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In astronomy, supernovae are stellar explosions whose observation can help shed light on the star 

formation process and provide reference points for cosmological distances. Supernovae are 

detected at different phases of their lifecycle and their observation is further complicated by time 

and resource constraints. Although there exists automated supernovae detection pipelines, 

follow-up observations by individual researchers are handled manually, both in terms of keeping 

a list of interesting supernovae worth observing and also planning out the exact schedule for 

observations, given telescope access and temporal constraints. 

This thesis designs and develops the SNeT (computer-assisted SuperNovae Tracking) 

system, as a tool to help astronomers collect supernovae data, manage their lists of interest and 

observation plans, and most importantly, generate good observation plans automatically, that can 

later be further adapted. Specifically, SNeT takes a list of supernovae, their associated temporal 

constraints, and user preferences, and it generates a plan that satisfies the constraints and 

preferences, maximizes data acquisition, while minimizing time and resource usage. In addition, 

the user can interact with the system and give feedback on the generated plans in order to 

customize SNeT’s planning behavior via its self-tuning. The SNeT prototype system is currently 

evaluated by supernovae researchers from the Department of Physics and Astronomy of the 

University of Pittsburgh. 

SNeT: computer-assisted SuperNovae Tracking 

Di Bao, M.S. 

University of Pittsburgh, 2013
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1.0  INTRODUCTION 

1.1 MOTIVATION 

In astronomy, a supernova [1] is a stellar explosion that is more energetic than a nova, which is a 

nuclear explosion in a white dwarf star. Supernovae are extremely luminous and cause a burst of 

radiation that often briefly outshines an entire galaxy (Figure 1.1.1), before fading from view 

over several weeks or months. Supernovae can provide important information on cosmological 

distances, and the understanding of the formation of stars. Supernova observation is the 

foundation and basic prerequisite for further studies of supernova. The history of supernova 

observation can be backtracked to ancient China (the earliest recorded supernova, SN 185, was 

viewed by Chinese astronomers in 185 AD), while the field of supernova discovery has extended 

to galaxies beyond the Milky Way quickly, after the development of the telescope. 

Nowadays, as more supernovae are discovered and more astronomers put their scientific 

interests in this field, individual astronomers are faced with the challenge of keeping track and 

planning out the exact schedule of observations of supernovae of their interest. The main 

concerns are time and resource constraints. The time constraints are primarily due to the physical 

properties of supernovae. Supernovae are transient events whose lifetime is marked by a peak 

brightness after which their brightness decreases over time (according to their type as shown in 

Figure 1.1.2). When supernovae are discovered, they are already in progress and any follow-up 
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observations must be carefully planned for these observations to be productive. The planning of 

observations by individual astronomers is further complicated by the observation equipment 

availability (how many Hubble Space Telescopes are there?). 

 

 

Figure 1.1.1  Supernova in explosion (Multiwavelength X-ray, infrared, and optical compilation image of 

Kepler’s supernova remnant, SN 1604) [2] 

 

 

Figure 1.1.2  Typical light curve of supernova [3] 
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Basically, although there exists automated supernovae detection pipelines, follow-up 

observations by individual astronomers are handled manually, which clearly inefficient and time 

consuming, given telescope access and supernovae temporal constraints. Similarly, the 

astronomers manually collect, analyze, aggregate and cross-match supernova data from multiple 

sources  (such as Skyalert [4], ATel [5], CBAT [6]) in order to identify interesting supernovae 

worth observing. The volume of messages/reports generated in near real-time by these sources 

makes this identification task a very difficult and even more time consuming.   

This thesis is motivated by the lack of a supernova observation information system which 

integrates appropriate tools that help and simplify astronomers’ tasks to collect supernovae data, 

manage their lists of interests and ongoing observation with associated annotations and 

hypotheses and most importantly, to generate good observations plans automatically. 

1.2 PROBLEM STATEMENT 

Current researchers of supernovae are faced with three key problems, which are described below. 

Problem 1: Currently astronomers lack a consistent way to access supernova data 

published by different organizations (sources). Many organizations maintain their own services 

to collect and distribute supernova related information in the form of a message or a report. 

Unfortunately, different organizations use different formats (such XML, semi-structured XML 

and HTML) for their messages and reports. Furthermore, although these messages/reports from 

different sources could describe the same supernova object, they may use different supernova 

naming convention, and provide different supplemental data (such as redshift, magnitude, etc.). 
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Ideally, astronomers should be provided with an interface to access all the information about a 

certain supernova published in all the related messages/reports. 

Problem 2: Currently astronomers lack a set of tools that helps them to create and 

maintain their target list of supernovae, save and retrieve their experiment configurations, record 

their observation plans as well as record and share their annotations on observed supernova 

objects. 

Problem 3: Currently astronomers lack a tool to automatically generate high quality 

observation plans under limited time and resource constraints. The quality of a plan  (for a 

specific set of supernovae and specific dates) is defined in terms of maximum data acquisition 

(i.e., number of successful supernovae observations), normalized by the value or importance of 

each supernova. The value of a supernova may vary from one astronomer to another and may 

also vary from one experiment to another for the same astronomer. The number of successful 

supernovae observations is determined by the temporal constraints associated with each 

supernova and the spatial proximity among supernovae, which define whether or not their 

observation window overlap during the same night. 

1.3 APPROACH 

We propose to address the above three key problems by developing a system consisting of four 

components: Supernova Data Aggregator (SDA) which addresses Problem 1, Supernova 

Tracking Management System (STMS) which addresses Problem 2 and Basic Observation 

Scheduling (BOS) and Advanced Observation Scheduling (AOS) both of which address Problem 

3. 
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1.3.1 Supernova Data Aggregator (SDA) 

SDA builds up a supernova data repository by integrating supernova data from different sources. 

It downloads supernova related message/report entries from multiple sources periodically, and 

adds any new released entries into a database. It further scans and parses those entries to extract 

information about supernova objects, while attempting to match objects from different sources. 

1.3.2 Supernova Tracking Management System (STMS) 

STMS provides the following functionalities to astronomers: search for interesting supernova 

records, build and maintain target lists of supernovae for observation, create and update 

particular experiment configurations for planning observations, record and display observation 

plans. STMS implements these functionalities by interacting with SDA, BOS and AOS. 

1.3.3 Basic Observation Scheduling (BOS) 

BOS provides a systematic way to automatically generate an observation plan for a given set of 

supernovae over a set of specific dates. Basically, it combines all the factors that could 

potentially affect the scheduling of observations and quantifies their effects, with a heuristic 

function, which is used in making scheduling decisions. At the global level, BOS generates 

candidates list of supernovae to be scheduled for each night and at the local level, BOS generates 

a feasible schedule of supernova observations. 
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1.3.4 Advanced Observation Scheduling (AOS) 

AOS enhances observation plan generation with two additional features. The first feature defines 

the shape of the entire observation plan (i.e., across all dates) by reserving specific observation 

windows per date when generating the observation plan for a given target list. The goal of this 

reservation is to enable dynamic expansion of the observation target list during the observation 

plan execution. In this way, new and potentially very interesting supernovae, which are 

discovered after the generation of the observation plan, could be potentially included in the plan. 

Furthermore, failed observations during a specific night would potentially need to be 

accommodated at a later date. That is, this feature allows for the flexibility of “planning before it 

happens”. 

The second feature provides semi-supervised learning to enhance the quality of an 

observation plan. As mentioned above, the quality of an observation plan is (astronomer) user-

specific. Briefly, the system maintains a training set of users’ feedbacks on generated plans and 

learns from them to adjust the scheduler’s behavior to meet the user preference. As a result, for 

the same target list, different users could expect different observation plans, according to how 

they “train” the system.  
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1.4 CONTRIBUTIONS 

The main contributions of this thesis can be summarized as following: 

 

• Designed and implemented the algorithms of the Supernova Data Aggregator (SDA) and 

built the Supernova Data Repository containing all the published data about supernovae 

since March 2013. 

• Designed and developed a Supernova Tracking Management System (STMS) which allows 

the creation of observation target lists from the supernovae data in the Supernova Data 

Repository and the planning of observation experiments using a Supernova Plan Generator. 

• Designed and implemented a Supernova Observation Plan Generator (SOPG) consisting of 

a Basic Observation Scheduling (BOS) module and Advanced Observation Scheduling 

(AOS) module. BOS is a suite of a baseline (exhaustive search) scheduler and three 

heuristic scheduling algorithms. Specifically, our proposed heuristics algorithms are: 

1. Greedy Beam Search, based on greedy approximation approach. 

2. Iterative Dynamic Programming, based on dynamic programming technique. 

3. Random Restart Hill Climbing, based on local search solving optimization problems. 

Our preliminary results have shown that all three algorithms are (1) scalable and (2) 

successfully balance the speed for generating a plan and the quality of the generated plan as 

compared to the baseline. 
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• Developed three capacity reserving strategies for shaping an observation plan as part of the 

AOS module: 

1. Normal, no space reservation (i.e., no built-in spare observation capacity). During 

planning, the capacity of all specified dates can be used and observations are scheduled 

as early as possible. Whatever capacity is not used, it is considered reserved capacity 

for future use and typically appears in the latest dates of the pre-specified set of dates. 

2. Evenly, reserves the same amount of space observation capacity across all pre-

specified dates assuming that all observations can be uniformly scheduled on all dates. 

Whatever capacity is not reserved is used during the planning. 

3. Inversed, the opposite of “Normal”. During planning, observations are scheduled at the 

latest possible time if they still do not affect the task’s schedulability. The residual 

capacity is reserved for future use and typically appears at the earliest dates of the pre-

specified set of dates. 

• Developed semi-supervised learning feature based on logistic regression to enhance the 

quality of an observation plan, which is also integrated into Advanced Observation 

Scheduling (AOS) module. 

 

All the above contributions were developed based on the requirements of and the feedback of 

supernovae researchers of the Department of Physics and Astronomy at the University of 

Pittsburgh and led to the SNeT (computer-assisted SuperNovae Tracking) prototype system 

(Figure 1.4.1). SNeT is accessible from the AstroShelf platform [7, 8], i.e., it is part of 

AstroShelf’s web-based user interface and is currently evaluated by our supernovae research 

collaborators. 
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Figure 1.4.1  High-level view of SNeT 

 

1.5 ROADMAP 

In the next chapter we will discuss the SDA component. In Chapter 3 we will present the features 

of STMS. The design and implementation of BOS and AOS will be covered in detail in Chapter 

4. In Chapter 4, we will also present an evaluation of our proposed scheduling algorithms. 

Finally, we will summarize our contributions and present our conclusions in Chapter 5. 
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2.0  SUPERNOVA DATA AGGREGATOR 

The high level goal of the Supernova Data Aggregator (SDA) is to build a Supernova Data 

Repository to consolidate supernovae information from multiple sources (organizations) even 

though these sources may use different supernova naming convention, and provide different 

supplemental data (such as redshift, magnitude, etc.). 

The design of SDA component is based on the idea of feeder aggregator. There are 

several applications sharing the same idea, like Google Reader [9]. These applications enable a 

user to access related information dispersed across multiple sites at one place. However, what 

makes our task of building SDA challenging is that (1) several sources distribute supernova 

related information in the form of messages or reports which are not well-formatted or well-

organized and (2) different organizations use different formats such XML, semi-structured XML 

(XML combined with plain text) and HTML. Both of these facts point to the need of specialized 

parsing techniques that will enable the extraction and identification of “objects” from the 

different messages and reports and cross-match them. (Here and the following sections, the word 

“object” represents an entity of particular supernova with its associated parameters, such as R.A., 

Dec., Redshift, etc.) 
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2.1 SOURCE ANALYSIS 

Currently, SDA collects documents in the form of messages from seven sources listed in Table 

2.1.1. These documents are distinguished in terms of their format and content which in turn 

characterize the degree of difficulty in processing and integrating them. 

