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The ability of conducting polymers such as poly(3,4-ethylenedioxythiophene) (PEDOT) to store 

a drug as a dopant and release it following electrical stimulus make them an intriguing coating 

possibility for intracortical electrodes, along with their ability to reduce electrode impedance. 

The mechanism allows for the release of an assortment of useful agents, including anti-

inflammatory drugs and neuromodulatory chemicals. We evaluated the release capabilities of a 

multi-walled carbon nanotube (MWCNT)-doped PEDOT coating incorporating the anti-

inflammatory steroid dexamethasone in vitro using sputtered-gold macroelectrodes, and then 

applied the coating to half of the electrodes within 16-shank platinum/iridium floating 

microelectrode arrays for chronic in vivo evaluation in rat visual cortex. Impedance 

measurement, neurophysiological recording, and cyclic voltammetric release stimulus (-0.9 V to 

0.6 V, 1 V/s, 20 cycles) was performed daily to all channels. On the 11th day, histology was 

performed to quantitatively characterize inflammatory tissue response using OX42 (microglia) 

and GFAP (astroglia). Equivalent circuit analysis was performed to assist the interpretation of 

impedance data. Our results indicated that the MWCNT/PEDOT-coated gold macroelectrodes 

released double the amount of dexamethasone using passive release followed by CV stimulation 

(10 sets of 20 cycles) compared to passive release alone. Coatings applied to Pt/Ir 
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microelectrodes reduced 1 kHz impedance in PBS by approximately 38%. Coated probes in vivo 

exhibited a significant decrease in 1 kHz impedance for the initial three days of implantation 

followed by an increase, between days 4 and 7, to values equivalent to those exhibited by 

uncoated probes. Neurophysiological recording performance of coated and uncoated probes 

remained equivalent for the duration of the experiment, in terms of signal-to-noise ratio and 

noise amplitude.  Histology revealed no significant difference in tissue inflammatory response to 

coated and uncoated electrodes. Explant imaging revealed the presence of a membranous film 

enveloping coated electrodes, and equivalent circuit analysis suggested that the day 4-7 increase 

in 1 kHz impedance of coated electrodes was due to a decrease in effective surface area of the 

coatings as well as the core electrodes. Additional work was also performed developing a model 

for the in vivo microinjection of the enzyme Chondroitinase ABC into tissue surrounding 

implanted microelectrodes. 
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1.0   INTRODUCTION 

 
 
 

Cortical neural prostheses (CNPs) are devices which interface directly with the neocortex of the 

central nervous system in such a way that signal in the form of neural activity may be recorded 

and interpreted by a computerized algorithm. These devices function through the implantation of 

penetrating microelectrodes into cortical tissue, providing them with the ability to detect the 

activity of individual neurons1. Such technology holds enormous scientific and clinical potential 

as it allows for a degree of interaction with fundamental cognitive mechanisms in vivo that is 

unmatched by other recording or imaging methods. A particularly successful application of 

CNPs has been in the development of thought-controlled assistive devices, which extract motor 

intent information from the cortex and translate this intent into commands1–6. However, the 

applicability of cortical neural prosthetics within clinical devices is limited by their current 

effective post-implantation lifetime, defined by a combination of neuron death7–9, progressive 

performance degradation5,10–13, and device malfunction or breakage14,15. While select studies 

have yielded adequate recording performance for well over a year after implantation16–20, on 

average these devices perform unreliably in the long term5,21, limiting their translation to clinical 

and commercial devices where performance would be expected to persist over decades. The 

studies summarized in this dissertation demonstrate the use of recently-developed techniques to 

better understand the physiological factors of cortical neural prosthesis failure and promote the 

development of novel strategies to improve the reliability of these devices in clinical use. 

1 
 



1.1   NEURAL PROSTHETICS 

Cortical neural prostheses are a component of a larger category of implants known as neural 

prosthetics, which include both recording and stimulating devices intended to interact with a 

wide variety of neural targets with the purpose of substituting sensory, motor, or cognitive 

modality that has been damaged due to disease or injury1. At this time, the neural prostheses that 

have shown the most clinical and commercial success have been those that provide electrical 

stimulation to target tissue, such as deep brain stimulation (DBS) for the treatment of 

Parkinson’s disease22, or the stimulation of cochlear neurons to partially restore lost hearing23. In 

addition to Parkinson’s disease, DBS has seen successful application in the treatment of a wide 

variety of pathologies, including chronic pain, epilepsy, dystonia, and essential tremor, with over 

80,000 device recipients since 1997 according to Medtronic, Inc24.  Cochlear implants have seen 

even more widespread adoption, with 219,000 recipients worldwide as of 2010 according to the 

National Institute of Health25. A more recently developed neural prosthetic is the retinal implant, 

which is typically inserted against the inner surface of the retina and provides controlled 

stimulation to ganglion cells using a flat multi-electrode array. These devices have seen 

extensive successful clinical testing, with the first commercial example, the ARGUS II (Second 

Sight Medical Products, Inc.), being approved by the US FDA for sale in February 2013. 

Neural prosthetics intended to record cortical activity come in a variety of embodiments 

that each feature differing degrees of size, resolution, and surgical invasiveness. The least 

invasive are those prostheses which employ electroencephalography (EEG), or a network of 

large electrodes applied directly to the scalp surface that record cortical activity through the skin 

and skull (Fig. 1.1a). While these devices do not typically possess anywhere near the spatial or 

temporal resolution of more invasive approaches, their safety and ease of use make them an 
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attractive option for some applications, such as systems that allow patients to communicate by 

mentally spelling words on a screen26 or controlling a cursor in 2D or 3D space27–30. 

Electrocorticography (ECoG) is a significantly more invasive technique that involves the chronic 

implantation of a flexible array of electrodes under the skull and above the brain surface (Fig. 

1.1b). ECoG techniques have been developed allowing patients to spell words on a screen31,32 

and voluntarily control seizures31, and may be used to decode upper limb movements33. 

 The focus of this dissertation is on penetrating microelectrodes (Fig. 1.1c), which while 

being the most surgically invasive of the chronic interface varieties also possess the greatest 

spatial and temporal resolution, being capable of recording and characterizing the activity of 

individual neurons within cortex or spinal cord1,5,16,34. Perhaps the most prominent clinical goal 

of such devices is the development of motor control systems for limb prostheses or 

communication interfaces3–6,35, through the decoding of recorded cortical activity into 

representations of desired movement. Such technology has the potential to benefit individuals 

suffering from movement or communication deficits caused by spinal trauma-induced paralysis 

(over 1.2m in the US in 200936) and a variety of conditions including stroke, cerebral palsy, 

amyotrophic lateral sclerosis, multiple sclerosis, and limb amputation1–3,5,6. However, for such a 

device to be considered acceptable for clinical use, it must retain the ability to reliably and 

reproducibly record large populations of neurons for several decades, and ideally the duration of 

a human lifetime3,12,17,21. Existing CNPs are incapable of providing this level of reliability, with 

unacceptable degrees of variability in yield of recorded neurons being observed between subjects 

and individual electrodes5,10,11,13,37–39. This chronic variability in recording performance is 

thought to be in a large part due to the tissue inflammatory response that inevitably occurs 

around each implanted probe due to implantation trauma and foreign body tissue response5,7,13,39–
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42. Due to these challenges, the usage of CNPs has been restricted to research settings, and they 

have only rarely seen application within human patients. 

 

 

 

 

  
Figure 1.1:  Examples of neural interface devices.  a) EEG head-net (From Russell et al.43 © Elsevier. 
Reprinted with permission).  b) ECoG electrodes on brain surface (From Schalk et al.44 ©2011  IEEE. 
Reprinted with permission).  c) Intracortical microwire array. (From Nicolelis et al.16 ©2003 National 
Academy of Sciences, USA. Reprinted with permission). 

 

 
 

1.1.1   Historical Overview 

 
The ability to chronically record the activity of neurons within the brain of a living animal 

requires the consideration of a number of key issues, including the extremely small size of the 

neurons in question as well as the constant motion of the tissue45. Prior to 1950, existing 

techniques could not be used as they required fine control and direct contact with the neurons 

being recorded. However, in 1958, Strumwasser published a method that allowed recording to be 

performed using electrodes in the vicinity of but not physically touching targeted neurons, which 

he used to perform long-term recording from the brains of anesthetized hibernating ground 

squirrels using 80 µm insulated stainless steel microelectrodes46. This method allowed him to 

record the activity of individual neurons for periods of over a week, while previous methods 

limited single neuron recording time to only a few hours46. 
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The first chronic intracortical recording implants consisted of arrays of fine insulated 

stainless steel, tungsten, or platinum/iridium wires either cut or etched to reveal a recording 

surface at the tip47–49. Insulators used for these initial electrodes typically consisted of crudely-

applied enamel, lacquer, or solder-glass. These initial fabrication methods commonly resulted in 

a large degree of variability between electrode tips, though these problems were later addressed 

by improved fabrication techniques and insulation methods50–52. Electrodes of this type were 

initially implanted individually, and were found to be capable of recording from single 

neurons53,54. This type of implant (Fig. 1.2a) has often been considered the de facto gold standard 

for chronic recording due to its low cost, ease of fabrication, and long history of use. 

 In 1970, Wise et al. took advantage of integrated-circuit fabrication techniques to 

introduce a completely different type of electrode incorporating a gold microwire embedded 

within a photoengraved silicon substrate55. These electrodes provide an interesting alternative to 

microwires, as the ease and flexibility of the photoengraving process allows for the production of 

a wide variety of embodiments and geometries, including the ability to localize multiple 

independent recording surfaces on the same shank at different depths15,45,56,57. This technology 

formed the basis of a commonly used intracortical electrode variety often known as the 

“Michigan” probe due to the institution of its development58 (Fig. 1.2b). 

 A third type of commonly used intracortical recording implant is the silicon 

microelectrode array (Fig. 1.2c), first described by Jones et al. in 199259, and then optimized and 

characterized in subsequent studies39,60–62. This type of array is practically similar to the 

microwire array, only in place of parallel wires it is produced by machining a solid block of 

silicon into a square cluster of vertical columns, which are then etched into sharp probes. These 

sharp silicon probes are then coated with layered platinum and titanium/tungsten and then 
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insulated using polyimide, which is removed at the tip to produce the recording surface. These 

devices were produced with the goal of maximizing the density of electrodes per unit area in as 

precise and reproducible a manner as possible, and also provide a large degree of customizability 

with regard to electrode spacing, geometry, and electrical characteristics. 

Work performed in this dissertation employed an advanced variety of microwire array 

known as the floating microwire array63, or FMA (Fig. 1.2d). This type of array features a 

flexible cable connector, which provides the array with an additional degree of mobility when 

implanted into cortex and allows it to drift with brain motion, unlike less sophisticated varieties 

which are adhered directly to the skull. The concept for this design originated with Gualtierotti 

and Bailey in 196863,64, who proposed a “neutral buoyancy” electrode with a flexible lead wire. 

 

 

 

 

  
Figure 1.2:  Examples of intracortical electrodes.  a) Microwire array.  b) Planar silicon array, from 
Kipke et al12.  c) Silicon multielectrode array, from Rousche and Normann39.  d) Floating 
microelectrode array. (a and d © Microprobes for Life Science, Inc. Used with permission. b © 
Journal of Neuroscience. Reprinted with permission, conveyed through Copyright Clearance 
Center, Inc. c © Elsevier, Reprinted with permission). 
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1.1.2   Basic Electrode Theory 

 
An in-depth discussion on the electrochemical behavior of the electrode/electrolyte interface has 

been published by Merrill et al.65, and is summarized within this section: 

In order to function, electrodes implanted with the intention of stimulating tissue or 

recording neural activity must transduce the electric current within the lead wire into an ionic 

current within the surrounding electrolyte (in this case, the extracellular fluid) and vice versa45. 

This transduction of current at the metal/electrolyte interface is fundamentally accomplished 

through two parallel and competing mechanisms: faradaic current, and capacitive current65 (Fig. 

1.3). Faradaic current occurs whenever an element of charge directly crosses the 

electrode/electrolyte interface, typically by way of a chemical reaction. These chemical reactions 

can take many forms, including but not limited to: the disassociation of metal atoms into 

positively-charged metal cations, the hydrolysis of water into oxygen or hydrogen gas, and the 

generation of new chemical compounds at the interface such as metal oxide65. 

 

 

Figure 1.3:  Mechanisms of faradaic and capacitive current.  a) Faradaic charge injection.  b) Capacitive 
charge injection.  c) Equivalent circuit model of the interface, demonstrating parallel capacitive and 
faradaic current paths (All figures ©  Bareket-Keren and Hanein66, Reprinted under CC). 
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For many types of electrodes, such as silver/silver chloride reference electrodes (where 

the formation and dissolution of silver chloride occurs readily and reversibly), faradaic current is 

intended to dominate the transduction process and will not cause any significant damage or 

chemical change to the electrode surface. However, for other types of electrodes and in certain 

stimulus conditions, extensive faradaic current will result in electrode corrosion, metal loss, 

tissue damage, or harmful gas evolution65. A number of example cathodic reactions include: 

Cu2+ + 2e- ↔ Cu    (metal deposition) (1.1) 

Fe3+ + e- ↔ Fe2+    (electron transfer) (1.2) 

2H2O + 2e- → H2↑ + 2OH-    (reduction of water) (1.3) 

IrO + 2H+ + 2e- ↔ Ir + H2O    (oxide reduction) (1.4) 

Pt + H+ + e- ↔ Pt-H    (hydrogen plating ‘pseudocapacitance’) (1.5) 

AgCl ↔ Ag+ + Cl-    (dissolution of silver chloride) (1.6) 

Example anodic reactions include: 

Fe → Fe2+ + 2e-    (metal anodic dissolution) (1.7) 

2Ag + 2OH- ↔ Ag2O + H2O + 2e-    (oxide formation) (1.8) 

2Cl- → Cl2↑ + 2e-    (gas evolution) (1.9) 

2H2O → O2↑ + 4H+ + 4e-    (oxidation of water) (1.10) 

Pt + 4Cl- → [PtCl4]2- + 2e-    (platinum corrosion) (1.11) 

Note that these reduction and oxidation reactions will only occur when it is thermodynamically 

and kinetically favorable for them to do so, and often require specific pH conditions, interfacial 

potentials, and reactant concentrations for them to proceed at an appreciable rate. Also, note that 

many of these reactions are potentially reversible, as reactive species may remain bound or close 

to the interface surface, though the reverse reactions may be only favorable outside of the normal 
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operating conditions of the electrode. Representative irreversible reactions are also provided, 

such as the hydrolysis reactions which produce evolved gas. These reactions are considered 

particularly undesirable within the context of intracortical electrodes, as they can result in  

undesired local pH changes, gas bubbles, or harmful chemical species65. 

 Capacitive current is generated from electrostatic repulsive and attractive forces acting 

between ions and electric charges building up on either surface of the electrode/electrolyte 

interface, resulting in a redistribution of charged species within the electrolyte. This 

redistribution of charge results in a phenomenon referred to as the electrical double layer (Fig. 

1.4), or the stacking of negative and positive charged species at the interface65. These charged 

species are further separated by layers of polar molecules such as water which preferentially 

orient themselves at the interface surface, as well as by adsorbed species such as halide anions. 

In the absence of faradaic current mechanisms the interface may be electrically modeled as a 

simple capacitor, typically referred to as the double layer capacitor CDL, and has a degree of 

frequency response defined by the time constant of this capacitor, which represents the saturation 

 

 

Figure 1.4: The electrical double layer. Schematic and associated potential profile normal to the 
electrode surface (Figure by Daiguji67, © 2004 American Chemical Society. Reprinted with permission). 
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 of charged species at the interface surface. As capacitive current is generated purely through the 

reorganization of charge carriers within the electrode and electrolyte and does not involve any 

chemical change to the interface, the transduction process will not harm or degrade the electrode 

surface. However, this mechanism is subject to limitations, as it can only conduct up to a limited 

charge density and is also dependent on the rate of potential change65. 

 Current moving from the electrode to the electrolyte or vice versa is subjected to a 

change in electrical potential at the electrode/electrolyte interface, within a very narrow 

interphase region65. This change in potential produces an electric field at the interface, measured 

in V/m. At equilibrium conditions and in the absence of current, this interfacial potential is 

known as a half-cell potential, and is a representation of the thermodynamic driving force for 

principal species at the electrode interface to undergo oxidation or reduction; typically, the 

dissolution of the electrode metal into electrolyte through oxidation at the anode, or the 

deposition of metal by way of the reduction of ionic species at the cathode. At standard state (1 

atm, 25° C, 1 mol dm-3 solute concentration), this potential is known as the standard electrode 

potential, though the effective half-cell potential of an interface at non-standard conditions can 

be calculated from the standard electrode potential using the Nernst equation65: 

𝐸𝑒𝑞 = 𝐸Θ + �
𝑅𝑇
𝑛𝐹

� ln �
[O]
[R]

� (1.12) 

where Eeq is the equilibrium half-cell potential, EΘ is the standard electrode potential, R is the gas 

constant, T is the absolute temperature, F is Faraday’s constant, and [O] and [R] are electrolyte 

concentrations of oxidized and reduced species, respectively. If current is driven across the 

interface, the interface potential will be forced away from the equilibrium potential, with the 

difference being known as the overpotential. An electrode with an interface potential forced 

away from its equilibrium potential is generally referred to as being polarized.65 
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 Theoretical electrode interfaces are commonly modeled as being either purely capacitive, 

often called perfectly polarizing, or purely faradaic, known as non-polarizing. In reality, 

electrode interfaces present some degree of both capacitive and faradaic character. The degrees 

of capacitive current and faradaic current transduced across an interface upon connection with a  

voltage source are dependent on several factors, including charge density, the magnitude of the 

potential applied and the rate of change of that potential, and the kinetics and mass transport 

limitations of the reduction/oxidation reactions available at the interface. These factors dictate 

the resistance to current flow of each mechanism, which in turn determines the proportion of 

current flow through either capacitive or faradaic pathways. In the case of most intracortical 

electrodes featuring blocking metals such as platinum and slow faradaic kinetics, current will be 

principally transduced through capacitance up to some limiting charge density, at which point 

faradaic mechanisms will transduce the excess. At large potential magnitudes, this faradaic 

mechanism will often be either the reduction or oxidation of water, due to the lack of mass 

transport restriction owing to the abundance of water in the electrode environment. As the 

hydrolysis of water can be very damaging to surrounding tissue, its avoidance is a major aspect 

of stimulation safety, with stimulation paradigms designed to remain within the “water window”, 

or the range of potentials wherein the hydrolysis of water is thermodynamically unfavorable 

(typically between -0.6 V to 0.6 V)65,68. 

As the magnitudes of interfacial potential and current expected to be encountered during 

the normal operation of neural recording electrodes and stimulation electrodes are quite different 

from each other, the design concerns of each electrode are distinctive68. Neural recording 

electrodes, designed to detect and record the action potentials of nearby neurons, are typically 

only exposed to overpotentials well under 1 mV and thus remain very close to equilibrium68. 
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These electrodes are typically fabricated with the goal of achieving a specific impedance range in 

order to maximize signal-to-noise ratio (SNR) of recording, with higher impedance electrodes 

being expected to exhibit lower signal-to-noise ratios68,69. Recording electrode impedance is 

typically modulated through changes to surface area or through coatings such as oxide activation 

or conducting polymers. In contrast, electrodes designed for neural stimulation are expected to 

endure much larger current densities at elevated potentials. Thus, an important element of 

stimulation electrode and stimulus paradigm design is the minimization of harmful faradaic 

reactions, in particular the hydrolysis of water and the corrosion of metal65,68. As stimulation is 

additionally being applied to neural recording electrodes as well for a growing number of 

applications, including the drug release mechanism studied in this dissertation, these same safety 

considerations must be applied. 

 
 

1.2   REACTIVE TISSUE RESPONSE 

 
Upon implantation of an intracortical recording electrode into the brain of a living subject, a 

complex multi-faceted inflammatory tissue response is initiated as a consequence70. This 

response evolved as a protective mechanism, allowing the host body to detect and isolate foreign 

objects and resume homeostasis after injury. However, as a key element of this response is the 

encapsulation of the foreign body with reactive glia and extracellular material, it is thought that 

the process may play a principal role in the large inconsistency of recording performance 

observed among chronically implanted neural probes5,9–11,13,21,37–40,42,68,71–73. 

 This chronic performance inconsistency is typically characterized as a gradual and highly 

variable reduction in the number of units observed by each channel over time (a ‘unit’ being 
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common terminology for a set of recorded waveforms sorted together with a certain degree of 

confidence and thought to represent the firing activity of a single local neuron) (Fig.1.5). The 

loss of unit activity is coupled with a general reduction in recording quality measures, such as the 

increase of impedance and decrease of SNR of remaining units19,21,38,74,75. These effects are 

thought to correlate with a number of key tissue inflammatory response mechanisms7–

9,21,38,41,70,73,76, making the attenuation or elimination of these mechanisms a primary goal in 

electrode development and research. 

 

 

Figure 1.5:  Chronic variability and loss of recorded unit activity from implanted neural probes.  a) 
Examples of animals that demonstrated consistent chronic recording performance.  b) Examples of 
animals that demonstrated poor chronic performance. (Figures from Williams et al.10 © Elsevier. 
Reprinted with permission). 
 
