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 Duchenne muscular dystrophy (DMD) is a fatal disease characterized by progressive 

skeletal muscle degeneration. Inhibition of the transcription factor nuclear factor-κ B (NF-κB), 

and more specifically the p65 subunit, significantly improves the phenotype of mdx mice, a 

murine DMD model. However, the ubiquity of NF-κB stands as an obstacle to clinical 

translation. In this dissertation, we explore the roles of NF-κB/p65 in the regenerative capacity of 

muscle-derived stem cells (MDSCs) with the goal of identifying alternative approaches to DMD 

treatment. We found that both cell proliferation and myogenic potential were increased in 

MDSCs lacking one allele of p65 (p65
+/-

).  In wild type MDSCs, in vitro pharmacologic 

inhibition of the upstream activating kinase, IKKβ, increased myotube formation in a dose-

dependent manner. When transplanted into mdx hind limb muscle, p65
+/-

 MDSCs resulted in 

significantly larger engraftments. Furthermore, engraftments in cardiotoxin (CTX) injured 

muscle were associated with reduced local host necrosis and inflammation. Not only were p65
+/-

 

MDSCs found to be more resistant to oxidative stress, but we found that p65
 
depletion improved 

the anti-inflammatory capacity of MDSCs in vitro and in vivo via upregulation of hepatocyte 

growth factor (HGF). Moreover, accelerated regeneration in p65 haploinsufficient mdx mice 

(mdx;p65
+/-

) coincided with HGF upregulation. Intraperitoneal injection of a musculotropic 

adeno-associated virus carrying shRNA targeting HGF reversed the phenotypic improvements of 

mdx;p65
+/- 

mice, increasing both muscle inflammation and necrosis. These data implicate NF-
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κB/p65 in muscle stem cell proliferation, differentiation, survival, and growth factor gene 

expression, further underlining the danger of broadly targeting such an important pathway.  

Finally, this research has also identified HGF as a downstream effector of NF-κB/p65 inhibition 

in mdx mice. Thus, delivery of HGF or activation of its receptor, MET, may represent a new 

approach to reduce chronic inflammation and preserve muscle fiber integrity in DMD.  
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1.0  INTRODUCTION 

1.1 Duchenne Muscular Dystrophy 

Muscular dystrophy encompasses about 40 different genetic disorders characterized by 

ongoing skeletal muscle degeneration, functional decline, and wasting  (Bogdanovich, Perkins et 

al. 2004).  The most severe form, Duchenne muscular dystrophy (DMD) results from frameshift 

mutations in the dystrophin gene, whose protein product is a critical component of the 

membrane-associated dystrophin-glycoprotein complex  (Hoffman, Brown et al. 1987).  Located 

on the X chromosome, it is particularly prone to deletions and point mutations due to its large 

size (2.4Mb, ~1% of the X-chromosome). Dystrophin itself is a 427 kD protein with four basic 

structural domains: (a) an N-terminal domain, through which it binds actin, (b) a central rod 

domain (c) a C-terminal cysteine rich domain, (d) and a distal C-terminus. Together with 

dystroglycan, sarcoglycan, and syntrophin/dystrobrevin, dystrophin serves as the structural 

connection between the actin cytoskeleton and the extracellular matrix, allowing for the 

transmission of external forces.  Dystrophin deficiency results in the loss of membrane integrity 

and subsequently leads to degeneration (Pichavant, Aartsma-Rus et al. 2011). In the early years 

of life, only a mild pathology is observed, likely due to sufficient regeneration mediated by 

muscle stem cells (Webster and Blau 1990).  Eventually however, the stem cell pool becomes 

exhausted, resulting in the replacement of functional skeletal muscle with fibrosis and adipose 
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tissue. Excessive degeneration of striated muscle results in kyphosis and scoliosis of the spine, 

and by early adolescence loss of ambulation occurs in approximately 95 percent of patients, 

confining them to a wheelchair.  By the age of 20, about 90 percent of patients die due to 

respiratory or cardiovascular failure (Tiidus 2008).  

There is no FDA approved treatment for chronic muscle wasting diseases such as DMD.  

Rather, current clinical therapies focus on disease management to improve patient quality of life. 

Off label prescription of corticosteroids, such as prednisone and deflazacort, is the current gold 

standard for DMD (McNeil, Davis et al. 2010). The mechanism of action is not fully defined, 

however several possibilities have been proposed, including the suppression of inflammation and 

altered muscle anabolic metabolism (Rifai, Welle et al. 1995). Corticosteroid use has had a 

tremendous impact on patient quality of life, delaying wheelchair use by up to 5 years.  At the 

same time, use of corticosteroids for more than 2 years, the length of time necessary for clinical 

benefit, results in numerous side effects, including growth retardation, eye cataract development, 

weight gain, and skin fragility (Biggar, Harris et al. 2006). 

The most common animal model of DMD is the “X-linked muscular dystrophy,” or mdx, 

mouse. Due to a naturally occurring mutation in exon 23 of the dystrophin gene, mdx mice do 

not express dystrophin. Skeletal muscle degeneration begins to occur at approximately three 

weeks of age, resulting in necrosis and mononuclear cell infiltration. This degenerative phase is 

quickly followed up by robust skeletal muscle regeneration around 5-6 weeks. Although 

degeneration/regeneration cycles continue throughout the mdx lifespan, which is only slightly 

reduced compared to wild type mice, the severity of the dystrophic phenotype becomes mild 

around 12 weeks of age for incompletely understood reasons. Eventually, around 18 months, the 

regenerative potential of mdx limb skeletal muscle declines, resulting in fibrosis and atrophy 
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(Pastoret and Sebille 1995).  Although the slow development of dystrophic pathology in the mdx 

mouse may be disadvantageous in that it does not accurately reproduce the natural history of 

DMD, the dystrophic phenotype demonstrated during 3-12 weeks of age indeed mimics early 

DMD pathophysiology (Figure 1).  Interestingly, the severity of the dystrophic phenotype 

appears to vary by muscle group. The diaphragm, for example, does demonstrate a progressive 

decline in regeneration accompanied with extensive endomysial fibrosis and adipose deposition 

(Stedman, Sweeney et al. 1991; Muller, Vayssiere et al. 2001). Mdx mice begin to exhibit  

 

 

Figure 1. Comparison of DMD and mdx limb histopathology. 

   

 

 

 

Following the onset of initial degeneration, both DMD patients and mdx mice undergo 

repeated degeneration/regeneration cycles. Eventually this results in progressive decline of 

regeneration and increased fibrotic and fatty tissue deposition. (DMD and mdx images 

adapted from http://neuromuscular.wustl.edu/pathol/dmdpath.htm and (Deconinck, Rafael et 

al. 1997)). 
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respiratory decline at approximately 3 months of age. By 14 weeks of age, the specific force 

generated by mdx diaphragm declines by 50 percent compared to wild type and exhibits 

increased susceptibility to fatigue. In human patients, respiratory failure is one of the major 

causes of death.  Although not fully elucidated, evidence suggests that diaphragm dysfunction 

may contribute to the reduced lifespan of mdx mice (Chamberlain, Metzger et al. 2007; Huang, 

Cheng et al. 2011; Partridge 2013).  

 The mdx mouse is the common DMD mouse model, but in order to more closely 

represent the clinical progression of DMD, additional mouse models have been developed. 

During fetal development, the dystrophin-related protein utrophin localizes to the sarcolemma. 

Post-natally, utrophin is replaced by dystrophin except at myotendinous and neuromuscular 

junctions.  In adult mdx mice, however, utrophin is again expressed at the muscle membrane, 

suggest it may play a compensatory role in mice(Matsumura, Ervasti et al. 1992).  Thus, 

Deconinck and colleagues (1997) developed the utrophin/dystrophin double-knock out mouse 

(mdx;utrophin
-/-

 ; dKO).  Compared to mdx mice, the dKO mouse demonstrates degeneration of 

the diaphragm by 6 days of age, and by 6 weeks shows overt pathologies including decreased 

mobility, respiratory decline, kyphosis, and muscle weakness (Deconinck, Rafael et al. 1997). 

dKO mice have been particularly useful for studying DMD-related cardiomyopathy, which 

occurs in humans but not mdx mice (Chun, O'Brien et al. 2012). Additionally, mice heterozygous 

for the utrophin gene (mdx;utrn
+/-

) have also been used for research. They have a longer lifespan 

than dKO mice, but still exhibit signicantly more inflammation and fibrosis than mdx mice(Zhou, 

Rafael-Fortney et al. 2008).  
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1.2 Skeletal Muscle Regeneration 

1.2.1 Degeneration and Inflammation 

The skeletal muscle repair process may be divided into four phases:  degeneration, 

inflammation, regeneration, and remodeling/fibrosis. Although the early events of muscle injury 

vary, typically the injury is initiated by damage to cytoskeletal elements, leading to loss of 

membrane integrity. Once the membrane has been compromised, calcium (Ca
2+

) homeostasis is 

disrupted, leading to its intracellular accumulation. Subsequently, Ca
2+

 influx results in protease 

activation (ie calpain) and necrosis of the myofiber (Tiidus 2008). This is rapidly followed by the 

migration of mononuclear cells, first neutrophils and then macrophages, which invade the tissue 

to clear necrotic debris and activate muscle stem cells. Neutrophils accumulate rapidly, often 

within an hour of injury. Although the exact identity of the chemoattractant molecules 

responsible for neutrophil accumulation during the inflammatory stage of regeneration is 

unknown, both muscle and endothelial cells are capable of producing inflammatory cytokines 

such as interleukin-1β (IL-1β),  IL-6, monocyte chemoattractant protein 1 (MCP-1), and tumor 

necrosis factor α (TNFα) (Nagaraju 2001). Acting as vasodilators, these factors stimulate edema 

and monocyte accumulation.  

Macrophages have the primary roles of phagocytosis of cellular debris and the release of 

stimulatory cytokines (Chazaud, Sonnet et al. 2003). This role appears to be critical, as impaired 

macrophage migration leads to impaired regeneration  (Bryer, Fantuzzi et al. 2008).  Evidence 

suggests that two distinct macrophage phenotypes are involved with skeletal muscle repair.  

Macrophages with an inflammatory, or “M1” phenotype (CD68+Ly6C+CD163-CD206-), enter 

muscle to promote inflammation, clear debris, and activate muscle stem cells (Arnold, Henry et 
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al. 2007) .  These cells then take on an anti-inflammatory (CD68-Ly6C-CD163+CD206+), or 

“M2”, phenotype.  In vitro, M1 macrophages stimulate myoblast proliferation, whereas M2 

macrophages stimulate myoblast differentiation (Chazaud, Sonnet et al. 2003; Sonnet, Lafuste et 

al. 2006).   

The role of inflammation in muscle repair is not always straightforward. In the case of 

chronic diseases, such as DMD, inflammation can impede, rather than promote, tissue repair.  

For example, knockout of inducible nitric oxide synthase (iNOS) reduces myofiber necrosis in 

mdx mice. Furthermore, it has been reported that pathological muscle necrosis can be improved 

up to 80% following macrophage depletion (Villalta, Nguyen et al. 2009; Villalta, Deng et al. 

2011). There is also a significant improvement in dystrophic pathology in perforin and 

dystrophin double knockout mice, suggesting cytotoxic T-lymphocytes may also be involved 

(Spencer, Walsh et al. 1997). The role of inflammation in DMD will be discussed further in 

Section 1.4.2.       

1.2.2 Satellite Cells and Regeneration 

Skeletal muscle has a robust capacity for repair. Post-natal muscle regeneration is 

mediated by satellite cells (SC), a population of “professional” muscle stem cells. Other cell 

populations with myogenic potential have been isolated from skeletal muscle, such as side 

population cells, pericytes, and myogenic endothelial cells (Asakura, Seale et al. 2002; Zheng, 

Cao et al. 2007; Crisan, Yap et al. 2008); however, the importance of these for muscle 

homeostasis has yet to be fully elucidated. Normally quiescent in a niche located within the basal 

lamina but outside the muscle membrane, or sarcolemma, activated SC break quiescence and 

enter the cell cycle following injury.  SC can be identified in muscle cross-sections by their 
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expression of  paired box transcription factor 7 (Pax7), which is critical for the maintenance of 

the SC population (Araujo, Bonuccelli et al. 2013). In the mouse, there is no single membrane 

marker to identify SCs, so a combination of two or more can be used for isolation by 

fluorescence activated cell sorting (FACS), including CD34, integrin- α7, and m-cadherin, 

among others (Sacco, Doyonnas et al. 2008). In humans, there is not a reliable set of markers to 

isolate SCs, although in practice, CD56 is used to isolate muscle progenitor cells (Peault, 

Rudnicki et al. 2007). 

As shown in Figure 2, proliferating SC form at least two distinct populations (Conboy 

and Rando 2002). So-called “reserve” SC continue to express Pax7 and eventually return to 

quiescence, while the remaining SC lose expression of Pax7 and begin to express members of the 

basic helix-loop-helix (bHLH) transcription factor family, including MyoD, which regulate 

muscle lineage progression (Zammit, Golding et al. 2004).  These Pax7
-
MyoD

+
 muscle 

progenitor cells, or myoblasts, eventually fuse and form new muscle fibers, a process termed 

myogenesis.  This stage can be identified histologically by central nucleation of muscle fibers in 

tissue sections. As the fibers mature, the nuclei move to the periphery and the regeneration 

process is completed (Peault, Rudnicki et al. 2007).  
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Figure 2. Skeletal muscle is regenerated through the activation of muscle stem cells 

 

 

1.2.3 Muscle-derived Stem Cells 

Although the main source of progenitors for muscle regeneration is from the SC pool, 

there are several different populations of progenitor cells with myogenic potential in skeletal 

muscle.  These include, but are not limited to, side population cells, mesoangioblasts, muscle-

derived stem cells, PW1+ interstitial cells, and myogenic endothelial (myoendothelial) cells 

(Naldini, Weidner et al. 1991; Peault, Rudnicki et al. 2007).    The developmental origin of these 

myogenic populations remains incompletely defined, and thus their relationship to the satellite 

cell compartment is unknown.  

Disruption of skeletal muscle homeostasis by injury results in satellite cell activation.  During 

population expansion, muscle stem cells undergo asymmetric division to produce myoblasts, 

committed muscle precursors, while a portion retains “stemness” in order to repopulate the 

niche. Following a proliferative phase, myoblasts eventually fuse to produce new muscle 

fibers. 
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Pre-plating, a method used to isolate myogenic populations from skeletal muscle, 

separates muscle progenitors based on their adhesion properties to certain substrates, particularly 

collagen 1 and gelatin (Rando and Blau 1994). The most slowly-adhering fraction of cells 

(SACs), obtained by successive re-plating of non-adherent cells, was found to contain a 

population of stem and progenitor cells. SACs have been identified in mouse, rat, turkey, and 

human skeletal muscle, and have been given many different names, including muscle-derived 

stem cells (MDSC), primary muscle progenitor cells, and skeletal muscle CD34
+
/CD45

-
 cells 

(Gharaibeh, Lu et al. 2008). For our purposes, we will refer to murine SACs as MDSCs. Unlike 

satellite cells, MDSCs bear endothelial (CD31
+
CD144

+
), myogenic (CD34

+
) and mesenchymal 

progenitor (Sca-1
+
) cell surface markers. 

 
Compared to myoblasts, MDSCs demonstrate a 

remarkable intramuscular engraftment capacity in skeletal and cardiac muscle. (Jankowski, 

Haluszczak et al. 2001; Qu-Petersen, Deasy et al. 2002). In addition to skeletal muscle, donor 

murine MDSCs have been found to aid in the repair of recipient bone and cartilage defects, and 

improve heart function in murine models of acute myocardial infarction (Rose, Peng et al. 2003; 

Deasy, Li et al. 2004; Payne, Oshima et al. 2007). 

Numerous investigations suggest that the increased regenerative potential of MDSCs 

relative to myoblasts is due, at least in part, to (1) a higher resistance to oxidative stress and by 

(2) the release of trophic factors, such as vascular endothelial growth factor (VEGF). Stress 

resistance is thought to be mediated by elevated levels of the endogenous antioxidants 

glutathione, aldehyde dehydrogenase, and superoxide dismutase (Urish, Vella et al. 2009; 

Drowley, Okada et al. 2010; Vella, Thompson et al. 2011).  The identification of stress resistance 

as an important stem cell characteristic has also demonstrated by more recent studies in which 

muscle stem and progenitor cells were isolated based on their ability to survive long-term typsin 
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incubation induced stress(Shigemoto, Kuroda et al. 2013). Soluble factors, such as VEGF, have 

also been found to promote tissue repair (Payne, Oshima et al. 2007; Beckman, Chen et al. 

2013). In this respect, MDSCs show similarities to mesenchymal stem cells, for which the 

therapeutic efficacy of stem cell-derived soluble factors is well supported (Nauta and Fibbe 

2007; Caplan and Correa 2011). 

It has been hypothesized that MDSCs may represent an early progenitor of the SC lineage 

due to their capacity for long term self-renewal in vitro (a stem cell characteristic)  combined 

with an extensive myogenic differentiation potential (Deasy, Gharaibeh et al. 2005). Using a 

serial muscle injury model, a sub-population of SCs has been described to have the capacity of 

self-renewal; but these cells cannot undergo an extended period of culture in vitro, indicating 

their commitment to the muscle lineage  (Peault, Rudnicki et al. 2007; Sacco, Doyonnas et al. 

2008). Finally, in contrast to SCs, SACs, and prospectively MDSCs, can be isolated from Pax7 

deficient mice, suggesting a post-natal origin that is “upstream” of the myogenic lineage (Seale, 

Sabourin et al. 2000; Lu, Cummins et al. 2008) 

Slowly-adhering cells isolated from human skeletal muscle have also been found to 

display skeletal and cardiac muscle regeneration properties (Chirieleison, Feduska et al. 2011; 

Okada, Payne et al. 2011).  Furthermore, clinical trials of human SAC-based therapies are 

currently underway for the treatment of urinary incontinence and ischemic heart failure (Carr, 

Steele et al. 2008; Health 2013). Additionally, Rouger and colleagues recently reported that 

systemic delivery of allogeneic wild type canine SACs to dystrophic dogs significantly improves 

disease phenotype. Donor cells were found to not only contribute to muscle regeneration, but 

they replenished the satellite cell niche, resulting in long-term dystrophin expression (Rouger, 

Larcher et al. 2011). Thus, MDSCs are particularly promising for use in cell therapies.  
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1.3 Nuclear Factor κB Transcription Factors 

1.3.1 Classical NF-κB activation 

NF-κB is a ubiquitously expressed transcription factor with key roles in immunity, 

development, cancer, and more recently, cell differentiation (Hacker and Karin 2006). In the past 

several years, NF-κB has been receiving substantial attention for its prominent role in skeletal 

muscle disorders, and in particular, muscular dystrophy. Rather than referring to a single protein, 

the name “NF-κB” refers to a group of proteins that share the presence of an N-terminal Rel 

homology domain (RHD). The NF-κB family includes 5 members: p65/RelA, c-Rel, RelB, p50 

(processed from the precursor p105), and p52 (processed from the precursor p100). NF-κB 

proteins dimerize via their RHD and bind to specific sites in DNA, referred to as κB sites (Karin 

and Ben-Neriah 2000). Transcriptional activity of NF-κB is typically transient, and as such, is 

tightly regulated. Under normal conditions, NF-κB is sequestered in the cytoplasm by association 

with inhibitory κB (IκB) proteins, which mask the NF-κB nuclear localization sequence (NLS). 

IκBs form a group of proteins characterized by the presence of multiple ankyrin repeats, which 

mediate binding to NF-κB dimers (Li and Nabel 1997). The most well studied activation 

pathway, referred to as the classical or canonical pathway, is stimulated by inflammatory 

molecules such as TNFα and IL-1 and results in the nuclear translocation of a p65/p50 

heterodimer. As shown in Figure 3, classical NF-κB depends on the activity of the trimeric IκB 

kinase (IKK) complex, which phosphorylates two sites on IκB proteins, targeting them for 

polyubiquitination and degradation via the 26s proteasome.  The IKK complex includes 2 

catalytic subunits, IKK-α and -β, and one regulatory subunit, the NF-κB essential modulator, 

abbreviated NEMO (also known as IKKγ), which is absolutely required for classical activation. 
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Although both IKKα and -β contain an N-terminal catalytic domain, the classical pathway is 

highly dependent on the activity of IKKβ (Solt, Madge et al. 2009). 

There are numerous upstream activators of NF-κB, but two important protein families 

often associated with its activation are TNF receptor-associated factors (TRAFs) and receptor 

interacting proteins (RIPs).   These are especially important for activation in response to TNFα, 

TLR ligands, and IL-1 (Karin and Lin 2002).  Following receptor binding, intracellular adaptor 

proteins such as TNF receptor type 1-associated death domain protein (TRADD) and myeloid 

differentiation primary response gene 88 (MyD88) recruit TRAFs and RIPs which then interact 

with NEMO as a scaffold for IKK complex activation.  In this way, numerous pathways 

converge on NF-κB (Hacker and Karin 2006).  

1.3.2 Non-classical NF-κB activation 

In contrast to the classical pathway, a second activation pathway referred to as the 

alternative or non-canonical pathway, results in the nuclear translocation of  p52/RelB dimers 

and is independent of IKKβ and NEMO (Senftleben, Cao et al. 2001). As shown in Figure 3, in 

response to a small set of stimuli, including lymphotoxin-β (LTβ), CD40 ligand (CD40L), and B-

cell activating factor (BAFF), TRAF2/5 is recruited to docking sites on the intracellular portion 

of the receptor, leading to the activation of NF-κB inducing kinase (NIK) (Hauer, Puschner et al. 

2005).  In turn, NIK activates an IKKα dimer which then positively regulates the processing of 

p100 to p52. Often p100 is bound in the cytoplasm to RelB, such that once processed, a 

p52/RelB dimer can translocate to the nucleus and induce gene transcription. At first, alternative 

activation was thought to be mostly restricted to B cell survival and differentiation, but its role 
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Figure 3. Activation Pathway of NF-κB Transcription Factors 

 

 

 

has expanded to include thymic organogenesis, secondary lymphoid tissue development, and 

skeletal muscle energy homeostasis (Dejardin 2006). For example, during myoblast 

differentiation, IKKα activity and p52/RelB transcriptional activity increases, resulting in 

increased mitochondrial biogenesis. Interestingly, this may be one mechanism accounting for the 

shift from glycolytic metabolism in myoblasts to oxidative phosphorylation in mature myotubes. 

