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IMPROVING PHASE CHANGE MEMORY (PCM) AND

SPIN-TORQUE-TRANSFER MAGNETIC-RAM (STT-MRAM) AS

NEXT-GENERATION MEMORIES:

A CIRCUIT PERSPECTIVE

Bo Zhao, PhD

University of Pittsburgh, 2013

In the memory hierarchy of computer systems, the traditional semiconductor memories Static

RAM (SRAM) and Dynamic RAM (DRAM) have already served for several decades as cache

and main memory. With technology scaling, they face increasingly intractable challenges

like power, density, reliability and scalability. As a result, they become less appealing in the

multi/many-core era with ever increasing size and memory-intensity of working sets.

Recently, there is an increasing interest in using emerging non-volatile memory tech-

nologies in replacement of SRAM and DRAM, due to their advantages like non-volatility,

high device density, near-zero cell leakage and resilience to soft errors. Among several new

memory technologies, Phase Change Memory (PCM) and Spin-Torque-Transfer Magnetic-

RAM (STT-MRAM) are most promising candidates in building main memory and cache,

respectively. However, both of them possess unique limitations that preventing them from

being effectively adopted.

In this dissertation, I present my circuit design work on tackling the limitations of PCM

and STT-MRAM. At bit level, both PCM and STT-MRAM suffer from excessive write

energy, and PCM has very limited write endurance. For PCM, I implement Differential

Write to remove large number of unnecessary bit-writes that do not alter the stored data.

It is then extended to STT-MRAM as Early Write Termination, with specific optimiza-

tions to eliminate the overhead of pre-write read. At array level, PCM enjoys high density
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but could not provide competitive throughput due to its long write latency and limited

number of read/write circuits. I propose a Pseudo-Multi-Port Bank design to exploit intra-

bank parallelism by recycling and reusing shared peripheral circuits between accesses in a

time-multiplexed manner. On the other hand, although STT-MRAM features satisfactory

throughput, its conventional array architecture is constrained on density and scalability by

the pitch of the per-column bitline pair. I propose a Common-Source-Line Array architec-

ture which uses a shared source-line along the row, essentially leaving only one bitline per

column.

For these techniques, I provide circuit level analyses as well as architecture/system level

and/or process/device level discussions. In addition, relevant background and work are

thoroughly surveyed and potential future research topics are discussed, offering insights and

prospects of these next-generation memories.
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1.0 INTRODUCTION

The two most essential functions of computer systems are computation and storage. While

computations are mostly centralized in the Central Processing Unit (CPU), storages take

place ubiquitously, from temporary buffering of intermediate computation results, to perma-

nent massive file backups that can be carried in our pockets.

In computer systems, the vast existence of storage is organized in a hierarchical manner

known as the memory hierarchy illustrated in Figure 1. A memory hierarchy can be seen as

a hardware optimization that takes the benefits of spatial and temporal localities to speed up

data accesses. It distinguishes each level in the hierarchy by speed and density. The higher

level memories (closer to CPU) are faster to serve the high frequence CPU, but smaller

to hold only the most active data. The lower level memories (further from CPU) tend to

be slower, but larger to store the large working set. Thus, a program will achieve greater

performance if it uses data while it is cached in the higher levels of the memory hierarchy

and avoids bringing other data into the higher levels of the hierarchy that will displace data

that will be used shortly in the future.

The unique speed and density requirements in turn determine the choices of memory

technologies in each level. In classic implementations that still dominate nowadays, Static

RAM (SRAM), Dynamic RAM (DRAM), and mechanical Hard Disk Driver (HDD) are

employed in the hierarchy from top to bottom, as shown in Figure 1. SRAM is the fastest

memory that can match the GHz operation of CPU pipeline. It can also take advantage of

its multi- to many-port capability to achieve extremely high bandwidth which is crucial to

Register Files (RF) and L1 caches. Moreover, it is built out of standard logic transistors

that can be seamlessly integrated with CPU components on-chip. Therefore, SRAM is the

natural choice of all kinds of on-chip storage, as well as the large off-chip L4 cache due to

1



its faster speed than DRAM. Although DRAM is also a solid-state memory, it is generally

not process-compatible with CPU due to its specially optimized fabrication processes for the

dedicated capacitor and high density. DRAM is used as large main memory with adequate

speed and much lower power than SRAM. It features much higher density and thus capacity

to hold the entire working sets of multiple programs. HDD provides even higher density and

capacity than DRAM with non-volatile storage for the whole file system. However, data

accesses are carried out by mechanical mechanisms of rotating the disks and moving the

magnetic heads for address searching, resulting in very high latency.

C
M
P

Off-Chip 
L4

Main 
Memory

Disk

Portable 
Storage

SPEED DENSITY

SRAM DRAM HDD

eDRAM Flash

STT-MRAM PCM

R
F

L1I L1D
CPU

L2

L3

L2

C
M
P

R
F

L1I L1D
CPU

Figure 1: Memory hierarchy and application range of memory technologies.

As more and more processor cores are integrated in a Chip Multi-Processor (CMP)

to exploit computational parallelism, the capacity demand for on-chip storage, especially

lower level caches, increases rapidly. As a result, large caches usually occupy >50% die

area in modern processors, giving rise to the leakage concern of SRAM in deep sub-micron

technologies. SRAM cell is particularly leaky due to its multi-transistor nature. This is less

a problem in small and very active higher-level caches, but becomes prohibitive given the

large size and low activity of L3 caches. Besides, the low density of SRAM, also a result of

its multi-transistor cell, leads to too large cache area and thus large die size that ultimately

increases cost and decreases yield. In the other end of the hierarchy, although the density of

HDD kept growing constantly, its speed was not improved fast enough that lagged behind all
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upper-level memories further and further. Also, its mechanical movements based operations

are not suitable for the fast-growing portable applications.

Consequently, in the past decade, we have seen the rise of eDRAM and Flash. eDRAM

is essentially DRAM “embedded” with processors. It is fabricated with logic-compatible

processes, yielding higher speed than commodity DRAM, at the expense of shorter retention

time and lower density. Nevertheless, eDRAM still offers ∼3× density over SRAM, with

much lower leakage. Therefore, successful adoptions of eDRAM as up to 80MB on-chip L3

cache [59] and 192MB off-chip L4 cache [65] have been demonstrated. Because its latency

is still relatively large compared to SRAM, eDRAM is not yet utilized in the more delay-

sensitive L2 caches. In the other end of the hierarchy, Flash memory based Solid State

Disks (SDD) easily outperform HDD by orders of magnitudes, with lower power and heat

dissipation. While in the middle, commodity DRAM kept scaling and doubling its capacity.

Up to this point, we have got a pure solid-state memory hierarchy.

However, as the integrated circuit technology heading into the deep sub-micron territory

and approaching the ∼10nm era, this entire pool of memories face crisis again. The refresh

problem of DRAM/eDRAM worsens rapidly with technology advancement and capacity

increase, as well as temperature and process variations. This is because the cell transistor

becomes leakier and more vulnerable to variations with shrinked footprint, and there are

more rows of cells to be refreshed within the same time interval in a larger memory with

larger number of rows. Such refresh problem will place more negative effects on system

performance in future generations of DRAM/eDRAM. To maintain reasonable retention

time and sensing margin, adequate cell-to-bitline capacitance ratio must be maintained in

DRAM/eDRAM, this in turn limits the size shrinking of cell capacitor and ultimately hurts

the DRAM scaling in general. Furthermore, DRAM main memories consume >40% power

of modern computer systems, and such percentage will keep growing with faster and larger

DRAMs. On the other hand, Flash also faces scaling problem because of its limited footprint

of the floating gate and thus limited number of stored electrons that is very vulnerable to

process variation. As a result, although people are pushing Flash’s multi-level capability to

an extreme, very sophisticated read and write schemes must be developed to make it viable.

Flash also has very limited lifetime of only ∼105 writes. So SSDs are usually equipped with
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up to 50% user-invisible redundancy (known as over-provisioning) to maintain the nominal

capacity in its lifecycle (e.g. 10 years). Its block-level erase and program is not only slow

but also too inefficient from an energy point of view. Moreover, generating the very high

voltage (∼20V) for erase/program out of the decreasing supply voltage is becoming harder.

Finally, both DRAM/eDRAM and Flash suffer from worsening reliability. They become less

immune to soft error mechanisms like alpha particle strike due to the decreasing number of

electrons held in their storage nodes.

Recently, there is an increasing interest in introducing new non-volatile memory tech-

nologies such as Phase Change Memory (PCM), Spin-Torque-Transfer Magnetic-RAM (STT-

MRAM), Memristor, Ferroelectric RAM (FeRAM), Conductive-Bridging RAM (CB-RAM),

etc., to the memory hierarchy in replacement of existing memories. Among these emerging

memory technologies, Phase Change Memory (PCM) and Spin-Torque-Transfer Magnetic-

RAM (STT-MRAM) are two of the most promising candidates as the next-generation memo-

ries. Table 1 compares PCM and STT-MRAM with existing solid-state memory technologies

SRAM, eDRAM, DRAM and Flash. PCM and STT-MRAM share many common character-

istics like resistance-based storage, non-volatility, high density, good scalability, low leakage,

immunity to soft errors, etc. Nevertheless, they possess unique features that distinguish

themselves in the memory hierarchy.

PCM features similar cell density to DRAM and Flash and multi-level storage capability,

which naturally place it at the lower levels of the memory hierarchy, as shown in Figure 1.

Due to its clear advantages like byte-addressability, lower latency, better endurance, better

scalability and better reliability, PCM is an inherent replacement of Flash and HDD on disk

storages and portable storages. When compared to DRAM, PCM still exhibits many benefits

on density, leakage, non-volatility, scalability and reliability. However, disadvantages also

exist as long latencies, high write energy, low throughput and limited endurance. Therefore,

special efforts must be paid to mitigating these drawbacks for successful application of PCM

as DRAM replacement in main memory.

STT-MRAM usually have similar or better density than eDRAM with advantages like

lower leakage, non-volatility, better scalability and better reliability. Although its 1015 write

endurance is worse than eDRAM, this is generally good enough to be considered unlimited.
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Table 1: Comparison of solid-state memory technologies. a

SRAM eDRAM DRAM Flash PCM STT-MRAM

State-of-the-art
cell size (F 2)

135 35 6 4 4 14

Storage type latch charge charge trapped charge resistance resistance

Cell read speed 100ps 1ns 10ns 10µs 30ns 1ns

Cell write speed 100ps 1ns 10ns 100µs 150ns 3∼10ns

Read energy Low Low Medium Medium Low Low

Write energy Low Low Medium High High Medium

Leakage High Medium Medium Medium Low Low

Throughput Very High High Medium Very Low Low High

Retention time
(volatility)

∞ with
power

50µs ∼1ms >64ms non-volatile non-volatile
compromisable
non-volatile

Write endurance 1016 1016 1016 105 108 ∼109 1015

Multi-level storage No No No 4∼6b/cell 2b/cell Possible

Multi-port access Many-port 2-port No No No No

Scalability Good Poor Poor Poor Good Good

Byte
addressability

Yes Yes Yes No Yes Yes

Sofe error Low High High High No No

Logic-process
compatibility

Yes Yes No No Possible Possible

aBased on state-of-the-art and most-aggressive data from published prototypes.

Hence, STT-MRAM covers the entire application range of eDRAM, as shown in Figure 1.

Furthermore, STT-MRAM can go higher than eDRAM in the hierarchy to L2 cache thanks

to its short read latency and shorten-able write latency with non-volatility compromise tech-

nique of volatile write. Notice that although STT-MRAM cell read latency is much larger

than SRAM, the read access latency at memory module level can be comparable or smaller

with same capacity, resulting from the much higher density and thus reduced footprint and

interconnect delay. Above L2 cache, SRAM is irreplaceable due to its unparalleled speed

and throughput, and the multi/many-port capability as the necessity of Register Files and

L1 caches. However, the much large write energy of STT-MRAM, even with volatile write, is

a major hurdle of using it in higher level caches which have relatively high write activity [5].

Furthermore, although the density and scalability of STT-MRAM device/cell are excellent,

such advantages are suppressed by the domination of wiring in its cell array. Therefore,

improvements are also necessary for STT-MRAM as a replacement of eDRAM and SRAM

in large caches.
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1.1 RESEARCH OVERVIEW

As discussed above, although considered promising, both PCM and STT-MRAM face unique

limitations that prevent them from being effectively adopted as main memory and large

cache, respectively. Here I further identify these challenges at bit and array levels.

Bit Level Challenge : PCM. PCM write is a thermal-driven process that involves

heating (melting) and cooling (crystallizing) the phase change material to change its crystal

structure and thus resistance (details in Chapter 2.3). These procedures incur high current

injection in the range of 0.1∼1mA [9, 29]. Such high currents are supplied from high voltage

sources of 2∼5V [7, 29]. Moreover, the currents keep flowing through the phase change

material for 50∼400ns [7, 29] to fully finish melting or crystallizing. Therefore, the per-bit

write energy of PCM is quite high. For instance, assuming the conservative write current,

voltage, and pulse width to be 100µA [9], 2V [7], and 50ns [29] respectively, this leads

to 100µA × 2V × 50ns = 10pJ per bit, which is much higher than DRAM’s ∼1.5pJ per

bit [63]. What makes things worse is the fact that the high write voltages are generated

by charge pump circuits from regular power supplies with limited power efficiency. So the

actual energy/power consumption is even higher at chip level. On the other hand, due to

the repeated heat stress in melting and crystallizing processes, a PCM cell can be written for

a limited number of times, typically 108 ∼109 [81]. While this is better than the 105 write

endurance of Flash, it is much worse than that of a DRAM cell (1016) and is a big concern

when PCM is used in main memory.

Bit Level Challenge : STT-MRAM. STT-MRAM write uses spin-polarized current

flowing through the magnetic device to disturb its magnetic torque in one stable direction,

turn the torque, and let it settle in the other stable direction with different resistance (details

in Chapter 2.4). Similar to PCM, such procedure also requires high current in the range of

50∼500µA [28, 19], as while as long period of 10∼100ns [19, 16, 36]. Therefore, STT-MRAM

also suffers from high write energy of conservatively 50µA × 1.2V × 10ns = 0.6pJ per bit,

much higher than that of SRAM and eDRAM. Several recent studies proposed to relax the

non-volatility requirement from the typical ten year storage-class retention time, to reduce

the write pulse width and thus write energy [52]. However, even with such volatile writes,
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the write energy still dominates total energy of an STT-MRAM based cache, offsetting the

energy savings from low leakage [5].

Array Level Challenge : PCM. Besides write energy and endurance, one major

challenge for PCM to replace DRAM is its low throughput. For example, a state-of-the-art

PCM chip can achieve 40MB/s program throughput [9], while the throughput of even an old

DDR2-800 DRAM is 100MB/s per chip. PCM’s throughput is constrained by three factors.

First, given the large write power per bit, large number of concurrent bit-writes can raise

concerns of voltage droop and power supply noise [14]. Hence the number of cells written

in parallel has to be restricted [26], which is already constrained by the chip power budget.

However, as will be shown in later chapters, our bit level solution can effectively remove

large portion of bit-writes and thus provide power headroom for throughput improvement.

Also, good scalability of phase change materials implies that aggressive write current scaling

can be expected. Therefore, the write power/energy factor is less a concern here [9]. Second,

PCM’s write operation is not only slow but much slower than its read operation, which is

determined by the device characteristics. A typical set (crystallizing) procedure takes at least

120ns [7], and the write latency of multi-level PCM is much worse due to the multi-iteration

program-and-verify procedure [4]. Moreover, because of the limited number of concurrent

bit-writes, writing a line (e.g. 512 bits) is usually completed in several iterations, with each

iteration writing part of the line, incuring ∼1000ns page write latency [85]. Obviously, such

long writes increase memory bank occupation time and thus block the subsequent accesses.

Third, read and write circuits of PCM are usually quite large as a result of high-current,

high-voltage operations and complex control. This is even more pronounced considering the

extremely small and dense PCM cells of down to 4F 2. To keep the overhead of peripheral

circuits low for high area efficiency and high effective density, PCM chips usually utilize

limited number of read and write circuits that are globally shared among all arrays in a

PCM bank [7, 26, 29, 47, 14, 9], ultimately limiting achievable throughput.

Array Level Challenge : STT-MRAM. Unlike the uni-polar PCM which utilizes the

same current direction for read, write-1 and write-0, the magnetic device of STT-MRAM is

a bipolar device that changing its state from ‘0’ to ‘1’ requires a different current direction

than from ‘1’ to ‘0’. To provide bi-directional currents to an STT-MRAM cell, a classic array
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structure utilizes bitline pairs to control voltages on two ends of a cell [19, 27, 13, 61, 57, 70].

However, with aggressive scaling of the magnetic device and the access transistor [51, 1], the

wire width and spacing of bitline pair determine the actuall cell size in an array [27, 13, 57]

and become the bottleneck to further shrinking memory area, suppressing the benefits of

device scaling. In other words, the device/cell level advantages cannot be translated into

array level benefits. This problem is usually overlooked due to the illusion of excellent density

and scalability of STT-MRAM device/cell.

In summary, the challenges of PCM and STT-MRAM are at bit and array levels,

as shown in Figure 2. At bit level, both PCM and STT-MRAM suffer from excessive write

energy, and PCM has very limited write endurance. At array level, PCM enjoys high density

but could not provide competitive throughput due to its long write latency and limited

number of read/write circuits. Although STT-MRAM owns satisfactory throughput, its

conventional array architecture is constrained on density and scalability by the pitch of

per-column bitline pair.

High Write Energy
Limited Endurance

Low Throughput

High Write Energy

Constrained Density 
and Scalability

PCM STT-MRAM

bit level

array level

Figure 2: Challenges of PCM and STT-MRAM to be addressed.

As responses to these challenges, in my research work I develop multiple circuit solutions

at corresponding bit or array levels, as listed below.

Bit Level Solution : PCM. In memory write operations, a great portion of bit-

writes are redundant. That is, a write into a cell did not change its value. Based on this

observation, I implement a circuit-level technique Differential Write [75, 31] to remove these

unnecessary bit-write operations in PCM. Before each write, Differential Write performs a

read first, and compares the stored data with to-be-written data. Then, only the cells that

are actually changed are written, all redundant bit-writes are suppressed. As a result, the

write energy and thermal stress on these redundant cells are removed, leading to significant
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energy reduction and lifetime improvement. In addition, Differential Write helps reduce

write power and opens new opportunities to throughput enhancement and power-budget

based memory scheduling [78].

Bit Level Solution : STT-MRAM. Similar to main memory, redundant bit-writes

also widely exist in caches. For the same purpose of removing redundant bit-writes, I extend

Differential Write to STT-MRAM with specific optimizations to remove the overhead of pre-

write read. This is possible because the state change of the magnetic device is not a gradual

procedure. Instead, resistance changes abruptly near the end of a write cycle. This means

that at the early stage of a write operation, STT-MRAM cell still holds its valid old value.

On the other hand, a read operation is performed through applying a voltage on the cell

and then sensing the resulting current. A write operation follows exactly the same scenario

of flowing current through the cell, except its higher voltage and longer pulse. Therefore,

by sensing the write current at early stage of a write, the original cell data can be known,

followed by throttling the write current if it is redundant. Such an Early Write Termination

[76] technique achieves significant energy reduction with no performance penalty.

Array Level Solution : PCM. The slow write operation of PCM can hold a bank

for a long time and blocks subsequent read operations. This is quite harmful to system

performance as reads are on the critical path of CPU execution while writes are not. In

fact, there is possibility to parallel a read with the on-going write because only the write

circuits are in use and the read circuits are idle. However, the write operation occupies

peripheral circuits like row decoder that are necessary for a read to start. Also, a second

access to the same bank may interfere with the existing one and destroys both accesses. I

propose a Pseudo-Multi-Port Bank design [78] that allows write and read to happen con-

currently in different arrays of the bank, and thus the limited number of read and write

circuits are fully utilized to provide parallelism. By leveraging the hierarchical wordline and

bitline structures, the decoder result is latched on local wordlines so that the row decoder

and global wordlines are released for other accesses to use in a time-multiplexed manner.

Besides intra-bank parallelism, the Pseudo-Multi-Port Bank design provides potential for

novel memory scheduling enhancements to fully take advantage of intra-bank parallelism

and further improve throughput.
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Array Level Solution : STT-MRAM. In a conventional dual-bitline array structure,

every column of cells has a bitline pair consists of one bitline and one source-line which are

identical metal wires. To eliminate the dominance of the bitline pair on cell area, I propose

a Common-Souce-Line Array structure [72, 73] in which the per-column source-lines are

removed and replaced by per-row source-lines that are shared by cells in the same row. A

common-source-line array retains the original read scheme of a dual-bitline array but requires

new method to write because writing different cells in a row are no longer independent. I

develop novel write schemes and refine the array design to cope with the cell interference

problem during a write. Compared to a dual-bitline array, the common-source-line array

achieves significant area saving and liberates the scaling potential of future STT-MRAMs.