 
 
1.2.1   Overview 
 
 
Healthy uninjured adult cortical tissue is populated by a variety of cell types, principally various 

types of neurons and an assortment of glia including astroglia, oligodendrocytes, and microglia 

(numerical densities being approximately 120,000 neurons/mm3, 38,000 astroglia/mm3, 17,000 

oligos/mm3, and 4,000 microglia/mm3 in adult macaque visual cortex77). Astroglia and microglia 
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typically exist in a restive, ramified state in bulk healthy cortex, with astroglia serving a large 

number of essential roles including blood flow regulation, neuron metabolic support, 

maintenance of ionic balance, transmitter regulation, and active participation in synaptic function 

and plasticity78–80. Microglia are monocyte-lineage cells that serve a monitoring role, constantly 

probing cortical tissue for damaged neurons, plaques, and pathological agents using an extensive 

arborization of processes73,81–86. Both cell types are extremely sensitive to disturbances in central 

nervous system (CNS) homeostasis and readily respond to all forms of tissue insult or disease. 

The cortex is additionally populated by a number of other cell types including oligodendrocyte 

precursor cells, stem cells, pericytes, and mast cells87,88. 

When initiated by the insertion of a foreign body such as an intracortical electrode, the 

tissue inflammatory response within cortex is thought to occur in two distinct yet interrelated 

phases (Fig. 1.6): the acute phase and the chronic phase. The acute phase, which persists from 

the moment of implantation to roughly one to two weeks post-implantation, is characterized by 

the activation of nearby microglia, astroglia, and other immune cells, coupled with the rapid 

necrotic or apoptotic death of local neurons, forming a “kill zone”7,13,89. This kill zone has been 

observed to vary in size between 10 and 100 µm from the probe surface, and appears to be 

dependent on the degree of initial trauma and intensity of the subsequent inflammatory 

response7,13,38. As detectable spikes are typically generated by neuron cell bodies within 50 µm 

and no more than 130 µm13,89,90 from the recording surface, this acute neuronal death can 

theoretically detract from recording performance13,75. However, in practice, the acute death of 

neurons following implantation was not observed to significantly impede recording7,89. 

Regardless, the acute response is thought to be mediated by the initial implantation trauma, 

vasculature damage, tissue edema, and the adsorption of protein on the implant surface72,73,91.  
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Figure 1.6:  Illustration of the phases of reactive cell response. The acute phase (A) characterizes tissue 
response within the initial 1-2 weeks post-implantation, while the chronic phase (B) characterizes tissue 
response at later time points. Note chronic accumulation and compaction of astroglia at the probe 
interface into an encapsulating glial sheath, as well as reduced neuron density within probe vicinity 
(Illustration from Schwartz et al.5 © Elsevier. Reprinted with permission). 

 
 

The chronic phase begins roughly two weeks post-implantation and persists for the 

duration of implant presence, and is typically characterized by foreign body response leading to 

the formation and stabilization of a dense astroglial sheath around the tissue/implant interface 

between two to three weeks post-implantation7,13,40,41,76,92 (Fig. 1.7), the extent of which has been 

correlated with increased 1 kHz impedance magnitude41. This impedance increase may be a 

consequence of the increased tortuosity of the encapsulating astroglia, which acts as a barrier to 

the diffusion of ions through the extracellular space93. The chronic phase is also characterized by 

the progressive degeneration and death of neurons local to the implant7–9,38. 

Further complicating the situation is the fact that the brain is immunologically privileged 

and shielded from the general immune system by the blood-brain barrier (BBB), which in 

healthy brain restricts the entry of circulating immunoglobin and lymphocytes in addition to 

bacteria, serum protein, and many drugs. As a consequence, brain tissue features its own 
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distinctive immune mechanisms that in many ways mirror the inflammatory responses elsewhere 

in the body, though with different cellular players. Intracortical implants may act as a chronic 

insult to this barrier through the rupture of nearby vasculature or the migration of meningeal cells 

or microbes from non-protected areas into cortex by way of the implant shaft38,72,73,94–96. 

 

 

1.2.2   Implantation Trauma and Provisional Matrix Formation 

 
At the moment of electrode implantation into cortical tissue, a number of key events occur which 

initiate and modulate the acute inflammatory response, as well as many aspects of the chronic 

response. Typically, electrodes or electrode arrays are surgically inserted through the pia and into 

 

Figure 1.7:  Typical astroglial sheath at 4 weeks post-implantation. Note inner core of activated microglia 
(ED1) surrounded by a dense lamellar astroglial layer (GFAP). Also note reduced density of neuron cell 
bodies (NeuN) and axons (NF) within 200 μm of probe surface. (Image from Biran et al.7 © Elsevier. 
Reprinted with permission). 
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cortex through a craniotomy following the sectioning and retraction of dura. The amount of 

trauma inflicted during this insertion is dependent on many variables, including insertion speed, 

location, and probe shape and size72,91,97–100. As the probe is driven into tissue it inflicts a host of 

traumatic events including the lysing of cells and cell processes, the rupture of vasculature both 

local and up to 300 µm distant from the probe tip72,91, the long-lasting disturbance of local 

BBB101, the tearing of extracellular matrix, and the dragging of meningeal tissue from the pial 

surface into the cortex94,96. However, despite the extensive and multimodal nature of this injury, 

cortical lesions have been observed to heal to a state nearly homogenous with surrounding 

healthy tissue after 1-2 months following clean microprobe stabs7,13,102 with substantially 

reduced neuronal loss7–9 if the probe is immediately removed following insertion (Fig. 1.8).  

 Rupture of local vasculature during probe insertion releases a bloom of plasma exudate 

into cortical tissue, bypassing the blood-brain barrier72,73,91. Among the circulating elements 

contained within this exudate are erythrocytes and leukocytes, clotting factors, immunoglobin, 

complement proteins, and an assortment of inflammatory factors and blood proteins5,13,40,73,92,103. 

Many of these cells and factors immediately begin interacting with CNS tissue and the probe 

surface, and a layer of protein instantly adheres to the probe surface forming a provisional matrix 

in a process commonly known as bio-fouling38. This provisional matrix, principally composed of 

albumin, fibrinogen, complement, fibronectin, vitronectin, and immunoglobin, represents the 

initiation of the thrombus/blood clot at the interface and is rich with active mitogens, 

chemoattractants, cytokines, growth factors, and other bioactive agents103,104. The provisional 

matrix in many ways directs the acute inflammatory response and healing process, contributing 

structural, cellular, and biochemical components, modulating microglial activation, and 

promoting the recruitment, proliferation, and activation of multiple other cell types38,73. The 
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matrix also serves as the principle point of contact by which local cells detect and adhere to the 

implant surface.103 

 

 

Figure 1.8:  Response to stab and implant. Tissue response to stab (ACEG) and chronic electrode implant 
(BDFH) in rat cortex at 2 (ABEF) and 4 (CDGH) weeks. ABCD are microglia (ED1) and EFGH are astroglia 
(GFAP). SB = 100 μm (Images from Biran et al.7 © Elsevier. Reprinted with permission). 
 
 
 
1.2.3   Consequences of Vascular Rupture 

 
Despite the rapid clotting of ruptured vasculature post-implantation, the initial introduction of 

exudate into the lesion area has a number of long-lasting consequences. Mechanically, a 

principal effect of vascular damage and BBB leakage is the generation of vasogenic brain edema 

and resulting cytotoxic swelling due to fluid buildup and pressure13,72. This edema has been 
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observed to persist for over a week post-implantation and generates a number of abnormal tissue 

consequences72. Ruptured vessels can also lead to loss of perfusion and ischemia downstream of 

the insult72,105. Additionally, vascular rupture not only initiates the inflammatory pathways but 

also a number of other protein cascades including the extrinsic and intrinsic coagulation systems, 

the complement system, the fibrinolytic system, the kinin-generating system, and platelet 

activation103, which may each play a role in the dynamic adsorption and desorption of protein at 

the interface. In addition to these various cascades, a number of circulating blood components 

are known to interact directly with neurons and glia; a prominent example being albumin, the 

most abundant plasma protein, which has been shown to reversibly increase calcium activity in 

glia and to also adversely affect neurons and astrocytes72. 

After clotting, a substantial number of residual extravasated erythrocytes remain in the 

cortical tissue and degenerate through hemolysis, releasing heme into the lesion environment92. 

This heme is subsequently degraded by the heme oxidase enzymes into iron, carbon monoxide, 

and biliverdin, which is then further converted into bilirubin by biliverdin reductase. This 

mechanism can cause harm to the local neuron population through both iron-induced oxidative 

stress as well as the neurotoxic properties of bilirubin. This process is known to play a significant 

role in tissue outcome following hemorrhagic stroke and traumatic brain injury88,106 and 

erythrocyte breakdown products have been observed surrounding probes after six weeks post-

implantation92, though it should also be noted that cortical micro-hemorrhage alone was found to 

be incapable of causing neural or dendritic degeneration when inflicted by a femtosecond laser 

pulse107. Instead, it may be interpreted that the process is contributing additional stress to the 

inflammatory environment. 
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1.2.4   Acute Inflammatory Response 

 
The hallmark of the acute inflammatory response following probe implantation is the activation 

of an assortment of inflammatory cell types both through the infiltration of leukocytes and 

through the activation of native glia73,108. Elsewhere in the body, the acute response to trauma is 

dominated by the activity of polymorphonuclear leukocytes103: principally neutrophils and to a 

lesser extent eosinophils and basophils. However, the access of these cells to an injury site in 

CNS is severely restricted following clotting, due to blood-brain barrier exclusion. Despite this 

barrier, neutrophils are observed in hematoma and surrounding cortical tissue at the earliest time 

points following intracerebral hemorrhage88,109 can damage tissue directly through the release of 

reactive oxygen species and pro-inflammatory proteases, as well as modulate BBB permeability 

and potentially aggravate neuron death88. Once extravasated into the brain, neutrophils will 

typically die by apoptosis within two days, though their death can cause further tissue damage as 

their contents stimulate nearby microglia to secrete toxic factors88. Microglia have been observed 

to phagocytize neutrophils within CNS before autolysis as a defense mechanism, staving off 

further damage110. 

 Microglia serve as the principal actors in the CNS acute inflammatory response and are 

the first non-neuronal cell type to exhibit a response to implantation trauma, having been 

observed using two-photon microscopy to react immediately upon probe implantation through 

the extension of processes toward the probe surface73. Within 24 hours, the microglia activate to 

an amoeboid locomotive state and undergo a number of morphological and functional 

transformations, including the enlargement of the cell body, thickening of processes, and the 

upregulation of a number of pro-inflammatory proteins. The microglia become proliferative, 

migratory, and phagocytotic73,108,111, rapidly surrounding the implanted probe and consolidating 
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themselves into a thin cellular sheath over the following week13,40,112. The role of the activated 

microglia is multi-fold, and includes the elimination of hematoma and tissue debris as well as the 

degradation of foreign bodies13,83,86. Large foreign bodies are encapsulated through a process 

called frustrated phagocytosis whereupon multiple microglia fuse into multi-nucleated “giant 

cells” which then envelop the foreign surface13. In addition, activated microglia express and 

release a variety of other potentially toxic factors including cytokines (in particular IL-1α, IL-1β, 

and TNF-α), chemokines, chondroitin sulfate proteoglycans, reactive oxygen species, proteases, 

prostaglandins, cyclooxygenase-2, and heme oxidase88,109,111, and are thought to broadly 

orchestrate the entire inflammatory response. 

 Circulating monocytes that infiltrate at the lesion site rapidly activate, whereupon they 

become essentially indistinguishable from microglia and effectively bolster their population88. 

Activated microglia also recruit additional circulating monocytes to the lesion site through the 

release of Monocyte Chemoattractant Protein-1 (MCP-1). Peak microglial activity is typically 

observed at 1-2 weeks post-implantation, though residual activity persists for a much greater 

period of time9,13,71. Of note is that while all activated microglia share morphological 

characteristics, a number of different phenotypes have been characterized which perform 

distinctive roles in the inflammatory response. The principal activated microglia phenotypes are 

M1, the “classical” subtype most responsible for pro-inflammatory cytokine release, and M2, an 

“alternatively activated” subtype responsible for response regulation and debris cleanup, which 

releases large amounts of the anti-inflammatory cytokines IL-10 and TGF-β113.  It is thought that 

these phenotypes work in concert to regulate the inflammatory response, making them an 

attractive target for therapeutic approaches (such as the selective inhibition of M1 phenotype 

polarization by minocycline114.  
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 A number of other cell types are thought to play roles in the acute inflammatory response, 

though their contributions have been less well studied. Mast cells, for example, are immune cells 

similar to basophils that are native to many tissues including CNS, and are capable of 

degranulating and releasing histamine and heparin, increasing edema and BBB permeability 

while slowing coagulation. These cells are typically primed with IgE to respond to a particular 

antigen, and are often dependent on the activity of T cells115. Despite this, the blocking of 

cerebral mast cells has been reported to reduce edema and hematoma volume following 

intracerebral hemorrhage with markedly improved outcomes, leading many to believe that the 

mast cell may play a more profound role in CNS inflammation than previously thought88. 

Perivascular macrophages are another CNS-resident inflammation sensitive cell, and are 

monocyte-lineage non-ramified macrophage-like cells that occupy space between the neural 

parenchyma and the vascular endothelial cells. They are implicated with hematopoietic cell 

infiltration into CNS when activated, as well as MHC expression and TNF-α, IL-1β, and iNOS 

production. In later stages after injury (2-3 weeks), they have been observed to leave their 

perivascular position and migrate into neural tissue where they differentiate into ramified 

microglia-like cells that retain strong MHC immunoreactivity108. 

 Other cell types known to infiltrate the CNS during cerebral hemorrhage events include 

lymphocytes such as T cells, which are known to play complex roles in inflammatory regulation 

and autoimmunity108,116–122. T cell-mediated autoimmunity is known to play a prominent role in 

several types of neurodegenerative pathology as well as hemorrhagic stroke and traumatic brain 

injury, though the healthy brain is typically well protected from this mechanism both by the BBB 

as well as neurons themselves, which suppress MHC expression in neighboring glia through 

interaction with the microglial CD200 receptor123. However, this suppression is strongly 
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dependent on neuron health and electrical activity, and CNS tissue inflicted with neuron damage 

or silencing has been observed to lose this protection as microglia resume MHC expression and 

antigen-presenting capability123. While this mechanism has been shown to play a role in large-

scale CNS hemorrhage, its relevance to microprobe implantation has not been well studied. 

 
1.2.5   Chronic Inflammatory Response 

 
While local astroglia initially activate at a very early time point post-implantation (often within 

24 hours of lesion108, commonly quantified by observing glial fibrillary acid protein (GFAP) 

expression), their distribution during the acute inflammatory period is sparse, with activation 

graded by distance from the lesion and the intensity of the initial trauma and acute response, up 

to around 500 μm from the implant surface. These astroglia are thought to be principally 

activated and directed by microglia-released cytokines, which tightly control the transformation 

of astroglia from protoplasmic to fibrillary form. Despite their early activation, astroglia exhibit a 

delayed response characterized by a slow migration to the implantation site, where they replace 

ensheathing microglia and enwrap local injured neurons with thin, flat processes40,108. This 

migration typically begins at 1-2 weeks post-implantation, characterized by an extension of 

astroglial processes toward the implant site. By three weeks, astrocytes will form an 

encapsulating sheath around the implant and nearby injured neurons, displacing microglia. The 

sheath grows increasingly compact and dense over time, though it is typically considered 

morphologically stable by the three week time point7,8,40,71. As it densifies, the interdigitating 

processes will adhere to each other, forming a multilayered stack of astrocytic lamellae 

surrounded by a network of extracellular matrix composed of tenascin, collagen IV, and 

chondroitin sulfate proteoglycans108. The development and maturation of the glial sheath is 
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known to be directed by a number of pro- and anti-inflammatory factors87,88,108. A more detailed 

description of the roles of astroglial scar in neuroinhibition and degeneration will be discussed 

within chapter 2 of this dissertation. 

 The chronic inflammatory response period is also characterized by the progressive loss of 

recordable units, as described within the overview above. For many years, this performance loss 

was thought to be a consequence of astroglial sheath development; however, more recent studies 

have observed that the initial signs of unit loss do not synchronize with the peak time point of 

astrogliosis, instead lagging roughly one month behind it8,9. This unit loss is currently thought to 

be due to the progressive degeneration and death of neurons local (within ~100μm) to the probe 

surface, which initially worsens by week 8 post-implantation and persists for the duration of 

probe implantation, based on existing long term recording studies5,11,13,16,21,37–39,42. Neural 

degeneration and the resulting unit loss both exhibit a large degree of inconsistency and 

variability between probes and across time points, as well as non-uniformity around the same 

probe124, though a correlation has been observed between neural degeneration and inflammation 

intensity8. It was also observed that different mechanisms of degeneration may play roles at 

different time points, with neuron and dendritic loss occurring by week 8 post-implantation, and 

axonal pathology by way of hyperphosphorylation of protein tau occurring after 16 weeks8. 

Demyelination (Fig 1.9) was also observed to occur in axons over 100 µm from the implant 

surface71,124, though the effect did not appear to be uniformly distributed around the probe. 

 This neuronal degeneration is thought to result from a complex series of interrelated and 

cross-modulating neurotoxic factors and environmental stressors which combine to disturb the 

delicate homeostatic and signaling balance required for neuron survival8,9 and drive local 

microglia, astroglia, and other cell types to convert from anti-inflammatory regulatory to pro-
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inflammatory reactive states. While acute neuronal loss is likely due to a combination of factors 

which result from implantation trauma and acute inflammatory response, including direct cell 

lysis, edema, oxidative stress, bilirubin toxicity, ischemia, acidosis, reactive microglial attack, 

CSPG-mediated inhibition, and pro-inflammatory cytokine and chemokine influence. Chronic 

degeneration on the other hand is likely due to self-perpetuating neurotoxic cytokine cascades 

coupled with mechanical stress due to probe micromotion and mechanical mismatch, vascular 

pulsation and damage, and other unknown factors. This progressive neurodegeneration was 

observed to continue at far chronic (16 week) time points, despite minimal microglial activation, 

stable and compact astroglial sheath, and little observable BBB leakage9. 

 

 

 
Figure 1.9:  Demyelination observed around an implanted electrode in rat cortex at 12 weeks. Yellow is 
Myelin-Oligodendrocyte Specific Protein (MOSP), and red is neurofilament. SB = 100 μm. (Image from 
Winslow et al.124 © Elsevier. Reprinted with permission). 
 
 
 

1.3   DISSERTATION ORGANIZATION 

 
This dissertation studies two approaches to studying and modulating the inflammatory response 

to implantable intracortical neural interfaces and advances the concept and theory behind 
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controllable drug-release coatings and glial sheath modification. Chapter 3 includes a research 

study that is in preparation for submission to a peer-reviewed journal, and chapter 4 includes 

work that will serve as the foundation for a second study. 

 In chapter 2, we discuss the development of an in vivo model for the evaluation of the 

impact of the microinjection of the bacterial enzyme chondroitinase ABC (ChABC) on the 

astroglial sheath around implanted probes. Chondroitinase therapy is an experimental treatment 

involving the enzymatic digestion of chondroitin sulfate proteoglycans (CSPGs) from a CNS 

injury location, and has been applied with varying degrees of success to both spinal and brain 

injury models125,126. CSPGs are known to possess strong neural inhibitory signaling capabilities, 

and are thought to be a principal component of the barrier to neural regeneration across glial 

scar. The benefits that ChABC therapy may offer to the chronically-implanted intracortical 

electrode model have not yet been studied. This work describes the development of an 

intracortical ChABC microinjection model, and the study of the effects of ChABC 

microinjection to the glial scar that had evolved around the implanted indwelling injection 

cannula itself. The results demonstrate the successful digestion of CSPG around the injection 

cannula, as well as its effect on local serum protein content. Results also suggest that cellular 

morphology and activation within the sheath did not appear substantially affected. Our 

observations concurred with those published elsewhere127 that CSPG expression peaks at 1 week 

post-implantation and rapidly diminishes thereafter, as we observed no discriminable CSPG 

signal at 18 days post-implantation. 

 In chapter 3, we study the neurophysiological recording capabilities, impedance 

characteristics, and drug releasing capabilities of a multiwalled-carbon nanotube (MWCNT)-

doped PEDOT coating loaded with the anti-inflammatory corticosteroid dexamethasone. As 
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discussed earlier, PEDOT has recently grown in popularity as an enhancement to chronic 

recording and stimulating microelectrodes due to its impedance-reducing capabilities and 

excellent electrochemical stability and charge storage capacity. PEDOT may also be employed 

as a controllable drug-releasing apparatus through the incorporation of a drug molecule as a 

counter-ion dopant. This drug-releasing capability has not been well evaluated in vivo. We 

studied the drug-release capacity of a PEDOT coating further modified with a MWCNT co-

dopant intended to increase polymer surface area and drug yield. Following characterization and 

coating optimization, we coated the recording surfaces of platinum-iridium floating 

microelectrode arrays (FMAs) and chronically implanted them into rat visual cortex for an 11 

day period. Drug release stimulation, neurophysiological recording, and impedance measurement 

were performed daily. Results demonstrated that the drug release stimulus was effective and did 

not result in atypical inflammatory response, changes to local neural activity, or substantial 

immediate changes to 1 kHz impedance. Coated probes demonstrated neurophysiological 

recording capability equivalent to that of uncoated probes. 1 kHz impedance of coated probes 

was observed to remain depressed for the initial 3 days post-implantation, but was then seen to 

increase rapidly and with distinctive phase characteristics to a point where it became statistically 

indistinguishable from uncoated probes by day 7 post-implantation. 

 In chapter 4, we discuss the development of an equivalent circuit model to better evaluate 

and interpret this in vivo impedance data. As the interface incorporates elements of both the 

conducting polymer coating as well as the evolving inflammatory tissue response, it presents a 

complex set of interrelated interfacial components that change dynamically with time. As most 

commonly-used simple models were found to be incapable of consistently fitting the recorded in 

vivo data, we adapted a more sophisticated transmission-line diffusion model to provide better 
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representations of the various physical correlates. Fitting results suggest that uncoated and coated 

chronic impedance behavior was driven by two very different mechanisms, with uncoated 

electrode impedance more a function of subtle changes to metal surface features and high-

frequency diffusion barrier development, while coated electrodes demonstrated large decreases 

of conducting polymer and electrode capacitance, likely a consequence of reduced effective 

surface area due to tissue encapsulation. 