(Bakkar, Wang et al. 2008). The role for non-canonical signaling is still expanding, and future 

Activation of NF-κB may proceed via the classical pathway or an alternative pathway.  The classical requires 

IKKβ and IKKγ (NEMO) and results in p50/p65 DNA binding.  In contrast, the alternative pathway requires 

IKKα and results in p52/RelB DNA binding.  Image from (Bakkar and Guttridge 2010) 
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studies may identify novels role for this pathway in skeletal muscle development, regeneration 

disease, or aging.    

1.3.3 Atypical NF-κB activation 

 Antioxidants, such as N-acetyl-cysteine, have been reported to suppress NF-κB 

activation, suggesting this transcription factor is redox sensitive.  Indeed, NF-κB can be activated 

by oxidative stress.  Reactive oxygen species (ROS) do not appear to induce NF-κB activity by 

either the classical or non-classical pathway, but by a heterogeneous collection of mechanisms 

collectively termed “atypical”  (Gloire and Piette 2009). Antioxidant genes, including manganese 

superoxide dismutase and glutathione-s-transferase, are among NF-κB target genes; thus ROS-

induced NF-κB activation has generally been considered to be pro-survival. (Pantano, Reynaert 

et al. 2006).  

 The mechanism of this type of signaling remains poorly understood, but is thought to 

occur by both indirect (ie. effect on redox-sensitive kinases) and direct mechanisms.  For 

example, oxidation of “reactive cysteines” on either p50 or IKKβ can induce their activation.  It 

is important to note however, that oxidation of amino acid residues on NF-κB and related 

proteins is not always activating.  For example, oxidation of a methionine residue in IκBα has 

been reported to block NF-κB activation in response to TNFα. Similarly, certain anti-

inflammatory molecules, such as the prostaglandin, PGA, were found to inactivate IKKβ by 

modifying cysteine residues (Rossi, Kapahi et al. 2000).  Given the complexity of this system, 

and conflicting reports, it is likely that the role of oxidative stress in NF-κB activity is context 

and cell-type dependent.  
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1.4 NF-κB In Muscle Disease 

1.4.1 NF-κB suppresses myogenesis 

Summarized in Figure 4, classical NF-κB has been implicated in muscle lineage 

progression and may disrupt myogenesis by at least three mechanisms: induction and 

stabilization of cyclin D1, induction of the gene repressor YinYang1 (YY1), and destabilization 

of MyoD mRNA (Guttridge, Mayo et al. 2000; Wang, Hertlein et al. 2007; Dahlman, Wang et al. 

2009).  

Before myoblasts can undergo fusion and differentiation, cyclin D1 expression is down 

regulated, arresting cells in G-phase of the cell cycle.  During proliferation, cyclin D1 functions 

to activate cyclin dependent kinases (CDK) 4 and 6, promoting the activity of the transcription 

factor E2F and allowing entry into S-phase. Several NF-κB binding sites have been found within 

the cyclin D1 promoter (Asakura, Seale et al. 2002).  Although preferential binding is reported to 

be by a nonclassical p52/B-cell lymphoma 3-encoded protein (Bcl3) heterodimer, there appears 

to be some redundancy, as cyclin D1 transcription was not found to change in p52, Bcl3, p50, c-

Rel, or p65 null (-/-) mouse embryonic fibroblasts (MEFs).  Although cyclin D1 mRNA levels 

were unaltered, p65
-/-

 MEFs were found to have lower levels of cyclin D1 protein and CDK 4 

activity. Dahlman and colleagues (2009) went on to determine that p65 is able to interact directly 

with cyclin D1 and promote its stability, evidenced by a significantly reduced cyclin D1 half-life 

in p65
-/-

 cells (Guttridge, Albanese et al. 1999; Dahlman, Wang et al. 2009). More importantly, 

p65
-/-

 primary myoblasts were found to more rapidly withdraw from the cell cycle compared to 

p65
+/+

 myoblasts when placed under low serum conditions. Thus, the interaction between p65 
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and cyclin D1 likely promotes proliferation and prevents or delays cell cycle exit (Dahlman, 

Wang et al. 2009). 

A negative role for NF-κB in myogenesis may continue once myoblasts have exited the 

cell cycle. The classical p65/p50 dimer induces the expression of YY1, a transcriptional 

repressor of a number of myogenic genes required for terminal differentiation, including muscle 

creatine kinase and myosin heavy chain IIb.  At myofibrillary gene promoters, YY1 recruits 

members of the polycomb repressor complex to deacetylate histones and silence gene expression 

(Wang, Hertlein et al. 2007). In addition to myofibrillary gene suppression, YY1 has also been 

found to repress the promyogenic microRNA (miR), miR-29, itself a repressor of YY1 (Wang, 

Garzon et al. 2008). Furthermore, NF-κB, specifically p65, regulates myogenesis on the post-

transcriptional level by binding to a destabilization element within the MyoD transcript 

(Guttridge, Mayo et al. 2000; Wang, Garzon et al. 2008). For these reasons, the halting of 

classical NF-κB activity is critical for myogenic differentiation. Declining NF-κB activity in turn 

lowers YY1 and increases MyoD at the same time.  MyoD can then replace YY1 at myogenic 

gene promoters and recruit other activators, including CREB-binding protein (CBP)/p300 

(Asakura, Seale et al. 2002; Wang, Garzon et al. 2008).   

The physiologic role of NF-κB in regulating muscle progenitor activation, proliferation, 

and finally differentiation, is strongly supported by in vivo studies using transgenic mice. 

Conditional knockout of skeletal muscle IKKβ was found to result in elevated numbers of 

CD34
+
/Sca-1

-
 muscle progenitor cells, prospectively SCs (Acharyya, Villalta et al. 2007). A 

similar finding was reported by another group, who found that muscle-specific deletion of IKKβ 

increased the number of nuclei per regenerating fibers at 10 days post-injury, suggesting an 

increased contribution from the SC compartment (Mourkioti, Kratsios et al. 2006). As 
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differentiation occurs, classical NF-κB signaling is replaced by activation of the alternative 

pathway which plays a role regulating mitochondrial content and energy homeostasis.  

 Activation of classical NF-κB in post-mitotic myocytes may play a role in promoting 

skeletal muscle degeneration. For example, exposure of differentiated myotubes in vitro to the 

combination of TNFα and interferon gamma results in the loss of MyoD and the contractile 

protein MyHC in an NF-κB dependent manner, presumably through destabilization of MyoD 

transcript (Guttridge, Mayo et al. 2000). Although not conclusively demonstrated in mdx mice in 

vivo, the regulation of skeletal muscle homeostasis by NF-κB has been confirmed using 

transgenic mice expressing a constitutively active form of IKKβ in skeletal muscle. These mice 

displayed severe muscle atrophy accompanied by functional deficits (Cai, Frantz et al. 2004). 

Interestingly, an increase in the levels of inflammatory cytokines was not found. However, these 

mice did have increased expression of the muscle-specific E3 ubiquitin ligase muscle ring finger  

1 (MuRF-1). This may be relevant during the later stages of muscular dystrophy, which are 

characterized by the development of extensive fibrosis and muscle wasting. It is important to  

note, however, that the development of fibrosis in the respiratory musculature of the mdx mouse 

has been reported to occur in an NF-κB independent manner.  This conclusion was based on 

findings using the proteasome inhibitor Pyrollidine dithiocarbamate (PDTC) to inhibit NF-κB 

(Graham, Singh et al. 2010).  While PDTC does decrease NF-κB activity by stabilizing IκB 

levels, it is not specific to the NF-κB pathway. Future studies using transgenic models or more 

specific small molecule inhibitors will be required to better understand what part, if any, NF-κB 

plays in the development of fibrosis.  

 



 18 

 

Figure 4. NF-κB negatively regulates post-natal myogenesis.  

 

 

 

 

 

  

 

 

 (A) A model of NF-κB mediated repression of post-natal myogenesis. Based on the evidence gathered from in vitro 

and in vivo studies, NF-κB may suppress myogenesis at multiple steps along lineage progression. Following the 

activation of Pax7+ muscle progenitor cells, NF-κB/p65 may delay differentiation by promoting cell cycle 

progression through p65-mediated stabilization of cyclin D1 and destabilization of the myogenic transcription factor 

MyoD. Later on, in myoblasts, NF-κB can induce transcription of YinYang1, a repressor of multiple myogenic 

genes including the terminal differentiation genes muscle creatine kinase and myosin heavy chain (MyHC). (B) 

Necrotic muscle recruits inflammatory immune cells that release tumor necrosis factor alpha (TNFα) and interferon 

gamma (IFNγ), amongst other cytokines.  In addition to the destabilization of MyoD transcripts, these factors 

promote muscle degeneration by upregulating MuRF1, a muscle specific E3 ubiquitin ligase, in an NF-κB dependent 

manner. 
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 Although classical NF-κB plays a suppressive role during myogenic differentiation, it 

remains a critical transcription factor for tissue homeostasis, and a number of NF-κB target genes 

are important for cell survival.  Target genes include the anti-apoptotic proteins XIAP and c-IAP 

family members, which inhibit caspase activity to block the extrinsic apoptotic pathway, as well 

as Bcl-2 family members, such as Bcl-xL, Bcl-2 and NR13, which exert an anti-apoptotic effect 

through disruption of the intrinsic (mitochondrial) apoptotic pathway(Karin and Lin 2002).  

Indeed, deletion of either p65 or IKKβ results in embryonic lethality. A pro-survival role for NF-

κB has also been identified in myoblasts, where it has been reported to induce antioxidant genes 

in response to oxidative stress (Catani, Savini et al. 2004). Therefore, in our discussion of the 

negative role of NF-κB in myogenesis, we must keep in mind that this transcription factor still 

serves an important role in skeletal muscle homeostasis.  

1.4.2 NF-κB is dysregulated in DMD 

NF-κB has been found to be persistently activated in both DMD patients and the mdx 

mouse (Monici, Aguennouz et al. 2003; Acharyya, Villalta et al. 2007). Of note, aberrant activity 

has been identified not only in immune cells, but in the muscle fibers themselves (Acharyya, 

Villalta et al. 2007). Initially this was believed to be in response to the elevated cytokine levels 

found in dystrophic muscle. However, the observation that mdx myotubes derived from primary 

myoblasts in vitro also show increased NF-κB activity, suggests that this explanation is 

oversimplified (Altamirano, Lopez et al. 2012). This finding has been disputed by others 

(Acharyya, Villalta et al. 2007),  and the exact cause of upregulation remains unclear.  Several 

different mechanisms have been proposed, including induction by mechanical stretch, in 
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response to elevated intracellular calcium concentrations, as a consequence of oxidative stress, 

and finally, changes in the expression levels of the NF-κB subunits themselves.  

A number of NF-κB target genes are survival factors, such as B-cell lymphoma 2 (Bcl-2) 

and cellular inhibitor of apoptosis protein-1 (cIAP1). It is possible that NF-κB is activated in 

dystrophin deficient skeletal muscle fibers as a survival mechanism in response to mechanical 

stress (Dogra, Changotra et al. 2006). This is based on the observation that IKK is a downstream 

target of Akt, the activity of which is significantly higher in the diaphragm of mdx mice 

compared to normal mice. Ex vivo, passive mechanical stretch of mdx diaphragm is sufficient to 

induce increased Akt activity. Stretch of WT diaphragm also leads to an increase in Akt activity, 

but to a much lesser degree than in the mdx diaphragm. Furthermore, IKK activation following 

stretch could be inhibited using small molecule inhibition of phosphoinositide 3-kinase (PI3-K) 

(Dogra, Changotra et al. 2006). However, more studies will be required to identify the 

physiological importance of this finding.   

Rather than PI3-K/Akt, another group attributes the initiation of NF-κB signalling as a 

response to excess intracellular calcium ([Ca
2+

]) found in dystrophin deficient muscle 

(Altamirano, Lopez et al. 2012).  The influx of extracellular calcium to damaged muscle fibers is 

a well described process.  However, resting calcium levels are elevated in mdx myotubes in vitro, 

and culture in low calcium or calcium free solution did not lead to a complete normalization of 

resting [Ca2+]. Thus, dysregulation of calcium levels may also be due to leak from the 

sarcoplasmic reticulum, potentially by increased activity of the inositol triphosphate receptor 

(IP3R) (Altamirano, Lopez et al. 2012). The physiological significance of the dystrophic 

abnormality in calcium homeostasis is demonstrated by the improvement of mdx histopathology 

following the overexpression of sarcoplasmic reticulum Ca(2+) ATPase 1 (SERCA1) via adeno-
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associated virus gene therapy (Goonasekera, Lam et al. 2011). In contrast to the previous 

hypothesis, in which PI3K/Akt/NF-κB activity plays a pro-survival role, this model of activation 

focuses on the participation of NF-κB in promoting calcium-driven necrosis by the induction of 

iNOS, which could potentially induce oxidative stress (Altamirano, Lopez et al. 2012). Thus, 

increased levels of nitric oxide radicals produced by iNOS activity could further activate redox 

sensitive NF-κB.  Such a process could lead to a positive feedback loop maintaining the chronic 

NF-κB activation found in dystrophic muscle.    

Indeed, oxidative stress may play a key role in both the pathogenesis of DMD and NF-κB 

activation, as markers of oxidative stress have been found in mdx mice and DMD patients. NF-

κB induced by ROS leads to the upregulation of NF-κB target genes, many of which are 

inflammatory mediators. Indeed, treating mdx mice with the vitamin E analogue, IRFI-042, 

reduced serum levels of muscle creatine kinase, the presence of which is an indirect 

measurement of muscle fiber damage. Not only was the DNA binding activity of NF-κB 

reduced, but also the levels of TNFα (Messina, Altavilla et al. 2006). Similarly, others have 

reported TNFα reduction and decreased membrane permeability following treatment with the 

antioxidant N-acetylcysteine (Whitehead, Pham et al. 2008; de Senzi Moraes Pinto, Ferretti et al. 

2013).  

Finally, Singh and colleagues (2009) propose that increased NF-κB activity is not entirely 

due to increased stimulation, but to increases in the expression of NF-κB subunits (Singh, 

Millman et al. 2009). They made the observation that in addition to an increased fraction of 

phosphorylated IκBα, total levels of IκBα are increased.  However, IκBα is among the first target 

genes induced by NF-κB, so this observation may be secondary to the elevated activity. Total 

levels of IKKβ were also found to be increased. Despite the increase in total protein, the fraction 
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of phosphorylated IKKβ was also significantly increased. The investigators point out that, with 

the exception of p65, NF-κB subunits are NF-κB target genes (Singh, Millman et al. 2009). 

Therefore, even in this model, some external stimulus would still be required to account for the 

initial activity of NF-κB, which could then be self-perpetuated.  

 It is likely that a combination of these mechanisms, in addition to other ones not yet 

identified, is responsible for the excessive NF-κB activity found in DMD. Common to all of 

these findings, however, was increased IKK activity, implicating the classical NF-κB pathway. 

Although there is some evidence for a positive role of NF-κB in preserving dystrophin deficient 

muscle fibers, the preponderance of evidence points to NF-κB as exacerbating the pathologies of 

DMD.  

 

1.4.3 Blockade of NF-κB attenuates dystrophic pathology in murine DMD models 

Genetic studies by Acharyya and colleagues (2007) have demonstrated that deletion of 

one allele of p65, but not p50, increases the number of regenerating fibers and decreases the 

extent of inflammation in mdx muscle. Using conditional knockouts, they were able to delete 

IKKβ in myeloid cells or muscle fibers of mdx mice, respectively. Using this approach, they 

found inflammation to be reduced by deletion in myeloid cells, and regeneration to be enhanced 

by knock-out in muscle fibers (Acharyya, Villalta et al. 2007). Additionally, using adeno-

associated viral vectors (AAV), the local delivery of a dominant negative IKKβ mutant increased 

muscle regeneration in aged (11months+) mdx mice and decreased necrosis in both young and 

aged mice (Tang, Reay et al. 2010). More recently, we have reported that silencing of p65 via 

AAV mediated delivery of p65 short hairpin RNA (shRNA) reduced the severity of the mdx 
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phenotype (Yang, Tang et al. 2012). Silencing of p65 in mdx muscle was accompanied by a 

reduction in inflammatory cell infiltrate and increased muscle membrane integrity. These 

investigations implicate classical NF-κB in muscular dystrophy and establish that the beneficial 

effect of NF-κB blockade is derived from targeting NF-κB in both immune and muscle cells.  

To date, both specific and  non-specific NF-κB inhibitors have shown success in reducing 

the severity of the phenotype of mdx muscle (Grounds and Torrisi 2004; Carlson, Samadi et al. 

2005; Hodgetts, Radley et al. 2006; Acharyya, Villalta et al. 2007; Pan, Chen et al. 2008; Tang, 

Reay et al. 2010; Reay, Yang et al. 2011; Yang, Tang et al. 2012; Araujo, Bonuccelli et al. 2013; 

de Senzi Moraes Pinto, Ferretti et al. 2013). Nonspecific targeting with PDTC has been found to 

preserve skeletal muscle fibers and reduce damage to the respiratory musculature (Carlson, 

Samadi et al. 2005). Similarly, curcumin administration was reported to reduce serum muscle 

creatine kinase and lower levels of TNFα (Pan, Chen et al. 2008). Indeed, despite some 

disagreement as to the exact cause of activation, numerous studies have repeatedly demonstrated 

that inhibition of NF-κB has a therapeutic effect on the mdx phenotype.  

Rather than non-specific NF-κB inhibitors such as PDTC, several groups have 

undertaken a more specific pharmacologic approach targeting NEMO, required for the function 

of the IKK complex (Whitehead, Pham et al. 2008).  Decoy peptides corresponding to the 

NEMO binding domain (NBD) of IKKα and -β have been designed to prevent activation of the 

classical pathway. Success with this approach has varied between different groups, likely due to 

different methods and durations of administration.  For example, it was reported that NBD-

peptide decreased necrosis in the diaphragm of treated mice after 4 weeks and was accompanied 

by a modest increase in the specific force of the muscle.  Yet there was no change in serum 

muscle creatine kinase, indicating that protection from  necrosis in the majority of the 
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musculature was unlikely (Whitehead, Pham et al. 2008).  Another group also reported that the 

damage (and subsequent necrosis) to the diaphragm was reduced up to 79 percent following 4 

weeks of treatment (Peterson, Kline et al. 2011). NBD-peptide therapy has also shown promise 

treating DMD associated cardiomyopathy, which is one of the main causes of patient death 

(Schram, Fournier et al. 2013). Unlike DMD patients, mdx mice do not exhibit any cardiac 

abnormalities until later in life. The utrophin-dystrophin double knockout (dKO) mouse has a 

much more severe phenotype, with a lifespan of approximately 8-10 weeks (Deconinck, Rafael 

et al. 1997; Wang, Li et al. 2009; Delfin, Zang et al. 2012; Isaac, Wright et al. 2013). Therefore, 

many investigations into treatments for cardiac symptoms have used the dKO mouse.  Linear 

muscle preparations demonstrated ex vivo that treatment with NBD increased the active force 

development of dKO cardiac muscle. However, histological examination found no change in 

fibrosis development, suggesting that the improvement in contractile function occurs in a manner 

independent of tissue remodeling (Delfin, Xu et al. 2011). Despite the variability between 

reports, overall a positive effect has been achieved using NBD-peptide in muscular dystrophy. 

1.5 Hepatocyte Growth Factor (HGF) 

1.5.1 HGF participates in muscle regeneration 

Skeletal muscle regeneration is a highly coordinated process, regulated by both 

transcription factors, such as members of the bHLH family, and paracrine factors, “relaying” 

messages between different cell types.  For example, myeloid cell-derived factors, such as TNFα, 

stimulate myoblast proliferation during the early inflammatory stage of muscle repair (Chazaud, 
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Sonnet et al. 2003; Arnold, Henry et al. 2007).  Of particular interest for the studies contained in 

this dissertation, hepatocyte growth factor (HGF) is one such critical factor.  Through antibody 

neutralization experiments, HGF  has been identified as the key factor for the ability of crushed 

muscle extract to stimulate satellite cell proliferation (Tatsumi, Anderson et al. 1998).    

HGF, also known as scatter factor, is an 84 kD heterodimeric protein, formed by an α-(69 

kD) and β-subunit (34 kD) joined via a disulfide bond (Naldini, Weidner et al. 1991). The 

receptor of HGF, MET, is also a heterodimer, formed by an extracellular α-subunit joined to a 

transmembrane β-subunit.   Several downstream cascades are activated by MET, including 

mitogen-activated protein kinase (MAPK) and phosphoinositide 3-kinase (PI3K).  Thus, the 

roles of HGF are quite diverse, including mitogenic, morphogenic, angiogenic, anti-

inflammatory, and anti-apoptotic properties.   

HGF is stored in the extracellular matrix of many different tissues as an inactive, single 

chain pro-form, and therefore its biological activity is regulated by extracellular proteases. 

Urokinase-type plasminogen activator (uPA), HGF activator (HGF-A), plasma kallikrein, 

coagulation factors XII and XI, matriptase, and  hepsin have all been reported to cleave the 

single-chain HGF to produce the active heterodimer (Mars, Zarnegar et al. 1993; Nakamura, 

Sakai et al. 2011). The HGF stored in in skeletal muscle has been reported to be in both the pro- 

and active form (Sheehan, Tatsumi et al. 2000; Tatsumi and Allen 2004). Indeed, mice deficient 

in uPA have defective muscle regeneration, mediated, at least in part, by reduced myoblast 

proliferation and differentiation (Sisson, Nguyen et al. 2009).  Conversely, deletion of 

plasminogen activator inhibitor-1 (PAI-1), an inhibitor of uPA, results in accelerated muscle 

regeneration (Koh, Bryer et al. 2005).   
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The current evidence suggests that the levels of active HGF in skeletal muscle following 

injury appear to be controlled by macrophage-derived uPA, which is critical for leukocyte 

migration into injured muscle (Novak, Bryer et al. 2011). However, myoblasts also express uPA 

in response to basic fibroblast growth factor (FGF-2) (Miralles, Ron et al. 1998).  These two 

distinct sources of protease may create distinct pools of active HGF that have unique functions in 

a given context. Based on the work contained in this dissertation, the role of HGF in skeletal 

muscle regeneration may not only be in the initial phase of repair, where it promotes leukocyte 

migration and myoblast proliferation, but also in the final phase of repair, as we shall discuss 

below.  

