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A SIMPLE LOCALLY EFFICIENT ESTIMATOR FOR RELATIVE

RISK IN CASE-COHORT STUDIES

Emmanuel Sampene, PhD

University of Pittsburgh, 2013

A case-cohort study is a two-phase study where at the first phase a  representative

sample, referred to as the study cohort, is selected from the target population. At

the second phase, a subsample is selected from the cohort based on the case status.

All cases are included in the subsample whereas only a random sample of controls is

included. The endpoint of interest in such studies is usually the failure time. Several

methods have been proposed to estimate the relative risk or hazard ratio from a case-

cohort study. These methods almost always disregard the covariate information that

is not included in the sampled study sub-cohort, and therefore, results in the loss of

efficiency. While there have been attempts to derive the most efficient estimators,

the resulting estimators were challenging from the data analysis point of view. We

propose a locally efficient estimator (LEE) by restricting the estimator to a class of 

regular asymptotically linear estimators. The properties of this estimator are

investigated through simulation and application to the Wilm’s tumor study. The

public health relevance of this dissertation is the use of innovative methodology

to reduce cost associated with research.
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1.0 CASE-COHORT STUDY

In 1986, Prentice introduced the case-cohort design as a cost-reduction approach to

studying large cohort designs. The case-cohort design is a two-phase study where at

the first phase a representation sample, referred to as the study cohort, is selected

from the target population. At the second phase, a subsample is selected from the

cohort based on the case status.

Prentice’s goal was to estimate the relative risk in a Cox proportional hazards

(CPH) model without having to ascertain the covariate information of all cohort

members. Since his initial work, many authors have developed variations of Pren-

tice’s method by proposing different estimating equations. Most of these methods,

however, fail to utilize the covariate data collected outside the case-cohort sample,

and thus incur the loss of efficiency. In particular, the Kalbfleisch & Lawless (1988)

estimates simply ignore the first phase covariate data. To improve the efficiency of

the case-cohort estimators, Barlow (1994) introduced an estimator that incorporates

time-varying weights while Chen and Lo (1999) proposed an estimator that improves

the efficiency only when the fully observed covariates are binary. In addition, Borgan

et al. (2000) proposed an estimator that uses some of the the first phase covariate

data. Also, Kulich & Lin (2004) introduced the combined doubly weighted estimator

while Mark & Katki (2006) proposed the α̂- estimator.
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The goal of the first part of this dissertation is to present a semiparametric

efficient estimator for analyzing case-cohort studies. We derive the most efficient

estimator along the lines of the semiparametric theory of Robins et al. (1994) by

using the projection theory of Hilbert spaces and martingale probability theory. We

restrict ourselves to the class of estimators which are regular and asymptotically

linear (Newey, 1990). Hence, our proposed estimator is the best regular asymptoti-

cally linear estimator which is not only easily computable, but also the most efficient

within this subclass of estimators.

In the second part of this dissertation, we extend the idea of our semiparametric

efficient estimator to time-dependent covariates. The basic idea remains the same as

that in part 1, except that the Cox proportional hazard model allows time-dependent

covariates in the model. As a result, it is possible to assess the association between

failure time and time-dependent covariates in a case-cohort design.

This dissertation is organized as follows. In Chapter 1, we introduce the case-

cohort design along with the general framework of case-cohort estimation. In Chapter

2, we introduce the semiparametric efficient estimation, and also discuss topics such

as Hilbert space, linear subspace and projection theorem for Hilbert spaces which are

useful constructs for semiparametric theory. Chapters 3 and 4 are written as indepen-

dent papers. In Chapter 3, we propose a semiparametric locally efficient estimator

for analyzing case-cohort studies that do not require strong model assumptions, and

yet contains quantities that are easy to compute. Chapter 4 extends the estimator

described in Chapter 3 to time-dependent covariates. Therefore, there are some re-

dundancies in the introductory sections. In the remaining part of this Chapter, we

describe the model framework on which almost all existing estimators for analyzing

case-cohort studies are based.
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1.1 GENERAL FRAMEWORK OF CASE-COHORT ESTIMATION

The model framework of the case-cohort design is based on the popular Cox pro-

portional hazard model. In this section, we describe a commonly used approach

for obtaining an estimating equation for the regression parameters in a case-cohort

design.

