
未找到图形项目表。

SNeT: computer-assisted SuperNovae Tracking

by

Di Bao

B.E. in Software Engineering, UESTC, 2011

Submitted to the Graduate Faculty of

the Kenneth P. Dietrich School of Arts and Sciences in partial fulfillment

of the requirements for the degree of

Master of Science

University of Pittsburgh

2013

 ii

UNIVERSITY OF PITTSBURGH

DIETRICH SCHOOL OF ARTS AND SCIENCES

This thesis was presented

by

Di Bao

It was defended on

November 25, 2013

and approved by

Panos K. Chrysanthis, Professor

Alexandros Labrinidis, Associate Professor

Michael Wood-Vasey, Assistant Professor

 Thesis Director: Panos K. Chrysanthis, Professor

Alexandros Labrinidis, Associate Professor

 iii

Copyright © by Di Bao

2013

 iv

In astronomy, supernovae are stellar explosions whose observation can help shed light on the star

formation process and provide reference points for cosmological distances. Supernovae are

detected at different phases of their lifecycle and their observation is further complicated by time

and resource constraints. Although there exists automated supernovae detection pipelines,

follow-up observations by individual researchers are handled manually, both in terms of keeping

a list of interesting supernovae worth observing and also planning out the exact schedule for

observations, given telescope access and temporal constraints.

This thesis designs and develops the SNeT (computer-assisted SuperNovae Tracking)

system, as a tool to help astronomers collect supernovae data, manage their lists of interest and

observation plans, and most importantly, generate good observation plans automatically, that can

later be further adapted. Specifically, SNeT takes a list of supernovae, their associated temporal

constraints, and user preferences, and it generates a plan that satisfies the constraints and

preferences, maximizes data acquisition, while minimizing time and resource usage. In addition,

the user can interact with the system and give feedback on the generated plans in order to

customize SNeT’s planning behavior via its self-tuning. The SNeT prototype system is currently

evaluated by supernovae researchers from the Department of Physics and Astronomy of the

University of Pittsburgh.

SNeT: computer-assisted SuperNovae Tracking

Di Bao, M.S.

University of Pittsburgh, 2013

v

TABLE OF CONTENTS

TABLE OF CONTENTS .. V	

LIST OF TABLES ... VIII	

LIST OF FIGURES .. IX	

LIST OF EQUATIONS .. XI	

LIST OF ALGORITHMS .. XII	

PREFACE ... XIII	

1.0	 INTRODUCTION ... 1	

1.1	 MOTIVATION .. 1	

1.2	 PROBLEM STATEMENT ... 3	

1.3	 APPROACH .. 4	

1.3.1	 Supernova Data Aggregator (SDA) .. 5	

1.3.2	 Supernova Tracking Management System (STMS) 5	

1.3.3	 Basic Observation Scheduling (BOS) ... 5	

1.3.4	 Advanced Observation Scheduling (AOS) ... 6	

1.4	 CONTRIBUTIONS ... 7	

1.5	 ROADMAP .. 9	

2.0	 SUPERNOVA DATA AGGREGATOR .. 10	

2.1	 SOURCE ANALYSIS ... 11	

vi

2.2	 WORKFLOW OF SDA .. 12	

2.3	 BUILDING A SUPERNOVA DATA REPOSITORY ... 14	

3.0	 SUPERNOVA TRACKING MANAGEMENT SYSTEM ... 16	

3.1	 MAIN FEATURES OF STMS ... 16	

3.2	 INTERACTING WITH THE GUI AND THE DATABASE 21	

4.0	 SUPERNOVA OBSERVATION PLAN GENERATOR ... 23	

4.1	 PROBLEM DEFINITION .. 23	

4.2	 HIGH-LEVEL VIEW OF PLANNER .. 26	

4.3	 BASIC OBSERVATION SCHEDULING .. 32	

4.3.1	 Local Scheduler .. 32	

4.3.1.1	 Reduction to 0/1 Knapsack .. 33	

4.3.1.2	 Local Heuristic .. 33	

4.3.1.3	 Local Algorithms .. 35	

4.3.1.4	 Greedy Validation ... 44	

4.3.2	 Global Scheduler .. 46	

4.3.2.1	 EDF, SRTF, and LST ... 47	

4.3.2.2	 Global Heuristic .. 49	

4.3.2.3	 Global Algorithm .. 49	

4.4	 ADVANCED OBSERVATION SCHEDULING .. 50	

4.4.1	 “Space” reserving Feature .. 50	

4.4.1.1	 Plan with capacity variation .. 51	

4.4.1.2	 Three alternatives for capacity distribution 51	

4.4.1.3	 Generate valid capacity distribution ... 54	

vii

4.4.2	 Semi-supervised learning feature ... 55	

4.4.2.1	 Learning with logistic regression .. 56	

4.4.2.2	 Building the training set ... 56	

4.4.2.3	 Interacting with users ... 57	

4.5	 EXPERIMENTAL ANALYSIS ... 58	

4.5.1	 Analysis of Local Algorithms .. 59	

4.5.2	 Effect of Learning for local/global Scheduling .. 62	

4.5.3	 Overall Performance Analysis .. 64	

5.0	 CONCLUSIONS AND FUTURE WORK ... 66	

5.1	 SUMMARY OF CONTRIBUTIONS .. 66	

5.2	 FUTURE WORK ... 68	

5.3	 FINAL THOUGHTS ... 69	

STRUCTURE OF SN CLASS ... 71	

PLANS FOR LIST SPRING 2013 .. 75	

BIBLIOGRAPHY ... 83	

viii

LIST OF TABLES

2.1.1 Sources supported by SDA .. 12	

4.5.1 Tuning cutoff ratio for the three algorithms .. 60	

ix

LIST OF FIGURES

1.1.1 Supernova in explosion ... 2	

1.1.2 Typical light curve of supernova .. 2	

1.4.1 High-level view of SNeT .. 9	

2.2.1 Illustrating the workflow of SDA ... 13	

2.3.1 Database schema of SDA in table-view .. 15	

3.1.1 GUI of SNeT – Tab1 ... 18	

3.1.2 GUI of SNeT – Tab2 ... 19	

3.1.3 GUI of SNeT – Tab3 ... 19	

3.1.4 GUI of SNeT – Tab4 ... 20	

3.1.5 GUI of SNeT – Tab5 ... 20	

3.2.1 SNeT integrated into AstroShelf platform .. 22	

3.2.2 back-end database supporting STMS in table-view .. 22	

4.2.1 High-level structure of SOPG ... 27	

4.2.2 View 1 – Bin packing ... 28	

4.2.3 View 2 – Scheduling with soft deadline ... 28	

4.3.1 Two special cases of scheduling failure .. 45	

4.3.2 Supernova brightness decreases over time ... 47	

4.4.1 “Normal” night capacity distribution in certain plan .. 53	

x

4.4.2 “Evenly” night capacity distribution in certain plan ... 53	

4.4.3 “Inversed” night capacity distribution in certain plan ... 54	

4.5.1 Comparison of response time .. 61	

4.5.2 Comparison of accuracy ... 62	

4.5.3 Learning affecting decision making .. 64	

xi

LIST OF EQUATIONS

4.3.1... 34	

4.3.2... 35	

4.3.3... 36	

4.3.4... 37	

4.3.5... 38	

4.3.6... 49	

xii

LIST OF ALGORITHMS

4.2.1... 31	

4.3.1... 40	

4.3.2... 41	

4.3.3... 42	

4.3.4... 43	

4.4.1... 57	

xiii

 PREFACE

For Xuanwei. For my parents. For Panos and Alex.

 1

1.0 INTRODUCTION

1.1 MOTIVATION

In astronomy, a supernova [1] is a stellar explosion that is more energetic than a nova, which is a

nuclear explosion in a white dwarf star. Supernovae are extremely luminous and cause a burst of

radiation that often briefly outshines an entire galaxy (Figure 1.1.1), before fading from view

over several weeks or months. Supernovae can provide important information on cosmological

distances, and the understanding of the formation of stars. Supernova observation is the

foundation and basic prerequisite for further studies of supernova. The history of supernova

observation can be backtracked to ancient China (the earliest recorded supernova, SN 185, was

viewed by Chinese astronomers in 185 AD), while the field of supernova discovery has extended

to galaxies beyond the Milky Way quickly, after the development of the telescope.

Nowadays, as more supernovae are discovered and more astronomers put their scientific

interests in this field, individual astronomers are faced with the challenge of keeping track and

planning out the exact schedule of observations of supernovae of their interest. The main

concerns are time and resource constraints. The time constraints are primarily due to the physical

properties of supernovae. Supernovae are transient events whose lifetime is marked by a peak

brightness after which their brightness decreases over time (according to their type as shown in

Figure 1.1.2). When supernovae are discovered, they are already in progress and any follow-up

 2

observations must be carefully planned for these observations to be productive. The planning of

observations by individual astronomers is further complicated by the observation equipment

availability (how many Hubble Space Telescopes are there?).

Figure 1.1.1 Supernova in explosion (Multiwavelength X-ray, infrared, and optical compilation image of

Kepler’s supernova remnant, SN 1604) [2]

Figure 1.1.2 Typical light curve of supernova [3]

 3

Basically, although there exists automated supernovae detection pipelines, follow-up

observations by individual astronomers are handled manually, which clearly inefficient and time

consuming, given telescope access and supernovae temporal constraints. Similarly, the

astronomers manually collect, analyze, aggregate and cross-match supernova data from multiple

sources (such as Skyalert [4], ATel [5], CBAT [6]) in order to identify interesting supernovae

worth observing. The volume of messages/reports generated in near real-time by these sources

makes this identification task a very difficult and even more time consuming.

This thesis is motivated by the lack of a supernova observation information system which

integrates appropriate tools that help and simplify astronomers’ tasks to collect supernovae data,

manage their lists of interests and ongoing observation with associated annotations and

hypotheses and most importantly, to generate good observations plans automatically.

1.2 PROBLEM STATEMENT

Current researchers of supernovae are faced with three key problems, which are described below.

Problem 1: Currently astronomers lack a consistent way to access supernova data

published by different organizations (sources). Many organizations maintain their own services

to collect and distribute supernova related information in the form of a message or a report.

Unfortunately, different organizations use different formats (such XML, semi-structured XML

and HTML) for their messages and reports. Furthermore, although these messages/reports from

different sources could describe the same supernova object, they may use different supernova

naming convention, and provide different supplemental data (such as redshift, magnitude, etc.).

 4

Ideally, astronomers should be provided with an interface to access all the information about a

certain supernova published in all the related messages/reports.

Problem 2: Currently astronomers lack a set of tools that helps them to create and

maintain their target list of supernovae, save and retrieve their experiment configurations, record

their observation plans as well as record and share their annotations on observed supernova

objects.

Problem 3: Currently astronomers lack a tool to automatically generate high quality

observation plans under limited time and resource constraints. The quality of a plan (for a

specific set of supernovae and specific dates) is defined in terms of maximum data acquisition

(i.e., number of successful supernovae observations), normalized by the value or importance of

each supernova. The value of a supernova may vary from one astronomer to another and may

also vary from one experiment to another for the same astronomer. The number of successful

supernovae observations is determined by the temporal constraints associated with each

supernova and the spatial proximity among supernovae, which define whether or not their

observation window overlap during the same night.

1.3 APPROACH

We propose to address the above three key problems by developing a system consisting of four

components: Supernova Data Aggregator (SDA) which addresses Problem 1, Supernova

Tracking Management System (STMS) which addresses Problem 2 and Basic Observation

Scheduling (BOS) and Advanced Observation Scheduling (AOS) both of which address Problem

3.

 5

1.3.1 Supernova Data Aggregator (SDA)

SDA builds up a supernova data repository by integrating supernova data from different sources.

It downloads supernova related message/report entries from multiple sources periodically, and

adds any new released entries into a database. It further scans and parses those entries to extract

information about supernova objects, while attempting to match objects from different sources.

1.3.2 Supernova Tracking Management System (STMS)

STMS provides the following functionalities to astronomers: search for interesting supernova

records, build and maintain target lists of supernovae for observation, create and update

particular experiment configurations for planning observations, record and display observation

plans. STMS implements these functionalities by interacting with SDA, BOS and AOS.

1.3.3 Basic Observation Scheduling (BOS)

BOS provides a systematic way to automatically generate an observation plan for a given set of

supernovae over a set of specific dates. Basically, it combines all the factors that could

potentially affect the scheduling of observations and quantifies their effects, with a heuristic

function, which is used in making scheduling decisions. At the global level, BOS generates

candidates list of supernovae to be scheduled for each night and at the local level, BOS generates

a feasible schedule of supernova observations.