 Chapter 5 summarizes the conclusions of the previous chapters and presents them in 

terms of their impact to the field of neural engineering. Additionally, it discusses new directions 

for research and opportunities for the application of techniques developed in this work. 
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2.0   THE DEGRADATION OF GLIAL SCAR THROUGH THE LOCAL DELIVERY OF 

CHONDROITINASE ABC 

 
 

2.1   INTRODUCTION 

 
As discussed in chapter 1 of this dissertation, perhaps the most detrimental aspect of the 

inflammatory response to the reliable long-term function of chronic intracortical recording 

electrodes is the progressive silencing, degeneration, and death of local neurons7–9,38. The 

mechanisms that lead to this neuronal loss are complex and interrelated, and are likely the 

product of a variety of environmental, biological, chemical, and mechanical stressors, many of 

which are unknown or not well understood. These stressors combine to disrupt the homeostatic 

balance necessary for neuron health and activity, leading to the degeneration and death of 

neurons or their migration away from the implant site. Informed electrode design and 

implantation techniques will likely be required to compensate for a majority of these stressors to 

maintain a healthy, active population of local neurons and achieve long-lasting and consistent 

recording performance72. This need can be seen reflected in a number of recent electrode 

concepts, such as ultrafine probes38 which strive to minimize mechanical strain, vascular 

damage, and surface area to present as unobtrusive an implant as possible. 

 A principal inhibitory barrier to neural healing and regeneration in CNS at the 

implant/tissue interface is the astroglial sheath. While astroglial scarring has been known to be 

an antagonist to axonal regeneration and healing within spinal cord for over sixty years, it was 

originally thought to be a purely mechanical blockade87,128. Later observations revealed that a 
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spinal lesion is capable of repelling regenerating axons even in the absence of dense glial scar, 

suggesting that more complicated biochemical factors may be at play87,129. It is now known that 

the astroglial sheath presents a rich neuro-inhibitory environment composed of both secreted 

soluble factors as well as extra-cellular matrix (ECM) signaling components87, and serves an 

important role as a restrictive barrier between healthy and damaged tissue, isolating the lesion 

and limiting the volume of inflammation130. However, despite these protective properties, 

hypertrophic astrocytes within the sheath also restrict the ability of neurons to regenerate and 

regain some degree of connectivity across the scarred lesion. Important to note is that the 

astroglial scar is by no means the only barrier to neuronal regeneration within the healing lesion, 

as a host of other components are known to provide considerable inhibitory signaling as well, 

including damaged oligodendrocytes and myelin debris131. Hypertrophic astrocytes within the 

glial scar inhibit neuronal ingrowth through a variety of mechanisms, including the upregulation 

of factors including tenascin, ephrin-B2, semaphorin 3, slit proteins, and an assortment of 

chondroitin sulfate proteoglycans (CSPGs)87. Of these candidates, the CSPGs have perhaps the 

most demonstrated ability to inhibit axonal regeneration125,132–136. 

CSPGs are a family of ECM proteins that play a diverse assortment of roles within the 

body, particularly in cartilage and scar tissue where they contribute structural integrity and 

compression resistance. Structurally, CSPGs consist of a core protein to which is covalently 

attached one or more chondroitin sulfate glycosaminoglycan (CS-GAG) sugar chains125,137. Each 

CS-GAG is composed of a linear unbranched chain of alternating monosaccharide units, D-

glucuronic acid and N-acetyl-D-galactoseamine, and is bound to the core protein by way of a 

Xyl-Gal-Gal-GlcA tetrasaccharide linking region to a serine residue137. The CS-GAGs are 

classified in terms of their sulfation, with the four known types (chondroitin sulfate A, C, D, and 
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E) being differentiated by the presence or lack of sulfate molecules at the 4 and 6 carbons of 

GalNAc and the 2 carbon of GlcA138 (Fig. 2.1). Additionally, a large variety of CSPGs have been 

classified in terms of core protein composition and CS-GAG length. The most common and 

relevant to CNS: aggrecan, brevican, versican, and neurocan (together collectively known as the 

lecticans) are large, bulky, aggregating proteoglycans that strongly interact with other ECM and 

membrane proteins through their highly charged sulfate groups. The lecticans are secreted by 

most glia and, despite existing at miniscule concentrations in healthy brain, nonetheless play a 

critical role as the major component of the perineuronal net, or the ECM network that surrounds 

neurons and stabilizes synapses139. They are also known to play a crucial part in development 

where they serve as “master regulators” of neuron migration, axon guidance, and neurite 

outgrowth140. Following CNS injury, the secretion of lecticans is greatly upregulated by reactive 

astroglia and microglia in the glial scar87 though at differential time points, with brevican, 

versican, and neurocan being expressed very early, peaking at one to two weeks and returning to 

baseline levels by four to eight weeks post-injury, while phosphacan was not observed to be 

expressed until four weeks post-injury, peaking at roughly two months141. 

 An important tool in studying the function of CSPG in CNS has been chondroitinase 

(Fig. 2.2), a bacterial enzyme that acts by cleaving the linkage between disaccharide units within 

the CS-GAG side chains, effectively stripping them from the CSPG core protein. Chondroitinase 

exists in a number of different forms, each specific to the sulfation state of the CS-GAGs it is 

capable of cleaving. The most universal, chondroitinase ABC (ChABC), is able to cleave CS-A, 

CS-C, as well as dermatan sulfate. By using chondroitinase to selectively degrade CSPGs, the 

mechanisms of their inhibitory influence on neurons and axon growth cones have been further 

elucidated and found to be multi-modal. Microinjection of ChABC into lesioned spinal cord was 
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Figure 2.1: Structure of constituent CS-GAG disaccharide. Illustration demonstrates placement of sulfate 
groups for known chondroitin sulfate variants (Diagram by Galtrey and Fawcett 2007142, © Elsevier. 
Reprinted with permission). 
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shown to cleave CS-GAGs from CSPG in vivo, and produced enhanced axonal 

regeneration125,134,135. Similar microinjections in healthy cerebellum143, hippocampus144, cuneate 

nucleus145, and spinal cord146 produced enhanced neurite sprouting and local plasticity. 

Paradoxically, earlier work in vitro observed that while both intact CNS-derived CSPGs and 

stripped CSPG core proteins were able to dose-dependently inhibit outgrowth from cultured 

neuronal PC12D cells, unbound CS-GAGs had no discernible effect even at high 

concentrations147, suggesting that much of the neuromodulatory ability of CSPG may depend on 

the concerted contributions of several CSPG and ECM components. For example, it was found 

that while explanted rat glial scar tissue treated with ChABC demonstrated increased neurite 

outgrowth, this enhancement was partially reversed when the ChABC-treated explant was 

subsequently exposed to anti-laminin antibody133. 

 

Later work revealed a number of direct receptor-mediated inhibitory pathways between 

CSPGs and neurons, including epidermal growth factor receptor (EGFR)-mediated increase in 

 

 
Figure 2.2:  Rendering of the bacterial enzyme chondroitinase ABC. Demonstrates binding with 
dermatan sulfate (Figure from Prabhakar148, © 2005 Biochemical Society. Reprinted with permission). 
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calcium levels in affected cells149, interactions with protein tyrosine phosphatase sigma (PTPσ) 

receptors125, and the activation of Rho-kinase, which results in growth cone collapse150. Studies 

targeting these pathways have reported success in negating the inhibitory properties of 

CSPG149,151. These inhibitory mechanisms also appear dependent on the sulfation state of the CS-

GAG constituents of CSPG, and it was shown that the down-regulation of sulfotransferase 

resulted in greatly reduced neural inhibition137. Additionally, ChABC treatment is thought to 

provide additional benefits through the creation of disaccharide digestion products, which are 

known to promote neurite outgrowth and neuroprotection in local neurons and microglia152. 

Due to these benefits and few apparent negative consequences, ChABC treatment has 

become a popular direction in spinal and brain regeneration research125. Typical studies have 

taken one of two approaches: either the direct administration of ChABC to the lesion site, 

sometimes in conjunction with a bridge or graft125,134–136,153–159, or the administration of ChABC 

to an uninjured nucleus upstream from a lesion, with the goal of digesting perineuronal nets and 

“unlocking” neurons to promote enhanced plasticity145,146. The former approach was first 

explored by Lemons et al. in 1999154, who first demonstrated the enhanced production of CSPGs 

following spinal contusion, as well as the digestion of those CSPGs in vivo by way of a local 

ChABC injection. In 2001, Moon et al. demonstrated the regeneration of CNS axons following 

ChABC injection to a nigrostriatal lesion155. Bradbury et al. demonstrated partial functional 

recovery following ChABC treatment to a spinal lesion in 2002134. Subsequently, an assortment 

of studies has been performed demonstrating degrees of functional recovery following ChABC 

treatment to a variety of CNS lesion locations125. However, a number of limitations have also 

been observed. While ChABC treatment has been effective in promoting recovery following 

slicing injuries, its benefit following more clinically relevant pinching and contusional injuries 
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has been limited, in both spinal cord158 and brain126. Garcia-Alias et al. observed that while axons 

were regenerated following ChABC treatment administered seven days following spinal injury, 

functional recovery was reduced compared to animals where ChABC was administered 

immediately following injury160. There has additionally been some question regarding the 

susceptibility of ChABC to thermal degradation. While Tester et al.159 observed a significant 

reduction in ChABC activity in vitro within three days at 37° C, Lin et al.156 demonstrated 

continued ChABC digestion in CNS in vivo 10 days after a single injection. 

While ChABC treatment has been extensively employed in spinal and brain lesions, its 

applicability to chronically implanted devices has not been well studied. As discussed in chapter 

1 of this dissertation, while the inflammatory tissue responses to an acute lesion and to an 

implanted probe share many common elements, they have many differences as well. While both 

situations exhibit similar patterns and time courses of CSPG expression (peaking at 1 week and 

gradually returning to baseline by 3-4 weeks), chronic astroglial and microglial activation is 

significantly more pronounced around the chronic implant, suggesting a richer pro-inflammatory 

environment. The purpose of this study was to develop an effective model for ChABC injection 

into CNS by way of a chronically implanted cannula. The effect of ChABC digestion was then 

observed within the tissue response to the cannula itself. We later coupled the cannulae with 

recording electrodes physically adhered to the cannulae surfaces to study chronic impedance 

changes following ChABC treatment, in preparation for the next phase of study where cannulae 

would be implanted in parallel with a multielectrode array. While this next phase has not yet 

been initiated, this chapter serves to chronicle the successes and challenges faced during the 

development of the injection model. 
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2.2   EXPERIMENTAL 

 
This study was carried out as a series of developmental and optimization steps with the goal of 

developing an effective model of ChABC microinjection for use in subsequent studies as a 

component of a microelectrode array. Common methods utilized throughout the study are 

detailed within this section, while a narrative of model development is provided in section 2.3. 

 
2.2.1   Surgical Implantation 

 
Infusion cannulae, including the model employed in this study, typically feature a guide cannula 

which is implanted into tissue and a separate injector cannula which is slid inside the guide 

cannula to perform the actual infusion at the time of injection. During implantation and until the 

time point of injection, an obdurator (typically a solid rod of plastic or steel of outer diameter 

matching the inner diameter of the guide cannula) is placed inside the guide to close it, 

preventing tissue ingrowth and infiltration of contamination. 

Throughout this study, guide cannulae were implanted either unilaterally or bilaterally 

into the parietal cortices of male Sprague Dawley rats under the guidelines of the University of 

Pittsburgh IACUC: Each animal was anesthetized under 3% isoflurane, weighed, and mounted 

onto a stereotaxic frame (Narishige USA, Inc., East Meadow NY). The top surface of the skull 

was exposed and a 2 mm diameter circular craniotomy centered at 1 mm post Bregma and 3.5 

mm lateral to midline was made using a high speed hand drill and fine rongeurs. Saline was 

applied continuously onto the skull to suppress heat from the high speed drilling. Four skull 

screws were mounted in a uniform arrangement around the craniotomies. Following dural 

puncture, stereotaxic insertion of each guide cannula (with obdurator inserted, EtO sterilized) 

was accomplished using a small clamp mounted to a hand-driven microdrive. Each cannula was 
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manually lowered at a consistent pace into cortex until the upper surface of the skull was 1 mm 

distant from the lower surface of the cannula head socket, resulting in a tissue depth of ~2 mm. 

With the cannula held firmly in place, the craniotomy was sealed using UV-cured dental cement 

(Pentron Clinical, Orange CA), liberally applied onto the cannula head socket and around nearby 

skull screws. Once both cannulae were in place, a robust head cap was molded in place using 

dental cement (Cerebond, Plastics One, Inc., Roanoke VA). A protective flexible plastic cap was 

adhered to the hardened cement using hot glue to provide additional protection to the guide 

cannula ports. Animal temperature was maintained throughout the procedure using a warm water 

pad (HTP 1500, Adroit Medical Systems, Loudon TN) and homeostasis was maintained using 

regular injections of sterile Ringer’s solution. 0.3mg/kg buprenorphine was administered twice 

daily for three days as a post-operative analgesic. Animals were provided with soft water-based 

diet gel immediately after surgery, and food and water were provided ad libidem for the 

remainder of the experiment. All animal care and procedures were performed under the approval 

of the University of Pittsburgh Institutional Animal Care and Use Committee and in accordance 

with regulations specified by the division of laboratory animal resources. 

 
2.2.2   Cannula Selection and Fabrication 
 
 
Initial work was performed to select and test an appropriate microinjection cannula. We initially 

selected a model available from Plastics One featuring a polyether ether ketone (PEEK) cannula 

tube with an externally-threaded head socket (Fig. 2.3a); however it was found that the screw-on 

obdurator cap did not leave enough clearance underneath to allow for the application of a 

sufficient amount of dental cement, and the trial animal was able to fracture the head cap. An 

alternate version of this cannula was procured which featured a flange on the lower surface of the 
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head socket, but during a trial implantation was found to be too awkward to position properly. 

Thus, the Plastics One model was abandoned. 

 In its place, we adopted polyurethane guide cannulae (OD: 550 μm, ID: 360 μm) 

produced by CMA Microdialysis AB (distributed in the USA by Harvard Apparatus, Hollison 

MA), sold as a component of a microdialysis probe (Fig. 2.3b). These cannulae feature a “cup” 

type head socket as opposed to the external threading of the previous model, which allows 

cement to be applied liberally around the cannula without risk if interference with cannula 

function, allowing for a simpler surgical procedure and a more robust head cap. Initial attempts 

were made to fashion an injector cannula by carefully cutting the dialysis tip off of a probe, but 

this yielded unacceptable resistance to fluid flow. Instead, an injector was hand-made using 28 

gauge SS hypodermic tubing which was cut to a convenient length and deburred. The injector 

was bonded to flexible PTFE tubing using epoxy, and injector length was set using small plastic 

spacers. 

 

 

 

 
Figure 2.3: Example commercial guide cannulae. a) Plastics One model (© Plastics One Inc., used with 
permission).  b) CMA models, demonstrating “cup” head socket and insertible obdurators. Small murine 
model on right was employed in this study (© CMA Microdialysis AB, used with permission).  
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2.2.3   Microinjection 

 
Microinjection procedures were typically performed either 10 or 18 days post-implantation, to 

capture either the period of peak CSPG expression, or the period of peak astroglial sheath 

development. During the injection procedure, the animal was sedated using 3% isoflurane, and 

placed onto a microwaveable warming pad. The protective plastic cap was carefully removed, 

exposing cannulae ports. The obdurator of the guide cannula through which injection was 

performed was removed and placed into a 70% ethanol bath for cleaning. The injector was 

ethanol sterilized and connected to a 10 μL glass syringe (Hamilton Co., Reno NV), and tubing 

was pre-charged with either sterile saline or mineral oil (for enzyme or antibody injection). 4 μL 

of treatment solution was drawn into the injector tip, and the injector was slid into the guide 

cannula port until the tip of the injector was flush with the end of the guide. The Hamilton 

syringe was mounted onto an electronically-controlled syringe pump (Fisher Scientific, Waltham 

MA), and injection was performed at a rate of 6 μL/hour for 20 minutes. Similar injection rates 

and volumes have been employed in other cortical microinjection studies161–163. After the 

injection was completed, the injector was removed and the obdurator replaced. Animals 

scheduled for immediate histology were allowed to rest for an additional 40 minutes to allow for 

enzyme diffusion and activity before perfusion. Generally, in bilateral cannula-implanted 

animals, one side was used for experimental injection and the other side for control 

(bacteriostatic 0.9% sodium chloride, Hospira, Inc., Lake Forest IL). 

 Chondroitinase ABC used for injection was purchased in lyophilized powder form 

(Sigma-Aldrich, St. Louis MO) and was dialyzed and diluted to a working concentration of 100 

U/mL before being aliquoted and frozen. Bioactivity of each batch was evaluated using sectioned 

chicken embryo. 
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2.2.4   Dye-labeled Antibody Infusion Test 

 
To determine the approximate volume and pattern of enzyme penetration within tissue following 

microinjection, a test was performed by way of the substitution of Alexa488-labeled antibody (2 

mg/mL goat anti-rabbit, Invitrogen). Eighteen days after cannula implantation, microinjection of 

2 µL of labeled antibody solution was performed as described above, except that following the 

40-minute post-injection period the animal was immediately euthanized and the brain was 

removed without fixative perfusion. After removal, the brain was immersed into 4% 

paraformaldehyde for five minutes and flash-frozen by immersion in liquid nitrogen-cooled 

isopentane. The brain was blocked, cut into 20 μm sections, and imaged using a fluorescence 

microscope to observe the extent of antibody penetration. 

 
2.2.5   Hybrid Cannula/Electrode Study 

 
A preliminary study was performed to evaluate the impedance changes exhibited by electrodes 

following chondroitinase ABC treatment. Simple electrode/cannula implants were hand-

fabricated by adhering two tungsten microwire electrodes (Microprobes for Life Science, 

Gaithersburg MD) to opposite sides of CMA cannulae using UV-activated cement (Fig. 2.4). The 

initial array was fabricated with electrodes flush against the sides of the cannula to attempt to 

maximize the exposure to enzyme, but later arrays were fabricated with electrodes spaced 

roughly 1mm lateral from the cannula tip. Electrode impedance was assessed in PBS using a 

potentiostat (Fas1 Femtostat, Gamry Instruments, Warminster PA) before EtO sterilization. 

Implantation was performed as in 2.2.1 above, only with a larger craniotomy to accommodate 

the electrodes. Periodic impedance measurement was performed before and after injections. 
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2.2.6   Histology 

 
At select days post-implantation, animals were sacrificed and perfused according to University 

of Pittsburgh IACUC approved methods. Each animal was deeply anesthetized using 65 mg/kg 

ketamine, 7 mg/kg xylazine cocktail. Once the proper plane of anesthesia was observed, animals 

were transcardially perfused using a warm PBS flush followed by ice cold 4% 

paraformaldehyde. Animals were decapitated and heads were post-fixed in a 4% 

paraformaldehyde bath at 20°C overnight. Following post-fix, the skull was dissected and 

cannulae carefully removed to avoid incidental tissue damage. Whole brains were then removed 

and soaked in a 15% sucrose bath at 20°C overnight followed by a 30% sucrose bath until brains 

were fully impregnated. Brains were then blocked and carefully frozen using a 20% 

sucrose/OCT blocking media blend and dry ice. Tissue was typically sagittally sectioned parallel 

to the axis of the cannulae using a 14 μm section thickness. 

Tissue sections were hydrated using PBS and exposed to a 0.5 mM CuSO4 solution for 10 

minutes to reduce hemosiderin-dependent autofluorescence164. Following exposure, sections 

were washed with PBS (3x5min) and incubated in a blocking solution (10% goat serum, 3% 

 

 
Figure 2.4: A hybrid cannula/electrode implant. Features 1 mm wire spacing from cannula. 
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triton X-100) for 1 hour at ambient temperature. Following blocking, sections were incubated in 

a primary antibody solution consisting of 5% goat serum, 1.5% triton X-100, and antibodies 

against microglia (1:200 mouse anti-IBA1 and anti-ED1, Abcam, Cambridge MA), astroglia 

(1:500 rabbit anti-GFAP, Dako, Glostrup, Denmark), neurons (1:500 rabbit anti-NeuN and anti-

NF200, Invitrogen, Grand Island NY), immunoglobin (1:500 anti-IgG and anti-IgM, courtesy of 

Dr. Carl Lagenaur), and chondroitin sulfate GAG (hybridoma-derived CS56 antibody, courtesy 

of Dr. Willi Halfter) for 18 hours at 4°C. The next day, sections were washed with PBS (3x5min) 

and incubated in a secondary solution consisting of 5% goat serum, 1.5% triton X-100, and 

antibodies (1:1000 goat anti-mouse Alexa 488, Invitrogen, and 1:1000 goat anti-rabbit Alexa 

594, Invitrogen) for two hours at ambient temperature. Sections were then rinsed with PBS for 5 

minutes, exposed to 1:1000 Hoechst 33342 (Invitrogen) for 10 minutes, and washed in PBS (3x5 

minutes) before being coverslipped with Fluoromount-G (Southern Biotech, Birmingham AL). 

Sections were promptly imaged using fluorescence microscopy (Axioskop 2 MAT, Carl Zeiss, 

Inc., Oberkochen, Germany, equipped with an X-Cite 120 fluorescence illumination system, 

EXFO, Inc., Mississauga, Ontario). 

