baseline from the oxidation wave of Au/DT/NP (see Figure A7 for 

details). The subtraction results are shown as the solid curves in Figure 2.7A-C for the three 

Au/DT/NP assemblies. Second, the energy distribution of the surface states O1 were assumed to 

be Gaussian-distributed. This assumption allowed a Gaussian distribution function (dash-dotted 

line in Figure 2.7A-C) to be fit to the peak O1, and then subtracted from the voltammogram to 

isolate the peak O2 (dashed curve in Figure 2.7). These data reveal a sharp onset for the O2 wave 

(see Figures 2.7D-F), which allowed the onset potential to be determined by a linear 

extrapolation (green lines) to zero current. The results in Fig. 2.7D-F show that the oxidation for 

the three sizes of the NPs all start at about 0.5 ± 0.1 V; thus, their HOMO is pinned at about 0.5 

V vs. Ag/AgNO3. By taking the absolute electrode potential of Ag/AgNO3 in acetonitrile to be 

4.7 eV,23 the onset oxidation potential (Eox ) can be converted to the HOMO energy versus 

vacuum (EHOMO) by way of the equation: EHOMO = −[Eox + 4.7] eV. The HOMO pinning 

energy, relative to the vacuum level, that is derived from the voltammetry measurement is -5.2 ± 

0.1 eV, and it is in good agreement with that measured from PES (-5.1 ± 0.1 eV). The ~ 0.1 eV 

difference may be caused by solvation and other interfacial effects that are present in the 

voltammetry measurement, but not in the PES measurement.  
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Figure 2-7. Panels A to C show the extraction of peak O2 from the oxidation wave for the 

assembly of Au/DT/S-NP (black), Au/DT/M-NP (red), and Au/DT/L-NP (blue). The solid curves 

are the oxidation wave after subtracting the simulated baseline (see Figure A7); the dash-dotted 

curves are the Gaussian distribution used to fit peak O1; the dashed curves are the results after 

subtracting the dash-dotted curve from   are normalized to the corresponding peak current of the 

O2. 

 

Attempts to measure the NP reduction potential proved challenging and somewhat 

irreproducible. Several other groups have also reported the absence of reduction signal in their 

voltammetry experiments for CdSe NPs.24 We also note that the oxidation of the NP is very 

irreversible even when a hole scavenger, such as triethanolamine, is present in the solution.   
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2.3.3 Photocurrent studies 

If DT ligand exchange reduces the charge recombination rates in the NPs, then it should enhance 

the charge transfer through NP films. The impact of the DT ligand exchange on the charge 

carrier transport was assessed by photocurrent measurements of the monolayer assemblies in an 

electrochemical cell. Figures 2.8A and 2.8B show the current density-time (J-t) characteristics 

for the Au/DT/M-NP and Au/DT/M-NP/DT assemblies. It is apparent that the photocurrent 

produced by Au/DT/M-NP/DT is much higher than that of Au/DT/M-NP under the same bias 

voltage. In Figure 2.8C, the light-off current (dark current) is subtracted from each corresponding 

J-t characteristic in Figures 2.8A and 2.8B to obtain the photocurrent density-voltage (J-V) 

characteristic. These data show that the photocurrent for the Au/DT/M-NP/DT assemblies is at 

least four times higher than that for the corresponding Au/DT/M-NP assemblies. Similar results 

were reproduced for different NP coverages on the Au electrode (see Fig S2.8). This observation 

further supports the conclusion that the DT molecules extend the NP exciton lifetime, and 

therefore improve the photoconductivity of the NP film. 

 

Figure 2-8. Panels A and B compare the current-time (J-t) characteristics for the assemblies of 

Au/DT/M-NP and Au/DT/M-NP/DT at various voltages (3h incubation time for the NP). Panel 

C shows the photocurrent-voltage (J-V) characteristics of Au/DT/M-NP (black points) and 
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Au/DT/M-NP/DT (red points). Lines connecting points serve a guide for the eyes. Some error 

bars are smaller than the symbol. 

A simple Schottky barrier (diode) model was able to fit the photocurrent data (see Fig 

S2.9) for the assemblies of Au/DT/M-NP and Au/DT/M-NP/DT. The Schottky barrier heights 

(∆𝜙) that were extracted from the fitting (see in Table A1) indicate that the ligand exchange 

from TDPA to DT slightly reduces the Schottky barrier height for electron transfer from the NP 

to the Au electrode. 

2.4 DISCUSSION 

2.4.1 Why is the HOMO pinned? 

When a semiconductor and a metal substrate are brought into contact, charge rearranges until the 

Fermi levels of the semiconductor and the metal coincide. This charge rearrangement creates an 

electrical field across the interface.6 For realistic systems with a high density of surface states 

this charge rearrangement can be dominated by changes in charge population of the surface 

states over a narrow band of energies. Thiol-coated gold electrodes have a high density of 

surface states at energies of about 1.2 to 1.6 eV below the Fermi level.6,25 We postulate that these 

surface states couple strongly with the nanoparticle states and set the final energy position for the 

HOMO with respect to the Au Fermi level. A quantitative model for this effect should account 

for the electric field that is generated between the NP and the Au, and it should account for the 

electronic coupling between the NP and the Au, which can affect the NPs electronic 

confinement. If the HOMO couples more strongly to the substrate than the LUMO, then the 
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LUMO states of the NP remain more localized. As Brus26 has pointed out this implies an 

increase of the effective mass of the hole (electrons) in the HOMO (LUMO). Thus, the effective 

mass of the electron is smaller than what one might expect from comparing the effective mass of 

the electron and the hole in the unbound NPs. 

2.4.2 Why onset potential? 

Because the semiconductor nanoparticle (NPs) assemblies do not display reversible redox waves, 

the averaging of oxidation and reduction waves to determine the formal potential of the NP 

cannot be used. The often asymmetric voltammograms of the NPs indicate that their redox 

reaction is highly irreversible. In addition, it has been noted by Bard and coworkers22a that the 

oxidation of the NPs can be a multi-charge transfer process, in which the second charge injected 

into the NPs from the electrode must overcome the “Coulomb blockade” from the first charge 

injected. Given these constraints, the onset oxidation potential provides a reasonable and clear 

method for estimating the energy required for the first charge injected into the HOMO level of 

the NPs in the ground state. Another important reason for using the onset potential for the 

HOMO is the poor electrochemical stability of the NPs. Several groups have reported that the 

electrochemical charge injected into the NPs, subsequently undergoes a fast coupled chemical 

reaction (an EC reaction) related to NP decomposition,19,27 such as, CdTe → Cd2+ + Te0 + 2e−. 

This fact can be visualized by comparing the LEPET energy distribution with the voltammogram 

for the CdTe NPs used in this work, as shown in Figure 2.9. It is apparent that these two 

distributions do not agree with each other except near the onset region. Comparing the width of 

these two distributions suggests that the voltammetry does not reveal the full distribution of the 
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electronic states in the NPs. For these reasons, the onset oxidation potential was used to quantify 

the HOMO energy of the NPs.       

 

Figure 2-9. The comparison of approximated density of electronic states obtained from LEPET 

(red line) and the voltammetry (black line) measurements for the large CdTe NPs used in this 

work. Using the data for the medium/small CdTe NPs or the CdSe NPs will give similar results.     

In our earlier report on CdSe NPs,6 the peak oxidation potential was used to calculate the 

HOMO energy, and this choice created a difference of ~ 0.3 eV between the PES and 

voltammetry results. However, if the onset oxidation potential is used rather than the peak 

potential, the agreement between the PES and voltammetry measurements of the HOMO energy 

is much better. Figure 2.10 shows that the HOMO pinning level measured from the onset 

oxidation potentials (black open circles) is only about 0.1 eV lower than that from the PES 

(black filled squares) for the CdSe NPs. Figure 2.10 also compares the band edge energies 

(HOMO/LUMO) for CdSe (data in black) and CdTe (data in red) NPs. These data demonstrate 

the good agreement between the PES (filled squares) and voltammetry (open circles) 

measurements. These data reveal that the HOMO energies of the immobilized CdSe and CdTe 

NPs are independent of the NP size (for sizes greater than 2.8 nm and less than 6 nm), while the 
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LUMO energies shift systematically with the NP size over this same size range. The solid curves 

are fits of the data to a power law (see supplemental information), which can be helpful for 

predicting the LUMO/HOMO energies and band gaps for the CdSe and CdTe NPs.  

 

Figure 2-10. This figure shows the comparison of the energetics (HOMO/LUMO) for the CdSe 

(data in black) and CdTe NPs (data in red). The filled squares are results from the PES 

measurements, and the open circles are ones from the voltammetry. The dash lines are the 

HOMO pinning level determined from PES; and the solid lines are the fitting to the LUMO 

energies.   

  The data in Fig 2.10 reveal that CdSe NPs and CdTe NPs can be used to form a type-2 

heterojunction. This fact is in agreement with earlier reports.2a,2b,12,28 While the results in  Figure 

2.10 agree with the photoemission data in reference 14 for CdSe NPs, we note that they indicate 

that the  HOMO (-5.55 eV) for the CdSe NPs is higher than CdSe bulk valence band edge (-5.7 

eV).  In addition, the band edge positions for the CdSe and CdTe NPs do not show a similar 

behavior with respect to their bulk energetics.  This feature of the observations poses a challenge 

for theoretical models and calculations. 
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2.5 CONCLUSION 

This work used photoelectron spectroscopy (PES) and electrochemistry to measure the electronic 

states of CdTe NP assemblies on Au electrodes. The measurements revealed that the HOMO 

energy of the NPs is fixed while the LUMO energy of the NPs changes with NP size, over a 

range from 3.7 nm to 6.0 nm. The electrochemical and photoelectron determinations of the 

HOMO energies were found to agree with one another to within ~ 100 mV. Two photon PES 

measurements and photocurrent measurements were used to show that thiol capping ligands 

reduce the recombination rate of charge carriers in CdTe NPs.  
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3.0  ELECTROCHEMICALLY-GUIDED PHOTOVOLTAIC DEVICES 

This work has been published as Wang, Y.; Wang, L.; Waldeck, D. H. Journal of Physical 

Chemistry C 2011, 115, 18136. The thesis author conducted all the experiments and prepared the 

manuscript.    

 

This work reports on the energy level alignment and charge transfer in organized 

assemblies of CdTe and CdSe nanoparticles (NPs), for both electrochemical systems and in solid 

state photovoltaic devices. This work shows how control over the energy level alignment by 

manipulation of the size and surface ligands of the CdTe and CdSe NPs, can be combined with 

control over the NPs spatial arrangement, either by sequential self-assembly onto a Au working 

electrode of an electrochemical cell or spin-coating onto an ITO substrate of a photovoltaic 

device, to facilitate photoinduced charge separation (photocurrent). By combining spatial and 

energetic hierarchy of the assemblies the charge transfer direction and its efficiency can be 

optimized.  
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3.1 INTRODUCTION 

Compared to the traditional silicon solar cells, bulk heterojunction (BHJ) solar cells offer 

advantages of low cost, easy fabrication, and good portability. To date, the organic BHJ solar 

cells have been able to achieve the power conversion efficiency (PCE) around ~8 % 1. For 

organic semiconductors, polymeric electron donors, such as P3HT (poly(3-hexylthiophene)), are 

generally used with the fullerene electron acceptors, like PC61BM (Phenyl C61 butyric acid 

methyl ester), to fabricate bulk heterojunction (BHJ) solar cells 2. Organic BHJ solar cells 

typically suffer from high bandgap, a large energy offset between the electron donor and electron 

acceptor conduction band levels, and low carrier mobility 3. Nanocrystal semiconductor (NCS) 

based solar cells and/or NCS/polymer composite solar cells offer possible solutions to the above 

problems. Because the bandgap of NCSs are strongly dependent on composition and are size-

tunable, they can be adjusted to minimize the energy offset between the electron donor and 

electron acceptor conduction band levels. At the same time they can be adjusted to maximize the 

light absorption. In addition, similar to organic semiconductors, NCSs can also be fabricated into 

thin film devices by solution casting methods 4.   

Among the various NPs, cadmium chalcogenides (CdS, CdSe, CdTe) are one of the most 

well-studied families. Their synthesis, size/shape control, and optoelectronic properties are better 

established than those of other families. By using different sizes of CdSe nanoparticles NPs 

(small, medium, and large), Bawendi and Whitesides et al reported that the photocurrent 

contribution from each size of the NPs was highly dependent on their relative spatial 

arrangement because of their energy gradient5. More interestingly, CdTe and CdSe NPs can form 

an electron donor and electron acceptor pair, i.e., a type-II heterojunction, that facilitates charge 

separation and reduces the charge recombination between the NPs. Their electron donor/acceptor 
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relationship has been reported by several groups6. By using surface photovoltage spectroscopy, 

Rogach et al reported that the spatial arrangement between the CdTe and CdSe NPs can also 

affect their charge transfer directionality6b. To our knowledge, however, no direct photocurrent 

evidence for this directionality of charge transfer between CdTe and CdSe NPs has been 

reported.  

This work reports on the direct measurement of the directional photocurrent generated by 

CdTe and CdSe NPs in two different thin film assemblies and examines its dependence on the 

energy level alignments. In the first system, CdTe and CdSe NPs were sequentially self-

assembled onto an Au-ball electrode to form a type-II heterojunction and their 

photoelectrochemical properties were studied.  In the second type of system, CdTe and CdSe 

NPs were fabricated into a thin-film photovoltaic device with a planar type-II heterojunction and 

its photocurrent performance was characterized by their current-voltage (I-V) characteristic.  The 

two systems give qualitatively similar results and their comparison clearly demonstrates the 

importance of the energy level alignment through space (NP order) for enabling efficient 

photocurrent generation. 

3.2 EXPERIMENTS 

3.2.1 Materials  

Cadmium oxide and trioctyl phosphine (TOP) were purchased from Strem Chemicals. 

Octadecylphosphonic acid (ODPA) was purchased from PCI synthesis. All of the other 
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chemicals were purchased from Sigma Aldrich without further purification unless mentioned 

otherwise.  

3.2.2 NP synthesis 

All syntheses were conducted by the method developed by Zhang 7 and Peng 8. CdTe and CdSe 

NPs were made separately by the well-known hot-injection method. Briefly, for oleylamine 

capped CdSe (OA-CdSe) NPs, the cadmium precursor was prepared by dissolving 0.3 mmol 

CdO in 0.5 ml oleic acid and 2.5 ml 1-octadecene (ODE) at 250 °C. The selenium precursor was 

prepared by dissolving 0.315 mmol Se in 0.15 ml TOP, to which 3 ml oleylamine (OA) was 

added. At 300 °C, the selenium precursor was quickly injected into the cadmium precursor to 

start the reaction. After the injection, the reaction temperature was lowered to 280 °C for the NP 

growth.  Similarly, ODPA-CdTe NPs were synthesized by hot-injecting a tellurium precursor 

(0.2 mmol Te/ 0.28 ml tributyl phosphine (TBP)/ 3 ml ODE) into the cadmium precursor (0.3 

mmol CdO/ 0.6 mmol ODPA/ 2.5 ml ODE) at 300 °C. Then, its reaction temperature was 

lowered to 260 °C for the NPs growth. The sizes of NPs were controlled by the duration of the 

reaction. After reaching the desired size, the reaction vessel was removed from the heating 

mantle and allowed to cool down to room temperature. Subsequently, the NPs/ODE mixture was 

moved into an Ar-filled glove box for purification. To the mixture, excess acetone was added to 

precipitate the NPs. After centrifugation and decantation, the NP precipitate was re-dissolved in 

toluene, precipitated by methanol, and then obtained again by centrifugation and decantation. 