The formats can be XML, ATOM, RDF/RSS, or HTML. In general, sources published by 

Skyalert are easiest to handle, as the information embedded in standard XML structure. Then 

comes the other Atom formatted source - CBET: Supernovae, because it can be considered as 

XML mixed with strings (the plain text part). The rest two sources are relatively hard to deal 

with, as HTML is the format for presentation instead of transmission. 

Processing and integrating a document involves parsing the document, extracting the 

referenced “objects” in them and linking them to the “objects” in our repository. Documents may 

be limited to one “object” or reference multiple ones. In terms of the number “objects”, the 

documents from the currently supported sources can be characterized as follows: 

1) The Skyalert series - one entry represent one “object”. 

2) The Astronomer's Telegram: supernovae - one entry is an annotation on one or multiple 

“objects”. 

3) CBET: Supernovae - one entry represent one “object”. Or, very rarely, it happens to be an 

annotation on a previous reported “object”. 

4) IAU Central Bureau for Astronomical Telegrams - there is no concept of “entry”, but the 

HTML page provides a list of the “objects”.  
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Table 2.1.1 Sources supported by SDA 

 

2.2 WORKFLOW OF SDA 

The architecture of the aggregator is shown in the Figure 2.2.1. First of all, the “Feed Reader” 

operator maintains state information of each source, which includes the name of the source, its 

URL, the timestamp of the latest download along with the necessary credentials to access the 

source. It uses this information to download message/report entries from each source periodically. 
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The fetched messages/reports are stored in a database by the “Storing” operator. Further, the 

messages/reports, with detailed information acquired from extended link, if applicable, are 

passed to “XML Parser” operator and “Regular Expression or Regex Parser” operator, for the 

purpose of extracting the “objects”, collecting supplemental data associated with “objects” and 

creating an object record. Then any created record of “object” or “annotation on object” is 

inserted into the database, again by the “Storing” operator. Lastly, a crontab job (i.e., time-based 

job scheduler) is set at host node, running the whole routine periodically, guaranteeing the users 

to get newest supernova report in near real-time fashion. 

 

 

Figure 2.2.1  Illustrating the workflow of SDA 
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In addition, an access log and an error log are maintained for the aggregator.  The access 

log records what source is accessed by SDA in exact what time, and how many updated entries 

of that source were downloaded. The error log records all the run-time errors such as the failure 

of downloading, parsing, or storing of message/report entries. In the case of parsing failure, a list 

of original messages/reports with the reason for the failure is saved and a notification is pushed 

to the administrator. The list of failed-to-parse messages/reports is also made available to the 

astronomer users, who can either submit a feedback on how to parse a specific message/report 

entry, or parse the specific message/report and manually store the extracted supernova data. In 

the former case the administrator uses the feedback to fix or enhance the parsing scripts. So, this 

“log, feedback, and fix” procedure makes up any potential drawbacks for “XML Parser” and 

“Regex Parser” to handle semi-structured data. 

The operators in SDA are implemented in PHP (with the support of XML parsing library 

and regular expression library). The logs are stored in both files and a database (MySQL) tables. 

2.3 BUILDING A SUPERNOVA DATA REPOSITORY 

We use a relational database as the main storage of supernova data collected from different 

sources. The database schema is designed in a way that 1) every “object” can be linked/traced 

back to the original message/report entry and the source, and 2) “objects” retrieves from different 

sources can be cross-matched. Figure 2.3.1 shows the database schema of SDA in a UML format 

(table view only). 

Most of the table names and their attributes are self-explanatory, except of Table 

SN_objects and Table SN_uniques, which need to be elaborated further. The former table, 
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SN_objects, stores original supernova “object” collected from sources, while the latter one, 

SN_uniques, maintains the “unique” supernova object in our repository, after the cross-matching 

of original “objects” based on their spatial position (namely the R.A. and Dec.). That is, if object 

A from source I and object B from source II are identical (i.e., referring to the same supernova), 

one “unique” object would be generated internally, to represent such supernova with multiple 

descriptions. 

The “one to many” relationships from Table SN_feeds, to Table SN_messages, and then 

to Table SN_objects help in achieving the lineage goal, while the “many to many” relationship 

underlying in Table SN_objects and Table SN_uniques captures the cross-matching part. 

The relational database used in implementing the supernova data repository is MySQL 

and SQL queries can be used to retrieve any supernova information in a consistent and efficient 

fashion. 

 

 

Figure 2.3.1  Database schema of SDA in table-view 
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3.0  SUPERNOVA TRACKING MANAGEMENT SYSTEM 

As stated in the introduction, our Supernova Tracking Management System (STMS) helps users 

to organize their studies on supernovae, by providing them with interesting candidate supernovae, 

recording their ongoing observation plans, etc. With STMS, astronomers can efficiently manage 

their supernova study data online in an intuitive and easy way and concentrate on their research. 

STMS implements the interface of our entire solution, namely, the SNeT (computer-assisted 

SuperNovae Tracking) prototype system. STMS is also the “glue” in the whole system 

architecture, connecting with the aggregator SDA (discussed in the previous chapter, Chapter 2) 

and the scheduler components BOS and AOS (to be discussed in the next chapter, Chapter 4), 

interacting with the front-end GUI and the back-end database. 

3.1 MAIN FEATURES OF STMS 

Supernova Search/Browse   The STMS can provide a list of interesting supernovae from our 

supernova knowledge-base for users. Users can list their search criterions via a GUI (Figure 

3.1.1), then the STMS assembles the appropriate query for requesting the data from the database. 

Typically, users can search by supernova name, position range (R.A., Dec.), or specify advanced 

filters on specific attributes such as Mag., redshift, etc. Users are also able to control the order of 
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the search results and limit the number of results. The result is presented in a well-formatted and 

interactive table to the user (Figure 3.1.2). 

 

List Management   STMS helps users to build and manage their own lists of interesting 

supernovae, or simply called, lists of interest. By going through the search results generated from 

our system, users can select interesting supernova records and put them into their own working 

space, via a simple “drag & drop” operation. Then they can create and name a new list for those 

supernovae (Figure 3.1.2). Each user can have multiple lists of interest at the same time, and 

modify or delete them if needed (Figure 3.1.3). As a result, astronomer users can easily start 

from one of their lists and conduct follow-up experiments or observations. 

 

Experiment Configuration   STMS enables users to configure their experiments for planning 

observations. Typically, an experiment has three parts of input: 1) a list of interesting supernovae, 

2) the constraints associated with each supernova in the list, and 3) a list of available nights (with 

how many hours) for the observation. We allow users to save/update the current experiment, or 

to bring a previous experiment into use (Figure 3.1.4). The night availability should be known 

ahead of time and the constraints on supernova stay constant. Thus, this feature reduces the 

repetitive work for users to configure an experiment, even for different observation lists. In 

addition, users can also make annotations on supernova’s attributes, such as type, magnitude, 

redshift, B-Peak, etc. In the future, detailed, open-form annotations can be shared and exchanged 

among users, taking advantage of our Annotations Database [10, 11]. 
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Plan Management   Users manage and interact with their observation plans via the STMS. Once 

an experiment has been configured, the observation plan will be generated by the BOS and AOS 

components. The generated plan is presented in a table view with each row being a supernova in 

the list, and each column being a date (night), as configured by the user for this experiment 

(Figure 3.1.5). Several statistics like “Total Scheduled/Remaining Time”, “Total Observed Time” 

are shown in the table, as well as observation “states” (i.e., whether to observe a particular 

supernova on a specific night or not) for all available nights. Meanwhile, extra statistics about 

whole plan are shown separately below the table (e.g., “Percentage of objects fully scheduled”). 

In addition, users can interact with the plan through AOS features. They can provide feedback to 

the current plan via “Like/Dislike” buttons, and switch to another plan by clicking “Try again”. 

Or even more straightforwardly, they can edit the current plan in-place. When users 

check/uncheck cells in the table, the system will recalculate the schedulability and give a hint to 

the users (e.g., in case the total number of hours in a night exceeds the pre-allocated amount). 

 
Figure 3.1.1  GUI of SNeT – Tab1 
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Figure 3.1.2  GUI of SNeT – Tab2 

 

 
Figure 3.1.3  GUI of SNeT – Tab3 
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Figure 3.1.4  GUI of SNeT – Tab4 

 

 

Figure 3.1.5  GUI of SNeT – Tab5 
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3.2 INTERACTING WITH THE GUI AND THE DATABASE 

Essentially serving the role of “glue”, the STMS is responsible for the communication between 

the front-end GUI and the back-end database. Users send their requests from the GUI, and the 

STMS transmits the request to the database and scheduler component. After that, the results are 

sent back to the GUI for users to see. 

The GUI of SNeT has been integrated into the AstroShelf platform’s web UI (Figure 

3.2.1). A user has to log into the AstroShelf platform first for the services of STMS to be 

available. After a user log on, a “supernovae” button will appear in the upper-right tool bar of the 

web UI, and a dialog box will appear after he/she clicks the button. That dialog box is the GUI of 

SNeT, containing 5 tabs side by side, with the ordering of them indicating the natural process of 

assembling an observation plan. In other words, that 5 tabs are the interface to access STMS’s 4 

main features listed in the previous section. 

Moreover, the database to support STMS is part of the whole database of SNeT. The 

relevant tables are shown in Figure 3.2.2. Table SN_lists and Table SN_contains are used to 

maintain lists of interest. Table SN_exp, Table SN_exp_nights, and Table SN_exp_objects are for 

the experiment configuration management. Table SN_trains is a training set, building up 

incrementally as users give feedback to the system, the records here will be retrieved for learning 

purposes to adjust the scheduling behavior. Finally, Table SN_plans is for the storing of positive 

observation plans, according to user’s satisfaction. In addition, we should notice that: 1) there is 

a connection from the above tables to Table SN_uniques and beyond (other tables in the 

supernova data repository schema), binding the supernova data knowledge-base and working as 

a whole, and 2) there is a connection from the above tables to Table Astro_user and beyond, 
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indicating the integration with AstroShelf database and, more importantly, allowing STMS to 

provide user-specific services (e.g. a user-specific experiment). 

 

 

Figure 3.2.1  SNeT integrated into AstroShelf platform 

 

 

Figure 3.2.2  back-end database supporting STMS in table-view 
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4.0  SUPERNOVA OBSERVATION PLAN GENERATOR 

In this chapter, we will cover the whole process of our automated supernova observation plan 

generator (SOPG) in detail. In Section 4.1, we will formalize the problem of “observation plan 

generation”. In Section 4.2, we will introduce the high-level functional description about BOS 

and AOS. The workflow of “observation plan generation” by the collaboration of BOS and AOS 

will also be introduced here. After that, Sections 4.3 and 4.4 will dive into the essential parts of 

BOS and AOS, correspondingly, discussing the algorithms for planning. Lastly, Section 4.5 

provides the experimental analysis about the core algorithms used by both BOS and AOS, and 

the overall performance of the planning system. 

4.1 PROBLEM DEFINITION 

We first define important terminology and then define the “observation plan generation” problem. 