 6

1.3.4 Advanced Observation Scheduling (AOS)

AOS enhances observation plan generation with two additional features. The first feature defines

the shape of the entire observation plan (i.e., across all dates) by reserving specific observation

windows per date when generating the observation plan for a given target list. The goal of this

reservation is to enable dynamic expansion of the observation target list during the observation

plan execution. In this way, new and potentially very interesting supernovae, which are

discovered after the generation of the observation plan, could be potentially included in the plan.

Furthermore, failed observations during a specific night would potentially need to be

accommodated at a later date. That is, this feature allows for the flexibility of “planning before it

happens”.

The second feature provides semi-supervised learning to enhance the quality of an

observation plan. As mentioned above, the quality of an observation plan is (astronomer) user-

specific. Briefly, the system maintains a training set of users’ feedbacks on generated plans and

learns from them to adjust the scheduler’s behavior to meet the user preference. As a result, for

the same target list, different users could expect different observation plans, according to how

they “train” the system.

 7

1.4 CONTRIBUTIONS

The main contributions of this thesis can be summarized as following:

• Designed and implemented the algorithms of the Supernova Data Aggregator (SDA) and

built the Supernova Data Repository containing all the published data about supernovae

since March 2013.

• Designed and developed a Supernova Tracking Management System (STMS) which allows

the creation of observation target lists from the supernovae data in the Supernova Data

Repository and the planning of observation experiments using a Supernova Plan Generator.

• Designed and implemented a Supernova Observation Plan Generator (SOPG) consisting of

a Basic Observation Scheduling (BOS) module and Advanced Observation Scheduling

(AOS) module. BOS is a suite of a baseline (exhaustive search) scheduler and three

heuristic scheduling algorithms. Specifically, our proposed heuristics algorithms are:

1. Greedy Beam Search, based on greedy approximation approach.

2. Iterative Dynamic Programming, based on dynamic programming technique.

3. Random Restart Hill Climbing, based on local search solving optimization problems.

Our preliminary results have shown that all three algorithms are (1) scalable and (2)

successfully balance the speed for generating a plan and the quality of the generated plan as

compared to the baseline.

 8

• Developed three capacity reserving strategies for shaping an observation plan as part of the

AOS module:

1. Normal, no space reservation (i.e., no built-in spare observation capacity). During

planning, the capacity of all specified dates can be used and observations are scheduled

as early as possible. Whatever capacity is not used, it is considered reserved capacity

for future use and typically appears in the latest dates of the pre-specified set of dates.

2. Evenly, reserves the same amount of space observation capacity across all pre-

specified dates assuming that all observations can be uniformly scheduled on all dates.

Whatever capacity is not reserved is used during the planning.

3. Inversed, the opposite of “Normal”. During planning, observations are scheduled at the

latest possible time if they still do not affect the task’s schedulability. The residual

capacity is reserved for future use and typically appears at the earliest dates of the pre-

specified set of dates.

• Developed semi-supervised learning feature based on logistic regression to enhance the

quality of an observation plan, which is also integrated into Advanced Observation

Scheduling (AOS) module.

All the above contributions were developed based on the requirements of and the feedback of

supernovae researchers of the Department of Physics and Astronomy at the University of

Pittsburgh and led to the SNeT (computer-assisted SuperNovae Tracking) prototype system

(Figure 1.4.1). SNeT is accessible from the AstroShelf platform [7, 8], i.e., it is part of

AstroShelf’s web-based user interface and is currently evaluated by our supernovae research

collaborators.

 9

Figure 1.4.1 High-level view of SNeT

1.5 ROADMAP

In the next chapter we will discuss the SDA component. In Chapter 3 we will present the features

of STMS. The design and implementation of BOS and AOS will be covered in detail in Chapter

4. In Chapter 4, we will also present an evaluation of our proposed scheduling algorithms.

Finally, we will summarize our contributions and present our conclusions in Chapter 5.

 10

2.0 SUPERNOVA DATA AGGREGATOR

The high level goal of the Supernova Data Aggregator (SDA) is to build a Supernova Data

Repository to consolidate supernovae information from multiple sources (organizations) even

though these sources may use different supernova naming convention, and provide different

supplemental data (such as redshift, magnitude, etc.).

The design of SDA component is based on the idea of feeder aggregator. There are

several applications sharing the same idea, like Google Reader [9]. These applications enable a

user to access related information dispersed across multiple sites at one place. However, what

makes our task of building SDA challenging is that (1) several sources distribute supernova

related information in the form of messages or reports which are not well-formatted or well-

organized and (2) different organizations use different formats such XML, semi-structured XML

(XML combined with plain text) and HTML. Both of these facts point to the need of specialized

parsing techniques that will enable the extraction and identification of “objects” from the

different messages and reports and cross-match them. (Here and the following sections, the word

“object” represents an entity of particular supernova with its associated parameters, such as R.A.,

Dec., Redshift, etc.)

 11

2.1 SOURCE ANALYSIS

Currently, SDA collects documents in the form of messages from seven sources listed in Table

2.1.1. These documents are distinguished in terms of their format and content which in turn

characterize the degree of difficulty in processing and integrating them.

The formats can be XML, ATOM, RDF/RSS, or HTML. In general, sources published by

Skyalert are easiest to handle, as the information embedded in standard XML structure. Then

comes the other Atom formatted source - CBET: Supernovae, because it can be considered as

XML mixed with strings (the plain text part). The rest two sources are relatively hard to deal

with, as HTML is the format for presentation instead of transmission.

Processing and integrating a document involves parsing the document, extracting the

referenced “objects” in them and linking them to the “objects” in our repository. Documents may

be limited to one “object” or reference multiple ones. In terms of the number “objects”, the

documents from the currently supported sources can be characterized as follows:

1) The Skyalert series - one entry represent one “object”.

2) The Astronomer's Telegram: supernovae - one entry is an annotation on one or multiple

“objects”.

3) CBET: Supernovae - one entry represent one “object”. Or, very rarely, it happens to be an

annotation on a previous reported “object”.

4) IAU Central Bureau for Astronomical Telegrams - there is no concept of “entry”, but the

HTML page provides a list of the “objects”.

 12

Table 2.1.1 Sources supported by SDA

2.2 WORKFLOW OF SDA

The architecture of the aggregator is shown in the Figure 2.2.1. First of all, the “Feed Reader”

operator maintains state information of each source, which includes the name of the source, its

URL, the timestamp of the latest download along with the necessary credentials to access the

source. It uses this information to download message/report entries from each source periodically.

 13

The fetched messages/reports are stored in a database by the “Storing” operator. Further, the

messages/reports, with detailed information acquired from extended link, if applicable, are

passed to “XML Parser” operator and “Regular Expression or Regex Parser” operator, for the

purpose of extracting the “objects”, collecting supplemental data associated with “objects” and

creating an object record. Then any created record of “object” or “annotation on object” is

inserted into the database, again by the “Storing” operator. Lastly, a crontab job (i.e., time-based

job scheduler) is set at host node, running the whole routine periodically, guaranteeing the users

to get newest supernova report in near real-time fashion.

Figure 2.2.1 Illustrating the workflow of SDA

 14

In addition, an access log and an error log are maintained for the aggregator. The access

log records what source is accessed by SDA in exact what time, and how many updated entries

of that source were downloaded. The error log records all the run-time errors such as the failure

of downloading, parsing, or storing of message/report entries. In the case of parsing failure, a list

of original messages/reports with the reason for the failure is saved and a notification is pushed

to the administrator. The list of failed-to-parse messages/reports is also made available to the

astronomer users, who can either submit a feedback on how to parse a specific message/report

entry, or parse the specific message/report and manually store the extracted supernova data. In

the former case the administrator uses the feedback to fix or enhance the parsing scripts. So, this

“log, feedback, and fix” procedure makes up any potential drawbacks for “XML Parser” and

“Regex Parser” to handle semi-structured data.

The operators in SDA are implemented in PHP (with the support of XML parsing library

and regular expression library). The logs are stored in both files and a database (MySQL) tables.

2.3 BUILDING A SUPERNOVA DATA REPOSITORY

We use a relational database as the main storage of supernova data collected from different

sources. The database schema is designed in a way that 1) every “object” can be linked/traced

back to the original message/report entry and the source, and 2) “objects” retrieves from different

sources can be cross-matched. Figure 2.3.1 shows the database schema of SDA in a UML format

(table view only).

Most of the table names and their attributes are self-explanatory, except of Table

SN_objects and Table SN_uniques, which need to be elaborated further. The former table,

 15

SN_objects, stores original supernova “object” collected from sources, while the latter one,

SN_uniques, maintains the “unique” supernova object in our repository, after the cross-matching

of original “objects” based on their spatial position (namely the R.A. and Dec.). That is, if object

A from source I and object B from source II are identical (i.e., referring to the same supernova),

one “unique” object would be generated internally, to represent such supernova with multiple

descriptions.

The “one to many” relationships from Table SN_feeds, to Table SN_messages, and then

to Table SN_objects help in achieving the lineage goal, while the “many to many” relationship

underlying in Table SN_objects and Table SN_uniques captures the cross-matching part.

The relational database used in implementing the supernova data repository is MySQL

and SQL queries can be used to retrieve any supernova information in a consistent and efficient

fashion.

Figure 2.3.1 Database schema of SDA in table-view

 16

3.0 SUPERNOVA TRACKING MANAGEMENT SYSTEM

As stated in the introduction, our Supernova Tracking Management System (STMS) helps users

to organize their studies on supernovae, by providing them with interesting candidate supernovae,

recording their ongoing observation plans, etc. With STMS, astronomers can efficiently manage

their supernova study data online in an intuitive and easy way and concentrate on their research.

STMS implements the interface of our entire solution, namely, the SNeT (computer-assisted

SuperNovae Tracking) prototype system. STMS is also the “glue” in the whole system

architecture, connecting with the aggregator SDA (discussed in the previous chapter, Chapter 2)

and the scheduler components BOS and AOS (to be discussed in the next chapter, Chapter 4),

interacting with the front-end GUI and the back-end database.

3.1 MAIN FEATURES OF STMS

Supernova Search/Browse The STMS can provide a list of interesting supernovae from our

supernova knowledge-base for users. Users can list their search criterions via a GUI (Figure

3.1.1), then the STMS assembles the appropriate query for requesting the data from the database.

Typically, users can search by supernova name, position range (R.A., Dec.), or specify advanced

filters on specific attributes such as Mag., redshift, etc. Users are also able to control the order of

 17

the search results and limit the number of results. The result is presented in a well-formatted and

interactive table to the user (Figure 3.1.2).

List Management STMS helps users to build and manage their own lists of interesting

supernovae, or simply called, lists of interest. By going through the search results generated from

our system, users can select interesting supernova records and put them into their own working

space, via a simple “drag & drop” operation. Then they can create and name a new list for those

supernovae (Figure 3.1.2). Each user can have multiple lists of interest at the same time, and

modify or delete them if needed (Figure 3.1.3). As a result, astronomer users can easily start

from one of their lists and conduct follow-up experiments or observations.

Experiment Configuration STMS enables users to configure their experiments for planning

observations. Typically, an experiment has three parts of input: 1) a list of interesting supernovae,

2) the constraints associated with each supernova in the list, and 3) a list of available nights (with

how many hours) for the observation. We allow users to save/update the current experiment, or

to bring a previous experiment into use (Figure 3.1.4). The night availability should be known

ahead of time and the constraints on supernova stay constant. Thus, this feature reduces the

repetitive work for users to configure an experiment, even for different observation lists. In

addition, users can also make annotations on supernova’s attributes, such as type, magnitude,

redshift, B-Peak, etc. In the future, detailed, open-form annotations can be shared and exchanged

among users, taking advantage of our Annotations Database [10, 11].

 18

Plan Management Users manage and interact with their observation plans via the STMS. Once

an experiment has been configured, the observation plan will be generated by the BOS and AOS

components. The generated plan is presented in a table view with each row being a supernova in

the list, and each column being a date (night), as configured by the user for this experiment

(Figure 3.1.5). Several statistics like “Total Scheduled/Remaining Time”, “Total Observed Time”

are shown in the table, as well as observation “states” (i.e., whether to observe a particular

supernova on a specific night or not) for all available nights. Meanwhile, extra statistics about

whole plan are shown separately below the table (e.g., “Percentage of objects fully scheduled”).

In addition, users can interact with the plan through AOS features. They can provide feedback to

the current plan via “Like/Dislike” buttons, and switch to another plan by clicking “Try again”.

Or even more straightforwardly, they can edit the current plan in-place. When users

check/uncheck cells in the table, the system will recalculate the schedulability and give a hint to

the users (e.g., in case the total number of hours in a night exceeds the pre-allocated amount).