In summary, my circuit level solutions to the challenges of PCM and STT-MRAM are

shown in Figure 3. At bit level, for PCM I implement Differential Write to remove large

number of unnecessary bit-writes that do not alter the stored data. It is then extended to

STT-MRAM as Early Write Termination, with specific optimizations to remove the overhead

of pre-write read. At array level, I propose a Pseudo-Multi-Port PCM bank design to exploit

intra-bank parallelism by recycling and reusing shared peripheral circuits between accesses

in a time-multiplexed manner. For STT-MRAM I propose a Common-Source-Line Array

architecture which uses a shared source-line along the row, essentially leaving only one bitline

per column.

Differential Write

Pseudo-Multi-Port 
Bank

Early Write 
Termination

Common-Source-
Line Array

PCM STT-MRAM

bit level

array level

Figure 3: Circuit level solutions to the challenges of PCM and STT-MRAM.

Although the proposed solutions are circuit level designs, they also bring forth new poten-

tials and opportunities to other design levels. Therefore in addition to circuit level analyses,

for each technique I provide adequate architecture/system level and/or process/device level

discussions for more comprehensive insights of my research work.
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1.2 DISSERTATION ORGANIZATION

The remainder of this dissertation is organized as follows. Chapter 2 introduces the back-

ground knowledge within the scope of this work. The proposed techniques are then detailed

in Chapter 3, 4, 5, 6. Chapter 7 thoroughly surveys related work. Finally Chapter 8 discusses

potential future research topics and concludes this dissertation.
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2.0 BACKGROUND

This chapter first briefly reviews the popular SRAM and DRAM/eDRAM, and then describes

the essential characteristics of the emerging PCM and STT-MRAM.

2.1 SRAM

As the name suggests, the storage nodes of Static RAM (SRAM) are “statically” held to

power or ground to retain their values as long as power is applied. To achieve this, a

standard SRAM cell uses internal feedback based on a symmetric, bi-stable structure as

shown in Figure 4. It contains a latch formed by a pair of cross-coupled inverters PUL/PDL

and PUR/PDR holding the state, and a pair of access transistors PGL and PGR controlled

by the wordline to read or write the state through the complementary bitlines. The positive

feedback ensures the complementary logic values on the two storage nodes D and D, and

corrects disturbances caused by leakage or noise.

wordline

bitline bitline

PUL PUR

PDL PDR

PGL PGR

D D

Figure 4: Schematic of an SRAM cell. PU – Pull Up; PD – Pull Down; PG – Pass Gate.
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SRAM cell read operation is illustrated in Figure 5. The two bitlines are precharged

high at VDD and then left floating. When the wordline is raised and PGs are turned on, the

0-side bitline is discharged to VDD − ∆V through the PD and PG, while the other bitline

remains high. In case of small signal sensing, such ∆V is in the range of 100∼200mV which

can be captured by the sense amplifier circuit connected to bitlines to determine the logic

value. In case of large signal sensing, ∆V = VDD so bitlines swing full-rail and can drive

skewed inverters directly. In both cases, the cell read latency is only in the order of 100ps.

wordline

bitline bitline

1
0

(a) Idle

wordline

bitline bitline

1
0

VDD-ΔV

(b) Turn on access transistors and pull down the 0-side bitline

Figure 5: SRAM cell read operation.

The write operation is shown in Figure 6. According to the write data, one bitline is held

low by the write driver circuit while the other floats high. When the wordline is turned on,

the 1-node is discharged by the write driver through PG, and the inverter on the 0-node will

be eventually triggered once the 1-node is low enough, which ultimately flip the cell state

using positive feedback. Thanks to such feedback mechanism, SRAM cell write is also very

fast.
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wordline

bitline bitline

1
0

0 1

(a) Set bitline voltages

wordline

bitline bitline

1
0

0 1

(b) Turn on access transistors and discharge the 1-node

wordline

bitline bitline

1
0

0 1

(c) 0-node inverter triggered by the discharged 1-node and cell
flips to the new state

Figure 6: SRAM cell write operation.

Although such multi-transistor cell structure provides stable storage and fast read/write,

it also leads to large cell area (>130F 2) and thus low density. The other resulting drawback

is high leakage. Figure 7 illustrates the subthreshold and gate leakage paths in an SRAM

cell (junction leakages are not shown). As shown in the figure, each cell possesses multiple

14



leakage paths. When many SRAM cells are organized into memory arrays and blocks, the

total leakage becomes significant. This is especially problematic in large caches with millions

of SRAM cells even with advanced leakage control schemes. Therefore, leakage powers of

SRAM memories are usually dominated by cell leakage.

wordline

bitline bitline

subthreshold leakage gate leakage

Figure 7: Leakage currents in an SRAM cell.

W-WL

W-BL

R-WL

W-BL R-BL

Figure 8: An 8T dual-port SRAM cell with one read port and one write port.

On the other hand, SRAM cell features unparalleled flexibility for function extensions.

For example, the 8-transistor dual-port cell shown in Figure 8 provides a separate read port

by adding a duplicated read path (PD and PG) and the corresponding wordline and bitline

to the standard 6-transistor cell. Thanks to its decoupled structure, both read and write

portions of the cell can be independently optimized, leading to better margins and therefore

lower VDD−min, which is crucial for L1 caches to sustain aggressive DVFS of the processor.

To achieve higher throughput as required by register files, more read ports (PD and PG)

and write ports (a pair of PGs) can be added at the expense of larger area and higher

15



leakage. Furthermore, other structural extensions are also available for two bi-directional

ports, Content-Addressable Memory (CAM), subthreshold memory, etc.

In summary, thanks to its fast operations, multi-port capability, and process compatibil-

ity, SRAM is widely used in all kinds of on-chip storage. On the other hand, due to its low

density and high leakage, SRAM is becoming less appealing in large on-chip caches.

2.2 DRAM & EDRAM

As opposed to SRAM, Dynamic RAM (DRAM) stores data as charge on a capacitor that

is “dynamically” floating. Thus, the basic cell is substantially simpler and smaller than

SRAM, as shown in Figure 9. It only consists of a capacitor to store charges, and a pass

gate transistor controlled by the wordline (WL) to read or write the cell through the single

bitline (BL).

WL

BL

Figure 9: Schematic of a DRAM cell.

DRAM cell read operation is illustrated in Figure 10. The BL is precharged to the

mid-point voltage 1
2
VDD and then left floating. When the WL is raised and the access

transistor is turned on, charge sharing happens automatically between cell capacitor and

BL capacitance. At the end of charge sharing, the BL and the cell reach a common voltage

which is ∆V higher or lower than 1
2
VDD, and such ∆V can be used by sense amplifier (SA)

circuit to determine the logic value. However, at the same time the voltage stored on the

cell capacitor is destroyed. This requires to equipe every BL with a SA which can amplify

the ∆V to a logic level on BL and cell, so the full-rail voltage is restored into every cell.

Therefore, the number of SAs in a DRAM memory equals to the number of cells on one row.

This entire row of SAs also acts as the row buffer: WL and SAs remain active after data
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sensing, and SAs hold the sensed data as full-rail voltages on BLs which can be accessed by

I/O using column address. Because DRAM cell and thus BL pitch is small, a 1:1 ratio of

BL:SA is challenging. Fortunately, a DRAM SA is quite simple to consist of only 2 cross-

coupled inverters, and layout tricks can loose the SA pitch to be 2 ∼ 4× the BL pitch.

DRAM read operation is much slower than SRAM due to the RC delay of charge sharing

and the weak SA driving long BL. Also, such destructive read is extremely energy inefficient

because the mandatory restore must happen on all BLs and cells even if only a very small

portion of the row is accessed by I/O.

WL

BL

0½  VDD

WL

BL

½  VDD

CBL

WL

BL

½  VDD-ΔV

CBL

0

CBL

½  VDD-ΔV

(a) Read 0

WL

BL

VDD½  VDD

WL

BL

½  VDD

CBL

WL

BL

½  VDD+ΔV

CBL

VDD

CBL

½  VDD+ΔV

(b) Read 1

Figure 10: DRAM cell read operation.

The write operation is shown in Figure 11. According to the write data, the write driver

(WD) circuit overpowers the SA which then pulls the BL to VDD or ground. The BL voltage

is then gradually forced onto the cell capacitor by charging or discharging through the access

transistor. Therefore in case of open-page access (row buffer is active), a DRAM write is

always “write-through”: the write data overdrives SA row buffer as well as the cell. Such

write operation, and similarly the restore operation after a read, is quite slow as a result of

the RC behavior on BL and cell.

Because the dynamic storage node in DRAM cell is not held to power or ground, charges

leak into or out of the cell over time which gradually weakens the voltage margin between
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(a) Write 0

WL

BL

0

VDD

WL

BL

VDD

VDD

WL

BL

VDD

0

(b) Write 1

Figure 11: DRAM cell write operation.

cell and BL, as shown in Figure 12. The stored value is lost when the margin becomes

too low to be distinguished by the read circuit. Therefore, DRAM cells must be periodi-

cally read and refreshed to restore the voltage on the cell capacitor. The time between the

value is fully restored/written to the cell to the value expires is defined as the retention

time. Obviously, longer retention time is favorable to mitigate the energy consumption and

latency/throughput impacts of refresh operations.

WL

BL

0½  VDD

(a) 0-state

WL

BL

VDD½  VDD

(b) 1-state

Figure 12: DRAM cell leakage.

Suppressing cell leakage is one of the most effective ways to prolong retention time. In

current commodity DRAM technologies, the cell access transistor has very high Vth to reduce

subthreshold leakage that a VDD at its gate can barely turn it on. So DRAM wordlines are
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at a boosted voltage domain VPP [81, 83] to 1) fully turn on access transistor for read

and write, and 2) offset the Vth drop when passing a high voltage (logic 1) throught the

nMOS access transistor. Also, inactive wordlines are pulled to a negative voltage below

ground so the gate of the access transistor is more inversely biased to further suppress

leakage [81, 2]. Furthermore, the structure, material, and fabrication of the access transistor

are actually specially engineered for leakage control, and more efforts are needed in deeper

scaled technologies.

Building large cell capacitor is also critical for retention time. This is usually implemented

as trench or stacked capacitor [81]. A trench capacitor is essentially a deep hole etched into

the silicon substrate, as illustrated in Figure 13(a). In contrast, the stacked implementation

resides above the cell transistor, as shown in Figure 13(b). By exploiting vertical dimension

spaces, both kinds of capacitor can achieve very high capacitance in small footprint. Because

capacitance is directly proportional to physical dimensions of a capacitor device [37, 60],

modern implementations of both device types tend to have very high and growing aspect

ratio with technology scaling [81], i.e. they become deeper/taller to maintain capacitance

with thrinking footprint. This creates fundamental challenges in the fabrication process and

circuit integration, which ultimately limit the DRAM scaling.

trench 
cap

Plate

BL

WL
N+ N+

(a) Trench capacitor

BL

WL
N+ N+

Plate

stacked 
cap

(b) Stacked capacitor

Figure 13: Cross-section comparison of DRAM cells with trench and stacked capacitors.

Commercial stand-alone DRAMs are built in specialized processes optimized for dense

capacitor structures to offer a cell size down to 6F 2, but they also have much higher latency
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and are not compatible with micro-processor/SoC/ASIC fabrication processes. Embedded

DRAMs (eDRAM) share the same fundamentals with stand-alone DRAMs but trade density

and retention time for logic process compatibilty and lower latency, so that it can be inte-

grated on-chip as an SRAM alternative in large caches to provide higher density and lower

power [2]. Some types of eDRAM use capacitor-less multi-transistor cell to totally eliminate

the extra complexity and cost of capacitor integration [11].

In summary, DRAM’s high density and low power earned it the position in high capacity

main memory. Its embedded variants are also preferable to SRAM in large caches. However,

the worsening refresh problem, energy inefficiency, and scaling difficulty are unique challenges

in future DRAM generations.

2.3 PCM

Analogous to DRAM that uses a capacitor device to store a bit data, Phase Change Memory

(PCM) utilizes a special device made of phase change material to remember information.

The phase change material is one type of chalcogenide alloy, such as Ge2Sb2Te5 (or GST

in short), which can exist in two stable physical states: amorphous and crystalline. In the

amorphous state, the material structure is highly disordered and thus highly resistive. In the

crystalline state, the material has a regular crystalline structure and exhibits low resistivity.

PCM exploits the significant difference in resistivity (>102) between these two states to store

data, dissimilar from SRAM and DRAM that stores data as voltage levels. Typically, a cell

in the amorphous state (high resistance) is regarded as a RESET state (or logic ‘0’), and

a cell in crystalline state (low resistance) is regarded as a SET state (or logic ‘1’). The

state of a GST device is preserved even after the cell is powered off, meaning that PCM is

non-volatile. PCM also has good data retention time around ten years in general [81, 26, 4].

Figure 14 illustrates a PCM cell showing the structure of a typical storage node. The

device usually consists of a thin layer of GST and a joule heater (or Bottom Electrode

Contact (BEC)), sandwiched between top and bottom electrodes (TE and BE) that provide

electronic contacts with the bitline (BL) and the access device (an nMOS in this example).
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Figure 14: Conceptual view of a PCM cell showing phase change device structure.

Once the access transistor is enabled by the wordline (WL), read (Iread) or write (ISET ,

IRESET ) currents from the BL can flow through the cell. These are essentially different from

the voltage-mode/charge-based read/write operations of SRAM and DRAM.

Writing a PCM cell requires changing the physical state of its GST material. This is

performed by injecting write currents for the heater to heat the GST at their junction. There

are two write operations controlled by the applied voltage/current and duration, as shown

in Figure 15. The SET operation heats GST above crystallization temperature (∼300◦C)

but below melting temperature (∼600◦C) over a period of time with gradual quenching

process. This places the entire GST in the low-resistance (1K∼2KΩ [40, 7]) crystalline

state (black in Figure 14). The RESET operation heats GST above melting temperature

with fast quenching. This turns part of the GST near the junction into high resistance

(100K∼700KΩ [40, 29]) amorphous state (the gray “mushroom cap” in Figure 14).
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Figure 15: Read and write voltage/current/temperature pulses.
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Such write operations contribute to the main limitations of PCM. Due to the heating

and cooling processes, both SET and RESET take relatively long time to complete, and

SET (150∼400ns [9, 29]) is slower than RESET (50∼100ns [7, 9]). These procedures incur

high current injection in the range of 0.1∼1mA [9, 29] which are supplied from high voltage

sources of 2∼5V [7, 29]. Therefore, the write power and energy per PCM cell are quite high.

Given limited power budget, the number of cells written concurrently has to be restricted

[26] to prevent excessive voltage droop and power supply noise [14], leading to multi-iteration

operation with extremely long total latency in writing a wide line/page [26, 29, 85]. Such long

writes increase memory bank occupation time and thus block subsequent accesses, ultimately

hurt memory throughput and system performance, as will be discussed in Chapter 5. Also

as a result of the repeated heat stress in melting and crystallizing, a PCM cell can be written

for a limited number of times, typically 108∼109 [81], which is orders of magnitude lower

than SRAM and DRAM (1016). As will be demonstrated in Chapter 3, a PCM main memory

without any lifetime improvement technique may last only ∼200 days running a typical SPEC

CPU program.

BL BL

WL WL

Crystalline

SET

RLow

Amorphous

RESET

RHigh

Iread Iread

Vread

Figure 16: PCM cell read operation.

Reading data from a PCM cell involves sensing the resistance of the GST, as shown in

Figure 16. When a regulated low voltage Vread is applied on BL, the amount of current Iread

that flows from BL to the cell is determined by the cell resistance, i.e. larger with a SET

cell and smaller with a RESET cell. The sense amplifer (SA) then compares Iread with a

reference current Iref , which is Iread−RESET < Iref < Iread−SET , to determine the logic value.

Notice that from a cell’s perspective, the only differences between read and write are the
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amount and duration of applied current. Because Vread and Iread are intentionally upper

limited, PCM read operation is non-destructive and has negligible heat stress compared to

write operations. And read is much faster than write with ∼60ns random access latency at

chip level [7, 26].

One distinguished benefit of such current-mode read/write operations is the efficient

column multiplexing. In DRAM, charge sharing between cell and BL happens automatically

once WL turns on, which destroys the entire row of data. This requires to restore every

cell and drive/precharge every BL on the row, even if only a very small portion of the

row is selected by column multiplexer for read/write. Similarly in SRAM, one BL per

cell is discharged automatically once WL turns on, no matter the created voltage margin

is used or not by SA, bringing forth stability concerns. And obviously all the BLs has

to be precharged after the access. In other words, in both SRAM and DRAM the read

process takes place unconditionally on every cell of an active row, regardless of the column

multiplexer configuration. Therefore, with voltage-mode operations, a significant portion of

energy is wasted on these “half-selected” (row-selected but not column-selected) cells and

their BLs. With current-mode operations, cells are always in a passive position, and currents

from read or write circuits are only directed to column-selected BLs and cells. Therefore on

half-selected cells and BLs, neither the storage is violated nor any energy is wasted.

WL

BL

Iread
Iset
Ireset

(a) MOS-selected

WL

BL

Iread
Iset
Ireset

(b) BJT-selected

WL
BL

Iread
Iset
Ireset

(c) Diode-selected

Figure 17: Three types of PCM cell using different access devices. The storage node is

depicted as the alterable resistor.

There are three main options for the access device in a PCM cell: MOS, BTJ, and diode.

The MOS-selected [7, 3, 40, 26, 17, 47] and BJT-selected [15, 4, 62] cells in Figure 17(a) and

17(b) are quite similar: WL controls the conductivity of the access device, and read and
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write currents flow through the cell to ground. The cell sizes are dominated by the access

devices that are larger than the storage node. The diode-selected cell [29, 14, 9] in Figure

17(c) is fundamentally different that the active WL is grounded to drain read and write

currents. Thanks to its simplest structure and the tiny diode device that can be stacked

with the GST device, a diode-selected cell can achieve the smallest cell size of 4F 2 [14, 9],

which is just a cross-point of WL and BL. However, because turning on the diode requires

an applied voltage which consumes the operation voltage headroom, the read and write

operation voltages should be higher than the MOS-selected cell by the built-in potential (or

threshold voltage) of a diode [29].

In PCM chips, boosted voltages are widely used mainly for two reasons. First of all,

because GST resistance is quite large, high voltage is required to generate the high write

currents. Secondly, because of the current-driven read and write operations, it is important

to mitigate signal IR drop by minimizing the serial parasitic resistance in the read/write

current path. So high voltages are also applied to the switch devices in the path, e.g. cell

access transistors and column multiplexers, to make them more conductive [26, 9]. The huge

current load, the coexistence of multiple boosted voltage levels, and the fine-grain controls

for on/off scheduling, position compensation [40], pulse shaping [29], etc. lead to complex

and large voltage regulation systems, mainly consist of charge pumps, that usually occupy

considerable silicon area in high density PCM chips [14, 9]. Also as a result of the high

current/voltage operations, read and write circuits of PCM are usually quite large in size.

Hence, when pairing them with the extremely dense cells, their numbers are limited, and

they are highly shared through hierarchical connections, for the purposes of pitch matching

and density conservation.

The non-volatility of PCM is a new opportunity to exploit. Because the non-volatile,

zero-leakage cells can preserve data without power, it is possible to power down an entire

memory bank or chip during idle phases to eliminate leakage power on peripheral circuits

[75, 31], which is crucial to meet the low-power requirements of future memory systems.

Moreover, the physical state based storage is immune to soft errors caused by alpha particle

or cosmic radiation usually seen in voltage/charge based storages [85]. PCM also offers much

better scalability that the write currents reduce with the shrinking of GST device [81, 7],
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which is also a substantial solution to the power-bounded throughput problem [9]. Hence

PCM provides a truly scalable solution compared to conventional DRAM.

Also, given the large resistance contrast between crystalline and amorphous states, it is

possible to exploit partial crystallization states to store two or more bits per cell, forming

a multi-level cell (MLC) PCM [4]. The MLC write typically uses an iterative Program-

and-Verify (P&V) scheme. Here, a RESET operation is always done first to put the cell in

an initial state. A series of SET and verify (read) operations then follow until the target

resistance level is reached. This achieves precise control of the smaller resistance ranges, but

also incurs extremely long latency [4]. When combining MLC storage with the 4F 2 cell size,

PCM can offer much better storage density than DRAM.

2.4 STT-MRAM

Despite the many common characteristics with PCM, such as resistance-based storage,

current-mode read/write operations, non-volatility, good scalability, soft error immunity,

etc., Spin-Torque-Transfer Magnetic-RAM (STT-MRAM) is based on a unique storage mech-

anism using the Magnetic Tunnel Junction (MTJ) device as the storage element. Figure 18

illustrates an STT-MRAM cell showing the structure of a typical MTJ device. It includes

two ferromagnetic layers separated by one oxide barrier layer. The reference layer has a fixed

magnetization direction and the free layer has an alterable one. The magnetization direction

of free layer is changed by passing a driving current spin-polarized by reference layer [19]: a

current from reference layer to free layer rotates the direction of free layer to the opposite of

reference layer, resulting an anti-parallel (AP) and high-resistance state of MTJ (logic ‘1’);

a current in the other direction parallelizes directions of the two layers, resulting an parallel

(P) and low-resistance state (logic ‘0’). The state of an MTJ device is preserved even after

the cell is powered off, meaning that STT-MRAM is non-volatile. STT-MRAM also has

good data retention time around ten years in general [81].