 

Def. 1 SN object – A supernova object is characterized by its right ascension (R.A.), declination 

(Dec.), type, redshift, magnitude (Mag.), peak brightness (B-Peak), and priority. (Priority 

reflects a user preference on the supernova object, indicating how valuable the observation of 

such an object is. Thus, the observation of a low priority supernova object is more likely to be 
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pruned out partially or completely to guarantee the overall schedulability.) An SN object 𝑆𝑁! is 

represented as a tuple: 

𝑆𝑁! = (𝑅𝐴,𝐷𝑒𝑐,𝑇𝑦𝑝𝑒,𝑅𝑒𝑑𝑠ℎ𝑖𝑓𝑡,𝑀𝑎𝑔,𝑃ℎ𝑎𝑠𝑒,𝑃𝑟𝑖𝑜𝑟𝑖𝑡𝑦) 

 

Def. 2 Observation Constraints (OC) – OC are associated with each particular SN object for a 

specific night (date). They include the start time (visibleS), the end time (visibleE), and the 

duration of exposure (obsDuration), measured in minutes, for its relevant supernova observation 

window. The OC are represented as a tuple: 

𝑜𝑐! = (𝑑𝑎𝑡𝑒, 𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝑆, 𝑣𝑖𝑠𝑖𝑏𝑙𝑒𝐸, 𝑜𝑏𝑠𝐷𝑢𝑟𝑎𝑡𝑖𝑜𝑛) 

 

Def. 3 Global Constraints (GC) – Each SN object in the set has global constraints. An 

observation of a certain SN object is subject to the times it needs to be observed (obsTimes) and 

the gap between two consequential observation instances (obsGap), measured in days. The GC 

is denoted as: 

𝑔𝑐! = (𝑜𝑏𝑠𝑇𝑖𝑚𝑒𝑠, 𝑜𝑏𝑠𝐺𝑎𝑝) 

 

Def. 4 Night Map (NM) – NM gives a list of nights available for observing supernovae and the 

exact hours available for the observations. It is denoted as an associative array: 

𝑁𝑀 = {𝑛𝑖𝑔ℎ𝑡!:  ℎ𝑜𝑢𝑟𝑠!,… ,𝑛𝑖𝑔ℎ𝑡!:  ℎ𝑜𝑢𝑟𝑠!} 

 

Def. 5 Plan (P) – Plan P is the result of the scheduling. It specifies what supernovae to observe 

and how long the observation instances for the supernovae should be, for each night in the NM. 

It is represented as follows: 
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𝑃 = {𝑛𝑖𝑔ℎ𝑡!:  𝑙𝑖𝑠𝑡!,… ,𝑛𝑖𝑔ℎ𝑡!:  𝑙𝑖𝑠𝑡!} 

𝑙𝑖𝑠𝑡! = { 𝑆𝑁! ,𝑂𝐶! ,… , (𝑆𝑁! ,𝑂𝐶!)} 

 

Given the above definitions, the inputs of the problem are: 

• A target list of supernova objects, 𝑆 = 𝑆𝑁!,… , 𝑆𝑁! , 

• A list of observation constraints, 𝑂𝐶 = {𝑜𝑐!,… , 𝑜𝑐!}, 

• A list of global constraints, 𝐺𝐶 = {𝑔𝑐!,… ,𝑔𝑐!}, and 

• A night map, 𝑁𝑀. 

The output of the problem is a plan 𝑃. Thus, if we present the whole “observation plan 

generation” problem as a function of the OP (Observation Plan), our task is formalized as: 

𝑂𝑃 𝑆,𝑂𝐶,𝐺𝐶,𝑁𝑀 = 𝑃 

 

The description of the problem of “observation plan generation” is as follows. Given:  

• A target list of supernovae, each of which contains full information about its right ascention, 

declination, type, redshift, magnitude, peak brightness date (or the exact phase plus exact 

discovery date); 

• A list of observation constraints, each one per each supernova in the list, indicating the 

observation window for a specific night (date); 

• A list of global constraints, each one applied on one particular supernova to be included in 

the observation plan, requiring particular times of observation and gaps between each two 

consecutive observation instances; 

• A list of nights available for conducting observations and the specific hours available in 

each listed night,  
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Find a feasible and reasonable observation plan specifying what supernovae to observe for how 

long for each listed night, that satisfies all the above conditions if possible, or at least, 

maximizing data acquisition, ensuring the quality of observation data gained, with respect to user 

preferences on the supernovae in the given list. 

4.2 HIGH-LEVEL VIEW OF PLANNER 

A planner consists of two core components named BOS and AOS, and 4 layers, which are the 

local scheduler in BOS, the global scheduler in BOS, the “space” reserving layer in AOS, and 

the semi-supervised learning layer in AOS. The structure of the planner is illustrated in Figure 

4.2.1. The local scheduler is responsible for the scheduling of available observation instances in 

a particular night. The global scheduler is responsible for the scheduling of observation tasks in 

the whole timeline. The “space” reserving layer generates appropriate night capacity distribution 

to reserve a certain amount of capacity, in anticipation of future updates to the list of interesting 

supernovae and in cases of unsuccessful observations (e.g., due to cloudy skies). The “learning” 

layer generates weights using machine learning to tune the influence of factors in local/global 

scheduling. The following sections will give more detailed descriptions of the functions, features, 

and principles of each layer. In this section, we only explain, in a top-down way, the design 

purpose and workflow of the SOPG. 
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Figure 4.2.1  High-level structure of SOPG 

 

Let us first introduce the two different “views” (abstractions) of the planning process. 

One way to view the process is that it considers a set of bins with certain capacity (Figure 4.2.2), 

and then it assigns items with different values and weights into the bins in a way to gain the 

maximum profit. In our supernovae tracking scenario, each night can be considered as a “bin”, 

the available hours in each night are our “capacity”, and of course the observation task (instance) 

turns into “item with different value and weight”. In addition, the temporal constraints for one 

instance or between instances make the planning selection even more complicated to perform 

with. 
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Figure 4.2.2  View 1 – Bin packing 

 

 

Figure 4.2.3  View 2 – Scheduling with soft deadline 

 

The other way to view the planning process is as scheduling a set of tasks with soft 

deadline given a certain time interval (Figure 4.2.3), schedule the execution of a set of tasks with 
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soft deadlines. Obviously, the observations will be tasks to be scheduled, the number of instances 

will be quantified as the workload, and the brightness peak of each supernova object can be used 

as soft deadline. 

As the problem can be viewed in two ways, a failure in either scenario will degrade the 

quality of plan. For example, “failure to put all items into bins” indicates that certain observation 

task remains incomplete, while “failure to execute and finish all tasks before their deadlines” 

indicates that some observation tasks gained low quality data, since they got to be observed 

outside their optimal time window. 

These two abstractions underlined the design principles of our planning system. 

Specifically, the local scheduler in BOS and the “space” reserving layer in AOS are implemented 

for solving the problem based on the first view of bin packing [12]. On the other hand, the global 

scheduler in BOS is implemented based on the second view of scheduling soft deadline tasks 

[13]. In addition, the learning layer in AOS added the semi-supervised learning feature into the 

system to decrease the failure rate in both views. 

So, the system’s planning process in a top-down view is:  

1) The learning layer generates the weights on factors based on the training set,  

2) The “space” reserving layer calculates a capacity distribution  across the pre-

specific set of nights (dates), 

3) The global scheduler sorts the available observation tasks in each night, taking the 

most urgent portion as the candidates for that night, 

4) The local scheduler picks the most valuable portion of the candidate set from step (3) 

and schedules them for the particular night, 

5) Repeat Steps (3) and (4) for every night iteratively to generate a complete plan. 
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Notice that we usually refer to Step (3) as “global” since it views the process in a night-based 

way, while referring to Step (4) as “local” since it views the process in an hour-based way. The 

relationship of the 4 layers behind the scene is that the top two layers in AOS provide necessary 

configuration data. The bottom two layers in BOS generate the plan collaboratively. One more 

thing needs to be pointed out is that BOS can work properly without AOS (using default system 

configuration instead of whatever necessary input data from AOS). 

In addition, the actual deployed system interacts with a client-side user interface to 

generate the plan iteratively. The user can stick to the current input requirement to go through all 

the possible plans and comment on them one by one. The planner will record the feedback from 

the user for building and maintaining a training set, which is crucial for the learning layer. 

The pseudo code of the planner is described in Algorithm 4.2.1. In the algorithm, the 

term “L0Scheduler” represents the local scheduler in BOS. The term “L1Scheduler” represents 

the global scheduler in BOS. The term “L0Iterator” stands for the “space” reserving and night 

capacity distributing layer. The term “L1Iterator” stands for the semi-supervised learning layer. 

We consider the interaction with a client-side user as another “layer” for the planning system 

(termed as “part I” in the algorithm). 

Finally, a detailed implementation-level description of “SN Class” has been given in 

APPENDIX A. As the basic entity enrolled in the process of plan generation, “SN Class” 

provides an insight look of the system. 
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Part I (very outer layer): 

Take user input from client-side, configure and initialize the planner. 

While loop: // loop until user finalizes a plan 

 Call main_procedure(), the execution procedure of 4 layers. 

 If returned plan P is empty: 

  Break the loop and hint the user. 

 End if 

 Organize generated plan P and send back to client-side. 

 Prompt to get user’s feedback F of current plan. 

 Store F with current weights W into training set. 

 Prompt to get user’s instruction to continue or quit. 

End while loop 

 

Part II (4 inner layers): 

Func main_procedure(): 

 Call L1Iterator to generate weights W by learning from training set. 

 Call L0Iterator to get capacity distribution for night map M. 

  If capacity consumption overflow: 

   Fail main_procedure() and return empty plan P. 

  End if 

 For each night N in M: 

  Call L1Scheduler to get candidate set C of obs_instances. 

  Call L0Scheduler to get final set F obs_instances. 

  Store the pair N=>F for this night’s plan. 

 End for loop 

 Return plan P as a set of pairs N=>F. 

Algorithm 4.2.1 
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4.3 BASIC OBSERVATION SCHEDULING 

The Basic Observation Scheduling component (BOS) consists of two phases, with different 

scheduling granularity. Phase one is “local scheduling”, which schedules at the granularity of 

hours in a particular night. Phase two is “global scheduling”, which schedules at the granularity 

of days, over the set of all pre-specified dates. We will discuss the local scheduling first and then 

discuss the global scheduling, in the following subsections. 

4.3.1 Local Scheduler 

The Local Scheduler is the foundation of the whole SOPG system, as it makes the final decision 

on which supernovae to observe in which night. The problem it solves can be described as 

following:  

Given a candidate list of supernovae, select the most valuable (according to the priority 

provided by user) portion from the list, while satisfying two safety conditions: 

C1 The sum of the durations of the selected observation instances does not go over that 

night’s capacity limit.  

C2 Every observation instance selected can be finished within its corresponding available 

window (in that night) without any overlapping or conflicts with others.  

 

In other words, the problem is a “combinatorial optimization” one [14, 15] and the goal is to find 

a feasible schedule to maximize the overall “profit”. However, achieving local optimality in 

every step does not always lead to global optimality. Therefore, we define heuristic functions 

over multiple factors and determine weights for these factors dynamically to handle this situation. 
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4.3.1.1 Reduction to 0/1 Knapsack 

Intuitively, our problem is related to the Knapsack problem [16] (if we do not consider the 

temporal constraints as condition C2 states):  

Given a set of items, each with a mass and a value, determine the number of each item to include 

in a collection, so that the total weight is less than or equal to a given limit and the total value is 

as large as possible.  

In our supernovae tracking scenario, an “item” is an observation instance, the “mass” is the 

duration of that instance, the “value” is its priority, and the “limit” is the capacity of night. As we 

cannot pick the same item multiple times, the counterpart is actually 0/1 Knapsack. This kind of 

problem is called a weakly NP-complete problem [17, 18], which indicates that it is hard to solve, 

but is still solvable within a reasonable amount of time. So one main focus of our local scheduler 

is to develop feasible approaches applicable to our problem. 

As the Knapsack problem can be solved using approximation algorithms [19] and 

dynamic programming [20], we developed our approaches referring to those techniques. It 

should be pointed out that our problem is more complicated than the 0/1 Knapsack problem due 

to the extra temporal constraints. There might be cases in which the sum of duration of two 

instances fit into the remaining capacity but their observation windows are overlapped, which 

can shrink the actual usable capacity. We discuss how to validate a given schedule by checking 

C2 in subsection 4.3.1.4. 

4.3.1.2 Local Heuristic 

The main reason why we need to develop a local heuristic is that our problem is more 

complicated than the Knapsack problem. A naïve greedy approach with a criterion like 
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𝑔𝑜𝑜𝑑𝑛𝑒𝑠𝑠 =    !"#$%
!"#$!!

 is problematic because it does not take the temporal constraints into account. 