1.5.2 HGF/MET and Wnt/GSK-3/β-catenin pathway cross-talk during inflammation 

The anti-inflammatory properties of HGF/MET signaling are of particular interest for this 

dissertation.  Indeed, HGF has been implicated in the resolution of inflammation in many tissues, 

such as the liver, kidney, and skeletal muscle (Trusolino, Bertotti et al. 2010).  This effect 

appears to be mediated by the both the suppression of inflammatory cytokine expression in 

inflammatory cells and the induction of anti-inflammatory genes, such as IL-10. Downstream of 

MET/PI3K/Akt activation in macrophages, the phosphorylation of the serine/threonine protein 

kinase glycogen synthase kinase-3β (GSK3β) plays an important role in mediating HGF’s anti-

inflammatory effect (Gong, Rifai et al. 2008).  Ubiquitously expressed, GSK3β is constitutively 

active under basal conditions, but is inactivated by phosphorylation at Ser9. Originally identified 

and named for its role in glucose metabolism, GSK3β has been found to have a much larger role 

in cell signaling than previously thought, with over 50 known target substrates (Martin, Rehani et 

al. 2005). Gong and colleagues (2008) have demonstrated that a subset of NF-κB target genes, 
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including IL-6 and MCP-1, requires phosphorylation of p65 at Ser-468 by GSK3β for efficient 

transcription. Inactivated GSK3β reduces the associations of p65 with the co-activators 

CBP/p300 (Martin, Rehani et al. 2005; Gong, Rifai et al. 2008; Coudriet, He et al. 2010).. 

Furthermore, Martin and colleagues have reported that the decreased DNA binding of p65 allows 

for the association of CREB and p300, inducing anti-inflammatory gene expression, namely IL-

10 (Martin, Rehani et al. 2005).   

GSK3β is most often associated with the Wnt/β-catenin pathway, where it acts as a 

negative regulator of β-catenin.  Some groups have considered whether increased β-catenin may 

also play a role in the anti-inflammatory function of HGF.  For example, Dai and colleagues 

have reported that in kidney tubular epithelial cells, the anti-inflammatory action of GSK3β 

inactivation downstream of TGFβ depends on β-catenin activity (Dai, Wen et al. 2011).  In 

hepatocytes, β-catenin has been reported to associate with the cytosolic portion of MET, 

allowing nuclear translocation of β-catenin independent of Wnt/Frizzled activation.  In this 

situation, β-catenin was responsible for sequestering p65, thus reducing its transactivation 

potential (Monga, Mars et al. 2002). The events occurring after GSK3β phosphorylation are 

likely to be ligand- or cell-type dependent, but these models are not mutually exclusive. Thus, 

HGF/Met may lead to the inactivation of GSK3β and attenuate inflammatory gene expression by 

decreasing NF-κB/p65 DNA binding. 
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2.0  NF-κB/P65 NEGATIVELY IMPACTS THE MYOGENIC POTENTIAL OF 

MDSCS 

2.1 Abstract 

Inhibition of the IκB kinase (IKK)/nuclear factor κB (NF-κB) pathway enhances muscle 

regeneration in injured and diseased skeletal muscle, but it is unclear exactly how this pathway 

contributes to the regeneration process. In this study, we examined the role of NF-κB in 

regulating the proliferation and differentiation of muscle-derived stem cells (MDSCs). MDSCs 

isolated from the skeletal muscles of p65
+/–

 mice (haploinsufficient for the p65 subunit of NF-

κB) had enhanced proliferation and myogenic differentiation compared to MDSCs isolated from 

wild-type (wt) littermates. In addition, selective pharmacological inhibition of IKKβ, an 

upstream activator of NF-κB, enhanced wt MDSC differentiation into myotubes in vitro. The 

p65
+/– 

MDSCs also displayed a higher muscle regeneration index than wt MDSCs following 

implantation into adult mice with muscular dystrophy. Additionally, using a muscle injury 

model, we observed that p65
+/–

 MDSC engraftments were associated with reduced inflammation 

and necrosis. These results suggest that inhibition of the IKK/NF-κB pathway represents an 

effective approach to improve the myogenic regenerative potential of MDSCs and possibly other 

adult stem cell populations. Moreover, our results suggest that the improved muscle regeneration 
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observed following inhibition of IKK/NF-κB, is mediated, at least in part, through enhanced 

stem cell proliferation and myogenic potential. 

2.2 Introduction 

Chapter 2 is adapted from a published article in Molecular Therapy: 
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NF-κB is a ubiquitously expressed nuclear transcription factor that is evolutionarily 

conserved.  In mammals, the NF-κB family consists of five subunits: p65 (RelA), c-Rel, RelB, 

p50 and p52 (Verma, Stevenson et al. 1995). Transcriptionally active NF-κB exists as a dimer, 

with the most common form being a p50/p65 heterodimer. Under non-stress conditions, the 

heterodimer is maintained in an inactive state in the cytoplasm via its interaction with inhibitor 

of κB (IκB) proteins. Classic NF-κB activation is mediated by IκB kinase (IKK), a large, 700-
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900 kDa complex consisting of two catalytic subunits, IKKα and IKKβ, and a regulatory subunit 

termed IKKγ, or NF-κB essential modulator (NEMO). In response to a variety of stimuli, 

including pro-inflammatory cytokines, bacterial products, viruses, growth factors, and oxidative 

stress, the complex is activated. Activated IKKβ phosphorylates IκB, leading to its 

polyubiquitination and subsequent degradation by the 26S proteasome.  IκB degradation allows 

NF-κB to translocate to the nucleus where it binds to its cognate DNA site, as well as co-

activators such as CBP/p300, to induce gene expression. Dysregulation of this pathway can 

result in chronic activation of IKK or NF-κB, and is seen in several pathophysiological states 

including cancer, rheumatoid arthritis, sepsis, muscular dystrophy, heart disease, inflammatory 

bowel disease, bone resorption, and both type I and II diabetes. 

       The NF-κB pathway, long recognized as an important component of innate and adaptive 

immunity, has also more recently emerged as a key player in the regulation of skeletal muscle 

homeostasis (Langen, Schols et al. 2001).   Furthermore, activation of NF-κB in skeletal muscle 

has been linked to cachexia, muscular dystrophies, and inflammatory myopathies (Baghdiguian, 

Martin et al. 1999; Kumar, Lnu et al. 2003; Monici, Aguennouz et al. 2003; Hunter and 

Kandarian 2004; Acharyya, Villalta et al. 2007). Conversely, knock-out of p65, but not other 

subunits of NF-κB, enhances myogenic activity in MyoD-expressing mouse embryonic 

fibroblasts (MEFs)  (Bakkar, Wang et al. 2008). Genetic depletion of p65 enhances muscle 

regeneration in both mdx and wild-type murine skeletal muscle (Acharyya, Villalta et al. 2007). 

What remains unclear, however, is how reduction of NF-κB activity positively impacts muscle. 

        Given that the repair of damaged tissues is mediated by adult stem cell populations, we 

hypothesized that NF-B activity negatively regulates muscle stem cell function. In this study, 

we specifically focus on the role of p65 in regulating muscle-derived stem cell (MDSC) growth 
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and differentiation. This population of adult stem cells is capable of restoring muscle function 

(Payne, Oshima et al. 2007; Ambrosio, Ferrari et al. 2010).  As complete knockout of p65 (p65
-/-

) 

results in embryonic lethality, we
 
isolated MDSCs from the skeletal muscles (SKM) of p65

+/- 

mice and wt littermates (Beg, Sha et al. 1995). We observed that, in vitro, p65 haploinsuffiency 

was associated with increased cell proliferation and myogenic differentiation. Pharmacologic 

inhibition of IKK/NF-B also enhanced myogenic differentiation. We also demonstrated that 

p65
+/-

 MDSCs have a higher capacity for muscle regeneration after implantation into dystrophic, 

mdx mouse SKM. Furthermore, we show that muscle inflammation and necrosis post-injury is 

decreased following p65
+/-

 MDSC implantation into cardiotoxin injured SKM. These results 

suggest that reducing the activity of the IKK/NF-κB pathway is an effective approach to improve 

the myogenic potential of MDSCs and possibly other adult stem cell populations. Our results 

provide a novel mechanistic insight as to why the inhibition of this pathway promotes SKM 

healing. 

2.3 Materials and Methods 

Animals: The C57BL/6J mice heterozygous for p65/RelA were originally described by 

Amer Beg (Beg, Sha et al. 1995). The mdx/SCID (C57BL/10ScSn DMD
mdx

/J/CB17-Prkdc
scid

/J) 

and C57BL/6J mice were obtained from the Jackson Laboratory (Bar Harbor, ME). All animal 

protocols used for these experiments were approved by the Children’s Hospital of Pittsburgh’s 

Institutional Animal Care and Use Committee.  

Isolation of MDSCs from p65
+/- 

mice. The mice were sacrificed at 5 months of age and 

muscle stem cell isolation was performed as previously described via a modified preplate 
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technique (Gharaibeh, Lu et al. 2008). Briefly, the SKM tissue was minced and processed 

through a series of enzymatic dissociations: 0.2% of collagenase type XI (Sigma-Aldrich, St. 

Louis, MO) for 1 hr, 2.4 units/ml of dispase (Invitrogen, Carlsbad, CA ) for 45 min, and 0.1% of 

trypsin-EDTA (Invitrogen) for 30 min at 37
o
C.  After enzymatic dissociation, the muscle cells 

were centrifuged and re-suspended in proliferation medium (DMEM supplemented with 10% 

FBS, 10% HS, 0.5% chicken embryo extract, and 1% Penicillin-streptomycin), and the resulting 

cell suspension from both p65
+/- 

and wt muscle were plated in collagen type I coated flasks. 

Different populations of muscle-derived cells were isolated based on their adhesion 

characteristics. After 7 days, late preplate populations (slowly adhering cells) were obtained and 

cultured in proliferation medium. The slowly adhering fraction of muscle cells has been 

previously shown to contain MDSCs (Gharaibeh, Lu et al. 2008). For all experiments, congenic 

p65
+/- 

and p65
+/+

 MDSCs of the same passage number were compared. 

p65 staining and ArrayScan Assay. Cells were fixed with 4% paraformaldehyde for 15 

min at room temperature (RT), rinsed 2 times with PBS, and the cells’ membrane permeabilized 

for 10 min with 0.1% Triton X-100 in PBS. A 10% goat serum blocking solution was used for 1 

hr and the cells were incubated with a 1:200 dilution of rabbit polyclonal anti-p65 (Abcam, 

Cambridge, MA) for 1 hr at RT. After washing 3 times, the cells were incubated for 30 min with 

Cy3-conjugated anti-rabbit IgG (1:500, Sigma-Aldrich). The nuclei were revealed by 4', 6-

Diamidino-2-phenylindole (DAPI) staining. Nuclear localization of the NF-κB subunit p65 was 

measured via ArrayScan
Tm

. This technique allows for the rapid, automated quantification of p65 

and DAPI colocalization, as identified by immunocytochemistry in cells grown on a 96-well 

plate. Recordings were taken from multiple fields of view per well, generating data 

representative of each well.  
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Western Blot assay.  The cell populations isolated from p65
+/-

 and wt mice were 

cultured in proliferation medium and stimulated with TNFα (10 ng/ml) for 30 min prior to 

harvesting. Cells were then lysed in Laemmli Sample Buffer (Bio-Rad, Hercules, CA ), boiled 

for 5 min, and centrifuged at 4000 rpm for 5 min. Each sample was loaded on a 10% SDS-

polyacrylamide gel, which was run for 2 hrs and then transferred for 1.5 hrs at 100 volts while 

stirring on ice. The membrane was blocked with 5% bovine serum albumin (Sigma) in PBS for 1 

hr and then incubated with rabbit anti-phospho-NF-кB/p65 monoclonal antibody (1:1000, Cell 

signaling, Danvers, MA) overnight at 4°C. After washing 3 times with Tris-buffered saline 

tween-20 (TBST), the membrane was incubated with goat anti-rabbit IgG (H+L) (1:5000, Pierce, 

Rockford, IL) for 50 min at room temperature (RT). Blots were developed by ECL solution 

(Pierce). 

       RT-PCR analysis. Total RNA was extracted from cells using Nucleo Spin RNA II column 

(Clontech, Mountain View, CA). Following isolation, cDNA was synthesized with 

SuperScript
TM

 II reverse transcriptase (Invitrogen), according to the manufacturer’s instructions. 

PCR was performed with Taq polymerase (Invitrogen) as per the manufacturer’s instructions and 

PCR products were separated by electrophoresis with 1% agarose gels. The primers used for 

PCR are listed in Table 1. Each set of oligonucleotides was designed to span two different exons 

to avoid background amplification of genomic DNA. The data were quantified by densitometry 

using Adobe Photoshop 7.0. 

Gene Forward primer Reverse primer Location 

Sca-1       CCTACTGTGTGCAGAAAGAGC CAGGAAGTCTTCACGTTGACC          89–331 

CD34 GCAGCTTTGAGATGACATCACC           CTCAGCCTCCTCCTTTTCACA          498–715 

MyoD1    ACAGTGGCGACTCAGATGCATC GCTGCAGTCGATCTCTCAAAGC 708–1105 

Desmin     AACCTGATAGACGACCTGCAG            GCTTGGACATGTCCATCTCCA          615–873 

CD31        AGAGCTACGTCATTCCTCAG GACCAAGTGTGTCACTTGAAC         474–988 

CD144      CACCAACAAAAACCTGGAACA            CCACCACGATCTTGTATTCAG         425–729 

β-Actin      TCAGAAGGACTCCTATGTGG                 TCTTTGATGTCACGCACGAT          234–722 

Table 1. Primer Sequences used in Chapter 2.  
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      Pax7 and MyoD staining. P65
+/- 

and wt cells were fixed and permeabilized with 2% 

paraformaldehyde plus 1% Triton X-100 for 30 min at 4C and rinsed 2 times with PBS. Cells 

were blocked with 5% HS and then incubated with a 1:100 dilution of mouse monoclonal anti-

Pax7 (DSHB, Iowa City, Iowa) and anti-MyoD (Santa Cruz biotechnology, Santa Cruz, CA) 

over night at 4C. After washing 3 times, the cells were incubated for one hour with biotinylated 

anti-mouse IgG (1:300, Vector Lab, Burlingame, CA), which acted as a secondary antibody. 

Streptavidin 594 conjugate (1:500, Invitrogen) was added in the last step. The nuclei were 

revealed by DAPI staining. Negative control staining was performed by an identical procedure, 

with the exception that the primary antibody was omitted.  

      In vitro Assessment of Cell Proliferation. In order to compare the proliferative potential of 

p65
+/-

 MDSCs to wt MDSCs, we used a previously described live cell imaging system [LCI] 

(Kairos Instruments LLC) (Deasy, Jankowski et al. 2003).  Brightfield images were taken at a 

100x magnification at ten min intervals over a 72 hour period in three fields of view per well, 

with three wells per population. The images were combined to generate a movie using ImageJ 

software (NIH).  Proliferation was assessed by counting the number of cells per field of view, n, 

over twelve hours. All six populations were also plated in 96-well plates in quadruplicate (500 

cells/well) and cultured under normal conditions for 72 hours. At this time, 20 uL of CellTiter96 

AQueous One Reagent (Promega, Madison, WI) was added to each well and incubated in 5% 

CO2 at 37 °C. Following another 3 hour incubation, absorbance at 490 nm was read with a 96-

well plate reader.  

     Myogenic differentiation assay and fast Myosin Heavy Chain (MyHC-f) staining.  After 

15 passages, cells were plated on 12 well plates (30,000 cells per well) with DMEM 
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supplemented with 2% FBS to stimulate myotube formation. Three days later, 

immunocytochemical staining for fast skeletal Myosin Heavy Chain (MyHC-f) was performed. 

After rinsing 3 times with PBS, cells were fixed for 2 min in cold methanol, blocked with 10% 

horse serum for one hr and then incubated with a mouse anti-MyHC-f (1:250, Sigma, clone MY-

32) for 2 hr at RT. The primary antibody was detected with a secondary anti-mouse IgG antibody 

conjugated with Cy3 (1:300, Sigma) for 15 min. The nuclei were revealed by DAPI staining. The 

percentage of differentiated myotubes was quantified as the number of nuclei in MyHC-f 

positive myotubes relative to the total number of nuclei.  

Selective Inhibition of IKKβ. To determine the effects of IKK/NF-κB inhibition on wt
 

MDSCs during myogenic differentiation, we utilized IKK-2 Inhibitor IV (IKKi), or 2-

[(Aminocarbonyl)amino]-5-(4-fluorophenyl)-3-thiophenecarboxamide (Calbiochem, San Diego, 

CA), a reversible competitive inhibitor of IKKβ ATP binding.  Cells were plated at 10
5
 cells per 

well in 6 well plates and exposed to IKK inhibitor in differentiation medium.  Cells were treated 

with either 1, 3, or 5 uM IKKi. Lysates were collected at 0 min, 14, 24, 48, and 72 hrs following 

treatment.  NF-κB activity and myogenic differentiation was assessed by western blot for 

phosphorylated NF-κB/p65 (1:1000, Cell signaling, Danvers, MA) and MyHC (1:500, Sigma, 

clone MY-32), as detailed above.  

Cell implantation and Dystrophin staining. MDSCs from p65
+/-

 and wt muscle were 

grown in proliferation medium until the cell number was sufficient for injection. A total of 3x10
5 

viable cells was suspended in 20 l of Hank's balanced salts solution (HBSS) and injected into 

the gastrocnemius muscles of 8-12 wk-old mdx/SCID mice using a Hamilton syringe. The same 

number of cells was injected into the gastrocnemius muscles of 8 wk-old wt C57BL/6J mice that 

had been injured 1 day earlier by a 30 µL intramuscular injection of 2µM cardiotoxin (CTX; 
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Sigma) in PBS. The cell suspension was mixed with green fluorescent-labeled beads prior to 

injection to detect the injection sites. Six or fourteen days after implantation, the mice were 

sacrificed and the gastrocnemius muscles were harvested and flash frozen in liquid nitrogen-

cooled 2-methylbutane. Serial cryosections 10 µm in thickness were obtained for 

immunohistochemical analyses. Cryosections were fixed with 5% formalin and blocked with 5% 

donkey serum in PBS for 1 h, then incubated with rabbit anti-dystrophin (1:300,  Abcam) for 2 

hr at RT. The sections were exposed to secondary 594-conjugated anti-rabbit IgG (1:500, 

Invitrogen) in PBS for 30 min. The nuclei were revealed by DAPI staining. Immunostaining was 

visualized and images were taken by fluorescence microscopy (Nikon Eclipse E800). Northern 

Eclipse software was used for quantitative analysis of the regenerated dystrophin-positive 

myofibers. A series of pictures were taken, and Adobe Photoshop 7.0 was used to construct a 

composite picture of the dystrophin-positive myofibers, which were then manually counted. 

      Retroviral transduction of MDSCs . MDSCs were plated at an initial confluence of 30-

40% and retrovirally transduced (in the presence of Polybrene[8 µg/ml]) to express the beta-

galactosidase gene (LacZ), as previously described(Li and Huard 2002).  

 LacZ  staining The cryosections were fixed in 1% glutaraldehyde and incubated 3 hours 

with 5-bromo-4-chloro-3-indolyl b-D-galactopyranoside (X-gal) substrate at room temperature 

(RT). Sections were counterstained with Eosin. 

 CD14 staining. Cryosections were fixed with 5% formalin and blocked with 5% donkey 

serum in PBS for 1 h, then incubated with rat anti-CD14 (1:200, Biolegend, San Diego, CA) 

overnight at 4ºC. This was followed by a 1 hr incubation with biotinylated anti-rat IgG (1:300, 

Vector). Streptavidin Cy3 conjugate (1:500, Sigma) was added in the last step followed by 
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several rinses in PBS. Following CD14 staining, five random pictures per section were taken and 

the number of CD14 positive cells was counted manually. 

 Mouse IgG staining and quantification of necrosis. Muscle sections were fixed with 

5% formalin and blocked with 10% horse serum in PBS for 1 hr, then incubated with 

biotinylated anti mouse IgG (1:300; Vector) for 1 hr at RT. This was followed by a 15 min 

incubation with streptavidin Cy3 conjugate (1:500, Sigma). The nuclei were revealed by DAPI 

staining. The IgG positive area was measured and quantified as the percentage of mouse IgG 

expressing area per total area using Northern Eclipse software.   

 Statistical analysis. All results are given as the mean ± standard deviation. Means from 

p65
+/- 

and wt or treated and untreated were compared using Students’ t-test. Differences were 

considered statistically significant when the p-value was <0.05. 

2.4 Results 

Isolation and phenotypic characterization of MDSCs from p65
+/-

 and wt mice.   

 To examine the effect of NF-κB activity on MDSC function, we purified populations of 

muscle stem cells from the SKM of mice heterozygous for the p65 subunit of NF-κB (p65
+/-

) and 

wt littermates. Using a modified preplate technique (Gharaibeh, Lu et al. 2008), we isolated 

independent populations of MDSCs from three mice of each genotype. To confirm that p65 

haploinsufficiency reduced basal levels of NF-κB activity, nuclear p65 was measured via 

ArrayScan
Tm

.  Nuclear, or active, p65 was found to be 30% lower in p65
+/-

 compared to wt 

MDSCs (Fig. 5a). Upon activation, NF-κB subunits undergo post-translational modifications, 

such as phosphorylation, to enhance their activity.  Immunoblot analysis revealed that the level 
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of phosphorylated p65 (P-p65) was also reduced; however, stimulation with TNFα led to an 

increased level of P-p65 in both wt and p65
+/-

 MDSCs (Fig. 5b), demonstrating that basal, but  

 

Figure 5. Basal levels of phosphorylated p65 Levels are reduced in p65
+/-

 MDSCs 

 

 

 

not induced, NF-B activity is affected by knocking-out one allele of p65. To confirm the 

MDSC phenotype of p65
+/-

 and wt cells, each population was analysed for the expression of stem 

(CD34, Sca-1), myogenic (MyoD and desmin), and endothelial (CD144, CD31) cell markers by 

RT-PCR. For each of the markers, there was variability in expression between cell populations of 

a single genotype, but upon quantification, no significant differences were found between the 

different genotypes, with the exception of CD144, which was elevated in p65
+/-

 MDSCs. (Figs. 