 

 

2.3   RESULTS AND DISCUSSION 

 
This study was undertaken to establish a “proof of concept” of the microinjection of ChABC into 

cortex through a chronically implanted cannula, to evaluate its effects and to resolve technical 

challenges before integration with more sophisticated recording systems. As such, it was 

performed as a series of trial implantations, each attempting to resolve principal challenges 

encountered in the previous trial through modifications to implant geometry, surgical or 
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microinjection technique, histology methods, and critical time points. This section will 

summarize a number of the more critical challenges as well as the resolutions applied, and will 

report on the performance of the final model protocol. 

 
2.3.1   Microinjection Technique 

 
Once an acceptable cannula design had been selected (as described in section 2.2.2), a study was 

performed to evaluate the extent of drug penetration into tissue following microinjection. Due to 

the size and nature of the cannula, it cannot be easily simplified to a point source for diffusion 

modeling due to the presence of significant backflow up the shank of the cannula. This backflow 

or “leak-back” of infusate up the cannula surface is due to a number of factors including local 

tissue damage, elastic deformation, and pressure gradients, and has been studied in detail165–168 as 

it is typically an undesirable feature of injection. However, as this study is specifically targeting 

the scar tissue around the cannula surface itself for treatment, infusate backflow is desired. 

 Injector cannulae are typically designed to extend a certain distance into tissue from the 

end of the guide cannula when inserted, infusing a bolus of fluid well below the guide cannula 

while also generating a fresh lesion in tissue. For the purposes of this study, the injector cannulae 

were fabricated significantly shorter, roughly 0.5mm short of the guide cannula tip, conceptually 

leading to significantly less strain and injury to tissue on injector insertion. To visualize the 

penetration profile of protein-laden infusate into tissue, a dye-labeled antibody infusion study 

was performed, as described in 2.2.4. IgG possesses only slightly higher MW than 

chondroitinase ABC (~150 kDa and ~120 kDa, respectively). Resulting images are shown in 

figure 2.5. Note lateral penetration of dye as well as prominent backflow pattern up cannula 

surface. Measurements indicate antibody penetration to roughly 1 mm from cannula at tip depth. 
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Figure 2.5: Dye penetration following microinjection. Composite image demonstrating the penetration 
of Alexa488-labeled IgG into cortical tissue following infusion of 2 µL sample. SB = 200 µm. 
 

 
2.3.2   Histology Methods 

 
Polymer guide cannulae were employed due to the possibility of sectioning being performed 

with cannulae in place within brain. However, early trials revealed that cannulae were only very 

loosely bound in tissue and would often slip out of the lesion during dissection or sectioning, 

making the method too inconsistent to employ for the remainder of the study. Early observations 

of tissue with intact cannulae revealed that the lesion conformed closely to the cannula surface. 

 Initial histology was performed using horizontal sections from the upper surface of the 

brain perpendicular to the cannula axis. While this method provided a large number of sections 

for labeling, it did not allow for the visualization of immunoreactivity expression gradients down 

the length of the cannula. Thus, sagittal sectioning was adopted, which allowed for the entirety of 
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the cannula to be observed within a single section (Fig. 2.6). As tissue at the cannula tips often 

demonstrated a large degree of irregularity due to the stresses of obdurator removal, a length of 

cannula wall within 1 mm of the cannula tip was selected for use in comparisons. 

 

 

 
Figure 2.6: Horizontal vs. Sagittal. a) Example horizontal section (GFAP).  b) Example composite sagittal 
section (ED1). Red box indicates typical area used for immunoreactivity comparison. SBs = 200 µm. 
 

 
2.3.3   Immunoreactivity Interference of Serum Immunoglobin 

 
Early ChABC injection and histology trials revealed an interesting phenomenon, in that 

secondary antibodies were able to bind to tissue features without primary antibody exposure. 

Moreover, this binding appeared to be attenuated by tissue ChABC exposure, and was specific to 

anti-mouse Ig (Fig. 2.7a&b). Binding occurred throughout the tissue, though it appeared to be 

concentrated within local cells (likely astroglia based on morphology) (Fig. 2.7c). As our anti- 

chondroitin sulfate GAG primary antibody (CS56) and several other immunolabels were derived 

from mouse hybridoma, this phenomenon had the potential to significantly confound 
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observations. Based on specificity of secondary antibodies involved, it was assumed that the 

mechanism of interference was the binding of anti-mouse Ig secondary antibody to rat serum Ig 

that had infiltrated the lesion site through blood brain barrier leakage since implantation. 

Sensitivity of this immunoreactivity to ChABC treatment was assumed to be due to this serum Ig 

being released from ECM following enzymatic digestion, which was later observed using anti-rat 

Ig labeling. To compensate for this issue, we acquired highly cross-adsorbed secondary 

antibodies. 

 

  

These antibodies appeared to substantially reduce but not completely eliminate the 

binding, effectively limiting the sensitivity of the labels. While chondroitin sulfate expression 

was sufficient at 10 days post-implant to overwhelm the serum Ig binding, at 18 days post-

implant it was not expressed strongly enough to allow for confident comparisons. To label 

chondroitin sulfate more specifically, it may be necessary to move to a lectin-based label such as 

wisteria floribunda agglutinin, though this was not performed during the course of this study. 

 

 
Figure 2.7:  Interference of released serum protein on CS labeling.  a) Immunoreactivity of alexa594-
labeled anti-mouse IgG secondary antibody with tissue in absence of primary antibody.  b) Comparative 
immunoreactivity of alexa594-labeled anti-rabbit IgM to the same tissue.  c) Example image 
demonstrating preferred binding within stellate structures at interface (likely astroglia).  SB = 200 µm. 
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2.3.4   Chondroitin Sulfate Digestion after ChABC Infusion 

 
Once the microinjection model was optimized to a satisfactory degree, we performed 

immunohistological imaging to characterize the inflammatory response at the cannula interface, 

and demonstrated the ability of the ChABC infusion to digest CS-GAG within the reactive 

tissue. Activated astroglial and microglial marker expression within the inflammatory tissue at 

10 and 18 days post-implantation appeared similar to typical responses observed around smaller 

probes, with a tight core of activated microglia at the tissue/cannula interface, and a more diffuse 

field of activated astroglia that was observed to condense at the interface at the later time point 

(Fig. 2.8). No visually apparent change was observed in microglial or astroglial marker 

expression 1 hour or 1 week after ChABC treatment. As discussed in 2.2.3 above, CS-GAG 

marker expression was prominent within the inflammatory region at 10 days but was not 

discernible at 18 days, which conforms to the known time course of lectican expression141. 

 ChABC infusion resulted in an immediate reduction in 10-day CS-GAG marker 

expression in inflammatory tissue around the cannula consistent with enzymatic digestion (Fig. 

2.9a). It was also observed to result in an immediate reduction in both rat IgG (Fig. 2.9b) and 

IgM (Fig. 2.9c) local to the cannula, presumably due to release of trapped serum Ig within the 

ECM. 

 
2.3.5   Hybrid Electrode-Cannula Implant Performance 

 
As mentioned in section 2.2.5, two initial electrode-cannula hybrid devices were fabricated and 

implanted bilaterally into rat parietal cortex. These devices were fashioned such the electrodes 

were flush against the side of the central cannula in order to ensure exposure to infused solution. 

However, upon comparing subsequent impedance measurements over the ongoing days post-
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implantation, three of the four electrodes did not exhibit the characteristic increase in 1 kHz 

impedance typically observed around implanted electrodes and remained nearly flat for the 

entirety of the initial 24 day pre-injection period, as well as through the course of injections. 

 

 

 
Figure 2.8:  Glial sheath formation. Expression of activated microglial (ED1) and astroglial (GFAP) 
markers along the cannula/tissue interface at two time points. Note consolidation of both cell types into 
a compressed layer at the cannula surface. SB = 100 µm. 
 

 
Upon experiment completion and probe explantation, it was observed that the electrode 

that had exhibited normal impedance behavior had actually separated from the surface of the 

cannula during implantation by roughly 1 mm. Based on this, it was speculated that the current 

path of the other three electrodes had shunted up the outer surface of the cannula and thus 

bypassed the tissue response entirely, resulting in low, steady-state impedance characteristics. 
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Figure 2.9:  Digestion and serum protein. Effect of 2 µL (6 µL/hr) 100 U/mL ChABC versus saline control 
infusion on a) CS-GAG (CS56), b) IgG, and c) IgM after one hour post-infusion. Cannulae implanted for 10 
days pre-infusion. Enzyme injection visibly reduced expression of all three markers. SB = 100 µm. 
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In light of these observations, a second pair of electrode-cannula implants was prepared 

with electrodes spaced 1 mm from each cannula. Probes were implanted and allowed to develop 

a response for 22 days, with periodic impedance measurement. On the 22th day, both cannulae 

received a saline control infusion. Following this, impedance was measured daily for four days at 

which point a ChABC infusion was applied to both cannulae. 

 

 

Figure 2.10:  Impedance measurement of a cannula-electrode hybrid probe. “Pre” represents pre-
implantation impedance in PBS, “day 1” is the probe impedance the day of implantation, and “postinj” is 
impedance measured 1 hour following injection on days 23 and 27. 
 

 

A record of impedance measurements at 1 and 3 kHz for a representative electrode is 

shown in figure 2.10. It was hypothesized that CS-GAG may contribute to electrode impedance 

by acting as a barrier to ionic diffusion within the ECM of the glial scar, and that digesting it 

with ChABC would thus eliminate its contribution. However, it was observed that impedance of 

the electrode reduced immediately after both saline control and ChABC infusion, and returned to 

previous levels within one day. As 1 kHz impedance was extremely variable throughout the trial, 
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as apparent within the record, a large number of additional repetitions would be required to 

evaluate changes with statistical confidence. However, this single trial suggests that ChABC 

treatment may not lead to a chronic effect on electrode impedance. The immediate drop in 

impedance following both infusions is speculated to be due to a momentary swelling of tissue 

with infusate. 

 While these probes had the potential to provide interesting dynamic impedance 

information, the technical difficulties involved in their fabrication and use made them 

impractical for anything beyond a pilot study. Electrode spacing could not be carefully controlled 

with the fabrication tools available, and the cement bond was prone to mechanical failure. 

Additionally, only two electrodes could be placed around each cannula, greatly limiting study 

efficiency. A superior option would be to incorporate an injection cannula into a commercially-

available multi-electrode array, which would allow for measurement and recording from a 

plethora of precisely-positioned electrodes with each treatment. 

 

 

2.4   CONCLUSION 

 
During the course of this study we were able to develop and demonstrate a model for the 

infusion of chondroitinase ABC into cortex. A number of design and application challenges were 

encountered and circumvented through modifications to hardware and techniques. The model 

should be easily adaptable to a more sophisticated electrode array/injector system that will allow 

for a more profound analysis of the effects of CS-GAG digestion on inflammatory tissue 

response, electrode impedance, and neurophysiological recording performance. 
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3.0    IN VIVO ELECTRICAL STIMULATION OF A DEXAMETHASONE-RELEASING 
PEDOT/MWCNT NEURAL ELECTRODE COATING 

 

 

3.1   INTRODUCTION 
 
 

Neural prostheses have seen effective use in a variety of applications, including auditory 

prostheses, visual prostheses, and brain-computer interface1–3,5,6,68. Several examples employ 

arrays of penetrating microelectrodes that are implanted into cortex to record neural activity with 

single cell resolution1,5,12,15,16,37,39,58. When chronically implanted, these electrodes typically 

suffer a large degree of variability and deterioration of recording performance metrics such as 

single-unit yield and signal-to-noise ratio over months to years21. Such unreliable recording 

performance has become a principal obstacle against the more widespread clinical translation of 

intracortical electrodes. The large degree of variability and degradation are thought to be a 

product of several factors both abiotic and biotic13,21.  Principal among these factors is the degree 

of tissue inflammation elicited by electrode implantation and chronic presence. Several 

interrelated inflammation mechanisms including the development of an encapsulating glial scar 

and the degeneration and death of local neurons have been theorized to play important roles in 

this recording quality deterioration7–9,13,38,40,71–73,92,169. 

In light of these observations, novel intracortical electrode design has largely focused on 

improving probe electrical characteristics170, reducing tissue reactivity through changes to 

electrode geometry38,171–173, flexibility174–177, and surface properties124, employing biomaterial 

53 
 



strategies to promote tissue stability38,178–183, and incorporating drug release systems to introduce 

anti-inflammatory agents127. While drug release systems intended for intracortical electrode 

integration have typically been limited to microfluidics or slow-release gels and coatings, 

systems utilizing conducting polymers have been explored due to their on-demand release 

capabilities184,185.  

Drug delivery from conducting polymers generally involves the incorporation of the drug 

into the conducting polymer as a dopant that is then released using an applied electrical 

stimulus186. The basis of this capability is the ability of the conductive polymer to “switch” from 

a charged oxidized state to a neutral reduced state upon application of a current pulse with 

voltage sufficient to cross the reduction potential of the material. Small charged species 

introduced as a counter-ion to the oxidized conducting polymer are released once the coating is 

converted to its neutral state, whereupon they diffuse into the surrounding environment. This 

mechanism may be used to release a wide variety of species, including anionic, cationic187,188, 

and neutral189. The selection of dopant has also been shown to have an effect on other electrode 

properties such as biocompatibility and in vitro neuron survival190. 

While drug release through conducting polymer stimulation has been extensively studied 

in vitro (as reviewed by Svirskis 2010186), the translation of this technology in vivo has been 

limited. The bulk of research has focused on the conducting polymer polypyrrole (PPy), due to 

its well characterized synthesis, morphology, and release performance. However, there are a 

number of detrimental aspects of Ppy that limit its applicability to chronic in vivo applications191. 

These include a significant degree of α-β’ coupling which leads to structural disorder, limited 

electrochemical response, and over-oxidation susceptibility192, as well as a vulnerability to 

biological reducing agents such as glutathione and dithiothreitol193. An alternative is poly(3,4-
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ethylenedioxythiophene) (PEDOT), which has been shown to possess significantly improved 

electrochemical stability191,194,195 and electrolyte compatibility196. PEDOT has been successfully 

integrated onto chronic intracortical recording electrodes in a number of studies191,197–208. 

The application of PEDOT onto microelectrode recording surfaces has been shown to 

provide a number of intriguing electrochemical benefits in a manner that is simple, cost effective, 

and applicable to most existing electrode designs191,197. PEDOT has been shown to significantly 

reduce probe impedance without substantially increasing site geometric surface area, and can be 

applied using electrochemical synthesis directly onto the recording site surface191,197–200. PEDOT 

has also been shown to allow for highly reversible charge injection, and significantly increases 

charge storage capacity compared to uncoated surfaces202,204,206,209–211. Additionally, PEDOT 

coatings have demonstrated good electrical stability after both repeated stimulation 

pulsation195,209,211,212 and chronic warm PBS bath immersion213. These properties have proven 

translatable to in vivo application, and studies featuring the chronic implantation of PEDOT-

coated probes show that the coated probes exhibited lower impedance and improved recording 

characteristics when compared to uncoated controls200,201,203,204. The PEDOT coatings have also 

been shown to elicit tissue reaction comparable to bare platinum following short term (two week) 

implantation207. 

Despite its promise, the use of PEDOT for drug release applications has been limited 

compared to PPy. Abidian et al.185 employed a different release strategy using the mechanical 

actuation of PEDOT nanotubes to “squeeze out” trapped drug within the tubes. Alternatively, 

release quantity may be increased through the synthesis of a porous or sponge-like film 

morphology, such as that demonstrated by our group using Ppy214,215. Our work takes a different 

approach, through the use of a multi-walled carbon nanotube (MWCNT) co-dopant216,217 to 
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maximize exposed polymer surface area. Benefits of this approach include the mechanical 

reinforcement of polymer by the carbon nanotubes (CNTs)208 as well as the ability of the CNTs 

to act as a nano-reservoir of drug218. CNTs have been successfully integrated onto neural 

electrodes both alone through direct electro-deposition219 or as a dopant within a polymer 

composite205,208,220. Our group has previously shown that doping PPy films with MWCNT allows 

for significantly greater drug release than from PPy alone218. The study presented here expands 

on that previous work by improving chemical and electrochemical stability through the 

replacement of PPy with PEDOT. 

The purpose of the work presented within this chapter is to demonstrate in vivo the 

feasibility of an electro-polymerized PEDOT drug delivery system featuring a MWCNT co-

dopant and to perform a short-term performance comparison of this system against implanted 

uncoated Pt/Ir electrodes. Our model drug for release was dexamethasone sodium phosphate, 

selected due to its well-characterized utility in attenuating acute-phase inflammation127,221 as well 

as its anionic character, allowing it to serve as a dopant without the need for intermediate carrier 

molecules. Dexamethasone possesses a well-characterized ability to attenuate acute-phase CNS 

inflammation127,221 and has previously been explored as a candidate molecule for conducting 

polymer release in vitro in studies that demonstrated the controllability, consistency, and yield of 

the release method184,185,218. Our work employed several methods including complex impedance 

spectroscopy, equivalent circuit analysis, cyclic voltammetry, neurophysiological recording, and 

tissue histology to demonstrate both the safety and functionality of the drug release system as 

well as the ability of the coated probes to record neural activity effectively. 

 

 

56 
 



3.2   EXPERIMENTAL 

 
3.2.1   Carbon Nanotube Preparation 

 
Multi-walled carbon nanotubes were purchased (OD 20-30 nm, ID 5-10 nm, length 10-30 µm, 

purity >95%, Cheap Tubes Inc., Brattleboro VT) and functionalized using a previously published 

method218. In summary, 200 mg of nanotubes were sonicated for two hours at ambient 

temperature in an acid bath consisting of 100 mL 1:3 ratio of concentrated HNO3 and H2SO4 

(Sigma-Aldrich Co., St. Louis MO). The solution was then gently stirred at ambient temperature 

for 12 hours. Treated nanotubes were collected by decantation following ultracentrifugation 

(16,000 RPM at 15°C for 40 minutes) and sonicated for 10 minutes in diH2O (Milli-Q, Millipore 

Co., Billerica MA). Centrifugation and decantation were repeated until the pH of the supernatant 

was 6.0. The remaining solvent was evaporated off in an oven at 60°C. 

 
3.2.2   In Vitro Drug Release Characterization 

 
Gold macroelectrodes were fabricated using a custom-designed template featuring a 0.456 cm2 

electrode area. 0.51 mm thick polystyrene sheets (McMaster Carr Inc., Cleveland OH) were 

trimmed into 0.01 m2 rectangular tabs and cleaned by soaking in 7.9 M nitric acid (Sigma-

Aldrich) for 30 minutes at ambient temperature before being rinsed with diH2O and dried with 

nitrogen gas. Custom adhesive masks were prefabricated featuring holes for circular electrode 

surfaces and linear contact segments, and were adhered to the polystyrene before a 40 nm gold 

layer was applied using a sputter coater (108auto, Cressington Scientific, Watford, UK). 

Films were electropolymerized onto the gold macroelectrodes for drug release testing as 

follows: prepared acid-functionalized MWCNTs were dispersed and dexamethasone 21-
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phosphate disodium salt (Sigma-Aldrich) was dissolved into diH20 at a concentration of 1 

mg/mL and 20 mg/mL respectively, and sonicated for one hour to facilitate drug loading and 

uniform dispersion of the nanotubes. Post-sonication, 6 µL of 3,4-ethylenedioxythiophene 

(Sigma-Aldrich) was added to the solution and triturated until dissolved. The gold 

macroelectrodes were then inserted into the solution and a film was electropolymerized using a 

three-electrode cell consisting of a platinum sheet counter and Ag/AgCl reference using a 

potentiostat (FAS 1 Femtostat, Gamry Instruments, Warminster PA). Polymerization was carried 

out at constant 1.2 V until a total charge of 46 mC was reached. Post-polymerization, the coated 

macroelectrodes were gently rinsed with diH2O and soaked in a gently stirred 2 L PBS bath 

overnight at ambient temperature, with the bath solution being refreshed after the first hour. 

Macroelectrodes were stored in an ambient temperature static PBS bath until release. 

Release quantification was conducted using a two electrode cell with a platinum sheet 

serving as the counter. Coated macroelectrodes (N=6) were individually clamped into glass 

cuvettes containing a 1 mL PBS bath, which was sampled for non-stimulated passive release 

every five minutes for 20 minutes. The concentration of dexamethasone within 100 μL samples 

was quantified using a plate reader (Spectramax M5, Molecular Devices, Sunnyvale CA) at a 

characteristic wavelength of 242 nm. Sampled solution was returned to the electrode bath after 

each measurement. Immediately after the passive release assessment, macroelectrodes were 

subjected to a stimulation routine as follows: cyclic voltammetry (20 cycles from 0.6 V to -0.9 V 

(vs. Pt) at 1 V/s anode-first) was applied to the electrode, and the bath was sampled and 

dexamethasone concentration quantified as above. Sampling was repeated once every five 

minutes until the concentration was found to remain stable. At this time, the 20-cycle CV 

stimulation pattern was applied twice, with a one minute resting period between individual sets 
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of cycles, and the sampling routine was performed as above. This was repeated a further three 

times, with the number of CV stimulation patterns increasing by one with each repetition, for a 

total of 15 CV stimulation patterns spread between five measurement sessions. This progressive 

assessment routine was performed to ensure that the dexamethasone concentration increase for 

each session remained within the sensitivity limit of the plate reader. The entire process was 

repeated with a separate set of electrodes (N=3), but with a more aggressive release stimulation 

(10 cycles of square wave stimulation, 2.0 V for 5 s, 0.0 V for 5 s. (vs. Pt)). 