This process was repeated once and the final NPs were dried by Ar. For device fabrication, the 

reactions were scaled up by a factor of five.  
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3.2.3 Ligand exchange to pyridine 

If ligand exchange was necessary, the as-prepared NPs were refluxed in 15 ml pyridine 

overnight. Next morning, the pyridine-NPs were precipitated by excess hexane, washed by 

toluene once, and dried under Ar. Then, they were re-dissolved in 1-2 ml pyridine and made 

ready for use.       

3.2.4 Electrochemical measurement 

A Au ball electrode was made by heating the tip of an Au wire in the H2/O2 flame. Its surface 

area was ~3 mm2. To immobilize NPs on the surface of the Au ball electrode, the electrode was 

incubated overnight in a 5 mM ethanol solution of 1,10-decanedithiol (-) to form a dithiol self-

assembled monolayer (SAM). The next morning, the SAM-modified electrode (Au-) was rinsed 

with ethanol and dried under Ar. Then, it was placed into an as-prepared NP solution for 6 hours 

to form a Au electrode-NPs assembly (Au-NPs). After that, the electrode was rinsed with the 

solvent and dried by Ar. If a bilayer sample was needed, the electrode was put into the dithiol 

solution again under the same condition to grow another layer of dithiol SAM on the top of the 

first NP layer (Au-NPs-).  After the same rinsing/drying, this electrode was immersed into 

another NP solution to get the second layer of NPs (Au-NPs-NPs). The chemically modified Au 

ball electrode served as the working electrode in a 3-electrode cell, which also included a Pt 

counter electrode and an Ag/AgNO3 reference electrode (0.54 V vs NHE).  The supporting 

electrolyte was 100 mM acetonitrile solution of tetrabutylammoniumhexafluorophosphate 

(TBAPF6). For the photocurrent measurement, trienthanolamine (TEA), a hole scavenger, was 

added into the supporting electrolyte solution with a concentration of 20 mM. The illumination 
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was provided by a 75 W Xe arc lamp that was coupled with a multimode optical fiber. This fiber 

offered an illumination area of 7 mm2. This illumination was chopped at 0.1 Hz by a motorized 

shutter. The working distance was fixed at 2.54 cm.  

3.2.5 Device fabrication and characterization  

Before thin film fabrication, every NP/pyridine solution was well sonicated and passed through 

Millipore Teflon syringe filters with a 450nm pore size. Next, a poly(3,4-

ethylenedioxythiophene):poly(styrenesulfonate) (PEDOT:PSS) was spin coated onto the 

patterned ITO (the anode, purchased from Ossila) at 4000 rpm and baked at 120 °C for 2 min. 

Then, in a glove box, CdTe or CdSe NP/pyridine solutions were separately spin coated directly 

on top of the PEDOT:PSS layer at 1500 rpm and baked at 150 °C for 10 min. The spin coating 

order was either CdTe-CdSe or CdSe-CdTe. The AFM thickness measurement showed that the 

incoming NP layer did not re-dissolve the pre-spun NP layer. A 100 nm thick Al film (the 

cathode) was deposited onto the film through a shadow mask in an Ultek E-beam Evaporator at a 

rate of 1 Å/s. Six active areas were made on one substrate and each of them had a surface area of 

4.5 mm2.  In the end, the device was encapsulated by an UV-curable optical epoxy (procedure 

performed under inert atmosphere) and was then ready for testing under ambient conditions.   

The optical density (O. D.) of thin films was measured by a Craic UV-Vis-NIR 

microspectrophotometer. The thickness of the PEDOT:PSS layers was measured by a Horiba 

Jobin Yvon Uvisel ellipsometer. For the films with NPs, a tapping-mode AFM (Veeco) was used 

to determine their thickness. The current-voltage characteristics of the devices were measured by 

a CHI 618B potentiostat. A 75 W Xenon arc lamp was filtered to provide an illumination of AM 

1.5G (100 mW/cm2), which was calibrated by a pre-calibrated Si photodiode (NIST traceable).  
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3.3 RESULTS AND DISCUSSIONS 

3.3.1 Nanoparticle (NP) synthesis  

The NPs of CdTe and CdSe were size-selectively synthesized by the methods developed by 

Zhang et al 7 and Peng et al 8. Figure 3.1A shows the steady-state absorption and 

photoluminesence (PL) spectra for the CdTe and CdSe NPs used in this work. The first excitonic 

peak of CdTe NPs occurred at 612 nm and that for the CdSe NPs occurred at 619 nm. Their sizes 

were determined by analyzing more than 100 nanoparticles in the TEM images and fitting of the 

distribution of diameters (Figure 3.1B-E). The resultant diameter was 4.11 ± 0.30 nm for CdTe 

NPs and 5.24 ± 0.34 nm for CdSe NPs. 

Figure 3-1. Panel A shows the steady-state absorption and photoluminesence (PL) spectra for 

CdTe NPs (blue) and the CdSe (red). Panels B and C show a TEM image for CdTe and CdSe 

NPs. Panels D and E show the size distribution for CdTe and CdSe NPs shown in Panels B and 

C. 
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3.3.2 Electrochemical system 

Because the oxidation and reduction peak can be directly correlated to the charge transfer at the 

HOMO and LUMO of the NPs. Cyclic voltammetry (CV) was used to determine the bandgap 

and the energy level position of NPs 9. Figure 3.2 shows the voltammetry measurement for single 

layers of NPs that were immobilized onto a Au electrode, Au-CdTe (blue solid) and Au-CdSe 

(red solid); the voltammograms have the dithiol SAM (Au-) background current subtracted. The 

oxidation peaks of the CdTe NPs and the CdSe NPs are observed at 0.89 V and 1.06 V (vs. 

Ag/AgNO3) at a scan rate of 50 mV/s. For more details about this sort of determination, see 

references 10. In the voltammetry of the Au-CdTe assembly, the broad oxidation peak from 0.4 V 

to 0.6 V is attributed to the trap states on the NP surface 11.  

Figure 3.2 shows voltammetry results for the NP bilayer electrodes, Au-CdSe-CdTe 

(purple dash) and Au-CdTe-CdSe (green dash), also. Both the oxidation peak of CdTe and CdSe 

can be clearly observed at their typical position, regardless of the NPs order of assembly. These 

data prove that the bilayer architecture is successfully assembled onto the Au ball electrode. Note 

that a ~50 mV shift in the oxidation peak position of CdTe and a ~20 mV shift in the oxidation 

peak position of CdSe are observed between the two different bilayer assemblies. Compared to 

the oxidation peak position of the single layer assemblies, the shift occurs for NPs that are 

located in the inner layer (between the electrode and the outermost NP layer). This shift appears 

to be caused by the difference in the surface coverage of the dithiol linker on the inner and the 

outer NP layer. This hypothesis was verified by examining the voltammetry results for single NP 

layers in which the assemblies had natively terminated NPs (single layer voltammograms of 

Figure 3.2) and assemblies that were further exposed to dithiol in order to coat the outer surface 

(data are not shown). These latter assemblies showed the potential shift that is found in the 
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bilayer studies. This result is also consistent with other findings. One expects that the inner NP 

layer should have a higher dithiol coverage than the outer one, and it has been shown that 

changing the surface ligand can affect the energetics of the NPs 12. 

 

 

 

Figure 3-2. The figure shows cyclic voltammogram results for Au-CdTe (blue solid), Au-CdSe 

(red solid), Au-CdSe-CdTe (purple dash), and Au-CdTe-CdSe (green dash). 

By using the average measured size of the NPs, the bandgaps of CdTe and CdSe NPs 

were calculated by a tight-binding model 13 and were found to be 2.07 eV and 2.04 eV for the 

CdTe and CdSe NPs, respectively. By assigning the oxidation peak position of the NPs to the 

HOMO energy level position, the LUMO energy level of the NPs can be calculated from the 

bandgap of the NPs. Using these energies, the resultant energy level positions for CdTe and 

CdSe NPs were calculated and used to make the plots in Figure 3.3. Panels A and B of Figure 3.3 

show the energy level alignments for the two different orderings of NPs in the bilayers: Au-

CdSe-CdTe and Au-CdTe-CdSe. Because it does not have the charge transfer barrier between the 

CdTe and CdSe NPs, it is evident that the energetic alignment of Au-CdSe-CdTe should 

facilitate electron transfer to the Au electrode better than the Au-CdTe-CdSe assembly does. 
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Triethanolamine (TEA) has a redox potential of 0.63 V vs. Ag/AgNO3 and is used here as a hole 

scavenger to transfer the photogenerated hole to the counter electrode. The use of TEA creates an 

efficient path for the hole transfer to the solution, and blocks the electron transfer to the solution. 

In Figure 3.3C and 3.3D, the current-time (I-t) characteristic is shown at different 

potentials for the two different bilayer assemblies. By using a Xe arc lamp, the light illuminates 

the electrode and is chopped at a frequency of 0.1 Hz. Each measurement is run for 150 s, and 

the illumination time is 50 s. The same electrode was used to obtain at least five I-t 

characteristics at different potential values; thus, the total illumination time for each electrode 

was at least 250 s. During this measurement period, the bilayer assemblies showed a stable 

photoresponse, and both their dark current and the photocurrent increased as the potential bias 

increased. In Figure 3.3E, the background dark current was subtracted from each corresponding 

I-t characteristic in Figure 3.3C and 3.3D to obtain the photocurrent-voltage (I-V) characteristic. 

The curves through the data points are intended as a guide to the eye. The photocurrent generated 

by Au-CdSe-CdTe is three to four times higher than that of Au-CdTe-CdSe at the same potential. 

The results demonstrate that the Au-CdSe-CdTe bilayer assembly produces a higher 

photocurrent than does the Au-CdTe-CdSe bilayer assembly; presumably, because the Au-CdSe-

CdTe assembly provides a more favorable energy architecture for electron transfer. 
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Figure 3-3. Panels A and B show the energy diagrams for the two different assembly orders. 

Panels C and D shows the I-t characteristics of the two different assembly orders. Panel E shows 

the photocurrent comparison of current-voltage characteristic of the two different assembly 

orders. The error bar in panel E is smaller than the symbol. 

3.3.3 PV device system 

The electrochemical studies of the CdTe/CdSe energy architecture indicate that the Au-CdSe-

CdTe bilayer assembly is better than the reversed NP ordering for producing photocurrent. This 

prediction about the energy architecture was tested in an all solid-state, thin film solar cell 

device.  Because the as-prepared CdTe and CdSe NPs are capped by long and insulating ligands 

that significantly increase the interparticle distance and the charge transfer resistance, the film 

conductance was improved by using a short and conjugated ligand, pyridine (Py). Replacement 

of the surface ligands was accomplished through adaptation of published procedures 14, see the 

experimental section. Figure 3.4C shows the absorption spectra of CdSe (red) and CdTe (blue) 



 60 

NPs after ligand exchange. These spectra show that the first excitonic peaks become broader 

than those in Figure 3.1A. The broader spectral feature likely reflects a broader size distribution 

than that for the NPs materials used in the electrochemical studies. We attribute this broadening 

of the NP size distribution to the use of a larger-scale synthesis (by five times) for the device 

fabrication. In the larger batch synthesis, Ostwald ripening plays a more important role in 

determining the NP size-distribution during the reaction and the cooling process 15. In addition to 

this effect on the distribution, it has been reported that the ligand exchange to pyridine can also 

broaden the absorption peak of NPs 16.  

As shown in Figure 3.4A, the device fabrication starts with a patterned-ITO anode, onto 

which the PEDOT: PSS (PP) is spin-coated with a thickness of 40 nm. Next, NP bilayers are 

sequentially spin coated onto PP with the two different orders, which are PP-CdTe-CdSe and PP-

CdSe-CdTe (150 nm thick in total). After spin coating, the cathode (100 nm thick Al) is 

deposited directly onto the NP bilayers in an e-beam evaporator.  In order to avoid unnecessary 

oxidation on the NP surface and test the device in the air, the active areas on the device were 

encapsulated by an optical epoxy. In the final step, the connection legs were attached to each 

ITO pattern in order to make contact with the anode/cathode of the device. A photographic 

image of an actual device is shown in Figure 3.4B.  
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Figure 3-4. Panel (A) illustrates the procedure for the device fabrication. Panel (B) shows a 

photograph of the actual device with connection legs. 

Absorption spectra of the devices with the two different spin coating orders were also 

measured, and they are presented in Figure 3.5. The devices with the PP-CdTe-CdSe (green) and 

the PP-CdSe-CdTe (purple) exhibit a similar absorption behavior to that of the absorption spectra 

of pure CdTe and CdSe NPs in solution; however, a wide absorption peak from 580 nm to 660 

nm that covers the first excitonic peaks of both CdTe and CdSe NPs is apparent.    

 

Figure 3-5. The figure shows the solution absorption spectra of CdTe and CdSe NPs after ligand 

exchange with pyridine in the lower graph, and the absorption spectra of the devices with the two 

different spin coating orders in the upper graph. 

Because the PEDOT PSS (PP) is a hole-conducting (and electron-blocking) polymer, the 

photogenerated holes move through the PP and are collected at the ITO electrode. 

Concomitantly, the photogenerated electrons are transferred to the Al. The photoelectrochemical 

results indicate that the device with the ITO-PP-CdTe-CdSe-Al ordering (device A) should 

provide a better photovoltaic response than device B, which has the ITO-PP-CdSe-CdTe-Al 
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ordering. The energy diagrams of these two devices are shown in Figures 3.6A and 3.6B. The 

current-voltage (I-V) characteristics of device A (green) and device B (purple), under both dark 

(dashed curve) and illuminated (solid curve) condition, are shown in Figures 3.6C and 3.6D. 

Both of the devices exhibit a photovoltaic response under illumination, but it is apparent that 

device A performs much better than device B. In Figure 3.6E, after the dark current subtraction, 

the photocurrent of device A and B are compared on the same graph and their parameters are 

summarized in Table 3.1.  Device A produces an open circuit voltage (Voc), a short circuit current 

(Isc), and a fill factor (FF) that are 2, 35, and 1.3 times higher than those of device B, 

respectively. More importantly, the maximum power (Pmax) generated by device A is almost 80 

times higher than that of device B, as is its power conversion efficiency of 0.21%. The 

performance of device A exceeds the efficiency of the single-layer device consisting of CdTe or 

CdSe NSCs 14,17 or a CdTe/CdSe multi-branched structure18,19.   

The results for the thin film photovoltaic devices agree qualitatively with those for the 

electrochemical system, in how the directionality of the charge transfer between the donor, CdTe 

NPs ,and the acceptor, CdSe NPs, correlates with the overall charge direction of the device. The 

performance of the device may be improved by: 1) utilizing a short and conjugated bidentate 

linker, such as benzenedithiol, to shorten the inter-particle distance and to increase the film 

conductivity 20; 2) annealing and sintering the NP film in the presence of CdCl2 solution. It has 

been reported that this process can reduce the surface trap area of the NP film 14; 3) employing a 

conductive polymer, like P3HT, to form a bulk heterojunction with the NP that can increase the 

interface for charge separation21. 
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Figure 3-6. Panels A and B show the energy diagrams for Device A and B. Panels C and D show 

the dark current (dash) and the photocurrent (solid) of Device A and B. Panel E shows the 

photocurrent comparison between Device A and B after the subtraction of the dark current. 