6a,c, p<0.05). Such variability in marker expression has been previously reported and interpreted  

as evidence that these cell populations contain a mix of stem and committed progenitor cells 

(Jankowski, Haluszczak et al. 2001; Sacco, Doyonnas et al. 2008).  We next examined the 

expression Pax7 and MyoD protein by immunostaining, and also found no significant difference 

between p65
+/-

 and wt cells (Figs.  6b,d). These results suggest that genetic reduction of p65 

does not dramatically alter the marker phenotype of MDSCs. 

Muscle-derived stem cells (MDSCs) obtained from the skeletal muscles (SKM) of p65
+/–

 mice have a lower level 

of activated p65 compared to wild-type (wt) MDSCs. (a) ArrayScan analysis of nuclear p65 in MDSCs isolated 

from p65
+/–

 and wt mice. Error bars indicate “mean + SD.” (b) Immunoblotting for phosphorylated p65 in whole 

cell lysates of MDSCs before and after tumor necrosis factor-α (TNFα) stimulation for 30 minutes. 
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Figure 6. Phenotypic Characterization of wt and p65
+/-

 MDSCs. 

 

 

 

p65
+/-

 MDSCs proliferate faster than wt MDSCs.  

 NF-κB is known to regulate cell division, so we investigated whether p65 reduction 

would alter MDSC proliferation. p65
+/-

 and wt MDSCs were plated in collagen-coated flasks and 

expanded in growth medium for 10 to 12 passages. Cells were then transferred to 24 well plates 

and proliferation  was measured using a previously described Live Cell Imaging (LCI) system 

(Deasy, Jankowski et al. 2003). We observed that p65
+/-

 MDSCs proliferated significantly faster 

than wt cells (Fig. 7a). Equal numbers of cells were also plated on a 96 well plate and grown for 

 (a) RNA was isolated from three independent cell populations of each genotype. RT-PCR was performed to 

characterize the MDSC populations for the expression of stem (CD34 and Sca-1), endothelial (CD31 and CD144) 

and myogenic (MyoD and desmin) cell markers. (b) Immunostaining for the muscle stem cell markers Pax7 and 

MyoD was also performed (bar = 25 μm). (c) Quantification of RT-PCR results. Error bars indicate “mean + SD” 

(n = 3 independent experiments). (d) Quantification of Immunostaining of Pax7 and MyoD. 
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three days at which point the differences in cell number were determined using an MTS assay. 

This assay demonstrated a similar significant increase in cell proliferation in p65
+/-

 MDSCs (Fig. 

7b) suggesting that NF-B, and in particular p65, limits the proliferation of MDSCs. 

 

p65
+/-

 MDSCs have enhanced myogenic differentiation compared to wt cells.  

We next measured the ability of the p65
+/-

 and wt MDSCs to undergo myogenic 

differentiation in vitro. Equal numbers of cells were plated in a 24 well plate and switched to 

differentiation medium once the cells adhered. After 3 days the majority (80%) of the p65
+/-

 cells 

had differentiated into myotubes, as determined by immunodetection of myosin heavy chain 

(Fig. 8a). The differentiation potential of the p65
+/-

 MDSCs was significantly greater than the wt 

MDSCs (60%; p<0.01; Fig. 8b). These results demonstrate that NF-B, and in particular p65, 

represses MDSC differentiation in vitro.  

 

Figure 7. Proliferation of p65+/- MDSCs 

 

 

 

Muscle-derived stem cells (MDSCs) isolated from p65+/– mouse skeletal muscles (SKM) have a 

higher rate of proliferation than wild-type (wt) cells. (a) Cell proliferation rate was measured by 

live Cell Imaging and (b) by an MTS assay (P < 0.05). 
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Pharmacologic inhibition of IKKβ increases myogenic differentiation in vitro.   

 To confirm this finding ,  we tested whether a pharmacologic inhibitor of NF-B could 

enhance MDSC myogenic potential in vitro. Wt MDSCs were exposed to differentiation medium 

containing various doses of IKK-2 inhibitor IV (IKKi), a specific, reversible inhibitor of IKKβ.  

Cell lysates were collected at 0, 1, 14, 24, 48, and 72 hrs following treatment. Accordingly, 

MyHC levels dramatically increased, beginning at 14 hrs (Figs. 9a,c). As expected, we observed 

a robust time-dependent decrease in p-p65 that was dose-dependent (greater at 3 M than 1 M; 

Fig. 9b).  We next examined NF-B activity in wt and p65
+/-

 MDSCs at various time points 

during myogenic differentiation by immunodetection of P-p65 and MyHC.  In wt cells, 

beginning at 48 hrs post-transition to differentiation medium, the levels of p-p65 were detectably 

reduced (Fig. 9d). This occurred more rapidly (by 24 hrs) in p65
+/- 

cells. Similarly, accumulation 

of MyHC was greater at earlier time points (14 hrs) in p65
+/- 

cells than wt.  This timeframe for 

MyHC accumulation is similar to that observed in wt cells treated with IKKi (Fig. 9a).   In order  
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Figure 8. Myogenic differentiation is enhanced in p65
+/-

 MDSCs. 

 

 

 

 

 

 

 

 (a) MDSCs were cultured in myogenic differentiation medium for 3 days, during which cell fusion into multinucleated 

myotubes was monitored using bright field microscopy and then confirmed by immunostaining for MyHC. (b) 

Quantitation of MyHC positive myotubes. The percentage of differentiated myotubes was quantified as the number of 

nuclei in MyHC positive myotubes relative to the total number of nuclei. A total of three populations of p65
+/–

 and 

wild-type (wt) MDSCs were tested (P < 0.05). In panel “a” all bars = 200 μm on bright field and all bars = 50 μm on 

MyHC immunostaining. 
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Figure 9. Pharmacologic inhibition of IKKβ enhances myogenic differentiation of WT MDSCs in a dose 

dependent manner 

 

 

 

 

 

 (a) Western blot for myosin heavy chain (MyHC) over 72 hours of wt MDSCs treated with 1, 3, or 5 uM IKKi 

during differentiation. (b) Western blot for P-p65 over 72 hours of wt MDSCs treated with 1, 3, or 5 uM IKK 

inhibitor (IKKi) during differentiation. (c) Quantification of b, MyHC levels during differentiation (n = 3 

independent experiments). (d) In parallel, wt and p65
+/–

 MDSCs were cultured in differentiation medium and 

lysates were collected at the various time points indicated. Lysates were used for western blot for MyHC and P-p65 

levels. (e) wt MDSCs, p65
+/–

 MDSCs, and wt MDSCs treated with IKKi (5 uM), were grown under fusion 

conditions for 72 hours and immunostained for MyHC expression (f) Quantification of MyHC staining (P < 0.05). 

In panel “e” all bars = 100 μm. 
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to verify that increased MyHC expression was  concomitant with increased myotube formation, 

we treated wt MDSCs with 5 M IKKi.  After three days, differentiation was assessed by 

immunofluorescence detection of MyHC.  As shown in Fig. 9e, compared to non-treated 

controls, the inhibitor caused a significant increase in myotube formation. The level of myogenic 

differentiation was comparable to that of p65
+/-

 MDSCs (p<0.01; Fig. 9f). These results provide 

strong support that the MDSC myogenic potential can be improved using NF-B inhibition ex 

vivo. 

 

p65
+/-

 MDSCs have a greater capacity for muscle regeneration in vivo compared to wt MDSCs.  

To determine if genetic depletion of p65 increases the engraftment and muscle 

regenerative capacity of MDSCs in vivo, we examined the ability of p65
+/-

 and wt MDSCs to 

regenerate muscle fibers following intramuscular implantation into an immunocompromised 

model of DMD. For these experiments, 3x10
5 

p65
+/-

 and wt MDSCs were injected into the 

gastrocnemius muscles of 8 wk-old dystrophin-deficient SCID (mdx/SCID) mice. Fourteen days 

post-implantation, significantly more dystrophin-positive myofibers were detected in the muscle 

injected with p65
+/-

 MDSCs than in muscle injected with wt MDSCs (p<0.01; Figs. 10a,b). 

These results confirm our in vitro observations and may provide a novel mechanism as to why 

IKK inhibitors have been reported to improve muscle regeneration (Tang, Reay et al. 2010). 
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Figure 10. p65
+/-

 MDSCs generate larger engraftments that WT MDSCs when transplanted into mdx mice. 

 

 

 

Transplantation of p65
+/-

 MDSCs post-injury reduces SKM inflammation and necrosis.  

The results above suggest that lowering basal levels of NF-κB activity increased the 

ability of MDSCs to engraft and differentiate following intramuscular injection (Fig 10). 

However, while it is possible this is mediated through enhanced proliferation and differentiation, 

the exact mechanism as to why more dystrophin-positive myofibers were found within the p65
+/-

 

MDSC engraftment sites remains unclear. Surrounding the engraftments of the wt MDSCs, we 

observed numerous cells positive for the macrophage marker CD14 as detected by 

 (a) Gastrocnemius cryosections from 8-week-old mdx/SCID mice in which p65
+/–

 and wild-type (wt) MDSCs 

were implanted. Engraftment was determined by immunostaining for dystrophin (red). Three populations of 

p65+/– and wt MDSCs were transplanted into 12 mice in two independent experiments. (b) Quantitation of 

regenerated dystrophin-positive myofibers (P < 0.05). In panel “a” all bars = 50 μm. Error bars indicate “mean + 

SD” (n = 12). 
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immunofluorescent staining (data not shown), whereas the p65
+/-

 MDSC engraftment sites were 

surrounded by fewer numbers of CD14+ cells (data not shown). As the mdx/SCID is an  

Figure 11. Local inflammation and necrosis is reduced surrounding p65
+/-

 MDSC engraftments  

 

 

 

 

 

immunocompromised mouse model with a high level of  background inflammation, we decided 

to further investigate this phenomenon using the well-established cardiotoxin (CTX) muscle 

injury model in immunocompetent wild type mice. In order to confirm that transplanted p65
+/-

 

MDSCs are able to reduce inflammation in host skeletal muscle, we injected p65
+/-

 and wt 

p65
+/– 

MDSCs  attenuate muscle inflammation and necrosis. (a) Gastrocnemius cryosections from 8-week-old 

C57BL/6J mice, which were injected with p65
+/–

 or wt MDSCs 24 hours post-CTX injury. LacZ and eosin staining 

identified the injection area and immunostaining for CD14 (red) and mouse immunoglobulin G (IgG) (red) 

identified macrophages and necrotic tissue, respectively. In immunological stains, fluorescent green beads in 

C57BL/6J muscle sections confirmed the location of injection sites. (b) Quantitation of CD14+ cells (the data 

represent six muscles per group). (c) Necrotic area in the gastrocnemius muscles was identified by IgG staining and 

quantified based on the total positive area per image (the data represent six muscles per group). In panel “a” all bars 

= 100 μm on LacZ+eosin and mouse IgG staining. All bars = 50 μm on CD14 staining. 
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MDSCs into the gastrocnemius muscles of 8 wk-old C57BL/6J mice 24 hours post-CTX injury.  

Six days post-transplantation, the wt MDSC engraftment area demonstrated a greater number of 

inflammatory cells surrounding the wt donor MDSCs than the p65
+/-

 MDSCs. Furthermore, 

numerous centrally located nuclei, characteristic of regenerating muscle fibers, were found 

within the p65
+/- 

MDSC injection sites. Consistent with observations made in mdx/SCID mice, 

the p65
+/- 

MDSC engraftment area was associated with significantly fewer CD14 positive cells 

than the wt MDSC engraftment area (p<0.01; Figs.11a, b). There was also a significant (42%) 

reduction in tissue necrosis, as determined by quantification of mouse IgG staining (p<0.01; 

Figs.11a, c). These results indicate that the improved engraftment and differentiation of p65
+/- 

MDSCs is potentially due to their ability to attenuate the inflammation and necrosis that typically 

occurs after muscle injury. 

2.5 Discussion 

NF-κB signaling has been implicated in the regulation of muscle degeneration and 

regeneration. The five mammalian NF-κB transcription factors are all expressed in skeletal 

muscle to modulate a variety of processes, including apoptosis, inflammation, and myoblast 

differentiation. Although there have been conflicting results reported as to whether NF-κB acts 

as a repressor or promoter of myogenesis (Lehtinen, Rahkila et al. 1996; Guttridge, Albanese et 

al. 1999; Kaliman and Barannik 1999; Canicio, Ruiz-Lozano et al. 2001; Langen, Schols et al. 

2001; Munz, Hildt et al. 2002; Baeza-Raja and Munoz-Canoves 2004), recent results suggest that 

classical NF-κB signaling functions as a negative regulator of myogenesis (Bakkar, Wang et al. 

2008). In addition, NF-κB activation is associated with the degeneration and/or lack of 
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regeneration of dystrophic muscle in mdx mice (Acharyya, Villalta et al. 2007). Thus, in this 

study, we examined the effect of NF-κB reduction on the proliferation and differentiation of 

MDSCs isolated from wt mice and mice heterozygous for p65. Although p65
+/- 

MDSCs had a 

more than a 30% reduction in p65/NF-κB levels compared to the wt MDSCs, the two genotypes 

expressed similar stem (CD34, Sca-1), myogenic (Desmin, MyoD) and endothelial (CD144, 

CD31) cell markers. This result suggests that the reduction in NF-κB did not affect overall 

expression of MDSCs markers, albeit there is some variability in stem cell marker expression 

between populations of the same genotype.   

We observed that MDSCs with reduced p65 levels had improved proliferation compared 

to wt control cells, suggesting that p65/NF-κB activity negatively controls MDSC population 

expansion. More importantly, we also observed that both the rate and extent of myogenic 

differentiation was accelerated in MDSCs with reduced p65 and in wt MDSCs treated with an 

IKKβ inhibitor. Together, these data suggest that NF-κB inhibits muscle stem cell differentiation. 

Our results are in agreement with previous studies showing that NF-κB’s negative regulation of 

myogenesis is dependent on p65 transcriptional activity (Bakkar, Wang et al. 2008). It has been 

suggested previously that the negative effect of NF-κB on differentiation is mediated through the 

transcriptional activation of cyclin D1 and YinYang1 (YY1) (Guttridge, Mayo et al. 2000; 

Wang, Hertlein et al. 2007). Interestingly, we have observed a reduction in the level of cyclin D1 

in p65
+/-

 MDSCs compared to wt cells, but found no difference in the level of YY1 expression 

(data not shown).   

Recent genetic evidence supports the role of IKK/NF-κB in driving the pathogenesis of 

muscular dystrophy, identifying this signaling pathway as a potential therapeutic target for the 

treatment of DMD (Acharyya, Villalta et al. 2007). The activity of NF-κB in dystrophic muscle 
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is associated with not only immune cells, but also regenerative muscle fibers. Thus we 

investigated whether the p65
+/- 

MDSCs have a higher muscle regeneration potential than wt 

MDSCs after their intramuscular injection into dystrophic mdx/SCID skeletal muscles. Our 

results demonstrated that p65
+/- 

MDSCs are more efficient at regenerating dystrophin positive 

myofibers compared to wt MDSCs, which is consistent with the enhanced ability of the p65
+/-

 

MDSCs to differentiate in culture.   

We also assessed inflammation around the engrafted site by immunofluorescent staining for 

CD14, a macrophage marker. While we found very few CD14 positive cells within the injection 

sites of the p65
+/-

 cells, many CD14+ cells were detected within the wt MDSC engraftment areas. 

As decreased macrophage invasion in the p65
+/-

 cell engraftment area correlated with a reduction 

in necrosis, it is possible that a reduction in p65 enhances the local anti-inflammatory properties 

of MDSCs via regulation of paracrine factors. Several cytokines under control of NF-κB, such as 

tumor necrosis factor alpha (TNFα) and IL-6, are potent inhibitors of myogenic differentiation 

(Langen, Schols et al. 2001). Thus, taken together, these results suggest that inhibition of NF-

κB/p65 may enhance myogenesis by reducing inflammation and necrosis.  

Other groups have demonstrated the importance of non-NF-κB proteins in muscle 

development and pathology.  During regeneration following injury, numerous paracrine factors 

such as myostatin, hepatocyte growth factor (HGF), and basic fibroblast growth factor play 

critical roles coordinating repair (Karalaki, Fili et al. 2009). For example, myostatin acts 

independently of the classical TNFα and NF-κB pathway to inhibit MyoD expression and signal 

cachexia by reversing the IGF-1/PI3K/Akt hypertrophy pathway to increase the levels of active 

FoxO1, allowing for increased expression of atrophy-related genes (McFarlane, Plummer et al. 

2006).  In summary, here we described a negative role for the p65/NF-κB signaling pathway in 



 50 

MDSC growth and differentiation in vitro, as well as muscle regeneration in vivo. Similarly, 

pharmacological inhibition of IKKβ identifies the IKK/NF-κB signaling pathway as a potential 

therapeutic target to improve the myogenic potential of MDSCs and muscle regeneration after 

injury and diseases. 
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3.0  HGF IS CRITICAL FOR THE BENEFICIAL EFFECT OF NF-ΚB BLOCKADE 

ON DYSTROPHIC MUSCLE 

3.1 ABSTRACT 

 The ubiquitous transcription factor NF-κB/p65 has been implicated in the fatal disease 

Duchenne muscular dystrophy (DMD). The severity of this disease can be attenuated by NF-κB 

inhibition in the mdx mouse, a murine DMD model; but, this approach remains problematic for 

treating human patients. We found that deleting one allele of p65 (p65
+/-

) improved the anti-

inflammatory capacity of muscle-derived stem cells in vitro and in vivo via upregulation of 

hepatocyte growth factor (HGF). HGF upregulation also coincided with the reduced 

inflammation of p65 haploinsufficient mdx mice (mdx;p65
+/-

). Moreover, shRNA-mediated 

silencing of HGF in mdx;p65
+/-

 skeletal muscle ablated the beneficial effect of p65 deficiency, 

worsening inflammation and necrosis. In this investigation, we identify HGF as a downstream 

effector of NF-κB/p65 blockade. Our findings identify a key role for HGF in modulating the 

resolution of inflammation during skeletal muscle repair and warrant further investigation into its 

potential for the treatment of DMD.    
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3.2 INTRODUCTION 

Central to the inflammatory response, the transcription factor NF-κB has been found to 

be highly activated in the skeletal muscles of patients suffering from the neuromuscular disease 

Duchenne muscular dystrophy (DMD) (Spencer, Walsh et al. 1997; Acharyya, Villalta et al. 

2007).  In this fatal disease, absence of the cytoskeletal protein dystrophin results in skeletal 

muscle membrane instability, ongoing degeneration, and chronic inflammation. During infancy, 

at the earliest stages of disease, skeletal muscle is able to regenerate. However, in early 

adolescence effective tissue regeneration rapidly declines, partially due to excessive 

inflammation; patients usually die in their twenties (Spencer, Walsh et al. 1997; Acharyya, 

Villalta et al. 2007; Villalta, Nguyen et al. 2009; Villalta, Deng et al. 2011).  It is well established 

from animal models of DMD, such as the dystrophin-deficient mdx mouse, that NF-κB activity 

exacerbates the dystrophic phenotype. Genetic or pharmacologic strategies blocking p65, the 

classical NF- κB DNA binding subunit, or its upstream activator, IκB kinase β (IKKβ), have 

been found to accelerate regeneration and reduce inflammation in mdx mice (Acharyya, Villalta 

et al. 2007). This type of approach is problematic for human DMD patients, however, given the 

broad and pleotropic role of NF-κB (Delfin, Xu et al. 2011; Peterson, Kline et al. 2011; Reay, 

Yang et al. 2011).  

NF- κB suppression is thought to improve dystrophic muscle by promoting the 

differentiation of muscle progenitor cells.  Indeed, p65 has been found to negatively regulate 

myogenesis through multiple mechanisms, including the induction of myofibrillary gene 

repressors and the stabilization of cyclinD1, which promotes cell cycle progression and blocks 

progenitor cell differentiation (Guttridge, Albanese et al. 1999; Wang, Hertlein et al. 2007; 

Dahlman, Wang et al. 2009). We have previously reported that NF-κB also negatively influences 
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the myogenic potential of muscle-derived stem cells (MDSCs) (Lu, Proto et al. 2012), a highly 

myogenic cell population with stem cell-like characteristics, including multi-lineage 

differentiation and self-renewal (Qu-Petersen, Deasy et al. 2002; Deasy, Gharaibeh et al. 2005; 

Gharaibeh, Lu et al. 2008). When compared to committed muscle precursor cells, or myoblasts, 

MDSCs demonstrate a higher intramuscular engraftment capability in both skeletal and cardiac 

muscle (Jankowski, Deasy et al. 2002; Payne, Oshima et al. 2005). Although the exact reason for 

the improved regenerative potential of MDSCs remains unclear, current evidence from animal 

studies suggests critical roles for resistance to stress (Urish, Vella et al. 2009; Drowley, Okada et 

al. 2010; Vella, Thompson et al. 2011) and the release of soluble factors such as vascular 

endothelial growth factor (Payne, Oshima et al. 2007; Ota, Uehara et al. 2011; Cassino, Drowley 

et al. 2012; Beckman, Chen et al. 2013). Many NF-κB target genes are involved in both survival 

and growth factor expression, and our earlier work supports a role for p65 in muscle cells that 

extends beyond differentiation. For example, following injection into injured WT hind limb 

muscle, we unexpectedly observed that necrosis and CD14+  inflammatory cell infiltration 

surrounding p65
+/-

 MDSC engraftments was reduced compared WT cell engraftments (Lu, Proto 

et al. 2012). Thus, enhanced myogenesis may not account for all of the benefit of NF-κB 

blockade in mdx skeletal muscle.    