Besides the current direction requirement, in either AP- or P-writing, the write current

must be larger than the threshold or switching current of the MTJ device, and it must be
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Figure 18: Conceptual view of an STT-MRAM cell showing MTJ structure.

applied for a certain amount of time (switching latency), to successfully alter the MTJ state

[19]. Actually, during write operations, MTJ state and resistance change abruptly near the

end of a write cycle [58, 6], different from the gradual, cumulative procedure in PCM writes.

In other words, at the early stage of a write operation, an STT-MRAM cell still holds its

valid old value. Also, there exist dependencies between switching current and switching

latency: the larger the applied write current, the shorter the required time to flip the MTJ

state [19, 12].

The underlying principle of MTJ switching is that the spin-polarized current disturbs the

magnetic torque of free layer in one stable direction, turn the torque, and let it settle in the

other stable direction. Similar to PCM write, such procedure also requires high current in

the range of 50∼500µA [28, 19], as while as long period of 10∼100ns [19, 16, 36]. Therefore,

STT-MRAM also suffers from high write power and energy per bit. Fortunately, unlike

PCM, the MTJ device generally has unlimited write endurance (1015) [81].

BL SL
WL

Read Vread 0
0

0
Write 0
Write 1

VDD

VDD

Figure 19: Schematic of an STT-MRAM cell. (MTJ = alterable resistor)

Because of such bipolar nature of MTJ switching, a MOS transistor is the undoubted

choice of access device to provide bi-directional conductivity. Also, a pair of wires, one bitline
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(BL) and one source-line (SL), is utilized to manipulate voltages on two ends of a cell, as

shown in Figure 19. Due to the simple 1 MOS + 1 MTJ structure, the width and spacing

of this wire pair usually determine the actuall cell size in an array [27, 13, 57].

Similar to PCM, reading data from an STT-MRAM cell is performed by sensing the

resistance of the MTJ, as shown in Figure 20. When a regulated low voltage Vread is applied

on BL and SL is grounded, the read current Iread that is inversely proportional to the cell

resistance is compared by the sense amplifer (SA) with a reference current Iref , which is

Iread−AP < Iref < Iread−P , to determine the logic value. Notice that the direction of read

current can be determined at design time to be same as either AP- or P-writing. Such a

choice is usually made by considering the combined effective resistance of MTJ and nMOS,

for the purpose of maximizing sensing margin [36]. And read is usually faster than write

with <10ns latency [16, 12].

RHigh RLow

Iread
WL

BL BL

SL SL

WL

Parallel
Anti-

Parallel

Iread

Vread

GND

Figure 20: STT-MRAM cell read operation.

For read operation, one of the most important MTJ characteristics is the difference

between high and low resistances, formally defined as Tunneling Magnetoresistance Ratio

(TMR):

TMR =
RAP −RP

RP

Another crucial factor is the absolute MTJ resistance. Larger TMR and resistance are fa-

vorable to yield better sensing margin and delay [12, 1], because the resistance difference

can be more distinguishable when parasitic resistances are present. Current STT-MRAM

prototypes usually have TMR of 100%∼130% [19, 36, 12] and resistance in the range of
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2K∼9.5KΩ [19, 27]. These two parameters will be gradually improved over process genera-

tions via device level advancements [81, 12, 1].

STT-MRAM shares many benefits with PCM, e.g. efficient column multiplexing, zero

cell leakage, non-volatility, soft error immunity, etc. As one advantage over PCM, STT-

MRAM generally does not require high voltages to operate, making it more favorable as

embedded memories for on-chip applications (also thanks to its unlimited write endurance).

STT-MRAM also features very good scalability that the MTJ switching current can reduce

with the shrinking of MTJ size [81, 12, 1]. This is a substantial improvement over previous

generations of toggle MRAM technology which writes MTJ using magnetic field produced

by the current on an adjacent wire [39]. With the toggle MRAM cell scaling down, such

write current actually scales up to maintain the same energy density [1, 34]. Therefore,

STT-MRAM is the absolute choice of future MRAM generations.

MTJ was also considered as a candidate in building cross-point memory arrays [34, 46].

Cross-point arrays achieve high cell density as there are no selection devices (typically much

larger than the memory device itself) in cells. However, it is also difficult to select a cell

without disturbing the adjacent ones, as a result of sneaky paths that lead to huge leakage

current [34]. With MTJ, such sneaky path effect could be prohibitive as a result of its low

TMR and low absolute resistance. For example, in a 64×64 array of a cross-point MRAM

prototype [46], 97% of current is leaked away, and only 3% is effective in writing. This in

turn limits the achievable sub-array size and area efficiency, and requires complex peripheral

circuits to bias unselected cells, offsetting the benefit of high cell density. Therefore, MTJ

is inferior to other bipolar memory devices with large resistance ratios, such as Memristor

[10, 54], in building cross-point memory arrays.
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3.0 BIT LEVEL ENERGY REDUCTION AND LIFETIME

IMPROVEMENT FOR PCM

Despite the advantages like density, leakage, non-volatility, scalability and reliability, two

major shortcomings of PCM as the main memory are high write energy and limited write

endurance. Based on the observation of redundant bit-writes, in this chapter I develop

circuits to implement the Differential Write (DW) technique that removes these unnecessary

bit-write operations in PCM [75, 31]. Because only the cells that are actually changed are

written, it is capable of both reducing write energy and extending cell lifetime. Evaluations

show that DW offers 60% dynamic energy saving and 4.5× lifetime improvement on average.

When combining DW with simple wear-leveling techniques, it is demonstrated that PCM-

based main memory is practical in terms of lifetime [75, 31]. In addition, Differential Write

helps reduce write power and opens new opportunities to throughput enhancement and

power-budget based memory scheduling [78]. Thanks to its fundamentality and simplicity,

DW can be seemlessly integrated into upper level techniques. Notably, it was used as the

basis of some later studies [8, 18, 78], and also incorporated in a Samsung prototype [14].

Differential Write

Pseudo-Multi-Port 
Bank

Early Write 
Termination

Common-Source-
Line Array

PCM STT-MRAM

bit level

array level

Figure 21: Bit level solution for PCM: Differential Write.
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3.1 ENERGY AND LIFETIME PROBLEMS OF PCM

Both write energy and write endurance challenges are results of the phase change material

characteristics. PCM’s thermal-driven write processes incur high current injection in the

range of 0.1∼1mA [9, 29]. Such high currents are supplied from high voltage sources of 2∼5V

[7, 29]. Moreover, the currents keep flowing through the phase change material for 50∼400ns

[7, 29] to fully finish melting or crystallizing. Therefore, the per-bit write energy of PCM is

quite high. For instance, assuming the conservative write current, voltage, and pulse width

to be 100µA [9], 2V [7], and 50ns [29] respectively, this leads to 100µA × 2V × 50ns = 10pJ

per bit, which is much higher than DRAM’s ∼1.5pJ per bit [63]. What makes things worse

is the fact that the high write voltages are generated by charge pump circuits from regular

power supplies with limited power efficiency. So the actual energy/power consumption is

even higher at chip level. Furthermore, the low leakage of PCM can lead to significant

leakage saving over DRAM, given that leakage contributes to large portion of main memory

energy due to the low activity. However such benefit may be overwhelmed by the excessive

write energy.

On the other hand, due to the repeated heat stress in melting and crystallizing processes,

a PCM cell can be written for a limited number of times, typically 108 ∼109 [81]. While this

is better than the 105 write endurance of Flash, it is much worse than that of a DRAM cell

(1016) and is a big concern when PCM is used in main memory. To illustrate the problem, the

“unprotected” lifetimes of a PCM main memory are tested using a variety of benchmarks

including SPEC2K, SPEC2006, and SPECWeb 1. Here I refer the lifetime of a PCM to the

duration before the first cell starts to fail, and the number of rewrite cycles for a PCM cell

is assumed to be 108. Figure 22 shows the projected lifetime of PCM memory without any

enhancement technique. As shown in the figure, the results range from 25 days for mcf to

777 days for specweb-banking, and the average is only 171 days. Hence in order to make

PCM main memory practical, lifetime improvement techniques are needed to extend PCM

lifetime to an acceptable level.

1Architectural simulations in this chapter were performed by Ping Zhou at Department of Electrical &
Computer Engineering, University of Pittsburgh.
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Figure 22: Lifetime of PCM memory without any improvement technique.

3.2 THE OPPORTUNITY: REDUNDANT BIT-WRITES

To improve the write energy and endurance of PCM memory, one intuitive step is to reduce

the total number of bit-writes. Several existing studies have shown that there is a high

probability that a write into a cache or memory location does not change its content, and

therefore can be removed. Such an observation has been used at the word level for L1 cache

[32], multiprocessors [33], and off-chip memories [30]. Intuitively, this phenomenon is more

significant at bit level [75, 31].

In a conventional memory write, every bit in the request is written once. However, a

great portion of these bit-writes are redundant. That is, in most cases, a write into a cell did

not change its value. This is termed “redundant bit-writes” in this study. These bit-writes

are hence unnecessary, and removing them can greatly reduce the write frequency of the

corresponding cells. Figure 23 shows the percentages of redundant bit-writes for different

benchmarks. They are calculated as the number of redundant bit-writes over the total

number of bits in write accesses. The “SLC” series represents redundant bit-writes in single

level PCM cells, i.e., each cell stores either ‘0’ or ‘1’. The “MLC” series represents 2-bit

multi-level PCM cells. That is, each cell stores 4 binary values.
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Figure 23: Percentage of redundant bit-writes for single-level and multi-level cells.

From the results, it it clear that all benchmarks exhibit high percentages of redundant

bit-writes. Theoretically, for single-level cells, the statistical bit-write redundancy is 50% if

writing a ‘0’ and ‘1’ is equally likely. For MLC cells, the redundancy probability is 25%.

However, the measured redundancies for real workloads are much higher than the theoretic

values, showing interesting value locality. The redundancy ranges for SLC and MLC cells

are 68∼99% and 52∼99%, with averages of 85% and 77% respectively. This inspired the

idea of removing redundant bit-writes, which leads to the Differential Write technique.

3.3 DIFFERENTIAL WRITE

The first step of Differential Write (DW) to remove redundant bit-writes is identifying which

bit-writes are redundant. Before each write, DW performs a read first, and compares the

stored data with to-be-written data, as illustrated in Figure 24. Next, based on the com-

parison, only the cells that are actually changed are written, all redundant bit-writes are

suppressed.
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Figure 24: Identify redundant bit-writes based on comparison.

3.3.1 Circuit Design

The comparison logic can be simply implemented by adding an XNOR gate that takes read

and write data as inputs, as illustrated in Figure 25. The XNOR output drives a pMOS

transistor which can block the write current when the write data equals the currently stored

data.

column mux

Write Read

cell array

read datawrite data

Iwrite

Figure 25: A micro-architectural view of Differential Write.

To keep the overhead low, a simple 6-transistor XNOR gate [21, 66] is utilized, as shown

in Figure 26. Although the input node of its inverter suffers from Vth drop when both

XNOR inputs are 0, this is not a problem given the relatively small Vth in the high-voltage

environment of PCM, and the output is corrected to full-rail by the inverter [21, 66].

The implementation in Figure 25 is the simplest using only an XNOR gate plus a pMOS

transistor [75, 31]. However the pMOS transistor represents certain extra parasitic resistance
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Figure 26: XNOR circuit implementation [21, 66].

on the write current path. This is unfavorable because a lot of efforts, e.g. boosted voltages

and hierarchical bitline, are already spent on reducing the serial parasitic resistance of the

write current path [26, 9]. Therefore, one design alternative is to combine the throttling

signal out of data comparison with existing write circuit control signals. Figure 27 illustrates

2 design styles. In Figure 27(a), the comparison is done by an XOR gate whose output is

then ANDed with the original write circuit enable signal [29] to generate the final enable.

Here the XOR gate is simply a complementary design of the XNOR gate in Figure 26. In

Figure 27(b), the XNOR output is ORed with the original control signal of the final output

stage pMOS in the write circuit [26, 47]. These two designs guarantee better controlled write

path resistance and only incur slightly higher overhead because of the AND/OR gate instead

of a single pMOS in Figure 25.

Write Read

read datawrite data

EN

original 
EN

(a) Control write driver enable signal

Read

read datawrite data

Iwrite

original 
ctrl

output 
pMOS Write

(b) Control last pMOS in write driver output stage

Figure 27: Two alternative design styles of Differential Write.
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Notice that PCM write drivers usually drain write currents from a boosted voltage sup-

plied by charge pumps [26, 29, 62, 47, 14, 9]. By reducing the number of bit-writes, DW

can greatly decrease the current load on charge pumps and therefore improve their power

efficiency [67]. No modification is required to the charge pump system because it can detect

DW-caused load changes and automatically adapts its clock frequency.

3.3.2 Overhead

The delay and power overheads of the added simple circuits are ∼150ps and ∼20µW based

on our SPICE simulations with 45nm technology, which are negligible in PCM. Instead, the

main delay and energy overheads come from the pre-write read. In PCM operations, read is

much faster than writes 2, so the delay increase here is much less than doubling the latency

of a write. In addition, write operations are typically less critical than read operations, so

increasing the effective write latency has less negative impact on the system performance.

Also, a read operation consumes much less energy than a write because of the low read

voltage/current and short read pulse. The extra read energy can be easily outweighted

by the huge write energy saving of DW. Consequently, the overhead of extra circuits and

pre-write read can be well justified by the benefits of DW at architecture level [75, 31].

3.4 EVALUATION RESULTS

3.4.1 Modeling

To provide a PCM model for architectural simulations, I modeled PCM in a hybrid manner

that combines SPICE simulation with CACTI [84] estimation. PCM share similar peripheral

circuits like decoders, interconnects, data buffers and I/O drivers with traditional memories.

But it has differences in the implementation of cell arrays. Hence, the methodology I used is

to simulate the essential circuits such as the cells, bitlines, wordlines, read/write circuits etc.

2Read latencies reported in published prototype chips are full round-trip latencies at chip I/O, including
delays on all peripheral circuits. In contrast, the pre-write read in DW takes place purely inside the array
on SAs, BLs and cells, and is much faster than writes.
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at SPICE level, and then replace the CACTI results related to those essential circuits with

SPICE results. In other words, only the skeleton of the CACTI DRAM model is used which

is filled with the contents of SPICE PCM model. All SPICE simulations were performed with

45nm device models at 90◦C. And CACTI was used to estimate a memory chip with 4Gb

capacity. The numbers produced by this model, as listed in Table 2, were then applied in

architectural simulations for evaluation of PCM memory. The modeled per-bit write energies

are similar to that in [30].

Table 2: Latency and energy parameters used in architectural simulations.

Latency (ns) Energy (pJ)

Read
36.28 (row miss) 10.68 (row miss)

6.47 (row hit) 3.77 (row hit)

Write
90.27 (0) 26.8 (0)
120.27 (1) 13.7 (1)

With Differential Write, PCM’s write latency is not fixed. If a write request is completely

redundant (i.e. every bit of the line to be written is same as the old data in memory), then

it can be terminated after the pre-write read and comparison operations, resulting in shorter

latency. Also, the per access write energy is not fixed. It can be calculated as:

EDW−write = Efixed + Eread + Ebitchange

Efixed is the “fixed” portion of energy charged for each PCM write on peripheral circuits

including decodings, row selecting, interconnects, etc., plus the added DW circuits. This

part is 4.1nJ per access as measured from SPICE simulation. Eread is the energy to read out

the row for comparison and this part is approximately 1.075nJ . The Ebitchange part depends

on the number of updated bits (0→ 1 or 1→ 0): Ebitchange = E1→0N1→0 +E0→1N0→1, where

E1→0 and E0→1 are listed in Table 2. Therefore, per access write energy for PCM (nJ) can

be expressed as:

EDW−write = 4.1 + 1.075 + 0.0268×N1→0 + 0.0137×N0→1
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Therefore, given the significant opportunity of redundant bit-writes as shown in Figure

23, Differential Write can significantly reduce PCM’s write energy by reducing N1→0 and

N0→1, which can also benefit the lifetime.

3.4.2 Energy and Lifetime Results

Figure 28 compares the dynamic energy breakdown of the PCM main memory with and

without DW, shown as the “DW” and “raw” bars respectively. The energy of pre-write reads

are counted into DW write energy, so in all benchmark workloads the read energies remain

the same. Although reads are usually more frequent than writes in main memory, write

energy dominates in most workloads mainly due to the high per-bit write energy. Especially,

in write-intensive workloads like lucas and mcf, almost the entire dynamic energy comes

from writes. With DW, a great portion of write energy saving can be achieved, and the

percentage of saving is proportional to the percentage of redundant bit-writes in Figure 23.

Overall, on average DW offers 60% dynamic energy saving.
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Figure 28: Dynamic energy breakdown showing energy savings of Differential Write (SLC).

After applying DW, the lifetime of PCM main memory on average is extended to 770/592

days, or 2.1/1.6 years, for SLC/MLC respectively, as shown in Figure 29. However, even

though DW achieves 4.5/3.5× improvements, the 2.1/1.6 years of lifetime is still too short for

main memory. Further improvement can be obtained with simple wear-leveling techniques
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like row shifting and segment swapping, so that PCM-based main memory becomes practical

in terms of lifetime [75, 31]. Also, DW results in localized bit changes inside each row. This

provides more room for wear-leveling.
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Figure 29: Lifetime (days) after applying Differential Write.

3.5 BEYOND ENERGY AND LIFETIME

Differential Write is not only an effective technique to reduce the write energy and im-

prove the lifetime of PCM main memory, it also opens new opportunities for upper level

architecture design. For example, in order to improve PCM memory throughput without

breaking its power envelop, an intuitive approach is to improve the utilization of available

power budget. This can be accomplished by reducing the number of bit-writes in each write

request, so that more write requests can be served concurrently under same power limit.

The Differential Write technique offers a great opportunity here: with DW, about 85% of

bit-writes can be avoided in PCM write requests. Moreover, as studied in [78], DW provides

important bit-change information that can be leveraged by power budgeting techniques for

better estimation of power demands.
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4.0 BIT LEVEL ENERGY REDUCTION FOR STT-MRAM

As discussed in Chapter 1 and 2, STT-MRAM shares the similar challenge of high write

energy to PCM. Although STT-MRAM writes consume less energy than PCM writes, it

is still in the same order as DRAM and much higher than SRAM and eDRAM, which is

prohibitive in an on-chip cache environment. Fortunately, the opportunity of redundant

bit-writes is not exclusive to main memory. Therefore PCM’s solution of Differential Write

can be borrowed by STT-MRAM. In this chapter, following the idea of Differential Write in

PCM, I develop Early Write Termination (EWT), a novel technique to significantly reduce

write energy with no performance penalty [76]. Because EWT circuits detect redunct bit-

write and cut off write current at the early stage of a write, no pre-write read is triggered.

Evaluations show that EWT can reduce 52% of dynamic energy on average. It can be

combined with volatile-write [52] for further energy savings.

Differential Write

Pseudo-Multi-Port 
Bank

Early Write 
Termination

Common-Source-
Line Array

PCM STT-MRAM

bit level

array level

Figure 30: Bit level solution for STT-MRAM: Early Write Termination.

39



4.1 ENERGY PROBLEM OF STT-MRAM

Similar to PCM, the high write energy of STT-MRAM is also determined by the storage

device. STT-MRAM write uses spin-polarized current flowing through the MTJ to disturb

its magnetic torque in one stable direction, turn the torque, and let it settle in the other

stable direction with different resistance. Such procedure also requires high current in the

range of 50∼500µA [28, 19], as while as long period of 10∼100ns [19, 16, 36]. Therefore,

STT-MRAM suffers from high per-bit write energy of conservatively 50µA × 1.2V × 10ns

= 0.6pJ per bit, much higher than that of SRAM and eDRAM. It has been shown that

STT-MRAM cache consumes 6∼14 times more energy per write access than SRAM [55].

Several recent studies proposed to relax the non-volatility requirement from the typical ten

year storage-class retention time, to reduce the write pulse width and thus write energy [52].

However, even with such volatile writes, the write energy still dominates total energy of

an STT-MRAM based cache, offsetting the energy savings from low leakage [5]. Therefore,

reducing write energy of STT-MRAM is important to improving its energy efficiency.

4.2 THE OPPORTUNITY: REDUNDANT BIT-WRITES
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Figure 31: Redundant bit-writes in 16MB STT-MRAM L2 cache.
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Similar to main memory, redundant bit-writes also widely exist in caches. Figure 31

shows the results of an evaluation with a 16MB L2 cache 1. On average, about 88% of

bit-writes are redundant, which implies a significant amount of removable bit-writes and a

great potential of energy saving in an STT-MRAM cache.