 

Table 3.1. PV performance of Devices A and B 
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3.4 CONCLUSION  

In this work electrochemical methods were used to quantify the energy level displacements in 

NP bilayer assemblies, and these assemblies were used as a simple model to study how the 

energy level alignments affect the charge transfer directionality and efficiency.  The photocurrent 

data show that it is most favorable, for both electron and hole transfer, when the donor-CdTe was 

near the hole scavenger-TEA, at the film/solution interface. This model successfully guided the 

design of a photovoltaic device, in which the device performed much more efficiently when the 

donor-CdTe was near the hole-conducting polymer-PEDOT:PSS. The correspondence between 

these results underscore the use of photoelectrochemical assemblies for the design of 

photovoltaic thin film devices and provide insights into how one can control the charge transfer 

directionality between CdTe NPs and CdSe NPs assemblies.  
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4.0  PHOTO-INDUCED HOLE TRANSFER IN CONJUGATED COPOLYMER AND 

SEMICONDUCTOR NANOPARTICLE ASSEMBLIES: DRIVING CHARGE 

SEPARATION FOR HYBRID SOLAR CELLS 

This work is in preparation for submission as Yang Wang, Kuan Liu, Prasun Mukherjee, Doug 

Hines, Pralay Santra, Prashant Kamat, and David H. Waldeck. The thesis author synthesized the 

NP; conducted photoluminescence quenching, cyclic voltammetry, and spectroelectrochemical 

measurements; prepared the manuscript. The supporting information for this chapter is provided 

in Appendix B. 

 

Organic/inorganic hybrid photovoltaics are promising for use in next-generation solar 

cells, however, the interfacial charge transfer and charge separation between organic conjugated 

polymers and inorganic semiconductor nanoparticles still remains largely unexplored. This work 

reports a charge transfer study for a hybrid conjugated-copolymer/semiconductor-nanoparticle 

assembly by using time-resolved photoluminescence and absorption spectroscopic methods in 

conjunction with electrochemical and spectroelectrochemical techniques. The results show that 

the charge transfer rate is affected by the internal electric field at the hybrid donor-acceptor 

heterojunction between the copolymer and the nanoparticle. These findings suggest a strategy to 

enhance the exciton dissociation in hybrid devices by combining donor-acceptor energy offsets 

and internal electric field as a dual charge-separation driving force. 
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4.1 INTRODUCTION 

Hybrid organic/inorganic semiconductor materials, such as p-type conjugated polymer (CP)/n-

type semiconductor nanoparticle (NP) composites, are promising for use in next-generation solar 

cells.1 By combining the complementary advantages of both CPs and NPs,2 these hybrid 

materials provide access to a larger range of electronic and morphological properties than do 

either all organic or all inorganic materials.  Over the past decade, a considerable amount of 

research effort has been spent in investigating hybrid CP/NP solar cells from a variety of 

perspectives, including co-solvent systems for solution processing,3 optimizing the shape of the 

CP and NP nanostructures,3-4 developing CP-grafted NPs,5 adjusting the energy band alignment 

between the CP and NP,6 exploring singlet-exciton fission processes,7 etc. The highest power 

conversion efficiencies4a (~ 5%) reported for these hybrid devices, such as P3HT/CdSe NPs bulk 

heterojunction cells, are significantly lower than that for all inorganic devices and all organic 

devices, however. A number of workers have suggested that rapid charge recombination 

processes originating from a limited exciton diffusion length,8 back charge transfer,9 poor CP/NP 

contact,10 and surface trap states1c,11 account for much of the reduced efficiency.12 Thus, it is 

important to understand and enhance interfacial charge transfer and charge separation dynamics 

at the organic/inorganic donor-acceptor (D-A) heterojunction, if the promise of organic/inorganic 

hybrid materials is to be realized.  

Motivated by this challenge, the current work constructs a model CP/NP system, in 

which systematic charge-transfer studies are performed on mixed solutions of a novel alternating 

donor-acceptor low-bandgap copolymer and a CdTe semiconductor nanoparticle. While a few 
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groups have investigated bulk heterojunction devices composed of alternating copolymers and 

semiconductor NPs,13 systematic charge transfer studies for these hybrid systems are few.14 

Thus, we aim to isolate and characterize the important variables that affect charge separation and 

recombination processes in the model system, and provide insights for improving the efficiency 

for hybrid solar cells. 

4.2 RESULTS AND DISCUSSION 

4.2.1 Organic and inorganic components 

Alternating donor-acceptor low-bandgap copolymers are selected as the organic component in 

this system, because they have achieved impressive power-conversion-efficiency (~ 8%) in 

organic photovoltaics.15 The alternating donor-acceptor (D-A) structure employs push–pull 

driving forces between the donor and acceptor units, to promote the photoinduced intramolecular 

charge transfer, to facilitate electron delocalization, and to lower the bandgap.15b However, 

synthesis of such copolymers that are highly water-soluble has not been reported to our best 

knowledge. By extending previous strategies for synthesizing water-soluble conjugated 

polymers,16 we report the synthesis of both anionic (-) and cationic (+) alternating D-A low-

bandgap copolymers consisting of a donor unit-phenylenevinylene and an acceptor unit-

diketopyrrolopyrrole (see Figure 4.1). The anionic and cationic copolymers show similar 

absorption spectra in DI water (Figure B4A) and have similar average molecular weights (~ 

25,000, see Table B1), respectively. In addition, they do not show photoluminescence in DI 

water, presumably because of the intramolecular charge transfer character between the two 
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monomer units.17 Details of synthetic procedures and characterization for these new materials are 

given in the Appendix B (see Figures S1 and S2).  

 

Figure 4-1. The molecular structure is shown for poly[1,4-diketo-2,5-bis(4-sulfonylbutyl)-3,6-

diphenyl-pyrrolo(3,4-c)pyrrole-alt-divinyl-1,4-bis(ethyloxy)benzene sodium], denoted as, (-

)PDPPPV; and Poly[1,4-diketo-2,5-dipropyl-3,6-diphenyl-pyrrolo(3,4-c)pyrrole-alt-divinyl-1,4-

bis(2-(N,N,N-triethylaminium)ethoxy) benzene bromide], denoted as, (+)PDPPPV. Prefix (+) or 

(-) means positively or negatively charged species, respectively.  

Based on previous studies and ability to control their size-dependent energetics,18 water-

soluble anionic (-) and cationic (+) CdTe semiconductor NPs were chosen to be the inorganic 

component in the hybrid system, The anionic and cationic NPs were prepared separately by 

following previously published procedures19 (see Figure B3). Cyclic voltammetry measurements 

show that the CdTe NPs with optimized size-tunable energetics can form a type-II (donor-

acceptor) heterojunction with the PDPPPV copolymers (Figure 4.2 and Figure B5). Interestingly, 

the voltammetry results show that reversing the surface charge on the NPs or the PDPPPV 

copolymers does not significantly change their redox potentials, within the experimental 

resolution. Additionally, the LUMO energy offset between the NPs and PDPPPV is around ~ 0.3 

eV, which is close to an optimal difference for driving charge separation.20  

Figure 4.2 shows that both (-)PDPPPV (blue) and (+)NPs (red) have broad absorption 

coverage in the visible range, which distinguishes them from the traditional organic or hybrid D-
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A photovoltaic systems. Here, the energy transfer between the (-)PDPPPV and (+)NP is avoided 

because 1) the photoluminescence of (-)PDPPPV is quenched and 2) there is little spectral 

overlap between (-)PDPPPV’s absorption (blue solid) and (+)NP’s photoluminescence (red 

dash). These features allow one to exclusively study the charge transfer between the (-)PDPPPV 

and the (+)NP by photoluminescence (PL) quenching. Figure B4 shows that (+)PDPPPV and (-

)NP, the counterpart copolymer and NP with opposite surface charges, have very similar spectra. 

  

Figure 4-2. The steady-state absorbance (solid lines) and photoluminescence (dashed lines) 

spectra for the (-)PDPPPV (blue) and (+)NP (red) in DI water are plotted together for 

comparison. The inset is an energy diagram determined by cyclic voltammetry for the NPs and 

polymers. (-)PPV is a control polymer, vide infra. 

4.2.2 Photoluminescence quenching 

Figure 4.3 presents the steady-state and time-resolved PL quenching results for the assembly of 

(+)NP/(-)PDPPPV. Figure 4.3A shows that titrating a 3 mL pH=7 buffer solution of (+)NP (OD 

300 400 500 600 700 800

 P
L

 (
a
. 
u

.)

O
D

 (
a
. 
u

.)

Wavelength (nm)



 72 

~ 0.1 at 692 nm) with up to 20 L of (-)PDPPPV solution (0.5 mg/mL) causes a 90 % PL 

quenching of (+)NP. The final NP/copolymer molar ratio is about 3/1. Similar quenching data 

were produced by using 675 nm as the excitation wavelength at which only the (+)NP was 

excited (see Figure 4.3B and reaction 1). Given these observations and the absence of energy 

transfer (see Figure 4.2), we assign this strong quenching to the hole transfer from the (+)NP to 

the (-)PDPPPV (see reaction 2). Similar observations and assignments have been reported for 

other hybrid systems.5c,14b  

(+)NP + h↔ (+)NP(h + e) (1) 

(+)NP(h + e) + (-)PDPPPV → (+)NP(e) + (-)PDPPPV(h) (2) 

Aggregation quenching is possible in this case because the opposite charges on the (-

)PDPPPV and (+)NP drive their electrostatic assembly after mixing them together in solution.19b 

Thus, a control study, by using a (-)PPV polyelectrolyte (poly[5-methoxy-2-(3-sulfopropoxy)-

1,4-phenylenevinylene]) of similar molecular weight, was performed to quantify the extent of 

aggregation quenching. (-)PPV was selected because 1) it has a similar side chain and Zeta-

potential as (-)PDPPPV (see Table B2); 2) it forms a type-I heterojunction with the (+)NPs that 

blocks both electron and hole transfer when only the NP is excited (see Figure B5); and 3) 

dynamic light scattering experiments show that the (-)PPV induces a similar NP/polymer 

aggregation size as the (-)PDPPPV for a given concentration (see Figure B6). Figure 4.3C shows 

that the (-)PPV quenches only ~ 25 % of the (+)NP’s PL under the same conditions. This result 

indicates that aggregation quenching is not strong enough to account for the efficient quenching 

observed for the (+)NP/(-)PDPPPV assembly. 
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Figure 4-3. Panels A and B presents the steady-state PL quenching results (normalized) for the 

(+)NP/(-)PDPPPV assembly at an excitation wavelength of 600 nm and 675 nm, respectively. 

Panels C shows the PL quenching results for the (+)NP/(-)PPV assemblies at an excitation 

wavelength of 600 nm. The different colors of the spectral curves corresponds to different 

amounts of the (-)PDPPPV solution being added into the (+)NP solution. As the arrow indicates, 

the amount added is: 0, 1.2, 2.5, 5, 7.5, 10, 15, and 20 L. Panel D presents the time-resolved PL 

decays (normalized) for (+)NP only (red), (+)NP/(-)PPV (green), and (+)NP/(-)PDPPPV (blue) 

with an excitation and emission wavelength at 660 nm and 710 nm, respectively. The black 

curve is the instrumental response function. 20 L of polymer solutions were added into the NP 

solution in the time-revolved experiments.  
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Time-resolved photoluminescence spectroscopy was used to corroborate the steady-state 

measurements and probe the kinetics of the photoinduced charge transfer. By only exciting the 

NP, Figures 3D shows that (-)PDPPPV quenches the PL lifetime of (+)NP more strongly than 

the control, (-)PPV. These results are consistent with the data from the steady-state PL 

quenching. Because of the highly non-exponential slope of the fluorescence decay laws, they 

were fit to a distribution of lifetimes. Figure B7 plots the lifetime distributions for the PL decays 

and gives one short and two longer lifetime components. The short component shows the largest 

changes and systematically shifts to shorten to averaged lifetime when the (-)PDPPPV is added. 

Based on the previous work,19b,21 the short component can be tentatively assigned to the hole 

transfer from (+)NP to (-)PDPPPV, while the longer ones are assigned to the electron-hole 

recombination. In this approximation, the hole transfer rate constant (𝑘CT) can be estimated as:   

𝑘CT = 1/𝜏 − 1/𝜏0 

where 𝜏 is the short lifetime component for the (+)NP/(-)PDPPPV assembly, and 𝜏0 is that for 

the (+)NP/(-)PPV assembly as a reference system. Thus, 𝑘CT is estimated to be about 1010 s−1.  

4.2.3 Transient absorption spectroscopy and spectroelectrochemistry 

Photoinduced hole transfer from (+)NP to (-)PDPPPV can produce a (-)PDPPPV radical cation, 

(-)PDPPPV•+, which can be characterized by ultrafast transient absorption spectroscopy. Figures 

4A and 4B show the transient absorption spectra for the (+)NP/(-)PDPPPV assembly, in which 

the ground-state bleaching for the (-)PDPPPV and (+)NP occurs at 550 nm and 692 nm 

respectively, while a positive and broad transient absorption centered at 910 nm appears. This 

broad feature is assigned to be the absorption of (-)PDPPPV radical cation (namely, (-
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)PDPPPV•+) for the following reasons. First, measurements for the (+)NP-only solution show 

that (+)NP does not have transient absorption in this region, indicating that the feature at 910 nm 

must arise from the presence of (-)PDPPPV. Figure B8 shows the kinetic traces monitored at 910 

nm for the (-)PDPPPV-only and (+)NP/(-)PDPPPV solutions; and it is clear that the lifetime at 

910 nm is much longer for (+)NP/(-)PDPPPV than for (-)PDPPPV-only sample. This result 

suggests that additional pathways in the (+)NP/(-)PDPPPV assembly to generate (-)PDPPPV•+, 

presumably the donor-acceptor charge transfer. Note that several groups have reported transient 

absorption for other D-A copolymer radical cations in a similar region.13b,15a,21 Last, this 

assignment is confirmed by spectroelectrochemistry, see Figure 4.4. Figure 4.4C shows a similar 

absorption feature arising in the NIR region as an (-)PDPPPV film is electrochemically oxidized 

to produce (-)PDPPPV•+. Figure 4.4D shows that the broad feature at 910 nm cannot be 

attributed to (-)PDPPPV radical anion ((-)PDPPPV•-), because it only absorbs weakly around 400 

nm and not in the near-IR. See Appendix B for measurement details.  

Note the excitation wavelength used in this measurement is 387 nm, where both (-

)PDPPPV and (+)NP are excited. Thus, (-)PDPPPV•+ can be generated in two possible ways. 

One is by hole transfer from the valence band of (+)NP to that of (-)PDPPPV, and the other one 

is by electron transfer from the conduction band of (-)PDPPPV to that of (+)NP. The limited 

range of excitation wavelength for our instrument prevented us from separating these two 

processes by only exciting the (+)NP. However, the PL quenching data suggest that the hole 

transfer process does not strongly depend on the excitation wavelength (see Figure 4.3). In 

addition, Ginger et al14a has recently reported for a similar hybrid copolymer/NP systems that 

changing the excitation wavelength from exciting both copolymer and NP to only exciting the 

NP does not significantly alter the transient concentration of the copolymer radical cations. Thus, 
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it appears that the hole transfer from (+)NP to (-)PDPPPV is the primary process for the 

formation of (-)PDPPPV•+. 