In this investigation, we found that deleting one allele of p65 improves both MDSC 

survival under oxidative stress and the MDSC anti-inflammatory capacity in vitro and in vivo.  

Our data demonstrate that p65 deficiency results in the up-regulation of HGF, a protein known to 

have immunomodulatory properties in several tissues (Galimi, Cottone et al. 2001; Gong, Rifai 

et al. 2008; Coudriet, He et al. 2010). Secreted in a pro-form and sequestered in the extracellular 

matrix, HGF is thought to be one of the primary activators of satellite cells in injured skeletal 
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muscle (Tatsumi, Anderson et al. 1998; Miller, Thaloor et al. 2000; Sheehan, Tatsumi et al. 

2000). Although critical during the early stages of muscle repair as both a stimulator of myoblast 

proliferation and potentially as a chemoattractant for inflammatory cells, an active role for HGF 

in the final stages of muscle repair has yet to be identified (Galimi, Cottone et al. 2001; Sisson, 

Nguyen et al. 2009). We investigated whether HGF has a specific role in mediating the 

attenuated dystrophic phenotype of mdx;p65
+/-

 mice (Acharyya, Villalta et al. 2007). We found 

that the regeneration of the hind limb and diaphragm muscles of mdx;p65
+/-

 mice at 4 weeks of 

age coincided with significant upregulation of HGF. Finally, shRNA mediated knockdown of 

HGF, delivered using a musculotropic adeno-associated virus, significantly increased 

inflammation and necrosis in the mdx;p65
+/-

 diaphragm, thus reversing the beneficial effect of 

p65 haploinsufficiency.  Our findings provide new mechanistic insight into how modulation of 

NF-κB/p65 attenuates muscular dystrophy, and demonstrate that HGF plays a crucial role in the 

resolution of skeletal muscle inflammation. Thus, in the future, treatment of muscular dystrophy 

and other inflammatory myopathies might be achieved through modulation of HGF levels.  

3.3 MATERIALS AND METHODS 

Animals C57Bl/6 (wild type; WT) mice and C57BL/10ScSn-Dmd
mdx

/J (mdx) mice were 

purchased from the Jackson laboratory (Bar Harbor, ME). P65
+/-  

mice, originally characterized 

by Beg and colleagues (Beg, Sha et al. 1995), were bred with mdx mice to produce mdx:p65
+/-

  

and mdx:p65
+/+ 

mice. P65 heterozygotes were backcrossed into an mdx background for a 

minimum of 10 generations. Genotyping was carried out by PCR analysis of tail samples. Mice 

ranged in age from 5 days to 12 weeks. Specific ages for each experiment are described below. 
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All animal protocols used for these experiments were approved by the University of Pittsburgh’s 

Institutional Animal Care and Use Committee.  

Cell Culture Primary WT and p65
+/-

 MDSCs were obtained from 5 month old WT and 

p65
+/-

 mice using the modified preplate method, as previously described (Gharaibeh, Lu et al. 

2008). Cells were cultured in proliferation medium (PM) containing 10% fetal bovine serum, 

10% horse serum, 1% Penicillin-Streptomycin, and 0.5% chick embryo extract in DMEM. 

RAW264.7 cells, a murine macrophage-like cell line (ATCC, Manassas, VA) were maintained 

and expanded in 10% fetal bovine serum and 1% Penicillin-Streptomycin in DMEM.  

Retroviral vector construction and transduction of MDSCs To label cells prior to in 

vivo and co-culture experiments, MDSCs were retrovirally transduced to express nuclear-

localized red fluorescent protein (RFPn). The retroviral vector was constructed with a combined 

CMV and long terminal repeat (LTR) promoter driving RFP followed by a nuclear localization 

sequence (NLS) derived from an SV40 large T-antigen. Briefly, cells were plated at 40% 

confluence and transduced at an MOI of 5 in culture medium supplemented with polybrene 

(8ug/mL, Sigma-Aldrich, Milwaukee, WI, USA). After transduction, cells were passaged 

approximately four times in order to ensure stable gene expression. Finally, transduced WT and 

p65
+/-

 cells were selected by flow cytometry (FACSAria II, Bedford, MA, USA).   

Measurement of Cell Proliferation.  In triplicate, cells were plated in a 24 well collagen 

type I coated plate. Using a previously described live cell imaging system (LCI), 10x brightfield 

images were taken in ten minute intervals over a 72 hour period (Deasy, Jankowski et al. 2003). 

Our custom built LCI includes a Biobox incubator that sits atop a Nikon Eclipse TE 2000 U 

microscope stage, which is attached to a CCD camera (Kairos Instruments LLC, Pittsburgh, PA).  

Three locations to be imaged were randomly chosen per well, giving 9 fields of view per 
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population, per experiment.  LCI was used to measure proliferation over 60 hours by counting 

the number of cells per field of view at 12 hour intervals using ImageJ software (NIH).  For co-

culture experiments, RFPn expressing WT
 
or p65

+/- 
MDSCs were plated with murine RAW264.7 

(ATCC) cells at a ratio of 1:10 and incubated overnight in PM. The following day, cells were 

activated by exposure to 100 ng/mL LPS (Sigma-Aldrich) in PM.  Using LCI, we tracked the 

activity of RFP-expressing MDSCs over a 60 hour period by capturing 10x brightfield and 

fluorescent images at ten minute intervals. Population doubling time (PDT) was calculated using 

a previously validated model (Deasy, Qu-Peterson et al. 2002). For each field of view per 

population, the mean PDT was defined as the average of PDT measurements calculated at 48 and 

60 hrs.  

In vitro Measurement of Cell Survival under Oxidative Stress.  Cells were exposed to 

oxidative stress induced by treatment with 250 µM hydrogen peroxide. In order to visualize cell 

death, propidium iodide (PI), a DNA-binding dye, was added to culture medium according to the 

manufacturer’s protocols (BD Bioscience, San Jose, CA, USA). To block NF-κB activation, WT 

MDSCs were pretreated with the reversible ATP-competitive inhibitor of IKKβ, IKK-2 Inhibitor 

IV (EMD Millipore, 401481, Billirca, MA, USA) at 5uM for 24 hours prior to experiments.   

Using the LCI system described above, 10x brightfield and fluorescence images were taken in 10 

minute intervals over 24 hours (Deasy, Jankowski et al. 2003).  Identifying the number of PI+ 

cells per field of view out of the total cell number determined the percentage of cell death over 

time.  

Cardiotoxin Muscle Injury model and Stem Cell Implantation WT (8-12 weeks old) 

mice were  injured by the injection of 30 uL of cardiotoxin (4uM, CTX, Sigma, St. Louis, MO), 

as previously described (Charge and Rudnicki 2004).  Twenty four hours later, 300x10
5
  RFPn 
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positive WT
 
or p65

+/- 
MDSCs were injected into the injured gastrocnemius muscle. At 24 hours, 

72 hours, and 7 days post-injection, the animals were sacrificed and the hind limbs were 

harvested and frozen in 2-methylbutane pre-cooled in liquid nitrogen. The specimens were stored 

at 80C and 10µm thick cryosections were obtained at -25C. To examine muscle regeneration 

between genotypes, the gastrocnemius of 4-6 week old p65
+/-

 and WT mice were injured with 

CTX as above and sacrificed at 1, 3, or 5 days post-injury, and tissues were harvested and snap 

frozen as described above.  

Immunofluorescence and Histology  Cryosections were fixed with 5% formalin for 5 

minutes and blocked with 10% donkey serum for 2 hours. Slides were then incubated with one or 

more primary antibodies, including rabbit anti-RFP (1:200, Abcam, Cambridge, MA, USA), 

rabbit anti-mouse Ki67 (1:200, Abcam), rabbit anti-phospho(S9)-GSK3β (1:50, Abcam) or rat 

anti-CD68 (1:200, Abcam) in 10% donkey or goat serum.  Next, sections were incubated with 

secondary antibodies including 594-conjugated anti-rabbit or anti-rat IgG (1:500, Invitrogen, 

Grand Island, NY, USA) and 488-conjugated anti-rabbit or anti-rat IgG (1:500, Invitrogen) in 

PBS for 30 minutes. We stained sections for embryonic myosin heavy chain (eMyHC) using a 

mouse anti-mouse eMyHC antibody (1:50, Developmental Studies Hybridoma Bank, University 

of Iowa, Iowa City, Iowa, USA) with a mouse-on-mouse (M.O.M.) staining kit (Vector Labs, 

Burlingame, CA, USA), according to manufacturer’s directions.  To identify necrotic fibers, we 

used a biotinylated anti-mouse IgG antibody (1:300, Vector Labs) with the M.O.M. kit diluent, 

according to manufacturer’s directions. Histological analysis was carried out by hemotoxylin and 

eosin staining (H&E), as previously described (Yang, Tang et al. 2012).     

Image Acquisition and Processing Immunofluorescent or brightfield images were 

captured using an upright fluorescent microscope (Leica Microsystems Inc., Wetzlar, Germany) 



 58 

equipped with a digital Retiga camera (QImaging, Surrey, Canada). Images were acquired using 

Northern Eclipse (Empix Imaging Inc., Cheektowaga, NY, USA) or QCapture (QImaging) and 

quantified using ImageJ software (NIH) or CellProfiler (Broad Institute, Cambridge, MA, USA). 

To analyze RFP, CD68, Ki-67, or eMyHC staining, 200x images were captured through the 

entire injury and engraftment area from the region of highest engraftment along the length of the 

muscle. To analyze CD68 and phospho(S9)-GSK3β staining, four 600x images were captured 

from the injured area of each muscle. To analyze IgG or CD68 staining on ZsGreen transduced 

muscle, 200x fluorescent images were captured from three locations along the length of sections 

from the medial region of each muscle. 100x, 200x, or 400x brightfield images were captured for 

H&E analysis, with the regions for imaging chosen in a similar manner as described above. Area 

was measured using Adobe Photoshop (Adobe Systems Inc., New York, NY, USA).  Final 

images for figures were also prepared in Adobe Photoshop. We used the fluorochromes 

described above and no imaging medium was used. 

In Vitro Inflammation Assay RAW264.7 cells were plated in a six well plate with 10
5
 

cells per well, and then incubated for 48 hours to achieve high density. Conditioned medium was 

prepared by plating 10
6
 MDSCs into a T-175 flask with 15mL of medium. Following a 24 hour 

incubation, the medium was collected and then filtered (0.22 μm). RAW264.7 cultures were 

washed with PBS and then cultured in conditioned medium with or without 100ng/mL LPS for 

30 minutes, 3 hours, or 24 hours, at which time cell lysates were collected. To block MET, the 

HGF receptor, cells were pretreated with SU11274 (EMD Millipore, 448101) in DMEM 

supplemented with 1% penicillin-streptomycin (P/S) for 2 hours prior to exposure to CM (serum 

free) supplemented with SU11274.    
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Western Blot Cell and tissue lysates were prepared in RIPA buffer (Sigma) 

supplemented with protease and phosphatase inhibitors (#2 and #3, 1:100, Sigma) and quantified 

using the Bio Rad Protein Assay (500-0001, Bio Rad, Hercules, CA, USA).  Immunoblotting 

was performed as previously described(Lu, Proto et al. 2012). Membranes were incubated with 

rabbit monoclonal antibodies (CellSignaling, Danvers, MA, USA) to phospho(S9)-GSK3β, total 

GSK3β, or polyclonal rabbit anti-HGF (1:300, Thermo Scientific, Waltham, MA, USA) at 4°C 

overnight in 5% milk or BSA in TBST. Ponceau S (Sigma) staining was used to evaluate equal 

loading.   

Realtime RT-PCR Total RNA was isolated using TRI Reagent (Sigma) and reverse 

transcribed using Maxima first strand cDNA synthesis kit (Thermo Scientific) according to 

manufacturer’s protocols.  Realtime PCR was carried out using the Maxima Syber Green Assay 

kit (Thermo Scientific) with an iQ5 thermocycler (Bio Rad). Primers were designed using 

PRIMER-Blast (NCBI) and can be found in Table 2. 

Accession Number Gene Name Forward Sequence Reverse Sequence 

NM_007393.3 β-actin CCACACCCGCCACCAGTTCG TACAGCCCGGGGAGCATCGT 

NM_031168.1 IL-6 TCTGCAAGAGACTTCCATCCAGTTGC AGCCTCCGACTTGTGAAGTGGT 

NM_008361.3 IL-1β AAGCCTCGTGCTGTCGGACC GCTTGGGATCCACACTCTCCAGC 

NM_013693.2 TNFα AGCCCACGTCGTAGCAAACCAC CGGGGCAGCCTTGTCCCTTG 

NM_001025257.3 VEGF GGCTTTACTGCTGTACCTCC GCAGTAGCTTCGCTGGTAGA 

NM_011577.1 TGFβ CTAATGGTGGACCGCAACAAC CACTGCTTCCCGAATGTCTGA 

U43428.1 iNOS GCTGCCTTCCTGCTGTCGCA CCTGACCATCTCGGGTGCGG 

NM_010427.4 HGF TCATATCTTCTGGGAGCCAGATGCT GGTCCAAATTGACAATTGTAGGTGTAGT 

 

Table 2. Primer Sequences used in Chapter 3. 

  

Construction of HGF shRNA, AAV vector production, and AAV administration We 

designed two HGF-shRNAs, each based on previously reported siRNA sequences (Paranjpe, 
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Bowen et al. 2007; Bell, Cai et al. 2008). We tested the efficiency of HGF knockdown in vitro 

using C2C12 mouse myoblasts (ATCC). We chose the most efficient sequence (>60% reduction 

by western blot) for our continued experiments. Our shRNA targeted the sense sequence 5’-acg 

aag tct gtg aca ttc ctc-3’ (position in gene sequence: nucleotide 718-738) and antisense sequence 

5’-gcg gaa tgt cac aga ctt cgt-3’. The following oligos were synthesized by Invitrogen: GATC-

sense-CTCGAG-antisense-TTTTTTT-G (forward) and AATTC-AAAAAAA-sense-CTCGAG-

antisense-G (reverse). We chose to use AAV-9 due to its unique tropism towards skeletal muscle 

that results in high gene transfer efficiency (Bostick, Ghosh et al. 2007; Katwal, Konkalmatt et 

al. 2013). We designed an AAV construct containing a dual cassette consisting of the human U6 

promotor driving HGF-shRNA, followed by a CMV promoter driving the ZsGreen reporter gene 

as previously described (Yang, Tang et al. 2012).  An AAV vector with scrambled shRNA was 

designed as a control (ct-shRNA). At five days of age, we performed intraperitoneal (i.p) 

injection with 100uL of virus tittered at 5x10
12

 v.g.per mL . Four weeks later, animals were 

sacrificed and the skeletal muscles were harvested.  Each experimental and control group 

contained 4-6 mice.  

Statistics Data is reported as mean +/- standard error of the mean (sem). To compare 2 

groups, a Student’s t-test was used to determine significance. To compare three or more groups, 

we used a one-way ANOVA followed by Tukey post-hoc analysis. A p-value less than 0.05 was 

considered significant.   
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3.4 RESULTS 

P65 haploinsufficiency improves donor cell survival in injured muscle at 3 and 7 days post-

injection 

Recently, we reported that genetic loss of one p65 allele improved MDSC engraftment 

following intramuscular (i.m.) injection into the injured hind limb muscles of WT mice (Lu, 

Proto et al. 2012). Whether changes in stress resistance accounted for this finding remained 

unclear. To assess the potential role of NF-κB in MDSC survival and subsequent engraftment in 

skeletal muscle we measured the survival of WT and p65
+/-

 MDSCs following i.m. 

transplantation using the well-established cardiotoxin (CTX) muscle injury model (Charge and 

Rudnicki 2004). Prior to injection, we labeled WT and p65
+/-

 MSDCs by retroviral transduction 

to express nuclear-localized red fluorescent protein (RFPn). At 3 days and 7 days post-injection, 

we found significantly more p65
+/-

 donor cells present compared to WT cells (Figure 12 A, B; 

p<0.001). The number of WT cells declined rapidly from days 1 to 3. During the same period, 

there was no statistically significant decline in the number of p65
+/-

 cells (Figure 12 B; WT d3 or 

d7 versus d1, p<0.05). It is unlikely that the higher numbers of p65
+/- 

cells are due to 

proliferation, as co-localization of RFPn with the cell cycle marker Ki67 indicated a similar 

fraction of proliferating donor cells between groups from days 1 to 3 (Figure 12 A, C).  

 

Genetic or pharmacologic blockade of NF-κB alters MDSC resistance to oxidative and 

inflammatory stress  

Previous investigations from our group have identified oxidative stress resistance as an 

important determinant of MDSC regenerative potential and a predictor of engraftment success 
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(Deasy, Lu et al. 2007; Urish, Vella et al. 2009). To ascertain what impact NF-κB inhibition has 

on MDSC resistance to oxidative stress, we conducted in vitro assays using live cell imaging 

(LCI) (Deasy, Jankowski et al. 2003). Interestingly, as shown in Figure 12 D, in the 24 hours 

following exposure to H2O2-induced oxidative stress,  we found the survival of p65
+/- 

 cells to be 

increased compared to WT cells (76% versus 64%, p<0.05). To confirm if this effect was 

dependent on upstream IKK complex activation, we utilized a specific, ATP-competitive small 

molecule IKKβ inhibitor, IKK-2 inhibitor 4 (IKKi), to treat cells before H2O2 exposure. 

Following treatment, WT cell survival increased to a level similar to that of p65
+/-

 cells (vs 

p65+/-, p=0.57), implicating the classical NF-κB pathway in cell survival (Figure 12 D).   

In addition to oxidative stress, donor cells are also confronted by an inflammatory milieu in vivo 

(Wollert and Drexler 2010). To more closely examine how inflammation might affect the 

expansion of the donor cell pool, we co-cultured MDSCs with RAW cells in vitro (ratio of 1:10). 

For these experiments, we again used RFP-transduced MDSCs to allow easy discrimination 

between cell types. We determined MDSC population doubling time (PDT) using a previously 

validated model of cell population growth (Deasy, Jankowski et al. 2003). In the absence of LPS, 

p65
+/- 

MDSCs maintained a higher proliferative state compared to WT cells (PDT of 19.3 versus 

31.7 hrs, p<0.05), as we previously reported (Figure 12 E) (Lu, Proto et al. 2012). However, 

when LPS (100ng/mL) was added to the co-culture system, the PDT of p65
+/-

 cells significantly 

increased (19.3 to 31 hrs, p<0.05), indicating a reduction in the rate of cell proliferation. In 

contrast, WT MDSCs did not demonstrate a significant change in PDT (p=0.817) following the 

addition of LPS to culture medium. Decreasing proliferation under inflammatory conditions 

and/or having a higher resistance to oxidative stress, may account for the improved survival of 

p65
+/-

 MDSCs following i.m. transplantation. 
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Figure 12. Survival is increased in p65
+/-

 MDSCs in vivo and in vitro. 

 

 

 

 

 

. 

 (A) Immunofluorescent staining of tissue sections for the proliferation marker Ki67 (green) and RFPn (donor 

cells, red) demonstrates reduced attrition of p65
+/-

 MDSCs up to one week post-injection. (B) Quantification of 

RFPn+ cells indicated a significant decline in WT cells within the first week, while p65
+/- 

MDSCs displayed a 

much slower decline in number  (**versus WT, p ≤ 0.001; *versus Day 1, p≤0.05). (C) Ki67 positivity indicated 

that there were no differences in proliferation at days 1 and 3 (*p≤0.05; 
+
versus day 1 p≤0.10). (D) LCI 

demonstrated that, relative to WT MDSCs, a higher number of p65
+/-

 or IKK-2 inhibitor IV treated cells survived 

under H2O2-induced oxidative stress after 24 hrs (*p65
+/-

 versus WT, p<0.05; 
+
WT+Inhibitor versus WT, 

p<0.05). (E) When co-cultured with RAW267.4 cells (1:10) in the presence of LPS, the population doubling time 

of p65
+/-

 MDSCs significantly increased, reflecting a decreased rate of proliferation. WT MDSCs demonstrated 

no significant changes (*p<0.05). For A-C: Scale bar: 100 µm. n=8-9 mice per group. Data represented in D and 

E as mean +/- sem for at least 3 experiments. 
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p65
+/-

 MDSC engraftments accelerate the resolution of inflammation and increase the number 

of regenerating fibers in recipient muscle relative to WT MDSC engraftments 

 We next identified inflammatory cell infiltration in injured muscle by immunofluorescent 

staining of tissue sections for the activated macrophage marker CD68 (Figure 13 A). One week 

post-transplantation we found p65
+/-

 cell engraftments to be associated with reduced numbers of 

macrophages compared to WT MDSC engraftments (Figure 13 B).  This is in confirmation of 

our previous finding that p65
+/-

 engraftments were associated with reduced numbers of CD14+ 

monocytes at one week post-injury, relative to WT engraftments (Lu, Proto et al. 2012). 

Inflammatory resolution is closely associated with tissue regeneration. We examined muscle 

regeneration at one week post-transplantation by staining for the embryonic isoform of myosin 

heavy chain (eMyHC), expressed only by immature, regenerating muscle fibers.  eMyHC+ fibers 

were easily identified in and around the donor cell engraftments (Figure 13 C). Although not 

statistically significant, p65
+/-

 engraftments tended to have greater numbers of associated total 

eMyHC+ myofibers (Figure 14 A, p=0.12), with the majority being host-, rather than donor-

derived (Figure 14 B, p=0.10).     

 

P65 haploinsufficiency increases the suppressive effect of MDSC-conditioned medium on IL-6 

induction in LPS-activated RAW264.7 cells.  
A number of soluble factors regulating inflammation and regeneration are under the 

control of NF-κB; thus, we hypothesized that MDSC-secreted factors differed between WT and 

p65
+/-

 cells (Karin and Lin 2002; Sen and Smale 2010). To answer this question, we first 

compared the ability of WT- and p65
+/- 

MDSC-conditioned medium (CM) to modulate the  
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Figure 13. Donor p65
+/- 

MDSC engraftments promote the repair of recipient muscle. 