4.3 EARLY WRITE TERMINATION

4.3.1 Rationale

To exploit the opportunity of redundant bit-writes, the approach of Differential Write could

be employed: read out the cache content, compare it with the new value, and write back

only the different bits. However, this method entails that every write is preceded with a

read operation, as discussed in Chapter 3. Although reads consume much less energy and

are much faster than writes in STT-MRAM, the increased latency could be much more

expensive in the delay-sensitive L2 cache than in main memory. Fortunately, we could do

better than Differential Write based on the following unique features of STT-MRAM:

• When writing an STT-MRAM cell, the change of MTJ resistance is not a gradual and

cumulative procedure like in PCM. Instead, resistance changes abruptly near the end

of a write cycle [58, 6]. This means that at the early stage of a write operation, an

STT-MRAM cell still holds its valid old value.

• A read operation is performed by applying a voltage between bitline and source-line,

followed by sensing the resulting current to determine the MTJ resistance. A write

operation follows exactly the same scenario of flowing current through the cell, expect

its higher voltage and longer pulse.

• Because write voltage and current are larger than read, the resulting current difference

between high and low resistance states is also larger. This means the sensing margin

is better in distinguishing high and low resistances using write current, and thus the

sensing delay can be shorter.

1Architectural simulations in this chapter were performed by Ping Zhou at Department of Electrical &
Computer Engineering, University of Pittsburgh.
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• A write operation in STT-MRAM is much longer than a read. A typical write pulse

of STT-MRAM is at least 10ns, below which the switching current increases rapidly

[19, 12]. However, reading from a cell can complete in around 1ns [55]. This not only

gives us adequate room to sense the old value during the early stage of a write, but also

implies great opportunity in saving energy by terminating the write current as soon as

redundancy is detected.

Based on these observations, we propose a novel write scheme with the capability of

early termination in case of a redundant write. The main goal is to greatly reduce the write

energy without impact on performance. The basic idea is to sample the resistance of the

MTJ (old value) at early stage of a write operation, and throttle the write current if old value

is same as the new value. To achieve this goal, we need an additional comparator circuit to

accompany each write driver to sense the resistance of the cell during a write operation, and

some other additional circuits to generate the control signals. The procedure of such Early

Write Termination (EWT) technique is as follows:

1. When a write operation begins, write voltage is applied between BL and SL to generate

the write current.

2. When the signals are stabilized, a comparator is enabled to sense the resistance of the

cell (i.e. the old value).

3. If the old value is same as the new value, a control signal shuts off the write current

path and terminate the operation on this cell. Otherwise, write operation on this cell

continues normally.

As we can see, the above process does not require an extra read to precede a write

because sensing the old value is performed together with the write operation. Compared to

the Differential Write scheme used in PCM that mandates a read before a write [75, 31],

EWT does not introduce any overhead in performance. In fact, experiments show that

EWT sometimes even improves performance a little because some write requests (an entire

L1 cache line) can be completely throttled and terminated in their early stage.
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4.3.2 Circuit Design

The overview of proposed EWT implementation is illustrated in Figure 32. It does not

require any change to existing read or write circuit. Instead, it is designed to work as an

“add-on” to a functional STT-MRAM. The main circuit components added for EWT include

a voltage comparator, multiplexers, and an AND gate.

BL

Vref0 Vref1

Vin + Vin -

Vout -Vout +

comparator

new 
value

new 
value

0 1 0 1

0 1
col-sel

col-EN

col-EN col-EN

SL

Vin0 Vin1

Write
0 (RL)

Write
1 (RH)

WL

cell

column mux column mux

Figure 32: Overview of EWT circuit design.

The write operation starts with applying a positive voltage between BL and SL for

writing a ‘0’ (low resistance), or negative voltage between BL and SL for writing a ‘1’ (high

resistance). The existing column multiplexer circuit is used with revised control, shown as the

pass-gates on BL and SL in Figure 32. They are now controlled by the column enable signal

(col-EN) which is generated by ANDing the comparator output with their orignal column

selection control (col-sel). These pass-gates serve two purposes: 1) when it is detected that

the write is redundant, the pass-gates are turned off to cut the write current on BL and SL;

2) together with other resistances further away from the cell, they act as small loads on the
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write current path to convert the write current difference into voltage difference of Vin0 or

Vin1. This is used by the comparator to detect the stored value in the cell.

For example, as shown in Figure 33, when a ‘0’ is written, a positive voltage is applied

between BL and SL creating a current flow from BL to SL. Due to the voltage distribution

along the write current path, there is a voltage drop from power supply to Vin0. The

magnitude of this drop is determined mainly by the resistance of MTJ (other wire loads

are constant). If it is storing a ‘1’, meaning that the resistance is high, the voltage drop

across the cell is larger, so the voltage drop from VDD to Vin0 is relatively small and Vin0

is relatively high. On the other hand, if the MTJ is storing a ‘0’, Vin0 is relatively low. A

reference voltage Vref0 between high Vin0 and low Vin0 is used for comparison and detection

of the stored value in MTJ.

SL

BL

WL

cell

WD

WD

Vin0

Write
0 (RL)

Figure 33: The voltage divider behavior of the write current path.
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Because writing 1 and writing 0 are asymmetric, the magnitudes and variations of Vin1

in writing 1 is different from that of Vin0 in writing 0. Therefore another reference voltage

Vref1 is needed in case of writing 1. The Vin0/Vin1, Vref0/Vref1, and comparator outputs

Vout+/Vout- are configured by the new value to be written through the multiplexers, so that

the comparator circuit is reused. Table 3 summarizes signal conditions and induced actions

in all write cases.

Table 3: Signal conditions and induced actions in different write cases.

Old New Comparator
col-EN Action

value value input condition Vout+ Vout-

0 (RL) 0 Vin0 < Vref0 0 1 0 cut off

1 (RH) 0 Vin0 > Vref0 1 0 1 continue

0 (RL) 1 Vin1 < Vref1 0 1 1 continue

1 (RH) 1 Vin1 > Vref1 1 0 0 cut off

Notice that Figure 32 is a simplified illustration not showing the multiplexing of the

added EWT circuits. Because EWT functionality is added on a per-write-driver basis, it can

also be shared by multiple columns through column multiplexer, similar to the write driver.

In each column, the EWT multiplexer (not shown in Figure 32) simply consists of two

pMOS transistors that respectively connect Vin0 and Vin1 to the input multiplexer (shown)

of the comparator. They are co-located with the existing column multiplexer (shown) and

controlled by col-EN. Also, one AND gate is added to the comparator output for each

column that shares the EWT circuit (only one shown in Figure 32). And it is controlled by

the comparator output together with the col-sel signal of that column.

The comparator circuit, shown in Figure 34, comes from the generic comparator com-

monly used in many mixed-signal designs like A/D converters [64]. This topology consists

of a differential amplifier part (Ni1, Ni2 and Nb) to sense the input voltage difference, a

cross-coupled latch (Pr1, Pr2, Nr1 and Nr2) using positive feedback for full-rail regenera-

tion/amplification, and precharge transistors (Pc1 ∼ Pc4) to reset voltages of output and

internal nodes. Because input voltages Vin0/Vin1 and Vref0/Vref1 are relatively high (close

to VDD), high Vth transistors are used as Ni1 and Ni2 such that they can be biased in their

high-gain region by the inputs. High Vth also means relatively small Vth variation, which
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greatly helps in the matching of Ni1 and Ni2 such that the comparator is more accurate and

more immune to offset voltage and variations.

Vin -Vin +

Vout +Vout -

EN

EN

EN

EN

EN

Nb

Ni1 Ni2

Nr1 Nr2

Pr1 Pr2

Pc1 Pc2

Pc3 Pc4

high Vth

Figure 34: Comparator circuit.

In my SPICE-level simulation, an inactive col-EN can be generated in 500ps after the

wordline is selected. Therefore, redundant bit-writes can be detected and throttled at a very

early stage.

4.3.3 Overhead

I implemented the EWT circuits and simulated them at SPICE level using 45nm technology.

I measured the additional energy introduced by EWT circuits, including the comparator,

the multiplexers, and the AND gate. These components are added on a per-write-driver

basis. The energy overhead is 74.4fJ per bit-write. This is negligible comparing to the pJ-

level per-bit write energy. The estimated area introduced by EWT circuit is about 8.96µm2

per write driver. The additional circuits to generate reference voltages incur very small

area overhead because they are shared by many EWT circuits. Given that there are 16

banks and each bank has 512 write drivers (64B cache line size), the total area overhead is

about 73400.32µm2 which contributes to <1% area increase of a 16MB STT-MRAM cache

(estimated by CACTI [84]).
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Since EWT is carried within a write operation, there is no performance overhead to the

write latency. On the contrary, some write requests can even finish earlier if all the bits are

the same as what have been already stored in the cache. This leads to a slight performance

gain, which will be seen in Section 4.4.

4.4 EVALUATION RESULTS

4.4.1 Modeling

To measure how much energy saving we can achieve through EWT design, I modeled an

STT-MRAM L2 cache in both performance and energy, and then compared it to a baseline

STT-MRAM without EWT. The same hybrid approach in Differential Write modeling was

adopted: the core circuits of STT-MRAM such as the cells, bitlines, wordlines, read/write

circuits etc. were simulated at SPICE level, and the SPICE results were then combined with

CACTI [84] estimation of peripheral circuits like decoders, interconnects, data buffers and

I/O drivers. All SPICE simulations were performed with 45nm device models at 90◦C. The

numbers produced by this model, as listed in Table 4 and 5, were then applied in architectural

simulations.

Table 4: Per-access read/write energy.

Read Write (Base) Write (EWT)

Peripheral 0.192nJ 0.203nJ 0.203nJ

Overhead – – 0.0457nJ

Cells 0.013nJ 1.417nJ
Echange=2.767pJ
Eunchange=0.148pJ

Total 0.205nJ 1.620nJ Variable

The breakdown of dynamic energy for reads and writes are shown in Table 4. For dynamic

cell energies, we referred to the results in [55], and scaled them to 45nm technology node.

When EWT is enabled, the write energy is no longer a fixed value. Instead, it is the sum of

three parts: peripheral energy Eperipheral, overhead energy Eoverhead and a varying cell energy

Ecells due to value changes:
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EEWT−write = Eperipheral + Eoverhead + Ecells

Eperipheral is the energy consumed by the peripheral circuits. This is 0.203nJ , same as

in baseline. Eoverhead is the energy consumed by the EWT circuits. This part is 0.0457nJ

per write access, calculated as per bit-write overhead multiplied by the number of bits in

a cache line (512 in our case) since there is one set of EWT circuit per write driver. Ecells

is the energy required by those cells that are updated. This variable part depends on how

many cells are actually changed in a write request. It can be expressed as:

Ecells = Nchange × Echange +Nunchange × Eunchange

Where Echange is the energy used to change one cell, which is 2.767pJ in our model. This

was obtained by scaling the results in [55] to 45nm technology node. Write operations on

unchanged cells are terminated at the end of 0.536ns, which amount to 0.148pJ per cell for

Eunchange. In summary, per-access write energy with EWT can be expressed as:

EEWT−write = Eperipheral + Eoverhead +Nchanged × 2.767pJ +Nunchanged × 0.148pJ

Table 5: Per-access read/write latency.

Read (ns) Write / EWT (ns)

H-tree in 2.010 2.010

Word-line + Decoder 0.544 0.544

Bit-line 0.800 –

Sense-amp 1.006 –

H-tree out 1.872 –

Write Pulse – 10 / 0.5

Total 6.232 12.554 / 3.054

The breakdown of read and write component latencies are listed in Table 5. The latencies

are rounded to CPU cycles when used in architecture simulator. We referred to a previous
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work on STT-MRAM cache [55] for STT-MRAM cell latencies. For read operation, this

is essentially the sense amplifier delay, which is assumed to be 20% slower than the sense

amplifier of SRAM [55]. For write operations, a 10ns pulse width was used. However, if the

entire write access (a cache line) is throttled, the write latency equals to the time required

for redundancy detection which is 0.536ns, as measured from SPICE simulation. Therefore,

a write with EWT may take shorter time than in the baseline.

4.4.2 Energy and Performance Results

The write energy and read energy are combined together to evaluate saving in total dynamic

energy. Figure 35 shows the measured results in each workload, normalized to the baseline.

With EWT, up to 80% reduction of write energy is observed. Among all 17 workloads, 14 of

them get more than 60% reduction of write energy. Even for workloads with lower bit-write

redundancy such as mgrid, sphinx3 and swim, EWT still achieves 40%∼60% savings. As

write energy contributes to more than 70% of total dynamic energy in baseline, applying

EWT leads to significant reduction in total dynamic energy (52% on average).
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Figure 35: Dynamic energy breakdown showing energy savings of EWT.

As discussed previously, EWT does not introduce any performance penalty to cache

accesses. Instead, write requests may finish early if no bit change is needed. Therefore,

EWT can reduce average write latency and the contention on cache banks, resulting in
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slight improvement in performance. Figure 36 shows the results in Cycles Per Instruction

(CPI), normalized to the baseline. 3%∼7% of CPI improvements were observed in memory

intensive workloads such as mcf, art, lucas, and the average CPI improvement over all

workloads is 1%.
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Figure 36: Performance improvements.
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5.0 ARRAY LEVEL THROUGHPUT IMPROVEMENT FOR PCM

As discussed in Chapter 1 and Section 3.5, the proposed PCM bit-level solution, Differential

Write, can effectively remove large portion of bit-writes and thus provides power headroom

for throughput improvement. However, the throughput of PCM is also tightly bounded

by another two factors: the long write latency and limited number of read/write circuits.

Because multi-port is not an option in PCM cell engineering, array level becomes the lowest

level for searching for a throughput enhancement solution.

Differential Write

Pseudo-Multi-Port 
Bank

Early Write 
Termination

Common-Source-
Line Array

PCM STT-MRAM

bit level

array level

Figure 37: Array level solution for PCM: Pseudo-Multi-Port Bank.

In this chapter, I propose a Pseudo-Multi-Port Bank design to exploit the intra-bank or

sub-array level parallelism [78]. It allows all of its arrays to operate relatively independently

by leveraging the hierarchical wordline and bitline architectures, so that the bank can, instead

of accommodating one access at a time, serve 2 writes and 2 reads simultaneously. The

goal is to create more request parallelism and fully utilize the limited number of read and

write circuits, without dividing a bank for the purpose of preserving cell density which is

critical in PCM designs [9]. Next, I show that such bank design opens up potential for

novel memory scheduling enhancements to fully take advantage of intra-bank parallelism
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and further improve throughput. Additionally, my design is cell-type independent and is

applicable to SLC/MLC and MOS/BTJ/diode-selected PCM cells, or other high-density new

memory technologies that suffer from low throughput in the similar manner. Experiments

show that our novel bank design plus simple scheduling enhancement can improve throughput

by 58% on average over a baseline PCM design.

5.1 THROUGHPUT PROBLEM OF PCM

Besides write energy and endurance, one major obstacle for PCM to replace DRAM is an-

other write induced challenge – low write throughput. For example, a state-of-the-art PCM

chip can achieve 40MB/s program throughput [9], while that of even an old DDR2-800

DRAM is 100MB/s per chip. Though many efforts have been spent on write energy and

endurance problems, the throughput problem largely remains untouched. Because of its de-

vice and circuit level origins, throughput problem of PCM cannot be tackled by architectural

techniques directly. A DRAM/PCM hybrid design [41] can only improve the overall through-

put of the entire hybrid memory system, but not PCM throughput. The write-cancellation

and write-pause techniques [43] can only help in improving read latency, but not memory

throughput because writes and reads are still exclusive to each other and must be served

in serial. On the other hand, at circuit level, a multi-port cell is not feasible or favorable

because 1) it is very hard to guarantee the isolation between ports using a compact cell

structure; 2) each port needs its dedicated set of peripheral circuits that will significantly

hurt density.

Due to the unique characteristics of PCM, its throughput is mainly constrained by the

following three factors:

(1) High write power. Given the large write power per bit, large number of concurrent

bit-writes can raise concerns of voltage droop and power supply noise [14]. Hence the

number of cells written in parallel has to be restricted [26], which is already constrained

by the chip power budget.
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Fortunately, as demonstrated in Chapter 3, our bit level solution Differential Write

technique [75, 31] can effectively remove large portion of bit-writes and thus provide

power headroom for throughput improvement [78]. Similarly, the Flit-n-Write technique

[8] based on our Differential Write is another effective solution [14]. Moreover, good

scalability of phase change materials implies that aggressive write current scaling can

be expected [7, 9]. Furthermore, main memory interfaces like DDR generally feature

much larger power capability than stand-alone Flash interface. Therefore, the write

power/energy factor is less a concern here.

(2) Long bank occupation time as a result of long write latency. PCM’s write operation is

not only slow but much slower than its read operation, which is determined by the device

characteristics. A typical set (crystallizing) procedure takes at least 120ns [7], and the

write latency of multi-level PCM is much worse due to the multi-iteration program-and-

verify procedure [4]. Moreover, because of the limited number of concurrent bit-writes

(due to both factor (1) and (3)), writing a line (e.g. 512 bits) is usually completed in

several iterations, with each iteration writing part of the line [26, 29], incuring ∼1000ns

page write latency [85].

When a memory bank is serving a write for a long time, no other operations can

be performed in this bank. In other words, such long writes increase memory bank

occupation time and thus block the subsequent accesses. This is especially harmful for

system performance if subsequent reads, which are on critical path of the CPU, are

blocked and the effective read latencies are significantly increased.

(3) Limited number of read/write circuits due to the large sizes of SA/WD vs. small

size of cell. PCM cell is quite small and scaled agressively during the last several year,

thanks to the reduced write current from improved phase change material and the cor-

responding shrinking and evolution/migration of access devices. On contrast, read and

write circuits (sense amplifier (SA) and write driver (WD)) of PCM are usually quite

large as a result of high-current, high-voltage operations and complex control. Although

write current kept scaling down, write voltage rised with increased parasitic resistances

(due to narrower local bitlines to accommodate smaller cells, and longer global bitlines

for better area efficiency [9]) and increased access device threshold (especially with diode-
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selected cell [29]). Such a conflict between cell size and SA/WD size is represented in

two dimensions:

First, in the row dimension, a limited number of WDs and SAs are placed to pitch-

match the large number of cells in a row. For example, 16∼32 WDs and SAs can be

accommodated within the width of 1024 cells [26, 29]. Therefore, PCM chips usually

employ high degree of column multiplexing through two levels (global and local) of

multiplexers.

Second, in the array or column dimension, WDs and SAs are usually globally placed

and shared among many arrays in the same bank/chip [7, 26, 29, 4, 62, 47, 14, 9]. This

is because equipping each array (or every two arrays) with its dedicated set of WDs and

SAs, like in SRAM and DRAM, is simply too expensive for density and cost-effectiveness.

Too many peripheral circuits lead to low area efficiency and thus low effective density,

offsetting the advantage of small cell size [9].

Therefore, it is quite common that a high capacity PCM chip possesses very limited

number of WDs and SAs, which ultimately constrains achievable throughput.

5.2 PSEUDO-MULTI-PORT BANK DESIGN

As discussed above, the bit level factor, (1) high write power, is less a concern for PCM

throughput problem. Therefore, my Pseudo-Multi-Port Bank design targets the two array

level factors: (2) long bank occupation time and (3) limited number of read/write circuits.

For these two factors, the goals of my design are to provide intra-bank parallelism so writes

and reads do not block each other, and to fully utilize these limited resources of read/write

circuits to support such parallelism. It is based on the potential that when writing a bank,

only the write circuits are occupied and the read circuits are idle. If circuit modifications

are developed to allocate the read circuits for a parallel read operation, the design goals can

be achieved.
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5.2.1 Overview

Our PCM chip and physical bank organizations follow a prototype from Samsung [26] with

minor modifications. The chips are organized into a memory system similar to a typical

DRAM DIMM. Figure 38 shows our design of a 2GB PCM memory rank on a standard 64-

bit channel. The rank consists of 8 256MB PCM chips, each having 8 32MB banks. In each

channel transition, all PCM chips work together to deliver 64 bits of data, with each chip

producing 8 bits which are generated from one bank within that chip. Hence, a read request

of 64B data will require 8 transitions in 4 channel cycles (DDR interface). I also assume

the same signal sequence as a DDR memory interface: row address arrives first, followed by

column address and finally read or write command.
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Figure 38: Overview of memory organization showing 4 concurrent accesses in a bank. SA

– sense amplifier, WD – write driver, GWL – global wordline, LWL – local wordline, GBL –

global bitline, LBL – local bitline. Chip and bank floorplans are from [26]

Inside each PCM bank, the 32MB capacity is divided into 64 4Mb (2048-row × 2048-

column) cell arrays. These arrays are partitioned into left and right halves of the bank that

can work concurrently. The row decoder, shared by both halves, is in the middle of the bank

to avoid long wordline driving. The read and write circuits, sense amplifiers (SA) and write

drivers (WD), are at the bottom of the bank and are shared by all the arrays. Because a

bank handles 64 bits of data in serving each memory access, 64 sets of SA & WD are placed

below each half bank. This many SAs and WDs can fit into the width of 4 arrays (8192

columns) [26, 29].
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When a write is performed, the row decoder selects, drives and holds one wordline to

open the cells in that row. Proper bitlines corresponding to the address are then selected

to start writing. One write always activates only one array in the bank. To make a write

non-blocking, another operation is enabled whose activity is in a different array of the bank.