So, besides the evaluation of goodness, we also need to evaluate the “fitness” of the “item”, to 

rule out the fewest possible choices of the candidate list that would violate the constraints and 

still leave the maximum flexibility. An “item” with a higher fitness score is considered less likely 

to have a conflict with the others. There are two factors having influence on “fitness”: 

1) The observation window length,  

2) The accumulated overlapping length of the current window and the other windows. 

Clearly, a big observation window increases the flexibility for the instance to fit in, especially 

when its duration is much smaller than the window length. On the other hand, a small 

overlapping length decreases the potential risk of conflict. Given the above, the local heuristic is 

devised as follows (Equation 4.3.1): 

𝑯𝒍𝒐𝒄𝒂𝒍 𝑺𝑵 =    𝟏𝟎𝟎∗𝒑𝒓𝒐𝒓𝒊𝒕𝒚!𝒘𝟏
𝒅𝒖𝒓𝒂𝒕𝒊𝒐𝒏!𝒘𝟐

+    𝒘𝒊𝒏_𝒍𝒆𝒏  !  𝒘𝟑
𝒐𝒗𝒆𝒓𝒍𝒂𝒑_𝒍𝒆𝒏  !  𝒘𝟒  !𝟏

    (Eq. 4.3.1) 

 

In the equation, 𝑤!  ~  𝑤!  are the weights associated with the corresponding factors. These 

weights are used to amplify or reduce the effect of one of the factors to scheduling decisions. The 

weights are designed to capture: 1) the uncertainty from local optimality to global optimality, 2) 

the ambiguity in a user’s measurement of goodness. Point 1 has been discussed previously, and 

for point 2, we should allow the diversity of users’ preferences on plans (e.g., for the same plan, 

user A thinks it is good while user B thinks it is bad). So the weights act as “side effect” or 

“noise” to tune the behavior of the scheduler to handle the stated uncertainty and ambiguity. As a 

whole, the heuristic provides the system a consistent way to measure the goodness/fitness of a 

target. In the local scheduling algorithms introduced below, such a heuristic plays a crucial role 

in decision-making. 
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4.3.1.3 Local Algorithms 

1) Baseline Algorithm 

The most trivial approach is to enumerate in a brute-force way all the possible combinations of 

observation instances, then eliminate those that violate conditions C1 and C2 (mentioned at the 

beginning of section 4.3.1), and from the remaining ones consider those with the local maximum 

value, and repeat until global optimality is reached. Assuming there are 𝑁 objects considered, the 

runtime complexity of this algorithm is (Equation 4.3.2): 

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑶 𝟐𝑵 ∗ 𝑶 𝑵 + 𝑶 𝑵   ≈ 𝑶 𝑵 ∗ 𝟐𝑵      (Eq. 4.3.2) 

 

There are 2! combinations of candidate objects. For each combination, we need to validate it 

against conditions C1 and C2, which would cost at least 𝑂(𝑁) time. So the baseline algorithm 

will become exponentially costly as the candidate list grows. Although cost-prohibitive for the 

general case, this trivial approach makes for a very good baseline for our comparison 

experiments later, as it does not require approximation or heuristics. In addition, it is still a 

feasible and optimal algorithm when the problem set is small, which indicates that we can mix it 

with our proposed algorithms to handle base-cases. This baseline algorithm is presented in 

Algorithm 4.3.1. 

 

2) Greedy Beam Search 

This algorithm is very similar to the naïve greedy approximation. Using the heuristic proposed in 

subsection 4.3.1.2 as a greedy criterion, the algorithm runs a beam search [21] in the state-space 

(structured as a tree) of possible alternative choices, only keeping a fix-length fringe (i.e., fixed 

number of successor states) for branching. Assuming the height of the tree is 𝐻, the average 
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branching factor is 𝑏, and the beam width is 𝑤, the runtime complexity is calculated in Equation 

4.3.3: 

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑶 𝑯 ∗ 𝑶 𝒘𝒃 ≈ 𝑶 𝒘𝒃 ∗    𝒍𝒐𝒈𝒃𝟐𝑵 ≈ 𝑶 𝒘𝒃 ∗ 𝑵     (Eq. 4.3.3) 

 

Intuitively speaking, this algorithm keeps multiple promising local sub-solutions to increase the 

chance of reaching a global optimal solution. This algorithm actually turns out to have good 

performance in practice. The details of this algorithm are shown in Algorithm 4.3.2. 

 

3) Iterative Dynamic Programming 

The 0/1 Knapsack problem is weakly NP-complete and can be solved using dynamic 

programming [22]. The main sequence of steps is as following: 

1. Build a two-dimensional array V[index, weight]. (The “index” represents the first index 

amount of items to be considered; the “weight” is the current weight limit; and the value of each 

array entry is the maximum value to be gained. E.g., V[i, w] = k is interpreted as: “for the 0 to 

ith elements, the maximum value that can be achieved is k, with the total weight not going over 

w”.) 

2. Initialize the array, V[0, 0] = 0, V[0, w] = 0, V[i, 0] = 0. 

3. Iterate through the two-dimensional array, filling each entry with index > 0 and weight > 0, 

according to the rule: V[i, w] = MAX(V[i – 1, w], value of the ith item + V[i – 1, w – weight of 

the ith item]). 

4. The bottom-right entry’s value will be the maximum value to be gained for the original 

problem. 
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This is a standard dynamic programming algorithm that we are familiar with. However, in such a 

process, condition C2 is not checked at all, and thus the returned answer may not be feasible due 

to the time window conflict. Therefore we take an iterative DP approach which runs DP multiple 

times. When an intermediate answer violates condition C2, the algorithm will select a victim to 

kick out and restart. The victim is chosen by evaluating the local heuristic. Theoretically, we can 

run as many iterations as possible, but we cut off the process by a threshold to trade some 

accuracy for the overall performance. Assuming there are 𝐼 runs in total, 𝑁 items in the set, and 

weight limit 𝑊, the runtime complexity of this algorithm is shown in Equation 4.3.4: 

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑶 𝑰 ∗ 𝑶 𝑵𝑾 +   𝑶 𝑵 + 𝑶 𝑵 +   𝑶 𝑵 + 𝑶 𝑵   ≈ 𝑶 𝑰𝑾𝑵     (Eq. 4.3.4) 

 

The standalone 𝑂(𝑁) time is for either condition C2 validation or for choosing a victim. The 

algorithm is more stable than the previous (and the next one as well), as it ensures the optimality 

of the answer once the constraint validation is passed. The details of this algorithm are shown in 

Algorithm 4.3.3. 

 

4) Random Restart Hill Climbing 

As we know, in computer science, local search [23] is a method for solving optimization 

problems that are computationally expensive. Local search can be used on problems that can be 

formulated as finding a solution that maximizes a criterion among a number of candidate 

solutions. Local search algorithms move from one solution to another solution in the space of 

candidate solutions. 

Our problem can be viewed as an optimization problem - selecting the best object (or 

portion) from a group of candidates. For a particular night, if we arbitrarily select a subset 

(portion) of objects from the candidate list as the initial state, then the problem becomes how to 
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walk from the current state to the goal state (with the best objective function value). By saying 

“walk” or “wander”, we mean swapping a less valuable object out for a more valuable one in. 

However, as a basic local search algorithm, hill-climbing has the drawback of getting trapped 

into local maximums, plateaus, or ridges, if it happens to select a bad subset of objects as starting 

point. So we improve our algorithm by randomly restarting the hill climbing process for several 

number of times: i) start different hill-climbing searches from random starting positions and stop 

when a goal is found, ii) save the best result from the explored states. If all states have equal 

probability of being generated, a goal state will eventually be generated with probability 

approaching 1 by selecting random initial state and repeat this algorithm. 

The specific algorithm used in our scenario can be described in the following steps: 

1. Set sufficient restart times, and repeat Steps 2, 3, 4 accordingly. 

2. Randomly pick a subset of objects from the candidate list, as the initial state. 

3. Go through the rest of the candidate list. Add additional objects in if they do not 

violate the constraints. 

4. For each pair of objects in the current state and the rest of the candidate list, make a 

move (swap) if necessary, until a goal is found. 

5. For all the goal states found by executing Steps 2, 3, 4, save the best result. 

 

Assuming that the restart times is 𝐾, the candidate list size is 𝑁, the runtime complexity of this 

algorithm is calculated in Equation 4.3.5: 

𝒄𝒐𝒎𝒑𝒍𝒆𝒙𝒊𝒕𝒚 = 𝑶 𝑲 ∗ 𝑶 𝑵 + 𝑶 𝑵𝟐 + 𝑶 𝑵𝟑 ≈ 𝑶 𝑲 ∗ 𝑵𝟑     (Eq. 4.3.5) 
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Compared with the previous two algorithms, this algorithm seems not ideal since it runs in 

polynomial time with a big coefficient (could be as big as 𝑁). But in practice, this algorithm does 

not lose any performance or accuracy compared with the previously described algorithms. The 

details of this algorithm are presented in Algorithm 4.3.4. 
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Algorithm 4.3.1 

Func brute-force(): 

 OPT = None. 

 For each combination (subset) from candidate list: 

  If violate constraint 1 – weight overload: 

   Continue. 

  End if 

  If violate constraint 2 – window conflict:  

   Continue. 

  End if 

  If current value > OPT: 

   OPT = current subset. 

 End for loop 

 Return OPT 
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Algorithm 4.3.2 

Func greedy-beam-search(): 

 Calculate and decide beam width B. 

 Set initial state to be empty. 

 Set an empty set SG for “goal states”. 

 Add initial state on the fringe F. 

 While sizeof(F) > 0: // keep branching if fringe is not empty 

  Set new fringe F’ as an empty fringe. 

  For state in current fringe F: 

   Generate all the successor states into set S. 

   For each state in S: 

    Do forward checking: 

1) Weight overload 2) Window conflict 

If forward checking fails: 

 Delete the state and Continue 

Else: 

 Add the successor state into F’. 

End if 

  End for loop 

  If set S is empty: 

   Add current state into SG. // A state cannot add more element 

  End if 

  If lengthof(SG) == B: // if enough goal states been found 

   Break while loop. 

  End if 

 End for loop 

 Sort new fringe F’ using heuristic 𝑯𝒍𝒐𝒄𝒂𝒍. 

 Take the first B elements in F’. 

 F = F’ 

End while loop 

Return the most valuable one in SG. 
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Algorithm 4.3.3 

Func iterative-DP(): 

 Calculate and decide iteration times I. 

 Set the initial set S with all the candidate objects. 

 While I > 0: 

Set up two-dimensional arrays V[index][weight] and K[index][weight]. K is 

used for backtracking. 

For i from 0 to max_index: // the max_index varies, depending on size of S 

 Get the ith item’s priority as value. 

 Get the ith item’s duration as weight. 

 For w from 0 to max_weight: 

Update entry V[i][w] = MAX(V[i - 1][w], value + V[i - 1][w -

weight]). 

Update entry K[i][w] to 1 if pick the current item. 

 End for loop 

End for loop 

Backtrack to get the current answer C. 

If C not violate constraint 2): 

 Return C 

Else: 

 Choose victim with minimum 𝑯𝒍𝒐𝒄𝒂𝒍 and delete from S. 

End if 

  I = I -1 

 End while loop 

  

 // if run out of iteration times, we will directly delete item from current answer 

 While not satisfying constraint 2): 

  Kick out victim with minimum 𝑯𝒍𝒐𝒄𝒂𝒍 from C. 

End while loop 

Return C 
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Algorithm 4.3.4 

Func random-restart-hill-climbing(): 

 Calculate and decide restart time K. 

 Set current state S to be empty. 

 Set the rest set R to have all items in candidate list. 

 Set global state GS to be empty. 

 While restart time K > 0: 

  While not violating constraint 1) weight overload 2) time window conflict: 

   Random select object in R, add into S and delete from R. 

  End while loop 

  If isEmpty(R) is True: 

   Return S. // special case, the whole candidate list can be scheduled. 