 

Figure 4-4. Panels A and B show the visible and NIR transient absorption spectra for (+)NP/(-

)PDPPPV assemblies recorded at different delay time. Panels C and D show the 

spectroelectrochemical spectra for the oxidized and reduced (-)PDPPPV drop-cast films 

measured in a three-electrode spectroelectrochemical cell as the voltage changes with an 

increment of 0.2 V.  

4.2.4 Effect of internal electric field 

Figure 4.5 shows the steady-state and time-revolved PL quenching results for the assembly of (-

)NP/(+)PDPPPV with reversed surface charge. In sharp contrast to the (+)NP/(-)PDPPPV 
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assemblies, no significant PL quenching was observed for the (-)NP solution with the addition of 

(+)PDPPPV under the same conditions. The assembly of (-)NP/(+)PDPPPV has a comparable 

NP/polymer aggregation size as the (+)NP/(-)PDPPPV assembly (see Figure B6). In addition, the 

PDPPPV copolymers and CdTe NPs used in this work have a similar Zeta-potential magnitude 

(see Table B2). These data suggest that the difference in PL quenching between the two 

NP/PDPPPV combinations is not caused by differences in the electrostatic assembly.        

 

Figure 4-5. Panel A shows the steady-state PL quenching results for the (-)NP/(+)PDPPPV 

assembly. Panel B presents the time-resolved PL decays for (-)NP only (red) and (-

)NP/(+)PDPPPV (blue) solutions. These two measurements were performed under the same 

condition as those in Figure 4.3.   

Rather the difference correlates with the different internal electric field direction between 

the oppositely charged NP and PDPPPV in the two NP/PDPPPV electrostatic assemblies (see 

Figure 4.6). For instance, the assembly of (+)NP/(-)PDPPPV should have a favorable internal 

electric field that drives the hole transfer from (+)NP to (-)PDPPPV in the same direction as the 

valence band energy offsets. However, reversing the surface charge on both NP and PDPPPV, 

i.e., (-)NP/(+)PDPPPV, results in no observable hole transfer, because their internal electric field 

is not oriented with respect to the valence band energy offsets. Hence, generally speaking, a (-) 
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electron donor and a (+) electron acceptor can generate an internal electric field that favors 

charge separation. This observation agrees well with the findings that were reported previously 

for a NP/NP D-A system.19b In that case, the charge transfer was found to be very efficient when 

a (-) NP electron donor and (+) NP electron acceptor was used, but not with reversed surface 

charges on both NPs. The current work extends this approach to NP/polymer hybrid systems, and 

suggests its use for enhancing the charge separation efficiency for hybrid solar cells. 

 

Figure 4-6. A schematic presentation for the internal electric field in the two NP/PDPPPV 

assemblies and its effect on the photoinduced hole transfer from the NP valence band to the 

PDPPPV valence band.  

It is well established for conventional p-n junction solar cells that the internal electric 

field built-in a depletion region can efficiently separate excitons and inhibit charge 

recombination.22 This feature has been employed for NP-based solar cells. As Sargent et al 

recently reported for a PbS-NP/TiO2 depleted heterojunction device,23 an internal charge-

separating electric field at the PbS/TiO2 interface can help to dissociate excitons in conjunction 

with the D-A energy offsets. Their devices achieved a power conversion efficiency of 7%, which 

is the highest for NP-based photovoltaics reported to date.24 Thus, it may be interesting and 

beneficial to combine both D-A energy offsets and an internal electric field as a dual charge-
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separation driving force for the hybrid solar cells, with an ultimate goal of enhancing their power 

conversion efficiency. 

4.3 CONCLUSION 

In summary, this work has demonstrated a charge transfer study for a hybrid conjugated-

copolymer/semiconductor-nanoparticle model system, by using a variety of spectroscopic and 

electrochemical characterization techniques. The most remarkable finding in this study is that, by 

controlling the direction of the internal electric field, one can manipulate the hole transfer rate in 

the copolymer/NP electrostatic assemblies. The presence of the internal field may help reduce 

the energy loss resulting from charge recombination and potentially increase the open circuit 

voltage of hybrid solar cells. Thus, this work suggests a strategy for developing better donor-

acceptor materials for hybrid bulk heterojunction solar cells by employing a dual charge-

separation driving force at the D-A heterojunction which can promote charge separation and 

inhibit charge recombination. 
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5.0  FORMATION OF DEPLETED BULK HETEROJUNCTIONS IN THERMALLY 

ANNEALED PBS QUANTUM DOT SOLAR CELLS 

 

This work has been submitted to Advanced Functional Materials as Bo Ding, Yang Wang, Po-

Shun Huang, David Waldeck, and Jung-Kun Lee. The thesis author participated in PbS NP 

synthesis, design and fabrication of photovoltaic devices, and electrochemical measurements. 

The supporting information for this chapter is provided in Appendix C. 

 

We have studied the effect of thermal annealing on the junction structure and energy 

conversion behavior of TiO2/PbS heterojunction solar cells. PbS quantum dots (QDs) with a 

band gap of 1.67 eV were chosen to examine how thermal annealing in an inert atmosphere can 

influence the morphologies and optical properties of the PbS QDs film. Nanoscale structure and 

composition analysis have revealed that thermal annealing causes intermixing of the TiO2 and 

PbS phases. This intermixing increased the junction area within the depleted bulk heterojunction 

(DBH) layer and promoted the carrier extraction from PbS QD to TiO2. In addition, the thermal 

annealing caused inter-particle necking between PbS QDs and increased the crystallinity of the 

PbS QD film. Compared with un-annealed PbS/TiO2 heterojunction solar cells, the formation of 

the DBH layer and the partial sintering of PbS QDs led to a doubling of the short-circuit current 

(Jsc) and an improved energy conversion efficiency, by 39%. Electric force microscopy analysis 

confirmed the presence of a DBH layer. The electron lifetime and fill factor (FF) of the solar 
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cells decreased when the TiO2/PbS mixed film was thermally annealed, and this was assigned to 

a lower recombination resistance in the DBH layer. Post-treatment of PbS/TiO2 DBH films with 

ethanedithiol was found to increase the recombination resistance at PbS/TiO2 interface and to 

enhance the energy conversion efficiency to ~4%. 

5.1 Introduction 

Quantum Dots (QDs) have attracted a great deal of research interest over the past few decades 

because of their unique optical and electronic properties.1 Their large optical cross section, 

tunable band gap, and slow phonon relaxation are valuable physical properties that are driving 

their use in solar energy conversion devices, i.e., solar cells. In addition, QDs can be made 

through inexpensive solution-based synthesis, and they are proving amenable to facile and large-

scale device fabrication methods. Hence, QDs have been used recently for different types of 

photovoltaic devices.2 However, better device structures are needed for QD-based photovoltaics 

to compete with the conventional technologies which are already commercialized. 

QDs of lead chalcogenide, such as PbS and PbSe, have large Bohr exciton radius, low 

exciton binding energy, and are considered excellent absorbers of visible and near IR light.3, 4  

Because of this promise, several groups have performed research to pave the way toward the 

creation of hybrid solar cells using p-type lead chalcogenide QDs as the photoactive component 

of solar cells.5 Moreover, QD solar cells have the potential of generating multiple excitons from 

a single hot carrier6, 7 Recently, the concept of multiple exciton generation (MEG) has been 

reported in a thin-film type solar cell.8-11 The configuration of a so-called thin-film type colloidal 

quantum dot (CQD) solar cell, as proposed by Sargent12-14 and Nozik,15, 16 contains a Schottky 
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barrier between the QD semiconductor film and a metal electrode, where the photogenerated 

carriers are collected. From the standpoint of processing, this QD layer has the strength of easy 

deposition using a spin coating process14, 17 or a layer-by-layer dip coating process.18 One main 

drawback of the QD/metal structure is a low open circuit voltage (Voc), which is determined by 

the separation of the quasi-Fermi levels at the contacts to the photoactive layer.19 To solve the 

problem of low Voc, a layer of an n-type wide bandgap semiconductor such as TiO2
19, 20 or ZnO 

has been inserted between the QD layer and transparent conducting layer to form a depleted 

heterojunction structure.21 This heterojunction changes the electron transport direction and 

increases the quasi-Fermi level difference, leading to a higher Voc.
19 

To date, many groups have worked on improving the energy conversion efficiency of 

CQD solar cells. To this end, the effect of the QD size on the injection and potential energy of 

electrons has been investigated. One such group explored the dependence of the solar cell 

efficiency as a function of QD size and found an optimum efficiency of the CQDs solar cell by 

employing medium size PbS QDs with a band gap of 1.53 eV. This optimal size is believed to 

reflect a compromise between smaller QDs, which lead to decreased light absorption and to a 

higher Schottky barrier, and larger QDs, which lead to poorer carrier extraction and 

concomitantly higher carrier recombination.22 In addition, the rate of charge transport between 

QDs is influenced by the length of surface ligands. Compared with long oleic chains, shorter 

thiol ligands, such as 1,2-ethanedithiol (EDT),18 mercaptocarboxylic acids (MPA),20 and 

benzenedithiol (BDT),23 have been reported to shorten the distance between adjacent QDs and 

facilitate carrier transport between QDs. 

Thermal annealing has been considered an effective way to enhance the conductivity and 

carrier mobility of thiol-capped CQD films. Thermal treatment of QDs reduces the inter-CQD 
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separation and/or facilitates particle aggregation along preferential crystallographic axes.24-26 

Zhao et al.27 reported that mild thermal annealing of the PbS QD film in air greatly enhances the 

fill factor (FF) and Voc of PbS/organic bilayer solar cells. Formation of an inert interfacial layer 

such as PbSO3 or PbO after annealing was shown to limit current leakage and suppress charge 

recombination. Very recently, Gao et al.28 found that the electronic coupling between the QDs 

and carrier transport in ZnO/PbS(QDs)/MoOx/Al solar cells are improved during thermal 

annealing in an inert atmosphere. 

Here, we report on the formation of a depleted bulk heterojunction (DBH) for a PbS-TiO2 

thin film in Fluorine-doped SnO2 (FTO)/TiO2/PbS-QD/Au solar cells, and a consequent increase 

in cell performance by thermal annealing. Small PbS QDs with a band gap of 1.67 eV were 

chosen to show how annealing can influence the morphologies and optical properties of the QDs 

and PbS QD film. Large PbS QDs with a band gap of 1.32 eV were employed as a control to 

explore the effect of QD size on cell performance during annealing. We observed that the 

average inter-particle distance decreases and necking between adjacent QDs occurs after thermal 

treatment. This partial connection between QDs enhances the carrier transport by increasing the 

probability of carrier hopping and decreasing the chance of carrier trapping. More importantly, 

we found that the QDs diffuse into the TiO2 mesoporous film to form a DBH structure. This 

increases the TiO2/PbS interface area, resulting in more efficient carrier transfer from PbS QDs 

to TiO2 nanoparticles. Thus, we find that the short circuit current density (Jsc) of thermally 

annealed heterojunction solar cells can be dramatically enhanced with a minimal change in Voc. 
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5.2 Experimental section 

5.2.1 Materials 

Titanium(IV) isopropoxide (TTIP, 97%), lead oxide (PbO), oleic acid (OA), octadecene (ODE), 

hexamethyldisilathiane (TMS), 1,2-ethanedithiol (EDT), hexane, and acetonitrile (all solvents 

are anhydrous) were all purchased form Aldrich and used as received. Ethanol (200 proof, 

anhydrous) was bought from Decon Laboratories Inc. and nitric acid (HNO3, 70%) from J. T. 

Baker. Ultrapure water (18.2 MΩ resistivity) was deionized from MIlli-Q purification system 

(Millipore, MA). 

5.2.2 Synthesis of PbS Colloidal Quantum Dots  

PbS QDs with an excitonic peak at 740 nm were synthesized following a procedure developed 

by Hines and Scholes.4 All the reactions were carried out using standard air-freetechniques. The 

lead oleate precursor was prepared by mixing 0.09 g PbO, 0.25 ml OA and 3.75 ml ODE in a 

three-necked flask, and it was vigorously stirred under Ar at 150 oC for 30 min. Once all the lead 

oxide had dissolved, heating was stopped to let the lead oleate solution cool down to 120 oC. 

Then 42 μL TMS in 2 ml ODE was swiftly injected into the precursor solution with a sudden 

drop of the reaction temperature to 100 oC. The heating mantle was then immediately restored 

and the reaction temperature was kept at 100 oC. The solution’s color changed from transparent 

to brown gradually. After 30 sec, the heating mantle was removed to let the solution cool down 

to room temperature. The PbS QDs were washed by repeated precipitation with acetone and 

dispersion with toluene, and they were finally dispersed in anhydrous hexane. PbS QDs with an 
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excitonic peak at 940 nm were synthesized in a similar manner, except at a higher reaction 

temperature (140 oC) and for a longer growth time (5 min). 

5.2.3 Device Fabrication  

The patterned fluorine-doped tin oxide (FTO) (Pilington TEC 8) coated glass substrates were 

submerged in an ethanol/acetone (1:1) mixture and cleaned by sonication for 10 min. In order to 

form a thin crystallized TiO2 hole blocking layer on the FTO glass, 150 ml of pure ethanol and 

23.04 ml of TTIP were well mixed. To this solution, another mixture containing 150 ml of pure 

ethanol, 2.77 ml of DI water, and 0.36 ml of HNO3 (70% concentration) was slowly poured in. 

This TiO2 sol was spin coated on the precleaned FTO glass and annealed in O2 at 500 oC for 2 h. 

Another TiO2 layer was printed by tape-casting of TiO2 paste containing 20 nm sized TiO2 

nanoparticles.47 Subsequently, the TiO2 layer was annealed in air at 450 oC for 30 min to form a 

mesoporous film with a thickness of ~ 1 µm. On top of the TiO2 mesoporous film, a 200 nm 

thick QD film was prepared using a fourteen cycle layer-by-layer dip coating method in an Ar 

gas filled glove box. During each cycle, typically, the substrate (TiO2/FTO or silicon) was 

dipped into a PbS QDs/hexane solution (20 mg/ml) by hand. After submerging for 5 sec, the 

substrate was slowly dragged out of the solution at a velocity of ~0.2 cm s-1. Then the substrate 

was dipped into 0.1 M EDT/acetonitrile for 10 sec and quickly removed. Complete drying of the 

QD film before each dipping cycle was necessary to keep the film smooth. Finally, a 20 nm thick 

gold layer was deposited onto the PbS film by electron beam evaporation to form the top 

electrode. Each device had an active area of 0.04 cm2. 
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5.2.4 PbS QDs and PbS film Characterization 

The morphologies of the PbS QDs and cross-sectional view of the Au/PbS/TiO2 films were 

tested by high-resolution transmission electron microscopy (HRTEM) JEOL JEM-2100F. The Z-

contrast high angle annular dark field (HADDF) cross-section images of the films were tested in 

STEM mode, and the elemental distribution was studied with EDS mapping. The PbS QD 

samples were prepared on a Cu grid, with a post ligand exchange in 0.1 M EDT/acetonitrile 

solution for 10 sec. The film samples were deposited on a silicon substrate and prepared by 

mechanical polishing and ion milling.  