This is fundamentally feasible because when a write is in-progress, only the write circuit is

occupied but the read circuit is idle. With proper circuit changes, the read circuit can be

used to serve a different read in concurrent with the write.

However, there are two challenges to the exploiting of this opportunity in circuit imple-

mentation. The first challenge is the sharing of circuit resources. For example, the wordline

is held by the row decoder for the entire duration of the write. So when a read request

comes, there is no row decoder to use. The decoder needs to be freed in order to decode a

second address and drive a second wordline. Even if a second wordline can be activated for

read, a second challenge is the interference between write and read. The read wordline will

interfere with write because it opens cells at its cross-points with the write’s bitlines, and

these cells would be mistakenly written. Likewise, the write’s wordline will also interfere

with the read’s bitlines. This is depicted as the two crosses in Figure 39, which will destroy

both the write and the read.

SA & WD

BL

WL

bank

W

R

row decoder

WL

BL

Figure 39: Interference among wordlines and bitlines for write and read.

The first challenge can be addressed by latching the output results of the shared circuits

and time-multiplexing them between requests. The second challenge can be addressed by

making arrays relatively independent and offloading memory accesses to individual arrays.

My circuit implemention leverages and revises the existing hierarchical wordline and bit-
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line architecture, i.e. one global wordline/bitline (GWL/GBL) with local wordlines/bitlines

(LWL/LBL) in each array, as shown in Figure 38. For instance, once activated, the LWL

signal can be latched locally in each array so it is possible to dismiss the GWL and row

decoder for a subsequent access. However, the GBL cannot be released as it connects with

the read/write circuit. Such connection must be maintained throughout an access. Hence,

two operations that fall within the same column of arrays cannot be performed concurrently

because they need to share the same GBLs which are dedicated to one operation at a time.

Therefore, arrays in my bank design are in one of three states, as illustrated in Figure 40.

An idle array is open for any memory access. An active array is busy serving one request.

Because the sharing of GBLs is uncompromisable, all other arrays in the same column of

an active array must be disabled such that they will not support or be affected by another

parallel access. Implementation details can be found in the following sections.

SA & WD
32MB bank

array

W

W

R

R

active

disabled

idle

Figure 40: Three array states in a bank.

Notice that the latencies of these shared circuits (e.g. row/column decoders), and there-

fore the required time to recycle and reuse them, are negligible comparing to the write and

read latencies on PCM cells. So the delay expense to enjoy this novel intra-bank parallelism is

minimum. Consequently, my novel bank design creates the illusion of the multi-port access,

where comes the name of Pseudo-Multi-Port Bank.

Also, I remark that my design is not simply breaking a bank into two (or throwing

in more banks) for more parallelism. Those designs would dramatically reduce the PCM

density because each bank must be equipped with a new set of peripheral circuits including

decoders, drivers, I/O buffers, and address/data/control/power routings. My design is based

57



on a Samsung prototype [26] except that I utilize its idle SAs or WDs for parallelize-able

requests, and time-multiplex the shared decoders to enable parallelism. For example, when

the left half is serving a write, the WDs below the right half and all SAs in the bank are

idle, but the center row decoder is busy. I let free the decoder so that it can serve another

read or write and utilize the idle SAs and WDs. As I will show in Section 5.2.4 that my

design adds only 5% (conservative) of hardware overhead, which is much more lightweight

than dividing a bank, or using more banks to achieve the same parallelism. This is the key

advantage of my bank design.

To summarize, each half bank in my design can serve 1 read and 1 write at the same

time. Hence a bank can serve up to 2 reads and 2 writes concurrently. There is also hardware

limitation on this concurrency: two requests that access arrays on the same column cannot

be active at the same time.

5.2.2 Circuit Design

My PCM bank design follows a prototype from Samsung [26] with revised hierarchical

GWL/GBL + LWL/LBL control. In those designs, hierarchical organization of wires pro-

vides more flexibility to optimizing GBL for low resistance, which is critical to delivering

current to cells. I use this organization for implementing parallel accesses within a bank.

The GWL/GBL will first be selected, followed by opening LWL/LBL in a local array. Then,

further circuit support is needed to hold the LWL for the duration of an access while the

GWL can be released for a new access. Next, I elaborate my hierarchical GWL/GBL +

LWL/LBL control based on a realistic memory organization.

To make each array independently accessible, I place all 64 bits of a data in the same

array, instead of distributing them into 4 arrays [26]. Because of such data placement, 64

GBLs are needed per column of arrays, as depicted in Figure 41. Such number of GBLs is

physically feasible [29] with no area occupation as GBLs traverse over the arrays. The 64

GBLs are connected to 2048 LBLs through local column multiplexer (LCM), and the global

column multiplexer (GCM) switches 64 SAs and WDs between four groups of 64 GBLs. The

GCM actually contains two separate multiplexers for SA and WD respectively [29].
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Figure 41: Architecture of Pseudo-Multi-Port Bank design showing the right-half bank.

Recall that the first challenge in my design is to release the shared circuits, e.g. a row

decoder, after they generate their outputs. I first introduce a set of horizontal (H) and

vertical (V) signals as shown in Figure 41. The intersection of an activated H and V opens

an array and generates the corresponding enable signal (EN) for intra-array use. Since array

and thus H and V signals are arranged in an 8×8 manner, two 3:8 decoders are sufficient for

locating an array. When a row address arrives at the decoder, both GWL and H are driven

high. One V wire is then selected by the array V decoder when the column address arrives.

This V signal then closes the latch in the intersection of V and H (Figure 42), which latches

H internally. Hence, the array H decoder can be freed. Meanwhile, the EN together with

the selected GWL activates one LWL, and at the same time closes the pass-gate in every

LWL driver in the active array (Figure 43), which latches GWL internally. Hence, the row

decoder can be freed now.
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Figure 43: LWL driver.

The second challenge is to prevent the interference between the active write and read in

their wordline and bitline cross-points. This challenge can be addressed by closing all arrays

in the column so that they will not be affected by signals of a new request. Since an active V

signal closes the latch in the array enable circuit as shown in Figure 42, any further changes

on H will not be seen as long as the V is active. Hence, V signal in fact locks the selection

states of all arrays in the same column. In the active array, the active EN signal held by
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V closes the pass-gates, so the LWL drivers will not see changes on GWLs. In disabled

arrays, the inactive EN signal, also held by V, makes LWL drivers not responsive to GWLs.

Furthermore, after being generated by the array V decoder, the V signal holding the entire

column is in turn held by the write/read enable signals, shown as W and R in Figure 41,

through the Vctrl circuit shown in Figure 44. Thus, the array V decoder can also be freed

for another access.
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low voltage 
transparent 

latch

d
elayd

el
ay

drive

Figure 44: Vctrl circuit to hold the V signal while releasing the array V decoder.

The Vctrl circuit takes inputs from both the array V decoder and a R or W command. If

the input from the array V decoder is high (the corresponding V signal should be driven),

and either R or W command is high, it activates the V signal and locks itself until the R

or W drops low, i.e. the operation finishes. The circuit has a symmetric and cross-locked

structure. It ensures that when this V signal is selected, and if one command signal is high,

its output will stay constant and not be affected by changes on the other command signal.

Through this way, the Vctrl circuit can hold the V signal using W or R command and dismiss

the array V decoder for next request.
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Figure 45: Timing graph of a read carried in parallel with a write (not to scale).

To summarize the procedure of issuing two accesses that overlap in time, I use a timing

graph shown in Figure 45 (not to scale) to illustrate the sequence of control signals for a

write parallelized with a read. When a write request is issued to PCM, its row address is first

decoded by the array H decoder to select and pull up one H signal, HW. At the same time,

the row decoder activates one GWL, GWLW. When the column address arrives, the array

V decoder produces an output VoutW which makes one Vctrl circuit ready for the upcoming

W command. These signals will be discharged soon to take the next read operation. When

the write command becomes high, the Vctrl circuit activates a V signal, VW, which will be

held high as long as the W signal remains active. ENW and LWLW are then enabled by VW.

When the write is in progress, the dismissed row decoder, array H and V decoders are used

by the following read access to generate HR, GWLR and VoutR. The read command R then

triggers a similar series of signals, all of which occur in a different column of arrays. Since

read access is much faster than write access in PCM, R ends sooner leading to a sequential

discharge from VR to LWLR which turns off the cells being read. If there is another read

coming in at this time, the process will repeat again without any problem.

62



5.2.3 Circuit Component Details
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(d) H goes

Figure 46: Steps to select/enable an array.

The array enable circuit shown in Figure 42 is to activate or disable an array according

to H and V signals. It simply ANDs H and V to generate the intra-array enable signals EN

and EN. Figure 46 illustrates the steps to enable an array. When idle, the circuit is open for

inputs to switch. When H signal comes, it passes through the latch to the NAND gate but
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the array state remains unchanged. Only when the V signal becomes active, the NAND gate

is triggered to flip EN and EN, at the same time the latch is turned opaque by V, latching

the active H signal on the NAND input. Therefore, H signal and array H decoder can be

dismissed.

Figure 47 shows the states of this circuit in different arrays. With an active V, it latches

active and inactive H’s in active and disabled arrays respectively, and therefore holding the

enable signals. As a result, any further changes on H will not be seen as long as the V is

active. Hence, V signal in fact locks the selection states of all arrays in the same column.

H

V

ENEN

(a) In active array

H

V

ENEN

(b) In disabled array

Figure 47: States of array enable circuits in different arrays.

The LWL driver shown in Figure 43 is to activate LWL according to GWL and array

enable signals. Figure 48 illustrates the steps to enable a LWL. When idle, the circuit is open

for inputs to switch. When GWL comes, it passes through the pass-gate and the nMOS it

controls is turned on, but the LWL remains grounded. Only when the array becomes active,

the driver is triggered to charge LWL, at the same time the pass-gate is turned off by EN and

EN, latching the active GWL internally. Therefore, GWL and row decoder can be dismissed.

Once the array is deactivated, i.e. EN and EN are turned off by array enable circuit when

V signal is pulled down, it discharges LWL and becomes available to inputs again.
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Figure 48: Steps to activate a LWL.

Figure 49 shows the states of this circuit in different arrays. In the active array, the

active enable signals held by V turn off the pass-gates, latching active and inactive GWLs

for selected and unselected LWLs respectively, and therefore holding the LWLs. As a result,

the LWL drivers will not see further changes on GWLs. In disabled arrays, the inactive

enable signals, also held by V, make LWL drivers not responsive to GWLs.
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Figure 49: States of LWL drivers in different arrays.

The Vctrl circuit shown in Figure 44 is to activate V signal according to Vout and R

or W command. It features a symmetric and cross-locked structure to resolve the control

interference between R and W commands. Figure 50 illustrates the steps to enable a V

signal for the first access (e.g. write) into an idle bank. When idle, the circuit is open for

inputs to switch. When Vout comes, it passes through the latches on both sides of the circuit

but neither side is fired. When the W command becomes active, the W side is triggered to

drive the output V signal, at the same time the Vout latch is turned opaque by W, latching

the active Vout within the W side. Therefore, Vout and array V decoder can be dismissed.

Meanwhile, the inactive R command is latched within the R side by the internal signal of

the W side. As a result, any further changes on R command and Vout (which is illegal) will

not be seen as long as W command, and the write operation, is active.

Figure 51 illustrates the steps to enable another V signal in the same bank to parallelize

a second access (e.g. read) with the on-going first write access. Because R and W commands

are inputs of all Vctrl circuits, the active W command of the first access already latched the

inactive Vout within the W side of the Vctrl circuit in all other columns. Therefore, when

the second Vout comes, it only passes through to the R side, without mistakenly firing the
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Figure 50: Selecting a V signal for the 1st access (e.g. write).
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Figure 51: Selecting a V signal for the 2nd access (e.g. read) in parallel with the 1st access.
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W side due to the active W command. Next when the R command becomes active, the R

side is triggered to drive the output V signal, at the same time the active Vout is latched

within the R side so Vout and array V decoder can be dismissed. Meanwhile, the active

W command, together with the already latched inactive Vout, is latched within the W side.

As a result, the write access can finish without affecting the read, and any further changes

on W command and Vout (which is illegal) will not be seen as long as the read operation

is in progress. In summary, this Vctrl circuit is only responsive to the first command that

activated it.

5.2.4 Overhead

Table 6: Delay, energy and area overheads.

# in Delay Energy Area (µm2)
one bank (ps) (fJ) Each In one bank % of bank

(a) 3:8 decoders 2 80 23.2 25.02 50.04 0.0005

(b) H signal driver 8 240 499.8 10.62 84.96 0.0008

(c) Vctrl 8 850 446.8 32.4 259.2 0.0025

(d) array EN 64 105 250.7 14.13 904.32 0.0087

(e) LWL driver 64×2048 110 242.5 4 524288 5.03

TOTAL – 1145 1486.4 – 525586.52 5.0425

Most parts of my design such as chip organization, array partition, and hierarchical

WL/BL are adopted from existing prototypes [26, 29], and thus do not incur overhead. The

circuit components I added per PCM bank include: (a) array H and V decoders, which are

two 3:8 decoders; (b) H signal driver (×8); (c) Vctrl circuit (Figure 44, ×8); (d) array enable

circuit (Figure 42, ×64); (e) LWL driver (Figure 43, 64×2048). Although LWL drivers exist

in the prototype I referred to, I still conservatively study its overheads since the design is

revised. I built and tested my added circuit components in SPICE with customized 45nm

PTM device models [82], and measured their delay, energy and area overheads. For area

overhead, I also convert the number into percentage of the whole bank. To obtain the area

of a bank, I scaled the dimensions reported in [26] from 100nm to 45nm. I also assume that

the H and V wires can traverse over cell arrays and thus do not occupy silicon area. All

SPICE simulations were performed with a power supply of 1.2V at 90◦C. The results are

presented in Table 6.
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5.2.5 More Discussions on Circuit Design

LWLs must use a high voltage, denoted as VPP here, to increase the conductivity and thus

reduce the effective resistance of the cell access transistor for easier current injection [26]. VPP

is boosted from and higher than the supply voltage VDD. In contrast, peripheral circuits and

signals that purely provide logic functions, such as row decoders and GWLs, do not need

to be operated at higher voltages. Therefore, these two voltage domains interface in the

LWL driver circuit which is driven by GWL and EN in VDD domain and drives LWL in VPP

domain, as shown in Figure 52.

Vpp

Vpp

GWL

LWL

ENEN

Vdd domain

Vpp 
domain

P1

P2

high Vth
long channel

Figure 52: Two voltage domains in a LWL driver.

Unfortunately, this LWL driver suffers from voltage domain interfacing problem because

signals in the lower VDD domain cannot directly drive pMOS transistors in the higher VPP

domain. More specifically, this problem manifest itself when EN signal tries to turn off the

pMOS transistor P1, which sits on the domain interface. When EN is at VDD, the pMOS

transistor P1 in the VPP domain has VG=VDD, VS=VPP , and thus |VGS| = |VDD − VPP |. If

this exceeds |Vth| of P1, the pMOS will turn on and burn contention current. Even if the

difference is less than |Vth|, P1 will suffer substantially increased leakage.
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This problem can be alleviated by using a high-Vth pMOS device as P1 if the voltage

difference between domains is small enough [66]. In addition, increasing its channel length

also helps to further suppress leakage, as leakage has exponential dependency on channel

length. Nevertheless, high-Vth and long channel imply a weak driving strength and may

incur extra delay overhead. However, because the load of P1 is only the pMOS P2, such

delay penalty is quite limited despite the large size of the strong P2.

Moreover, it is worth noting that this partial-off problem only exists in the LWL driver

that drives an active LWL. In such a case, both of the nMOS transistors stacked with P1 are

on and the contention current can flow through them to ground. In all other LWL drivers,

including the ones driving unselected LWLs in the active array and the ones in disabled and

idle arrays, there is at least one nMOS turned off in the stack, thus quenches the leakage

burning of P1.

On the other hand, if the voltage difference between VPP and VDD is relatively large,

on each EN wire a simple voltage level converter circuit shown in Figure 53 can be used to

adapt EN signal from VDD domain to VPP domain (no need to convert EN). This completely

eliminates the voltage domain interfacing problem, and adding one simple level converter

circuit per array is negligible overhead.

EN EN

Vpp

EN@Vpp

Figure 53: Level converter circuit to adapt EN signal to VPP domain.

Figure 54 shows the LWL driver design for diode-selected PCM cell. In this design, EN

signal must be adapted to VPP domain using the level converter circuit shown in Figure 53

because it directly controls the pMOS that drives LWL.
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Figure 54: LWL driver design for diode-selected PCM cell.

5.3 MEMORY SCHEDULING OPPORTUNITIES

Although my proposed circuit design can provide larger concurrency inside each PCM bank,

the final throughput also depends on whether the memory requests issued to the bank can

fully take advantage of such intra-bank parallelism. Existing memory scheduling schemes aim

to exploit inter-bank parallelism and are not aware of this new opportunity. Once dispatched,

requests in one bank queue are issued in order. This could lose significant opportunities to

further improve throughput: if the head request of the bank queue “conflicts” with an on-

going request because they fall into the same column of arrays, as previously discussed, it

cannot be issued until the on-going request finishes. All subsequent requests are blocked even

though some of them do not have such conflict. This is even worse with PCM’s extreme

latency asymmetry between read and write. I now use an example shown in Figure 55 to

illustrate this problem.

Consider a bank queue containing request sequence {W1, R2, R3, R4, R5, W6, R7, R8}.

Among these requests, {W1, R2, R4, R5, R8} access the left half and {R3, W6, R7} access

the right half of the bank, as shown in Figure 55(a). W1 conflicts with R5 and R3 conflicts

with W6. We assume 1000ns and 50ns for write and read respectively [85].
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(b) Non-blocking Pseudo-Multi-Port Bank. Requests are issued in order.

W1
R2

R3

R4 R5

W6
R7

R8
left half

right half
Time

(c) Non-blocking Pseudo-Multi-Port Bank. Requests are issued out of order.

Figure 55: Impact of scheduling on requests finish time.

• Figure 55(a). In baseline architecture, each bank can only serve one request at a time.

Requests are issued in order. Total time to finish the sequence is ∼2300ns.

• Figure 55(b). We use non-blocking Pseudo-Multi-Port Bank without any scheduling

enhancement. Requests in the bank queue are still issued in order. Since R5 conflicts

with W1, it cannot be issued until W1 finishes. This immediately delays all subsequent

requests. However, W6 falls into the other half of the bank, so W6 could have been

issued in parallel with W1. Also, it does no harm to issue R8 sooner (than R5) as it does

not conflict with W1. Nevertheless, the total completion time is approximately 1000ns

(W1) + 1000ns (W6) = 2000ns, a 13% improvement over baseline.

• Figure 55(c). We reorder the requests in the bank queue to exploit intra-bank paral-

lelism, assuming dependencies among them have been resolved earlier. In this sequence,

W1 and W6 are parallelized. All read requests except R3 and R5 are parallelized with

writes. The total time spent is approximately 1000ns (W1 and W6) + 50ns (R3 and R5)

= 1050ns. Comparing to baseline, the completion time is reduced by more than 54%.
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A key point shown in this example is that in my non-blocking Pseudo-Multi-Port Bank

design, reordering requests is critical to the overall throughput and the average read latency.

Also, due to the significant gap between read and write latencies, it is utmost important to

overlap writes as much as possible to shorten the total latency of the entire sequence. This

often requires to move writes ahead of many reads. But such move will not hurt the reads

too much because they can be parallelized with writes most of the time.

5.4 EVALUATION RESULTS

We study the memory throughput improvements of my Pseudo-Multi-Port Bank design

with or without memory scheduling enhancement. Throughput is calculated as number

of requests served over their total finish time. Figure 56 show results normalized to the

baseline blocking design 1. As we can see, using my Pseudo-Multi-Port Bank design alone

(PMP) results in 35% throughput improvement on average because it provides much more

parallelism. Further parallelism can be achieved through scheduling enhancement. A scheme

that issues requists out-of-order (PMP+OoO) achieves another 23% improvement because

of its aggressive reordering algorithm.
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Figure 56: Throughput improvements.