  End if 

  For each object in R in the order sorted by 𝑯𝒍𝒐𝒄𝒂𝒍: 

   If not violating constraint 1) and 2): 

    Add the object into S and remove from R. 

   End if 

  End for loop 

  While existing better successor state: 

   For each object 𝑶𝟏in S: 

    For each object 𝑶𝟐in R: 

If value of 𝑶𝟏 < value of 𝑶𝟐 and not violate constraints: 

      Swap 𝑶𝟏 out for 𝑶𝟐. 

     End if 

  End while loop 

  Replace SG with current S if S has higher value. 

  Reset current state S and the rest set R. 

  K = K - 1 

 End while loop 

 Return GS. 
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4.3.1.4 Greedy Validation 

Up till now, there is one very important issue that has not been thoroughly examined yet. 

Validating condition C1 could be easy, but how to validate condition C2 (the time window 

conflict) efficiently? Let us review the problem first: there is a list of observation instances, each 

needing certain amount of time to finish. Meanwhile, each instance must be executed within a 

specific time window (which depends on the supernova’s R.A., Dec., and the location of the 

observations). Then how can we know whether all the instances can be finished without any time 

conflict? 

Actually, the problem description above is a good fit for classic scheduling problems. 

The formal definition of this problem is: 

Assume a set of tasks {𝑇!,𝑇!,… ,𝑇!}, each of which has a release time 𝑡!, a deadline 𝑡!, and a 

worst-case execution time 𝐸. Each task being scheduled to start at time 𝑡! should satisfy: 

1) non-preemptive execution, 

2) 𝑡! > 𝑡!, and 

3) 𝑡!+ 𝐸 < 𝑡!. 

How can we schedule all the tasks, or can we confirm the schedulability of those tasks? 

 

Note that task execution cannot be interrupted. Otherwise, an EDF [24] scheduling algorithm 

will be optimal (i.e., can guarantee that no task will miss its deadline if the task set is 

schedulable), and we can design an algorithm to determine the schedulability in linear time for 

the worst case. However, EDF is not suitable in non-preemptive scheduling. Furthermore, we 

cannot determine which task to execute first according to neither start time nor deadline. Figure 

4.3.1 (a) and (b) show, separately, the failures caused by scheduling in either “first start first 
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server” or “earliest deadline first” way, even though optimal schedules exist for both case. 

Actually, for 𝑁 tasks, there are 𝑁! ways to schedule their execution, all of which are likely to be 

feasible. This makes determining the schedulability of those tasks an NP-hard problem. On the 

other hand, special cases such as (a) and (b) in Figure 4.3.1 are rare, as the time window has 

some spatial locality property based on a supernova’s position. As such, it is not worth taking a 

brute-force approach for schedulability validation. Without any better criterion for greedy 

approximation, we schedule in the first-come-first-serve manner based on the windows’ start 

times. In this way, the validation of condition C2 is checked in linear time. 

 

 

Figure 4.3.1  Two special cases of scheduling failure 
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4.3.2 Global Scheduler 

The global scheduler on top of the local scheduler is responsible for providing the candidate list 

of objects (supernovae) for local scheduling in each night. As mentioned in section 4.2, our 

problem can be viewed in two different ways: locally (bin packing) and globally (scheduling 

tasks with soft deadlines). From the global scheduler’s perspective, the underlying concerns 

(described below) drive us to model the problem in a different way in contrast with the local 

scheduler. 

First, the fact is that the brightness of a supernova keeps decreasing after the supernova’s 

peak brightness date (Figure 4.3.2), which affects the quality of observation. To avoid collecting 

low-quality data, the best practice is that (according to our astronomer collaborators): 

1) Finish at least three observations between 0-20 days after peak brightness,  

2) Only consider additional observations up to 100 days after peak as useful.  

 

This adds a soft deadline for every supernova to be scheduled implicitly. For the second, as each 

observation consists of several observation instances (typically more than 3), it is possible that 

there is no room to schedule the last few instances for a certain supernova. In this case, such an 

observation is incomplete. Considering a plan that involves two supernovae A and B: A finished 

4/5 and B finished 2/3 of the required number of observations. Both A and B are incomplete and 

thus are likely to be useless for further studies. A better plan could be 5/5 A and 1/3 B, or 3/5 A 

and 3/3 B, in which case at least one observation can be finished completely. Lastly, we should 
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note that the observation with the earliest deadline does not always need to be prioritized. We 

should also be aware of the actual workload left for the observation task. 

In all, the global scheduler needs to make the decision globally when considering which 

observation tasks are more urgent to be scheduled for the current night. While it makes a global 

arrangement, the second-level scheduler figures out the details in the local scheduling process. 

 

 

Figure 4.3.2  Supernova brightness decreases over time 

 

4.3.2.1 EDF, SRTF, and LST 

For the concerns discussed in the previous section, there are 3 classic scheduling algorithms that 

suit our problem perfectly: Earliest Deadline First (EDF), Shortest Remaining Time First (SRTF) 

[25], and Least Slack Time (LST) scheduling [26]. 

EDF or least time to go is a dynamic scheduling algorithm usually used in real-time 

operating systems for placing processes in a priority queue. Whenever a scheduling event occurs 
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(task finishes, new task released, etc), the queue is searched for the process that is closest to its 

deadline. That process is then scheduled to be the next one for execution. In our scenario, an 

observation task plays the role of a process and the limitation about the supernova brightness 

yields a soft deadline naturally. So we can have some priority score for ordering, if we evaluate 

available observations using EDF. 

In SRTF scheduling, the process with the smallest amount of time remaining until 

completion is selected to execute. By definition, the current executing process is the one with the 

shortest amount of time remaining and the remaining time decreases as execution progresses, so 

the processes will always run until they complete or a new process which requires a smaller 

amount of time is added. Again, in our scenario, observation tasks stand for processes, and the 

number of remaining observation instances of a task is considered as “remaining time”. 

Therefore, we have another way to evaluate the priority score of observations. 

LST assigns priority based on the slack time of a process. Slack time is the amount of 

time left before a job’s deadline after the job completes execution if the job was started as soon 

as it arrived. Namely, it is the temporal difference between the deadlines, the ready time and the 

run time. More formally, the slack time of a process is defined as (d - t) - c', where d is the 

process deadline, t is the real time since the job start, and c' is the remaining computation time. 

Back to our scenario, d will be a particular date after the peak brightness date, t will be the date 

of the current night under scheduling, and c' will be the number of remaining instances (because 

each instance can be finished in one night). 

To conclude, we have proposed 3 different approaches for priority evaluation, focusing 

on different concerns in scheduling. In the next subsection, we combine them together to 

measure priority in a comprehensive manner. 
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4.3.2.2 Global Heuristic 

Since we do not know which of the three policies (EDF, SRTF, LST) would work best for the 

different users, we combine them together and have different weights assigned to each one, to 

indicate how important each one is. So we propose the global heuristic in Equation 4.3.6: 

𝑯𝒈𝒍𝒐𝒃𝒂𝒍 𝑺𝑵 =   𝒘𝟓 ∗   
𝟏

𝒅𝒆𝒂𝒅𝒍𝒊𝒏𝒆
+   𝒘𝟔 ∗   

𝟏
𝒓𝒆𝒎𝒂𝒊𝒏𝒊𝒏𝒈  𝒘𝒐𝒓𝒌

+   𝒘𝟕 ∗   
𝟏

𝒍𝒂𝒙𝒊𝒕𝒚
    (Eq. 4.3.6) 

 

According to the heuristic, the observation of those supernovae that are further from their peak 

date and have few remaining instances plus less laxity to be postponed get higher priority scores. 

Similarly to our local heuristic, weights w5 - w7 are added as coefficients to tune the influence of 

each factor. In a broader view, our system collects user feedback and learns from past user 

feedback in order to tune these weights automatically. 

4.3.2.3 Global Algorithm 

Once the heuristic function is devised, the global algorithm is quite straightforward, as follows: 

1. Iterate through a list of dates, which represents all the nights available in a current plan. 

2. Get all the supernovae available for observation on a particular date. 

3. Sort the available tasks in the order of priority, evaluated by 𝐻!"#$%". 

4. Get the top K supernovae in the sequence to be the candidate list; K is proportional to that 

night’s capacity. Send the candidate list to the local scheduler for this night’s local scheduling. 

5. Repeat steps 2, 3, 4. 
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4.4 ADVANCED OBSERVATION SCHEDULING 

The Advanced Observation Scheduling component (AOS) contains two main features. The first 

feature is calculating proper night capacity distribution for the current plan, making sure to 

reserve appropriate amount of “space” for upcoming new supernova. The reason is the potential 

for newly discovered supernovae in the near future, which could be more interesting or valuable 

to the astronomer, who is willing to reserve some “capacity” when making the plan for the 

current target list. The second feature is using a semi-supervised learning technique to tune the 

weights of factors considered in BOS, and adjusting the scheduling behavior for each user 

accordingly. As mentioned, a lot of factors can be considered for scheduling, but the potential 

weight of each factor (i.e., its importance) varies from user to user. For example, some 

astronomer may state that “at least 3 observation instances done within 20 days after the 

brightness peak of supernova” is necessary. In that case, the weight of the factor “soft deadline” 

is implicitly increased. In general, for the same target list, a different user would like to see a 

different observation plan, even with the exact same experiment configuration. 

4.4.1  “Space” reserving Feature 

This feature enforces an appropriate capacity distribution strategy and calculates how to assign 

the particular capacity for each night in the plan. The local scheduler will arrange the observation 

tasks based on such capacity each night, and the reserved capacity can be useful in the future. 

The main goal here is to try to reserve as much capacity as possible, without affecting the overall 

schedulability, which could lead to a failure in planning or an imperfect plan. 
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4.4.1.1 Plan with capacity variation 

We know that the maximum amount of time that can be used for observations each night is 

already given by the user, but it does not mean that all of the time needs to be pre-planned. There 

can be a reserved part that can be spent in the future. A typical case is that the user at first 

requests a plan be generated for his/her current targeting list. However, later on, 

messages/reports about new detected supernovae are released and captured by our system. Then 

the user hopes to add more objects into the targeting list while the current plan is being executed. 

With the purposefully reserved capacity, the additional objects deserve a bigger chance to be 

scheduled as well. Different users may prefer different strategies to reserve such space capacity. 

The next subsection discusses this in more detail. 

4.4.1.2 Three alternatives for capacity distribution 

Currently, the front-end of our system provides three different strategies for a user to choose to 

distribute capacity. The user needs to understand the pros and cons of each strategy, making 

his/her own choice. The strategies are as follows: 

Normal This is the most natural strategy: putting all the capacity into the current planning 

process. Whatever capacity left after usage will be the reserved capacity for the future. In this 

case, the observations for objects in the current targeting list would be finished as soon as 

possible, even if some of them are not that urgent. Generally, the capacity distribution under this 

strategy would be similar to that shown in Figure 4.4.1. 

 

Evenly  If an observation needs 𝑘 amount of capacity and should be finished in 𝑛 days, we 

add 𝑘 𝑛 capacity usage evenly into those 𝑛 days. By doing so for all the current observations, the 
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cumulative capacity usage as a whole would be roughly evenly distributed. With some increasing 

adjustments, such capacity distribution would not affect the scheduling, although there is no such 

guarantee. The capacity distribution curve is shown in Figure 4.4.2. 

 

Inversed The main idea of this strategy is to delay current observation tasks as long as it 

does not affect their schedulability. For example, assume an observation task needs 𝑐 capacity 

for each of its instances, the total observation time is 4, and the gap is 1 day, the two deadlines 

for it are 𝑑! and 𝑑!. In this way, 𝑐 amount of capacity usage should be added into days 𝑑! − 4, 

𝑑! − 2, 𝑑!, 𝑑!. The details about the calculation will be described in the next subsection. The 

main point is to find space at the early part of the available nights for coming observations. The 

idea is illustrated in Figure 4.4.3. 