Let T be the failure time, C be a potential censoring time and Z be the vector of

covariates. Suppose that T is conditionally independent of C given Z and that the

conditional distribution of T given Z follows the Cox (1972) proportional hazards

model:

λ(t|Z) = λo(t)exp(β
TZ)

where λ(t|Z) is the conditional hazard for failure given the covariate history up to

time t, β is a vector-valued parameter, and λo(t) is an unspecified baseline hazard

function. Let us define U = min(T, C), ∆ = I(T ≤ C), N(t) = I(U ≤ t,∆ = 1),

and Y (t) = I(U ≥ t). A subject whose failure time is observed will have ∆ = 1

and will be treated as a case, and a censored subject with ∆ = 0 will be treated

as a control. Suppose that the support of C is bounded above by τ > 0 and that

Pr(Y (τ) = 1) > 0.

Under the case-cohort design, the complete observations (Ui,∆i, Zi, ξ = 1) for

all subsample members, and at least (Ui,∆i = 1, Zi(Ui)), are observed for the cases.

With full data, one can estimate the parameter β by β̂, the root of the partial

likelihood Cox (1972) score function. This score function is defined as follows:

U(β) =
n

∑

i=1

τ
∫

0

{Zi − Z̄(β)}dNi(t) (1.1.01)
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where Z̄(β) = S1(β)
So(β)

, and these quantities are respectively defined as:

S1(β) =

n
∑

i=1

Ziexp(β
TZi)Yi(t),

So(β) =
n

∑

i=1

exp(βTZi)Yi(t)

It should be noted that only the cases contribute to the summation in (1.1.01), while

the controls affect U(·) only through the at-risk covariate average Z̄. In general,

(1.1.01) cannot be calculated under the case-cohort design because Z̄ involves un-

observed data. As a result, nearly all existing case-cohort estimators are based on

estimating equations similar to (1.1.01), where we replace Z̄ with an approximate

Z̄C,

UC(β) =
n

∑

i=1

τ
∫

0

{Zi − Z̄C(β)}dNi(t), (1.1.02)

where the at-risk average for (1.1.02) is defined as Z̄C(β) =
S1

C
(β)

So

C
(β)

with S
j
C(β) defined

as follows:

S1
C(β) =

n
∑

i=1

ξi

αi
Ziexp(β

TZi)Yi(t),

So
C(β) =

n
∑

i=1

ξi

αi
exp(βTZi)Yi(t),

where ξi is a binary indicator for the controls and αi refers to the sampling probability.

The score function defined in Equation (1.1.02) eliminates subjects with incomplete

data. As a result, all existing estimators that incorporate the score equation in

(1.1.02) loss efficiency. Since our proposed estimator is based on the semiparametric

efficiency theory, in the next section we discuss semiparametric efficient estimation

and how it relates to case-cohort designs.
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2.0 SEMIPARAMETRIC EFFICIENT ESTIMATION

A semiparametric model is one that has both a parametric component β, and non-

parametric component η that describe the model. Consider data envisioned as re-

alizations of random vectors Z1, · · · , Zn, assumed iid. An estimator β̂ of β is a

q-dimensional measurable random function of Z1, · · · , Zn. Most reasonable estima-

tors for β are asymptotically linear. As a result, there exist a random vector ϕq×1(Z),

such that Eϕ(Z) = 0q×1,

n1/2(β̂n − βo) = n−1/2
n

∑

i=1

ϕ(Zi) + op(1), (2.0.01)

where op(1) is a term that converges in probability to zero as n goes to infinity and

E(ϕϕT ) is finite and nonsingular. We refer to the random vector ϕ(Zi) defined in

(2.0.01) as the influence function of the i-th observation of the estimator β̂n. In

general semiparametric problems, one approach to construct estimators for β is to

obtain some influence function ϕ(Hi; β, η). This influence function is subsequently

used to form estimating equations for β in the form of

N
∑

i=1

ϕ(Hi; β, η) = 0 (2.0.02)

where Hi is the full data , β is the q-dimensional parameter of interest, and η is

the infinite dimensional nuisance parameter. An advantage of using the influence

5



function in (2.0.01) to construct estimators for β is that there is less restriction on

the probability constraint that our data might have. Hence, the solution in (2.0.01)

is reasonable and robust. By solving for the estimating equation in (2.0.02), we

obtain the solution β̂, which is a semiparametric estimator and its variance has

been shown to be equal to the variance of n−1ϕ(Hi; β, η). As a result, the optimal

estimator among the class of all such estimators is the one whose influence function

has the smallest variance. We refer to this as the semiparametric efficient estimator.

Therefore, estimating the finite dimensional parameter β in the presence of an infinite

dimensional nuisance parameter η, is a classical semiparametric problem (Tsiatis,

2010). Since the class of influence functions for the estimating equation defined in

(2.0.01) belongs to the Hilbert space of all mean-zero q-dimensional random functions

with finite variance, in the section that follows we review Hilbert spaces, the notion

of orthogonality, minimum distances, and how it relates to efficient estimators (i.e.

estimators with the smallest variance).