The optical properties of the PbS QDs and PbS film were investigated with a UV-vis 

spectrophotometer (Lambda 35, Perkin Elmer) attached to an integrating sphere over a 

wavelength range from 300 nm to 1100 nm. X-ray photoelectron spectra (XPS) were collected 

with monochromatic Al-Kα X-rays (1487 eV) at 150W power on a custom built multi-technique 

surface analysis instrument. In order to increase the accuracy and sensitivity of the analysis, 

surface contamination or oxidation of the PbS films were cleaned off by ion beam etching before 

signal collection. Data analysis was carried out using an open source code, XPSPEAK41, for 

background subtraction and peak fitting. The morphology and current image of the PbS film, 

both with and without annealing, were examined by conductive-atomic force microscopy (c-

AFM, Multiview-1000, Nanonics). The electric current under bias was measured at the 

nanoscale using a boron-doped diamond probe. 
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5.2.5 Device characterization 

Photovoltaic properties were measured under AM 1.5 G simulated sunlight (PV Measurements, 

Inc) with the aid of an electrochemical workstation (CH Instruments, CHI 660C). An 

electrochemical impedance spectroscopy (EIS) measurement was also performed in the 

frequency range of 0.1 Hz to 1 kHz with the maximum electric potential of 0.05 V. During EIS 

measurement, the solar cells were in the open circuit condition and exposed to simulated solar 

light.  Incident photon to current efficiency curves (IPCE) of the solar cell were also measured 

by illuminating the sample with a monochromatic beam (Newport Corp.). IPCE was calculated 

by IPCE (λ) = 1240 (JSC/λφ) where λ is the wavelength of the incident beam, Jsc is the short-

circuit current density, and φ is the incident radiative flux, which was measured by using a 

silicon reference photodiode. The electron lifetime was measured using an open-circuit voltage 

decay (OCVD) technique.45 The light source was a laser diode (λ= 660 nm) driven by a function 

generator (Agilent 33220A) to provide square wave modulated illumination. The changes in the 

photovoltage were monitored by a digital oscilloscope (Tektronix, TDS2024B). 

5.3 Results and discussions 

5.3.1 Optical Properties and Morphology Evolution of PbS QDs  

PbS QDs capped with an oleic acid ligand were synthesized by using a procedure developed by 

Hines and Scholes4. Figure 5.1a shows the absorbance spectra of the PbS QDs dispersed in 

hexane. The first excitonic absorption peak was located at 740 nm (1.67 eV) for the smaller PbS 
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QDs and 940 nm (1.32 eV) for the larger ones. The energy band structures of the TiO2 

nanoparticles20 and PbS QDs are shown in Figure 5.1b. A position for the valence band edge of 

the QD was determined by cyclic voltammetry (see Figure C1). 

 

Figure 5-1. (a) Absorbance spectra are shown for PbS QDs with two different sizes in hexane. 

(b) The relative band gap locations are shown for the TiO2 NPs and the PbS QDs with different 

sizes. 

Figure 5.2 shows transmission electron microscopy (TEM) and high-resolution 

transmission electron microscopy (HRTEM) images of the smaller PbS QDs (Eg = 1.67 eV) that 

were treated at different annealing temperatures. In addition, the morphology of the larger PbS 

QDs (Eg = 1.32 eV) before annealing is shown in Figure C2. To address the morphology 

evolution of the smaller PbS QDs after annealing, the Cu grid for TEM analysis was first coated 

with a monolayer of PbS QDs and the ligand on the surface of the QDs was replaced by EDT in 

an inert atmosphere. Then the Cu grids were thermally annealed for 10 min. While the heating of 

QDs capped with oleic acids showed a diffusion or reaction-controlled isotropic Ostwald 

ripening in solution,29 the dry annealing of QDs caused anisotropic coalescence of QDs, in 

particular along the <100> crystallographic axes.25 This coalescence occurs because an extreme 

decrease in the QD melting temperature enables neighboring QDs to be sintered below 200 oC.30 

The average diameter of the QDs was 3.0 ± 0.3 nm, 3.6 ± 0.3 nm, and 3.8 ± 0.3 nm at room 



 92 

temperature, 100 oC, and 150 oC, respectively. The HRTEM (Figure 5.2 e-h) images of the 100 

oC and 150 oC annealed QD layers show conspicuous crystal lattice planes continuously 

traversing interconnected QDs. This indicates that QDs with a band gap of 1.67 eV have high 

crystallinity, which is an essential condition for low defect concentration and high carrier 

transport in PbS films. 

 

Figure 5-2. Large scale TEM and HRTEM images are shown for the PbS QDs on a Cu grid 

before (a, e) and after thermal annealing at 100 oC (b, f), 150 oC (c, g) and 200 oC (d, h). The 

scale bar in the large scale TEM images on the upper row are 50 nm and in the HRTEM images 

on the bottom row are 5 nm. 

5.3.2 Effect of Thermal Annealing on Band Gap and Linker Molecules of PbS NP films 

The PbS film of the CQDs solar cells was prepared using a layer-by-layer dip coating method. 

After each dipping cycle, the freshly deposited QD film was submerged in an EDT solution to 

replace the capping ligand. The dip coating method was chosen as a more precise way to control 
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the thickness and surface roughness of the QD film than the spin coating method.18, 22 In this 

study, dipping and ligand exchange were repeated fourteen times to reach a thickness of 200 nm. 

The PbS film was then annealed for 10 min in an inert atmosphere at 100 oC – 200 oC. The 

optical band gap of the PbS film (QD Eg = 1.67 eV) was derived from the UV-Vis diffuse 

reflectance spectra using the Kubelka-Munk equation, F(R) = (1-R)2/2R, where R is the 

reflectance.31 Figure 5.3 shows that the optical band gap of the PbS film decreased from 1.65 eV 

to 1.32 eV as the annealing temperature increased to 150 oC. This change in the optical band gap 

of the PbS film results from inter-particle necking and QD size growth. A decreased band gap is 

expected to cause a red shift of the absorption onset and result in more low-energy photons being 

collection. In addition, a decrease in the Fermi level difference between PbS and TiO2 by thermal 

annealing reduces the open circuit voltage in the device.19 

 

Figure 5-3. Plots of transformed Kubelka-Munk function versus the energy of the light absorbed 

are shown for the PbS film derived from the UV-Vis diffuse reflectance spectra. 

A change in the chemical composition of the PbS film (QD Eg = 1.67 eV) during thermal 

annealing was investigated using X-ray photoelectron spectroscopy (XPS). Once loaded in the 

XPS chamber, the surface of the PbS film was cleaned by ion beam etching. Figure 5.4 shows 

the XPS spectra of the EDT-coated PbS films annealed in an inert atmosphere. Although the 
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compositional change is more apparent in air,27, 32 the XPS signal from the C-S bonds of the EDT 

decreases with an increase in annealing temperature under an inert atmosphere. The chemical 

species and corresponding atomic percentages from the S 2p doublets peak fitting were derived 

from the literature;27 see Table 5.1. When the PbS film was annealed at 100 oC and 150 oC, the 

concentration of carbon and sulfur decreased slightly, presumably because of necking and 

growth of QDs and partial thermal detachment of EDT. As the annealing temperature increased 

to 200 oC, the peak area contributed by C-S bonds decreased by about 70%, which indicates that 

most of the EDT capping agent decomposed or detached from the QDs. Without the passivation 

of the capping ligand, the QD size can increase dramatically, as shown in Figure 5.2. 

 

Figure 5-4. XPS spectra are shown for the S 2p peaks in (a) unannealed PbS film and films 

annealed at (b) 100 oC, (c) 150 oC and (d) 200 oC. The S 2p doublet with an intensity ratio of 2:1 

and a splitting of 1.18 eV was applied for sulfur species fitting. The binding energies were 160.7 

eV and 161.88 eV for PbS, 161.85 eV and 163.03 eV for C-S, 163.43 eV and 164.61 eV for S-S. 
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Table 5.1. Chemical species and corresponding atomic percentages of S 2p doublets used for 

peak fitting in the XPS spectra. 

 

5.3.3 Performance of Solar Cells 

A heterojunction structure solar cell of FTO/TiO2/PbS/Au multilayer films was prepared. 

Initially, a 1 µm thick n-type TiO2 hole blocking layer was spin-coated directly onto FTO film 

coated glass substrates. A p-type PbS film was prepared using the LBL dipping method; see 

Experimental Section. The thickness of the PbS film was controlled to be ~200 nm, which is 

reported to be optimal for the PbS thin film solar cell.33 The efficiency of this device architecture 

is reported to be controlled by the width of the depletion region, minority diffusion length, and 

the light absorption.33 A cross-section of the PbS film is shown in Figure C3. After the PbS film 

was annealed at various temperatures in an Ar-filled glove box, a 20 nm Au anode layer of high 

work function was deposited on top of the PbS film using electron beam evaporation. 

The performance of devices using unannealed and annealed PbS films was tested under 

AM 1.5 conditions, and mostly for PbS films comprised of the smaller PbS QDs with an initial 

Eg of 1.67 eV. The J-V curve (Figure 5.5a) of the devices using the smaller PbS QDs reveals that 

an increase in the annealing temperature increased the short-circuit current, Jsc. Details of the 

device parameters are summarized in Table 5.2. The Jsc from the unannealed PbS QDs was 10.41 
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mA/cm2, and it increased to 15.63 mA/cm2 after 100 oC annealing, and further reached 21.72 

mA/cm2 after 150 oC annealing. We hypothesize that this two-fold enhancement in Jsc arises, in 

part, from the faster and more direct carrier transport path that is associated with the necking 

structure between adjacent QDs. In addition, the slightly enlarged particle size and necking 

structure enhances the photon collection ability in the visible range, because of the shrinkage in 

the band gap. On the other hand, the open-circuit voltage Voc showed a slight decrease as the 

annealing temperature increased, probably because the hole quasi Fermi level shifts upward and 

the difference in the quasi-Fermi levels of the PbS film is reduced after the thermal annealing.28 

This shift of quasi-Fermi level is mainly responsible for the 23% decrease in Voc. In addition, 

partial detachment of EDT ligand could introduce surface traps as new recombination sites for 

charge carriers on the QDs, leading to a lower fill factor (FF) and Voc. The series resistance (RS) 

and shunt resistance (RSH) were calculated from ∂V/∂J at the open circuit and short circuit 

condition, respectively.27 The equivalent circuit of the device is shown in Figure C4, from which 

the RS and RSH are extracted. As the annealing temperature increased, RS displayed a decrease, 

which reflects the increase in the charge mobility in the PbS film, and RSH showed a decrease, 

which implies that the carrier recombination increased.27 Annealing at 200 oC caused a cell 

failure because the average inter-particle distance was increased and the network connectivity 

was reduced (vide supra), thus suppressing the carrier mobility. The optimal annealing condition 

in an Ar atmosphere was found to be 150 oC. Under this condition, the energy conversion 

efficiency (η) of the device was 3.57%, which is 39% better than that of the unannealed PbS 

film. Results for the bigger PbS QDs (QD Eg = 1.32 eV) in Figure 5.5b also show that annealing 

at 150 oC can enhance Jsc from 13.86 mA/cm2 to 24.91 mA/cm2. However, a significant tradeoff 
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is evident between Jsc and Voc during the annealing of larger PbS QD, presumably relating to the 

dramatically decreased band gaps. 

 

Figure 5-5. Current-Voltage (J-V) characteristics and incident photon-to-electron conversion 

efficiency (IPCE) spectra are shown for devices using unannealed PbS films and PbS films 

annealed at various temperatures. Optical absorbance spectra are shown for the TiO2 and 

TiO2/PbS films. (a, c, e) QD Eg = 1.67 eV, (b, d, f) QD Eg = 1.32 eV. 

The incident photon-to-electron conversion efficiency (IPCE) curves of the solar cells are 

shown in Figure 5.5c. As the annealing temperature increases, a continuous redshift of the main 
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IPCE peak from 400 nm to 550 nm can be observed, and the hump at around 780 nm gradually 

broadens. Furthermore, more photons in the visible and near IR region are converted to electrons 

in the device after annealing. These changes correspond with the absorbance spectra of the 

TiO2/PbS stack films (Figure 5.5e). The unannealed sample shows a small hump at around 780 

nm, which red-shifts a little from the original first excitonic position, presumably because of 

coupling between neighboring QDs and the increased dielectric constant of the external 

environment.34 After annealing, this hump becomes flatter and another broad absorption occurs 

in the visible regime from 500 nm to 700 nm. A similar behavior has been observed in one-

dimensional PbS nanostructures, like nanorods.35, 36 The IPCE and absorbance spectra (Figure 

5.5d,f) of the control devices, which use PbS QDs (QD Eg = 1.32 eV) also show a comparable 

result, where annealing can enhance the light harvesting in the visible regime. Comparing the 

performance of the device using smaller PbS (QD Eg = 1.67 eV) annealed at 150 oC and bigger 

PbS (QD Eg = 1.32 eV) without annealing, it can be seen that their Voc is close, which means a 

similar value for the film band gap. However, the shape of their IPCE curves is tremendously 

different, which reveals that some extra effect, besides the band gap, causes the enhancement of 

the photon-electron conversion efficiency. 
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Table 5.2. Response of FTO/TiO2/PbS/Au Solar Cells under Simulated AM 1.5 (100 mW/cm2). 

 

5.3.4 DBH Structure at a PbS/TiO2 Interface after Thermal Annealing 

High-resolution transmission electron microscopy (HRTEM) was employed to examine the 

changes in the film’s structure on the tens to hundreds of nanometer length scale (QD Eg = 1.67 

eV) as a result of thermal annealing. In the bright field cross-section images of unannealed 

samples (Figure 5.6a), a boundary between the TiO2 and PbS films is located at 200 nm from the 

PbS/Au interface, which is consistent with a previous report.19 However, after 150 oC annealing, 

about 75% of the PbS QDs have moved into the TiO2 mesoporous film and the interface between 

the two films has become diffuse (Figure 5.6b). This intermixing of PbS and TiO2 implies the 

formation of a DBH structure. In the dark field cross-section images (Figure 5.6c-d), an 

intermixing region is clearly observed. Red bars are drawn to mark the width of the intermixing 

region. The narrow red bar on the unannealed sample arises from a slight penetration of the PbS 
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QDs or an overlap of TiO2 and PbS films along the electron beam direction. The red bar of the 

annealed sample is as large as 300 nm, which is larger than the thickness of the pristine PbS film. 

Energy dispersive X-ray spectroscopy (EDS) mapping of the 150 oC-annealed samples 

reveals clear evidence of the DBH structure. A rectangular area in the Z-contrast high angle 

annular dark field (HADDF) cross section image of Figure 5.6e was chosen for elemental 

distribution scanning. The red curve was drawn to roughly show the boundary between the pure 

PbS layer and TiO2/PbS intermixing region. The elements Pb, S and O are traced in the selected 

area, which includes the zig-zag boundary. Non-uniformly dispersed Pb and S in the TiO2 matrix 

indicates that the very small white dots of the HADDF image marked by yellow arrows are PbS 

QDs distributed in the TiO2 film. This leads to the conclusion that the DBH of PbS QDs and 

TiO2 nanoparticles was formed in the intermixing region. Because the cross-section was cleaned 

by ion milling, any contamination from the environment, such as dust, is very unlikely. The 

clean surface of the unannealed sample in Figure 5.6c verifies this assumption. In comparison, 

the EDS mapping of the unannealed sample indicates that no PbS diffusion is detected in the 

TiO2 film (Figure C5). 
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Figure 5-6. Bright field HRTEM cross-section images are shown for (a) an unannealed sample 

and (b) a sample annealed at 150 oC for 10 min. The scale bar is 50 nm. A Z-contrast high angle 

annular dark field (HADDF) cross-section image is shown for (c) an unannealed sample and (d) 

a sample annealed at 150 oC for 10 min. The scale bar is 100 nm. The inserted red bar shows the 

width of the PbS layer diffused into TiO2 film. (e) A HADDF image and EDS mapping are 

shown for a sample annealed at 150 oC. The inserted yellow arrows show the individual PbS 

QDs in the TiO2 mesoporous film. The red curve roughly shows the boundary between the pure 

PbS layer and the DBH layer. The scale bar is 50 nm. 