 

Suppose there is a group of interesting supernovae coming soon in the current plan’s time 

interval. If their active windows are concentrated in the back portion of the current time interval, 

strategy 1 would be a good fit. But if they are very active at the front portion of the current time 

interval, strategy 3 should be used to handle such a case. At last, if they distributed sparsely in 

the current time interval, strategy 2 would be the most effective way to deal with that. Clearly, 

there is uncertainty and no strategy is a clear winner for all cases, but the user can have a specific 

preference. If a user considers the upcoming supernovae much more valuable than all current 

ones, he/she could always choose to stick on inversed capacity distribution strategy under 

whatever circumstance. 
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Figure 4.4.1  “Normal” night capacity distribution in certain plan 

 

 

Figure 4.4.2  “Evenly” night capacity distribution in certain plan 
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Figure 4.4.3 “Inversed” night capacity distribution in certain plan 

 

4.4.1.3 Generate valid capacity distribution 

It is trivial to enforce the normal distribution strategy. For the other two, the valid capacity 

distribution is generated by iterating every object (observation) and accumulating each object’s 

capacity usage. The algorithms for them are too detailed to include, but the main steps are as 

follows: 

Evenly strategy: 

1) Iterate through every object (observation),  

1.1) Add average capacity usage into nights between the plan start date and deadline 1, 

take the first 3 instances’ capacity consumption into account. 

1.2) Add average capacity usage into nights between the plan start date and deadline 2, 

take the remaining instances’ capacity consumption into account. 
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2) Increase the cumulative capacity usage by a certain percentage (adjustment) to get the final 

capacity distribution. We used a percentage of 10% in our experiments. 

Inversed strategy: 

1) Iterate through every object observation 

1.1) Do backward traverse from deadline_1, adding instance capacity usage into nights 

[deadline_1 – 2*gap – 2, deadline_1 – gap – 1, deadline_1] (if instance number > 3). 

1.2) Do backward traverse from deadline_2, adding instance capacity usage into nights 

starting from deadline_2, every other k nights (k is the observation gap). 

2) Increase the cumulative capacity usage appropriately, and return the final capacity 

distribution. Again, we used a percentage of 10% in our experiments. 

4.4.2 Semi-supervised learning feature 

As mentioned earlier, for both the local and the global scheduler in BOS, there is a weight 

parameter associated with each factor which could affect the planning. This is because even 

though we know which ones are important factors, we are not exactly sure about how important 

each factor is to each user. So we define a set of weights, 𝑤!  ~  𝑤!, each representing how 

important the corresponding factor in the local and the global heuristics is. Each weight has a 

fixed and unique range of values. Instead of guessing or using a global set of values for these 

weights, we rely on each user to give us feedback and learn his or her preferences. The basic idea 

is: first we let the user evaluate and provide feedback for each plan, and then we record the 

user’s feedback with different configured set of weights. We use the feedback and the 

corresponding sets of weights to build the training set. If the training set is not well-built, we 
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assign arbitrary values for each weight; if the training set has been built, we learn the next set of 

weights from the training set. 

In the following sections, we will introduce how to learn from history data, how to build 

our training set, and how to generate plans that users consider preferences by tuning weights 

iteratively. 

4.4.2.1 Learning with logistic regression 

In statistics, logistic regression [27, 28] is a type of regression analysis used for predicting the 

outcome of a categorical dependent variable based on one or more predictor variables. Typically, 

“logistic regression” is used to refer specifically to the problem in which the dependent variable 

is binary. (For our problem, the dependent variable is the feedback from the user, which is either 

positive or negative, and the predictor variables are the weights of different factors.) In binary 

logistic regression, the outcome is usually coded as “0” or “1. For our task, if a plan generated by 

BOS given a specific configuration of weights is considered as positive, it is coded as “1”; on the 

contrary, it is coded as “0”. So the logistic regression here is used to predict the probability of a 

plan being positive given a set of predictors (i.e., the weights of the factors in BOS). 

4.4.2.2 Building the training set 

The logistic function needs a training set, consisting a bunch of instances, to train the model. In 

our problem, each instance in the training set is represented as:  

[label, feature] 
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Label is the dependent variable. It is 1 or 0 for positive or negative feedback provided by users. 

Feature is the set of predictor variables. Each predictor is the weight used in BOS. A feature is 

denoted as: 

{w1:[0,30], w2:[0,30], w3:[0,30], w4:[0,30], w5:(0,10), w6:(0,10), w7:(0,10)} 

 

The algorithm used to train the model and predict the probability is shown in Algorithm 4.4.1. 

 

 

4.4.2.3 Interacting with users 

A specific training set is maintained for each user, and it grows when the user provides a 

feedback for a plan. The user can decide when to allow learning from the training set, and 

typically the bar is higher than a default threshold defined by the system. One thing to notice is 

that, the set of weights of a plan with positive feedback from a user may not be directly reused 

Algorithm 4.4.1 

 Func train(dataList, n): 

    // n is the number of training iterations. 

    For i from 0 to n: 

        For [label, feature] in dataList: 

            predicted = classify(feature) 

 // f is feature, v is its value 

 For f, v in feature.items(): 

     If f is not existing weight: 

         W[f] = 0 

     update = (label - predicted) * v 

     W[f] += bias * update 

    Return 

Func classify(feature): 

    // logit is the inverse of logistic function 

    logit = 0 

    For f, v in feature.items(): 

        // ceof is coefficient 

        ceof = 0 

        If f is existing weight: 

            coef = W[f] 

        logit += coef * v 

    // exp return e raised to specified power 

    P = 1.0 / (1.0 + math.exp(-logit)) 

    Return P 
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for generating the next plan; instead, the weights associated with that plan will be added into the 

training set. For the same input factors, when the user asks for another plan suggestion, the 

trained model will adopt the best set of weights learned from the training set, including the new 

positive feedback plans. This is because even if the user thinks the previous plan is a successful 

or satisfactory one, it cannot guarantee it is the most optimal one. So when a user interacts with 

the same input set up, our system is trying to be aggressive – providing more reasonable plans, 

collecting more feedback from the user. On the other hand, if the user inquiries for a plan with 

totally different input factors, our system would like to provide the best ranked set of weights to 

the BOS to generate a plan, unless the user explicitly lets the system to start learning from 

scratch. From this perspective, the training set is also equivalent to a historic database, and our 

system is able to provide an interface for the user to give a “satisfaction” score to plans and 

subsequently learn the user’s own preferences. 

4.5 EXPERIMENTAL ANALYSIS 

Experiments were run on the “Elements” Cluster (elements.cs.pitt.edu) in the Computer Science 

department, of the University of Pittsburgh. The configuration of the machines in the cluster is: 

Dual Hyper-Threaded Six-Core 3.33GHz Xeon processors, 96GB RAM memory, 64-bit Linux 

architecture, running CentOS 5.5 with kernel version 2.6. 
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4.5.1 Analysis of Local Algorithms 

In section 4.3.1, three different local algorithms and one baseline algorithm were presented. The 

following experiments evaluate their performance based on two metrics - response time and 

profit gain. For the local heuristic shared by the algorithms, their associated weights are set to the 

equal default value (e.g., 1). 

Before the experiments, we need to tune the parameters in each algorithm to achieve its 

best performance. The relevant parameters of algorithm 1 (greedy beam search), algorithm 2 

(iterative dynamic programming), and algorithm 3 (random restart hill climbing) are, 

beam_width, iteration_time, and restart_num, respectively. We define three cutoff ratios to 

quantify those variables and relate them with the candidate list size: 

beam_width = candidate_list_size * cutoff_ratio1, 

iteration_time = candidate_list_size * cutoff_ratio2, 

restart_number = candidate_list_size * cutoff_ratio. 
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Table 4.5.1 Tuning cutoff ratio for the three algorithms 

 

Table 4.5.1 shows performance differences when tuning cutoff ratios. We can see that for all 

three algorithms, the higher the cutoff ratio, the more profit gain. The reason is that the 

algorithms become closer to optimal, as they are closer to an exhaustive search and less to a 

version using just heuristics. The trade-off is that the response time increases at the same time. In 

order to keep a good balance, cutoff-ratio 1, 2, and 3 are set to 0.2, 0.5, and 0.75 respectively in 

the following experiments. 

Figure 4.5.1 and Figure 4.5.2 show the results with the above cutoff-ratio values. The x-

axis denotes the ratio of candidate list capacity consumption sum to assigned night capacity. First 
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of all, all three algorithms’ response time is dramatically reduced compared to the baseline 

algorithm (i.e., the brute-force algorithm), while there is little profit loss. For the comparison 

among the three algorithms, Algo2 performs best regarding response time, while Algo3 performs 

worst. Algo1 gains the least profit of all, while the other two algorithms have very similar 

performance (Algo3 gains slightly more than Algo2 for overall). Thus, the iterative dynamic 

programming approach is the best one in our case. 

 

 

Figure 4.5.1  Comparison of response time 
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Figure 4.5.2  Comparison of accuracy 

 

4.5.2 Effect of Learning for local/global Scheduling 

To prove the assumption that the semi-supervised learning technique embedded in the planner 

can influence the result plan suggestion, and improve user’s satisfaction with the process of 

interaction and iteration, we conducted the following experiments. 

The first experiment shows that the learning technique helps improve local scheduling. 

Assuming a user submitted a request to plan for 3 imaginary supernovae: 2014A, 2014B, and 

2014C. The detailed input information is as follows: 

2014A – B-Peak: 2014-03-21, Priority: 0.9, obsDuration: 45, obsTimes: 1, obsGap: 1 

2014B – B-Peak: 2014-03-21, Priority: 0.5, obsDuration: 25, obsTimes: 1, obsGap: 1 

2014C – B-Peak: 2014-03-21, Priority: 0.5, obsDuration: 25, obsTimes: 1, obsGap: 1 
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Nights in the plan: 2014-03-21, 2014-03-23 

Hours per night: 1 

(All the remaining data related to the 3 supernovae are omitted for brevity.) 

 

There are two ways to plan for the request: i) schedule the observation of 2014B and 2014C on 

the first night, then observe 2014A on the second night, and ii) schedule the observation of 

2014A on the first night, and use the second night for the observation of the other two 

supernovae. Obviously, the way to observe 2014B and 2014C on the first night is better than the 

alternative. The reason for that is because the profit gain is more by scheduling 2014B and 

2014C on 2014-03-21, which is the peak brightness date for all three supernovae. A driver 

program was written to simulate user actions. Every time it receives the better plan suggestion it 

gives positive feedback. Otherwise it gives negative feedback. Figure 4.5.3 (a) shows the 

percentage of good plan suggestions with different training set sizes. 

The second experiment demonstrates the influence on global scheduling. The devised 

scenario is following: 

2014D – B-Peak: 2014-03-03, Priority: 0.9, obsDuration: 50, obsTimes: 2, obsGap: 1 

2014E – B-Peak: 2014-03-03, Priority: 0.9, obsDuration: 50, obsTimes: 1, obsGap: 1 

Nights in the plan: 2014-03-21, 2014-03-22, 2014-03-23 

Hours per night: 1 

(All the remaining data related to the 3 supernovae are omitted for brevity.) 

 

We can notice that 2014-03-23 is the deadline for the observation of both supernovae. And if the 

planner chooses 2014E at the first night, the observation of 2014D cannot be finished in two 
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continuous nights. So a good plan suggestion should arrange 2014D on the first and last night, 

using the night in the middle to observe 2014E. As the deadline is the same and 2014E has less 

unfinished workload (observation instances), the only way to make global heuristic evaluate 

2014D more urgently than 2014E is to overweight the third factor – slack time. Figure 4.5.3 (b) 

illustrates the behavior of our system using this approach. 