 

 

 

 

expression of the prototypical cytokines Tnfα,  IL1β, and IL6 in a murine macrophage cell 

line (RAW264.7; RAW) stimulated with endotoxin (LPS). Briefly, RAW macrophages were 

simultaneously exposed to LPS and conditioned medium (CM) from either WT or p65
+/-

  

MDSCs. Treatment with or without LPS in fresh medium served as controls. Exposure to WT-

and p65
+/-

-CM was associated with reductions in all three factors, but we found that it was the 

RAW cells stimulated in p65
+/-

 -CM that expressed the lowest amount of IL-6 (a 10 fold 

decrease in p65
+/-

-CM versus WT-CM, p<0.05) (Figure 15 A). These results demonstrate that 

immunomodulatory factors are secreted by MDSCs and are at least partially under the control of 

the NF-κB transcription factor p65. 

 (A) Immunofluorescent staining of tissue for the macrophage marker CD68 (green) indicated that 

injuries were infiltrated by macrophages within 24 hrs post-injection (48 hrs post-injury), which 

continued to persist at 7 days (bottom). (B) Quantificantion of CD68 positivity within 20x images 

indicates that p65
+/- 

MDSC engraftments have significantly less CD68+ cells present at 7 days. (C) 

eMyHC+ fibers (green) could be identified in or around donor cell engraftments at 7 days. n=3-4 mice 

per group. Scale bar: 100 µm 
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  Figure 14. Muscle regeneration is increased by p65
+/-

 MDSC engraftment 

 

 

 

Factors in MDSC-conditioned medium increase Ser9 phosphorylation on GSK3β 

 In macrophages, a subset of inflammatory genes, including IL-6, requires the activity of 

the serine/threonine kinase glycogen synthase kinase 3β (GSK3β) for efficient gene transcription 

(Steinbrecher, Wilson et al. 2005). Downstream from the activation of receptor tyrosine kinases, 

GSK3β is a target for phosphorylation by proteins such Akt, which serves to inactivate GSK3β 

(Martin, Rehani et al. 2005; Dogra, Changotra et al. 2006; Beurel, Michalek et al. 2010). 

Inactivation of GSK3β by phosphorylation at Ser9 acts as a regulatory switch whereby cytokine 

gene expression is attenuated (Beurel, Michalek et al. 2010).  By western blot, we found that 

RAW264.7 cells activated in p65
+/-

-CM demonstrated a striking +3.5-fold (p≤0.05) increase in  

(A) On average, engraftments of p65
+/-

 MDSCs had a higher total number of eMyHC+ fibers relative 

to WT engraftments (p=0.12). (B) The number of host-derived eMyHC+ fibers per field of view 

(200x images) was higher in p65
+/-

 engraftments compared to WT MDSC engraftments (p=0.10). 

n=7-8 mice per group.  
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Figure 15. MDSC conditioned medium reduces cytokine expression in LPS-activated RAW264.7 cells and is 

associated with inactivation (Ser9 phosphorylation) of GSK3β 

 

 

 

 

 

 

(A) Real time RT-PCR demonstrated that IL-1, TNFα, and IL-6 expression was attenuated in both WT- and p65
+/-

-CM 

treated groups, with IL-6 significantly more decreased by p65
+/-

-CM compared to WT-CM (*versus No LPS, p≤0.05; 
#
versus +LPS, p≤0.05; 

+
versus LPS+WT-CM, p≤0.05). (B) Western blot demonstrated that activation of RAW264.7 

cells in PM induces an increase in pS9-GSK3β within 30 minutes, a response which was amplified in both WT- and 

p65
+/-

-CM. (C) Densitometric analysis revealed that when activated in p65
+/-

-CM, the fraction of pS9-GSK3β increased 

by +3.5-fold in 30 minutes, an amount significantly higher than WT-CM and PM groups (*p≤0.05). Data represented as 

mean +/- sem of at least 3 independent experiments.  
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GSK3β phosphorylation within 30 minutes and remained at +2.9-fold (p≤0.05) up to 24 hours. In 

contrast, when activated in WT-CM, the fraction of pS9-GSK3β did not peak until 3 hours 

(approximately +2.5 fold, p≤0.05) and then declined over the next 24 hours (Figure 15 B, C). In 

fresh medium, p-GSK3β increased by approximately +2-fold before decreasing over the next 24 

hours (Figure 15 B, C). Based on these data, p65
+/-

-CM induces RAW265.7 pS9-GSK3β more 

strongly than WT-CM, resulting in a greater suppression of IL-6. 

 

Pharmacologic inhibition of the HGF receptor, MET, reverses the effect of p65
+/-

-CM on 

GSK3β inactivation in RAW264.7 cells 

To identify candidate anti-inflammatory factors differentially expressed by  p65
+/-

 

MDSCs, we began with a number of genes known to have immunomodulatory properties in 

mesenchymal stem cells, including Tgfb1, Vegf, Hgf , IL-4, IL-10, and Inos (Nauta and Fibbe 

2007). Of these factors, HGF to be significantly upregulated  (Figure 16 A, p≤0.05). Although 

detected in whole skeletal muscle, IL-4 and IL-10 transcripts were detected in neither WT nor 

p65
+/-

 MDSCs (data not shown).  HGF has been reported to modulate the IL-6 production in 

activated macrophages, and thus act as an anti-inflammatory factor. The anti-inflammatory 

activity of HGF/MET is thought to occur through downstream inactivation GSK3β, a mechanism 

that would be in line with our findings.To assess the relative importance of HGF, we blocked the 

activation of its receptor, MET, using SU11274 (Sigma), a small molecule selective inhibitor. In 

order to eliminate potential MET activation by serum-containing medium, we carried these 

assays out under serum-free conditions. As shown in Figures 16 B and C, GSK3β 

phosphorylation 30 minutes post-exposure to LPS in p65
+/-

-CM, was attenuated by MET 
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inhibition in a dose dependent manner. In contrast SU11274 had minimal effect in LPS and 

serum free medium alone, suggesting that HGF was likely mediating this response.  

 

 

Figure 16. Decreased NF-κB activity is associated with up-regulated HGF expression in MDSCs. 

 

 

 

 

(A) Real time RT-PCR analysis revealed that HGF is significantly up-regulated in p65
+/- 

compared to WT 

MDSCs. (B) Inhibition of the HGF receptor, MET, blocks the induction of GSK3β phosphorylation in 

RAW264.7 cells exposed to LPS in p65
+/-

 -CM after 30 minutes. (C) Inhibition of pS9-GSK3β occurred in a dose 

dependent manner following treatment with SU11274 (p<0.05; *p65
+/-

 CM vs SF; +SF vs SF Ctrl; #CM vs SF 

Ctrl). Data represented as mean +/- sem of at least 3 independent experiments. 
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Accelerated regeneration of p65
+/-

 muscle is associated with elevated HGF and inactivation of 

GSK3β in macrophages. 

To identify if an HGF/Met/GSK3β pathway is activated during muscle regeneration in 

vivo, we conducted CTX muscle injury experiments on the hind limb muscles of 4-5 week old 

p65
+/-

 and WT mice.  The injured muscles were harvested at 1, 3, and 5 days post-injury. We 

measured HGF expression over this period and found it to be significantly higher in p65
+/-

 

muscle 3 days post-injury (Figure 17 A).  This coincided with de novo fiber formation, indicated 

by H&E staining of tissue cross sections (Figure 17 B, middle panel, arrows). Consistent with 

the earlier findings of Archaaya and colleagues (2007) regarding accelerated muscle regeneration 

in p65
+/- 

mice, the mononuclear cell infiltrate was greatly reduced at 5 days post-injury (Figure 

17 B, bottom panel) (Acharyya, Villalta et al. 2007). Slightly higher levels of HGF mRNA were 

detected in uninjured p65
+/-

 muscles, but this was not statistically significant (p=0.09). Similarly, 

western blot demonstrated p65
+/-

 muscle to have a modest, but not significant increase in total 

basal HGF protein (Figure 17 C). Finally, by western blot we also observed that Ser9- 

phosphorylation of GSK3β occurred in both WT and p65
+/-

 skeletal muscle following injury, but 

was sustained longer (5 days) in p65
+/-

 mice (Figure 17 D, E). Although informative, western 

blot analysis of pS9-GSK3β using whole skeletal muscle extracts did not allow us to specifically 

examine macrophages.  Thus, we next stained tissue sections for CD68 and phospho-GSK3β and 

examined the number of dual positive macrophages (Figure 17 F). A substantially higher 

number of phospho-GSK3β+/CD68+ macrophages was found in p65
+/-

 muscle at all three time 

points tested (Figure 17 G, p≤0.05). However, we noted no significant difference in the total 

number of infiltrated CD68+ macrophages (data not shown). These results demonstrate that the  
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Figure 17. Accelerated regeneration correlates with HGF up-regulation. 

 

 

 

 

(A) HGF expression is significantly up-regulated in p65
+/- 

muscle at 3 days post-CTX injury (*p≤0.05 vs. 3d WT; 

+p<0.10 vs. d0 WT). (B) H&E staining indicate that compared to WT muscle, the gastrocnemius muscle of p65
+/- 

mice 

regenerates more rapidly (arrows) following CTX injury. (C) Nonreducing SDS-PAGE and western blot analysis of muscle 

extracts shows a slight increase in total HGF in uninjured p65
+/-

 muscles.  (D) Phospho-GSK3β is maintained at 5 days post 

injury in p65
+/-

 muscle, while in WT muscle a (E) significant change in phosphorylation could not be detected. The displayed 

immunoblot images from extracts of WT and p65
+/-

 muscles are all taken from the same membranes, respectively. (F) p-

GSK3β+ macrophages were identified in injured skeletal muscle by immunofluorescent co-staining for pS9-GSK3β (green) 

and CD68 (red, arrow). (G) Quantification as the number of p-GSK3β+ macrophages per high power field (HPF, 600x) 

indicated that a significantly higher number of p-GSK3β+/CD68+ macrophages were found in p65
+/-

 skeletal muscle 

compared to WT skeletal muscle at 1, 3, and 5 days post injury (p≤0.05). For A-E, Scale bar: 50 µm, n=6-8 mice per group. 

For F and G, Scale bar: 20 µm, n=3 mice per group  
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accelerated regeneration of p65
+/- 

skeletal muscle correlates with HGF up-regulation in whole 

muscle and GSK3β inactivation in macrophages. 

 

HGF is upregulated in mdx;p65
+/- 

skeletal muscle and is associated with an attenuated 

dystrophic phenotype  

At this point, we hypothesized that the accelerated inflammatory clearance and muscle 

regeneration found in p65
+/-

 mice may be partially attributed to HGF. Therefore, we next sought 

to determine if elevation of HGF contributes to the reported improved phenotype of mdx;p65
+/-

 

mice (Acharyya, Villalta et al. 2007). We examined HGF expression in the gastrocnemius (GAS) 

muscles of mdx;p65
+/-

 and mdx;p65
+/+

(mdx)
 
littermates during both the degenerative (~4 weeks) 

and regenerative phases (~6 weeks) of the dystrophic pathology. Strikingly, HGF was up-

regulated +5.7 fold in the mdx;p65
+/-

 mice at four weeks of age compared to age-matched WT 

mice (Figure 18 A, p<0.05). In contrast, HGF expression in mdx GAS only increased +2.7 fold 

compared to WT mice. At this time, H&E staining of mdx:p65
+/-

 GAS tissue revealed a reduced 

mononuclear cell infiltrate and significantly enhanced regeneration compared to mdx littermates, 

quantified as the number of centrally nucleated fibers (Figure 18 B, C, p<0.05 ) (Acharyya, 

Villalta et al. 2007). By six weeks, we detected no significant difference between HGF 

expression or centrally nucleated fibers in mdx and mdx;p65
+/-

 GAS (Figure 18 A, C). We also 

examined muscle tissue at 1 week of age, before the onset of muscle degeneration, and found no 

significant differences between either of these two genotypes compared to WT muscle (Figure 

18 A). This demonstrated that upregulation of HGF occurred following the onset of muscle 

degeneration and was associated with the regenerative stage of the mdx dystrophic pathology.  
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Figure 18. Improved regeneration of mdx;p65
+/-

 skeletal muscle at 4 weeks of age correlates with significantly 

up-regulated HGF expression. 

 

 

 

 

In vivo silencing of HGF reverses the ameliorated phenotype of mdx;p65
+/-

 mice  

The question remained whether HGF upregulation in dystrophic skeletal muscle is a 

component of the mechanism of action for anti-NF-κB therapies. It is possible that HGF 

upregulation is actually secondary to regeneration, as it has been reported to be expressed by 

differentiating mdx muscle fibers (Honda, Abe et al. 2010). The link between NF-κB/p65 and 

HGF, however, was initially identified in uncommitted stem cells. Thus, we hypothesized that 

HGF upregulation precedes and subsequently promotes muscle regeneration. To test this 

hypothesis, shRNA targeting HGF was packaged in a musculotropic adeno-associated viral 

(AAV) vector. At 5 days of age, an AAV vector encoding the ZsGreen reporter gene and either 

(A) Real time RT-PCR demonstrated that HGF expression was elevated in mdx:p65
+/-

 muscle at 4 weeks, 

correlating with enhanced regeneration, quantified as the percent of nucleated fibers in (C). (B) Representative 

H&E staining of hind limb muscle from four week old mdx and mdx:p65
+/-

 mice demonstrated that p65 

haploinsufficiency is associated with fiber regeneration during what is typically the degenerative phase of the 

dystrophic phenotype. By six weeks of age, larger fibers are evident in mdx:p65
+/-

  tissues. (*versus WT, p≤0.05; 

+versus WT, p≤0.10; #versus mdx, p≤0.05). Scale bar: 100 µm. n=4-6 mice per group. 
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shRNA targeting HGF (HGF-shRNA) or scrambled, control shRNA (ct-shRNA), was delivered 

by i.p. injection to mdx;p65
+/- 

mice and mdx littermates. Four weeks post-gene transfer, mice 

were sacrificed and their skeletal muscles and soft tissues were harvested. As indicated by 

ZsGreen expression, we observed high gene transfer efficiency in the fore limbs, hind limbs, and 

diaphragm muscle of treated mice.  (Figure 19). To verify knockdown, we determined HGF 

expression by real time RT-PCR in both the diaphragm (DIA) and GAS muscles (Figure 20A, 

 

Figure 19. Transgene expression following AAV delivery. 

 

 

 

upper). Similar to what we had found in untreated mice (Figure 18 A), HGF expression was up-

regulated approximately +2 (p=0.08) and +3.3 (p=0.06) fold in the DIA and GAS muscles, 

respectively, of ct-shRNA mdx:p65
+/-

 mice compared to ct-shRNA mdx. Treatment with HGF-

shRNA reduced HGF by approximately -2 and -4 fold in mdx;p65
+/-

 DIA and GAS, respectively 

IP injection of AAV efficiently delivered the reporter transgene to the musculature body wide. 

Four weeks post injection, transduced muscle fibers, identified by the expression of ZsGreen, 

were detected in muscles of the upper (triceps) and lower (quadriceps, gastrocnemius) limbs as 

well as the diaphragm. Scale bar: 200 µm. 
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(p≤0.05, HGF-shRNA vs ct-shRNA). Thus, HGF mRNA levels in the treated mdx;p65
+/- 

DIA 

and GAS were similar to those of the ct-shRNA mdx mice (0.96 and 0.83, respectively). 

Paradoxically, HGF-shRNA treatment did not significantly decrease HGF expression in the DIA 

or GAS muscles (p=0.80 and p=0.20, respectively) of mdx mice. This may be due to a low level 

of HGF in mdx skeletal muscles, relative to those of mdx;p65
+/-

, or more likely, given the higher 

amounts of myeloid cells in mdx versus mdx;p65
+/- 

skeletal muscle, the escape of non-myogenic 

cells from AAV mediated transduction.  Regenerating fibers, identified by central nucleation, 

also exhibited ZsGreen expression, indicating the transduction of skeletal muscle progenitor 

cells. Indeed, the lack of colocalization between CD68 and ZsGreen demonstrated that myeloid 

cells were not significantly transduced.  Collectively, this indicates that we preferentially 

transduced skeletal muscle progenitor cells and muscle fibers (Figure 20A, lower).  

relative to that of mdx;p65
+/-

, in combination with the escape of non-myogenic cells from 

transduction.   

 HGF-shRNA treated skeletal muscle demonstrated striking morphological changes 

compared to control tissues expressing only ZsGreen. In particular, increased degeneration of 

both the DIA and GAS  indicated a reversal of histological improvements associated with loss 

one p65 allele (Figure 20 B, D). Despite that the decrease in HGF was not statistically 

significant in the mdx group, we still detected histological changes in treated skeletal muscle 

(Figure 20 D). We next carried out a closer examination of the diaphragm muscle, as respiratory 

failure is a leading cause of DMD patient death. We measured the extent of degeneration and 

found that HGF-shRNA treatment significantly increased the lesion area of mdx;p65
+/-

 

diaphragm, such that the size of lesions resembled those of mdx mice (Figure 20 C). Similarly,  
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Figure 20.  Silencing of HGF worsens the histopathology of mdx;p65
+/-

 skeletal muscle. 

 

 

 

 

 

 

 

 

(A) After four weeks, HGF expression was significantly reduced in the DIA and GAS muscles of HGF-shRNA 

treated mdx;p65
+/-

 mice compared to the ct-shRNA treated group. (top,p≤0.05, +shHGF vs. ct-shRNA; 

*GAS,
+
DIA). ZsGreen-expressing centrally nucleated fibers indicate that progenitor cells were successfully 

transduced (bottom, arrow). Muscle tissue sections of treated mdx;p65
+/-

 mice (B) and mdx mice (D) 

demonstrated an exacerbation of dystrophic pathology in both DIA (top) and GAS (bottom). (C) 100x H&E 

images of the diaphragm were used to determine the necrotic/inflammatory lesion area (expressed as percent of 

total) within muscle cryosections. This revealed that silencing of HGF significantly increased the non-muscle area 

in the diaphragm of both mdx and mdx;p65
+/- 

 mice (*p≤0.05). Scale bar: 100 µm. n=4-6 mice per group. 
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Figure 21. Silencing of HGF exacerbates inflammation and necrosis of mdx and mdx;p65
+/-

 mice. 

 

 

 

 

the lesion area of mdx diaphragm also increased following HGF-shRNA treatment. These 

regions were found to contain both necrotic fibers and infiltrating macrophages, indicated by IgG 

and CD68 immunostaining, respectively (Figure 21 A, B). Notably, we found that the CD68+ 

positive area in HGF-shRNA treated mdx diaphragm lesions increased, but not significantly; 

however, necrotic areas significantly increased following treatment with HGF-shRNA (p≤0.05) 

(Figure 21 B, C). Both inflammatory and necrotic lesions significantly increased in mdx;p65
+/-

 

(A) Immunofluorescent staining revealed a striking increase in CD68+ macrophages (left) and IgG+ necrotic 

fibers (right) in mdx;p65
+/-

 treated with HGF-shRNA compared to ct-shRNA mdx;p65
+/-

. (B) In contrast, HGF-

shRNA treated mdx mice did not demonstrate a statistically significant increase in inflammation (left), but did 

demonstrate a significant increase in fiber necrosis (right), indicated in (C).  (*p≤0.05 vs CD68 in ct-shRNA 

group; +p≤0.05 vs. IgG in ct-shRNA group). Scale bar: 100 µm. n=4-6 mice per group. 
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diaphragm following HGF silencing (p≤0.05) (Figure 21 A, C). Therefore, it is unlikely that 

HGF expression is secondary to regeneration.  On the contrary, HGF would seem to be critical 

for muscle repair. Taken together, the results of this study indicate that HGF is critical for the 

beneficial effects of NF-κB/p65 blockade on dystrophic skeletal muscle.  

3.5 DISCUSSION 

The preponderance of evidence suggests that the maintenance of a chronic inflammatory 

state exacerbates muscle injury and accounts for a significant portion of muscle damage in 

DMD. The NF-κB pathway is central to inflammation and has been found to be dysregulated in 

muscular dystrophy (Monici, Aguennouz et al. 2003). In an earlier investigation, Archaryya and 

colleagues (2007) found that deleting one p65 allele significantly alleviated the dystrophic 

phenotype of mdx mice (Acharyya, Villalta et al. 2007). Through the conditional knockout of 

IKKβ in either myeloid cells or skeletal muscle, they attributed this improvement to a reduction 

in inflammation and an enhancement in myogenesis by progenitor cells, respectively. Indeed, the 

p65 subunit of NF-κB has been found to be a potent suppressor of myogenic progenitor cell 

differentiation (Guttridge, Albanese et al. 1999; Acharyya, Villalta et al. 2007; Wang, Hertlein et 

al. 2007; Dahlman, Wang et al. 2009; Lu, Proto et al. 2012). In this study, using primary 

MDSCs, we investigated whether the beneficial effects of NF-κB inhibition on skeletal muscle 

results from more than enhanced myogenesis. By using AAV-mediated expression of targeting 

shRNA, we were able to demonstrate that HGF is critical for alleviating muscular dystrophy in 

mdx mice haploinsufficient for p65. Based on our results and summarized in Figure 22, we 

propose that NF-κB blockade on skeletal muscle not only promotes myogenic differentiation by 
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aiding lineage progression, but also by increasing cell survival and increasing HGF expression, 

which acts locally to modulate inflammation. Additionally, HGF might also directly or indirectly 

influence muscle fiber integrity, as HGF silencing significantly increased fiber necrosis (mouse 

IgG+ muscle fibers, Figure 21).  

 

Figure 22. Model of the effects of NF-κB inhibition on muscle stem and progenitor cells. 

 

We found that blocking classical NF-κB by either pharmacologic IKKβ inhibition or 

genetic depletion of p65 improved MDSC survival under oxidative stress in vitro and following 

i.m. transplantation in vivo. Paradoxically, NF-κB target genes are typically classified as pro-

survival (Karin and Lin 2002). However, several reports have indicated that depending on the 
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stimulus, the p65 subunit of NF-κB can repress, rather than induce, anti-apoptotic gene 

expression (Campbell, Rocha et al. 2004; Wu and Miyamoto 2008). Although speculative, it is 

possible that a related mechanism mediates muscle cell death during oxidative stress. This is of 

particular relevance to DMD, as signs of oxidative stress can be observed in mdx mice even prior 

to the onset of muscle necrosis (Whitehead, Yeung et al. 2006). This is of particular relevance to 

DMD, as signs of oxidative stress can be observed in mdx mice even prior to the onset of muscle 

necrosis. Additionally, during inflammation, lysosomal enzymes and free radicals produced by 

activated leukocytes can escape inflammatory cells, damaging surrounding cells and 

exacerbating necrosis. Reactive oxygen species can be also be generated by muscle cells in 

response to TNFα, which may in turn mediate muscle ring finger 1 (MuRF1) and atrogin 

expression, two muscle specific E3 ubiquitin ligases that induce myofibrillary protein 

degradation (Li, Schwartz et al. 1998).    