 
3.2.3   In Vivo Array Preparation 

 
Floating Microelectrode Arrays (FMAs, Microprobes for Life Science) were removed from their 

commercial packaging and sterilized using an EtO gas sterilizer (AN 74i, Andersen Products, 

Inc., Haw River NC) after which they were transferred to a sterile environment within a 

biosafety cabinet. Initial quality-control impedance testing of all array sites was performed in a 

sterile PBS bath using a potentiostat (Autolab PGSTAT128N with FRA2 impedance 

spectroscopy module and Nova 1.8 control software, Metrohm USA, Riverview FL) with a three 

electrode setup consisting of a platinum wire counter and an Ag/AgCl wire reference (10 Hz-30 

kHz, 10 mV RMS). If recorded impedances differed substantially from manufacturer-reported 

impedances, the array was subjected to an electrochemical cleaning step (constant -2 V for 20s). 

After cleaning, the array was removed from solution and re-inserted to ensure no bubbles 

remained, and impedance was retaken. This cleaning process was repeated until the sites reached 

the impedances reported by the manufacturer. Following performance verification, each array 

was rinsed with diH2O and then immersed in a sterile polymerization solution prepared in the 

same manner as that used for the in vitro electrode preparation above. Using a three electrode 
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cell, half of the array sites were coated using constant 1.3 V (vs. Ag/AgCl) for 30 seconds, 

selected using a staggered, alternating arrangement to prevent positional bias in the array. After 

coating, the array was rinsed using diH2O and impedance measurement was repeated in sterile 

PBS. Arrays were allowed to continue soaking in PBS for 30 minutes to remove adsorbed drug, 

given a final rinse using diH2O, and were then stored dry in a sterile enclosure. Immediately 

before implantation, arrays were exposed to a UV sterilization lamp within a sterile biosafety 

cabinet for 30 minutes. 

Characterization was also carried out on single microwires (Pt/Ir alloy, 12 µm diameter, 

parylene-C insulated, 30 µm length exposed tip with ~380 µm2 area, Microprobes for Life 

Science, Gaithersburg MD) identical to those of the arrays implanted in vivo above. Individual 

electrodes were coated using the same protocol as in vivo arrays. Impedance spectroscopy was 

conducted in PBS using the potentiostat in a three-point configuration (10 Hz-100 kHz, 10 mV 

RMS). Scanning Electron Microscopy was conducted at The University of Pittsburgh’s Center 

for Biological Imaging on a field emission SEM (6335F, JEOL USA Inc., Peabody MA). 

Coating adhesion was evaluated by inserting and removing coated electrodes from Long Evans 

rat cortex in vivo or from an agarose gel using a micromanipulator. Coating integrity was 

evaluated using impedance spectroscopy and SEM. Agarose gel was prepared by heating a 

stirred 5 mg/mL agarose (Fisher Scientific, Waltham MA) solution to 85° C until clear, at which 

point it was allowed to cool and set. 

 
3.2.4   Surgical Implantation 

 
Prepared FMAs were implanted unilaterally into the right primary visual cortex, monocular area 

(V1M) of male Long Evans rats. Each animal was anesthetized under 3% isoflurane, weighed, 
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and mounted onto a stereotaxic frame (Narishige USA, Inc., East Meadow NY). The skull was 

exposed and a 3x3 mm rectangular craniotomy centered at 6.5 mm post Bregma and 3.5 mm 

lateral to midline was made over V1 using a high speed drill and fine rongeurs. Saline was 

applied continuously onto the skull to suppress heat from the high speed drilling. The dura was 

resected using fine Vannas scissors, and the brain surface was moistened using gelfoam while 

stereotaxic hardware was put into place. Insertion of the FMA array was accomplished using a 

vacuum suction tip mounted to a hand-driven manipulator (SM-11, Narishige USA, East 

Meadow NY). The craniotomy was sealed using a low-viscosity silicone222 (Dow Corning, 

Midland MI). Four skull screws were mounted around the craniotomy and a headcap was applied 

using UV-cured dental cement (Pentron Clinical, Orange CA) to secure the FMA connector and 

cable. Animal temperature was maintained throughout the procedure using a warm water pad 

(HTP 1500, Adroit Medical Systems, Loudon TN) and homeostasis was maintained using sterile 

Ringer’s solution. 0.3mg/kg buprenorphine was administered twice daily for three days as a post-

operative analgesic. Animals were provided with soft water-based diet gel immediately after 

surgery, and food and water were provided ad libidem for the remainder of the experiment. All 

animal care and procedures were performed under the approval of the University of Pittsburgh 

Institutional Animal Care and Use Committee and in accordance with regulations specified by 

the division of laboratory animal resources. 

 
3.2.5   Treatment Schedule 

 
Immediately after implantation and daily thereafter, animals were lightly anesthetized using 1-

3% isoflurane and subjected to a stimulation and recording protocol. All coated and uncoated 

array sites were subjected to an identical cyclic voltammetric stimulation program each session. 

61 
 



Before and after this stimulation, both spontaneous and evoked neural activity was recorded and 

complex impedance was measured across the entire array. This protocol allows all metrics to be 

measured immediately before and immediately after stimulation, and tracked daily for the 

duration of the experiment. Each component of the session is described in detail below: 

 
3.2.6   Drug Release Stimulation 

 
Electrical stimulation for drug release was performed using a PGSTAT128N potentiostat 

connected to a 16 channel multiplexer. Sequentially on each channel, cyclic voltammetry was 

performed using 20 cycles from -0.9 V to 0.6 V (two point vs. Pt. counter electrode) at a 1 V/s 

scan rate, anode-first. Redox behavior of each site was qualitatively observed in terms of 

reduction and oxidation peak height and potential shift. Fast-CV cathodic charge storage 

capacity and charge balance were computed by integrating the area under cathodic and anodic 

curves. Charge storage capacity was used to compute injected cathodic charge density for each 

pulse. 

 
3.2.7   Neurophysiological Recording 

 
Recording of spontaneous and visually evoked single units, multi-unit, and LFP response was 

performed each session, both before and after stimulation. Spontaneous recording was conducted 

in a dark room. During each recording session, animals were situated on a microwaveable 

heating pad inside of a darkened faraday cage while lightly anesthetized with isoflurane. An 

LCD screen was positioned outside of the cage and the animal’s head was fixed to provide for 

optimum viewing angle from the dominant eye. Optimum anesthetized activity levels were 

typically observed when isoflurane level was set at the very lowest concentration sufficient for 
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the maintenance of animal inactivity (1.5-1.75%). Subjects were carefully observed during 

recording to ensure the proper plane of anesthesia was maintained. Visual stimuli were presented 

using the MATLAB-based Psychophysics toolbox on an LCD monitor placed 20 cm from the 

eye contralateral to the implant. Solid black and white bar gratings were presented drifting in a 

perpendicular direction and synchronized with the recording system (RX5, Tucker-Davis 

Technologies, Alachua FL). Each 4 second grating presentation (rotated in 45° increments) was 

separated by a 4 second dark screen period. Additionally, a spiraling continuous stimulation with 

3°/s clockwise rotation was also presented each recording session.  The raw data stream was 

filtered to produce LFP (1-300 Hz) and spike (0.3-3 kHz) data streams. Possible spikes were 

detected using a fixed negative threshold value of 3.5 SD. Offline spike sorting was carried out 

using a custom MATLAB script. Average SNR (averaging the amplitudes of single units for 

each channel), and average amplitude of noise (4 SD) was used to quantify electrode recording 

performance. Only channels exhibiting detected spikes were included in the SNR computation. 

All parameters were compared for each group before and after stimulation, as well as at each 

time point. 

 
3.2.8   Impedance Spectroscopy and Equivalent Circuit Analysis 

 
Electrochemical impedance was measured before and after each stimulation session. While under 

anesthesia, the implanted array was connected to the Autolab potentiostat using a 16 channel 

multiplexer. Impedance was measured for each channel using a 10 mV RMS sine wave from 10 

Hz to 32 kHz, employing a 15 multisine paradigm to shorten the time required for measurement. 

MEISP (v3.0, Kumho, Seoul, South Korea) and NOVA (v1.8, Metrohm USA) were used for 

measurement and analyses.  
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3.2.9   Histology 

 
At 11 days post-implantation, animals were sacrificed and perfused according to University of 

Pittsburgh IACUC approved methods. Each animal was deeply anesthetized using 65 mg/kg 

ketamine, 7 mg/kg xylazine cocktail. Once the proper plane of anesthesia was observed, animals 

were transcardially perfused using a warm PBS flush followed by ice cold 4% 

paraformaldehyde. Animals were decapitated, and heads were post-fixed in a 4% 

paraformaldehyde bath at 20°C overnight. Following post-fix, the skull was dissected and 

electrode arrays carefully removed to avoid incidental tissue damage. Whole brains were then 

removed and soaked in a 15% sucrose bath at 20°C overnight followed by a 30% sucrose bath 

until brains were fully impregnated. Brains were then blocked and carefully frozen using a 20% 

sucrose/OCT blocking media blend and dry ice. Tissue was horizontally sectioned from the 

surface of the cortex down, perpendicular to the axis of the probes, using a 10 μm slice thickness. 

Sectioning continued until approximately 200 μm below the disappearance of the probe tracks to 

ensure that probe tips were captured. 

Tissue sections were hydrated using PBS and exposed to a 0.5 mM CuSO4 solution for 10 

minutes to reduce hemosiderin-dependent autofluorescence164. Following exposure, sections 

were washed with PBS (3x5min) and incubated in a blocking solution (10% goat serum, 3% 

triton X-100) for 1 hour at ambient temperature. Following blocking, sections were incubated in 

a primary antibody solution consisting of 5% goat serum, 1.5% triton X-100, and antibodies 

against microglia (1:200 mouse anti-OX42, Abcam) and astroglia (1:500 rabbit anti-GFAP, 

Dako, Glostrup, Denmark) for 18 hours at 4°C. The next day, sections were washed with PBS 

(3x5min) and incubated in a secondary solution consisting of 5% goat serum, 1.5% triton X-100, 

and antibodies (1:1000 goat anti-mouse Alexa 488, Invitrogen, and 1:1000 goat anti-rabbit Alexa 
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594, Invitrogen) for two hours at ambient temperature. Sections were then rinsed with PBS for 5 

minutes, exposed to 1:1000 Hoechst 33342 (Invitrogen) for 10 minutes, and washed in PBS (3x5 

minutes) before being coverslipped with Fluoromount-G (Southern Biotech, Birmingham AL). 

Sections were promptly imaged using confocal microscopy (FluoView 1000, Olympus, Inc.) at 

40X magnification with electrode sites centered in the imaging field. Confocal imaging was 

performed in a single session using identical laser power and detector gain for each channel. 

A custom MATLAB script was written to perform intensity-based radial analysis for 

activity dependent fluorescent markers (OX-42/GFAP). For the analysis, images were compared 

to control data >250 µm away from any insertion site. In order to prevent holes in the tissue 

(such as blood vessels and probe tracks) from artificially reducing the average activity-dependent 

fluorescence, background noise intensity threshold was calculated. To calculate the background 

noise intensity threshold, pixels with intensity greater than one standard deviation dimmer than 

mean pixel intensity were considered “signal” and removed from the calculation. The threshold 

was then determined by calculating the pixel intensity of one standard deviation below the mean 

of the remaining pixel intensities. After being loaded into MATLAB, the center of the probe 

track was identified on each image, after which the script generated masks of concentric rings 

every 20 µm for 240 µm. The average gray scale intensity for all pixels above the background 

noise intensity threshold in each 20 µm ring was calculated, normalized against the background, 

and plotted as a function of distance. Data were averaged for coated and uncoated locations. 

 
3.2.10   Explant Imaging 

 
Coating integrity of the explanted probes was evaluated using scanning electron microscopy. 

Following array extraction, electrodes were soaked in a 5% trypsin solution for twenty minutes 
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at ambient temperature to remove tissue residue and fully reveal the underlying coating surface. 

Arrays were then rinsed with DI water and dried for high resolution SEM. 

 
3.2.11   Statistics 

 
Comparison between two groups was performed using a student’s t-test, with α<0.01 considered 

a significant result. Comparison between multiple time points in the same group was performed 

using ANOVA with a Tamhane T2 post-hoc test. Tamhane T2 was selected in place of Tukey 

due to the large difference in variances within absorption spectroscopy and in vivo impedance 

data. 

 

 

3.3   RESULTS 

 
3.3.1   In Vitro Characterization 

 
Dexamethasone (Dex) and MWCNT-doped PEDOT coatings were characterized with regard to 

morphology, impedance, and drug release capacity (Fig. 3.1). Representative coated surface 

morphology is shown in figure 3.1a and b, demonstrating the fine, open, lattice-like morphology 

of the electrodeposited film. This is in contrast to typical uncoated microwires, which exhibit the 

coarse and irregular metal surface texture typical of arc-exposed electrode tips (Fig. 3.1c). The 

contrast demonstrated in the scanning electromicrographs illustrates the greatly increased surface 

area of the dex/MWCNT/PEDOT-coated surfaces. The impact of this increased surface area was 

observed using impedance measurement (Fig. 3.1d), which demonstrated that the coating 

significantly decreased (p=0.0003) the 1 kHz impedance modulus of the coated microwire tips 

(276 kΩ ± 147 kΩ) compared to those left uncoated (446 kΩ ± 153 kΩ) in PBS. Coating 
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adhesion testing demonstrated no apparent changes to electrode impedance or surface 

morphology following insertion and removal of a coated microwire from in vivo rat cortex. 

Insertion and removal of a coated microwire from agarose gel resulted in a clinging residue of 

agarose to the surface visible by SEM, but no change in electrode impedance. 

The controlled drug release characteristics of the coating were evaluated in vitro with 

coated gold macroelectrodes using a progressive stimulation routine. Peak stable release 

quantities for passive diffusion and passive diffusion plus 10 sets (20 CV cycles each) of 

stimulated release (N=6 for each) are shown in figure 3.1e. Passive release during 20 minutes of 

immersion in PBS produced a dexamethasone concentration significantly greater than PBS 

control (1.62 ± 0.84 μg/cm2 based on coated electrode surface area, p=0.001). Total cumulative 

dexamethasone release following passive diffusion and 10 sets of stimulated release was found 

to be significantly greater (3.68 ± 1.22 μg/cm2, p=0.009) than that released through passive 

release alone. Cumulative release from the second set of electrodes (N=3) subjected to a more 

aggressive release stimulation yielded a 115% increase in released drug (p=0.009). 

 
3.3.2   Electrochemical Impedance 

 
To compare the in vivo performance of dexamethasone/MWCNT-doped PEDOT-coated probes 

against conventional non-coated microwires, Long Evans rats were implanted with 16-channel 

floating microwire arrays unilaterally into V1 monocular cortex. The layout of the implanted 

arrays is illustrated (Fig. 3.2a), demonstrating the alternating staggered arrangement of the 

coated and uncoated probes. Comparisons between chronic in vivo impedance and charge storage 

were quantified (Fig. 3.2b-f). For all impedance and cyclic voltammetry measures, N=24 for 

days 0-3, but was reduced to N=16 for days 4-11, as a result of animal loss due to pneumonia. 
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Figure 3.1: Morphology, impedance, and drug release. a-c) SEM images of (a) coated microelectrode (SB 
= 3 µm), (b) detail of coated microelectrode (SB = 0.5 µm), (c) uncoated microelectrode (SB = 3 µm). d) 1 
kHz impedance modulus comparison between coated and uncoated electrodes before implantation. e) 
Cumulative dexamethasone release following passive and passive plus stimulated release from coated 
gold macroelectrodes into 100 µL PBS bath. (N=6, box=25-75%, cross=mean, whiskers=SD). *: p<0.01. 
 
 

Day 0 data were collected on the same day as implantation, immediately after the surgical 

procedure was completed. Data for days 5, 6, and 9 are not displayed, as potentiostat failure 

during script execution prevented pre-stimulus data collection from at least one animal. 

Average daily pre-stimulation 1 kHz impedance modulus values for coated and uncoated 

probes are shown (Fig. 3.2b). Impedance of the coated probes was found to be significantly 

lower than values observed from uncoated probes for the first three days post-implantation 

(p<0.0001 for each day). Subsequently, the impedance of coated probes increased rapidly to the 

point that it became indistinguishable from uncoated values for the remainder of the experiment. 

Dynamic impedance behavior over the first three days of the experiment is shown in detail (Fig. 
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3.2c), which highlights that coated probe impedance values remained significantly  depressed 

compared to day 0 values for two days post-implantation (p=0.004 for day 0-1, p=0.007 for days 

0-2), while uncoated probes on average exhibited steadily increasing impedance values. Average 

impedance values of coated probes were significantly lower than uncoated probes in PBS and for 

the first three after implantation, and also significantly decreased for two days following 

implantation. 

Daily values for the average change in probe 1 kHz impedance measured immediately 

before drug release stimulation compared to those measured immediately after stimulation are 

shown (Fig. 3.2d). Average post-stimulation impedance values typically changed by a degree 

less than 10% of pre-stimulation values, with change usually trending in the negative direction. 

Additionally, a statistically significant difference between coated and uncoated post-stimulation 

1 kHz impedance change was only observed on days 0 and 1 (p=0.002 and 0.0001, respectively). 

 
3.3.3   Cyclic Voltammetry and Charge Storage Capacity 

 
Electrochemical properties of the deposited films were evaluated using daily drug release cyclic 

voltammetry profiles. 20 cycles between -0.9 V to 0.6 V at 1 V/s were applied to each channel 

daily and the resulting curves were used to characterize the chronic stability and charge capacity 

of the films in vivo. Typical in vivo release CV curves are displayed (Fig. 3.2e) for both coated 

and uncoated probes, with all channels from each group averaged from one animal and one day 

(day 1 post-implantation) and plotted within the same figure. Coated probes exhibited a 

reduction peak at -700 mV, while uncoated probes exhibited no reduction behavior. 

Average daily values of CV cathodic charge storage capacity (CSCC) are shown for both 

coated and uncoated probes (Fig. 3.2f). As expected from the curves shown in figure 3.2e, 
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average CSCC of coated probes remained roughly 300% greater than uncoated probes for the 

duration of the experiment. The difference was found to be statistically significant at each time 

point (p<0.01 for all measurements). Maximum injected cathodic charge was estimated to be 260 

μC/cm2 for uncoated probes and 600 μC/cm2 for coated probes (over ~1.5s) based on 

approximate geometrical surface area. Comparison between anodic and cathodic charge density 

of coated electrodes indicated charge balance of between 80% and 90% throughout the 

experiment, with charge surplus being in the anodic direction. 

 

 

Figure 3.2: In vivo impedance and charge capacity. a) FMA layout. Red = coated, and blue = uncoated. 
Black sites are 2.5 mm Pt/Ir ground and reference electrodes. b) Average 1 kHz in vivo impedance values 
for uncoated and coated probes, recorded daily immediately before application of release stimulus 
(N=24 for days 0-3, 16 for days 4-11). c) Detail of impedance values for coated probes during initial three 
days of implantation (N=24). d) Average % change in post-stimulus impedance compared to pre-
stimulus. e) Average CV curves collected from one animal at one day post-implant. Discontinuity 
indicates starting potential. f) Average cCSC computed from CV. Data presented as mean ± SD. *: p<0.01. 
 
 

 

70 
 



3.3.4   Neurophysiological Recording 

 
Contralateral monocular visual stimulation provided using an LCD monitor evoked robust firing 

rate change during the entire period of experimentation. A representative spike data stream from 

a coated channel on the last day of implantation, day 11 post-implantation, is shown in figure 

3.3a. The waveform, inter-spike interval histogram, and PSTH of a representative sorted single 

unit on this channel are presented in figure 3.3b-d. Average recording noise amplitude and SNR 

(signal to noise ratio) between the coated and uncoated electrodes are compared in figure 3.3e 

and f.  

 

 

Figure 3.3: Recording performance. a-d) Representative recorded neural activity for a coated electrode 
at day 11 post-implant, demonstrating typical unit characteristics. a) Filtered data stream (0.3-3 kHz), 
with red line indicating initiation of visual stimulus. b) Two example units from the same channel. c) 
Peristimulus time histogram for the example units. d) Interspike intervals for the example units. e) 
Average SNR values on representative days for coated and uncoated channels before and after CV. f) 
Average noise amplitude immediately before and after CV. Data presented as mean ± SD. p>0.01 for all. 
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Same-day unit information is divided into groups before and after CV stimulation to 

evaluate the influence of stimulation on neural activity. The results suggest that the recording 

performance and neural activity on each electrode were not altered by the release stimulation to a 

degree quantifiable by the methods used. Performance was also not observed to be correlated 

with impedance during the initial week, as uncoated and coated probes exhibited the same noise 

amplitude and SNR despite having significantly different 1 kHz impedance. In general, the 

coated channels performed similarly in comparison with non-coated channels. 

 
3.3.5   Histology 

 
Representative confocal images of GFAP and OX42 expression around coated and uncoated 

probe tips at 11 days post-implantation are shown (Fig. 3.4a and b). Highly variable but 

comparable degrees of astroglial and microglial response were observed around each probe type. 

Average fluorescent intensity analysis performed in one animal revealed no significant 

difference in the expression of either GFAP or OX42 between coated and uncoated probes (Fig. 

3.4c and d, coated N=8, uncoated N=6), though a large degree of variance was observed within 

each group. In general, microglial expression was found to be condensed and strongly activated 

immediately next to each probe tip, while activated astroglia were observed occupying a sparse, 

broad field around each probe. 

Significant amounts of tissue were observed clinging to the array following pull out from 

the fixed brain despite thorough post-fixation and careful removal, particularly at the upper 

shank of the electrodes near the array substrate. In one of the two study animals that survived to 

experiment completion, the tissue pull-out was limited to the upper length of the electrode 

shanks, and the tissue at the electrode tips was left intact for preparation and imaging. However, 
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in the second animal tissue was pulled out over the entire length of a majority of the array 

electrodes, making the application of our histology procedure impossible. 