Figure 3.1.1 GUI of SNeT – Tab1

 19

Figure 3.1.2 GUI of SNeT – Tab2

Figure 3.1.3 GUI of SNeT – Tab3

 20

Figure 3.1.4 GUI of SNeT – Tab4

Figure 3.1.5 GUI of SNeT – Tab5

 21

3.2 INTERACTING WITH THE GUI AND THE DATABASE

Essentially serving the role of “glue”, the STMS is responsible for the communication between

the front-end GUI and the back-end database. Users send their requests from the GUI, and the

STMS transmits the request to the database and scheduler component. After that, the results are

sent back to the GUI for users to see.

The GUI of SNeT has been integrated into the AstroShelf platform’s web UI (Figure

3.2.1). A user has to log into the AstroShelf platform first for the services of STMS to be

available. After a user log on, a “supernovae” button will appear in the upper-right tool bar of the

web UI, and a dialog box will appear after he/she clicks the button. That dialog box is the GUI of

SNeT, containing 5 tabs side by side, with the ordering of them indicating the natural process of

assembling an observation plan. In other words, that 5 tabs are the interface to access STMS’s 4

main features listed in the previous section.

Moreover, the database to support STMS is part of the whole database of SNeT. The

relevant tables are shown in Figure 3.2.2. Table SN_lists and Table SN_contains are used to

maintain lists of interest. Table SN_exp, Table SN_exp_nights, and Table SN_exp_objects are for

the experiment configuration management. Table SN_trains is a training set, building up

incrementally as users give feedback to the system, the records here will be retrieved for learning

purposes to adjust the scheduling behavior. Finally, Table SN_plans is for the storing of positive

observation plans, according to user’s satisfaction. In addition, we should notice that: 1) there is

a connection from the above tables to Table SN_uniques and beyond (other tables in the

supernova data repository schema), binding the supernova data knowledge-base and working as

a whole, and 2) there is a connection from the above tables to Table Astro_user and beyond,

 22

indicating the integration with AstroShelf database and, more importantly, allowing STMS to

provide user-specific services (e.g. a user-specific experiment).

Figure 3.2.1 SNeT integrated into AstroShelf platform

Figure 3.2.2 back-end database supporting STMS in table-view

 23

4.0 SUPERNOVA OBSERVATION PLAN GENERATOR

In this chapter, we will cover the whole process of our automated supernova observation plan

generator (SOPG) in detail. In Section 4.1, we will formalize the problem of “observation plan

generation”. In Section 4.2, we will introduce the high-level functional description about BOS

and AOS. The workflow of “observation plan generation” by the collaboration of BOS and AOS

will also be introduced here. After that, Sections 4.3 and 4.4 will dive into the essential parts of

BOS and AOS, correspondingly, discussing the algorithms for planning. Lastly, Section 4.5

provides the experimental analysis about the core algorithms used by both BOS and AOS, and

the overall performance of the planning system.

4.1 PROBLEM DEFINITION

We first define important terminology and then define the “observation plan generation” problem.

Def. 1 SN object – A supernova object is characterized by its right ascension (R.A.), declination

(Dec.), type, redshift, magnitude (Mag.), peak brightness (B-Peak), and priority. (Priority

reflects a user preference on the supernova object, indicating how valuable the observation of

such an object is. Thus, the observation of a low priority supernova object is more likely to be

 24

pruned out partially or completely to guarantee the overall schedulability.) An SN object 𝑆𝑁! is

represented as a tuple:

𝑆𝑁! = (𝑅𝐴,𝐷𝑒𝑐,𝑇𝑦𝑝𝑒,𝑅𝑒𝑑𝑠ℎ𝑖𝑓𝑡,𝑀𝑎𝑔,𝑃ℎ𝑎𝑠𝑒,𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦)

Def. 2 Observation Constraints (OC) – OC are associated with each particular SN object for a

specific night (date). They include the start time (visibleS), the end time (visibleE), and the

duration of exposure (obsDuration), measured in minutes, for its relevant supernova observation

window. The OC are represented as a tuple:

𝑜𝑐! = (𝑑𝑎𝑡𝑒, 𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝑆, 𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐸, 𝑜𝑏𝑠𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛)

Def. 3 Global Constraints (GC) – Each SN object in the set has global constraints. An

observation of a certain SN object is subject to the times it needs to be observed (obsTimes) and

the gap between two consequential observation instances (obsGap), measured in days. The GC

is denoted as:

𝑔𝑐! = (𝑜𝑏𝑠𝑇𝑖𝑚𝑒𝑠, 𝑜𝑏𝑠𝐺𝑎𝑝)

Def. 4 Night Map (NM) – NM gives a list of nights available for observing supernovae and the

exact hours available for the observations. It is denoted as an associative array:

𝑁𝑀 = {𝑛𝑖𝑔ℎ𝑡!: ℎ𝑜𝑢𝑟𝑠!,… ,𝑛𝑖𝑔ℎ𝑡!: ℎ𝑜𝑢𝑟𝑠!}

Def. 5 Plan (P) – Plan P is the result of the scheduling. It specifies what supernovae to observe

and how long the observation instances for the supernovae should be, for each night in the NM.

It is represented as follows:

 25

𝑃 = {𝑛𝑖𝑔ℎ𝑡!: 𝑙𝑖𝑠𝑡!,… ,𝑛𝑖𝑔ℎ𝑡!: 𝑙𝑖𝑠𝑡!}

𝑙𝑖𝑠𝑡! = { 𝑆𝑁! ,𝑂𝐶! ,… , (𝑆𝑁! ,𝑂𝐶!)}

Given the above definitions, the inputs of the problem are:

• A target list of supernova objects, 𝑆 = 𝑆𝑁!,… , 𝑆𝑁! ,

• A list of observation constraints, 𝑂𝐶 = {𝑜𝑐!,… , 𝑜𝑐!},

• A list of global constraints, 𝐺𝐶 = {𝑔𝑐!,… ,𝑔𝑐!}, and

• A night map, 𝑁𝑀.

The output of the problem is a plan 𝑃. Thus, if we present the whole “observation plan

generation” problem as a function of the OP (Observation Plan), our task is formalized as:

𝑂𝑃 𝑆,𝑂𝐶,𝐺𝐶,𝑁𝑀 = 𝑃

The description of the problem of “observation plan generation” is as follows. Given:

• A target list of supernovae, each of which contains full information about its right ascention,

declination, type, redshift, magnitude, peak brightness date (or the exact phase plus exact

discovery date);

• A list of observation constraints, each one per each supernova in the list, indicating the

observation window for a specific night (date);

• A list of global constraints, each one applied on one particular supernova to be included in

the observation plan, requiring particular times of observation and gaps between each two

consecutive observation instances;

• A list of nights available for conducting observations and the specific hours available in

each listed night,

 26

Find a feasible and reasonable observation plan specifying what supernovae to observe for how

long for each listed night, that satisfies all the above conditions if possible, or at least,

maximizing data acquisition, ensuring the quality of observation data gained, with respect to user

preferences on the supernovae in the given list.

4.2 HIGH-LEVEL VIEW OF PLANNER

A planner consists of two core components named BOS and AOS, and 4 layers, which are the

local scheduler in BOS, the global scheduler in BOS, the “space” reserving layer in AOS, and

the semi-supervised learning layer in AOS. The structure of the planner is illustrated in Figure

4.2.1. The local scheduler is responsible for the scheduling of available observation instances in

a particular night. The global scheduler is responsible for the scheduling of observation tasks in

the whole timeline. The “space” reserving layer generates appropriate night capacity distribution

to reserve a certain amount of capacity, in anticipation of future updates to the list of interesting

supernovae and in cases of unsuccessful observations (e.g., due to cloudy skies). The “learning”

layer generates weights using machine learning to tune the influence of factors in local/global

scheduling. The following sections will give more detailed descriptions of the functions, features,

and principles of each layer. In this section, we only explain, in a top-down way, the design

purpose and workflow of the SOPG.

 27

Figure 4.2.1 High-level structure of SOPG

Let us first introduce the two different “views” (abstractions) of the planning process.

One way to view the process is that it considers a set of bins with certain capacity (Figure 4.2.2),

and then it assigns items with different values and weights into the bins in a way to gain the

maximum profit. In our supernovae tracking scenario, each night can be considered as a “bin”,

the available hours in each night are our “capacity”, and of course the observation task (instance)

turns into “item with different value and weight”. In addition, the temporal constraints for one

instance or between instances make the planning selection even more complicated to perform

with.

 28

Figure 4.2.2 View 1 – Bin packing

Figure 4.2.3 View 2 – Scheduling with soft deadline

The other way to view the planning process is as scheduling a set of tasks with soft

deadline given a certain time interval (Figure 4.2.3), schedule the execution of a set of tasks with

 29

soft deadlines. Obviously, the observations will be tasks to be scheduled, the number of instances

will be quantified as the workload, and the brightness peak of each supernova object can be used

as soft deadline.

As the problem can be viewed in two ways, a failure in either scenario will degrade the

quality of plan. For example, “failure to put all items into bins” indicates that certain observation

task remains incomplete, while “failure to execute and finish all tasks before their deadlines”

indicates that some observation tasks gained low quality data, since they got to be observed

outside their optimal time window.

These two abstractions underlined the design principles of our planning system.

Specifically, the local scheduler in BOS and the “space” reserving layer in AOS are implemented

for solving the problem based on the first view of bin packing [12]. On the other hand, the global

scheduler in BOS is implemented based on the second view of scheduling soft deadline tasks

[13]. In addition, the learning layer in AOS added the semi-supervised learning feature into the

system to decrease the failure rate in both views.

So, the system’s planning process in a top-down view is:

1) The learning layer generates the weights on factors based on the training set,

2) The “space” reserving layer calculates a capacity distribution across the pre-

specific set of nights (dates),

3) The global scheduler sorts the available observation tasks in each night, taking the

most urgent portion as the candidates for that night,

4) The local scheduler picks the most valuable portion of the candidate set from step (3)

and schedules them for the particular night,

5) Repeat Steps (3) and (4) for every night iteratively to generate a complete plan.

 30

Notice that we usually refer to Step (3) as “global” since it views the process in a night-based

way, while referring to Step (4) as “local” since it views the process in an hour-based way. The

relationship of the 4 layers behind the scene is that the top two layers in AOS provide necessary

configuration data. The bottom two layers in BOS generate the plan collaboratively. One more

thing needs to be pointed out is that BOS can work properly without AOS (using default system

configuration instead of whatever necessary input data from AOS).

In addition, the actual deployed system interacts with a client-side user interface to

generate the plan iteratively. The user can stick to the current input requirement to go through all

the possible plans and comment on them one by one. The planner will record the feedback from

the user for building and maintaining a training set, which is crucial for the learning layer.

The pseudo code of the planner is described in Algorithm 4.2.1. In the algorithm, the

term “L0Scheduler” represents the local scheduler in BOS. The term “L1Scheduler” represents

the global scheduler in BOS. The term “L0Iterator” stands for the “space” reserving and night

capacity distributing layer. The term “L1Iterator” stands for the semi-supervised learning layer.

We consider the interaction with a client-side user as another “layer” for the planning system

(termed as “part I” in the algorithm).

Finally, a detailed implementation-level description of “SN Class” has been given in

APPENDIX A. As the basic entity enrolled in the process of plan generation, “SN Class”

provides an insight look of the system.

 31

Part I (very outer layer):

Take user input from client-side, configure and initialize the planner.

While loop: // loop until user finalizes a plan

 Call main_procedure(), the execution procedure of 4 layers.

 If returned plan P is empty:

 Break the loop and hint the user.

 End if

 Organize generated plan P and send back to client-side.

 Prompt to get user’s feedback F of current plan.

 Store F with current weights W into training set.

 Prompt to get user’s instruction to continue or quit.

End while loop

Part II (4 inner layers):

Func main_procedure():

 Call L1Iterator to generate weights W by learning from training set.

 Call L0Iterator to get capacity distribution for night map M.

 If capacity consumption overflow:

 Fail main_procedure() and return empty plan P.

 End if

 For each night N in M:

 Call L1Scheduler to get candidate set C of obs_instances.

 Call L0Scheduler to get final set F obs_instances.

 Store the pair N=>F for this night’s plan.

 End for loop

 Return plan P as a set of pairs N=>F.

Algorithm 4.2.1

 32

4.3 BASIC OBSERVATION SCHEDULING

The Basic Observation Scheduling component (BOS) consists of two phases, with different

scheduling granularity. Phase one is “local scheduling”, which schedules at the granularity of

hours in a particular night. Phase two is “global scheduling”, which schedules at the granularity

of days, over the set of all pre-specified dates. We will discuss the local scheduling first and then

discuss the global scheduling, in the following subsections.

4.3.1 Local Scheduler

The Local Scheduler is the foundation of the whole SOPG system, as it makes the final decision

on which supernovae to observe in which night. The problem it solves can be described as

following:

Given a candidate list of supernovae, select the most valuable (according to the priority

provided by user) portion from the list, while satisfying two safety conditions:

C1 The sum of the durations of the selected observation instances does not go over that

night’s capacity limit.