 102 

This DBH structure is, in some sense, similar to the QD sensitized solar cell, in which 

photosensitizers attach on the TiO2 NPs.37, 38 However, in a QD sensitized solar cell, an 

electrolyte is needed for hole transport.39 For this DBH device, no extra electrolyte is needed, 

and the residual upper pure PbS layer is in direct ohmic contact with the metallic anode. Figure 

5.7 shows the schematic structures and mechanisms of the device using unannealed TiO2/PbS 

films and TiO2/PbS films annealed at 150 oC for 10 min in Ar. These reveal that after annealing, 

most of the PbS QDs diffuse into the TiO2 mesoporous film along the pore channels. Inter-

particle necking between QDs forms bridges for hole transport. By doing so, the active QDs 

layer expands.  

A mechanism for charge separation and transport is shown by the diagrams in the inset. 

For the unannealed sample, a planar heterojunction occurs only at the TiO2/PbS interface; and 

after charge separation, hole transport occurs by hopping between the adjacent QDs, which is not 

very efficient. For the annealed sample, however, a three-dimensional DBH with a highly folded 

architecture is generated such that most excitons are formed close to a junction interface. This 

exponentially increases the contact area between TiO2 NPs and PbS QDs so as to enhance the 

generated carrier concentration. The interconnected QDs can then establish internal paths for 

efficient hole transfer. As a result, the light harvesting efficiency and charge injection efficiency 

are enhanced, leading to an improved Jsc.  
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Figure 5-7. These schematic diagrams illustrate the structures and mechanisms of the devices 

using (left) unannealed TiO2/PbS films and (right) TiO2/PbS films annealed at 150 oC for 10 min 

in Ar; the PbS/TiO2 bulk heterojunction layer was formed after annealing. Mechanisms of charge 

separation and transport are shown in the insets. (left) Carrier separation in the planar 

heterojunction proceeds by hole hopping between separated PbS QDs. (right) For the DBH 

structure, carrier separation is dominated by internal pathways of the interconnected PbS QDs. 

5.3.5 Electric Force Microscope Analysis 

Electrostatic force microscopy (EFM) is mainly devoted to detecting voltage contrasts and 

capacitive coupling using a force signal FΩ, which is different from the surface topography.40,41, 

42 In a true DBH, it is expected that a local property such as charge distribution can be used to 

characterize the charge transport on the nanoscale. Figure 5.8 shows the topography and charge 

distribution of the PbS film, which belongs to the FTO/TiO2/PbS multilayer films, before (Figure 

5.8a-b) and after (Figure 5.8c-d) annealing at 150 oC. The charge distribution was monitored 

under an electric bias of 5 V using a boron-doped diamond probe. The electric signal was 
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amplified at a gain ratio of 106 A/V to increase the accuracy of the electric measurement. The 

images in 8c and 8d reveal that after annealing, the upper surface of the PbS film becomes 

smoother - presumably because of the densification of the film. It can be noted that local 

fluctuations at the nanoscale are found only in the EFM images of Figure 5.8d. The brighter 

islands with a peak signal of ~2.2 V in the annealed sample represent better hole transport and 

higher charge concentration in the local domain of the film. This local fluctuation of hole 

transport indicates that a DBH is formed in the intermixing region with an individual domain 

size of 50 nm to 100 nm and that holes and electrons have different transport channels 

underneath the PbS layer. These images should be contrasted with 8a and 8b before annealing, in 

which the carrier concentration is uniform and the average amplitude of 0.5 V corresponds to the 

planar heterojunction at the TiO2/PbS interface. 

 

Figure 5-8. EFM data are shown for measurements of PbS/TiO2 tandem films on FTO using a 

boron-doped diamond probe. (a) Topography and (b) charge distribution of unannealed sample. 

(c) Topography and (d) charge distribution of sample annealed at 150 oC for 10 min in Ar. 
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5.3.6 Electrochemical Impedance Spectroscopy and Electron Lifetime Measurement 

Electrochemical impedance spectroscopy (EIS) was performed to analyze the internal electrical 

parameters of the devices, and the results are shown in Figure 5.9. In the thin film type PbS QD 

solar cells, low frequency responses ranging from ~kHz to mHz arise from the TiO2/PbS 

interface.20 The capacitance-voltage curve of the devices was measured in the dark using an 

impedance-potential scan.43 The data in Figure 5.9a indicate charge transfer in the depletion 

layer at the TiO2/PbS interface.19 A larger capacitance after annealing means that more electrons 

are stored at the junction of the TiO2/PbS interface. Nyquist plots of the devices are shown in 

Figure 5.9b and 9c. In order to study the TiO2/PbS interface, complex impedance was measured 

from 0.1 Hz to 1 kHz for both dark and illuminated conditions at the open circuit voltage. As the 

annealing temperature increases, the radius of the semicircle decreases, indicating a decrease in 

the recombination resistance at the TiO2/PbS interface. EIS data is fitted with a model of two 

sub-circuits that are composed of one constant phase element (CPE) in parallel with one 

resistance. This sub-circuit is called a ZARC element and Levenberg-Marquardt least-square 

data fitting program for windows (LEVMW, Chapel Hill, NC, US) was used for the fitting.44 In 

Figure 5.9, the experimental (open circle) data are consistent with the fitted (solid line) one. The 

inset in Figure 5.9b shows a magnification of the plots in the low impedance regime. After 

analysis, the recombination resistances in the dark condition for the unannealed, 100 oC 

annealed, and 150 oC annealed samples are 42996 Ω, 16278 Ω, and 1207 Ω, respectively; under 

illumination the resistances are 518 Ω, 397 Ω, and 190 Ω, respectively. A monotonous decrease 

in the impedance with an increase in annealing temperature indicates that annealing lowers the 

carrier recombination resistance and shortens the carrier lifetime.  
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Figure 5-9. (a) A capacitance-voltage curve is shown for the FTO/TiO2/1.67 eV QD/Au device. 

The capacitance (Cp) was calculated from the scanned impedance at 100 Hz with an AC signal of 

25 mV in the dark. Nyquist plots of the unannealed and annealed devices tested in the low 

frequency regime ranging from 0.1 Hz to 1 kHz. The semi-circles were scanned in (b) dark and 

(c) illuminated conditions under an external bias with a magnitude of open circuit voltage. 

Experimental data (open circle) and fitted curve (solid line) are drawn together. The insert shows 

the magnified plots in the low impedance regime. (d) Electron lifetime of the devices using PbS 

films with and without annealing. 

The electron lifetime (τ) of the devices using PbS films with or without annealing was 

measured using an open-circuit voltage decay (OCVD) technique.45 The transient of Voc was 

measured as a function of time using a 633 nm photodiode laser as the light source, and the 

lifetime in the different devices was calculated from the decay curves of Voc. In Figure 5.9d, it is 

clearly shown that τ decreases with increasing annealing temperature. As the samples were 
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thermally annealed, the τ became smaller, which is consistent with the results of the impedance 

measurement. The device using bigger QDs (QD Eg = 1.32 eV) had an even lower τ, with a 

similar temperature-dependent feature; see Figure C6.  

The decrease in the recombination resistance and in the electron lifetime after annealing 

can be explained by an increase of the TiO2/PbS interface area. As the interface area increases 

because of the thermal annealing, the probability of carrier trapping and recombination increases. 

This effect leads to a decrease in the carrier lifetime, which supports our model of the DBH 

between TiO2 and PbS. In addition, a decrease in the bandgap of the semiconductor by the 

thermal annealing increases the Auger recombination rate and decreases the carrier lifetime.46 

Detachment of the short EDT ligand and insufficient surface passivation during thermal 

annealing is also partially responsible for a smaller carrier lifetime. This implies that a 

retreatment of thermally annealed PbS film in EDT should improve passivation of the QD 

surface, reduce the recombination sites, and improve the device performance. The J-V curves of 

the device using 150 oC annealed PbS film and 150 oC annealed/EDT treated PbS film are shown 

in Figure 5.10. When the annealed PbS film was repassivated by dipping the film in an 

EDT/acetonitrile solution for another 30 sec, the FF of the device improved from 0.32 to 0.36, 

indicating a suppressed recombination rate. The conversion efficiency then increased from 

3.57% to 3.95%. 
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Figure 5-10. J-V curve of the devices using PbS film annealed at 150 oC and without or with 

post-annealing EDT treatment. 

5.4 Conclusion 

The thermal annealing effect on the performance characteristics of aTiO2/PbS heterojunction 

solar cell was explored. TEM, EFM, and AFM analysis showed that mild annealing of the thin 

film solar cell at 150 oC under an inert atmosphere caused the intermixing of PbS QDs and TiO2 

nanoparticles and the formation of a DBH layer. An increase in the junction interface between 

PbS and TiO2 was found to facilitate electron-hole separation. Annealing also improved the 

crystallinity of the PbS QDs and introduced a necking structure between adjacent QDs. As a 

result, the carrier transport at the PbS/TiO2 interface became faster and the current density and 

conversion efficiency of the device was improved. 
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6.0  CONCLUSION REMARKS AND FUTURE DIRECTIONS 

Semiconductor nanoparticles (NPs) are a promising photovoltaic material for next-generation 

solar cells as discussed above, because of their size-tunable energetics, multiple exciton 

generation, solution-processibility, etc. The commercialization of NP photovoltaics will be a 

slow process, however; because there is a still wide gap between the laboratory discovery and the 

real world applications. This process is not surprising as many revolutionary technologies have 

experienced this stage before they reach commercialization. As a good sign, recently numerous 

startup companies have joined the race for NP devices and applications, such as QD vision. It 

suggests that the unique features of the NPs can not only attract scientific curiosity, but they can 

also be potentially profitable. The great interest for the NPs in both academia and industry will 

certainly accelerate the development of the NP-based applications. In the meantime, some 

scientific challenges need to be addressed by researchers, including 1) collective phenomena of 

the NP assemblies; 2) surface chemistry of the NPs; and 3) photo-induced charge generation, 

separation, and transfer processes in the NP and the NP-based devices. 

This thesis has extensively explored those challenging areas by studying the electronic 

energetics, charge transfer kinetics, and photovoltaics for the semiconductor NP assemblies and 

devices. Chapter 2 shows that the electronic coupling between NPs and conductive substrates can 

largely alter the energetics of the NP. This result suggests that the previous knowledge obtained 

for isolated NPs may not be entirely accurate for use in NP assemblies and devices, in which the 

NP interacts with other components and exhibits collective electronic features. In addition, we 
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found that the lifetime of excited electrons in the assembly is highly sensitive to the density of 

trap states, which can be manipulated by the choice of surface ligands.  For future directions, we 

are interested in studying the electronic coupling between the NP and different substrates other 

than Au. This study may explain the mechanism for the HOMO-pinning effect by revealing the 

relation between the pinning position and the metal work function. 

Chapter 3 demonstrates how the energy architecture can influence the charge transport 

and photocurrent generation in a model photoelectrochemical cell and a real photovoltaic device. 

Photocurrent was used as a simple tool to study how the energy level alignments affect the 

charge transfer directionality and efficiency. The experiments with the photoelectrochemical cell 

obtained valuable information for the design of a real photovoltaic device, while using a 

minimum amount of materials and time. This work provides an interesting strategy to optimize 

the energy alignments and architectures for the devices by simply testing them first in a 

photoelectrochemical cell.            

The charge transfer study in Chapter 4 suggests a strategy for enhancing the charge 

separation in hybrid solar cells by orienting an internal electric field with the donor-acceptor 

energy offset. This strategy may offer some new ideas for synthesizing polymers (side chains) 

and NP ligands that have a right dipole moment at their donor-acceptor interface. This dipole 

moment can work with the donor-acceptor energy offsets as the charge separation “engine” for 

the hybrid bulk heterojunction devices. For future directions, we want to explore other interfacial 

factors which can also affect the charge separation and recombination kinetics. For instance, 

several researchers have reported that chiral molecules, such as DNA, are highly spin-selective; 

and thus they are conductive for electrons with one spin direction, but resistant for electrons with 

the other spin direction. For a hybrid polymer/NP system with a chiral polymer side chain and a 
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chiral NP ligand, it is very interesting to see how different chirality combinations can affect the 

charge transfer rate between the polymer and the NP.      

What exactly can thermal annealing do for a NP-based solar cell? Chapter 5 addresses 

this question by annealing a PbS-NP/TiO2 depleted heterojunction device at different 

temperatures and monitoring the micro-structural change of the heterojunction. This work shows 

that thermal annealing at an optimal temperature can cause the intermixing of p-type and n-type 

materials at the interface. This intermixing increases the charge-separating area and thus 

enhances the charge separation efficiency. For future directions, we are interested in studying 

how to use surface plasmon to enhance the absorption of PbS NPs in a similar device. By using 

Au/SiO2 core-shell plasmonic nanostructures, our preliminary experimental and simulation 

results show that embedding the Au/SiO2 nanostructures into the PbS-NP film in a depleted 

heterojunction cell can improve the power conversion efficiency by ~ 24%. This enhancement 

may be attributed to both localized surface plasmon and enhanced light scattering resulting from 

the Au/SiO2 nanostructures.         

In summary, the studies in this thesis provide some insights about the photophysics of 

semiconductor NPs and their electronic interactions with metals, surface ligands, or conjugated 

polymers. The important findings may help other researchers to better understand the 

fundamental physics for semiconductor nanoparticles.  
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APPENDIX A 

Supporting information for Chapter 2 

 

In Figure A1, Panel A shows that the LEPET signal increases as the NP incubation time 

increases from 10 min to 3 h, namely, increasing the M-NP coverage on Au/DT. This result 

confirms that these photoelectron kinetic energy distributions are from the NPs in the assemblies. 

Panel B has all spectra in Panel A rescaled to demonstrate that varying the NP coverage does not 

alter the high energy cut-off of the spectra, namely, the HOMO energy. However, the little 

change in lower kinetic energy cut-off indicates the coverage does alter the work function of the 

NP assemblies. 

 

 

Figure A1. Panel A shows that the LEPET signals increase with the M-NP incubation time from 

10 m to 3 h. Panel B has all the spectra in panel A rescaled to the same height. The signal of 

Au/DT has been subtracted from all the spectra here.  
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Figure A2 shows the TPPE spectra for the assemblies of Au/DT/NP for three sizes of 

NPs. The peak energy in the TPPE spectra is generally assigned to the LUMO. However, the 

peak observed at a kinetic energy of about 1.0 eV is not the LUMO of the NPs, because it is 

neither consistent with the LUMO energy calculated from the HOMO energy and the optical 

bandgap, nor is it correlated with the NP size.  

The kinetic energy (𝐸𝑘) of photoelectrons ejected from the LUMO is, 𝐸𝑘 = ℎ𝑣 − 𝐸𝑏, 

where ℎ𝑣 is the second photon energy, and 𝐸𝑏 is the binding energy of the LUMO. Based on this 

equation, one expects that the peak of the LUMO should shift one-fold with the change of the 

second photon energy. However, as shown in Figure A2, the peak obtained does not shift with 

the second photon energy, and it occurs at almost the same kinetic energy for all three sizes of 

the NPs. Thus, this peak is not the LUMO level, and it is likely caused by the secondary 

electrons produced by the laser. 