 

 

Figure 3.4: Histology. a-b) 40X confocal microscopy of tissue reaction at representative probe tips for 
coated and uncoated sites, at 11 days post-implant. Green = OX42 (activated microglia), red = GFAP 
(activated astroglia), blue = Hoechst 33342 (nuclei). SB = 100 µm. c-d) Average normalized intensity vs. 
distance from probe centroid for one animal. No significant differences were found between uncoated 
and coated probes (N=6 for uncoated, 8 for coated. Data presented as mean ± SE. p>0.01 for all). 
 

 
3.3.6   Explant Imaging 

 
Scanning electron microscopic images of representative explanted electrodes are shown in figure 

3.5, including uncoated (Fig. 3.5a) and coated (Fig. 3.5b) examples. Uncoated explanted 
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electrodes demonstrated dimensions and surface texture visually consistent with pre-implant 

micrographs. Coated explanted electrodes exhibited intact coatings with no visible cracks, 

spallation, or removal in over 85% of the electrodes examined. Fibrous ingrowth was also 

observed on the surface of the intact coated explanted electrodes, penetrating and occluding the 

open lattice structure of the coating. We were unable to determine the composition of this residue 

due to the preparatory steps performed for high resolution SEM. 

 

 

Figure 3.5: Explant imaging. SEM imaging of representative explanted uncoated (a) and coated (b) 
electrode tips. Tips were cleaned using trypsinization and dried before imaging. SB = 3 µm. 
 

 

 
3.4   DISCUSSION 

 
The goal of this study was to evaluate the in vivo stimulation safety and tissue reactivity of drug-

releasing MWCNT-doped PEDOT coating on platinum/iridium microwire electrodes and to 

74 
 



compare the recording performance of these electrodes against those that are uncoated. Uncoated 

platinum/iridium microwire electrodes served as controls for comparison of in vivo performance. 

Uncoated electrodes were employed in place of variations of coated electrodes for several 

reasons: 1) While it is possible to produce MWCNT-doped PEDOT coatings either without any 

drug co-dopant or with an alternative bioactively-inert co-dopant, such a change would 

substantially alter the morphological and electrochemical nature of the resultant coating. This 

may be observed by comparing the morphology of MWCNT and dexamethasone-doped PEDOT 

coatings produced here and MWCNT-doped coatings produced by Luo et al.223 which each 

possess very different surface textures and feature dimensions. Such a coating would be 

unacceptable for use as an appropriate control, as it would introduce many confounding 

characteristics. 2) While uncoated platinum/iridium microelectrodes also exhibit very different 

electrochemical properties, their properties have been very well characterized. They also serve to 

represent the current state-of-the-art microwire electrode. 

We demonstrated the release of dexamethasone from the coating in vitro using a selected 

stimulation method that was not observed to generate an atypical degree of tissue inflammation 

and was not observed to affect neural activity or recording performance. Both coated and 

uncoated probes exhibited a comparable degree of tissue inflammation after 11 days post-

implantation. However, no evidence of dexamethasone activity was observed in vivo, suggesting 

that either the released quantities were too small or too brief to elicit a significant effect, or that 

the effect of release was too subtle to discern using the selected methods. While impedances of 

the coated probes were observed to remain within a range comparable to pre-implanted PBS 

measurements during the initial days post-implantation, values increased rapidly after three or 

four days in vivo and exhibited distinctive high-frequency reactance behavior in Nyquist plots, 
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suggesting some form of probe encapsulation. Nevertheless, the recording performance of the 

coated electrodes was not compromised upon coating or stimulation, suggesting the safety of the 

technology.  

 
3.4.1   Deposition, Morphology, and In Vitro Electrochemical Properties 

 
Preliminary deposition testing was performed using a variety of potentiostatic and galvanostatic 

electropolymerization methods with final parameters being selected to maximize coating 

uniformity, robustness, and impedance reduction. We found that electrodeposition using constant 

potential produced the most consistent coatings in terms of uniformity and surface morphology 

on both gold macroelectrodes and Pt/Ir microelectrodes. This is in contrast with observations by 

Zhou et al.205 who found that constant current polymerization resulted in better 

PEDOT/MWCNT films. Interestingly, our method produced the open nanofibrous lattice-like 

morphology exhibited in figures 3.1a and b, which is similar to the PEDOT/CNT films without 

Dex that we previously reported223, while films produced by Zhou et al. exhibited a more 

cauliflower-like morphology205. A possible explanation is that our CNT size range and 

functionalization method may have resulted in a greater fraction of entrapped nanotubes, or a 

different rate of PEDOT deposition. Parameters were individually optimized for each type of 

electrode to provide the most similar impedance performance and morphology. A relatively high 

1.3 V (vs. Ag/AgCl) was employed to coat Pt/Ir microelectrodes as lower potentials resulted in 

poor and inconsistent impedance reduction. Coating deposition on Pt/Ir was carried out to a 

charge density of approximately 0.29 C/cm2. It was observed that careful and precise MWCNT 

functionalization and suspension preparation were critical to achieving consistent and robust 

coating deposition between samples.  
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SEM imaging of the dex/MWCNT/PEDOT coating revealed an open and extremely 

porous lattice morphology (Fig. 3.1a-b) comparable to that observed by Gerwig et al.208 who 

prepared similar PSS/SWCNT/PEDOT coatings on gold MEAs. High resolution imaging at 

various stages of the film synthesis suggests that this morphology was achieved through the 

partial entrapment of CNTs within the growing PEDOT, after which the exposed lengths of the 

tubes were overgrown and encapsulated to form long interconnected fibrils. Progressive CNT 

entrapment and encapsulation continued until the coating attained the thick “bird nest” 

appearance visible in the SEM images. Typical fibrils possessed diameters over 70nm greater 

than that of the MWCNTs supporting them, suggesting the presence of a uniform and continuous 

encapsulating film of PEDOT. Despite the fragile appearance of the coating, preliminary 

qualitative testing revealed that coated electrodes were able to be inserted and removed from pia 

and cortical tissue with no visible change to the coating surface appearance or dimensions, 

indicating adequate mechanical resilience of the coating lattice and adhesion to the metal 

substrate. Despite the lack of covalent bonding between the PEDOT and metal, coating 

adherence was observed to be excellent. The high surface roughness of the substrate apparent in 

figure 3.1c, which resulted from the plasma arc method used by the manufacturer to expose the 

electrode tips, may have had a positive effect on adhesion. Adhesion may have also been 

enhanced by the added structural benefits provided by the MWCNT component. Comparative 

SEM imaging between the coating on gold macroelectrodes and on Pt/Ir microelectrode tips 

demonstrated no apparent difference in surface morphology or feature size. 

Coated microelectrodes exhibited a significant decrease in 1 kHz impedance and an 

increase in cathodic charge capacity, which were observed by other studies using similar 

compositions208,220. This impedance decrease and charge capacity increase is a hallmark of 
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conducting polymer coatings on electrodes191,224 and is the product of multiple factors including 

the high conductivity of the oxidized PEDOT and MWCNT components, the large double layer 

capacitance produced by the greatly enhanced electrode/electrolyte interface surface area, and 

the charge transfer mechanisms available at the PEDOT interface due to redox activity and ion 

diffusion. Our coatings demonstrated a 1 kHz impedance decrease of ~40%, which was 

significant but was substantially less than that observed by Gerwig et al.208 who reported 

reductions of over 95% following PSS/SWCNT/PEDOT coating on gold MEA sites. This 

contrast in performance is likely a consequence of both the poor doping capability of 

dexamethasone compared to PSS which led to reduced PEDOT conductivity, as well as the 

heightened initial uncoated impedance per unit surface area of gold planar electrode sites 

compared the rough Pt/Ir microwire tips.   

 
3.4.2   Stimulated Release 

 
A challenge faced within this study was the development of a release stimulus that would 

generate effective local concentrations of drug without leading to tissue damage, hydrolysis, or 

electrode corrosion65,68. The release of anionic dopant from a conducting polymer requires a 

negative voltage with magnitude large enough to surpass the polymer’s reduction potential, with 

the release quantity increasing as more negative potentials and greater stimulus durations are 

applied186. While constant DC or square wave stimulus may yield good release performance, 

they also produce a condition of charge imbalance which may lead to both tissue injury as well 

as electrode instability65. Alternatively, sinusoidal or triangular AC waveforms limit dwell time 

at potentials below the reduction potential. Despite their safety advantage, the AC waveforms 

also increase the complexity of release dynamics due to electrostatic attraction and polymer re-
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doping with released drug, thus reducing the effective yield. While waveforms intended for 

functional stimulation are typically balanced to prevent charge buildup, such balancing is 

difficult to achieve in waveforms intended for drug release, which are usually potential-

controlled to ensure consistent reduction, and of a lower frequency to both increase dwell time 

below the reduction potential as well as to increase the extent of drug diffusion into tissue before 

the subsequent cathodic pulse. 

Within this study we used a conservative stimulation paradigm, cyclic voltammetry (CV), 

which approximates charge balanced conditions while providing information on both redox 

behavior and charge storage capacity. CV has been successfully employed as a release 

stimulation in vitro in several prior studies184,187,189 though with much slower scan rates of 20-

100 mV/s compared to the 1 V/s rate used here. We considered these slow scan rates to be 

unfeasible in vivo due to the increased anesthesia time required, as well as increased unbalanced 

charge buildup. It is understood that despite the 80%-90% charge balance observed, significant 

surplus charge will still be generated, particularly if a slow scan rate is used. Also, the 

requirement that the stimulus pass below the -0.7 V (vs. Pt/Ir) PEDOT reduction potential for 

release leads to a violation of the water window68 and the possible evolution of hydrogen gas 

through hydrolysis, though the maximum voltage that may be applied without creating an unsafe 

interfacial potential drop is difficult to predict, due to the in vivo environment and the potential-

controlled nature of the stimulation. A fast CV scan minimizes the time spent at potentials that 

may result in permanent damage of the electrode tissue interface. PEDOT reduction and ion 

transfer were verified by way of the observation of a reduction peak during release stimulation in 

all coated channels daily throughout the experiment. This peak confirms that dexamethasone was 

released, though the duration of release could not be determined as the coating likely re-doped 
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itself with local ionic species as the dexamethasone content was depleted. Material stability 

following stimulation was verified using SEM imaging of electrode surfaces, and it was found 

that the morphology remained visually unchanged after 200 cycles. Tissue integrity was 

monitored using both post-stimulation impedance measurement as well as histology, which did 

not reveal obvious evidence of stimulation-induced lesion or a harmful degree of gas evolution. 

CV scans also revealed consistent redox behavior and charge storage characteristics throughout 

the experiment duration. These evidences suggest that the majority of charge was transduced by 

way of safe, reversible mechanisms, and that the stimulus did not generate an observable degree 

of hydrolysis. 

Despite the surface area enhancement provided by the MWCNT dopant, dexamethasone 

release trials using coated gold macroelectrodes revealed that stimulated-release quantities 

remained barely detectable using absorption spectroscopy, resulting in a significant increase only 

being detectable after ten cumulative stimulation sets of 20 CV cycles each (-0.9 V to 0.6 V, 1 

V/s). Our observed 2.06 μg/cm2 stimulated release quantity only represented a 31% increase over 

passive release. A comparable dexamethasone release study by Wadhwa et al.184 using 

polypyrrole demonstrated a stimulated release of ~10 μg/cm2 after a single set of 20 CV cycles (-

0.8 V to 1.4 V, 100 mV/s). This illustrates that even with MWCNT enhancement the much lower 

dopant capacity of PEDOT requires a more aggressive stimulation protocol to release a drug 

quantity comparable to polypyrrole films. Both our coating and the coating studied by Wadhwa 

et al. were shown to passively release roughly equivalent amounts of dexamethasone during the 

same amount of time. The difference in release capacity between our earlier polypyrrole studies 

and the current PEDOT-based coating study may be the result of a number of factors, including 

the differences in film electrochemical properties and the more aggressive stimulation protocols 
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used within earlier studies. A preliminary trial using a more aggressive release protocol (-2.0 V 

to 0 V 10 s square wave) yielded over double the quantity of released drug compared to the CV 

stimulation method used in vivo. However, this more aggressive method is both highly charge 

imbalanced and also subjects the environment to unsafe potentials for extended time periods, 

which would likely generate irreversible damage to both tissue and electrode. It is also worth 

pointing out that this study was focused on neural recording applications, which excluded 

stimulation parameters that may cause changes in neural activity patterns. 

As our coating method produced visually identical film morphologies on both gold 

macroelectrodes and Pt/Ir microwire tips, we employed release quantities from macroelectrodes 

to estimate release from coated microwires in vivo. Scaling the macroelectrode release quantity 

by the microwire coating surface area and dividing by ten to determine release for a single set of 

cycles yields a daily release quantity of 0.21 µg/cm2, which equates to an estimated average 

tissue dexamethasone concentration of 0.42 µM within a 500 µm radius from the implanted 

microwire tip. In comparison, Zhong et al.127 observed 0.18 µg/cm2 dexamethasone release from 

slow release coatings in 24 h, yielding a local concentration of 0.36 µM. As an effect on glial 

inflammation has been observed225 following an introduction of dexamethasone concentrations 

as low as 0.2 µM in vivo, evidence suggests that our release method produced physiologically 

relevant dexamethasone concentrations in local tissue. 

 
3.4.3   In Vivo Electrochemical Properties 

 
The dex/MWCNT/PEDOT-coated probes demonstrated dynamic multimodal changes in in vivo 

broad-spectrum impedance over the eleven day period of implantation, which suggests a 

progression of changes to physiological or material factors at the tissue/coating interface. This is 
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contrasted against the behavior of uncoated probes, which exhibited a gradual increase in 1 kHz 

impedance typical of chronically implanted uncoated microelectrodes during the first week post-

implantation in rat cortex10,21,203. This distinction between the chronic impedance behavior of 

PEDOT-coated and uncoated implanted electrodes was first noted by Abidian et al.203 who 

observed complex changes to Nyquist representations of PEDOT nanotube-coated electrode sites 

which were not evident in uncoated controls, and coincided with a sharp increase in 1 kHz 

impedance during the initial 2-week period post-implantation. This increase in 1 kHz impedance 

has since been observed by others studying the in vivo performance of PEDOT-coated 

electrodes204,206. We observed similar phenomena in our Nyquist plots, suggesting that these 

progressive changes to impedance behavior may be common to PEDOT-coated electrodes in 

vivo. However, while the 1 kHz impedance of PEDOT-coated sites within Abidian et al.’s work 

remained significantly lower than uncoated sites over the duration of the experiment, the average 

impedance of coated electrodes in our work increased to the point where it became statistically 

indistinguishable from that of uncoated electrodes within five days of implantation. This is 

possibly due to the contrast in initial impedances, as Abidian et al. observed a 90% reduction 

between day 0 PEDOT-coated and uncoated site impedances, compared to the 40% reduction 

seen in our own. 

 
3.4.4   Neurophysiological Recording 

 
For this study we elected to use the visual cortex model due to the simplicity of stimulation as 

well as the surgical accessibility of the cortical region, which was attractive due to the large 

profile of the FMA implant. The visual cortex lacks the curvature and dense surface 

vascularization of barrel cortex, and the comparative lack of columnar structures in rat V1226 
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should conceptually lead to more uniform and homogenous neural activity across all array sites 

with proper stimulation. The Long Evans rat was selected as our model strain due to their 

excellent visual acuity227.  

Both spontaneous and evoked neural activity was recorded before and after daily release 

stimulation and impedance measurement. A variety of different visual stimulation programs were 

applied to the subject each session, though for the purposes of this study all measures were 

averaged together across spontaneous and evoked blocks. In order to provide an assessment of 

raw recording performance, metrics of signal-to-noise ratio, noise amplitude, and LFP amplitude 

were quantified. In general, only sparse unit activity was observed across both coated and 

uncoated probes over the initial week of implantation, though both coated and uncoated probes 

exhibited well-defined units. Activity in both coated and uncoated probes increased substantially 

within recordings taken during the final days of implantation, with recording quality being 

essentially equivalent. As probe impedance was also observed to be equivalent between coated 

and uncoated probes at those time periods, this result was expected. The inconsistent probe 

performance during the initial week post-implantation as well as the subsequent increase in 

performance has been observed previously38 and is thought to correspond with the progression of 

acute inflammation and edema local to the implanted electrodes and the eventual stabilization of 

the interface tissue as it enters the chronic inflammatory stage. 

 
3.4.5   Histology 

 
Subjects were perfused for tissue histology at day 11 post implantation. This implantation 

duration was selected to allow for the observation of the transition of the interfacial inflammation 

as it progressed from the acute to the chronic state. While a longer experimental duration would 
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have been preferred for the assessment of recording performance, we decided that the 11 day 

time point would provide a compromise between recording assessment and the potential to 

observe the effects of released dexamethasone within the tissue, which we expected to be most 

pronounced during the initial acute inflammatory response. Systemic221 and local127 

dexamethasone introduction to chronically implanted probes has been observed to elicit a subtle 

effect on observed tissue inflammation, with effects diminishing for most markers after the 

administration of dexamethasone is ceased. Both studies reported significantly reduced astrocytic 

activation following dexamethasone administration, quantified using the marker GFAP. 

However, microglial response was observed to be less consistent, with systemic dexamethasone 

administration yielding either no effect or enhanced microglial activation, and local 

administration yielding a decrease in microglial activation that did not persist to a more chronic 

time point. As the quantity of introduced dexamethasone from the stimulated release of our 

coating was expected to be comparable to that introduced through a slow-release coating, it was 

thought that evidence of release may only be apparent within the initial acute time period. 

However, our histology revealed no significant difference between either astroglial or microglial 

response in the vicinity of the coated and uncoated electrode tips, suggesting that either the 

actual release quantity was substantially lower than that estimated from macroelectrode release, 

that the dexamethasone yield of the film was expended at a time point too early to produce a 

visible effect at day 11, or that the effect of the released drug on local tissue response was too 

subtle to be quantified using our methods. The similarity of the observed tissue response around 

coated and uncoated electrodes also suggests that the release stimulation method did not generate 

tissue damage, considering that the coated electrodes injected over three times the amount of 

charge as uncoated electrodes daily throughout the experiment. It is thus assumed that the 
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additional charge delivered through the coated electrodes was transduced via safe mechanisms 

such as coating reduction and dopant release. It should be noted that this conclusion is drawn 

from a limited sample size, as the tissue from only one animal was available for quantification 

due to extensive tissue pullout in the second animal. Also limiting our histology was the fact that 

only a few sections were available for examination from each probe due to the very small size of 

the coated microwire tips, each being approximately 30 µm long. 

 
3.4.6   Potential Applications 

 
The observations collected here suggest that variations to this type of drug-release coating could 

provide the platform for the development of a variety of release systems incorporating a large 

assortment of bioactive agents. The coatings are simple to synthesize and can be 

electrochemically applied to most commercial bioelectrode designs for recording or stimulation, 

including both cortical and peripheral electrodes as well as cardiac pacemakers. The technology 

offers the ability to release discrete amounts of drug at a very fine temporal resolution on 

command using a safe electrical stimulus, allowing for the release of anti-inflammatory and/or 

neuroprotective agents upon detection of a biochemical trigger within the local tissue, or the 

simultaneous release of neuromodulatory agents while recording neural activity in vivo. These 

capabilities could allow this technology to substantially inform future biopotential electrode 

design, as they provide a simple, inexpensive, minimal-profile tool for modulating the tissue 

environment to a precisely controllable degree. Such designs could be used to neurochemically 

probe discrete neural pathways in vivo, or to develop the next generation of minimally-invasive 

cortical interface, bringing the technology closer to widespread clinical use. 
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3.5   CONCLUSION 

 
We demonstrate that the dexamethasone and MWCNT-doped PEDOT coating is capable of 

release of drug in vivo, confirmed by way of the observation of coating reduction behavior 

during cyclic voltammetry. We further demonstrate that daily CV stimulation with parameters 

selected for drug release and applied to uncoated and PEDOT-coated intracortical electrodes do 

not generate substantial acute changes to 1 kHz impedance or local neural activity, and do not 

incite inflammatory tissue response at 11 days post-implantation atypical from that observed 

around similar unstimulated electrodes elsewhere207. Moreover, the acute impedance, recording 

performance, and degree of tissue reactivity between uncoated and coated probes was observed 

to be statistically indistinguishable despite the fact that release stimulus applied to coated 

electrodes injected approximately three to four times the quantity of charge injected by way of 

uncoated electrodes. However, quantities of drug released during the stimulation of PEDOT was 

observed to be substantially lower than that released from comparable polypyrrole coatings, even 

when the PEDOT effective surface area was enhanced using a MWCNT co-dopant. It is 

theorized that the low release is largely due to the more conservative stimulation protocol 

employed to limit potential tissue damage. We conclude that the 

PEDOT/MWCNT/dexamethasone coating remained morphologically stable for the duration of 

implantation and daily stimulation, as evidenced by a consistent level of charge storage capacity 

as well as a lack of observed physical damage in explant imaging. The release stimulation was 

determined to be safe on the basis of observed inflammatory tissue response as well as the lack 

of immediate changes to impedance and neural activity following stimulation. The coating was 

not observed to hinder neural recording, and performed comparably with uncoated electrodes. 
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4.0   CIRCUIT MODELING OF IN VIVO DEXAMETHASONE/MWCNT/PEDOT-COATED 

ELECTRODES 

 
 

4.1   INTRODUCTION 

 
Electrical impedance is a measure of the restriction to the passage of current within a circuit 

upon the application of a voltage, and is analogous to electrical resistance applied to an 

alternating current. Unlike direct current resistance, impedance is represented by both a 

magnitude as well as a phase angle, representing the phase shift of capacitive or inductive 

elements within the circuit that are reactive to changing frequency. Electrical impedance 

spectroscopy (EIS) is a technique which allows for the measurement of changes to impedance 

magnitude and phase across a range of frequencies, and can be used to evaluate the electrical 

characteristics of an electrode/electrolyte interface. Within a properly designed electrochemical 

cell it is possible to isolate the impedance characteristics of a working interface from the rest of 

the measurement circuit, allowing for the detailed analysis of specific components within the 

interface such as electrode and coating capacitances, charge transfer resistances, diffusion 

characteristics, and others228. The frequency range employed is dependent on the interface 

features of interest (Fig. 4.1), with typical ranges being between 1 Hz and 100 kHz. For each 

measurement, a sinusoidal voltage or current is applied at a select frequency with magnitude 

small enough that a linear current-voltage response is maintained68. Potentiostatic EIS is 

typically preferred as it allows for the fine control of the current flowing through the circuit 
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during measurement21. EIS has been found to be quite useful in assessing the electrochemical 

properties of microelectrodes, and may be safely applied in vivo due to the small voltage 

excursion magnitudes68. 