C2 Every observation instance selected can be finished within its corresponding available

window (in that night) without any overlapping or conflicts with others.

In other words, the problem is a “combinatorial optimization” one [14, 15] and the goal is to find

a feasible schedule to maximize the overall “profit”. However, achieving local optimality in

every step does not always lead to global optimality. Therefore, we define heuristic functions

over multiple factors and determine weights for these factors dynamically to handle this situation.

 33

4.3.1.1 Reduction to 0/1 Knapsack

Intuitively, our problem is related to the Knapsack problem [16] (if we do not consider the

temporal constraints as condition C2 states):

Given a set of items, each with a mass and a value, determine the number of each item to include

in a collection, so that the total weight is less than or equal to a given limit and the total value is

as large as possible.

In our supernovae tracking scenario, an “item” is an observation instance, the “mass” is the

duration of that instance, the “value” is its priority, and the “limit” is the capacity of night. As we

cannot pick the same item multiple times, the counterpart is actually 0/1 Knapsack. This kind of

problem is called a weakly NP-complete problem [17, 18], which indicates that it is hard to solve,

but is still solvable within a reasonable amount of time. So one main focus of our local scheduler

is to develop feasible approaches applicable to our problem.

As the Knapsack problem can be solved using approximation algorithms [19] and

dynamic programming [20], we developed our approaches referring to those techniques. It

should be pointed out that our problem is more complicated than the 0/1 Knapsack problem due

to the extra temporal constraints. There might be cases in which the sum of duration of two

instances fit into the remaining capacity but their observation windows are overlapped, which

can shrink the actual usable capacity. We discuss how to validate a given schedule by checking

C2 in subsection 4.3.1.4.

4.3.1.2 Local Heuristic

The main reason why we need to develop a local heuristic is that our problem is more

complicated than the Knapsack problem. A naïve greedy approach with a criterion like

 34

𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 = !"#$%
!"#$!!

 is problematic because it does not take the temporal constraints into account.

So, besides the evaluation of goodness, we also need to evaluate the “fitness” of the “item”, to

rule out the fewest possible choices of the candidate list that would violate the constraints and

still leave the maximum flexibility. An “item” with a higher fitness score is considered less likely

to have a conflict with the others. There are two factors having influence on “fitness”:

1) The observation window length,

2) The accumulated overlapping length of the current window and the other windows.

Clearly, a big observation window increases the flexibility for the instance to fit in, especially

when its duration is much smaller than the window length. On the other hand, a small

overlapping length decreases the potential risk of conflict. Given the above, the local heuristic is

devised as follows (Equation 4.3.1):

𝑯𝒍𝒐𝒄𝒂𝒍 𝑺𝑵 = 𝟏𝟎𝟎∗𝒑𝒓𝒐𝒓𝒊𝒕𝒚!𝒘𝟏
𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏!𝒘𝟐

+ 𝒘𝒊𝒏_𝒍𝒆𝒏 ! 𝒘𝟑
𝒐𝒗𝒆𝒓𝒍𝒂𝒑_𝒍𝒆𝒏 ! 𝒘𝟒 !𝟏

 (Eq. 4.3.1)

In the equation, 𝑤! ~ 𝑤! are the weights associated with the corresponding factors. These

weights are used to amplify or reduce the effect of one of the factors to scheduling decisions. The

weights are designed to capture: 1) the uncertainty from local optimality to global optimality, 2)

the ambiguity in a user’s measurement of goodness. Point 1 has been discussed previously, and

for point 2, we should allow the diversity of users’ preferences on plans (e.g., for the same plan,

user A thinks it is good while user B thinks it is bad). So the weights act as “side effect” or

“noise” to tune the behavior of the scheduler to handle the stated uncertainty and ambiguity. As a

whole, the heuristic provides the system a consistent way to measure the goodness/fitness of a

target. In the local scheduling algorithms introduced below, such a heuristic plays a crucial role

in decision-making.

 35

4.3.1.3 Local Algorithms

1) Baseline Algorithm

The most trivial approach is to enumerate in a brute-force way all the possible combinations of

observation instances, then eliminate those that violate conditions C1 and C2 (mentioned at the

beginning of section 4.3.1), and from the remaining ones consider those with the local maximum

value, and repeat until global optimality is reached. Assuming there are 𝑁 objects considered, the

runtime complexity of this algorithm is (Equation 4.3.2):

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑶 𝟐𝑵 ∗ 𝑶 𝑵 + 𝑶 𝑵 ≈ 𝑶 𝑵 ∗ 𝟐𝑵 (Eq. 4.3.2)

There are 2! combinations of candidate objects. For each combination, we need to validate it

against conditions C1 and C2, which would cost at least 𝑂(𝑁) time. So the baseline algorithm

will become exponentially costly as the candidate list grows. Although cost-prohibitive for the

general case, this trivial approach makes for a very good baseline for our comparison

experiments later, as it does not require approximation or heuristics. In addition, it is still a

feasible and optimal algorithm when the problem set is small, which indicates that we can mix it

with our proposed algorithms to handle base-cases. This baseline algorithm is presented in

Algorithm 4.3.1.

2) Greedy Beam Search

This algorithm is very similar to the naïve greedy approximation. Using the heuristic proposed in

subsection 4.3.1.2 as a greedy criterion, the algorithm runs a beam search [21] in the state-space

(structured as a tree) of possible alternative choices, only keeping a fix-length fringe (i.e., fixed

number of successor states) for branching. Assuming the height of the tree is 𝐻, the average

 36

branching factor is 𝑏, and the beam width is 𝑤, the runtime complexity is calculated in Equation

4.3.3:

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑶 𝑯 ∗ 𝑶 𝒘𝒃 ≈ 𝑶 𝒘𝒃 ∗ 𝒍𝒐𝒈𝒃𝟐𝑵 ≈ 𝑶 𝒘𝒃 ∗ 𝑵 (Eq. 4.3.3)

Intuitively speaking, this algorithm keeps multiple promising local sub-solutions to increase the

chance of reaching a global optimal solution. This algorithm actually turns out to have good

performance in practice. The details of this algorithm are shown in Algorithm 4.3.2.

3) Iterative Dynamic Programming

The 0/1 Knapsack problem is weakly NP-complete and can be solved using dynamic

programming [22]. The main sequence of steps is as following:

1. Build a two-dimensional array V[index, weight]. (The “index” represents the first index

amount of items to be considered; the “weight” is the current weight limit; and the value of each

array entry is the maximum value to be gained. E.g., V[i, w] = k is interpreted as: “for the 0 to

ith elements, the maximum value that can be achieved is k, with the total weight not going over

w”.)

2. Initialize the array, V[0, 0] = 0, V[0, w] = 0, V[i, 0] = 0.

3. Iterate through the two-dimensional array, filling each entry with index > 0 and weight > 0,

according to the rule: V[i, w] = MAX(V[i – 1, w], value of the ith item + V[i – 1, w – weight of

the ith item]).

4. The bottom-right entry’s value will be the maximum value to be gained for the original

problem.

 37

This is a standard dynamic programming algorithm that we are familiar with. However, in such a

process, condition C2 is not checked at all, and thus the returned answer may not be feasible due

to the time window conflict. Therefore we take an iterative DP approach which runs DP multiple

times. When an intermediate answer violates condition C2, the algorithm will select a victim to

kick out and restart. The victim is chosen by evaluating the local heuristic. Theoretically, we can

run as many iterations as possible, but we cut off the process by a threshold to trade some

accuracy for the overall performance. Assuming there are 𝐼 runs in total, 𝑁 items in the set, and

weight limit 𝑊, the runtime complexity of this algorithm is shown in Equation 4.3.4:

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑶 𝑰 ∗ 𝑶 𝑵𝑾 + 𝑶 𝑵 + 𝑶 𝑵 + 𝑶 𝑵 + 𝑶 𝑵 ≈ 𝑶 𝑰𝑾𝑵 (Eq. 4.3.4)

The standalone 𝑂(𝑁) time is for either condition C2 validation or for choosing a victim. The

algorithm is more stable than the previous (and the next one as well), as it ensures the optimality

of the answer once the constraint validation is passed. The details of this algorithm are shown in

Algorithm 4.3.3.

4) Random Restart Hill Climbing

As we know, in computer science, local search [23] is a method for solving optimization

problems that are computationally expensive. Local search can be used on problems that can be

formulated as finding a solution that maximizes a criterion among a number of candidate

solutions. Local search algorithms move from one solution to another solution in the space of

candidate solutions.

Our problem can be viewed as an optimization problem - selecting the best object (or

portion) from a group of candidates. For a particular night, if we arbitrarily select a subset

(portion) of objects from the candidate list as the initial state, then the problem becomes how to

 38

walk from the current state to the goal state (with the best objective function value). By saying

“walk” or “wander”, we mean swapping a less valuable object out for a more valuable one in.

However, as a basic local search algorithm, hill-climbing has the drawback of getting trapped

into local maximums, plateaus, or ridges, if it happens to select a bad subset of objects as starting

point. So we improve our algorithm by randomly restarting the hill climbing process for several

number of times: i) start different hill-climbing searches from random starting positions and stop

when a goal is found, ii) save the best result from the explored states. If all states have equal

probability of being generated, a goal state will eventually be generated with probability

approaching 1 by selecting random initial state and repeat this algorithm.

The specific algorithm used in our scenario can be described in the following steps:

1. Set sufficient restart times, and repeat Steps 2, 3, 4 accordingly.

2. Randomly pick a subset of objects from the candidate list, as the initial state.

3. Go through the rest of the candidate list. Add additional objects in if they do not

violate the constraints.

4. For each pair of objects in the current state and the rest of the candidate list, make a

move (swap) if necessary, until a goal is found.

5. For all the goal states found by executing Steps 2, 3, 4, save the best result.

Assuming that the restart times is 𝐾, the candidate list size is 𝑁, the runtime complexity of this

algorithm is calculated in Equation 4.3.5:

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑶 𝑲 ∗ 𝑶 𝑵 + 𝑶 𝑵𝟐 + 𝑶 𝑵𝟑 ≈ 𝑶 𝑲 ∗ 𝑵𝟑 (Eq. 4.3.5)

 39

Compared with the previous two algorithms, this algorithm seems not ideal since it runs in

polynomial time with a big coefficient (could be as big as 𝑁). But in practice, this algorithm does

not lose any performance or accuracy compared with the previously described algorithms. The

details of this algorithm are presented in Algorithm 4.3.4.

 40

Algorithm 4.3.1

Func brute-force():

 OPT = None.

 For each combination (subset) from candidate list:

 If violate constraint 1 – weight overload:

 Continue.

 End if

 If violate constraint 2 – window conflict:

 Continue.

 End if

 If current value > OPT:

 OPT = current subset.

 End for loop

 Return OPT

 41

Algorithm 4.3.2

Func greedy-beam-search():

 Calculate and decide beam width B.

 Set initial state to be empty.

 Set an empty set SG for “goal states”.

 Add initial state on the fringe F.

 While sizeof(F) > 0: // keep branching if fringe is not empty

 Set new fringe F’ as an empty fringe.

 For state in current fringe F:

 Generate all the successor states into set S.

 For each state in S:

 Do forward checking:

1) Weight overload 2) Window conflict

If forward checking fails:

 Delete the state and Continue

Else:

 Add the successor state into F’.

End if

 End for loop

 If set S is empty:

 Add current state into SG. // A state cannot add more element

 End if

 If lengthof(SG) == B: // if enough goal states been found

 Break while loop.

 End if

 End for loop

 Sort new fringe F’ using heuristic 𝑯𝒍𝒐𝒄𝒂𝒍.

 Take the first B elements in F’.

 F = F’

End while loop

Return the most valuable one in SG.

 42

Algorithm 4.3.3

Func iterative-DP():

 Calculate and decide iteration times I.

 Set the initial set S with all the candidate objects.

 While I > 0:

Set up two-dimensional arrays V[index][weight] and K[index][weight]. K is

used for backtracking.

For i from 0 to max_index: // the max_index varies, depending on size of S

 Get the ith item’s priority as value.

 Get the ith item’s duration as weight.

 For w from 0 to max_weight:

Update entry V[i][w] = MAX(V[i - 1][w], value + V[i - 1][w -

weight]).

Update entry K[i][w] to 1 if pick the current item.

 End for loop

End for loop

Backtrack to get the current answer C.

If C not violate constraint 2):

 Return C

Else:

 Choose victim with minimum 𝑯𝒍𝒐𝒄𝒂𝒍 and delete from S.

End if

 I = I -1

 End while loop

 // if run out of iteration times, we will directly delete item from current answer

 While not satisfying constraint 2):

 Kick out victim with minimum 𝑯𝒍𝒐𝒄𝒂𝒍 from C.