 

 

Figure 4.5.3  Learning affecting decision making 

 

4.5.3 Overall Performance Analysis 

Finally, we provide the automatically generated plans by our system, comparing to the manually 

generated plan by our astronomer colleagues for list spring 2013 (see APPENDIX B). Our 

colleagues from Department of Physics & Astronomy inspected our plan results, admitting the 
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feasibility of those plan suggestions, even though the generated plans were not the same with 

what the astronomers manually planned. 
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5.0  CONCLUSIONS AND FUTURE WORK 

5.1 SUMMARY OF CONTRIBUTIONS 

Supernovae researchers need to track lists of interesting supernovae and create observation plans. 

When they are looking at the dates allocated to them for observation and are trying to determine 

which supernovae to observe in which date, considerations about the temporal constraints and 

the potential conditions on limited time and resources overwhelm the astronomers, and incur 

difficulties in generating efficient observation plans. In this work, we proposed the SNeT 

(computer-assisted SuperNovae Tracking) system for addressing the problems supernovae 

researchers encounter when making observation plans. 

Specifically, this thesis made the following algorithmic and system contributions: 

• A Supernova Data Aggregator (SDA), that integrates existing supernova messages/reports 

published by different sources and builds a local supernova data knowledge-base. 

 

• A Supernova Tracking Management System (STMS), that enables the user to manage the 

entire supernova tracking process – (1) searching for interesting supernova targets, (2) 

creating a potential list of supernovae for observation, (3) configuring the input parameters 

of a plan, and (4) displaying and recording generated observation plans in a user-friendly 

way. 
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• A Supernova Observation Plan Generator (SOPG), that consists of Basic Observation 

Scheduling (BOS) and Advanced Observation Scheduling (AOS) modules. SOPG generates 

feasible and efficient observation plans under the comprehensive consideration of all 

possible factors that affect them. 

 

The SOPG component as the primary contribution of this thesis, it addresses the most 

challenging problem. The SOPG component can also be thought as an independent system of 

scheduling, working for SNeT. SOPG is structured in two layers, namely BOS and AOS, which 

work collaboratively in generation good quality observation plans that meet the users 

requirements and preferences.  

The BOS module of SOPG breaks down a complex scheduling problem and solves it in 

two phases. The global scheduler considers observation tasks in a broader view and orders the 

tasks according to both their deadline and progress. On the other hand, the local scheduler 

narrows down the problem and arranges tasks within a single night. We developed three different 

algorithms to optimize the local scheduler: “greedy beam search”, “iterative dynamic 

programming”, and “random restart hill climbing”, based on three different ideas - greedy 

approximation, dynamic programming, and local search (typically used for optimization 

problems in AI), respectively. Our experiments suggest that the above three algorithms achieve a 

balance in efficiency and quality. 

The AOS module of SOPG extends and enhances the system in two ways. First, the 

“space” reserving feature enables users to choose from three flavors of night capacity 

distribution. The way night capacity is assigned (or reserved) impacts the capability for 
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observation of supernovae later determined as interesting and valuable but not included in the 

original set of supernovae to be observed. In other words, it enables to dynamically include in an 

existing observation plan new supernovae observation as well as to repeat failed ones. 

The second feature of AOS is the semi-supervised learning embedded in our system. In 

BOS module, we devised heuristic functions for decision making in both global and local 

schedulers. These heuristics combine all factors affecting the scheduling and attach adjustable 

weights on them. Thus, users can interact with SOPG and adjust plans by changing the weights 

in the heuristic functions. Basically, the system records users’ opinions, builds and maintains 

training sets, which would be used to learn the appropriate weights. As the weights in the 

heuristic functions are being tuned implicitly, SOPG provides customized results to users. As 

demonstrated in the evaluation part, this feature can help our system achieve a better solution 

without affecting the applicability of the underlying algorithms. 

5.2 FUTURE WORK 

Although the work we have completed indeed solves our astronomer collaborator’s basic 

problem, there are several areas also worth further investigations, as follows: 

• For SDA: A customizable data downloading and parsing engine. It should allow users to 

add their own sources, and register their own filtering rules (to parse and extract useful data). 

Also useful would be an interface for users to analyze supernova messages/reports manually 

and contribute their data to the supernova data knowledge-base. Both features can improve 

SDA as the supplement of default data collecting routine. 
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• For STMS: Several improvements can be made on “experiment configuration” and “plan 

management” features. For the former, a well-designed access control system enabling 

users to either protect or share their annotation, opinion, and progress on supernova 

observations is needed. For the latter, a refined UI visualizing detailed statistics about the 

on-going observation plan would be helpful. 

 

• For SOPG: Enhancing the system with dynamic rescheduling. Basically, users can interact 

with the system and inspect the on-going plan and current observation status. This would 

enable users to do the following: 1) add/remove objects and constraints, 2) change object’s 

attributes or corresponding constraints, 3) cross out certain night or certain period of time in 

one night as failures (device broken down, bad weather, etc). As a result, the enhanced 

system can combine the changes with the initial configuration to reschedule the remaining 

portion of the whole observation. 

5.3 FINAL THOUGHTS 

SNeT provided a whole solution package for the astronomers observing supernovae. In the 

process of designing and developing SNeT, we also studied and explored interesting scheduling 

and optimization problems. We designed and implemented algorithms to address them. We 

consider our work as an early step in the exploration of building intelligent and easy-to-use 

supernovae tracking systems. We hope our work can help the research of astronomers and 

computer scientists interested in this area. 
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APPENDIX A 

STRUCTURE OF SN CLASS 

A very important part for the implementation of the planning system is the “SN class”, which 

encapsulates all the information of the basic entity (supernova object) enrolled in the process of 

plan generation. As mentioned in section 4.1, user input contains a list of objects of interest with 

a list of observation constraints, which indicates the detailed requirements for the observation of 

certain supernova. So, the object’s data associated with its constraints provide all the useful 

information about each object for planning. Considering that, we designed and implemented the 

“SN class” to integrate this information together, providing standardized interfaces to access 

them, recording additional status data for the object, and giving useful helper functions to 

manipulate the object. 

The variables and methods integrated in SN class are listed below. 

Variables: 

1. Catalog data of the object (supernova): 

- SN.Name: the name of supernova, e.g., SN 2013A, PSN J01340066-3423404, 

MASTER OT J111154.50+453214.9, CSS130828:223849-251246, etc. 

- SN.RA: the right ascension to measure the position of supernova. 
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- SN.Dec: the declination to measure the position of supernova. 

- SN.Type: the classification of supernova, divided into Type I and Type II. 

- SN.Redshift: the redshift of supernova. 

- SN.Mag: the apparent magnitude of supernova, to measure brightness. 

- SN.BPeak: the date when supernova in its peak brightness. 

- SN.Peakdate: the language built-in datetime object converted from date string. 

- SN.Priority: a number in range (0, 1) assigned by user, to measure how valuable the 

success in such supernova’s observation is. Typically, the priority is very important fact 

to consider in planning. For a feasible observation plan with no deadline misses, no time 

conflict, etc, the maximum gain in priority raise a positive flag for user’s acceptance of 

the plan. 

 

2. Constraints for the observation of the object (supernova): 

- SN.obsDuration: it measures how long (in minutes) each observation instance of a 

particular object should takes. The time varies for different night. 

- SN.obsGap: it gives a constraint that how long (in nights) two adjacent observation 

instances of the same supernova should be separated. 

- SN.obsTimes: it measures how many instances are needed for such supernova 

observation to complete. 

 

3. Status data of the object (supernova): 

- SN.status.last_instance: the index of the last finished instance. 

- SN.status.last_time: the index of night in which the last instance finished. 
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- SN.status.remaining_instance: number of remaining instances to be schedule. 

- SN.status.miss_deadline: flag to mark whether observation of such supernova passes the 

deadline or not. 

 

Methods: 

1. Methods to access variables: 

- SN.getPriority(): return the priority of such supernova given by user. 

- SN.getObsDuration(): return the observation duration of such supernova according to 

the date (of the night) information. 

- SN.getObsGap(): return the observation gap set up by user. 

- SN.getObsTimes(): return the observation times set up by user. 

- SN.update_status(): it will update the recorded status as new instance finished. 

- SN.reset_status(): it will reset the status of observation to initial, as user may iterate 

through multiple plans with the same input parameters. 

 

2. Helper functions: 

- SN.available(): given a particular night, the function will check whether it is permitted 

or not to schedule the observation of such object, considering all the existing constraints. 

- SN.get_deadline(): given a particular night, return the relative deadline (in unit of nights) 

for finishing the observation of such object. 

- SN.get_remaining_work(): return the amount of unfinished workload (in unit of minutes) 

of particular object, by adding all the remaining instances’ duration. 
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- SN.get_slack(): given a particular night, return the amount of time (in unit of nights) left 

after a job (observation) if was started immediately. 

- SN.get_obsWindow(): calculate the specific time window for observation in particular 

night, e.g., start at 12:30 am, end at 1:45 am. The calculation is based on R.A., Dec., and 

the date of that night. 

 

When the planning system accepts the information of target list and constraints from user, it will 

instantiate an object of “SN class” stated above, for each supernova object needs to be tracked in 

current plan. A list of such SN class objects is the core data structure for performing scheduling 

algorithms. For example, global scheduler in BOS iterates over a list of SN class objects, use 

their helper function to check the availability, to calculate the value of factors affecting 

scheduling; Local scheduler in BOS iterates over the candidate list from the global one, choosing 

the best portion of it as tonight’s tasks, updating their status, etc. More details will be disclosed 

in following sections. 

In all, the implementation of SN class plays an important role for building the whole 

planning system, as it makes the tasks of schedulers built upon it easier, by grouping useful data, 

keeping intermediate status, and providing helper functions. 
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APPENDIX B 

PLANS FOR LIST SPRING 2013 

In the following pages we list the supernovae observation plan generated by our astronomer 

colleagues along with three plans automatically generated by SNeT. Although these three plans 

are not identical to the manually generated one, they were still deemed reasonable by our 

astronomer collaborators. 
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[Manual plan by Dr. Michael Wood-Vasey for observations in spring 2013] 
 

Name                    | z       |  B-Peak  | 20130321 | 20130326 | 20130420 | 20130425 | 20130429 | 
20130519 | 20130522 | 20130523 | 20130528 | 20130613 | 20130617 | Notes 
 
2012cg                  | 0.001458| 20120401 | ..,..,.. | ..,..,.. | ..,..,.. | 16,25,.. | ..,..,.. | ..,..,.. | ..,..,.. | 
16,25,.. | 25,34,.. | ..,25,.. | 16,25,.. | CBET 3111 
2013cs                  | 0.009240| 20130524 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 
09,09,09 | 09,09,09 | 09,09,09 | 09,09,09 | CBET 3533 LSQ13aiz ATEL 5067 
2013da                  | 0.0216  | 20130606 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. 
| ..,..,.. | 09,09,09 | 09,09,06 | Observed with Super-LOTIS 
2013bs                  | 0.0276  | 20130421 | ..,..,.. | ..,..,.. | 09,16,.. | 15,15,.. | ..,28,.. | ..,..,.. | 16,17,.. 
| ..,..,.. | 16,16,.. | 25,16,.. | 25,25,.. | ATel 4993, CBET 3494 PSNJ17172203+4104002 
PTF13asv                | 0.035   | 20130511 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 25,25,.. | ..,..,.. 
| 25,25,.. | 25,25,.. | 16,16,.. | ATEL 5061 
2013bo                  | 0.036   | 20130411 | ..,..,.. | ..,..,.. | 09,16,.. | 25,16,.. | 16,16,.. | ..,..,.. | 25,25,.. 
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4989 CSS130415:131729+424430, CBET 3490 
2013bt                  | 0.0364  | 20130426 | ..,..,.. | ..,..,.. | 16,16,.. | 09,16,.. | 09,16,.. | 25,25,.. | ..,..,.. | 
25,35,.. | ..,..,.. | ..,..,.. | ..,..,.. | 4993, PSNJ14211513+6134159 CBET 3497 
SNhunt175               | 0.0409  | 20130318 | ..,50,.. | ..,..,.. | 20,16,.. | ..,..,.. | ..,41,.. | ..,..,.. | ..,..,.. 
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4896 
2013ck                  | 0.049   | 20130512 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 16,25,.. | ..,..,.. | 34,41,.. 
| ..,..,.. | 25,25,.. | 25,25,.. | CBET 3523 
CSS130218:092354+385837 | 0.05    | 20130310 | ..,..,.. | ..,25,.. | ..,41,.. | ..,25,.. | ..,..,.. | ..,..,.. 
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4908 
PTF13ayw                | 0.0538  | 20130518 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 16,36,.. | ..,..,.. 
| ..,..,.. | 25,41,.. | 25,25,.. | 25,16,.. | ATEL 5061 
2013cb                  | 0.0541  | 20130512 | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | 25,25,.. | ..,..,.. | 25,41,.. 
| ..,41,.. | ..,..,.. | ..,..,.. | CBET 3509 
2013bq                  | 0.06    | 20130424 | ..,..,.. | ..,..,.. | 25,25,.. | 25,25,.. | 16,25,.. | ..,..,.. | ..,..,.. 
| ..,50,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4993, CBET 3492 CSS130415:130408+435408 
2013ar                  | 0.06    | 20130323 | ..,..,.. | 25,41,.. | 25,25,.. | ..,..,.. | 41,41,.. | ..,..,.. | ..,..,.. 
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | CBET 3446 
2013be                  | 0.065846| 20130416 | ..,..,.. | ..,..,.. | ..,..,.. | 25,25,.. | 41,50,.. | 41,41,.. | ..,..,.. 
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | CBET 3470, iPTF13aig ATEL 5019 
CSS130317:082848+293031 | 0.08    | 20130319 | ..,..,.. | 41,41,.. | 41,36,.. | 41,50,.. | ..,..,.. | ..,..,.. 
| ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ..,..,.. | ATel 4984 
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[Plan 1 generated by SOPG, SNeT] 
 