 

Figure A2. The TPPE spectra for Au/DT/S-NP (A), Au/DT/M-NP (B), and Au/DT/L-NP (C) at 

three  excitation wavelengths of 300 nm (black), 305 nm (red) and 310 nm (blue).  

 

Figure A3 compares the TPPE spectra between the assemblies of Au/DT/NP and 

Au/DT/NP/DT for three sizes of the CdTe NPs. These spectra were collected at three different 

wavelengths. The data show that the ligand exchange from TDPA to DT introduced a high 
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kinetic energy shoulder in the TPPE spectra that corresponds to the photoelectrons ejected from 

the LUMO of the NPs by the second photon.  

The energy distance (∆𝐸) between the LUMO and the Fermi level is calculated as: ∆𝐸 =

Φ − (ℎ𝑣 − ∆𝐸𝑘). Φ is the work function measured from LEPET, and it is equal to the difference 

between the photon energy used in LEPET and the width of the LEPET spectra; ℎ𝑣 is the second 

photon energy in TPPE; and ∆𝐸𝑘 is the kinetic energy difference between the peak energy and 

the low energy cut-off in the spectrum of TPPE. 

The high surface coverage of the L-NPs make its low kinetic energy peak much more 

dominating in the TPPE spectrum than that in case of the S- or M-NPs, which have a lower 

surface coverage than the L-NPs. This fact leads to a less well-defined high kinetic energy 

shoulder for the L-NPs than that for the S- or M-NPs. Thus, the subtraction of the low kinetic 

energy peak results in a narrower LUMO distribution for the L-NPs than that for the S- or M-

MPs, as shown in Figure 2.3C. 
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Figure A3. Panels A to C compare the TPPE spectra for the assemblies of Au/DT/S-NP (black) 

and  Au/DT/S-NP/DT (red) collected at a wavelength of 300 nm (left), 305 nm (middle), and 310 

nm (right).  Correspondingly, Panels D to F and Panels G to I are the spectra for the assemblies 

with M-NP and L-NP, respectively.    

 

The surface photoluminescence (PL) measurements on the assemblies of Au/DT/NP 

show that the fluorescence for all sizes of NPs was completely quenched. Figure A4 shows the 

surface PL spectra for the assemblies of Au/DT/NP/DT after replacing TDPA with DT. 

Interestingly, all NP assemblies show PL after this treatment. This result indicates that 

presumably by removing the surface states the DT ligands can also enhance the PL yield for the 

NPs.  
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Figure A4. This figure shows the normalized surface PL spectra for three different assemblies, 

Au/DT/S-NP/DT (black), Au/DT/M-NP/DT (red), and Au/DT/L-NP/DT (blue) after the ligand 

exchange. 
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Figure A5 compares the background-subtracted LEPET spectra for the assemblies of 

Au/DT/NP and Au/DT/NP/DT. The data show that the attachment of the second layer of DT 

does not significantly alter the energies of the HOMO; namely, the HOMO level for all sizes of 

NPs remains pinned at 0.80 ± 0.05 eV below the Fermi level. However, the DT molecules do 

change the low energy cut-off of the spectra and the width of the spectra by about 0.1 eV. 

Because the work function (Φ) is equal to the difference between the photon energy used in 

LEPET and the width of the spectra, thus the work function of the assemblies is changed from 

4.2 ± 0.1 eV to 4.3 ± 0.1 eV after replacing the TDPA with the DT. 

 

Figure A5. This figure compares the LEPET spectra of the Au/DT/NP and Au/DT/NP/DT for all 

sizes of NPs. The assemblies of Au/DT/NP are shown as the solid lines, and those of 

Au/DT/NP/DT are shown as the dashed lines. 
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Figure A6 shows the voltammetry results for the three sizes of CdTe NPs that were 

originally synthesized in the aqueous phase with a water-soluble thiol ligand (3-

Mercaptopropionic acid, MPA). Compared to the results in Figure 6, these data indicate that the 

thiol ligand completely removed the peak O1 which is assigned to be from the trap states. This 

observation is consistent with the view that thiol ligands suppress the interband surface states of 

the CdTe NPs. In addition, the potential of the only oxidation peak observed in Figure A6 agrees 

with that of Peak O2 observed in Figure 2.6. This agreement suggests that peak O2 is caused by 

the oxidation of the NP valence band.         

 

Figure A6. Voltammograms of the three sizes of MPA-CdTe NPs immobilized on the Au/DT 

electrode. The measurement was performed in 0.1 M aqueous phosphate buffer solution (pH = 

3). 
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Figure A7 only plots the oxidation wave of the voltammograms shown in Figure 2.6. The 

dash lines are the simulated base lines which will be subtracted from each corresponding 

oxidation wave. The subtraction results are shown as the solid lines in Figure 2.7. This purpose 

of this subtraction is to minimize the charging current influence on the shape of the oxidation 

peaks, and to achieve a good Gaussian fitting to the oxidation peak O1.           

 

Figure A7. Compared to Figure 2.6, this figure only plots the oxidation wave of the 

voltammogram for the assembly of Au/DT/S-NP (black), Au/DT/M-NP (red), and Au/DT/L-NP 

(blue). The dash lines are the simulated baselines that will be subtracted from the oxidation wave 

to extract peak O1 and O2.    
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Figure A8 shows photocurrent density-voltage (J-V) characteristics for the assemblies 

with different NP incubation times, from 0.5 h to 3h, and presumably different NP surface 

coverage on Au. These data show that 1) the photocurrent increases as the NP incubation time 

increases from 0.5 h to 3 h; and 2) with the same incubation time, the photocurrent for the 

Au/DT/M-NP/DT assemblies (dash lines) are at least four times higher than that for the 

corresponding Au/DT/M-NP assemblies (solid lines). 

 

Figure A8. This figure shows photocurrent-voltage (J-V) characteristics of Au/DT/M-NP (solid 

lines, squares) and Au/DT/M-NP/DT (dashed lines, circles) for different NP incubation times 

(black is 0.5 h, red is 1 h, and blue is 3 h). Lines connecting points serve as a guide for the eyes.  

Most error bars are smaller than the symbol. 
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In Figure A9, the dark current density (black squares) for the assembly of Au/DT/M-NP 

and Au/DT/M-NP/DT was rescaled to have the same value. The change to the dark current 

density was also applied to the corresponding light-on current density. The red and blue squares 

are the light-on current density for the assembly of Au/DT/M-NP and Au/DT/M-NP/DT, 

respectively. The difference between the dark current density and the light-on current density is 

the photocurrent density, which is shown as the red and blue triangles. It is apparent that the 

photocurrent density is much smaller than the dark current density, because only a monolayer of 

the NP was attached to the electrode. This fact is also the reason why the difference in the light-

on current density is so small between the Au/DT/M-NP and Au/DT/M-NP/DT.  

 

 

 

Figure A9. The black squares are the rescaled dark current density. The red and blue squares 

are the light-on current density for the assembly of Au/DT/M-NP and Au/DT/M-NP/DT, 

respectively. Two dash lines are the fitting to the corresponding light-on current density. The 

red and blue triangles are the photocurrent density for the assembly of Au/DT/M-NP and 

Au/DT/M-NP/DT. 
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In Figure A9, the J-V characteristics of the light-on current density for the two assemblies 

were fitted by a simple Schottky diode model (red and blue dash lines), namely: 

𝐽 = 𝐽𝑜 [exp (
𝑞𝑉

𝑛𝑘𝑇
) − 1] − 𝐽𝐿 

in which, 

𝐽𝑜 = 𝐴∗𝑇2 exp (
−𝑞∆𝜙

𝑘𝑇
) 

and, 

𝐴∗ =
4𝜋𝑞𝑚∗𝑘2

ℎ3
 

where, 𝐽𝑜 is the saturation current density, 𝑛 is the ideality factor,  𝐽𝐿 is the photocurrent density, 

𝐴∗ is the Richardson constant, ∆𝜙 is the Schottky barrier height, 𝑚∗is the electron effective 

mass, 𝑇 is the temperature, 𝑘 is the Boltzmann constant, ℎ is the Planck constant, and 𝑞 is the 

elementary charge. 

The fitting results are listed in Table A1. Based on the saturation current density (𝐽𝑜) 

extracted from the fitting, the Schottky barrier height (∆𝜙) for the two assemblies was 

calculated. The data show that ligand exchange from TDPA to DT slightly lowered the barrier 

height for electron transfer from the NP to the Au electrode. This fact may explain why the 

photocurrent of Au/DT/M-NP/DT is higher than that of Au/DT/M-NP. Note that the ideality 

factor (𝑛) for the two assemblies is bigger than 2. This may be caused by the trap-state-assisted 

charge recombination in the assemblies, which has also been observed for several amorphous 

bulk semiconductors.  
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Table A1. The fitting results for Figure A9. 

 𝑱𝒐(𝝁𝑨/𝒄𝒎𝟐) 𝒏 𝑱𝑳(𝝁𝑨/𝒄𝒎𝟐) ∆𝝓 (𝑽) 

Au/DT/M-NP 0.376 3.99 -0.260 0.744 

Au/DT/M-NP/DT 0.509 4.24 -0.368 0.736 

 

The two equations generated by fitting the LUMO energy to a power law for the CdSe 

and CdTe NPs ,as shown in Figure 2.10. 𝑑 (nm) is the diameter of the NPs.    

 

For CdSe: LUMO energy = −3.80 + 1.34d−1.11 

 

For CdTe: LUMO energy = −3.50 + 11.16d−2.89 
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APPENDIX B 

Supporting information for Chapter 4 

 

Synthesis of (-)PDPPPV. Poly(potassium 1,4-diketo-2,5-bis(4-sulfonylbutyl)-3,6-diphenyl-

pyrrolo(3,4-c)pyrrole-alt-divinyl-1,4-bis(ethyloxy)benzene), denoted as (-)PDPPPV, was 

synthesized by Heck-coupling of monomer (5) with monomer (9), as illustrated in Figure B1. 

 

 

Figure B1. Synthetic route of (-)PDPPPV: (i) NaOH, DMSO, EtBr; (ii) NaBr, HOAc, H2SO4, 

(CH2O)n; (iii)PPh3, toluene; (iv) CH2Cl2, HCHO; (v) Na, tert-amylalcohol, FeCl3, HOAc; (vi) t-

BuOK, DMF, 1,4-butane sultone; (vii) P(o-tolyl)3, Pd(OAc)2, NEt3, DMSO, H2O. 

Monomer 5. Under an argon atmosphere, compound 4 (2,5-diethoxy-1,4-xylylene-

bis(triphenyl phosphonium bromide)) (6.5748 g, 7.5 mmol) was stirred at 0 °C in 

dichloromethane (100 mL) and formaldehyde (30 mL), to which a 25 mL aqueous solution of 
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NaOH (20 wt %) was added drop-wise over a time period of 1 h, and the reaction mixture was 

stirred for 24 h. Afterward phase separation was allowed to occur and the aqueous layer was 

extracted. The resultant non-aqueous layer was dried with anhydrous sodium sulfate, and then 

the solvent was removed by rotary evaporation. The residue obtained afterward was purified by 

recrystallization in ethanol to yield pale yellow crystal. Yield: 1.1526 g, 70.4 %. 1H NMR 

(CDCl3, 300 MHz):  (ppm) 1.43 (t, -CH3, 6H), 4.04 (q, O-CH2, 4H), 5.26 (d, vinyl-H(terminal), 

2H), 5.73 (d, vinyl-H(terminal), 2H), 7.00 (s, Ar-H, 2H), 7.00-7.10 (dd , vinyl-H, 2H). IR (KBr, 

cm-1): 3088 (m, (=C-H)), 2978,2926 (s, as(-CH3, -CH2-)), 2876 (s, s(-CH3, -CH2-)), 1620-

1474 (s, (ArC=C)), 1391 (s, (-CH3)), 1271 (s, (-CH3)), 1205 (s, (C-O)), 910 (s, (=C-H)). 

Monomer 9. Under an argon atmosphere, compound 8 (4.46 g ,10 mmol) and potassium 

t-butoxide (1.76 g, 22 mmol) were heated at 60 °C in dry DMF (150 mL), and 1,4-butane sultone 

(3.1 mL, 30 mmol) was slowly added. The reaction mixture was stirred at 90 oC for 12 h, and 

then it was poured into ethanol (1L) to obtain a precipitate that was collected by filtration and 

redissolved in hot water. The resultant water solution was filtered, concentrated, and dried under 

vacuum to give an orange-red solid. Lastly the product was purified by recrystallization in an 

aqueous solution of potassium chloride (50g/L) and dried under vacuum at 120 oC for 24 h to 

obtain a red-brown powder. Yield: 1.55 g, 26 %. 1H NMR (D2O, 300 MHz):  (ppm) 1.49 (m, 

8H, methylene), 2.69 (t, S-CH2, 4H), 3.67 (t, N-CH2, 4H), 7.44 (d, DPP aromatic H, 4H), 7.60 (d, 

DPP aromatic H, 4H). IR (KBr, cm-1): 2937 (s, as(-CH3, -CH2-)), 2868 (s, s(-CH3, -CH2-)), 

1676 (s, (C=O)), 1605,1551 (s, (ArC=C)), 1369 (s, (C-N)), 1184,1045,1007 (R-SO3
-M+), 735 

(w, (-(CH2)n-)). 

(-)PDPPPV. Under an argon atmosphere, monomer 5 (0.2183 g, 1 mmol), monomer 9 

(0.7946 g, 1 mmol), palladium(II) acetate (0.0135 g, 0.06 mmol), tri(o-tolyl)phosphine (0.0730 

app:ds:potassium
app:ds:chloride
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g, 0.24 mmol), and triethylamine (5 mL) were placed in a three-neck round-bottom flask with 

H2O (3 mL) and dimethylsulfoxide (8 mL). The reaction mixture was allowed to stir at 100 oC 

for 18 h and subsequently cooled and then filtered. The filtrate was poured into the mixed 

solvent (ethyl ether/acetone/methanol =5/4/1), after which a precipitate was formed and isolated 

by filtration. It was then re-dissolved in deionized water (10 mL). The resultant solution was 

dialyzed in deionized water for three days using a 4kD MWCO cellulose membrane 

(Spectra/Por Cellulose Ester Membrane). Finally the solvent was removed by rotary evaporation 

and the crude product was further dried under vacuum with P2O5 at 50 oC for 2 days to obtain a 

dark purple powder. Yield: 0.4126 g, 48.47%. 1H NMR (D2O, 300 MHz):  (ppm) 1.37-1.47 (-

CH3 and -CH2-), 2.59-2.75 (S-CH2), 3.65 (N-CH2), 3.96 (O-CH2), 7.22-7.57 (vinyl-H and DPP 

aromatic H). IR (KBr, cm-1): 3045 (m, (=C-H)), 2930(s, as(-CH3, -CH2-)), 2870 (s, s(-CH3, 

-CH2-)), 1664 (s, (C=O)), 1593,1541 (s, (ArC=C)), 1391 (s, (-CH3)), 1367 (s, (C-N)), 

1186,1041 (R-SO3
-M+), 725 (w, (-(CH2)n-)). 