End while loop

Return C

 43

Algorithm 4.3.4

Func random-restart-hill-climbing():

 Calculate and decide restart time K.

 Set current state S to be empty.

 Set the rest set R to have all items in candidate list.

 Set global state GS to be empty.

 While restart time K > 0:

 While not violating constraint 1) weight overload 2) time window conflict:

 Random select object in R, add into S and delete from R.

 End while loop

 If isEmpty(R) is True:

 Return S. // special case, the whole candidate list can be scheduled.

 End if

 For each object in R in the order sorted by 𝑯𝒍𝒐𝒄𝒂𝒍:

 If not violating constraint 1) and 2):

 Add the object into S and remove from R.

 End if

 End for loop

 While existing better successor state:

 For each object 𝑶𝟏in S:

 For each object 𝑶𝟐in R:

If value of 𝑶𝟏 < value of 𝑶𝟐 and not violate constraints:

 Swap 𝑶𝟏 out for 𝑶𝟐.

 End if

 End while loop

 Replace SG with current S if S has higher value.

 Reset current state S and the rest set R.

 K = K - 1

 End while loop

 Return GS.

 44

4.3.1.4 Greedy Validation

Up till now, there is one very important issue that has not been thoroughly examined yet.

Validating condition C1 could be easy, but how to validate condition C2 (the time window

conflict) efficiently? Let us review the problem first: there is a list of observation instances, each

needing certain amount of time to finish. Meanwhile, each instance must be executed within a

specific time window (which depends on the supernova’s R.A., Dec., and the location of the

observations). Then how can we know whether all the instances can be finished without any time

conflict?

Actually, the problem description above is a good fit for classic scheduling problems.

The formal definition of this problem is:

Assume a set of tasks {𝑇!,𝑇!,… ,𝑇!}, each of which has a release time 𝑡!, a deadline 𝑡!, and a

worst-case execution time 𝐸. Each task being scheduled to start at time 𝑡! should satisfy:

1) non-preemptive execution,

2) 𝑡! > 𝑡!, and

3) 𝑡!+ 𝐸 < 𝑡!.

How can we schedule all the tasks, or can we confirm the schedulability of those tasks?

Note that task execution cannot be interrupted. Otherwise, an EDF [24] scheduling algorithm

will be optimal (i.e., can guarantee that no task will miss its deadline if the task set is

schedulable), and we can design an algorithm to determine the schedulability in linear time for

the worst case. However, EDF is not suitable in non-preemptive scheduling. Furthermore, we

cannot determine which task to execute first according to neither start time nor deadline. Figure

4.3.1 (a) and (b) show, separately, the failures caused by scheduling in either “first start first

 45

server” or “earliest deadline first” way, even though optimal schedules exist for both case.

Actually, for 𝑁 tasks, there are 𝑁! ways to schedule their execution, all of which are likely to be

feasible. This makes determining the schedulability of those tasks an NP-hard problem. On the

other hand, special cases such as (a) and (b) in Figure 4.3.1 are rare, as the time window has

some spatial locality property based on a supernova’s position. As such, it is not worth taking a

brute-force approach for schedulability validation. Without any better criterion for greedy

approximation, we schedule in the first-come-first-serve manner based on the windows’ start

times. In this way, the validation of condition C2 is checked in linear time.

Figure 4.3.1 Two special cases of scheduling failure

 46

4.3.2 Global Scheduler

The global scheduler on top of the local scheduler is responsible for providing the candidate list

of objects (supernovae) for local scheduling in each night. As mentioned in section 4.2, our

problem can be viewed in two different ways: locally (bin packing) and globally (scheduling

tasks with soft deadlines). From the global scheduler’s perspective, the underlying concerns

(described below) drive us to model the problem in a different way in contrast with the local

scheduler.

First, the fact is that the brightness of a supernova keeps decreasing after the supernova’s

peak brightness date (Figure 4.3.2), which affects the quality of observation. To avoid collecting

low-quality data, the best practice is that (according to our astronomer collaborators):

1) Finish at least three observations between 0-20 days after peak brightness,

2) Only consider additional observations up to 100 days after peak as useful.

This adds a soft deadline for every supernova to be scheduled implicitly. For the second, as each

observation consists of several observation instances (typically more than 3), it is possible that

there is no room to schedule the last few instances for a certain supernova. In this case, such an

observation is incomplete. Considering a plan that involves two supernovae A and B: A finished

4/5 and B finished 2/3 of the required number of observations. Both A and B are incomplete and

thus are likely to be useless for further studies. A better plan could be 5/5 A and 1/3 B, or 3/5 A

and 3/3 B, in which case at least one observation can be finished completely. Lastly, we should

 47

note that the observation with the earliest deadline does not always need to be prioritized. We

should also be aware of the actual workload left for the observation task.

In all, the global scheduler needs to make the decision globally when considering which

observation tasks are more urgent to be scheduled for the current night. While it makes a global

arrangement, the second-level scheduler figures out the details in the local scheduling process.

Figure 4.3.2 Supernova brightness decreases over time

4.3.2.1 EDF, SRTF, and LST

For the concerns discussed in the previous section, there are 3 classic scheduling algorithms that

suit our problem perfectly: Earliest Deadline First (EDF), Shortest Remaining Time First (SRTF)

[25], and Least Slack Time (LST) scheduling [26].

EDF or least time to go is a dynamic scheduling algorithm usually used in real-time

operating systems for placing processes in a priority queue. Whenever a scheduling event occurs

 48

(task finishes, new task released, etc), the queue is searched for the process that is closest to its

deadline. That process is then scheduled to be the next one for execution. In our scenario, an

observation task plays the role of a process and the limitation about the supernova brightness

yields a soft deadline naturally. So we can have some priority score for ordering, if we evaluate

available observations using EDF.

In SRTF scheduling, the process with the smallest amount of time remaining until

completion is selected to execute. By definition, the current executing process is the one with the

shortest amount of time remaining and the remaining time decreases as execution progresses, so

the processes will always run until they complete or a new process which requires a smaller

amount of time is added. Again, in our scenario, observation tasks stand for processes, and the

number of remaining observation instances of a task is considered as “remaining time”.

Therefore, we have another way to evaluate the priority score of observations.

LST assigns priority based on the slack time of a process. Slack time is the amount of

time left before a job’s deadline after the job completes execution if the job was started as soon

as it arrived. Namely, it is the temporal difference between the deadlines, the ready time and the

run time. More formally, the slack time of a process is defined as (d - t) - c', where d is the

process deadline, t is the real time since the job start, and c' is the remaining computation time.

Back to our scenario, d will be a particular date after the peak brightness date, t will be the date

of the current night under scheduling, and c' will be the number of remaining instances (because

each instance can be finished in one night).

To conclude, we have proposed 3 different approaches for priority evaluation, focusing

on different concerns in scheduling. In the next subsection, we combine them together to

measure priority in a comprehensive manner.

 49

4.3.2.2 Global Heuristic

Since we do not know which of the three policies (EDF, SRTF, LST) would work best for the

different users, we combine them together and have different weights assigned to each one, to

indicate how important each one is. So we propose the global heuristic in Equation 4.3.6:

𝑯𝒈𝒍𝒐𝒃𝒂𝒍 𝑺𝑵 = 𝒘𝟓 ∗
𝟏

𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆
+ 𝒘𝟔 ∗

𝟏
𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈 𝒘𝒐𝒓𝒌

+ 𝒘𝟕 ∗
𝟏

𝒍𝒂𝒙𝒊𝒕𝒚
 (Eq. 4.3.6)

According to the heuristic, the observation of those supernovae that are further from their peak

date and have few remaining instances plus less laxity to be postponed get higher priority scores.

Similarly to our local heuristic, weights w5 - w7 are added as coefficients to tune the influence of

each factor. In a broader view, our system collects user feedback and learns from past user

feedback in order to tune these weights automatically.

4.3.2.3 Global Algorithm

Once the heuristic function is devised, the global algorithm is quite straightforward, as follows:

1. Iterate through a list of dates, which represents all the nights available in a current plan.

2. Get all the supernovae available for observation on a particular date.

3. Sort the available tasks in the order of priority, evaluated by 𝐻!"#$%".

4. Get the top K supernovae in the sequence to be the candidate list; K is proportional to that

night’s capacity. Send the candidate list to the local scheduler for this night’s local scheduling.

5. Repeat steps 2, 3, 4.

 50

4.4 ADVANCED OBSERVATION SCHEDULING

The Advanced Observation Scheduling component (AOS) contains two main features. The first

feature is calculating proper night capacity distribution for the current plan, making sure to

reserve appropriate amount of “space” for upcoming new supernova. The reason is the potential

for newly discovered supernovae in the near future, which could be more interesting or valuable

to the astronomer, who is willing to reserve some “capacity” when making the plan for the

current target list. The second feature is using a semi-supervised learning technique to tune the

weights of factors considered in BOS, and adjusting the scheduling behavior for each user

accordingly. As mentioned, a lot of factors can be considered for scheduling, but the potential

weight of each factor (i.e., its importance) varies from user to user. For example, some

astronomer may state that “at least 3 observation instances done within 20 days after the

brightness peak of supernova” is necessary. In that case, the weight of the factor “soft deadline”

is implicitly increased. In general, for the same target list, a different user would like to see a

different observation plan, even with the exact same experiment configuration.

4.4.1 “Space” reserving Feature

This feature enforces an appropriate capacity distribution strategy and calculates how to assign

the particular capacity for each night in the plan. The local scheduler will arrange the observation

tasks based on such capacity each night, and the reserved capacity can be useful in the future.

The main goal here is to try to reserve as much capacity as possible, without affecting the overall

schedulability, which could lead to a failure in planning or an imperfect plan.

 51

4.4.1.1 Plan with capacity variation

We know that the maximum amount of time that can be used for observations each night is

already given by the user, but it does not mean that all of the time needs to be pre-planned. There

can be a reserved part that can be spent in the future. A typical case is that the user at first

requests a plan be generated for his/her current targeting list. However, later on,

messages/reports about new detected supernovae are released and captured by our system. Then

the user hopes to add more objects into the targeting list while the current plan is being executed.

With the purposefully reserved capacity, the additional objects deserve a bigger chance to be

scheduled as well. Different users may prefer different strategies to reserve such space capacity.

The next subsection discusses this in more detail.

4.4.1.2 Three alternatives for capacity distribution

Currently, the front-end of our system provides three different strategies for a user to choose to

distribute capacity. The user needs to understand the pros and cons of each strategy, making

his/her own choice. The strategies are as follows:

Normal This is the most natural strategy: putting all the capacity into the current planning

process. Whatever capacity left after usage will be the reserved capacity for the future. In this

case, the observations for objects in the current targeting list would be finished as soon as

possible, even if some of them are not that urgent. Generally, the capacity distribution under this

strategy would be similar to that shown in Figure 4.4.1.

Evenly If an observation needs 𝑘 amount of capacity and should be finished in 𝑛 days, we

add 𝑘 𝑛 capacity usage evenly into those 𝑛 days. By doing so for all the current observations, the

 52

cumulative capacity usage as a whole would be roughly evenly distributed. With some increasing

adjustments, such capacity distribution would not affect the scheduling, although there is no such

guarantee. The capacity distribution curve is shown in Figure 4.4.2.

Inversed The main idea of this strategy is to delay current observation tasks as long as it

does not affect their schedulability. For example, assume an observation task needs 𝑐 capacity

for each of its instances, the total observation time is 4, and the gap is 1 day, the two deadlines

for it are 𝑑! and 𝑑!. In this way, 𝑐 amount of capacity usage should be added into days 𝑑! − 4,

𝑑! − 2, 𝑑!, 𝑑!. The details about the calculation will be described in the next subsection. The

main point is to find space at the early part of the available nights for coming observations. The

idea is illustrated in Figure 4.4.3.

Suppose there is a group of interesting supernovae coming soon in the current plan’s time

interval. If their active windows are concentrated in the back portion of the current time interval,

strategy 1 would be a good fit. But if they are very active at the front portion of the current time

interval, strategy 3 should be used to handle such a case. At last, if they distributed sparsely in

the current time interval, strategy 2 would be the most effective way to deal with that. Clearly,

there is uncertainty and no strategy is a clear winner for all cases, but the user can have a specific

preference. If a user considers the upcoming supernovae much more valuable than all current

ones, he/she could always choose to stick on inversed capacity distribution strategy under

whatever circumstance.

 53

Figure 4.4.1 “Normal” night capacity distribution in certain plan

Figure 4.4.2 “Evenly” night capacity distribution in certain plan

 54

Figure 4.4.3 “Inversed” night capacity distribution in certain plan

4.4.1.3 Generate valid capacity distribution

It is trivial to enforce the normal distribution strategy. For the other two, the valid capacity

distribution is generated by iterating every object (observation) and accumulating each object’s

capacity usage. The algorithms for them are too detailed to include, but the main steps are as

follows:

Evenly strategy:

1) Iterate through every object (observation),

1.1) Add average capacity usage into nights between the plan start date and deadline 1,

take the first 3 instances’ capacity consumption into account.