In this investigation, we have identified HGF as an important candidate for 

immunomodulation in skeletal muscle. HGF is secreted from cells in a pro-form, requiring 

cleavage via serine proteases, such as urokinase plasminogen activator (uPA), to produce an 

alpha and beta chain, which bind to form the active HGF heterodimer (Mars, Zarnegar et al. 

1993; Gong, Rifai et al. 2008; Sisson, Nguyen et al. 2009). In skeletal muscle, both the active 

and inactive forms of HGF are stored in the extracellular matrix and are crucial for the activation 

of satellite cells following injury (Sheehan, Tatsumi et al. 2000; Tatsumi and Allen 2004).  

Furthermore, uPA
-/- 

mice demonstrate defects in muscle regeneration (Sisson, Nguyen et al. 

2009). Although relatively little is known about the regulation of HGF expression, the 

importance of repressor proteins has been found to be critical for cell type-specific regulation 

(Liu, Beedle et al. 1994; Ma, DeFrances et al. 2009), which makes it possible to speculate that 
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such a protein could be an NF-κB target gene in muscle cells. In a previous study, we found that 

host muscle inflammation and necrosis was reduced by donor p65
+/-

 MDSC engraftment (Lu, 

Proto et al. 2012). In the present study, we found that in addition to reduced inflammation, host 

regeneration appeared to be enhanced, an observation that might be explained by the local 

actions of elevated HGF.  

The anti-inflammatory effect of HGF appears to be dependent on MET-induced 

phosphorylation and inactivation of the serine/threonine protein kinase GSK3β in target cells 

(Martin, Rehani et al. 2005; Steinbrecher, Wilson et al. 2005; Gong, Rifai et al. 2008; Coudriet, 

He et al. 2010). Ubiquitously expressed, GSK3β is constitutively active under basal conditions, 

but is inactivated by phosphorylation at Ser9. Originally identified and named for its role in 

glucose metabolism, GSK3β has been found to have a much larger role in cell signaling than 

previously thought. For example, over 50 target substrates have been identified. More 

importantly, GSK3β activity has been reported to be elevated in a canine model of DMD, 

implicating its dysregulation in the dystrophic pathology (Feron, Guevel et al. 2009). Gong and 

colleagues (2008) have demonstrated that a subset of inflammatory genes, including IL-6 and 

macrophage chemotactic protein-1 (MCP-1), requires GSK3β activity for efficient transcription 

(Martin, Rehani et al. 2005; Gong, Rifai et al. 2008; Coudriet, He et al. 2010). This may account 

for our finding that p65
+/-

-CM suppresses IL-6 expression  more so than WT-CM, but not IL-1β 

or TNFα. The specific consequences of IL-6 suppression are hard to pinpoint, as IL-6 has both 

pro- and anti-inflammatory roles. For example, pro-inflammatory roles of leukocyte-derived IL-6 

include the induction of proliferation and differentiation of killer T cells and the differentiation 

of B cells. It has also been implicated in rheumatoid arthritis, and a humanized monoclonal 

neutralizing antibody for the IL-6 receptor, tocilizumab, is currently available for treatment 
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(Nishimoto and Kishimoto 2006). In skeletal muscle, IL-6 has also been implicated in the 

pathology of cachexia by inducing myofiber atrophy (Bonetto, Aydogdu et al. 2012). On the 

other hand, IL-6 deficient mice have an impaired muscle regeneration capacity, and muscle-

derived IL-6 is known to be critical for muscle hypertrophy in response to overloading via 

activating and promoting satellite cell proliferation (Serrano, Baeza-Raja et al. 2008; Zhang, Li 

et al. 2013). Given the varied roles for this cytokine, it is reasonable to suggest that a pro- or anti-

inflammatory role may be based not only on what cell type is releasing it, but also what cell type 

is being acted upon, as well as the duration of that interaction.  

 A relationship between NF-κB and HGF has implications for the treatment of muscular 

dystrophy. Roles for HGF have been found in the regeneration of diverse adult tissues. Perhaps 

HGF’s most well described role is its stimulation of hepatocyte proliferation and regeneration of 

the injured liver (Tajima and Nakamura 1992; Pediaditakis, Lopez-Talavera et al. 2001). 

Similarly HGF promotes repair and renal tubule formation during acute renal failure (Ohnishi, 

Mizuno et al. 2008; Zhou, Tan et al. 2013). A positive role for HGF has also been described in 

the regeneration of musculoskeletal tissues, including bone, tendon, and cartilage (Takebayashi, 

Iwamoto et al. 1995; Nakase, Kitaoka et al. 2010; Goshima, Nakase et al. 2012). We found that 

at one week after birth, before the onset of the dystrophic phenotype, HGF expression was 

similar between mdx and mdx;p65
+/-

 mice. However, at 4 weeks of age HGF expression was 

significantly higher in mdx;p65
+/-

 muscle and correlated with a significant decrease in leukocyte 

infiltration and an increase in regeneration. Silencing HGF reversed the phenotypic 

improvements of mdx;p65
+/-

 skeletal muscle. In particular, the diaphragm muscle showed 

dramatic degeneration following HGF silencing.    
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 The current gold standard for DMD treatment, corticosteroid therapy with prednisone or 

deflazacort, blocks inflammation, but comes with a wide range of unwanted side effects, 

including cataracts, weight gain, growth impairment, and reduction in bone mineral density 

(Biggar, Harris et al. 2006). A number of drugs have been designed to target NF-κB activity, 

with varying degrees of specificity, but that treatment option remains problematic (Baud and 

Karin 2009). Given the ubiquitous nature of NF-κB and its many functions, this type of therapy 

can only be temporary, at best. For example, patients taking infliximab, a TNF antagonist, have 

an increased risk of infection and cancer (Keystone 2011). Based on this investigation, the 

beneficial effect of anti-NF-κB therapy might also be achieved by targeting HGF/MET. Such an 

approach may well be feasible, as clinical trials are underway testing HGF mimetics for treating 

heart attack and preventing delayed kidney graft function following transplant (Health 2012; 

Health 2013). Based on our findings, activation of HGF/MET might be a new approach to reduce 

inflammation and prolong fiber integrity in dystrophic muscle. 
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4.0  GENERAL DISCUSSION 

4.1 Significance 

Glucocorticoids are currently administered to DMD patients to delay the progression of 

muscle disease. Although the mechanism of action is not entirely understood, patients taking 

prednisolone show a stabilization of muscle degeneration and an improvement in muscle strength 

from 6 months up to two years following treatment. However, these improvements come with 

undesirable side effects, including weight gain, behavioural changes, and a cushingoid 

appearance (Manzur, Kuntzer et al. 2008). The success of steroid treatment has demonstrated 

that dystrophin does not need to be restored in order to improve patient life and healthspan. Thus, 

therapies that treat DMD symptoms, namely muscle inflammation and wasting, are vital to 

improving DMD patient quality of life. 

NF-κB inhibition has been demonstrated to attenuate dystrophic pathology in mouse 

models of DMD.  Some evidence for the benefits of anti- NF-κB therapy have also been 

demonstrated in the golden retriever model of muscular dystrophy, although the method of 

inhibition in this case was non-specific (Araujo, Bonuccelli et al. 2013). Due to the ubiquity of 

NF-κB, direct inhibition of this transcription factor remains problematic for human patients. NF-

κB plays an important physiological role.  This is made most obvious by the finding that p65 or 

IKKβ deletion results in embryonic lethality in mice (Beg, Sha et al. 1995). In addition to the 
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obvious concern for hepatotoxicity, systemic administration of specific NF-κB inhibitors is likely 

to have many side effects. For example, given the critical role of NF-κB in innate immunity, this 

type of therapy can only be temporary. The work presented in this dissertation demonstrates that 

the success of anti-NF-κB therapy in the mdx mouse is due in large part to its effects on muscle 

progenitor cells, which include enhanced resistance to oxidative stress, enhanced myogenic 

capacity, and upregulation of HGF. In particular, HGF was shown to be critical for reducing 

inflammation and necrosis in mdx;p65
+/-

 mice. These data suggest that a therapy activating 

HGF/MET may prove effective for delaying the progression of DMD in human patients.   

Direct delivery of HGF protein may prove difficult due to the short half-lives typical of 

growth factors. For example, in a clinical trial investigating the efficacy of vascular endothelial 

growth factor (VEGF) for coronary artery disease, investigators found that a VEGF bolus 

delivered intravenously has a half-life of  only approximately 30 minutes (Eppler, Combs et al. 

2002). Researchers have developed innovative approaches to overcome this limitation, such as 

biomaterials-based delivery or a gene therapy approach. Alternatively, a small molecule HGF 

mimetic or MET agonist may be a successful approach to treatment. As with any drug, there are 

indeed concerns about unwanted side effects.  HGF/MET has been implicated in cancer 

development and metastasis, and MET inhibitors are currently in Phase III trials as anti-cancer 

treatments (Goyal, Muzumdar et al. 2013). Despite this concern, the safety and efficacy of an 

HGF mimetic, BB3, is currently being evaluated in Phase II trials for the treatment of heart 

attack and delayed kidney graft function (Health 2012; Health 2013).  The results from these 

current BB3 trials may provide the data necessary to support the safety of this approach. Thus, 

further investigation into the efficacy of HGF or MET agonists for the treatment of DMD is 

feasible and warranted.  
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Finally, HGF might also have potential as an adjuvant to dystrophin gene therapy. One of 

the largest obstacles to gene transfer in dystrophic muscle is the immune response. Due to 

chronic inflammation, dystrophic muscle is already infiltrated by immune cells, including 

monocytes and T-cells, prior to any type of gene delivery. Yuasa et al (2002) made the 

observation that immune reactions to transgenes delivered by AAV differed between mdx and 

wild type mice.  Interestingly, they reported that the anti-AAV-IgG levels were equivalent 

between wild type and mdx mice, so the disparity was unlikely to be due to any difference in the 

humoral immune response to the viral capsid. The authors concluded that the enhanced response 

was due to higher levels of the transgene product in the extracellular space, allowing detection by 

antigen presenting cells. Such leakage is likely facilitated by the increased membrane 

permeability of the damaged, dystrophic fibers. (Yuasa, Sakamoto et al. 2002). Minimizing 

extracellular transgene product by reducing muscle necrosis may improve the efficiency of 

dystrophin gene delivery to injured muscle. It has been demonstrated that AAV-mediated 

delivery of a dominant negative mutant of IKKβ decreased necrosis in treated muscle of aged 

mdx mice (Tang, Reay et al. 2010).  More recently, it has been reported that treatment with 

AAV-p65-shRNA reduced inflammatory cell infiltrate in mdx muscle and was associated with 

increased muscle membrane integrity. Based on the results contained in Chapter 3 of this 

dissertation, myofiber protection may also be mediated by HGF.  Thus, “conditioning” 

dystrophic muscle with an HGF/MET therapy might increase the likelihood of successful 

dystrophin gene delivery.  
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4.2 Future Directions and Concluding Remarks 

The data discussed in this dissertation indicate that NF-κB p65 is a major determinant of 

muscle stem cell trophic interactions and fate decisions. However, many questions remain 

unresolved, providing interesting avenues for future study. Continued research should begin with 

a more detailed evaluation of the major pathways discussed in this dissertation in the context of 

muscle injury and muscular dystrophy, using both primary MDSCs and mouse models. These 

pathways include NF-κB, GSK3β, and HGF/MET.      

In Chapter 2, we identified NF-κB/p65 as a negative regulator of myogenic 

differentiation in MDSCs using cells isolated from p65
+/-

 mice.  We also made the observation 

that proliferation was accelerated in p65
+/-

 MDSCs.  This finding is contradictory to the known 

role of p65 in promoting cyclin D1 protein stability, and hence proliferation in myoblasts 

(Guttridge, Albanese et al. 1999; Dahlman, Wang et al. 2009). Examining the expression of cell 

cycle genes in wild type and p65
+/-

 MDSC populations may shed light on this discrepancy. 

Although seemingly unusual, IKK/NF-κB has been demonstrated to negatively regulate cell 

proliferation in normal human fibroblasts, skin epithelial cells, and mouse embryonic fibroblasts. 

The authors of these studies reported that p65 physically disrupted the association of activating 

E2F transcription factors with histone acetyl transferase (HAT) complexes, and instead enhanced 

the DNA binding of a repressor E2F/p130 complex (Araki, Kawauchi et al. 2008).  It would be 

interesting to see if the expression of E2F-responsive genes differs between wild type and p65
+/-

 

MDSCs.  It is also possible that results could be obscured by the heterogeneity of the MDSC 

populations (Jankowski, Haluszczak et al. 2001). In the modified preplating isolation procedure, 

MDSCs are contained within the sixth preplate (pp6). These few slowly adhering cells attach to 

the flask and eventually form colonies. In order to reduce the probability of transcriptional 
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changes being obscured by population heterogeneity and/or clonal drift, single cell RT-PCR 

could be performed on passage one pp6 cells(Sacco, Doyonnas et al. 2008).  

Aside from directly altering cell cycle gene transcription, NF-κB inhibition may affect 

proliferation in an indirect manner. As discussed in Chapter 3, we found that HGF was 

upregulated in p65
+/-

 MDSCs. HGF has previously been reported to stimulate the proliferation of 

satellite cells and myoblasts in an autocrine manner (Sheehan, Tatsumi et al. 2000). Examining 

proliferation following knockdown of HGF or MET would be the first step towards determining 

the autocrine role for HGF in MDSC proliferation and survival in vitro. It is also important to 

determine whether the autocrine role of HGF is important for the enhanced engraftment capacity 

of p65
+/-

 MDSCs in vivo and their regenerative effect on the host. To evaluate the importance of 

autocrine signaling for the success of donor MDSC transplant in vivo, MDSCs deficient for MET 

can be injected into injured muscle.  

Finally, evidence from mouse models as well as studies on DMD patients, suggests that 

stem cell exhaustion plays a significant role in the progression of DMD (Webster and Blau 1990; 

Sacco, Mourkioti et al. 2010).  Stem cell exhaustion is most often studied in the context of the 

natural aging process. In landmark experiments, the aged phenotype of murine satellite cells was 

shown to be reversible by exposure to young mouse serum (Conboy, Conboy et al. 2005; Brack, 

Conboy et al. 2007).  This suggests that, in muscle at least, age-associated stem cell decline is 

not permanent and may result due to signals from the aged tissue environment. Perhaps a similar 

principle may apply to stem cell exhaustion in DMD.  Of note, there has been no reported 

evidence that excessive DNA damage is responsible for stem cell senescence in skeletal muscle 

(Cousin, Ho et al. 2013).  Thus far, research to determine the molecular pathways responsible for 

suppressing stem cell function during aging have identified Notch, Wnt, and fibroblast growth 
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factor 2 (FGF2) (Conboy and Rando 2002; Conboy, Conboy et al. 2003; Conboy, Conboy et al. 

2005; Brack, Conboy et al. 2007).  If we apply principles of stem cell “aging” to DMD-related 

stem cell exhaustion, progressive degeneration and chronic inflammation of skeletal muscle 

could lead to stem cell dysfunction in a feed-forward fashion.  An investigation into whether p65 

or even HGF plays a role in this process and whether it can be modulated to promote repair, is 

warranted.  

In Chapter 3, we demonstrated a negative role for p65 in cell resistance to stress using an 

oxidative stress assay in vitro and a cell transplant model in vivo. Again, this finding contradicts 

the generally accepted notion of NF-κB as a pro-survival transcription factor (Karin and Lin 

2002). There are some reports of NF-κB-induced expression of the pro-apoptotic proteins Fas 

and FasL in T-cells (Kasibhatla, Brunner et al. 1998). It has been indicated that depending on the 

stimulus, p65 can repress, rather than induce, anti-apoptotic gene expression (Campbell, Rocha 

et al. 2004; Wu and Miyamoto 2008). These reports are rare, but the majority of them involve 

NF-κB activation in response to DNA damage (Tilstra, Robinson et al. 2012). Thus, it may be 

interesting to test whether p65 deficiency enhances cell survival following exposure to a DNA 

damaging agent such as daunorubicin/doxorubicin or UV-C, both of which were reported to 

induce pro-apoptotic NF-κB activity (Campbell, Rocha et al. 2004). 

We concluded that the anti-inflammatory effect of HGF in injured skeletal muscle is 

likely mediated by GSK3β inactivation in inflammatory cells.  In this study, we did not examine 

GSK3β phosphorylation in myogenic cells.  Presumably, HGF could inhibit its activity in these 

cell types as well. This may be relevant to muscle injury as it has been reported that GSK3β is 

required for muscle atrophy and is dysregulated in larger DMD animal models (Feron, Guevel et 

al. 2009; Verhees, Schols et al. 2011). Generally speaking, active GSK3β is associated with 
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catabolism, while inactivated GSK3β is associated with anabolism (Verhees, Schols et al. 2011). 

The metabolic consequences of the alterations in GSK3β activity could be evaluated in 

mdx;p65
+/-

 mice, but as mdx mice do not demonstrate atrophy and wasting until a late age (18+ 

months), a more severe DMD model, such as the dystrophin-utrophin double knock out (dKO) 

mouse, may be useful here (Deconinck, Rafael et al. 1997).    

 We hypothesized that HGF was involved in the accelerated regeneration of p65
+/- 

mice 

and in the therapeutic benefit of NF-κB inhibition in mdx mice. One of the drawbacks to this 

study was the lack of tissue specificity in p65 allele deletion. It has been reported that conditional 

knockout of IKKβ in bone marrow was sufficient to reduce inflammation in mdx mice, but 

insufficient to enhance regeneration. Conversely, IKKβ deletion in muscle enhanced 

regeneration, but did not decrease inflammation (Acharyya, Villalta et al. 2007). On the contrary, 

we found HGF released by p65 haploinsufficient muscle to both decrease inflammation and 

enhance regeneration. To verify that it is HGF derived from myogenic cells that is responsible 

for reducing inflammation after injury and disease, muscle regeneration should be analyzed in 

p65
+/-

 or mdx;p65
+/-

 mice that have received bone marrow transplants from wild type  or mdx 

mice, respectively . Limiting p65 deficiency to non-myeloid cell types will allow for a clearer 

understanding of the relationship of muscle-derived HGF and inflammation following injury.  

In the mdx;p65
+/-

 mice, we used a musculotropic AAV vector to deliver shRNA targeting 

HGF. After four weeks, we found that the reduction of HGF to levels similar to those in mdx 

mice exacerbated diaphragm histopathology. The next logical experiment would be to determine 

if HGF protein delivery to mdx mice improves their phenotype.  Additionally, we posit that the 

primary sources of HGF in skeletal muscle are dividing progenitor cells and regenerating 
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myofibers. For a more direct confirmation, the temporal expression of HGF should be 

determined in mdx;p65
+/-

 MDSCs as they progress down the myogenic lineage in vitro.   

Finally, the mechanism of HGF upregulation following deletion of one p65 allele remains 

elusive. An NF-κB binding site has been identified in the 5’ flanking region of Hgf, but its actual 

binding has not been demonstrated (Harrison and Farzaneh 2000).  This was investigated using a 

cell line derived from human fetal lung tissue; therefore binding in other tissues remains a 

possibility. It is also reasonable to hypothesize that an NF-κB target gene product may be a 

repressor of HGF in the way that NF-κB inhibits MyHC expression via YY1 (Wang, Hertlein et 

al. 2007).  Although an NF-κB dimer composed of p65/p50 is usually considered gene 

activating, p50 homodimers have been described as gene repressing (Tong, Yin et al. 2004; 

Elsharkawy, Oakley et al. 2010). Both p65/p50 and p50/p50 dimers translocate to the nucleus 

following classical activation (Acharyya, Villalta et al. 2007). Haploinsufficiency of p65 may 

serve to increase the proportion consisting of p50 homodimers. HGF may then be affected 

downstream of altered NF-κB target genes.     

Answering these questions will begin to elucidate the molecular changes responsible for 

our observations, and may identify additional drug targets for the treatment of DMD. The 

success of glucocorticoid therapy has clearly demonstrated that treating the DMD pathologies 

secondary to dystrophin deficiency can improve patient quality of life and even lifespan. Anti-

NF-κB therapy may be able to successfully treat DMD patients through increasing the 

regenerative and anti-inflammatory capacity of muscle stem cells.  The danger of unwanted side 

effects is great enough that this approach is unlikely to hold up in clinical trials. Following the 

work presented in this dissertation, we now have a better understanding of the ways in which 
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NF-κB functions in muscle stem cells.  The groundwork is now laid for future studies of 

HGF/MET activation as a treatment for DMD. 
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APPENDIX A: MODULATION OF NF-κB RESTORES THE  MYOGENIC POTENTIAL 

OF AGED MDSCS IN VITRO 

A.1 ABSTRACT 

A decline in the regenerative capacity of adult muscle stem cells during aging is well 

documented. Globally, NF-κB is up regulated in aging tissues. Given the negative role that NF-

κB plays in myogenesis, we investigated whether the aged phenotype of muscle-derived stem 

cells (MDSCs) was associated with over activated NF-κB.  We isolated MDSCs from aged (24 

month old) and young (14 day old) wild type (WT) mice. The decreased myogenic capacity of 

aged cells appeared to be associated with irregular cell cycle progression, indicated by high 

cyclin D1 levels post differentiation. Treatment with an inhibitor of NF-κB rescued the myogenic 

capacity of aged MDSCs, despite not decreasing cyclin D1 protein levels. A similar increase in 

differentiation  was obtained in aged MDSCs isolated from 30 month old mice haploinsufficient 

for the NF-κB subunit  p65 (p65
+/-

), suggesting our observations were not due to off target 

effects of the pharmacologic inhibitor.  Furthermore, we found that both aged MDSCs treated 

with an NF-κB inhibitor and aged p65
+/-

 MDSCs have a higher resistance to oxidative stress than 

untreated aged cells.  Finally, preliminary results with human skeletal muscle progenitor cells 

expressing shRNA against p65 demonstrate an increase in cell fusion under differentiation 

conditions. Our results suggest that MDSC “aging” may be reversible, and that pharmacologic 



 94 

targeting of pathways such as NF-κB may enhance the efficacy of cell therapies in aging 

patients, despite a mechanism that remains unclear. 