1Architectural simulations in this chapter were performed by Ping Zhou at Department of Electrical &
Computer Engineering, University of Pittsburgh.
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6.0 ARRAY LEVEL DENSITY AND SCALABILITY IMPROVEMENTS

FOR STT-MRAM

To provide bi-directional currents to an MTJ, a classic array structure utilizes a pair of

bitlines to control voltages on two ends of a cell, similar to that of SRAM. However, with

aggressive scaling of the MTJ device, the wire width and spacing of the bitline pair become

the bottleneck to further shrinking memory area, diminishing the benefit of device scaling.

In this chapter I propose a novel Common-Source-Line Array architecture, in which one wire

in the bitline pair is moved to rows, leaving only one bitline per column of cells. Therefore

within the proposed array, cell size is again determined by the access device, similar to that

in DRAM and Phase Change Memory (PCM), leading density improvement back to the

track of device scaling.

Differential Write

Pseudo-Multi-Port 
Bank

Early Write 
Termination

Common-Source-
Line Array

PCM STT-MRAM

bit level

array level

Figure 57: Array level solution for STT-MRAM: Common-Source-Line Array.

In this chapter, I describe in detail my design flow for a reliable Common-Source-Line

Array architecture [72, 73], and demonstrate the viability of Common-Source-Line Array

in STT-MRAM. Results show that with comparable latency and energy consumption, the

Common-Source-Line Array can save 33% area, compared with corresponding dual-bitline

array. I also thoroughly discuss possible design styles of a Common-Source-Line Array with

respect to different applications and integration processes.
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6.1 DENSITY AND SCALABILITY PROBLEMS OF DUAL-BITLINE

ARRAY ARCHITECTURE

In building random access memories with MTJ, both cell and array designs must respect

its bipolar nature. In cell design, an nMOS is used as the selection device to provide bi-

directional conductivity. In array design, two bitlines (BL) are set on each side of the cell to

provide reversible voltage drop from the write circuits. Figure 58 illustrates such dual-bitline

structure for a 2×2 cell array. By convention, one wire in the bitline pair is called source

line (SL). It is symmetric with the other bitline both logically and physically.
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Figure 58: Illustration of a dual-BL array.

To read a cell, a small voltage difference is applied between BL and SL, resulting in a

current proportional to the resistance of the MTJ device. The read current is then sensed by

a sense amplifier to output the stored data. When writing a cell, a large positive or negative

voltage difference is applied between BL and SL for writing one state or the other.

In memory technologies that require specially-processed memory device such as DRAM,

PCM and MRAM, the memory device is stacked on top of its access transistor which is

made as small (narrow) as possible to achieve high density. In such a case, the cell area of

a dual-BL array is usually wire pitch dominant. In other words, the transistor (diffusion)

width plus the diffusion spacing is smaller than two times the bitline (metal wire) pitch. This

is illustrated in Figure 59 which shows the layout of a group of eight cells. The polysilicon

is used as wordline routing, and the parallel BLs and SLs traverse in column direction on

Metal 2 level. Two neighborring cells in the same column share a common diffusion and
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the via to SL. The MTJ is at Metal 1 level, within the via/contact stack from diffusion to

bitlines [61, 13]. As can be seen in the figure, the cell width is determined by the pitch of

BL and SL [27, 13, 57], not the transistor width. For ease of fabrication and cost control,

in most STT-MRAM prototypes [19, 16, 39, 27, 57], the MTJs are implemented in the top

metal layer, after the formation of all metal layers. The dominance of wire pitch is even

more pronounced in such designs as the pitch of higher metal levels are usually several times

that of bottom metal levels.

BL BL BL BLSL SL SL SL

WL

WL

cell

M2 pitch

Poly N+ NVD

M1 M2 Via

Figure 59: Layout of dual-BL array.

Obviously, with such wire pitch dominance, the reductions in MTJ switching current and

thus access transistor width can no longer drive memory area shrinking. In other words, the

device/cell level advantages cannot be translated into array level benefits. This problem will

be even more evident in highly scaled technologies (e.g. 28nm and below) where wires can

no longer keep up with transistor scaling [81].

6.2 COMMON-SOURCE-LINE ARRAY DESIGN

6.2.1 Common-SL Layout

To reduce the area and eliminate the wire pitch dominance of such an array, I propose to turn

the SLs by 90◦ such that they span across all columns, as illustrated in Figure 60 (with the

cross-section view along its bitline). That is, all cells in a row share a single SL, eliminating

the areas taken by N SLs previously, where N is number of columns. Hence, cell width is
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narrowed down to the transistor (diffusion) width plus diffusion spacing, and the area of an

array can be considerably reduced compared to a dual-BL array.

BL BL BL BL

SL
WL

WL

cell

N+ pitch

BL

SL

M1 M2

Figure 60: Layout of common-SL array with cross-section view along bitline (BL).

6.2.2 Read and Write

With the common-SL design, the memory accesses become different from before. Figure

61 shows the schematic comparison between dual-BL and common-SL arrays. The voltage

configuration for read operation is also marked. These two array designs essentially share

the same read scheme.

BL BLSL SL
WL

BL BLSL SL

Read +Vsmall +Vsmall +Vsmall +Vsmall0 0 0 0

(a) Schematic of dual-BL array

BL BL

WL

BL BL
SL

Read +Vsmall +Vsmall +Vsmall +Vsmall

0

(b) Schematic of common-SL array

Figure 61: Schematic comparison between dual-BL and common-SL arrays.

For writes, the dual-BL array can use a positive or negative voltage applied to each pair

of BL and SL, depending on the value to be written into the cell. However, in the common-SL
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array, writing different cells in a row are no longer independent due to the shared SL. Hence,

writing bit ‘1’ and ‘0’ should be performed in two separate rounds. As shown in Figure

62(a), the bitlines voltage are first set according to the values to be written. Then the SL is

set to 0 for writing bit ‘1’, and in the next round to +V for writing bit ‘0’. Therefore, this

write scheme doubles the write latency due to the common-SL. Obviously. such doubling

is very expensive in on-chip cache designs, given that the long write latency is already the

performance limiter in STT-MRAM based caches [55].

BL BL

WL

BL BL
SL

0

+V 0 +V 0

+V

W 1 W 1W 0 W 0

(a) Flip-V scheme

BL BL

WL

BL BL
SL 0

P-N +V +V-V -V
+2V 0 +2V 0

+V

2P

(b) P-N (or 2P) scheme

Figure 62: Two write schemes in common-SL array.

Instead, I propose to concurrently write all cells in a row, achieving a write latency

comparable to traditional dual-BL array. This is achieved by applying both +V and -V to

corresponding BLs and 0 to SL, producing current/voltage in two directions simultaneously.

This is illustrated in Figure 62(b) as positive-negative voltage (P-N) scheme. Alternatively,

one can also shift all voltages by V leading to an equivalent scheme with no negative voltages,

shown as the 2× positive voltage (2P) scheme in the figure. In both of these schemes, WL

swings between lowest and highest voltage levels. I will use this P-N scheme for better

illustration in the remainder of this chapter.

The boosted voltages -V or +2V can be regulated by charge pumps. A voltage doubler

charge pump for +2V(can use its complement implementation for -V) can be made compact
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and fast in an embedded environment [53]. Because only one level of boosted voltage is

needed in both P-N and 2P write schemes, such voltage could also be supplied directly from

off chip [16], eliminating charge pump circuits.

6.2.3 Concerns of Gate Oxide Breakdown

As I choose the P-N (or 2P) write schemes to not compromise latency, one reliability issue

arises as the largest possible voltage drop on two sides of the transistor gate is now 2× the

power supply voltage VDD. This is especially a concern when it comes down to a failure

mechanism known as gate oxide breakdown [20]. A soft gate oxide breakdown shares similar

underlying mechanism as Negative Bias Temperature Instability (NBTI) in that electrons

can be trapped into gate oxide. Gradually, the accumulated traps may stack together and

form a path through the oxide, making it more conductive. A hard gate oxide breakdown,

which is the concern here, happens when the voltage across gate oxide exceeds its maximum

sustainable value. As a result, the oxide is punched through, melted, and no longer insulating.

The occurrence of hard gate oxide breakdown can be effectively eliminated by having

appropriate oxide thickness (Tox) in design. Traditionally, Tox was scaled proportionally to

VDD and Vth for better performance and guaranteed reliability. At 45nm technology node

with a VDD of 0.9∼1.1V , Tox in bulk CMOS is within the range of 1.5∼2.4nm [81, 80, 82].

For my common-SL array design I pick VDD = 1V and thus the maximum voltage drop is

2V . Previous studies have shown that a 4nm Tox is safe for 2V [20, 79], and 4nm is about

2× the Tox in nominal 45nm process.

The downside of thicker gate oxide is the reduced current capability, or larger effective

resistance, of the access transistor. This in turn translates into degradation in performance

or write stability. Equation 6.1 (in first order) demonstrates how IDS is reduced due to

increased Tox. To offset this effect, one could boost the wordline voltage by a factor of

2, doubling the VGS, in equation 6.1. This will result in extra energy costs on wordlines.

However I found in my study that wordline energy is still negligible compared to read/write

energy of the cell. Lowering Vth and using high-kox dielectric can also help regain drive

strength.
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IDS =


µkoxε0W

2ToxL
[2(VGS − Vth)VDS − V 2

DS](1 + λVDS)

µkoxε0W

2ToxL
(VGS − Vth)2(1 + λVDS)

(6.1)

In high voltage transistors that possess thick gate oxide, e.g. I/O transistors, the mini-

mum gate length usually increases proportionally. This is to accommodate the possibly large

VDS across the channel. However in the proposed common-SL array, a VDS ≤ VDD=1V can

be guaranteed on all cell transistors in either read or write operation (Figure 61 and 62).

Thus it is feasible to maintain the nominal minimum gate length. This is exactly the same

case as DRAMs, which utilize >3V wordline voltage swings while still featuring ≤ 8F 2 cell

sizes [69, 81]. I use PTM model [82] to generate my 45nm custom nMOS model with 4nm

Tox, which is used in my circuit simulations. Simulation showed that at 2V , the thicker Tox

nMOS is slightly weaker than a nominal nMOS at 1V .

6.3 DESIGN FOR RELIABILITY

In the proposed Common-Source-Line Array architecture, SLs are shared among cells in the

same row, which are read and written simultaneously on each access. As discussed earlier,

the read/write operations on individual cells are no longer independent, while such isolation

is guaranteed in a dual-BL array. This is not a problem in reading a row because all the

cells are exposed to the same voltage configuration, which is essentially identical to reading

a dual-BL array, as shown in Figure 61. However, the write operation is more complicated.

I now formulate the problem using a static model.

In a write operation, a cell’s resistance experiences one of the four state changes: from

high to low (H2L), from low to high (L2H), staying high (H), and staying low (L). Here

I avoid the logic abstraction of ‘0’ and ‘1’ and just use high and low resistances of the

MTJ device for consistency. For these four cases, I extract the effective resistance of a cell,

including both the MTJ and the access transistor. This resistance represents the state of the

cell at the beginning of a write, when the MTJ state has not yet changed. This is because
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the state change of MTJ is an abrupt process. Therefore, writing a group of cells sharing a

common SL can be generalized into an equivalent circuit as shown in Figure 63(a), assuming

a positive BL writes high resistance and a negative BL writes low resistance. The node in

the middle represents the common SL and its resistance Rs. Here n1 ∼ n4 are the number

of cells in the four state changes respectively, and N = n1 + n2 + n3 + n4 is the number

of written cells sharing a common SL. It can be further simplified into the circuit shown in

Figure 63(b).

RL2H*n1 RH*n3

RH2L*n2 RL*n4

RS

+V

-V

VS

(a)

VS

R+

R-

-V

+V

RS

(b)

Figure 63: Equivalent circuits of write operation.

Figure 63(b) is essentially a voltage divider circuit. The voltage on the common SL,

shown as Vs, is supposed to stay grounded to provide identical voltage drop on all cells.

However, the imperfection of common SL and the global sources that drive it, represented

by Rs, breaks such balance and introduces voltage drift on the SL node. Such drift places

negative impact on write operations, especially on those cells with smaller voltage drops. For

STT-MRAM, reduced voltage may directly causes write failures as the induced current may

not be larger than the switching current of MTJ. I now apply KCL to express Vs analytically:

Vs =
V · (R− −R+)

R+ +R− +
R+R−
Rs

(6.2)

From equation 6.2 and Figure 63, it can be derived that Vs is determined by the following

parameters:
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(1) Old data stored in each cell and new data to be written

(2) Number of written cells, N , sharing a common SL

(3) Driving capability of SL node, Rs

Parameter (1) decides the distribution of n1 ∼ n4. Hence, it determines R+ and R−,

together with parameter (2). However, (1) is governed by data patterns generated by appli-

cations, and thus is hard to control at design time. On the other hand, we do have control

over both N and Rs. Therefore, to mitigate Vs drift, I will first find the worst-case data

pattern n1 ∼ n4, i.e. the pattern that leads to largest Vs drift with given N and Rs, and

then find an array design with proper N and Rs that work reliably/robustly under such

worst cases. The parameters of the MTJ device used in my analytical models and circuit

simulations are summarized in Table 7.

Table 7: STT MTJ parameters [19, 28].

RL (P) RH (AP)
Switching Current
P2AP AP2P

2KΩ 4KΩ 55µA 30µA

6.3.1 Mitigating Vs Drift

To find the worst-case data pattern, I plot Vs drift in the entire range of R+ and R−, for

N={8, 16, 32, 64} with a constant Rs=30Ω. Figure 64 shows plots for N=64 and 8, and all

other cases lie in between. All the plots agree on the same tendency: the absolute value of

Vs reaches its extremes when R− reaches its minimum. The worst case happens when R+ is

at its maximum. For example, when R+ = 7KΩ and R− < 0.5KΩ, Vs drift surges to 340mV

when N=64 and 45mV when N=8. The drift is relatively moderate with all other R+s and

R−s.

The worst case of resistance distribution happens when there are N RLs, i.e., n1=n2=n3

=0, n4=N . In this case, R+ = ∞ and R− = RL/N , representing an extreme imbalance.

However, it does not alter any cell and thus not helpful in evaluating the harmfulness of

Vs drift. I therefore use a next-to-worst case data pattern that involves one cell resistance

change from high to low, i.e. n1=n3=0, n2=1, n4=N−1, as shown in Figure 65. In this case,
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Figure 64: Vs vs. R+ and R− for N=64 and 8, Rs=30Ω.
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Figure 65: Equivalent circuit of the worst-case data pattern.
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only one cell is written and this cell is a victim of the parallel RLs that lower the effective

resistance.

I then use this worst-case data pattern and study Vs drift as a function of N and Rs, as

plotted in Figure 66.
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Figure 66: Vs drift as a function of N and Rs.

As can be seen, |Vs| ∝ N , |Vs| ∝ Rs. Furthermore, with large N and Rs, Vs drift can

reach ∼450mV, which is prohibitive as the voltage on a victim cell is nearly halved from

what it should be. I will show next on how to design the array for lowest Rs and best N to

achieve high reliability.

6.3.2 Array Design

Rs is the resistance between SL node and the “ideal” ground/power. On a fabricated

chip, ground/power is supplied from off-chip through pads which drive the on chip ground/

power rings (wide metal wires) surrounding the core area where all the circuits lies. The

ground/power are then delivered to the entire core area through hierarchical mesh networks

in high level metal layers, as illustrated in Figure 67. The number of pads are usually large

and the rings are usually considered as ideal boundary conditions in ground/power network

design and analysis [50]. Therefore, for integrated circuit designers, the ground/power rings

can be considered “ideal” and all the RLC and IR-drop of supply network seen by circuits

can be assumed as the result of the mesh network. Hence, the center region of the network
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will incur the largest effective resistance due to the “imperfection” of supply network. I

denote this resistance as Rmesh. Based on the chip size of [61] and the analysis in [50], I

estimate the worst-case Rmesh to be ∼15Ω. 1

Pad

Ring

Core

Mesh

Chip

Worst Rmesh

Figure 67: Simple illustration of ground/power supply system.

Other parts of Rs come from within an array. Figure 68 depicts an example of a common-

SL array design. It has 1024 rows and 256 columns of cells, same as the prototype in [61].

The rib wires in wordline direction are the common SLs of width N . The spine wires in

bitline direction connect the ribs to ground (power) meshes outside the array. Here it shows

the configuration of N=128, 64 on each side of a spine. Hence, in a 256-column wide array,

256
N

=2 spines are needed.

Rmesh

Rmesh

1024

256

Rib

Spine

Cell+V

-V

sense

Figure 68: An array example with N=128.

I also conservatively assume the resistance of a rib (common SL) is seen by all cells

sharing it, regardless of their relative positions. Hence, we have

1Notice that the wire bonding packaging as assumed here generally yields higher supply network resistance
than more advanced flip chip packaging (a.k.a. Controlled Collapse Chip Connection (C4)). So my Rmesh

estimation is conservative in the following analysis.
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Rs = Rmesh +Rspine +Rrib

Early analysis from Figure 66 shows that keeping both Rs and N small helps reducing

Vs drift. While Rmesh has been determined by the global ground network, the tradeoff

between Rspine and Rrib is dependent on N , which is studied in Figure 69. Spine straps are

constrained by total width of N cells and are thus wider at larger N . So Rspine decreases

with increasing N . Rrib however increases linearly with N and thus becomes dominant at

larger N . As spines are additional area overheads, layout techniques can be apply to make

the area overhead per spine less than a Metal 2 pitch, while still maintaining low resistance,

as shown in Figure 70. The idea is to use narrowest wires to reach ribs on Metal 1, then

back them up using wide Metal 3 straps that traverse over the cells.

0 

5 

10 

15 

20 

25 

30 

35 

40 

45 

8 16 32 64 

R
s (

O
h

m
) 

N 

Mesh Spine Rib 

Figure 69: Rs tradeoffs.

M2 pitch

WL

WL

BL BL BL BL

SL

Spine

(a) Layout

BL BL BL BL

Spine

M1

M2

M3

(b) Cross-section along dashed line

Figure 70: Physical design of spines.
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6.3.3 Compensation Circuit

To further mitigate Vs drift, I develop a compensation circuit that can detect large Vs drift,

and compensate it at run time. Its simple illustration is shown in Figure 68 in gray. A

set of sensing circuit and compensation transistors are attached through wide wires to the

middle of a spine. The sensor can be built out of compact voltage comparators like sense

amplifiers in SRAM and DRAM. When it detects a Vs drift larger than a reference, it opens

the compensation transistor that helps in balancing voltage distribution by reducing R+ or

R−, whichever is larger. Figure 71 demonstrates the equivalent circuit of write operation

with compensation.

-V

+V

Rrib

Rspine+Rmesh

senseR+

R-

Figure 71: Equivalent circuit of write operation with compensation.

29% 

30% 

31% 

32% 

33% 

34% 

35% 

0 

100 

200 

300 

400 

500 

600 

700 

800 

8 16 32 64 

A
re

a 
Sa

ve
 o

ve
r 

d
u

al
-B

L 

A
re

a 
(u

m
2
) 

N 

Compensation 

Spine 

Figure 72: Area estimations (per array).

When N is small, Vs drift is tiny even in worst cases, so the compensation may not be

necessary. When N is large, Vs drift also becomes large, so compensation needs to be carried

at different levels of strength. Hence, several sensors are equipped on each spine, controlling
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varying number of parallel transistors to open or close for different data patterns. As we

can see, the area of compensation circuit increases with N . However, larger N also implies

fewer spines, and less area overhead for the array (as indicated in Figure 70). This tradeoff

is studied in Figure 72, which is estimated based on the rules in Table 8. The results show

that the area overhead of spines drops linearly with increasing N , while the area of the

compensation circuit increases only mildly. It also shows the percent of area reduction (the

curve in the figure) considering both overheads, when comparing the common-SL with the

dual-BL array design. Even with the largest area overhead (N=8), the common-SL array

still holds more than 30% area reduction.

Table 8: Layout rules used in area estimation.

Rule Value (µm)

Polysilicon min width 0.045

Diffusion min width/spacing 0.09

Metal 1 min width/spacing 0.06

Metal 2 min width/spacing 0.07

0.35 (width > 1)
Metal 3∼6 min spacing 0.45 (width > 1.5)

0.75 (width > 2.5)
1.25 (width > 3.5)

Metal X max density within 60%
100×100µm2 area

With compensation, it is possible to trade spine area for much smaller compensation

circuit area, and guarantee a controllable Vs drift. Combining the results in Figure 66, 72

and 69, it is easy to see that when N=16 a common-SL array achieves a low Rs, good area

reduction, and easy-to-control Vs drift.

6.4 EVALUATION RESULTS

With the 45nm PTM model and device parameters given in Table 7, I built subsets of

common-SL and dual-BL arrays for STT-MRAM, and simulated them in SPICE. My circuits

include all supply network models and compensation circuits previously described. The RC
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parasitics of wordlines, bitlines and source-lines (for dual-BL array) are all properly modeled

as well.

The metrics I measured are Vs drift, write latency and energy. Since they depend on

different data patterns, I selected representative data patterns for evaluation, as listed in

Table 9. The patterns include the most difficult ones that cause worst Vs drifts, and all

other possibilities of cell state transition.