1.2) Add average capacity usage into nights between the plan start date and deadline 2,

take the remaining instances’ capacity consumption into account.

 55

2) Increase the cumulative capacity usage by a certain percentage (adjustment) to get the final

capacity distribution. We used a percentage of 10% in our experiments.

Inversed strategy:

1) Iterate through every object observation

1.1) Do backward traverse from deadline_1, adding instance capacity usage into nights

[deadline_1 – 2*gap – 2, deadline_1 – gap – 1, deadline_1] (if instance number > 3).

1.2) Do backward traverse from deadline_2, adding instance capacity usage into nights

starting from deadline_2, every other k nights (k is the observation gap).

2) Increase the cumulative capacity usage appropriately, and return the final capacity

distribution. Again, we used a percentage of 10% in our experiments.

4.4.2 Semi-supervised learning feature

As mentioned earlier, for both the local and the global scheduler in BOS, there is a weight

parameter associated with each factor which could affect the planning. This is because even

though we know which ones are important factors, we are not exactly sure about how important

each factor is to each user. So we define a set of weights, 𝑤! ~ 𝑤!, each representing how

important the corresponding factor in the local and the global heuristics is. Each weight has a

fixed and unique range of values. Instead of guessing or using a global set of values for these

weights, we rely on each user to give us feedback and learn his or her preferences. The basic idea

is: first we let the user evaluate and provide feedback for each plan, and then we record the

user’s feedback with different configured set of weights. We use the feedback and the

corresponding sets of weights to build the training set. If the training set is not well-built, we

 56

assign arbitrary values for each weight; if the training set has been built, we learn the next set of

weights from the training set.

In the following sections, we will introduce how to learn from history data, how to build

our training set, and how to generate plans that users consider preferences by tuning weights

iteratively.

4.4.2.1 Learning with logistic regression

In statistics, logistic regression [27, 28] is a type of regression analysis used for predicting the

outcome of a categorical dependent variable based on one or more predictor variables. Typically,

“logistic regression” is used to refer specifically to the problem in which the dependent variable

is binary. (For our problem, the dependent variable is the feedback from the user, which is either

positive or negative, and the predictor variables are the weights of different factors.) In binary

logistic regression, the outcome is usually coded as “0” or “1. For our task, if a plan generated by

BOS given a specific configuration of weights is considered as positive, it is coded as “1”; on the

contrary, it is coded as “0”. So the logistic regression here is used to predict the probability of a

plan being positive given a set of predictors (i.e., the weights of the factors in BOS).

4.4.2.2 Building the training set

The logistic function needs a training set, consisting a bunch of instances, to train the model. In

our problem, each instance in the training set is represented as:

[label, feature]

 57

Label is the dependent variable. It is 1 or 0 for positive or negative feedback provided by users.

Feature is the set of predictor variables. Each predictor is the weight used in BOS. A feature is

denoted as:

{w1:[0,30], w2:[0,30], w3:[0,30], w4:[0,30], w5:(0,10), w6:(0,10), w7:(0,10)}

The algorithm used to train the model and predict the probability is shown in Algorithm 4.4.1.

4.4.2.3 Interacting with users

A specific training set is maintained for each user, and it grows when the user provides a

feedback for a plan. The user can decide when to allow learning from the training set, and

typically the bar is higher than a default threshold defined by the system. One thing to notice is

that, the set of weights of a plan with positive feedback from a user may not be directly reused

Algorithm 4.4.1

 Func train(dataList, n):

 // n is the number of training iterations.

 For i from 0 to n:

 For [label, feature] in dataList:

 predicted = classify(feature)

 // f is feature, v is its value

 For f, v in feature.items():

 If f is not existing weight:

 W[f] = 0

 update = (label - predicted) * v

 W[f] += bias * update

 Return

Func classify(feature):

 // logit is the inverse of logistic function

 logit = 0

 For f, v in feature.items():

 // ceof is coefficient

 ceof = 0

 If f is existing weight:

 coef = W[f]

 logit += coef * v

 // exp return e raised to specified power

 P = 1.0 / (1.0 + math.exp(-logit))

 Return P

 58

for generating the next plan; instead, the weights associated with that plan will be added into the

training set. For the same input factors, when the user asks for another plan suggestion, the

trained model will adopt the best set of weights learned from the training set, including the new

positive feedback plans. This is because even if the user thinks the previous plan is a successful

or satisfactory one, it cannot guarantee it is the most optimal one. So when a user interacts with

the same input set up, our system is trying to be aggressive – providing more reasonable plans,

collecting more feedback from the user. On the other hand, if the user inquiries for a plan with

totally different input factors, our system would like to provide the best ranked set of weights to

the BOS to generate a plan, unless the user explicitly lets the system to start learning from

scratch. From this perspective, the training set is also equivalent to a historic database, and our

system is able to provide an interface for the user to give a “satisfaction” score to plans and

subsequently learn the user’s own preferences.

4.5 EXPERIMENTAL ANALYSIS

Experiments were run on the “Elements” Cluster (elements.cs.pitt.edu) in the Computer Science

department, of the University of Pittsburgh. The configuration of the machines in the cluster is:

Dual Hyper-Threaded Six-Core 3.33GHz Xeon processors, 96GB RAM memory, 64-bit Linux

architecture, running CentOS 5.5 with kernel version 2.6.

 59

4.5.1 Analysis of Local Algorithms

In section 4.3.1, three different local algorithms and one baseline algorithm were presented. The

following experiments evaluate their performance based on two metrics - response time and

profit gain. For the local heuristic shared by the algorithms, their associated weights are set to the

equal default value (e.g., 1).

Before the experiments, we need to tune the parameters in each algorithm to achieve its

best performance. The relevant parameters of algorithm 1 (greedy beam search), algorithm 2

(iterative dynamic programming), and algorithm 3 (random restart hill climbing) are,

beam_width, iteration_time, and restart_num, respectively. We define three cutoff ratios to

quantify those variables and relate them with the candidate list size:

beam_width = candidate_list_size * cutoff_ratio1,

iteration_time = candidate_list_size * cutoff_ratio2,

restart_number = candidate_list_size * cutoff_ratio.

 60

Table 4.5.1 Tuning cutoff ratio for the three algorithms

Table 4.5.1 shows performance differences when tuning cutoff ratios. We can see that for all

three algorithms, the higher the cutoff ratio, the more profit gain. The reason is that the

algorithms become closer to optimal, as they are closer to an exhaustive search and less to a

version using just heuristics. The trade-off is that the response time increases at the same time. In

order to keep a good balance, cutoff-ratio 1, 2, and 3 are set to 0.2, 0.5, and 0.75 respectively in

the following experiments.

Figure 4.5.1 and Figure 4.5.2 show the results with the above cutoff-ratio values. The x-

axis denotes the ratio of candidate list capacity consumption sum to assigned night capacity. First

 61

of all, all three algorithms’ response time is dramatically reduced compared to the baseline

algorithm (i.e., the brute-force algorithm), while there is little profit loss. For the comparison

among the three algorithms, Algo2 performs best regarding response time, while Algo3 performs

worst. Algo1 gains the least profit of all, while the other two algorithms have very similar

performance (Algo3 gains slightly more than Algo2 for overall). Thus, the iterative dynamic

programming approach is the best one in our case.

Figure 4.5.1 Comparison of response time

 62

Figure 4.5.2 Comparison of accuracy

4.5.2 Effect of Learning for local/global Scheduling

To prove the assumption that the semi-supervised learning technique embedded in the planner

can influence the result plan suggestion, and improve user’s satisfaction with the process of

interaction and iteration, we conducted the following experiments.

The first experiment shows that the learning technique helps improve local scheduling.

Assuming a user submitted a request to plan for 3 imaginary supernovae: 2014A, 2014B, and

2014C. The detailed input information is as follows:

2014A – B-Peak: 2014-03-21, Priority: 0.9, obsDuration: 45, obsTimes: 1, obsGap: 1

2014B – B-Peak: 2014-03-21, Priority: 0.5, obsDuration: 25, obsTimes: 1, obsGap: 1

2014C – B-Peak: 2014-03-21, Priority: 0.5, obsDuration: 25, obsTimes: 1, obsGap: 1

 63

Nights in the plan: 2014-03-21, 2014-03-23

Hours per night: 1

(All the remaining data related to the 3 supernovae are omitted for brevity.)

There are two ways to plan for the request: i) schedule the observation of 2014B and 2014C on

the first night, then observe 2014A on the second night, and ii) schedule the observation of

2014A on the first night, and use the second night for the observation of the other two

supernovae. Obviously, the way to observe 2014B and 2014C on the first night is better than the

alternative. The reason for that is because the profit gain is more by scheduling 2014B and

2014C on 2014-03-21, which is the peak brightness date for all three supernovae. A driver

program was written to simulate user actions. Every time it receives the better plan suggestion it

gives positive feedback. Otherwise it gives negative feedback. Figure 4.5.3 (a) shows the

percentage of good plan suggestions with different training set sizes.

The second experiment demonstrates the influence on global scheduling. The devised

scenario is following:

2014D – B-Peak: 2014-03-03, Priority: 0.9, obsDuration: 50, obsTimes: 2, obsGap: 1

2014E – B-Peak: 2014-03-03, Priority: 0.9, obsDuration: 50, obsTimes: 1, obsGap: 1

Nights in the plan: 2014-03-21, 2014-03-22, 2014-03-23

Hours per night: 1

(All the remaining data related to the 3 supernovae are omitted for brevity.)

We can notice that 2014-03-23 is the deadline for the observation of both supernovae. And if the

planner chooses 2014E at the first night, the observation of 2014D cannot be finished in two

 64

continuous nights. So a good plan suggestion should arrange 2014D on the first and last night,

using the night in the middle to observe 2014E. As the deadline is the same and 2014E has less

unfinished workload (observation instances), the only way to make global heuristic evaluate

2014D more urgently than 2014E is to overweight the third factor – slack time. Figure 4.5.3 (b)

illustrates the behavior of our system using this approach.

Figure 4.5.3 Learning affecting decision making

4.5.3 Overall Performance Analysis

Finally, we provide the automatically generated plans by our system, comparing to the manually

generated plan by our astronomer colleagues for list spring 2013 (see APPENDIX B). Our

colleagues from Department of Physics & Astronomy inspected our plan results, admitting the

 65

feasibility of those plan suggestions, even though the generated plans were not the same with

what the astronomers manually planned.

 66

5.0 CONCLUSIONS AND FUTURE WORK

5.1 SUMMARY OF CONTRIBUTIONS

Supernovae researchers need to track lists of interesting supernovae and create observation plans.

When they are looking at the dates allocated to them for observation and are trying to determine

which supernovae to observe in which date, considerations about the temporal constraints and

the potential conditions on limited time and resources overwhelm the astronomers, and incur

difficulties in generating efficient observation plans. In this work, we proposed the SNeT

(computer-assisted SuperNovae Tracking) system for addressing the problems supernovae

researchers encounter when making observation plans.

Specifically, this thesis made the following algorithmic and system contributions:

• A Supernova Data Aggregator (SDA), that integrates existing supernova messages/reports

published by different sources and builds a local supernova data knowledge-base.

• A Supernova Tracking Management System (STMS), that enables the user to manage the

entire supernova tracking process – (1) searching for interesting supernova targets, (2)

creating a potential list of supernovae for observation, (3) configuring the input parameters

of a plan, and (4) displaying and recording generated observation plans in a user-friendly

way.

 67

• A Supernova Observation Plan Generator (SOPG), that consists of Basic Observation

Scheduling (BOS) and Advanced Observation Scheduling (AOS) modules. SOPG generates

feasible and efficient observation plans under the comprehensive consideration of all

possible factors that affect them.

The SOPG component as the primary contribution of this thesis, it addresses the most

challenging problem. The SOPG component can also be thought as an independent system of

scheduling, working for SNeT. SOPG is structured in two layers, namely BOS and AOS, which

work collaboratively in generation good quality observation plans that meet the users

requirements and preferences.

The BOS module of SOPG breaks down a complex scheduling problem and solves it in

two phases. The global scheduler considers observation tasks in a broader view and orders the

tasks according to both their deadline and progress. On the other hand, the local scheduler

narrows down the problem and arranges tasks within a single night. We developed three different

algorithms to optimize the local scheduler: “greedy beam search”, “iterative dynamic

programming”, and “random restart hill climbing”, based on three different ideas - greedy

approximation, dynamic programming, and local search (typically used for optimization

problems in AI), respectively. Our experiments suggest that the above three algorithms achieve a

balance in efficiency and quality.