2.1 HILBERT SPACE

In this section, we introduce a Hilbert space without excessive technical details. Our

focus will be on the Hilbert space whose elements are random vectors with mean

zero and finite variance. A Hilbert space, denoted by H, is a complete normed linear

vector space equipped with an inner product. For example, consider the Hilbert space

H of one-dimensional random functions, h(Z), with mean zero and finite second

moments. We can define the inner product for h1(Z), h2(Z) ∈ H as

〈

h1, h2

〉

= E(h1, h2).

6



We refer to this inner product as the covariance inner product. Evidently, the space

of all such h that consist of mean zero and finite variance is a linear space. By linear,

it is implied that if h1, h2 are elements of the space, then for any real constants a

and b, ah1 + bh2 also belongs to the space.

Definition 1. Let h1,h2 belonging to a linear vector space H, an inner product,

defined by
〈

h1, h2

〉

, is a function that maps to the real line. That is
〈

h1, h2

〉

is a

scalar that satisfies:

(i)
〈

h1, h2

〉

=
〈

h2, h1

〉

,

(ii)
〈

h1 + h2, h3

〉

=
〈

h1, h3

〉

+
〈

h2, h3

〉

, where h1,h2, and h3 belong to H,

(iii)
〈

λh1, h2

〉

= λ
〈

h1, h2

〉

for any scalar constant λ ∈ ℜ,

(iv)
〈

h1, h1

〉

≥ 0 with equality if and only if h1 = 0

With this definition of inner product, we can proceed to define the norm of any

vector (i.e., element of H). Furthermore, we denote the distance from any point

h ∈ H to the origin as ‖ h ‖=
〈

h, h
〉1/2

. Since the properties of Hilbert spaces allow

us to define orthogonality, we can state that h1, h2 ∈ H are orthogonal if
〈

h1, h2

〉

= 0

[Luenberger, 1969].

2.2 LINEAR SUBSPACE AND PROJECTION THEOREM FOR

HILBERT SPACES

In this section, we explain the importance of using the projection theorem in Hilbert

space (H) geometry. Consider a space U ∈ H as a linear subspace if v1, v2 ∈ U .

This means that av1 + bv2 ∈ U for all scalar constants a, b. A linear subspace must

contain the origin. We achieve this by setting a = b = 0. A simple example of

7



a linear subspace is the space (a1h1 + · · · + akhk), where h1, · · · , hk are arbitrary

elements of H. One might reasonably conjecture that in n-dimensional Euclidean

space, the shortest distance from a point to a subspace is orthogonal to the subspace.

In fact, this optimization principle is called the projection theorem.

It should be noted that the inner product defined in Section 2.1 corresponds to a

covariance. This means that we can use the projection theorem to find the minimum

variance estimate. Consequently, finding the projection of the q-dimensional vector

h onto the subspace U is equivalent to taking each element of h and projecting it

individually to the subspace spanned by (v1, · · · , vr) for the Hilbert space of one-

dimensional random functions (Tsiatis, 2010). An advantage of using the projection

theorem approach is that once we have a well defined inner product, there is no need

to minimize the variance estimate. Therefore, we define a space U ∈ H as a linear

subspace if v1, v2 ∈ U . This implies that av1 + bv2 ∈ U for all a,b ∈ ℜ.

Theorem 2.2.1. Let H be a Hilbert space and U a linear subspace that is closed (i.e.,

contains all its limit points). Corresponding to any h ∈ H, there exists a unique vo

∈ U that is closest to h; that is, ‖h− vo‖ ≤ ‖h− v‖ ∀ v ∈ U . Furthermore, h− vo is

orthogonal to U ; that is,
〈

h− vo, v
〉

= 0 ∀ v ∈ U .

We refer to vo as the projection of h onto the space U , and this is denoted as
∏

(h|U). Moreover, vo is the only element in U such that h − v is orthogonal to U .