Synthesis of (+)PDPPPV. Poly(1,4-diketo-2,5-dipropyl-3,6-diphenyl-pyrrolo(3,4-

c)pyrrole-alt-divinyl-1,4-bis(2-(N,N,N-triethylaminium)ethoxy)benzene bromide), namely, 

(+)PDPPPV, was synthesized by Heck-coupling of monomer 2 and monomer 8, as shown in 

Figure B2. Note that the compound labels here should not be confused with those for (-

)PDPPPV. 
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Figure B2. The synthesis for (+)PDPPPV. (i) t-BuOK, NMP, 1-iodopropane; (ii) K2CO3, 

acetone, 2-chlorotriethylamine hydrochloride; (iii) HCl, HCHO, dioxane; (iv) PPh3, H2O, DMF; 

(v) NaOH, HCHO; (vi) EtBr, acetone; (vii) P(o-tolyl)3, Pd(OAc)2, NEt3, DMSO. 

Monomer 2. Under an argon atmosphere, compound 1 (1,4-diketo-3,6-bis(4-

bromophenyl)pyrrolo[3,4-c]pyrrole) (0.892 g, 2 mmol), potassium tert-butoxide (0.494 g, 4.4 

mmol), and anhydrous 1-methyl-2-pyrrolidinone (15mL) were heated at 60 °C. 1-iodopropane 

(2.04g, 12mmol) was added slowly and the mixture was stirred at 60 °C for 24 h. After cooling 

to room temperature, 25 mL of toluene was added to the reaction mixture, which was then 

washed with water to remove the NMP. The solution was concentrated by using a rotary 

evaporator. The crude product was purified by column chromatography on silica using 

dichloromethane as the eluent, and the final product was an orange powder. Yield: 0.221 g, 21%. 

1H NMR (400 MHz, CDCl3):  (ppm) 7.72 – 7.64 (m, 8H), 3.74 – 3.67 (m, 4H), 1.59 (dd, J = 

15.0, 7.5 Hz, 4H), 0.85 (t, J = 7.4 Hz, 6H). 
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Monomer 8. Under an argon atmosphere, compound 7 (1,4-Bis[N,N-diethylamino]-1-

oxapropyl]- 2,5-divinyl-benzene benzene) (crude product, 2.095 g) , bromoethane (2 g), and 

acetone (10 mL) was stirred and heated for two days to obtain a white precipitate. The solid was 

filtered, washed with bromoethane and hot acetone repeatedly, and finally dried under vacuum to 

obtain a white powder. Yield: 714 mg, 43% (6→8, 2 steps total yield). 1H NMR (300 MHz, 

D2O):  (ppm)  7.22 (s, 2H), 7.02 (dd, J = 17.7, 11.2 Hz, 2H), 5.85 (d, J = 17.7 Hz, 2H), 5.41 (d, 

J = 11.3 Hz, 2H), 4.53 – 4.43 (m, 4H), 3.81 – 3.72 (m, 4H), 3.46 (q, J = 7.2 Hz, 12H), 1.35 (t, J = 

7.2 Hz, 18H). 

(+)PDPPPV. Under an argon atmosphere, monomer 8 (115.7 mg, 0.2 mmol), monomer 2 

(106 mg, 0.2 mmol), palladium(II) acetate (2.8 mg, 0.012 mmol), tri(o-tolyl)phosphine (14.6 mg, 

0.048 mmol), and triethylamine (2 mL) were placed in a three-neck round-bottom flask with 

dimethylsulfoxide (8 mL). The reaction mixture was stirred at 80 ˚C for 6 h; then the mixture 

was poured into a mixed solvent (ethyl ether/acetone/methanol=5/4/1). A precipitate was formed 

and isolated by filtration. The crude product was dried under vacuum to obtain a dark purple 

powder. 1H NMR (400 MHz, DMSO-d6):  (ppm) 7.96-7.36 (vinyl-H and phenyl-H), 4.60-4.50 

(O-CH2-), 3.89-3.47 (N-CH2-), 1.48-1.31 (-CH2-), 1.05-0.78 (-CH3). 

Molecular weight determination for PDPPPV copolymers. Table B1 shows the 

molecular weight results for the two PDPPPV copolymers determined by using gel permeation 

chromatography (GPC) and polyethylene oxides as a standard in either DI water or DMSO. The 

solvent was selected based on the polymer’s solubility in order to reach a concentration required 

to obtain reasonable signal intensity and reproducible results. It has been reported that accurate 

determination of the molecular weight for these copolymers is problematic, because its self-

aggregation leads to an overestimation of the molecular weight. For example, the (-)PDPPPV has 
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a Mn of 25,700 and a Mw of 266,400. A high polydispersity index (Mw/Mn) suggests a large 

size distribution, which is likely caused by the polymer self-aggregation. Note that the GPC 

measurements required a relatively high polymer concentration (~ 1 mg/ml), which is about 300 

times higher than that used in the spectroscopic measurements. Figure B4A shows absorbance 

spectra for these two copolymers and does not indicate features of aggregation. Thus, the self-

aggregation does not pose a serious problem for the charge transfer studies at low concentrations 

in solution. 

 

Table B1. The GPC results for the molecular weight of the two PDPPPV copolymers. 

Polymer 𝐌𝐰 𝐌𝐧 PDI (𝐌𝐰/𝐌𝐧) Solvent 

(-)PDPPPV 266,400 25,700 10.4 
0.1 M Na2SO4 aqueous 

solution at 30 ˚C 

(+)PDPPPV 58,500 24,200 2.4 DMSO at 80 ˚C 
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Synthesis of anionic and cationic CdTe nanoparticles. CdTe nanoparticles (NPs) (~ 5 

nm in diameter, see Figure B3) were originally synthesized in octadecene at 280 ˚C by the hot-

injection method with oleic acid (OA) as the capping ligand. The OA-CdTe NPs were ligand-

exchanged in an aqueous solution of CdCl2/2-(dimethylamino) ethanethiol hydrochloride (DEA) 

to obtain water-soluble, highly fluorescent, and cationic DEA-CdTe NPs ((+)NPs). Anionic 

CdTe NPs ((-)NPs) were prepared by using 3-mercaptopropionic acid (MPA) in the ligand 

exchange, instead of DEA. MPA-CdTe and DEA-CdTe NPs have very similar absorption spectra 

with that of the parent OA-CdTe NPs, as shown in Figure B4B.    

 

Figure B3. Panel A shows a TEM image for the OA-CdTe NPs used in this study. Panel B 

shows the size distribution for the OA-NPs obtained by using Image J software to analyze more 

than 60 NPs.   
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Figure B4. Panel A compares the steady-state absorption spectra for (-)PDPPPV and 

(+)PDPPPV. Panel B compares the steady-state absorption spectra for the parent OA-CdTe NPs 

and (-)/(+) CdTe NPs.   
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Cyclic Voltammetry. A three-electrode electrochemical cell was used to determine the 

energetics of the NPs and polymers. Films of the NPs and polymers were drop-cast from their 

aqueous solution onto a glassy carbon electrode. The electrochemical cell also included a Pt 

counter electrode and a Ag/AgNO3 reference electrode (0.1 V vs. Fc/Fc+), to which the potential 

is referenced. The electrolytes were an acetonitrile solution with 0.1 M tetrabutylammonium 

hexafluorophosphate (TBAPF6). 

Because the oxidation onset can be directly related to the charge transfer with the valence 

band edge, cyclic voltammetry (CV) was used to determine the band edge position for the CdTe 

NPs and PDPPPV copolymers. Figure B5 shows the CV results for (+)/(-) PDPPPV copolymers, 

(+)/(-) CdTe NPs, and a control polymer, poly[5-methoxy-2-(3-sulfopropoxy)-1,4-

phenylenevinylene] (denoted as (-)PPV). As described previously,18 the onset oxidation 

potentials can be used to place the valence band edges for these materials and they are found to 

be at -5.50 ± 0.1 eV for CdTe NPs, -5.10 ± 0.1  eV for PDPPPV copolymers, and -5.60 ± 0.1 eV 

for (-)PPV. Errors were determined from the standard deviation of the data obtained from three 

separated measurements. If one uses their optical bandgap calculated from the absorption 

spectrum and the electrochemical valence band edge value to estimate the conduction band edge, 

then we obtain the energy level diagram shown in Figure 5D. This energy level predicts that 1) a 

type-II (donor-acceptor) heterojunction is formed between the PDPPPV copolymers and CdTe 

NPs; and 2) a type-I heterojunction is formed between the (-)PPV and CdTe NPs.  
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Figure B5. Panels A to C show cyclic voltammograms for (+)/(-) PDPPPV copolymers, (+)/(-) 

CdTe NPs, and (-)PPV. The background from the electrolytes has been subtracted from all 

voltammograms shown here. The dashed line marks the position of zero current in each panel. 

The crossing point between the zero current and onset tangent gives the oxidation onset 

potential. Panel D shows an energy diagram with the final CV results for all samples.  
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Dynamic light scattering (DLS) and Zeta-potential measurements. DLS 

measurements were performed on solutions of the NP/polymer assemblies at room temperature 

in a 90° geometry and analyzed by using particle sizing software with a 532 nm laser 

(Brookhaven Instrument Co.). Zeta-potential measurement were performed on the same 

instrument at room temperature with an electrical field strength of 10 V/cm by using a Zeta Plus 

potential analyzer. 

 

 

Figure B6. The aggregation size measured by dynamic light scattering for the three CP/NP 

combinations. 

 

Table B2. Zeta-potential values for the polymers and NPs involved in this study. 

Polymers Zeta-potential (mV) NPs Zeta-potential (mV) 

(-)PDPPPV -36.24 ± 1.34 (-)NP -24.59 ± 2.92 

(+)PDPPPV 36.91± 2.31 (+)NP 20.45 ± 3.28 

(-)PPV -27.81 ± 1.22   
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PL quenching. Steady-state absorption and emission spectra were measured by an 

Agilent 8453 spectrometer and a Horiba J-Y Fluoromax 3 fluorescence spectrophotometer. 

Steady-state photoluminescence quenching measurements were carried out while continuously 

adding 0.05 wt% aqueous polymer solution (20 μL in total) into a 3 mL NP phosphate buffer 

solution (pH=7). The optical density (OD) is ~ 0.1 for both NP and PDPPPV at their absorption 

peaks after titration, which corresponds to a NP/polymer molar ratio of 3 to 1. 

The time-resolved fluorescence data were collected using the time-correlated single 

photon counting (TCSPC) method. The instrument response function was measured using a 

sample of colloidal BaSO4. The samples were excited at 660 nm using a dye laser (DCM) at a 1 

MHz repetition rate, and fluorescence counts were collected until 6000 counts in the peak 

channel for each sample. Experiments were also performed with a 300 kHz repetition rate, at 

which the lifetime values were found to be nearly identical to those collected at a 1 MHz 

repetition rate in all the systems studied. The kinetics were extracted by fitting the fluorescence 

decay curves by using a FAST lifetime distribution software.  

 

Figure B7. Lifetime distribution fitting for the PL decays shows in Figure 3D and Figure 5B. 

  

0.01 0.1 1 10 100
0.0

0.2

0.4

0.6

0.8

1.0

 

 

N
o

rm
a
li
z
e
d

 A
m

p
li
tu

d
e

Lifetime (ns)

 (+)NP

 (+)NP/(-)PPV

 (+)NP/(-)PDPPPV

0.1 1 10 100 1000

Lifetime (ns)

 (-)NP  (-)NP/(+)PDPPPV
A B



 140 

Ultrafast Transient absorption spectroscopy. Ultrafast transient absorption 

spectroscopy measurements were carried out in Notre Dame Radiation Lab by using a Clark-

MXR 2010 Ti:sapphire laser system (775 nm, 1 mJ pulse-1, full width at half maximum of 130 fs, 

and 1 kHz repetition rate) equipped with a CCD spectrograph (Ocean Optics, S2000-U-UVvis). 

Five percent of the fundamental was used to generate a probe pulse, while 95% of the laser beam 

was utilized by a second harmonic generator to produce a pump laser pulse (387 nm).  

 

Figure B8. This figure compares the fitted kinetic traces monitored at 910 nm for the (-

)PDPPPV-only and (-)PDPPPV/(+)NP samples. 
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Spectroelectrochemistry. The measurement was performed with a drop-cast (-)PDPPPV 

thin film on an ITO working electrode in a three-electrode spectroelectrochemical cell that has a 

Au wire counter electrode and a Ag/Ag+ reference electrode. The voltage was applied by a CHI 

618B potentiostat, and the spectra were collected on an Agilent 8453 spectrometer. 
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APPENDIX C 

Supporting information for Chapter 5 

 

Figure C1 shows the voltammetry result for the PbS QDs whose optical band gap is 1.67 eV and 

1.32 eV, respectively. The oxidation onset of the CV curve gives the valence band edge of the 

PbS QDs. The absolute energy for the reference electrode (Ag/AgNO3) was measured as 4.7 eV. 

Thus, the valence band edge energy of the QDs is calculated by adding 4.7 eV to the oxidation 

onset energy. In addition, the conduction band edge is determined by a sum of the valence band 

edge energy and the optical band gap. 

The dashed lines in the CV curves show that the oxidation onset of QD (Eg = 1.67 eV) is 

0.50 eV, and that of QD (Eg = 1.32 eV) is 0.33 eV. As a result, the valence band edge is -5.20 

eV for smaller PbS QDs and -5.03 eV for bigger PbS QDs, and the subsequent conduction band 

edge is -3.5 eV and -3.7 eV, separately.  
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Figure C1. Cyclic voltammogram results for PbS QDs with an optical band gap of 1.67 eV and 

1.32 eV, separately. 

Figure C2 reveals the large scale TEM and HRTEM images of bigger PbS QDs, whose 

optical band gap is 1.32 eV. From the large scale TEM, the size distribution of the QDs is 

counted as 3.6 ± 0.3 nm.  

 

Figure C2. (a) Large scale TEM and (b) HRTEM images of PbS QDs (Eg = 1.32 eV) on a Cu 

grid. The insert scale bar in (a) is 50 nm and (b) is 5 nm. 
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Figure C3 shows the PbS film deposited on silicon substrate via a layer-by-layer dipping 

method. In each dipping cycle, the fresh layer was merged into EDT/acetonitrile solution for 

ligand exchange. Typically, after a fourteen cycle deposition, the thickness of the PbS film is 

around 200 nm. 

 

Figure C3. PbS QDs film deposited on silicon substrate via a layer-by-layer dipping method. 

The thickness of the film is around 200 nm. Insert scale bar is 500 nm. 

 

Figure C4 shows the equivalent circuit of the solar device, in which a current source, a 

diode and a shunt resistance (RSH) are connected in parallel. In addition, another series resistance 

(RS) is added to the circuit as well. The direction of each current flow is drawn in the circuit. 

Finite value of RSH reveals a presence of the current leakage and higher value of RS corresponds 

to a reduction of charge mobility in the device.  

 

Figure C4. The equivalent circuit of the solar device. 
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The EDS mapping of the unannealed sample is shown in Figure C5. The distribution of S 

and Ti at the TiO2/PbS interface clearly shows that no PbS QDs diffuse into the TiO2 

mesoporous layer, and only a plain heterojunction is built at the TiO2/PbS interface. 

 

Figure C5. HADDF image and EDS mapping of unannealed sample. The insert scale bar is 200 

nm. 

 

Figure C6 shows that the device using bigger QDs (Eg = 1.32 eV) has a lower carrier 

lifetime (τ) than the device using smaller QDs. After annealing the PbS film with Eg of 1.32 eV 

at 150 oC for 10 min in Ar gas, τ is reduced. A decrease in τ by the thermal annealing is also 

observed in the device using smaller PbS QDs (Eg = 1.67 eV). 

 

Figure C6. Electron lifetime of the devices using PbS films (QD Eg = 1.32 eV) with and without 

annealing. 
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