The AOS module of SOPG extends and enhances the system in two ways. First, the

“space” reserving feature enables users to choose from three flavors of night capacity

distribution. The way night capacity is assigned (or reserved) impacts the capability for

 68

observation of supernovae later determined as interesting and valuable but not included in the

original set of supernovae to be observed. In other words, it enables to dynamically include in an

existing observation plan new supernovae observation as well as to repeat failed ones.

The second feature of AOS is the semi-supervised learning embedded in our system. In

BOS module, we devised heuristic functions for decision making in both global and local

schedulers. These heuristics combine all factors affecting the scheduling and attach adjustable

weights on them. Thus, users can interact with SOPG and adjust plans by changing the weights

in the heuristic functions. Basically, the system records users’ opinions, builds and maintains

training sets, which would be used to learn the appropriate weights. As the weights in the

heuristic functions are being tuned implicitly, SOPG provides customized results to users. As

demonstrated in the evaluation part, this feature can help our system achieve a better solution

without affecting the applicability of the underlying algorithms.

5.2 FUTURE WORK

Although the work we have completed indeed solves our astronomer collaborator’s basic

problem, there are several areas also worth further investigations, as follows:

• For SDA: A customizable data downloading and parsing engine. It should allow users to

add their own sources, and register their own filtering rules (to parse and extract useful data).

Also useful would be an interface for users to analyze supernova messages/reports manually

and contribute their data to the supernova data knowledge-base. Both features can improve

SDA as the supplement of default data collecting routine.

 69

• For STMS: Several improvements can be made on “experiment configuration” and “plan

management” features. For the former, a well-designed access control system enabling

users to either protect or share their annotation, opinion, and progress on supernova

observations is needed. For the latter, a refined UI visualizing detailed statistics about the

on-going observation plan would be helpful.

• For SOPG: Enhancing the system with dynamic rescheduling. Basically, users can interact

with the system and inspect the on-going plan and current observation status. This would

enable users to do the following: 1) add/remove objects and constraints, 2) change object’s

attributes or corresponding constraints, 3) cross out certain night or certain period of time in

one night as failures (device broken down, bad weather, etc). As a result, the enhanced

system can combine the changes with the initial configuration to reschedule the remaining

portion of the whole observation.

5.3 FINAL THOUGHTS

SNeT provided a whole solution package for the astronomers observing supernovae. In the

process of designing and developing SNeT, we also studied and explored interesting scheduling

and optimization problems. We designed and implemented algorithms to address them. We

consider our work as an early step in the exploration of building intelligent and easy-to-use

supernovae tracking systems. We hope our work can help the research of astronomers and

computer scientists interested in this area.

 70

Acknowledgements: We first want to thank Professors Michael Wood-Vasey and Jeffery

Newman, our Astronomer collaborators. We also like to thank Nikhil Venkatesh and Wen Gao

from the ADMT Lab for the help of implementing part of STMS and the web-UI integrated into

AstroShelf platform. This work was funded in part by NSF award OIA-1028162.

 71

APPENDIX A

STRUCTURE OF SN CLASS

A very important part for the implementation of the planning system is the “SN class”, which

encapsulates all the information of the basic entity (supernova object) enrolled in the process of

plan generation. As mentioned in section 4.1, user input contains a list of objects of interest with

a list of observation constraints, which indicates the detailed requirements for the observation of

certain supernova. So, the object’s data associated with its constraints provide all the useful

information about each object for planning. Considering that, we designed and implemented the

“SN class” to integrate this information together, providing standardized interfaces to access

them, recording additional status data for the object, and giving useful helper functions to

manipulate the object.

The variables and methods integrated in SN class are listed below.

Variables:

1. Catalog data of the object (supernova):

- SN.Name: the name of supernova, e.g., SN 2013A, PSN J01340066-3423404,

MASTER OT J111154.50+453214.9, CSS130828:223849-251246, etc.

- SN.RA: the right ascension to measure the position of supernova.

 72

- SN.Dec: the declination to measure the position of supernova.

- SN.Type: the classification of supernova, divided into Type I and Type II.

- SN.Redshift: the redshift of supernova.

- SN.Mag: the apparent magnitude of supernova, to measure brightness.

- SN.BPeak: the date when supernova in its peak brightness.

- SN.Peakdate: the language built-in datetime object converted from date string.

- SN.Priority: a number in range (0, 1) assigned by user, to measure how valuable the

success in such supernova’s observation is. Typically, the priority is very important fact

to consider in planning. For a feasible observation plan with no deadline misses, no time

conflict, etc, the maximum gain in priority raise a positive flag for user’s acceptance of

the plan.

2. Constraints for the observation of the object (supernova):

- SN.obsDuration: it measures how long (in minutes) each observation instance of a

particular object should takes. The time varies for different night.

- SN.obsGap: it gives a constraint that how long (in nights) two adjacent observation

instances of the same supernova should be separated.

- SN.obsTimes: it measures how many instances are needed for such supernova

observation to complete.

3. Status data of the object (supernova):

- SN.status.last_instance: the index of the last finished instance.

- SN.status.last_time: the index of night in which the last instance finished.

 73

- SN.status.remaining_instance: number of remaining instances to be schedule.

- SN.status.miss_deadline: flag to mark whether observation of such supernova passes the

deadline or not.

Methods:

1. Methods to access variables:

- SN.getPriority(): return the priority of such supernova given by user.

- SN.getObsDuration(): return the observation duration of such supernova according to

the date (of the night) information.

- SN.getObsGap(): return the observation gap set up by user.

- SN.getObsTimes(): return the observation times set up by user.

- SN.update_status(): it will update the recorded status as new instance finished.

- SN.reset_status(): it will reset the status of observation to initial, as user may iterate

through multiple plans with the same input parameters.

2. Helper functions:

- SN.available(): given a particular night, the function will check whether it is permitted

or not to schedule the observation of such object, considering all the existing constraints.

- SN.get_deadline(): given a particular night, return the relative deadline (in unit of nights)

for finishing the observation of such object.

- SN.get_remaining_work(): return the amount of unfinished workload (in unit of minutes)

of particular object, by adding all the remaining instances’ duration.

 74

- SN.get_slack(): given a particular night, return the amount of time (in unit of nights) left

after a job (observation) if was started immediately.

- SN.get_obsWindow(): calculate the specific time window for observation in particular

night, e.g., start at 12:30 am, end at 1:45 am. The calculation is based on R.A., Dec., and

the date of that night.

When the planning system accepts the information of target list and constraints from user, it will

instantiate an object of “SN class” stated above, for each supernova object needs to be tracked in

current plan. A list of such SN class objects is the core data structure for performing scheduling

algorithms. For example, global scheduler in BOS iterates over a list of SN class objects, use

their helper function to check the availability, to calculate the value of factors affecting

scheduling; Local scheduler in BOS iterates over the candidate list from the global one, choosing

the best portion of it as tonight’s tasks, updating their status, etc. More details will be disclosed

in following sections.

In all, the implementation of SN class plays an important role for building the whole

planning system, as it makes the tasks of schedulers built upon it easier, by grouping useful data,

keeping intermediate status, and providing helper functions.

 75

APPENDIX B

PLANS FOR LIST SPRING 2013

In the following pages we list the supernovae observation plan generated by our astronomer

colleagues along with three plans automatically generated by SNeT. Although these three plans

are not identical to the manually generated one, they were still deemed reasonable by our

astronomer collaborators.

 76

[Manual plan by Dr. Michael Wood-Vasey for observations in spring 2013]

Name | z | B-Peak | 20130321 | 20130326 | 20130420 | 20130425 | 20130429 |
20130519 | 20130522 | 20130523 | 20130528 | 20130613 | 20130617 | Notes

2012cg | 0.001458| 20120401 | ..,..,.. | ..,..,.. | ..,..,.. | 16,25,.. | ..,..,.. | ..,..,.. | ..,..,.. |
16,25,.. | 25,34,.. | ..,25,.. | 16,25,.. | CBET 3111
2013cs | 0.009240| 20130524 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. |
09,09,09 | 09,09,09 | 09,09,09 | 09,09,09 | CBET 3533 LSQ13aiz ATEL 5067
2013da | 0.0216 | 20130606 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,..
| ..,..,.. | 09,09,09 | 09,09,06 | Observed with Super-LOTIS
2013bs | 0.0276 | 20130421 | ..,..,.. | ..,..,.. | 09,16,.. | 15,15,.. | ..,28,.. | ..,..,.. | 16,17,..
| ..,..,.. | 16,16,.. | 25,16,.. | 25,25,.. | ATel 4993, CBET 3494 PSNJ17172203+4104002
PTF13asv | 0.035 | 20130511 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 25,25,.. | ..,..,..
| 25,25,.. | 25,25,.. | 16,16,.. | ATEL 5061
2013bo | 0.036 | 20130411 | ..,..,.. | ..,..,.. | 09,16,.. | 25,16,.. | 16,16,.. | ..,..,.. | 25,25,..
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4989 CSS130415:131729+424430, CBET 3490
2013bt | 0.0364 | 20130426 | ..,..,.. | ..,..,.. | 16,16,.. | 09,16,.. | 09,16,.. | 25,25,.. | ..,..,.. |
25,35,.. | ..,..,.. | ..,..,.. | ..,..,.. | 4993, PSNJ14211513+6134159 CBET 3497
SNhunt175 | 0.0409 | 20130318 | ..,50,.. | ..,..,.. | 20,16,.. | ..,..,.. | ..,41,.. | ..,..,.. | ..,..,..
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4896
2013ck | 0.049 | 20130512 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 16,25,.. | ..,..,.. | 34,41,..
| ..,..,.. | 25,25,.. | 25,25,.. | CBET 3523
CSS130218:092354+385837 | 0.05 | 20130310 | ..,..,.. | ..,25,.. | ..,41,.. | ..,25,.. | ..,..,.. | ..,..,..
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4908
PTF13ayw | 0.0538 | 20130518 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 16,36,.. | ..,..,..
| ..,..,.. | 25,41,.. | 25,25,.. | 25,16,.. | ATEL 5061
2013cb | 0.0541 | 20130512 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 25,25,.. | ..,..,.. | 25,41,..
| ..,41,.. | ..,..,.. | ..,..,.. | CBET 3509
2013bq | 0.06 | 20130424 | ..,..,.. | ..,..,.. | 25,25,.. | 25,25,.. | 16,25,.. | ..,..,.. | ..,..,..
| ..,50,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4993, CBET 3492 CSS130415:130408+435408
2013ar | 0.06 | 20130323 | ..,..,.. | 25,41,.. | 25,25,.. | ..,..,.. | 41,41,.. | ..,..,.. | ..,..,..
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | CBET 3446
2013be | 0.065846| 20130416 | ..,..,.. | ..,..,.. | ..,..,.. | 25,25,.. | 41,50,.. | 41,41,.. | ..,..,..
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | CBET 3470, iPTF13aig ATEL 5019
CSS130317:082848+293031 | 0.08 | 20130319 | ..,..,.. | 41,41,.. | 41,36,.. | 41,50,.. | ..,..,.. | ..,..,..
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4984

 77

[Plan 1 generated by SOPG, SNeT]

2013-03-21: 2013cb, 2013cs, CSS130317:082848+293031, 2013bt,
CSS130218:092354+385837, 2013bo, SNhunt175, 2013bs
2013-03-26: CSS130218:092354+385837, 2013bo, 2013ar, 2013bt, 2013cb, 2013da,
SNhunt175, 2013bs, 2013cs
2013-04-20: 2013bo, SNhunt175, 2013bq, 2012cg, 2013bt, PTF13asv, 2013ar,
CSS130218:092354+385837
2013-04-25: PTF13asv, 2013bs, 2012cg, 2013ar, 2013bt, 2013cs, 2013bo, 2013bq
2013-04-29: 2013bs, 2013bt, 2013bq, 2013da, 2013cs, PTF13asv, 2013be, 2013cb
2013-05-19: CSS130317:082848+293031, 2013ck, 2013bq, 2013bs, PTF13asv, 2013be
2013-05-22: 2012cg, CSS130317:082848+293031, 2013bs, 2013ck, PTF13ayw
2013-05-23: 2013be
2013-05-28: 2012cg, 2013bs, 2013ck, PTF13ayw
2013-06-13: PTF13ayw, 2012cg, 2013ck
2013-06-17: PTF13ayw

Name z B-Peak 2013-03-21 2013-03-26 2013-04-20 2013-04-25
 2013-04-29 2013-05-19 2013-05-22 2013-05-23 2013-05-28 2013-06-13
 2013-06-17

2012cg 0.001 2012-04-01 - - 41 41 - - 41 -
 41 41 -
2013ar 0.06 2013-03-23 - 65 65 65 - - - -
 - - -
2013be 0.065 2013-04-16 - - - - 77 77 - 77
 - - -
2013bo 0.036 2013-04-11 35 35 35 35 - - - -
 - - -
2013bq 0.06 2013-04-24 - - 50 50 50 50 - -
 - - -
2013bs 0.027 2013-04-21 38 38 - 38 38 38 38 -
 38 - -
2013bt 0.036 2013-04-26 32 32 32 32 32 - - -
 - - -
2013cb 0.054 2013-05-12 47 47 - - 47 - - -
 - - -
2013ck 0.049 2013-05-12 - - - - - 58 58 -
 58 58 -
2013cs 0.009 2013-05-24 27 27 - 27 27 - - -
 - - -

 78

2013da 0.021 2013-06-06 - 27 - - 27 - - -
 - - -
CSS130218:092354+385837 0.05 2013-03-10 30 30 30 - - -
 - - - - -
CSS130317:082848+293031 0.08 2013-03-19 82 - - - - 82
 82 - - - -
PTF13asv 0.035 2013-05-11 - - 50 50 50 50 - -
 - - -
PTF13ayw 0.053 2013-05-18 - - - - - - 53 -
 53 53 53
SNhunt175 0.0409 2013-03-18 43 43 43 - - - - -
 - - -

7 SN Observations missed deadline, listed as following:

2012cg, 2013ar, 2013be, CSS130218:092354+385837, CSS130317:082848+293031, PTF13ayw,
SNhunt175

0 SN Observation didn't finish completely, listed as following:

N/A

56.25% SN Observations fully scheduled on time!