Table 9: Data patterns used in evaluations.

No. H→L L→H stay H stay L Emphasize

1 1 0 0 N -1
2 1 0 1 N -2 L
3 1 1 0 N -2

4 1 1 (N -2)/2 (N -2)/2 H, L

5 1 1 N -2 0 H
6 0 1 N -1 0

7 N/4 3N/4 0 0
8 1 N -1 0 0 L→H
9 0 N -1 0 1
10 0 N 0 0

11 N/4 N/4 N/4 N/4 all

12 N/2 N/2 0 0 H→L, L→H

13 3N/4 N/4 0 0
14 N -1 1 0 0 H→L
15 N -1 0 1 0

For STT-MRAM common-SL arrays, the Vs drift will likely create write failure since

the effective voltage on cells may be less than the threshold. However, if we can keep the

drift within half of the natural IR-drop of a dual-BL array (denoted as 1
2
IR-drop), then we

can gain the same reliability on writes. In a dual-BL array, the existence of resistive BL

and SL introduces IR-drops into the write/read current path. Such IR-drops decrease the

effective voltage applied on a cell, especially when it is physically far from its write driver.

In contrast, the source-line resistance is minimized by my spine+rib design in the proposed

common-SL array, leaving only BL resistance in write/read current path, which effectively

halves these IR-drops. Hence, if we can control the Vs drift such that it does not exceed

1
2
IR-drop, or, the total effective voltage drop does not exceed that in a dual-BL array, then

a common-SL array can guarantee the same write reliability as a dual-BL array:
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|Vs|+ IRcSL ≤ IRdBL (IRcSL ≈
1

2
IRdBL)

Figure 73 shows the absolute values of voltage drifts over all data patterns, with or

without compensation. Patterns 5∼10 represent cases of large Vs drifts that should be

compensated. All the rest patterns generate acceptable Vs drifts and thus did not trigger

compensation circuits. The worst IR-drop in dual-BL array is ∼80mV, obtained from simu-

lation with MTJ parameters in Table 7. It can be seen that Vs drift together with IR-drop

falls below the 80mV line, demonstrating the effectiveness of my common-SL design.
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Figure 73: Vs drift + IR-drop vs. data pattern in STT-MRAM (N=16).

As long as the reliability is guaranteed, a common-SL array of STT-MRAM enjoys similar

latency and energy to its dual-BL counterpart. Notice that although the voltage drop on

write paths in common-SL array is 2× of a dual-BL array, their energy consumptions are

comparable. This is because write current that flows through R+ (writing L cells) is reused by

R− (writing H cells) in a common-SL array, and their mismatched part is supplied/drained by

SL. While in a dual-BL array, write currents are drained by their own sinks. After accounting

for all the overheads, the proposed Common-Source-Line Array architecture achieves a 33%

area reduction over dual-BL array.
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6.5 DESIGN STYLES WITH COMMON-SOURCE-LINE ARCHITECTURE

In recent years, STT-MRAM was extensively studied as universal memory due to its flexibil-

ities. As each application possesses unique requirements, the proposed Common-Source-Line

Array architecture can be utilized in different design styles.

For example, the design choice of P-N and 2P write schemes in above studies is based

on an on-chip cache application, which demands low latency and high throughput especially

in the multi/many-core era with ever increasing size and memory intensity of working sets.

Therefore, the doubled write latency of the proposed flip-V scheme in Section 6.2.2 and Figure

62(a) is too expensive here. On the other hand, it is worth noting that column multiplexing

is another solution to Vs drift in P-N and 2P write schemes. In other words, writing only a

fraction of the cells on one common-SL and biasing the remaining unselected BLs at the SL

voltage could mitigate Vs drift, because the unwritten cells have no contribution to the voltage

divider behavior. This has the same effect of reducing the number of cells per common-SL

(N in previous discussion) under full-width concurrent write. Hence, in applications with

relaxed bandwidth specification, Vs drift could become even easier to control.

Moreover, for applications with very loose latency and bandwidth requirements like

stand-alone flash replacement, the proposed flip-V scheme in Section 6.2.2 and Figure 62(a)

is adequate. Thanks to the separation of writing-1 and writing-0, the flip-V scheme is free

of boosted voltage and Vs drift at the expense of doubling the already-long write latency.

Because here the common SL is no longer integrated to power/ground network directly, extra

care should be carried out in the SL driver design.

Therefore, Vs drift is associated with the choice of design styles which is in turn de-

termined by the application. This demonstrates the tradeoffs between performance and the

overhead of reliability control, and represents the flexibility of my common-SL architecuture.

In this study, the choice of P-N and 2P write schemes is not only due to the correspond-

ing design style of high-performance cache, it can be viewed as an extreme-case study as

well. Without loss of generality, it provides important insights to the reliability challenge

associated with my novel array architecture, and demonstrates that this can be solved with

lightweight techniques even at such extreme case, proving the feasibility of my design.
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Besides application, another consideration is process integration. More specifically,

choices of CMOS-magnetic process integration can yield different area savings of common-SL

array over dual-BL array. This study assumes the most aggressive and costly process that

the MTJ is tightly integrated into CMOS metal layers at local level (M1/M2) [61, 13]. This

integration leads to most conservative area saving because cell size is dominated by tran-

sistor width/spacing after removing SLs from columns. But it also liberates the potential

of scaling with improved MTJ device. On the other hand, if cost is at higher priority and

thus the MTJ is stacked in the last step on top of all metal layers [19, 16, 39, 27, 57], a

∼50% area saving is easily achievable, because the higher level metal width/spacing is larger

than that of cell transistor and thus still dominates cell size after removing one out of two

wires per column. Especially, if MTJ is used in cache and stacked on logic process with ∼10

metal layers, the large pitch of top metal layers could easily exhaust the density advantage

over SRAM/eDRAM even with the 50% discount from common-SL array. Therefore, future

STT-MRAM designs should pursue lower-level integration for both scalability and absolute

density.

To date, the smallest cell size reported in a dual-BL structure is 14F 2 with M1/M2 level

integration [13]. This implies that a ∼9F 2 cell size is easily achievable with the proposed

Common-Source-Line Array architecture. Because memory cell arrays can usually be fab-

ricated using specially optimized processes (much more aggressive than the design rules in

Table 8), an even smaller cell size could be expected. Furthermore, when switching current is

large, the 2T1R cell structure has advantage on layout area over 1T1R cell [57]. However for

the same equivalent transistor width, 2T1R cell suffers severer wire pitch dominance due to

its folded transistor. My common-SL architecture is also applicable to 2T1R cell [57, 61, 13]

with slight modification to also remove wire pitch dominance.

93



7.0 RELATED WORK

7.1 PCM

7.1.1 Prototype Chips & Circuit Designs

Various PCM prototype chips have been fabricated in the past years, showed the industrial

evolution of PCM technology. In [15], Gill et al. presented a 4Mb BTJ-selected test memory

in 0.18µm technology, and demonstrated the fundamental characteristics of the GST mate-

rial. Another 0.18µm 4Mb MOS-selected experimental chip with µtrench structure storage

node was then introduced by Bedeschi et al. [3] showing 45ns read access and 5MB/s write

throughput. Also in 0.18µm technology, Cho et al. [7] achieved 64Mb capacity featuring

16F 2 MOS-selected cell, 512Kb sub-array, and separated SET/RESET control. Signal IR

drop along the resistive BL is also discussed. Targeting the signal IR drop problem, Oh et

al. [40] proposed cell position aware current regulator scheme and multiple step-down pulse

generator scheme (inherited by [29]) to improve RESET and SET distributions, respectively.

Kang et al. presented a 0.1µm 256Mb chip in [26]. This design implemented many key

features for high density PCM chip architectures. The chip is configured using hierarchical

bitline and wordline architecture to make it area-efficient, in which sense amplifiers (SA)

and write drivers (WD) are globally placed and shared by many sub-arrays via the global

bitlines (GBL). The 256Mb capacity is organized into multiple banks, each has private row

and column circuits to work independently. A sophisticated charge pump system is adopted

to cope with the reducing supply voltage but non-reducing operation voltage. And it also

helps in increasing write currents by reducing the parasitic resistance along the path from

SAs/WDs to cells, which is prolonged by the hierarchical BL structure. In addition, FinFET
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technology is also adopted to increase the drive current of the tiny cell-access nMOS. To

provide an extended write throughput, the chip uses an additional external power supply to

support wider parallel write, and this scheme was inherited by [29, 9].

A 0.13µm 512KB (or 4Mb) embedded PCM was presented in [17]. In this design, Han-

zawa et al. implemented a set of techniques tailored for the embedded PCM module with

current-saving architecture. It features a sense amplifier prefetch serial write scheme to

support serial write mode, a two-step pulse set method to reduce SET time, and a charge-

transfer direct-sense scheme to achieve high-speed and low-power read operation. A cell

write current of 100µA and a 20ns read access time was demonstrated.

Beyond previous MOS- and BTJ-selected designs, a 512Mb diode-selected PCM was

developed by Lee et al. in 90nm process [29]. The vertical diode-switch stacked with the

GST device achieves a 5.8F 2 cell size. However, a key challenge with diode design is that it

requires higher operation voltages than the MOS-selected cell by the built-in potential (or

threshold voltage) of a diode to turn it on during write and read. Therefore, read/write

circuit techniques and a charge pump system for the diode-switch PCM were proposed. A

write-verify scheme was used to enhance distribution and reliability of cell data, with an

arbitrary slow-quench (ASQ) shaper scheme to improve the write time of the SET data.

In [4], Bedeschi et al. presented a 90nm 128M-cell PCM demonstrating 256Mb effective

capacity with multi-level cell (MLC) storage. A programming algorithm suitable for 2-

bit/cell storage achieving tightly placed inner states (in terms of cell current or resistance)

was proposed. It is based on a Program-and-Verify (P&V) technique to ensure adequate

control of the cell resistance. The cell is first programmed to its low-resistance state by a

long SET sweep pulse to avoid any spread due to the previous programmed state. This is

followed by a single RESET pulse with a fast quench to initialize the cell. Subsequent Stair-

Case Up (SCU) algorithm applies a sequence of box-shaped program pulses (each followed

by a verify step) that have the same width but increasing height. The MLC capability not

only leads to complex and slow write, read latency is also increased (120ns) because the data

has to be sensed out of more states.

A 45nm 1Gb chip in NOR Flash interface was presented by Villa et al. in [62]. The

PCM array is built out of a basic structure made of 4 cells. To program a pattern of data, a
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sequence of SET pulse, RESET pulse, SET verify and RESET verify is given after a pre-read

phase. In case the verify fails, the sequence is repeated using larger pulses. A whole set of

SAs is dedicated for verify in addition to the read SAs.

In [47], Sandre et al. demonstrated an embedded PCM chip in standard 90nm CMOS

technology with 6 metal layers. The storage element has been integrated using only 3

additional masks with respect to process baseline, making it very attractive in terms of

process cost and simplicity. Moreover, the cell selector is implemented by a standard low

voltage nMOS device with 2.1nm gate oxide for the 1.2V supply. A dual-voltage row decoder

and a double-path column decoder are introduced, enabling a completely low voltage read

operation. This confirms PCM technology as a viable solution in embedded environments.

A 58nm 1.8V 1Gb PCM prototype was presented by Chung et al. in [14]. The diode-

selected cell is just 4F 2 which is the lower extreme of achievable size. The chip is compatible

with LPDDR2-NVM interface, and features multiple throughput enhancement techniques to

make PCM viable for main memory. To cope with the huge bandwidth difference between

PCM and DRAM, an SRAM-based 1KB program buffer with 800Mb/s write throughput is

used and programming operation is internally controlled using FSM. On the PCM core side,

the number of simultaneous program bits needs to be increased, leading to according increase

in program current injected to core, which can cause a significant voltage bouncing and can

be a burden for the pumping capacity. So the WDs are organized into two groups, and the

skewed group is activated later than the main group by a timing delay of tSKEW. As as result,

superpositioning of the program peak current is prevented without significant performance

degradation. Furthermore, notably, this prototype integrates Differential Write [75, 31] and

Flip-N-Write [8] techniques, with the name of “data comparison write with inversion flag

(DCWI)”. It also considers SET and RESET to have different weights for obtaining the

number of effective bit changes. A mid-array pre-charge scheme is also proposed to greatly

reduce RC delay on GBLs.

In highly scaled 20nm process, an 8Gb density was achieved by Choi et al. [9] with

40MB/s write bandwidth in LPDDR2-NVM interface. Cost-effectiveness is one of the top

priorities for such high density memory chips. Without doubt, diode selector is the choice

for smallest 4F 2 cell size, and the buried wordline is built with N+ doped base and strapped
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by metal wires. A large 8Mb (4096 WL × 2048 BL) sub-array is built to diminish the area

overhead of WL and BL selection switches per sub-array, which are required by the high

voltage and current in PCM write operations. As a result, the chip size is only 70% of a

DRAM chip at the same design rule, at the expense of increased parasitic resistances and

capacitances. To cope with these overheads, dual-LY and multi-WL schemes are integrated

to reduce the effective resistances of local BLs and WLs. A pre-emphasis write scheme and

a cascode type current source were also developed to reduce the cell current rise time (to

fight increased parasitic RC) and increase WD output resistance (to mitigate cell location

dependency), respectively. Thanks to the significantly scaled GST device and write current

(Ireset = 100µA), an unprecedented 40MB/s write throughput was accomplished with much

wider parallel bit-writes.

Prior art and my work. Previous prototype chip designs have provided me with

valuable insights of PCM characteristics and operation mechanisms, key parameters and

guidelines used in my studies, and motivated my research work. While the Differential

Write technique was incorporated in a Samsung prototype [14], my Pseudo-Multi-Port Bank

design can also be easily integrated as it is heavily based on an existing prototype [26]. As

the write current keeps scaling down and positively affects throughput [9], the Pseudo-Multi-

Port Bank design, aiming at other throughput limiters, offers a perfect additional boost on

further throughput improvements.

7.1.2 Architectural Innovations

In [30], Lee et al. proposed a design of a cache-organized row buffer in PCM memory: use

a narrow row buffer entry to mitigate per-access write energy, and use multiple row buffer

entries to improve locality and write coalescing. In addition, a partial write scheme was

proposed to improve lifetime. It marks dirty words of each memory write access and only

writes these dirty words. Since a dirty word may still contain many redundant bit changes,

partial write cannot fully exploit the opportunity of value locality.

In [41], Qureshi et al. proposed a hybrid memory system using DRAM as a buffer for the

PCM main memory. A page loaded from hard disk is only written to the DRAM buffer, and
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PCM is only written when a page is evicted from DRAM buffer. Also, similar to the partial

write scheme in [30], only the dirty lines within a page are written back. Some OS support

is added to avoid writting PCM in case of streaming applications. Similar to [75, 31], a line

rotating wear-leveling scheme was studied.

Based on Differential Write, Cho et al. proposed Flip-N-Write technique [8] that writes

either the original value or its inversion, whichever results in fewer bit flips. Therefore,

Flip-N-Write guarantees that no more than half of the bits in each write are changed. This

in turn means that under the same instantaneous write power constraint, it can support a

double-width write. As a result, Flip-N-Write can reduce write power/energy, and improve

PCM throughput and lifetime.

In [42], Qureshi et al. proposed Start-Gap wear-leveling for hybrid memory system.

All lines plus an extra empty GapLine can be regarded as forming a circular buffer, and

GapLine is moved by 1 location periodically. Start-Gap has the advantage of low storage

and computation overhead, however it has the shortcoming of slow line movements. To

overcome this shortcoming, the memory is partitioned into smaller regions, each running

Start-Gap independently.

To mitigate PCM’s long write latency, Qureshi et al. proposed write-cancelation and

write-pausing schemes in [43]. In these schemes, an on-going write can be canceled or

paused, giving way to a subsequent read request to improve read latencies. The write request

is restarted (in case of write-cancelation) or resumed (in case of write-pausing) afterwards.

While write-cancelation supports both SLC and MLC, write-pausing only supports MLC

with iterative write-and-verify process. In both techniques, only one request is served at a

time in each bank, and writes and reads are still in serial but not in parallel. Hence, they

do not help in improving the throughput of PCM memory.

In [44], a memory management scheme was proposed by Qureshi et al. for MLC PCM,

based on the observation that systems are typically over-provisioned in terms of memory

capacity although memory requirements vary between workloads. During a phase of low

memory usage, it allows some MLC cells to only store a single bit with lower latency. When

the workload requires high capacity, these cells can be restored to MLC. Experiments showed

that 95% of all memory requests were served in low latency mode.
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Because PCM is less susceptible to soft errors, hard errors becomes more important.

Schechter et al. proposed a PCM-optimized new approach to error correction named Error

Correct Pointer (ECP) [48]. ECP exploits the nature of hard errors (permanent and imme-

diately detectable at write time). It corrects errors by permanently encoding the locations

of failed cells into a table and assigning cells to replace them. ECP was reported to provide

longer lifetimes than previously solutions with equivalent overhead.

In [49], a multi-bit stuck-at fault error recovery scheme called SAFER was proposed

by Seong et al.. It exploits the key attribute that a failed cell with a stuck-at value is

still readable, making it possible to continue using the failed cell to store data and reduce

hardware overhead for error recovery. SAFER dynamically partitions a data block and

ensures that there is at most one fail bit per partition. It then uses single error correction

techniques per partition for error recovery. Comparing to ECP, SAFER can increase the

number of recoverable fails and achieves better lifetime with smaller hardware overhead.

Yoon et al. proposed another improved scheme called FREE-p to handle both hard

and soft errors [68]. Based on a key observation that a deemed dead block still has many

functional bits that can store useful information, FREE-p embeds a fine-grain remapping

pointer in it. Hence the mapped-out block (which is otherwise useless) is used as free storage

for remapping information. FREE-p was also reported to achieve better lifetime improvement

over ECP.

In [18], a power budgeting technique called “power token” was proposed by Hay et

al.. The technique ensures that the number of concurrent bit-writes does not exceed a

power budget, which is defined by the memory interface. To estimate power demands with

minimum memory traffic overhead, it approximately counts the number of bit changes in

each write with the help of last-level cache in a coarse granularity of 3 bits. Essentially,

the power token scheme is a power gating technique enhanced with conservative bit change

estimations.

Focused on the excessively long write latency problem of the iterative write scheme in

MLC PCM, Jiang et al. proposed two architectural innovations in [22]. The write truncation

(WT) design reduces the number of write iterations with the assistance of an extra error

correction code (ECC). The form switch (FS) design reduces the storage overhead of the
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ECC for WT. By storing highly compressible lines in SLC form, FS improves read latency

as well.

Also for MLC PCM, in [24] Jiang et al. proposed Fine-grained write Power Budgeting

(FPB) to improve write throughput. First, iteration power management (FPB-IPM) ob-

serves a global power budget and regulates power across write iterations according to the

step-down power demand of each iteration. Second, FPB-GCP integrates a global charge

pump on a DIMM to boost power for hot PCM chips while staying within the global power

budget. These schemes also interact positively with PCM effective read latency reduction

techniques, e.g. write-cancellation/pausing [43] and write truncation [22].

Prior art and my work. My implemented Differential Write technique was one of the

early attempts of improving PCM as main memory [75, 31]. It is a bit-level circuit scheme

tightly integrated into the PCM core. In contrast, majority of other energy reduction and

lifetime improvement techniques are at much higher levels with much coarser granularities,

aiming at reducing number of write accesses into PCM, and/or moving large data blocks

around. Also, thanks to its fundamentality and simplicity, Differential Write can be seem-

lessly integrated into upper level techniques, and it is actually the basis of some later studies,

including Flip-N-Write [8], power token [18], Bit-level Power Budgeting (BPB) [78], etc. Al-

though Differential Write does not ensure an upper bound on number of actual bit-writes as

Flip-N-Write does, it can provide accurate fine-grain information about the power demand

of each write request, leading to larger power control opportunities especially with limited

power budget [78, 18].

While many efforts have been spent on write energy and endurance problems, another

write induced challenge – low write throughput, largely remains untouched. Because of its

device and circuit level origins, write throughput problem of PCM cannot be tackled by

architectural techniques directly. A DRAM/PCM hybrid design [41] can only improve the

overall throughput of the entire hybrid memory system, but not PCM throughput. The

write-cancellation and write-pause techniques [43] can only help in improving read latency,

but not memory throughput because writes and reads are still exclusive to each other and

must be served in serial. In contrast, as a circuit and micro-architecture level technique, my

Pseudo-Multi-Port Bank design targets the essential shortcomings of PCM and can achieve
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substantial throughput improvement by exploiting intra-bank or sub-array level parallelism.

Moreover, it is orthogonal to and easily combinable with device level evolutions (e.g. write

current scaling [9]) and circuit level solutions (e.g. Differential Write, Flip-N-Write [8]), and

also provides prominent potential for architectural level enhancements [78].