 

 

Figure 4.1:  Dominant effects on bioelectrode impedance by frequency range (From Karp et al,229 ©2007 
IEEE. Reprinted with permission). 

 
  

EIS has been applied to a broad range of biological tissues230 and has been used to 

characterize neural recording electrode properties for over forty years69. In particular, impedance 

measurement has been used to study and quantify tissue response around chronically implanted 

electrodes, initially in the loins of cats231 and later within the cortices of rats15,21,38,41,232,233. 
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Williams et al. demonstrated that implanted electrode impedance is somewhat correlated with 

inflammatory reaction intensity41, and Prasad et al. employed chronic impedance data to develop 

a predictive model for electrode failure likelihood21. However, the particular cellular and 

extracellular elements that contribute to these impedance changes are thought to be multifaceted 

and complex76,234. 

 Early work concentrated on the increased tortuosity λ of astrogliotic scar, defined as 

𝜆 ≡ (𝐷 𝐷∗⁄ )1 2⁄  where D is the diffusion coefficient of water and D* is the diffusion coefficient of 

the barrier material, as determined by the diffusion of tetramethylammonium through cortical 

stab scar tissue65,93. Subsequent studies attempted to isolate the impedance contributions of 

various elements of the inflammatory tissue response, cellular and proteinaceous, both in 

vitro183,229,235,236 and in vivo76,234. A principal tool of many of these studies is the equivalent 

circuit model, or a mathematical representation of the electrode/environment interface as a 

circuit composed of various elements selected to approximate the behavior of the known 

components of the interface (Fig. 4.2). Such elements may include capacitors to represent 

double-layer interfaces and resistors to represent charge-transfer resistances or bulk electrolyte 

conductivity. 

 A large assortment of equivalent circuit models have been developed with varying 

degrees of sophistication, intended to represent electrode interfaces of complexity ranging from 

simple bare metal electrodes in saline, to coated electrodes surrounded by reactive tissue in vivo 

(A review by L. A. Geddes discusses the historical development of equivalent circuits as far back 

as the late 1800s237). A sampling of different interfacial equivalent circuits employed by 

microelectrode implantation and coating studies is shown in figure 4.3. Circuits are typically 

selected to balance fit quality against parameter ambiguity, as simple circuits may not be able to 
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fit complex spectra effectively, while overly sophisticated circuits may not fit individual 

elements with confidence due to overlap. Another important consideration during model 

selection is the frequency range available for fitting, as many interfacial impedance mechanisms 

will only dominate within specific domains. 

 

 

Figure 4.2:  An example equivalent circuit, the “lumped element” model. Note representations of 
electrode surface, glial membrane, and extracellular space. Am is a scaling factor for glial density. CPE is a 
constant phase element. (From Johnson et al,232 ©2005 IEEE. Reprinted with permission). 
 

 

Figure 4.2 and many models within figure 4.3 incorporate an element known as the 

constant phase element (CPE)238,239. The CPE is a mathematical entity defined as: 

𝑍𝐶𝑃𝐸 =
1

(𝑗𝜔)𝛼𝑄
 (4.1) 

where ω is angular frequency in rad/s, α is a dimensionless CPE exponential term from 0 to 1, 

and Q is the CPE coefficient with units sα/Ωcm2. The CPE was developed to model data with 

behavior suggesting a non-ideal capacitor, with α representing the deviation of phase angle (with 

α = 1 representing a phase angle of 90° and thus ideal capacitive behavior, and α = 0.5 
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representing phase angle 45° and thus 50% resistive character. As many real systems exhibit 

peak phase angles well below 90°, the CPE is able to fit this data much more effectively than an 

ideal capacitor240. While the physical and electrochemical factors that cause this non-idea 

behavior are not well understood, evidence suggests them to be a combination of surface 

roughness and inhomogeneity, porosity, and non-uniform current distribution over the electrode 

surface, as reviewed by Jorcin et al. in 2006240. 

The simplest circuit representation of the interface between a metal electrode and 

electrolyte is that of a capacitor in series with a resistor.  This capacitor is typically known as the 

double layer capacitance, as discussed in chapter 1.2, and is a consequence of charge buildup 

within the electrolyte local to the electrode surface. This simple series circuit model is generally 

only appropriate for representing a theoretical “perfectly blocking” interface, and offers no 

leakage current route bypassing the capacitor. As no faradaic current mechanism is included, the 

model will act as an open circuit in DC conditions. Substituting a CPE for the capacitor within 

this model (Fig. 4.3a) provides more flexibility, and may be applied to systems demonstrating 

linear and constant phase behavior, such as blocking metal electrode systems in electrolyte at 

intermediate (100 Hz to 10 kHz) frequency ranges where diffusion limitations to ionic motion do 

not play a role241. This model was originally developed by Warburg in 1899237, who limited α to 

0.5 (Subsequently, a CPE with phase angle 45° is commonly known as a Warburg impedance 

element). In 1932, Fricke adapted this model by recognizing that α can be observed to vary 

substantially from 0.5 depending on the metal employed237. 

Placing a resistor in parallel with the CPE of the Fricke model provides a leakage current 

pathway bypassing the double-layer capacitance (Fig. 4.3b), and represents the resistance to 

charge transfer across the interface in DC conditions. This resistance is a summation of three 
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different mechanisms (Fig. 4.3c) as discussed by Dymond in 1976242, where RT is the resistance 

to faradaic charge transfer, ZD is the impedance to ionic diffusion at the interface (which can play 

a role in faradaic reaction mechanisms with rapid kinetics), and ZR is the reaction impedance, 

which represents the contribution of slow rate-limiting steps of the faradaic reaction. Note that 

ZD and ZR are frequency dependent. This parallel capacitance/resistance element is commonly 

known as a Randles element, and it serves as the conceptual foundation for many more 

sophisticated models237. 

Both the Fricke and Randles elements are commonly modified through the incorporation 

of a diffusion impedance element to account for mass transport (Fig. 4.3d and e, respectively). 

This is often represented by a Warburg element, though the Warburg element is occasionally 

modified to allow deviation from 45° constant phase behavior at certain frequency ranges, as 

discussed by Bobacka et al.243 and Gerwig et al.208. This diffusion impedance typically only 

dominates at very low frequencies where capacitive transduction is not available, and thus may 

be ignored at the more intermediate ranges (>1 Hz) typically employed in in vivo 

measurement244. 

Figure 4.3f demonstrates a more sophisticated model featuring two independent 

capacitive interfaces, represented by two Randles elements in serial (with one incorporating a 

diffusion impedance element). Models such as this are typically used in the case of encapsulating 

barriers surrounding an inner electrode, where current must cross one interface and then the 

other245. Models shown in figures 4.3g and h take a different approach and feature nested 

Randles elements, often used in evaluation of thin film coatings where current is not forced to 

traverse both capacitive boundaries, with charge instead building up on either the coating surface 

or the inner electrode surface following the traversal of a pore resistance (Rl or RPore within the  
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figures). Another alternative is the “lumped element” model shown in figure 4.2, which attempts 

to model the interface based on known electrophysiological parameters such as cell membrane 

capacitance, amplified using a scaling factor to represent cellular density41. Note that each model 

incorporates a serial resistive element, typically RS, which represents the bulk resistance of the 

electrolyte. Measurements have shown that bulk cortical tissue acts as a pure ohmic medium and 

does not exhibit frequency-filtering characteristics, allowing it to be modeled as a single 

resistor246. 

 

 

 

 

Figure 4.3: Example equivalent circuits used in microelectrode characterization.  a) Fricke model241.  b) 
Randles model241.  c) Randles model demonstrating faradaic impedance components. RT = charge 
transfer resistance, ZD = diffusion impedance, ZR = reaction impedance242.  d) Fricke model with diffusion 
impedance243.  e) Randles element with diffusion impedance208.  f) Double serial Randles model with 
diffusion impedance element on the inner interface245.  g) Nested Randles element for thin film 
coatings247.  h) Nested Randles element with diffusion impedance element within inner interface202. 
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 Impedance data shown in this chapter will be presented in Nyquist plots. Nyquist plots, 

also known as Cole-Cole plots, are used to exhibit data on a complex impedance plane, with the 

abscissa representing the real component of impedance, or the resistance, and the ordinate 

representing the imaginary component of impedance, or the reactance. Each point in the plot is 

representative of a single frequency of measured data, with the resistance and reactance at that 

point indicative of the degree the impedance modulus is dominated by the resistive or the 

capacitive elements of the interface. An example Nyquist plot is shown in figure 4.4, and 

demonstrates the anticipated plot shapes of various interfacial components, including tissue and 

electrode as well as a combined plot similar to what would be observed in typical in vivo 

measurement from 100 Hz to 10 kHz (high frequency points being at the lower left within the 

plot). Note the linear appearance of the electrode plot, indicating simple CPE behavior. Tissue 

response typically exhibits itself as a bump of increased reactance at high frequencies, 

representing a second capacitive interface with its own associated time constant41. 

This dissertation chapter describes the adaptation of an equivalent circuit model to better 

interpret the chronic in vivo impedance data collected from bare Pt/Ir and 

dexamethasone/MWCNT/PEDOT-coated electrodes in chapter 3 of this dissertation. A number 

of simple models were initially evaluated and found to result in poor fitting performance. 

Instead, we looked to an alternative model, henceforth referred to as the Bisquert model. The 

Bisquert model was first described by Bisquert et al. in 2000248 as an improvement over existing 

dual-channel transmission line interface models, and incorporated the means to evaluate 

microscopic dispersive processes across porous surfaces. The use of transmission line theory in 

place of discrete circuit elements allows the model to evaluate distributed properties across 

defined diffusion lengths. The model was initially employed to study TiO2 nanoporous film 
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electrodes249 and later thiophene-based conducting polymers248. It has since been adopted within 

several microelectrode studies, including the evaluation of impedance changes of implanted 

cochlear electrodes250, and the impedance properties of SWCNT-doped polypyrrole220 and 

MWCNT-doped PEDOT in vitro205. 

 

 

Figure 4.4:  Illustration of Nyquist plots of electrode and tissue behavior.  
 

 

 

4.2   METHODS 

 
4.2.1   Model Derivation 

 
An in-depth treatment of the derivation of the Bisquert model can be found in Bisquert et al. 

(2000)248, and is summarized here. As stated above, this model is a dual-channel transmission 

line model which simplifies the complex interfacial characteristics into a superposition of 

“conducting solid” and “electrolyte” continua. Through this simplification, the current flux 
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between the solid and solution phases are explored. Similar to the Randles model above, the two 

principle mechanisms which enable this flux coupling are electrochemical charge-transfer 

processes and conducting solid polarization due to interfacial charge buildup. However, due to 

the electrochemical complexity of the conducting polymer, it is theorized that a model 

incorporating spatially distributed processes will provide more realistic information than a model 

featuring a simple macroscopic non-distributed resistance such as the Randles circuit. A general 

expression of the impedance of a dual-channel transmission line is given by: 

𝑍 =
𝜒𝐿𝜒𝑆
𝜒𝐿 + 𝜒𝑆

 �𝐿 +
2𝜆

sinh�𝐿 𝜆� �
� + 𝜆

𝜒𝐿2 + 𝜒𝑆2

𝜒𝐿 + 𝜒𝑆
coth�𝐿 𝜆� � (4.2) 

where L is the layer thickness and 𝜆 =  [𝜁/(𝜒𝐿  + 𝜒𝑆)]. The elements χL and χS represent the 

impedance per unit length (Ω m-1) of the solid and liquid phases respectively, and are typically 

dominated by either conductivity or mass transport properties within the medium. The element ζ 

represents the impedance per unit length of the exchange of charge at the solid/liquid interface, 

and in effect is a summation of capacitive and faradaic mechanisms at that interface. 

 Bisquert et al.248 optimized this general transmission line model for conducting polymer 

coating applications through a number of key simplifications and assumptions. In theory, the 

general model may be adapted to a wide variety of interfacial conditions through modifications 

to the element ζ. For example, in the case of a perfectly polarizing interface between the solid 

and liquid phases, ζ would be represented as the impedance of an ideal capacitor, or: 

𝜁 =
1
𝑗𝐶𝜔

 (4.3) 

where C is interfacial capacitance and ω is angular frequency. In place of this, Bisquert modeled 

the interface as a non-ideal capacitor (represented as a CPE) and a charge transfer resistance: 
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𝜁 =
𝑟0

1 + 𝑟0𝑞0(𝑗𝜔)𝛽 (4.4) 

where r0 is the charge transfer resistance per unit length, q0 is the CPE capacitance coefficient, 

and β is the CPE exponential factor. This adaptation allows for the evaluation of a number of key 

charge exchange mechanisms248. 

 To greatly simplify the mathematics of the model, Bisquert et al.248 assumed the 

resistivity of the solid phase to be minimal compared to the contributions of the other interfacial 

components and set χS to be 0, essentially eliminating the first half of the general model. This 

assumption requires both that the conducting polymer remain in a highly conductive oxidized 

state, and that this conductivity be uniform throughout the thickness of the coating. While this 

assumption is justifiable in the case of conducting polymer coatings, it may not carry over to 

other types of conducting solids as effectively, such as glial scar tissue. In addition, Bisquert et 

al.248 simplified the expression of ionic transport resistance within the fluid phase to be uniform 

and ohmic, represented as χL = rL. For fitting purposes, L is set equal to 1. 

 With these assumptions and the new definition of ζ taken into account, the general 

expression (4.2) is transformed into a more specific expression of interfacial impedance, or: 

𝑍 =
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where ω is angular frequency, RL and R0 are the total liquid phase and charge transfer resistance 

values across the coating thickness (RL = rLL and R0 = r0/L), and ω0 and ωL are the characteristic 

frequencies of the charge transfer process and of the ionic diffusion through the layer, defined as: 
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where Q0 is the total CPE coefficient across the coating thickness (Q0 = q0L) with units F sβ-1. 

While (4.5) is a simplified expression intended purely to explore the charge exchange dynamics 

of the interface, most of the weaknesses of the model, including the simplification of faradaic 

processes and DC behavior at the metal interface as well as the assumption of fluid phase 

resistive uniformity, may be neglected at intermediate frequency ranges248. A diagram of the 

Bisquert model and representative complex plots are shown in figure 4.5. 

 

 

Figure 4.5:  The Bisquert diffusion impedance model. a) Diagram of the transmission line representation.  
b) Example complex plots demonstrating model behavior in Nyquist space. R3 curve represents charge 
transfer resistance. (Plots from Bisquert et al.248 © Elsevier, Reprinted with permission). 
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4.2.2   Data Fitting 

 
The Bisquert model was selected to serve as a combination representation of the 

dex/MWCNT/PEDOT conducting polymer coating as well as the surrounding tissue response, as 

a component of a wider model including metal electrode and electrolyte parameters. This model 

(Model A) is shown in figure 4.6a, with ZD representing the Bisquert impedance, CCPE 

representing the metal surface CPE coefficient, α representing the exponential term of CCPE, RCT 

representing the charge transfer resistance of the metal interface, and RSER representing the serial 

resistance of the bulk electrolyte/brain. A second model, Model B (fig. 4.6b), is identical to 

Model A only lacking the Bisquert impedance, and is intended for uncoated electrodes in PBS or 

at early time points in vivo when a diffusion barrier is not observed within the data. 

 

 

Figure 4.6:  Equivalent circuit models used within this study. 
 

 

Each model was mathematically expressed within a complex non-linear least-squares 

fitting program (MEISP v3.0, Kumho, Seoul, South Korea). Impedance data from daily in vivo 

measurement (as described in chapter 3.2.8) was loaded into the program. Before fitting, the 
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thirteen lowest frequency impedance measurements from each impedance spectrum were 

removed to eliminate scatter due to low-frequency noise, which was found to be a consequence 

of the multisine measurement method. Also, impedance spectra that were found to contain 

enough broadband noise or measurement artifact to interfere with consistent fitting were 

removed. Fitting was typically performed in stages, with an initial fit performed across all data 

sets to observe general trends and identify outliers, and subsequent fits performed employing 

optimized seed values to increase consistency between points. 

 
4.2.3   In Vitro Array Impedance Fitting 

 
To compare and contrast against the in vivo data collected in the previous chapter, impedance 

measurement was performed from identical electrodes immersed continuously in a PBS bath and 

then fit to the model described in section 4.2.2 above. Ten parylene-C insulated Pt/Ir 

microelectrodes (Microprobes for Life Science) identical in nature and impedance range to those 

within the in vivo-implanted FMAs were coated with MWCNT and dexamethasone-doped 

PEDOT in an identical manner to that employed in section 3.2.3. Impedance was measured 

before and after the coating process using the method described in section 3.2.3. Following 

coating, electrodes were soaked in PBS overnight to wash off residual monomer, and then 

mounted within a sealed chamber which continuously immersed the electrode tips in an ambient 

temperature PBS bath while simultaneously allowing their connection to a potentiostat. Once 

daily, 5 of the 10 electrodes were subjected to the same impedance measurement-CV 

stimulation-impedance measurement protocol that was applied to the in vivo FMAs described in 

section 3.2.8. The other 5 electrodes only received daily impedance measurement with no CV 

stimulation. Measurement continued for 11 days, mimicking the in vivo experimental protocol. 
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Collected data were fit using model A described in 4.2.2 above, using the Bisquert diffusion 

impedance element. 

 

 
4.3   RESULTS AND DISCUSSION 

 
4.3.1   Complex Impedance Characteristics 

 
Representative Nyquist plots of recorded impedance data from both uncoated and 

dex/MWCNT/PEDOT-coated electrodes at various time points are shown in figure 4.7. Very 

different features are exhibited by each, in particular on days 7 and 10 when 1 kHz impedance 

was statistically identical. The contrast between uncoated and coated probes on day 1 post-

implantation is evident, with coated probes exhibiting reactance values over an order of 

magnitude lower than uncoated probes, suggesting a greatly increased CPE coefficient and thus 

greatly increased electrode surface area. Also evident in the day 1 Nyquist plot of the coated 

probe is a small high-frequency encapsulation element, likely due to the presence of the coating. 

Uncoated probes exhibit subtle changes to plot slope, curvature, and high-frequency diffusion 

behavior, suggesting that the impedance changes are the result of small changes to the electrode 

surface area, roughness, current uniformity, and ionic diffusion due to the surrounding tissue 

response. In contrast, coated probes exhibit the development of a large high-frequency 

encapsulation element that soon dominates impedance behavior over the majority of frequency 

points. Equivalent circuit analysis was applied to this data, in an attempt to tease out the specific 

physical and physiological correlates to best determine the root of these changes in electrical 

behavior. 
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Figure 4.7:  Nyquist plots of in vivo data. Representative uncoated (a-c) and coated (d-f) electrode 
impedance behavior. Black points are individual measured frequencies, with colored lines added for 
visibility. 
 
 

4.3.2   Equivalent Circuit Fitting 

 
Multiple trends were observed in the fitted model parameters, as shown in figure 4.8. Confidence 

in the modeled values is to a large part determined by the range of frequencies available for 

fitting, which in this study was limited to minimize the time required for measurement due to 

animal safety concerns. Parameters that are not well represented within the measured frequency 

range may vary substantially without changing the quality of the overall fit. The model 

parameter representing platinum charge transfer resistance, RCT, is an example, as it is most 

relevant to frequencies much lower than those measured here (f < 1 Hz). Parameters 

demonstrating the most dynamic and consistent behavior in coated electrodes were found to be 

CCPE and Q0, representing the core electrode and coating or tissue encapsulation surface 
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capacitance coefficients respectively. Their behavior compared to the same parameters modeled 

from uncoated electrode data is shown in figures 4.8a and b. The CPE phase angle parameter of 

CCPE (β) also demonstrated dynamic change in the coated electrodes but remained at consistent 

elevated values in uncoated electrodes, as shown in figure 4.8c, while the CPE parameter of Q0 

(α) maintained a high value of between 0.85 and 1 for the duration of the experiment for both 

coated and uncoated electrodes. Pore fluid transport resistance RL and conducting polymer 

charge transfer resistance R0 of coated electrodes demonstrated a small degree of variation over 

time that did not correlate with electrode impedance modulus. The solution resistance RSER was 

found to be inconsequentially small compared to other elements and did not contribute 

substantially to quality of fits when varied manually. 

 

 

Figure 4.8: Fitted model parameters. Average fitted values of modeling parameters CCPE (a), QL (b), and β 
(c). QL was not fitted for days 0-2 for uncoated probes due to use of model B. N varied between sessions 
due to measurement exclusion due to noise or artifact. Data presented as mean ± SD. *: p<0.01. 
 