 79

[Plan 2 generated by SOPG, SNeT]

2013-03-21: 2013ar, CSS130218:092354+385837, SNhunt175, 2013bs, PTF13asv, 2013bq,
2013bo, 2013bt
2013-03-26: 2013ar, CSS130218:092354+385837, SNhunt175, 2013bs, 2013cb, 2013bq,
2013bo, 2013bt
2013-04-20: 2013ar, CSS130218:092354+385837, SNhunt175, 2013bs, PTF13asv, 2013bq,
2013bo, 2013bt
2013-04-25: 2012cg, 2013bq, 2013cb, 2013ck, 2013bo, 2013bt, PTF13asv, 2013bs
2013-04-29: CSS130317:082848+293031, 2013cb, 2013bt, PTF13asv, 2013bs, 2013da,
2013cs, PTF13ayw
2013-05-19: CSS130317:082848+293031, 2013be, 2012cg, 2013bs, 2013da, 2013cs,
PTF13ayw
2013-05-22: CSS130317:082848+293031, 2013be, 2012cg, 2013bs, 2013cs, PTF13ayw
2013-05-23: 2013ck
2013-05-28: 2013be, 2012cg, 2013ck, PTF13ayw, 2013cs
2013-06-13: 2012cg, 2013ck
2013-06-17: Null

Name z B-Peak 2013-03-21 2013-03-26 2013-04-20 2013-04-25
 2013-04-29 2013-05-19 2013-05-22 2013-05-23 2013-05-28 2013-06-13
 2013-06-17

2012cg 0.001 2012-04-01 - - - 41 - 41 41 -
 41 41 -
2013ar 0.06 2013-03-23 65 65 65 - - - - -
 - - -
2013be 0.065 2013-04-16 - - - - - 77 77 -
 77 - -
2013bo 0.036 2013-04-11 35 35 35 35 - - - -
 - - -
2013bq 0.06 2013-04-24 50 50 50 50 - - - -
 - - -
2013bs 0.027 2013-04-21 38 38 38 38 38 38 38 -
 - - -
2013bt 0.036 2013-04-26 32 32 32 32 32 - - -
 - - -
2013cb 0.054 2013-05-12 - 47 - 47 47 - - -
 - - -
2013ck 0.049 2013-05-12 - - - 58 - - - 58
 58 58 -

 80

2013cs 0.009 2013-05-24 - - - - 27 27 27 -
 27 - -
2013da 0.021 2013-06-06 - - - - 27 27 - -
 - - -
CSS130218:092354+385837 0.05 2013-03-10 30 30 30 - - -
 - - - - -
CSS130317:082848+293031 0.08 2013-03-19 - - - - 82 82
 82 - - - -
PTF13asv 0.035 2013-05-11 50 - 50 50 50 - - -
 - - -
PTF13ayw 0.053 2013-05-18 - - - - 53 53 53 -
 53 - -
SNhunt175 0.0409 2013-03-18 43 43 43 - - - - -
 - - -

6 SN Observation missed deadline, listed as following:

2012cg, 2013ar, 2013be, CSS130218:092354+385837, CSS130317:082848+293031, SNhunt175

0 SN Observation didn't finish completely, listed as following:

N/A

62.50% SN Observations fully scheduled on time!

 81

[Plan 3 generated by SOPG, SNeT]

2013-03-21: CSS130218:092354+385837, 2013bo, 2013bt, 2013bq, PTF13asv, SNhunt175,
2013ar, 2013bs
2013-03-26: CSS130218:092354+385837, 2013bo, SNhunt175, 2013bt, 2013bq, 2013ar,
2013bs, PTF13asv
2013-04-20: 2013ar, 2013bt, 2013bo, 2013bq, SNhunt175, CSS130218:092354+385837,
2013bs, PTF13asv
2013-04-25: CSS130317:082848+293031, 2013bs, 2013bo, 2013bq, 2013bt, 2013cb,
PTF13asv
2013-04-29: 2013bs, 2013cs, 2013cb, 2013bt, CSS130317:082848+293031, 2013be,
PTF13ayw
2013-05-19: CSS130317:082848+293031, 2013cs, 2013da, 2013bs, 2013be, 2013cb,
PTF13ayw
2013-05-22: 2012cg, 2013bs, 2013ck, 2013be, PTF13ayw, 2013cs
2013-05-23: 2013da
2013-05-28: 2012cg, 2013cs, PTF13ayw, 2013ck
2013-06-13: 2013ck, 2012cg
2013-06-17: 2012cg, 2013ck

Name z B-Peak 2013-03-21 2013-03-26 2013-04-20 2013-04-25
 2013-04-29 2013-05-19 2013-05-22 2013-05-23 2013-05-28 2013-06-13
 2013-06-17

2012cg 0.001 2012-04-01 - - - - - - 41 -
 41 41 41
2013ar 0.06 2013-03-23 65 65 65 - - - - -
 - - -
2013be 0.065 2013-04-16 - - - - 77 77 77 -
 - - -
2013bo 0.036 2013-04-11 35 35 35 35 - - - -
 - - -
2013bq 0.06 2013-04-24 50 50 50 50 - - - -
 - - -
2013bs 0.027 2013-04-21 38 38 38 38 38 38 38 -
 - - -
2013bt 0.036 2013-04-26 32 32 32 32 32 - - -
 - - -
2013cb 0.054 2013-05-12 - - - 47 47 47 - -
 - - -
2013ck 0.049 2013-05-12 - - - - - - 58 -
 58 58 58

 82

2013cs 0.009 2013-05-24 - - - - 27 27 27 -
 27 - -
2013da 0.021 2013-06-06 - - - - - 27 - 27
 - - -
CSS130218:092354+385837 0.05 2013-03-10 30 30 30 - - -
 - - - - -
CSS130317:082848+293031 0.08 2013-03-19 - - - 82 82 82
 - - - - -
PTF13asv 0.035 2013-05-11 50 50 50 50 - - - -
 - - -
PTF13ayw 0.053 2013-05-18 - - - - 53 53 53 -
 53 - -
SNhunt175 0.0409 2013-03-18 43 43 43 - - - - -
 - - -

7 SN Observation missed deadline, listed as following:

2012cg, 2013ar, 2013be, 2013ck, CSS130218:092354+385837, CSS130317:082848+293031,
SNhunt175

1 SN Observation didn't finish completely, listed as following:

2012cg

56.25% SN Observations fully scheduled on time!

 83

BIBLIOGRAPHY

[1] http://en.wikipedia.org/wiki/Supernova.

[2] Composite View of Kepler’s Supernova Remnant – SN 1604.
http://www.spitzer.caltech.edu/images/1278-ssc2004-15a1-Composite-View-of-Kepler-s-
Supernova-Remnant-SN-1604.

[3] Astronomy Today Volume 2: Stars and Galaxies with MasteringAstronomy, Seventh Edition.
Chaisson & McMillan, 2011.

[4] Skyalert.org. http://skyalert.org/.

[5] The Astronomer’s Telegram. http://www.astronomerstelegram.org/.

[6] IAU Central Bureau for Astronomical Telegrams.
http://www.cbat.eps.harvard.edu/index.html.

[7] AstroShelf Project. http://db.cs.pitt.edu/group/projects/astroshelf.

[8] Panayiotis Neophytou, Roxana Gheorghiu, Rebecca Hachey, Timothy Luciani, Di Bao,
Alexandros Labrinidis, G. Elisabeta Marai, and Panos K. Chrysanthis. AstroShelf:
Understanding the Universe Through Scalable Navigation of a Galaxy of Annotations. Proc.
of the 31st ACM International Conference on Management of Data (SIGMOD), pp. 1-4,
Scottsdale, Arizona, May 2012.

[9] Google Reader. http://en.wikipedia.org/wiki/Google_Reader.

[10] Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis. ViP: a User-centric View-
based Annotation Framework for Scientific Data. The 7th Hellenic Data Management
Symposium (HDMS'08), pp. 1-12, Crete, Greece, July 2008.

[11] Qinglan Li, Alexandros Labrinidis, and Panos K. Chrysanthis. ViP: a User-centric View-
based Annotation Framework for Scientific Data. Proc. of the 20th International Conference
on Scientific and Statistical Database Management (SSDBM'08), pp. 295-312, Hong Kong,
China, July 2008, DOI:10.1007/978-3-540-69497-7_20.

[12] Bin Packing Problem. http://en.wikipedia.org/wiki/Bin_packing_problem.

 84

[13] F. Lindh, T. Otnes, and J. Wennerstrom. Scheduling Algorithms for Real-Time Systems.
Department of Computer Engineering, Malardalens University, Sweden.

[14] Combinatorial Optimization. http://en.wikipedia.org/wiki/Combinatorial_optimization.

[15] Christos H. Papadimitriou and Kenneth Steiglitz Combinatorial Optimization : Algorithms
and Complexity; Dover Pubns; (paperback, Unabridged edition, July 1998) ISBN 0-486-
40258-4.

[16] Knapsack Problem. http://en.wikipedia.org/wiki/Knapsack_problem.

[17] M. R. Garey and D. S. Johnson. Computers and Intractability: a Guide to the Theory of NP-
Completeness. W.H. Freeman, New York, 1979.

[18] L. Hall. Computational Complexity. The Johns Hopkins University.

[19] Sahni, Sartaj. "Approximate algorithms for the 0/1 knapsack problem." Journal of the ACM
(JACM) 22.1 (1975): 115-124.

[20] Martello, Silvano, David Pisinger, and Paolo Toth. "Dynamic programming and strong
bounds for the 0-1 knapsack problem." Management Science 45.3 (1999): 414-424.

[21] Norvig, Peter. Paradigms of Artificial Intelligence: Case Studies in Common LISP. Morgan
Kaufmann Publishers, Inc, 1992.

[22] Cormen, Thomas H.; Leiserson, Charles E.; Rivest, Ronald L.; Stein, Clifford (2001),
Introduction to Algorithms (2nd ed.), MIT Press & McGraw–Hill, ISBN 0-262-03293-7.
Especially pp. 323–69.

[23] Stuart J. Russell and Peter Norvig. Artificial Intelligence - A Modern Approach (Third
Edition). Especially Chapter 4 - Beyond Classical Search.

[24] Earliest Deadline First. http://en.wikipedia.org/wiki/Earliest_deadline_first_scheduling.

[25] Shortest Remaining Time. http://en.wikipedia.org/wiki/Shortest_remaining_time.

[26] Least Slack Time. http://en.wikipedia.org/wiki/Least_slack_time_scheduling.

[27] Bishop, Christopher M. "Chapter 4. Linear Models for Classification". Pattern Recognition
and Machine Learning. Springer Science+Business Media, LLC. pp. 217–218. ISBN 978-
0387-31073-2.

[28] Bishop, Christopher M. "Chapter 10. Approximate Inference". Pattern Recognition and
Machine Learning. Springer Science+Business Media, LLC. pp. 498–505. ISBN 978-0387-
31073-2.

	a. Title page
	b. Abstract
	c. Table of contents
	d. List of tables
	e. List of figures
	f. List of equations
	g. List of algorithms
	h. Chapter 1 - Introduction
	i. Chapter 2 - Supernova data aggregator
	j. Chapter 3 - Supernova tracking management system
	k. Chapter 4 - Supernova observation plan generator
	l. Chapter 5 - Conclusions and future work
	m. Appendix A
	n. Appendix B
	o. Bibliography