7.2 STT-MRAM

7.2.1 Prototype Chips & Circuit Designs

The distinguished switching mechanism of “spin torque transfer magnetization switching”

was introduced by Hosomi et al. in [19] for the first time. While read system remains the

same, the only main difference of this new STT-MRAM to a conventional toggle MRAM

is in write operation mechanism that the previously necessary external magnetic field is

eliminated. This has been accomplished owing to their tailored Magnetic Tunnel Junction

(MTJ) with an oval shape of 100×150nm. Successful memory operations and promising

characteristics were demonstrated confidently with the fabricated 4Kb prototype on a 4 level

metal, 0.18µm CMOS process with 1 transistor + 1 MTJ cell structure. The features of this

new programming mode and MTJ are thoroughly investigated, including MTJ shape/size

effect, dependence of write pulse width on switching current, endurance, and scalability.

In [27], Kawahara et al. presented a 1.8V 0.2µm 2Mb STT-MRAM. This chip features

40% cell efficiency with 256Kb sub-arrays each consists of two 128Kb parts separated by the

sense amplifiers (SA) and write drivers (WD) in the middle. During write, the WDs handle

one side of the two 128Kb parts and the SAs are used as latches. During read, an open-bit

architecture is configured and SAs use both 128Kb parts with dummy cells. The choice

of read current direction is discussed in detail. Parallel-direction reading was chosen based

on the concurrent considerations of minimizing read disturbance and maximizing sensing

margin. The tradeoff between TMR ratio, sensing margin, and read voltage was also studied.

A 45nm 32Mb embedded STT-MRAM was presented by Lin et al. in [36]. This design

was implemented in a standard CMOS logic platform that employs low-power (LP) tran-
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sistors and Cu/low-k BEOL. The common cell structure, in which the free layer of MTJ is

connected to BL and the reference layer is attached to the access transistor, suffers from a

severe source-degeneration effect for the P→AP switching, causing IMTJ(P→AP ) significantly

smaller than IMTJ(AP→P ). Unfortunately, on the switching current side, IC(P→AP ) is usually

20∼50% larger than IC(AP→P ). Therefore, the P→AP switching is difficult to achieve for

such conventional cell. To mitigate this problem, a novel “reverse-connection” cell was devel-

oped that the connections between free/reference layers and BL/transistor are flipped. As a

result, the source-degeneration effect influences only the less demanding AP→P switching.

Device attributes and design windows have been examined by considering PVT variations

of nine physical and operating parameters to secure operating margins.

Using modified high-density DRAM processes, the smallest bit cell to date of 14F 2 was

achieved by Chung et al. at the 54nm technology node [13]. The 14F 2 (WL×BL=3.5F×4F )

cell features 2 transistor + 1 MTJ structure with dual-WL. The 64Mb chip consists of 64Kb

sub-arrays that share the globally placed SAs and WDs. To achieve sufficient operation

margin, FinFET cell transistor and low resistive W -based SL and BL are utilized to increase

current drivability and reduce parasitic resistances in the limited area. Based on the scaling

trend and the statistical analysis of cell switching behavior, the authors estimated that the

unit cell dimension below 30nm can be smaller than 8F 2.

Taking advantage of lower switching currents of the perpendicular MTJ device, a 1.2V

65nm 64Mb STT-MRAM was presented by Tsuchida et al. in [61]. The read operation

relies on a clamped-reference system including the SA, clamping voltage generators, and the

reference cell located in an adjacent idle sub-array. All the reference cells are initially set

as parallelized state, and their bias condition in read operation is also a weak parallelizing

writing condition. Therefore, even though the access duty of reference cells is highest,

read disturbance is always absent in them. In addition, an adequate-reference scheme was

proposed to improve sensing margin, or relax the requirement on TMR ratio, by limiting the

coupling noises on the long signal routing from the reference generator to SA. Regardless of

column address, same reference cell is always selected and it can be changed by the ROM

fuse programming in case of large variation. Also, the column switch transistors for BL and

BL are placed in the opposite sides of the sub-array, such that the total BL resistance along
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the write or read current path can be constant regardless of the memory cell position. Such

design was then re-implemented in [70].

In [16], Halupka et al. proposed novel negative-resistance read and write schemes for

STT-MRAM in 0.13µm CMOS. The negative-resistance read scheme (NRRS) is to avoid

the tradeoff between sense voltage and read margin, and to guarantee a non-destructive

read. It shunt the MTJ with a negative resistance (-R) that dynamically allocates current

to the MTJ depending on its state. The -R was chosen such that -R||RAP is negative while

-R||RP is positive. A negative net resistance in parallel with the source-line capacitance

makes an unstable system, while a positive net resistance makes a stable system. A small

initial voltage causes VMTJ to exponentially grow to VDD in the unstable system, and decay

to ground in the stable system, thus sensing the MTJ state and reading the stored bit.

The negative-resistance write scheme (NRWS) saves power during write by moderating the

current though the MTJ as its resistance drops from high RAP to low RP . If a cell has RAP ,

the driver exponentially increases IMTJ as in an unstable system, until he MTJ switches its

state. Then, IMTJ exponentially decays as in a stable system, saving power. If a cell has

RP , IMTJ decays right away.

In [57, 58], a 1.8V 0.15µm 32Mb STT-MRAM was demonstrated by Takemura et al..

Multiple circuit techniques for high-density STT-MRAM was proposed. First, the 2T1R (2

transistors + 1 MTJ) cell structure is shown to occupy smaller area than 1T1R cell with

the same access transistor width. Second, to reduce effects of bitline/source-line parasitic

resistance, localized bi-directional write drivers are used in combination with hierarchical

BL/SL configuration. Hierarchical WL is also adopted. Third, to achieve fast reference level

generation and make read operation stable against the temperature dependency of resistance,

a ‘1’/‘0’ dual-array equalized reference scheme is proposed. Fourth, a disruptive reading and

restoration scheme is developed. The basic idea is to improve the sensing margin and speed

up the reading by utilizing large read current, and then perform restore when closing the

row to overcome possible read disturbance caused by the large read current.

Targeting the reliability limitation of MTJ, Yu et al. proposed a cycling endurance

optimization scheme [70] for a 1.1V 40nm 1Mb STT-MRAM. The required MTJ endurance

may not be achieved if the MTJ is overstressed by the write voltage such that MgO thin-film
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breakdown may occur. To deal with this, the write path is redesigned with wire-resistance

balance scheme, in which the current source and current sink are not placed on the same

side but on opposite sides of an array. As a result, voltage stress on the cells near the write

buffer is minimized, and voltage across MTJ becomes more uniform for cells from top to

bottom of an array. Unfortunately, this technique is not novel as claimed by the authors,

because it was already proposed in [61].

Prior art and my work. Previous prototype chip designs have provided me with

valuable insights of STT-MRAM characteristics and operation mechanisms, key parameters

and guidelines used in my studies, and motivated my research work. Besides our Early

Write Termination design, the negative-resistance write scheme (NRWS) [16] is the only

other circuit technique that actively saves write energy. However, it only handles parallelizing

write and still use conventional scheme for anti-parallelizing write. On the other hand, as the

wire dominance was reported in multiple prototype chips [27, 13, 57], my Common-Source-

Line Array design offers a practical solution for area saving. Furthermore, in addition to the

1T1R cell assumed as our baseline, Common-Source-Line Array design is also applicable to

2T1R cell [57, 61, 13] which shows more efficient cell layout but severer wire pitch dominance

due to its folded transistor.

7.2.2 Architectural Innovations

In [55], Sun et al. observed that directly stacking STT-MRAM atop CMPs as L2 cache might

harm chip performance, due to its long write latency and high write energy. To solve this

problem, an SRAM-MRAM hybrid L2 cache was proposed in which each cache set consists

of a majority of STT-MRAM ways and a minority of SRAM ones. By keeping write intensive

data in the SRAM part as much as possible and thus reducing the number of STT-MRAM

writes, it takes advantage of both SRAM’s low latency and STT-MRAM’s high density. A

read-preemption scheme was also proposed to allow read operations to terminate on-going

write operations for the purpose of performance improvement and power reduction.

Also targeting the high write energy problem, in [45] Rasquinha et al. proposed policies

that prevent premature eviction of lines from higher level caches to lower level STT-MRAM
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caches. The idea is to increase the residency of dirty lines in the L1/L2 to accommodate

(ideally) all the stores to that line. This would prevent the line from being prematurely

evicted to the STT-MRAM L2/L3 and being subsequently moved back to the L1/L2 on a

near term store miss, at the penalty of increasing the read miss rate.

Though people usually refer STT-MRAM as a non-volatile technology, it is also possible

to trade its non-volatility (i.e. its retention time) for better write performance and lower

write energy, as studied by Smullen et al. in [52]. The planar area of the MTJ device is

reduced to achieve better writability at the expense of lower retention time. Since ultra-

low retention STT-MRAM may lose data, a simple DRAM-style refresh scheme was also

proposed. This study also showed that a hybrid cache hierarchy of SRAM-based L1 with

reduced-retention STT-MRAM L2 and L3 eliminates performance loss while still reducing

the energy-delay product by over 70%.

Following the same idea, Sun et al. [56] extented the use of STT-MRAM to L1 cache as

well as lower level ones. Their designs use STT-MRAM cells with various data retention times

and write performances, also made possible by tuned MTJ designs. A counter controlled

dynamic refresh scheme was proposed to save refresh energy over the simple scheme in [52].

For lower level caches with relatively large capacity, a data migration scheme was proposed

to move data between portions of the cache with different retention characteristics so as to

maximize the performance and power benefits.

In [38], Mishra et al. proposed solutions at the on-chip network level to circumvent the

write overhead problem of the STT-MRAM cache in a 3D multi-core environment. The

scheme is based on the observation that instead of staggering requests to a write-busy STT-

MRAM bank, the network should schedule requests to other idle banks for effectively hiding

the latency. This is made possible by 1) accurately estimating the busy time of each cache

bank through logical partitioning of the cache layer and 2) prioritizing packets in a router

requesting accesses to idle banks by delaying accesses to the STT-MRAM banks that are

currently serving long latency write requests.

Prior art and my work. My implemented Early Write Termination technique was

one of the early attempts of reducing STT-MRAM write energy [76]. It is a bit-level circuit

scheme tightly integrated into the STT-MRAM core. In contrast, majority of other energy
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reduction techniques are at much higher levels with much coarser granularities, aiming at

reducing number of write accesses into STT-MRAM. Also, thanks to its fundamentality

and simplicity, Early Write Termination can be easily combined with other techniques (e.g.

volatile write [52, 56]) to achieve even higher energy reduction.

On the other hand, because of its device and circuit level origins, density and scalability

of STT-MRAM cannot be tackled by architectural techniques. Nevertheless, architecture

designs can definitely take advantage of the benefits (e.g. higher density), and exploit the

new potentials (e.g. new write schemes), offered by my Common-Source-Line Array design.
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8.0 CONCLUSION & FUTURE WORK

8.1 FUTURE WORK

Although the proposed techniques in this dissertation have made significant improvements

to PCM and STT-MRAM, there still remain some challenges or opportunities that are worth

exploration, especially in future generations at scaled technology nodes.

8.1.1 PCM

PCM operations rely on high voltages to generate high operation currents and minimize

parasitic resistances in serial current paths [26, 9]. With technology scaling, such operation

voltages are not likely to scale due to the migration of access device to diode [29] and

the increased parasitic resistances in high density array structures [9]. However, supply

voltage keeps scaling over generations [81], conflicting with the operation voltage trend.

This increasing gap between supply voltage and operation voltage is bridged by charge

pump circuits.

In majority of PCM prototypes, charge pumps are used to maintain multiple boosted

power supplies on-chip. Especially, designing charge pumps for the write driver is challenging

because they have to supply high current and sustain high voltage at the same time [26].

There are mainly 3 problems associated with the utilization of charge pumps.

First, charge pumps work at limited power efficiencies. For example, in [29] the charge

pump that supplies the write current has only 20% efficiency. In other words, 80% of

power/energy is wasted during write, placing much heavier burden on the chip supply. Notice

that power efficiency of a given charge pump is inversely related to its current load [67].
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Second, to reduce standby currents and ensure device reliability by minimizing the dura-

tion of high-voltage exposure, the boosted supplies are usually discharged to VDD (or another

boosted “base” voltage [29]) after serving a request, and charged back up upon next request.

These operations are very expensive in delay and energy. Requests need to wait for the

kick-ups of these supplies to proceed [9], leading to additional latency of about 200∼300ns

[26, 29]. Also, discharging these boosted voltages after each request is a considerable waste

of the energy stored in the huge capacitances of these supply networks.

Third, because of the huge current loads and the coexistence of multiple supplies, charge

pumps occupy significant chip area in high density PCM chips [14, 9]. And their area is

dominated by the large internal capacitors built out of expensive MIM or MOS capacitors.

With Differential Write and Flip-N-Write [8] techniques that reduce number of bit-writes,

the existing charge pumps become over-designed. Although they can regulate themselves

with respect to the variable current load, their silicon area occupation can not change.

Therefore, it is more meaningful to either shrink the charge pump design (e.g. reduce

number of pump-units 1) to save area, or support wider parallel writes with existing design.

It is also beneficial to make smart use of charge pumps by exploiting temporal locality of

requests. If requests come back-to-back, or the predicted interval between requests is small,

charge pumps can be left active between requests, so the kick-up delay is removed for the

later request, and the saved discharging/charging energy can outweight the standby energy

spent to keep charge pumps active. If the arrival time of next request after a long interval is

predicted, charge pumps can be activated beforehand, saving the waiting time for kick-up.

Moreover, intentionally enhancing the temporal locality further extends the potential. For

example, by adding a write buffer and accumulating write requests in it, write requests can

be issued into PCM in a burst when the buffer becomes full. Therefore the kick-up only

happens once to serve many write requests, eliminating considerable latency and energy

that are otherwise spent to drag the boosted supplies up and down. By incorporating

my Pseudo-Multi-Port Bank design, the burst writes will not block incoming reads and

performance impact is minimized. On the other hand, because Pseudo-Multi-Port Bank

1A charge pump system is built with multiple sub-pumps or pump-units connected in parallel, each
contributes to a portion of the load current.
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design can increase parallelism and thus reduce the total service time, standby intervals

become longer giving charge pumps more opportunities to be powered off.

Another challenge associated with charge pump control and high voltage operations is

the cell location dependency. Due to the IR drop on the highly resistive write/read current

paths, a cell that is physically far away from the WD/SA will receive a smaller signal than

a closer cell [7, 40]. This is especially bad for write, because the amount of write current

directly determines the programmed cell resistance [9], and the closer cells may suffer from

worse lifetime caused by over-programming [40]. Existing location compensation technique

[40] divides the BL into 4 segments, and applys different voltages between segments but same

voltage within a segment. However, this is at a coarse granularity and location dependency

still exists within a segment. With longer current paths in high density array structures and

worse parasitic resistances in highly scaled technology nodes, finer granularity charge pump

tuning and other control techniques are necessary.

8.1.2 STT-MRAM

The excellent scalability of STT-MRAM lies in its aggressive reduction of switching current

with technology scaling and device improvements, as shown in Figure 74 [81, 12, 1]. As STT-

MRAM features current-driven operations instead of voltage-mode/charge-based operations

in SRAM and DRAM, such current scaling in turn determines the voltage scaling, because

the minimum voltage to operate STT-MRAM heavily depends on its current profiles.

Therefore, one significant advantage of scaled STT-MRAM is its ability to sustain lower

voltages, or VDD−min. Although lower voltage leads to longer latency, it also implies much

lower power. This is especially helpful when memory load/activity is low and latency is less

important. On the other hand, when performance is critical and power is less a concern,

higher voltage could be applied. In STT-MRAM, performance benefits not only come from

circuit latency’s intrinsic dependency on VDD, more importantly, the switching time of MTJ

is a strong function of write current resulting from the VDD applied [19, 58, 12]. With higher

voltage, the access transistor can supply larger current, so a much shorter write pulse could

be adequate to switch the MTJ, further reducing latency considerably.
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Figure 74: STT-MRAM current scaling trends.

As a result, STT-MRAM enjoys the potential to perform wide range of DVFS for the

tradeoff between power and performance, which is not possible in SRAM and eDRAM based

large caches. This is because of the high VDD−min of the high density cells used in SRAM

large caches, and DRAM’s intrinsic dependency of retention time and sensing margin on

supply voltage. Therefore, they are usually attached to a separate power supply that is

not dynamically scaled. Using STT-MRAM, various DVFS management schemes could be

designed to maximize power saving, maximize performance improvement, or to find the

balance between power and performance for each individual application.

On the other hand, unlike the rapidly reducing switching current, STT-MRAM read

current should generally remain constant to maintain reasonable sensing margin and delay

[58]. Although improvment of Tunneling Magnetoresistance Ratio (TMR) can yield better

sensing margin and delay [12, 1], read current is in turn bounded by the increasing process

variations. Therefore, read current is projected to scale mildly over process generations [58],

shown in Figure 74.

Recall that both read and write operations of STT-MRAM rely on flowing current

through the MTJ device, and the only difference between them is the amount of current.

When the amount of read current approaches switching current, the probability that the

state of MTJ could be switched by the read current increases rapidly [58, 12], even though

read pulse is generally shorter than write pulse and there is a dependency of switching cur-
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rent on pulse width [19]. Historically, switching current was quite large so a decent gap

between switching current and read current was easily guaranteed. However, with the ag-

gressive scaling of switching current and the mild scaling of read current, read current will

soon reach the same magnitude of switching current and will finally exceed it [58], as shown

in Figure 74. The read disturbance problem will be a crucial system-level concern when

the disturbance probability is too high to be handled by any error correcting codes with

reasonable overheads. And this is very likely to happen when read current exceeds switching

current beyond 2017 node in Figure 74.

An intuitive and effective solution to fight read disturbance is to perform restore after

each read operation, which basically writes the read data back to the cells [58]. Fortunately,

because MTJ is a bipolar device that requires bi-directional currents to switch between

states, and the read current direction is fixed at design time, only the cells in one of the two

states could be possibly disturbed. For example, if read current is in the same direction of

parallizing write, only the anti-parallelized cells could possibly be disturbed to parallelized

state. As a result, restores are only necessary on these anti-parallelized cells. Therefore,

based on the probabilities of logic ‘0’ and ‘1’ in stored data, an optimal encoding between

logic ‘0’/‘1’ and parallelized/anti-parallelized states could be found, with respect to the

read configuration, so that the number of restore bits and restore energy can be minimized.

However, the latency overhead of restore cannot be hid. So intelligent management schemes

can be developed to mitigate the overheads of restore, possibly by taking advantages of some

error correction techniques to weaken the necessity of restore.
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8.2 CONCLUSION

With the growing demand for high capacity, low power, scalability, and reliability, SRAM

based large caches and DRAM based main memories are facing serious crises with the

shrinking of process feature size, and alternatives are therefore needed. Although considered

promising, both Phase Change Memory (PCM) and Spin-Torque-Transfer Magnetic-RAM

(STT-MRAM) were born with disadvantages. Without proper improvements, the successful

application of these emerging memories, in replacements of traditional SRAM and DRAM,

could not be achievable.

Improvements can be carried out at different design levels: device, circuit, architecture.

In this dissertation, I propose multiple circuit level solutions at bit and array granularities,

targeting some unique but correlated drawbacks of PCM and STT-MRAM. For PCM, the bit

level technique Differential Write greatly reduces write energy and extends lifetime of PCM

by skipping redundant bit-writes. Following the same principle but different mechanism,

Early Write Termination is a corresponding bit level technique that tackles the write energy

problem of STT-MRAM, without the expense of performance overhead. In contrast to the

similar bit level problems, at array level, PCM enjoys high density but suffers low throughput,

while STT-MRAM possesses satisfying throughput but limited density and scalability. The

Pseudo-Multi-Port Bank design for high density PCM exploits intra-bank parallelism to

boost throughput with minimum overhead. The Common-Source-Line Array design liberates

the scaling potential of STT-MRAM by removing the wiring dominance. Therefore, the main

contribution of this dissertation is the proposal and evaluation of this comprehensive set of

circuit techniques that offer substantial and efficient enhancements to both PCM and STT-

MRAM.

On the other hand, it is also clear that besides the significant achievements made by the

proposed designs, rooms still remain for further improvements. This is because the effective

integration and utilization of a new memory technology actually rely on the systematic

incorporation of efforts from different levels. Fortunately, all of the proposed techniques

are orthogonal to and easily combinable with device and architectural level innovations to

be part of a powerful, comprehensive solution. Moreover, with the evolution of PCM and
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STT-MRAM technologies, new challenges and opportunities that are worth exploration may

emerge, especially in future generations at scaled technology nodes.

Furthermore, we should keep in mind that solving problems, as my dissertation and

many other research work did, is only part of the story. Being optimistic/excited with, and

making good use of the unique advantages and potentials provided by these new memories,

is equally important. After all my comprehensive studies and research efforts, I do believe

in the bright future of PCM and STT-MRAM as next-generation memories.
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