A.2 INTRODUCTION  

Stem cell based approaches for the treatment of disease and injury are often heralded as 

the future of regenerative medicine and tissue engineering.  At present, clinical trials have taught 

us that many obstacles remain before cell therapies become common clinical practice.  One such 

problem for both allogeneic and autologous cell sources is the impact of donor age on stem cell 

function and clinical efficacy, as substantial evidence suggests that stem cell dysfunction 

contributes to the aging process (Carlson and Conboy 2007; Dimmeler and Leri 2008).  

Transplantation of older, functionally impaired cell populations is likely to result in a reduced 

clinical efficacy compared to the transplantation of younger cell populations (Si, Zhao et al. 

2010). This does not bode well for the future of cell therapy, given that diseases for which cell-

based treatments seem the most promising have the highest prevalence among aging populations 

(Dimmeler and Leri 2008).  For example, greater than 80 percent of those who die from coronary 

heart disease are over the age of 65 (Association 2010). Considering that the risks associated 

with immunosuppression may outweigh the benefits of allogeneic cell transplants, new strategies 

aimed at improving aged stem cell function must be investigated.  

A decline in the function of tissue-resident stem cells is likely to contribute to the 

decreased wound healing and regeneration capacity that comes with age (Carlson and Conboy 

2007). For example, skeletal muscle injury that would lead to the regeneration of functional 

tissue in children, instead leads to prolonged inflammation and fibrosis in older individuals 
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(Conboy and Rando 2005). This phenomenon has been demonstrated to be related to the 

functional decline of satellite cells. In landmark experiments, the aged phenotype of murine 

satellite cells was shown to be reversible by exposure to young mouse serum (Conboy, Conboy 

et al. 2005; Brack, Conboy et al. 2007).  This suggests that, in muscle at least, age-associated 

stem cell decline is not permanent and likely results due to signals from the aged tissue 

environment.  Thus, ex vivo priming or engineering to “rejuvenate” aged cells may be a viable 

approach for enhancing function following transplantation (Carlson and Conboy 2007). For these 

reasons, a better understanding of the processes controlling adult stem cell regenerative capacity 

are necessary before autologous cell therapies for aging patients can be used in the clinical 

setting.   

 Thus far, research to determine the molecular pathways responsible for suppressing stem cell 

function in skeletal muscle has identified both the Notch and Wnt signaling pathways (Conboy 

and Rando 2002; Conboy, Conboy et al. 2003; Conboy, Conboy et al. 2005; Brack, Conboy et al. 

2007). In post-natal muscle, activation of the Notch pathway has been found to be required for 

satellite cell activation and cell cycle entry (Conboy and Rando 2002). In aged muscle, Notch 

activation in response to injury is impaired, and forced activation improves regeneration in aged 

muscle (Conboy, Conboy et al. 2003). Approximately twenty percent of aged satellite cell 

progeny undergo conversion to a non-myogenic, fibrotic cell type in vitro, which occurs in less 

than one percent of cell generated from young satellite cells. This process, mimicking the 

elevated fibrosis found in aged muscle, may be mediated through increased Wnt signaling, as 

inhibition of canonical Wnt decreases aged muscle fibrosis following injury (Brack, Conboy et 

al. 2007).  
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  Increased NF-κB activity has been identified as a major regulator of gene expression 

programs associated with aging. Although total protein levels of NF-κB have not been found to 

change, increased amounts of NF-κB subunits have been found in nuclear extracts of aged mouse 

and rat skin, liver, kidneys, and brain (Salminen and Kaarniranta 2009). Local inhibition of NF-

κB in aged murine skin led to tissue rejuvenation and changes in gene expression such that 

treated skin resembled younger skin more closely than it did untreated, age-matched controls 

(Adler, Sinha et al. 2007). Taken together, the current body of evidence suggests that pathways 

involved with normal post-natal myogenesis may become dysregulated during aging, and that 

targeting of molecular pathways associated with stem cell or tissue aging may be a viable 

approach for enhancing aged stem cell function (Brack, Conboy et al. 2007; Carlson, Suetta et al. 

2009).   

We investigated whether reversibility of the aged phenotype is possible in muscle-

derived stem cells (MDSCs), as previous studies have demonstrated that MDSC-based therapies 

can be used for tissue repair following muscle, bone, cartilage, and cardiac injury. For our 

studies, we have isolated MDSCs from aged (24 month old) and young (14 day old) wild type 

mice and aged (30 month old) mice lacking one allele for the NF-κB subunit p65 (p65
+/-

) using a 

modified pre-plate technique. We found that the declined myogenic capacity of aged MDSCs 

was associated with increased levels of the NF-κB regulated protein cyclin D1, but not 

YinYang1 (YY1), also regulated by NF-κB. Unexpectedly, we did not detect increased 

activation of NF-κB, measured by immunoblotting for phosphorylated p65. Despite this, 

treatment with a small molecule inhibitor of NF-κB restored the myogenic capacity of aged 

MDSCs to the same level as young non-treated MDSCs. Furthermore, pretreatment of aged 

MDSCs with an IKKβ inhibitor increased cell survival under oxidative stress. This led us to 
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hypothesize that NF-κB may represent a molecular target for enhancing the regenerative 

potential of aged MDSCs. To investigate this further, we isolated MDSCs from 30 month old 

transgenic mice haploinsufficient for p65 (p65
+/-

).  We found that aged p65
+/-

 MDSCs retained 

myogenic potential in vitro and had a higher resistance to oxidative stress-induced cell death than 

aged wild type cells.  The mechanism of myogenic enhancement following NF-κB inhibition 

remains elusive, as we detected no obvious changes in cyclin D1 or YY1 following treatment. 

Despite this remaining question, human skeletal muscle progenitors isolated from a 76 year old 

female appeared to have enhanced cell alignment for fusion following transfection with a p65 

shRNA-encoding plasmid.  Although leaving many questions to be answered, our results 

demonstrate that MDSC “aging” is at least partially reversible, and that targeting of NF-κB, 

whether through a genetic or pharmacological approach, may represent one strategy for 

enhancing the efficacy of autologous cell therapies in aging patients.   

 

 A.3       Materials and Methods 

 

Murine cell isolation.  Using the modified preplate technique, we isolated populations of 

muscle-derived cells from the leg muscles obtained from 24 month old (aged) and 2 week old 

(young) wt mice, and 20 month old p65 haploinsufficient (aged p65
+/-

) mice. Rapidly adhering 

cells from early preplates, representing myoblasts (pp3-4) were also collected and cultured in 

growth medium consisting of 10% FBS, 10% horse serum, 1% Penn-strep, and 2.5 ng/mL basic 

fibroblast growth factor (bFGF) in DMEM.  
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Human skeletal muscle progenitor (hMPC) cell isolation. hMPCs were isolated from 

the muscle biopsy of a 76 year old female patient. This was done according to the modified 

preplate technique, with the hMPC population defined as pre-plate three. 

Myogenic differentiation assay and fast Myosin Heavy Chain (MyHC) staining.  

After 15 passages, cells were plated on 24 well plates (20,000 cells per well) with DMEM 

supplemented with 2% FBS to stimulate myotube formation. At the indicated timepoints, cells 

were washed, fixed with ice cold 100% methanol, and stained for fast skeletal myosin heavy 

chain (MyHC) or vimentin. Briefly, cells were blocked with 10% horse serum for one hr and 

then incubated with a mouse anti-MyHC (1:250, Sigma) and rabbit anti-vimentin (1:100, Sigma) 

for 1 hr at RT. The primary antibody was detected with a secondary anti-mouse or anti-rabbit 

IgG antibody conjugated with 594 or 488 (1:500, Sigma) for 30 min. The nuclei were revealed 

by DAPI staining. The percentage of differentiated myotubes was quantified as the number of 

nuclei in MyHC positive myotubes relative to the total number of nuclei.  

Transfection of hMPCs.   Using the Xfect transfection reagent (Clontech, Mountain 

View, CA), hMPCs were transfected with 1.5 micrograms of plasmid DNA encoding shRNA 

against p65 (pP65-shRNA) or scrambled shRNA (pCtrl). The plasmids have been previously 

described elsewhere, and were kindly provided by Dr. Bing Wang.  

Western Blot Cell and tissue lysates were prepared in RIPA buffer (Sigma) 

supplemented with protease and phosphotase inhibitors (#2 and #3, 1:100, Sigma) and quantified 

using the Bio Rad Protein Assay (Bio Rad).  Immunoblotting was performed as previously 

described (Lu, Proto et al. 2012). Membranes were incubated with antibodies against 

phosphorylated p65 (Cellsignal) and the NF-κB targets YingYang1 (Santa Cruz Biotechnology) 
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and cyclin D1 (BD Pharmigen). at 4°C overnight in 5% milk or BSA in TBST. In order to ensure 

equal loading, membranes were probed with HRP-conjugated anti-GAPDH (Sigma).   

 Pharmacologic Inhibition of NF-kB Signaling. Aged murine MDSCs were treated 

with IKK-2 Inhibitor IV (Calbiochem) at varying doses during myogenic differentiation and cell 

survival assays.  

Statistical analysis. All results are given as the mean ± standard error of the mean. 

Means were compared using the Students’ t-test. Differences were considered statistically 

significant when the p-value was <0.05. 

In vitro Measurement of Cell Survival under Oxidative Stress.  Cells were exposed to 

oxidative stress induced by treatment with 250 uM hydrogen peroxide. In order to visualize cell 

death, propidium iodide (PI), a DNA-binding dye, was added to culture medium according to 

manufacturer’s protocols (BD Bioscience, San Jose, CA, USA). To block NF-κB activation, WT 

MDSCs were treated with the reversible ATP-competitive inhibitor of IKKβ, IKK-2 Inhibitor IV 

(EMD Millipore, 401481, Billirca, MA, USA) at 5uM.   Using the LCI system described above, 

10x brightfield and fluorescence images were taken in 10 minute intervals over 24 hours (Deasy, 

Jankowski et al. 2003).  Identifying the number of PI+ cells per field of investigation out of the 

total cell number determined the percentage of cell death over time. 

 

A.4        Results 

 

Aged MDSCs exhibit a resistance to cell cycle arrest under fusion conditions.   

The myogenic potential of murine MDSCs declines with age (Lavasani, Robinson et al. 

2012). Brack and colleagues (2007) have reported that a significant percentage of aged satellite 
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cell progeny undergo conversion to a non-myogenic, fibrotic cell type in vitro following isolation 

(Brack, Conboy et al. 2007). We speculated that a similar phenomenon may occur in MDSCs. 

We compared the capacity for myogenic differentiation of aged MDSCs, isolated from 24 month 

old mice, and young MDSCs, isolated from 2 week old mice. Within three days of culture under 

myogenic conditions, myotubes were evident in both young and aged MDSC cultures. Although 

equal numbers of cells were plated, there was a striking difference in cell density after 72 hours 

(Figure 23). We analyzed cell morphology by staining for fast skeletal myosin heavy chain 

(MyHC) and vimentin, an intermediate filament protein expressed in mesenchymal tissues.  

Unexpectedly, myotubes appeared as MyHC and vimentin double positive (Figure 23), but this 

has been reported before (Gallanti, Prelle et al. 1992). Several MyHC-vimentin+ cells 

demonstrated a fibroblast-like morphology (Figure 23, A inset), but this is insufficient evidence 

for phenotype conversion.  What was clear from this assay, however, was that aged WT cells 

were proliferating after being plated in fusion medium. Before differentiation can occur, cells 

must undergo cell cycle arrest.   NF-κB, specifically p65, has been implicated as a suppressor of 

myoblast cell cycle withdraw via stabilization of cyclin D1. As we hypothesized that NF-κB 

activity was implicated in aged MDSC dysfunction, we examined cyclin D1 and phosphorylated 

p65 (S536) levels in fusion cultures of young and aged MDSCs by western blot. We found 

significantly more cyclin D1 in aged fusion cultures compared to young cultures. Increased p65 

activation, however, was not evident. As an additional indirect measurement of NF-κB activity, 

we looked at the NF-κB induced protein, YY1, a myofibrillary gene repressor, and found no 

obvious differences (Figure 23, B).  
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Figure 23.  The coupling of cell cycle withdraw and differentiation is disrupted in aged MDSCs. 

 

 

 

Inhibition of IKKβ restores the myogenic potential of aged murine MDSCs  

If NF-κB regulation is unaltered in aged MDSCs, that does not preclude it as a molecular 

candidate for enhancing myogenic potential. Therefore, we next investigated whether IKKβ 

inhibition would be sufficient to restore the myogenic potential of aged cells.  Aged and young 

MDSCs were plated and cultured under myogenic conditions with or without the presence of 

IKK-2 inhibitor IV (IKKi) at 0, 1, 2, or 5 µM. Differentiation was monitored by brightfield 

microscopy. After 5 days, treated cells demonstrated an increase in myofiber formation and a 

decline in undifferentiated cell number. We quantified differentiation at 5 µM (the most effective 

dose) by immunofluorescent staining for MyHC. To help to rule out possible non-specific effects 

(a) MyHC (red) and vimentin (green) staining indicates that after 72 hours under fusion 

conditions, there is a much greater number of MyHC- cells in aged MDSC cultures. Some of 

these cells took on a fibroblast like morphology (inset). (b) Western blotting did not detect 

changes in p-p65, but did detect much higher levels of cyclin D1 in aged MDSCs. 
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of IKKi treatment, we also assessed the myogenic capacity of aged p65
+/-

 MSDCs isolated from 

30 month old mice. As shown in Figure 24, the percent of nuclei in myotubes was significantly 

increased by IKKβ inhibition and to a lesser degree by p65 deficiency. IKKi treatment of aged   

 
Figure 24. Inhibition of IKKβ or genetic loss of one p65 allele enhances myogenic differentiation and stress 

resistance in aged MDSCs. 

 

 

 

(a) Brightfield images demonstrate a dose dependent increase in myotube formation following 

IKKi administration. (b) MyHC positivity was quantified at the dose of 5 µM. (C) This revealed 

that differentiation was significantly increased following NF-κB inhibition and this was not due 

to (c) increased myofiber maturation. (E) Under oxidative stress conditions, cell survival is 

increased in IKKi treated or (F) p65 
+/-

 aged MDSCs.  
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MDSCs increased their myogenic potential to levels similar to those of young cells.  While aged 

p65
+/- 

MDSCs did demonstrate an improvement, differentiation was still significantly lower 

compared to young MDSCs (Figure 24 B, C). As we did not detect any differences in NF-κB/p65 

phosphorylation, we thought that perhaps NF-κB inhibition did not correct overactive 

transcription factor activity, but instead accelerated myogenesis. To investigate this, we analyzed 

fiber maturity by determining the number of nuclei per myotube. For our purposes, we defined 

“mature” myotubes as those containing greater than three nuclei. Interestingly, we found that the 

percent of nuclei in mature myotubes was similar between young and aged cells (Figure 24 D).  

This percentage increased after treatment, but again, was not different between young and aged 

cells.  Although far from conclusive, these results suggest that NF-κB inhibition does not 

accelerate differentiation but rather increases the myogenic capacity of aged MDSCs. 

Furthermore, this appears to occur despite the absence of apparent NF-κB/p65 over activation 

compared to young cells.   

 

NF-κB inhibition increases MDSC resistance to hydrogen peroxide induced oxidatve stress.               

Previous studies from our group have shown that MDSC resistance to oxidative stress, which 

declines with age, is an important characteristic that distinguishes them from myoblasts and 

correlates with high regenerative capacity in vivo (Urish, Vella et al. 2009; Lavasani, Robinson 

et al. 2012). As NF-κB is known to be a stress responsive pathway (Luo, Kamata et al. 2005), we 

examined if IKK/NF-κB inhibition would improve cell survival under hydrogen-peroxide (H202) 

induced oxidative stress. Briefly, cells were triplicate plated in twenty-four well plates and 

exposed to 250 µM H202 in proliferation medium containing propidium iodide, a fluorescent 

DNA stain.  We monitored cell death and survival by capturing brightfield and fluorescent 
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images once every 10 minutes for twenty-four hours of multiple locations per well by LCI.  As 

predicted, young  MDSCs displayed a higher percentage of cell survival compared to aged 

MDSCs (Figure 24 E).  We observed that pretreatment with 5uM IKKi significantly increased 

aged MDSC survival.  To help rule out non-specific IKKi targets, we next compared survival 

between aged WT and aged p65
+/-

 MDSCs.  We found that genetic deficiency of p65 had a 

similar effect to IKKi treatment (Figure 24 F).  

 

NF-κB inhibition does not decrease cyclin D1 levels during aged MDSC differentiation 

Now that we have identifed NF-κB as a target for enhancing cell survival and myogenic 

differentiation, we returned to the question of its regulation during aging. As we had found 

cyclin D1 to be significantly higher in aged fusion cultures compared to those of young cells, we 

re-examined the levels of cyclin D1, p-p65, and YY1 with and without IKKi treatment after 5 

days of culture in fusion medium. Surprisingly, Cyclin D1 levels remained the same and YY1 

levels were only modestly decreased (Figure 25 A).  Similiarly, we did not see significant 

differences in p-p65 levels. We next examined p-p65 levels under normal proliferation 

conditions and were surprised to find that p-p65 was lower in aged, rather than young, MDSCs 

(Figure 25 B). It is possible that this is an artefact due to multiple passages in vitro during 

experiments.  To test this, we examined the p-p65 levels in myoblasts from young and old 

muscle at passage 1 or 2 and detected no differences (Figure 25 C).  
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Figure 25. NF-κB activity does not appear to be altered under fusion conditions, but it may still be a target to 

improve the fusion of aged human muscle progenitor cells. 

 

 

 

 

Preliminary evidence indicates that NF-κB suppression enhances the alignment of aged 

human skeletal muscle progenitor cells under myogenic differentiation conditions. 

Despite these paradoxical findings, the enhanced differentiation and survival of aged 

MDSCs following NF-κB inhibition suggests that this may remain an effective strategy for 

improving the aged stem cell phenotype.  Thus, we tested the efficacy of NF-κB inhibition on 

aged human skeletal muscle progenitor cells (hMPCs) isolated from a muscle biopsy taken from 

a 76 year old female.  Treatment with IKKi proved to be toxic at high doses and ineffective at 

low doses (data not shown).  Thus, we transfected the aged hMPCs with a plasmid encoding 

shRNA targeting p65 (Yang, Tang et al. 2012).  After 10 days, we examined differentiation 

(a) Western blot of phosphorylated p65 and NF-κB target proteins after culture in fusion 

conditions. (b) Under normal proliferation conditions, steady state levels of p-p65 are decreased in 

aged MDSCs compared to young MDSCs, but this is (c) not seen in myoblasts. (d) Transfection 

with a plasmid encoding shRNA targeting p65 appears to increase pre-fusion alignment (arrows) of 

human skeletal muscle progenitor cells from a 76 year old female.  
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qualitatively by brightfield microscopy and found evidence of increased cell alignment following 

p65 silencing, which is the earliest step towards cell fusion. Similar to the results with aged 

murine MDSCs, these preliminary results suggest that NF-κB inhibition may enhance the 

myogenic potential of hMPCs.   

 

A.4        Discussion 

  

We examined whether NF-κB is over activated in aged murine MDSCs and whether this 

contributes to the aged stem cell phenotype.  This short and preliminary study yielded some 

confusing, yet interesting, results. We did not detect higher levels of NF-κB in aged MDSCs, as 

measured by p-p65. Rather, we found no overt differences in p-p65 levels after differentiation 

and even reduced levels during growth in proliferation medium.  Despite this observation, NF-

κB inhibition, whether by IKKi treatment or p65 deficiency, improved the differentiation of aged 

MDSCs. Similarly, progression towards differentiation was detected in aged hMPCs following 

p65 silencing.  

During differentiation, we detected high levels of cyclin D1, which were not detected in 

young MDSC fusion cultures. Cyclin D1 activity can reduce the differentiation of myogenic cells 

by blocking MEF2, a transcription factor important for differentiation, from association with 

coactivators (Azmi, Ozog et al. 2004).  Although it is attractive to hypothesize that over 

expression of cyclin D1 is responsible for blocking cell cycle exit and differentiation, NF-κB 

inhibition enhanced myogenesis without decreasing cyclin D1 levels.  The presence of cyclin D1 

in terminally differentiated cells is intriguing, but does not directly indicate its activity.  

Additionally, IκBα binds to and inhibits cyclin dependent kinase 4 (CDK4), the target of cyclin 
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D1. Presumably, blocking IKKβ activity would prevent the phosphorylation and degradation of 

IκBα. It would be interesting to see if CDK4 levels and activity differ between young and aged 

MDSCs during differentiation and it this changes following NF-κB inhibition. 

We also found that resistance to oxidative stress was elevated in p65 deficient or IKKi-

treated aged cells.  Although typically considered pro-survival, NF-κB can also be activated in 

response to DNA damage. In a mouse model of accelerated aging induced by DNA damage, NF-

κB activity was associated with cell senescence. In this same model, blockade of NF-κB also 

reduced oxidative stress-induced DNA damage (Tilstra, Robinson et al. 2012).  However, a 

direct relationship between NF-κB and resistance to stress is made complicated by the finding of 

lower levels of p-p65 in aged MDSCs compared to young populations.  Due to the extended 

culture of MDSCs that is inherent in the pre-plate isolation technique, it is possible that this is an 

artefact. Given that we did not detect lowered levels in freshly isolated myoblasts, this needs to 

be investigated further. Rather than MDSCs, this could be investigated in another population of 

muscle progenitors, such as satellite cells, which can be rapidly isolated by FACS (Sacco, 

Doyonnas et al. 2008).   These preliminary results indicate the NF-κB may play a role in aging, 

and warrant further investigation.  
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