######################################## 
2013-03-21: 2013cb, 2013cs, CSS130317:082848+293031, 2013bt, 
CSS130218:092354+385837, 2013bo, SNhunt175, 2013bs 
2013-03-26: CSS130218:092354+385837, 2013bo, 2013ar, 2013bt, 2013cb, 2013da, 
SNhunt175, 2013bs, 2013cs 
2013-04-20: 2013bo, SNhunt175, 2013bq, 2012cg, 2013bt, PTF13asv, 2013ar, 
CSS130218:092354+385837 
2013-04-25: PTF13asv, 2013bs, 2012cg, 2013ar, 2013bt, 2013cs, 2013bo, 2013bq 
2013-04-29: 2013bs, 2013bt, 2013bq, 2013da, 2013cs, PTF13asv, 2013be, 2013cb 
2013-05-19: CSS130317:082848+293031, 2013ck, 2013bq, 2013bs, PTF13asv, 2013be 
2013-05-22: 2012cg, CSS130317:082848+293031, 2013bs, 2013ck, PTF13ayw 
2013-05-23: 2013be 
2013-05-28: 2012cg, 2013bs, 2013ck, PTF13ayw 
2013-06-13: PTF13ayw, 2012cg, 2013ck 
2013-06-17: PTF13ayw 
######################################## 
 
######################################## 
Name  z B-Peak  2013-03-21 2013-03-26 2013-04-20 2013-04-25
 2013-04-29 2013-05-19 2013-05-22 2013-05-23 2013-05-28 2013-06-13
 2013-06-17 
 
2012cg  0.001 2012-04-01 - - 41 41 - - 41 -
 41 41 - 
2013ar  0.06 2013-03-23 - 65 65 65 - - - -
 - - - 
2013be 0.065 2013-04-16 - - - - 77 77 - 77
 - - - 
2013bo 0.036 2013-04-11 35 35 35 35 - - - -
 - - - 
2013bq 0.06 2013-04-24 - - 50 50 50 50 - -
 - - - 
2013bs  0.027 2013-04-21 38 38 - 38 38 38 38 -
 38 - - 
2013bt  0.036 2013-04-26 32 32 32 32 32 - - -
 - - - 
2013cb 0.054 2013-05-12 47 47 - - 47 - - -
 - - - 
2013ck 0.049 2013-05-12 - - - - - 58 58 -
 58 58 - 
2013cs  0.009 2013-05-24 27 27 - 27 27 - - -
 - - - 
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2013da 0.021 2013-06-06 - 27 - - 27 - - -
 - - - 
CSS130218:092354+385837 0.05 2013-03-10 30 30 30 - - -
 - - - - - 
CSS130317:082848+293031 0.08 2013-03-19 82 - - - - 82
 82 - - - - 
PTF13asv 0.035 2013-05-11 - - 50 50 50 50 - -
 - - - 
PTF13ayw 0.053 2013-05-18 - - - - - - 53 -
 53 53 53 
SNhunt175 0.0409 2013-03-18 43 43 43 - - - - -
 - - - 
######################################## 
 
######################################## 
7 SN Observations missed deadline, listed as following: 
 
2012cg, 2013ar, 2013be, CSS130218:092354+385837, CSS130317:082848+293031, PTF13ayw, 
SNhunt175 
 
0 SN Observation didn't finish completely, listed as following: 
 
N/A 
 
56.25% SN Observations fully scheduled on time! 
######################################## 
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[Plan 2 generated by SOPG, SNeT] 
 

######################################## 
2013-03-21: 2013ar, CSS130218:092354+385837, SNhunt175, 2013bs, PTF13asv, 2013bq, 
2013bo, 2013bt 
2013-03-26: 2013ar, CSS130218:092354+385837, SNhunt175, 2013bs, 2013cb, 2013bq, 
2013bo, 2013bt 
2013-04-20: 2013ar, CSS130218:092354+385837, SNhunt175, 2013bs, PTF13asv, 2013bq, 
2013bo, 2013bt 
2013-04-25: 2012cg, 2013bq, 2013cb, 2013ck, 2013bo, 2013bt, PTF13asv, 2013bs 
2013-04-29: CSS130317:082848+293031, 2013cb, 2013bt, PTF13asv, 2013bs, 2013da, 
2013cs, PTF13ayw 
2013-05-19: CSS130317:082848+293031, 2013be, 2012cg, 2013bs, 2013da, 2013cs, 
PTF13ayw 
2013-05-22: CSS130317:082848+293031, 2013be, 2012cg, 2013bs, 2013cs, PTF13ayw 
2013-05-23: 2013ck 
2013-05-28: 2013be, 2012cg, 2013ck, PTF13ayw, 2013cs 
2013-06-13: 2012cg, 2013ck 
2013-06-17: Null 
######################################## 
 
######################################## 
Name  z B-Peak  2013-03-21 2013-03-26 2013-04-20 2013-04-25
 2013-04-29 2013-05-19 2013-05-22 2013-05-23 2013-05-28 2013-06-13
 2013-06-17 
 
2012cg  0.001 2012-04-01 - - - 41 - 41 41 -
 41 41 - 
2013ar  0.06 2013-03-23 65 65 65 - - - - -
 - - - 
2013be 0.065 2013-04-16 - - - - - 77 77 -
 77 - - 
2013bo 0.036 2013-04-11 35 35 35 35 - - - -
 - - - 
2013bq 0.06 2013-04-24 50 50 50 50 - - - -
 - - - 
2013bs  0.027 2013-04-21 38 38 38 38 38 38 38 -
 - - - 
2013bt  0.036 2013-04-26 32 32 32 32 32 - - -
 - - - 
2013cb 0.054 2013-05-12 - 47 - 47 47 - - -
 - - - 
2013ck 0.049 2013-05-12 - - - 58 - - - 58
 58 58 - 
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2013cs  0.009 2013-05-24 - - - - 27 27 27 -
 27 - - 
2013da 0.021 2013-06-06 - - - - 27 27 - -
 - - - 
CSS130218:092354+385837 0.05 2013-03-10 30 30 30 - - -
 - - - - - 
CSS130317:082848+293031 0.08 2013-03-19 - - - - 82 82
 82 - - - - 
PTF13asv 0.035 2013-05-11 50 - 50 50 50 - - -
 - - - 
PTF13ayw 0.053 2013-05-18 - - - - 53 53 53 -
 53 - - 
SNhunt175 0.0409 2013-03-18 43 43 43 - - - - -
 - - - 
######################################## 
 
######################################## 
6 SN Observation missed deadline, listed as following: 
 
2012cg, 2013ar, 2013be, CSS130218:092354+385837, CSS130317:082848+293031, SNhunt175 
 
0 SN Observation didn't finish completely, listed as following: 
 
N/A 
 
62.50% SN Observations fully scheduled on time! 
######################################## 
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[Plan 3 generated by SOPG, SNeT] 
 

 
######################################## 
2013-03-21: CSS130218:092354+385837, 2013bo, 2013bt, 2013bq, PTF13asv, SNhunt175, 
2013ar, 2013bs 
2013-03-26: CSS130218:092354+385837, 2013bo, SNhunt175, 2013bt, 2013bq, 2013ar, 
2013bs, PTF13asv 
2013-04-20: 2013ar, 2013bt, 2013bo, 2013bq, SNhunt175, CSS130218:092354+385837, 
2013bs, PTF13asv 
2013-04-25: CSS130317:082848+293031, 2013bs, 2013bo, 2013bq, 2013bt, 2013cb, 
PTF13asv 
2013-04-29: 2013bs, 2013cs, 2013cb, 2013bt, CSS130317:082848+293031, 2013be, 
PTF13ayw 
2013-05-19: CSS130317:082848+293031, 2013cs, 2013da, 2013bs, 2013be, 2013cb, 
PTF13ayw 
2013-05-22: 2012cg, 2013bs, 2013ck, 2013be, PTF13ayw, 2013cs 
2013-05-23: 2013da 
2013-05-28: 2012cg, 2013cs, PTF13ayw, 2013ck 
2013-06-13: 2013ck, 2012cg 
2013-06-17: 2012cg, 2013ck 
######################################## 
 
######################################## 
Name  z B-Peak  2013-03-21 2013-03-26 2013-04-20 2013-04-25
 2013-04-29 2013-05-19 2013-05-22 2013-05-23 2013-05-28 2013-06-13
 2013-06-17 
 
2012cg  0.001 2012-04-01 - - - - - - 41 -
 41 41 41 
2013ar  0.06 2013-03-23 65 65 65 - - - - -
 - - - 
2013be 0.065 2013-04-16 - - - - 77 77 77 -
 - - - 
2013bo 0.036 2013-04-11 35 35 35 35 - - - -
 - - - 
2013bq 0.06 2013-04-24 50 50 50 50 - - - -
 - - - 
2013bs  0.027 2013-04-21 38 38 38 38 38 38 38 -
 - - - 
2013bt  0.036 2013-04-26 32 32 32 32 32 - - -
 - - - 
2013cb 0.054 2013-05-12 - - - 47 47 47 - -
 - - - 
2013ck 0.049 2013-05-12 - - - - - - 58 -
 58 58 58 
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2013cs  0.009 2013-05-24 - - - - 27 27 27 -
 27 - - 
2013da 0.021 2013-06-06 - - - - - 27 - 27
 - - - 
CSS130218:092354+385837 0.05 2013-03-10 30 30 30 - - -
 - - - - - 
CSS130317:082848+293031 0.08 2013-03-19 - - - 82 82 82
 - - - - - 
PTF13asv 0.035 2013-05-11 50 50 50 50 - - - -
 - - - 
PTF13ayw 0.053 2013-05-18 - - - - 53 53 53 -
 53 - - 
SNhunt175 0.0409 2013-03-18 43 43 43 - - - - -
 - - - 
######################################## 
 
######################################## 
7 SN Observation missed deadline, listed as following: 
 
2012cg, 2013ar, 2013be, 2013ck, CSS130218:092354+385837, CSS130317:082848+293031, 
SNhunt175 
 
1 SN Observation didn't finish completely, listed as following: 
 
2012cg 
 
56.25% SN Observations fully scheduled on time! 
######################################## 
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