 

Nyquist plots collected from dex/MWCNT/PEDOT electrodes in PBS before 

implantation reveal the characteristic bimodal frequency response typically observed in 

conducting-polymer-coated electrodes, with low frequency behavior dominated by metal 

interface parameters CCPE, RCT, and β, and high frequency behavior characterized by an 
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encapsulation element modeled using ZD. This is contrasted against Nyquist plots of uncoated 

electrodes in PBS, which in the measured frequency range (10 Hz to 32 kHz) demonstrate nearly 

linear constant-phase behavior characterized by CCPE, RCT, and β. The reduction in 1 kHz 

impedance between coated and uncoated probes in vitro most strongly correlates with CCPE, 

suggesting that the principal benefit of the coating is that of greatly increasing the effective 

surface area of the interfacial double-layer capacitance. However, the physical presence of the 

coating also seems to contribute a diffusion barrier to the interface which is most apparent in the 

high frequency regime. It should be noted that within the frequency range measured, the ability 

of fitting techniques to distinguish between RCT and β is limited, particularly in vivo where 

substantial low frequency noise is often encountered during impedance measurement. This is 

particularly true when RCT is very large, as within the arc of visible data points the data will 

appear essentially linear. 

The gradual increase of average in vivo 1 kHz impedance of uncoated electrodes is 

typically characterized by subtle changes in metal interface parameters RCT and β which 

dominate low-frequency behavior, as well as with a gradually emerging high-frequency diffusion 

barrier and encapsulation element modeled using the diffusion element ZD. These changes 

coincide with known physiological events thought to play a role in evolving electrode in vivo 

impedance, with RCT and β representing changes to electrode surface properties due to protein 

adsorption, which takes place immediately upon implantation, and ZD representing the growing 

boundary effect of local tissue changes including inflammation, microglial encapsulation, and 

edema13,40,97. Chronic in vivo studies using uncoated microelectrodes have shown that during 

chronic implant durations the 1 kHz impedance tends to peak at 9-15 days and then reduces to an 

intermediate magnitude where it typically remains at a fluctuating plateau for the experiment 
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duration. This is thought to correspond with the reduction of initial acute inflammation and tissue 

swelling, and the transformation of the interface to a stable chronic inflammatory state21,203. 

Extended chronic impedance behavior was not observable in our data, as we elected to end the 

experiment after 11 days of implantation in order to best observe the impact of the release 

stimulation on acute inflammation using tissue histology. 

In contrast to the behavior of uncoated electrodes, the dex/MWCNT/PEDOT electrodes 

typically demonstrated an initial low-impedance period followed several days later by a rapid 

increase consistent between all coated electrodes. During the initial 3-4 day period post-

implantation the coated electrodes exhibited 1 kHz impedances comparable with pre-

implantation values, with day 1 and 2 values being additionally depressed from values measured 

on day 0. Fitted model parameters CCPE and QL correlate with this depression when averaged, 

suggesting that the coating required a one day “maturation” period to achieve its full surface area 

capacitance benefit. This is possibly due to the time required for electrolyte to fully penetrate the 

pores of the coating, or for the fluid and tissue around the probes to stabilize post-implantation. 

Between day 3 and day 5 post-implantation, the average 1 kHz impedance of coated probes 

increased substantially to the point of equivalence with that of uncoated probes. Nyquist plots 

reveal that this increase is distinctive from the increase observed in uncoated probes, and appears 

principally due to large decreases in parameters CCPE and QL which allowed the encapsulation 

element ZD to dominate greater and greater portions of the measured frequency range. These 

modeling results suggest that beginning at day 3-5, the surface area enhancing benefit of the 

coating was sharply reduced and that a barrier composed of some combination of the coating and 

inflammatory tissue elements began to dominate electrode impedance behavior by way of 

reducing the exposed surface area and thus the capacitance of the conducting polymer. This 
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hypothesis is supported by explant SEM imaging which revealed the presence of a dense 

membranous substance enveloping and interpenetrating the coating pores of all coated 

electrodes. Due to explant preparation for imaging, this substance was compromised before 

identification could be performed, but it is speculated to be a combination of fibroblasts, dense 

ECM, and glia. Despite this chronic impedance behavior, the recording performance of the 

coated electrodes did not appear to be detrimentally affected and histology did not reveal an 

atypical degree of tissue inflammation, suggesting that the encapsulation element is limited to the 

area immediately surrounding and within the coating. Another possible mechanism behind the 

observed behavior is the possible partial delamination of the coating from the electrode metal, 

which would detract from the coating surface area benefit to the electrode while generating a 

large ionic barrier in the form of the detached coating. 

It should be noted that we employed the transmission-line linear diffusion element ZD to 

model both the encapsulation component of the conducting polymer coating as well as the ionic 

diffusion barrier of tissue inflammatory response. ZD has been used to model each of these 

elements separately in other studies205,220,250. We speculate that in most circumstances it is 

unlikely that the impedance contribution of each can be confidently differentiated using 

measurement and circuit modeling alone, particularly if both coating and tissue encapsulation 

exhibit similar time constants. 

 
4.3.3   In Vitro Electrode Impedance Fitting 

 
To better understand the impedance behavior observed in vivo, identically coated electrodes were 

situated within a sealed chamber and chronically immersed in PBS while being subjected to the 

same stimulation protocol applied to the implanted FMAs. This setup serves to remove the 
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contribution of inflammatory tissue response and isolate the impact of release stimulation on the 

impedance characteristics of the coating. Half of the electrodes were subjected to the daily 

impedance measurement-CV stimulation-impedance measurement applied to the in vivo arrays, 

while half of the electrodes were only subjected to daily impedance measurement without 

stimulation. Average measured 1 kHz impedances for each group are shown in figure 4.9a, 

which bears a striking resemblance to the chronic behavior observed from coated electrodes in 

vivo in figure 3.2b. Upon closer examination of the data, the dynamic impedance changes were 

mostly due to the contribution of three of the five stimulated electrodes in particular, while the 

remaining two exhibited very consistent impedances over the duration of the experiment. To 

better evaluate the difference between these consistent (“good”) and inconsistent (“poor”)-

performing stimulated electrodes, for the remainder of the evaluation all electrodes were grouped 

by performance: Non-stimulated (N=5), Stimulated “Good” (N=2), and Stimulated “Poor” 

(N=3). The average 1 kHz impedances for each of these three groups are shown in figure 4.9b. 

 

 

Figure 4.9: Electrode impedances during in vitro measurement. a) Average values of all non-stimulated 
and stimulated electrodes. b) Average values with stimulated electrodes split into two groups: 
consistent “good” and inconsistent “poor” impedance performance. Data presented as mean ± SD. 
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 Figure 4.9a and b reveal that a number of the stimulated coated electrodes exhibit a trend 

of increasing 1 kHz impedance after four days of stimulation, while all of the non-stimulated and 

the remaining stimulated electrodes exhibited very consistent impedance values over the entire 

course of the experiment. By day 11, average 1 kHz impedance of the “poorly performing” 

electrodes approaches the average impedance value of the electrodes before coating (475±162 

kΩ), suggesting that the electrochemical benefits of the coating were being steadily extinguished. 

It should be noted that impedance data from day 8 for the stimulated electrodes were lost due to 

potentiostat technicalities. 

 While the chronic 1 kHz impedance performance of the stimulated electrodes in PBS 

trended in a manner similar to the performance of those implanted in vivo, a more in-depth 

evaluation revealed that the mechanisms behind these performance changes may possess 

important differences. Figure 4.10 presents a number of representative Nyquist plots from non-

stimulated and “poorly” performing stimulated electrodes at different days of PBS immersion. 

These plots may be compared against those in figure 4.7 above. In particular, figures 4.7f and 

4.10f, which represent points of elevated impedance of coated, daily-stimulated electrodes in 

vivo and in PBS in vitro respectively reveal very different patterns of frequency response. While 

the in vivo coated stimulated interface is characterized by a high-frequency encapsulation 

element that increases in magnitude as evident in figures 4.7d-f, the interface in PBS is 

characterized by a diminishment of the high frequency encapsulation element and a gradual 

straightening and lengthening of the plotted response curve. This behavior suggests that while 

the impedance increase of the coated stimulated electrodes in vivo is driven by the development 

of some type of resistive encapsulation around the electrode, the impedance increase in PBS is 

instead a consequence of the gradual loss of electrochemical benefits of the coating as the probe 

109 
 



approaches the performance of an uncoated electrode. It is quite possible that this coating loss is 

also occurring in vivo but is being masked from observation by the encapsulation element having 

a dominating influence on electrode frequency response. 

 

 

Figure 4.10: Nyquist plots of in vitro data. a-c) Plots collected from a single coated, non-stimulated 
electrode at three representative days. d-f) Plots collected from a single “poorly performing” coated, 
daily stimulated electrode on the same days. 
 
 

 To better evaluate the interfacial characteristics of the electrodes at different time points 

in vitro, each set of data was examined using equivalent circuit analysis. Data were fit to the 

same model used for in vivo data fitting, model A (Fig. 4.6a). Average values for key fitted 

parameters are shown in figure 4.11, including CCPE (the capacity coefficient of the metal 

interface), and α (the CPE parameter of CCPE, which represents the “idealness” of the capacitor). 

For the purposes of this fitting procedure, the metal interface charge transfer resistance RCT was 
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assumed to be infinite, while the encapsulation element parameters Q1, β, R0, and R1 were not 

considered as the encapsulation element was not observed to exist within data recorded from 

“poorly performing” stimulated electrodes beyond the first few days of stimulation. When 

evaluating fitted parameters, one of the electrodes from the non-stimulated group was removed 

from consideration as it exhibited behavior which deviated from the other four by over an order 

of magnitude. This electrode also exhibited 1 kHz impedance modulus over an order of 

magnitude under the average of the others, possibly indicating an insulation failure. 

 

 

Figure 4.11: Model parameters from fitted in vitro data. a) CCPE, The capacity coefficient of the metal 
interface. b) β, the CPE parameter of CCPE. Data presented as mean ± SD. 
 
 

 In addition to the rapid disappearance of the encapsulation element, fitted parameters of 

the “poorly performing” stimulated electrodes reveal that their capacitance exhibited a steadily 

decreasing trend on average compared to that of the non-stimulated electrodes (though the 

variances were large, reflecting the range of initial impedances of the electrodes pre-coating). 

Additionally, the interfacial CPE parameter α of the “poorly performing” electrodes was seen to 

steadily decrease from a near-ideal value of ~0.98 down to a value of ~0.85, which approaches 

the average α of the bare pre-coated electrodes, 0.83±0.10. Together, the fitted parameters 
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suggest that the “poorly performing” stimulated electrodes suffered a gradual coating failure, 

possibly through a delamination mechanism which steadily removed a portion of the impedance 

benefit of the coating with each passing day of stimulation. As the phenomenon was only 

observed in three out of the five stimulated electrodes, it may be that the failed electrodes 

suffered initial coating defects that made them particularly vulnerable to the mechanical stress 

produced by coating actuation during the CV stimulation process. 

 
 

4.4   CONCLUSION 

 
We demonstrated the utility of the Bisquert equivalent circuit model in evaluating the core 

mechanisms behind the impedance changes exhibited by coated and uncoated electrodes in vitro 

and in vivo. The fitting results were consistent between probes and animals, and suggest the 

occurrence of a coating failure between 3 and 5 days post-implantation, due either to partial 

coating delamination from the metal surface, some loss in coating conductivity, or the 

development of a dense sheath of reactive tissue that acted to reduce the effective surface area of 

the coating. In vitro trials revealed that the coated electrodes may be vulnerable to some type of 

coating failure following daily chronic stimulation. However, the nature of this failure appears 

distinctive between in vivo and in vitro conditions. Further work will need to be performed to 

determine more of the true nature of this coating failure, and to evaluate possible solutions.  
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5.0   CONCLUSION 

 
 
 

5.1   SUMMARY OF RESULTS 

This dissertation describes the biological consequences of chronic cortical probe implantation, 

and the emerging technological approaches to countering these consequences with the goal of 

accelerating progress toward clinical translation. Each study takes a multi-disciplinary approach 

toward the better understanding of the device/tissue interface, and together combine 

biochemistry, electrochemistry, materials science, and neural engineering to develop new tools 

and insights into the problem of long term recording failure. These insights will contribute to the 

scientific understanding of probe interfacial stability, and inform future engineering approaches 

and designs. 

 In chapter 2, we discussed the development of a model for studying the impact and 

benefit of chondroitinase ABC treatment to intracortical recording electrodes to observe whether 

the beneficial outcomes observed within spinal injury studies could be translated to indwelling 

cortical probes. Microinjector design, implantation and injection techniques, and tissue 

preparation and histology methods were studied and optimized to achieve the most consistent 

performance and clear perspective of inflammatory response. Chondroitinase ABC 

microinjection was found to eliminate CSPG around the implant immediately after injection as 

well as significantly attenuate serum proteins, likely due to release of those serum proteins from 

ECM entrapment. However, a pilot study performed featuring the implantation of 
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electrode/cannula hybrid implants indicated no clear chronic impedance-changing effects of 

chondroitinase injection. In summary, the work demonstrated the feasibility of the method and 

the efficacy of microinjected chondroitinase in eliminating CSPG around an implanted probe. 

However, the study also revealed a number of challenges to technique translation, including the 

disturbance of local tissue due to the pressures of obdurator placement and removal, and the 

abundance of exuded serum protein which can bind to anti-mouse Ig secondary antibodies and 

complicate imaging. If these challenges are surmounted, this treatment method will serve as a 

powerful means to better understand the role of CSPGs in chronic neural degeneration and 

electrode performance loss, and could substantially inform future electrode development. 

 Chapter 3 discusses the development and evaluation of a novel conducting polymer-

based drug release coating composition in vitro and in vivo, and provides one of the first 

accounts of the in vivo release of a drug dopant from a conducting polymer coating. PEDOT was 

co-doped with dexamethasone and MWCNTs, which were added to increase the structural 

resilience, adhesion, and effective surface area of the coating to improve stability and drug 

release yield. A stimulus protocol was designed with parameters optimized to achieve a degree 

of release while minimizing tissue and electrode damage, and the protocol was tested in vitro to 

quantify release and observe coating stability. In general, coated and uncoated probes performed 

similarly with statistically identical recording performance and inflammatory response, with the 

inflammatory response was observed to be comparable to that evoked by similar probes over 

similar time periods in other studies. These observations confirmed the safety of the release 

stimulus, the biocompatibility of the coating, and the ability of the coated probes to record neural 

activity. With further optimization and chronic testing, this technology could provide a powerful 

tool for neurophysiological research and next-generation electrode design. 
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 In chapter 4, we discussed the use of equivalent circuit modeling to investigate the 

physical and physiological basis of the loss of impedance benefit exhibited by the coated probes. 

A variety of simple interfacial circuit models were adapted and applied to the data, yielding 

ambiguous results. In the end, we adopted a more sophisticated impedance model described by 

Bisquert et al.248 which demonstrated good fitting and consistent parameter dynamics. Fitting 

indicated that impedance behavior of uncoated probes was dominated by changes to electrode 

surface characteristics as well as the development of a tissue encapsulation element at later time 

points, while coated probes exhibited a large surface area benefit at early time points which 

subsequently diminished, at which point impedance was dominated by a large encapsulating 

barrier. The model thus suggests that this loss is due to some interference of coating function, 

either through the obstruction of the coating surface or the delamination of the coating from the 

metal surface, or some combination of both. From a broader perspective, the study demonstrated 

the application of sophisticated modeling techniques in extracting more profound insights from 

impedance data. Despite impedance measurement being a common element of performance 

evaluation, most studies do not venture beyond simple 1 kHz impedance reporting. However, as 

this study demonstrates, probes may exhibit identical 1 kHz impedance but substantially 

different phase features and interfacial characteristics. Circuit modeling provides a more 

comprehensive method of observing subtle changes to electrode performance. 
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5.2   FUTURE DIRECTIONS 

 
5.2.1   Chondroitinase ABC 

 
The use of chondroitinase ABC in the treatment of spinal injury has shown substantial 

promise125, both through direct application of the enzyme to scar tissue as well as the injection of 

enzyme within brain stem nuclei and spinal tissue upstream from the lesion. While the removal 

of CSPGs and their neuro-inhibitory influence from glial encapsulation around an implanted 

probe may promote neuron survival and sprouting, a number of challenges remain to be 

overcome for the method to become chronically feasible and practical. Physiologically, glial scar 

CSPGs likely serve as only a small component of the neuro-inhibitory environment of the tissue 

inflammatory response, which includes many other factors that would not be affected by the 

enzyme such as myelin inhibition, oxidative stress, probe micromotion, pro-inflammatory 

cytokines, and others. As the prevalence of each of these factors would depend largely on the 

design, implantation method, and inflammatory response of each individual probe, the 

effectiveness of chondroitinase therapy may not translate universally to all implants. This is 

particularly relevant in light of the observation that CSPG expression in scar tissue peaks 

relatively soon after implantation, and diminishes to baseline by the early stages of the chronic 

inflammatory response127,141, and well before the 8-16 week time point when chronic neuronal 

degeneration is generally observed to accelerate9. 

To study the prevalence of CSPG-mediated inhibitory signaling around probes at these 

later time periods, an important next step would be to evaluate the effects of CSPG digestion at 

those time points around actual implanted electrodes, which would allow a combination of 

impedance monitoring, neurophysiological recording, and histological examination. Such work 
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could be carried out using a combined electrode array/cannula hybrid, such as that pictured in 

figure 5.1. Effective chronic delivery of chondroitinase ABC is another challenge. Current 

integrated microfluidics systems do not feature the chronic reliability necessary for consistent 

results, due to crushing and clogging of pores. Large cannulae such as the type used in this work 

are more mechanically reliable but much more invasive, complicating implantation and long 

term tissue stability. The adoption of a lentiviral vector for chondroitinase production within 

target tissue could be an intriguing alternative approach251. 

 

 

Figure 5.1: Illustration of a proposed cannula/multielectrode array implant. 

 

5.2.2   MWCNT/PEDOT Drug Release Coatings 

 
The concept of the electrically-stimulated drug release coating is advantageous in that it allows 

for the release of agent at precisely controlled time points without requiring a bulky and 

unreliable fluidics system. The coatings are easily incorporated onto the recording surfaces of 

most conventional electrode varieties using simple electrochemistry. This on-demand drug 

release mechanism could potentially benefit many applications including closed-loop systems 

designed to release targeted drugs on detecting specific conditions or biomolecules, or the 
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monitoring of neural activity at a very fine temporal resolution after neuromodulatory drug 

release. While this study demonstrated the safety and short-term biocompatibility of a model 

release coating, substantial optimization may still be performed in terms of stimulus design, 

coating morphology and composition, and drug selection. Also, the tissue reactivity and 

neurotoxicity of the coating at much longer implant durations will need to be assessed. 

 The dynamic impedance changes observed in coated electrodes during this study and 

published reports of other similar coatings203,204,206 are theorized to be the result of either 

physiological or physical changes to the metal, coating, and tissue interfaces resulting in a large 

reduction of effective interface surface area. As discussed, these changes could be the result of 

combinations of several phenomena, such as probe encapsulation by a restrictive barrier of 

inflammatory tissue and membranous extracellular material, or physical changes to the coating 

such as swelling or detachment from the metal substrate. To better understand the root of these 

early in vivo impedance changes, in vitro experiments may be designed which isolate specific 

conditions, including electrolyte ionic and protein composition, coating composition and 

deposition method, release stimulus, and substrate metal preparation. While the impedance 

change observed in this study did not coincide with a degradation of the charge storage capacity 

of the electrodes nor a decrease in their recording performance compared to uncoated electrodes, 

at least within the implantation duration studied, further study should be performed to evaluate 

its root cause, as an improved understanding of the changes to conducting polymer coating 

impedance in vivo could lead to improved methodology and design in the future. 
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5.3   CONCLUDING REMARKS 

 
Despite the progress achieved in all aspects of neural prostheses over the past fifty years, 

widespread clinical and commercial translation has been limited beyond a handful of key 

devices. Particularly in the field of brain-computer interface, nearly every element has seen 

profound technical and scientific advancement, from improved neural decoding methods to 

increasingly sophisticated robotic devices and communication systems. Despite this progress, a 

key obstacle to clinical translation remains the chronic unreliability of the cortical prostheses that 

serve as the principal point of contact between tissue and hardware. Unless means are found to 

effectively and reliably expand the functional lifetime of these devices to decades instead of 

months and years, their clinical and commercial application will remain untenable. Equally 

important is that these solutions be practical, mass producible, and not subject to excessive 

regulatory hurdles. As brain-computer interface technology has the potential to drastically 

improve the lifestyle, independence, and occupational wellbeing of millions of disabled 

individuals worldwide, the need for working solutions to this problem remains very relevant. 

 The past two decades of electrode development and research have revealed much of the 

mechanisms behind chronic implant failure, and with this understanding has come an evolution 

in perspective. It is now understood that the tissue-electrode interface is mediated by a 

profoundly dynamic and multi-faceted interplay between many diverse elements, signaling 

pathways, inflammatory processes, and biological, chemical, and mechanical stressors that 

combine to dictate the survival of local neurons. In many ways the interface may be represented 

as a delicate balance of pro-inflammatory and anti-inflammatory factors, overseen by reactive 

and regulatory cellular players. In light of this complexity, it is unlikely that a single “magic 

bullet” approach to electrode development will yield the multiple-decade degree of reliability 
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necessary for widespread clinical translation. Eventual practical solutions will likely require a 

combination of multi-disciplinary scientific inquiry, advancement in fabrication techniques, 

materials development, and even regulatory reform. 
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