For example, let u1(Z), · · · , uk(Z) be arbitrary elements of this space and U be a

linear subspace spanned by u1, · · · , uk. That is,

U = aTu;

for a ∈ ℜk, where u = (u1, · · · , uk)
T . Let h be an arbitrary element of H. Then the

projection of h onto the linear subspace U is given by the unique element aTo u that

8



satisfies
〈

h− aTo u, a
Tu

〉

= 0,

for all a = (a1, · · · , ak)
T ∈ ℜk. Also, a Hilbert space must satisfy the condition of

completeness to guarantee the existence of the projection. By completeness we mean

that every Cauchy sequence has a limit point that belongs to the space. A graphical

representation of the projection theorem is found below:

!"#$%&$'()#*$*()'$*+$*(&$

+,)-).$%&$-&*$! //$

$

$

$ 0).&1,$'23'415&$ $

+,)-).$

Figure 1: Geometrical Interpretation of Projection Theorem (adapted from Tsiatis

(2010)).
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3.0 A SIMPLE LOCALLY EFFICIENT ESTIMATOR FOR

RELATIVE RISK IN CASE-COHORT STUDIES

3.1 INTRODUCTION

The standard cohort design requires assembly of all covariate (exposure) histories. In

such studies, participants are followed prospectively, and subsequent status evalua-

tions with respect to a disease or outcome are ascertained for exposure characteristics.

Although subjects in a cohort design can be matched, which limits the influence of

confounding variables, the outcome of interest could take time to occur. As a result,

this type of studies are very costly to conduct. Cohort studies typically measure

exposure in many controls. This measurement of exposures in controls are wasteful

and thus inefficient. Not only that but also, cohort designs require extended follow-

up to observe the development of the condition of interest, say, death due to lung

cancer.

Prentice (1986) introduced the case-cohort design as an economical way of study-

ing large cohort studies. This type of design is widely used in epidemiological studies

with time-to-event data. The case-cohort study is a two-phase study where at the

first phase a representative sample, referred to as the study cohort, is selected from

the target population. In practice, certain covariates such as treatment allocations,

10



gender, age, and surrogate measurements of expensive covariates are obtained on all

subjects in the cohort. Considering that evaluation of all covariates on this cohort

could be expensive, this list of covariates is usually kept to a minimum. At the sec-

ond phase, a subsample is selected from the cohort based on the case status, and the

most expensive covariates that were not measured in the first phase are evaluated

for the cases and the subsample. As a result, all cases are included in the subsample

whereas only random samples of controls are included. The endpoint of interest in

such studies is usually the failure time.

Rothman (2002) described the advantages of using the case-cohort design. This

design is very efficient, since controls can be used in all risk sets for which they qualify.

Furthermore, this type of design is very flexible, and allows testing hypotheses that

were not anticipated when the cohort was drawn from the subsample. That is, the

subsample can be used to study multiple outcomes. Also, the case-cohort analysis

is less sensitive to missing covariate information. In addition, the case-cohort design

reduces selection and information bias, because cases and non-cases are sampled from

the same population.

Analysis of case-cohort studies is very similar to the usual Cox regression ap-

proach with a few modifications. It is assumed that, if we had full data, then the

standard Cox proportional hazard model would suffice. Prentice (1986) showed how

to estimate the relative risk from a Cox proportional hazard model without necessar-

ily obtaining the covariate information of all subjects in the cohort. His method used

an estimating equation for the regression parameters through a pseudolikelihood ap-

proach that weighted the contributions from the cases and subsample members using

the inverses of their true or estimated sampling probabilities.

Since Prentice’s initial work, many authors have derived variations of his method

by proposing different estimating equations. Most of these methods, however, fail

11



to account for the covariate data collected outside the case-cohort sample, and thus

incur the loss of efficiency. In particular, the Kalbfleisch & Lawless (1988) estimator,

which is based on the modifications of the full data partial likelihood score function,

weights the contributions from the cases and subsample members with inverses of

their true or estimated probabilities, called sampled fraction. However, it ignores

the first phase covariate data. Similarly, the estimator proposed by Self & Prentice

(1988) ignores all the first phase information. Only Borgan & Goldstein et al. (1995)

method utilizes some of the first phase information by stratifying on the first phase

covariates (Kulich & Lin, 2004).

To improve the efficiency of the case-cohort estimators, several authors have in-

troduced different estimators. For example, Barlow (1994) introduced an estimator

that incorporates time-varying weights by proposing different weighting schemes.

This weighting scheme assigned a value of one for all cases inside or outside the

subsample. On the contrary, the cases in the subsample prior to failure, and the sub-

sample controls are weighted by the inverses of the sampling fraction. Also, Chen &

Lo (1999) proposed an estimator based on the partial likelihood score functions that

improves the efficiency only when the fully observed covariates are binary (Kulich &

Lin, 2004).

The efficiency of the relative risk estimation in analyzing case-cohort studies

was further improved by Borgan & Langholz et al. (2000) where they proposed an

exposure stratified case-cohort estimator, whereby complete covariate information

is assembled for all failures (cases) and a stratified random subsample of the non-

failures (controls). The stratification was based on an inexpensive easily observable

covariate that is measured on all members in the cohort. By this approach, Borgan

& Langholz et al. (2000) showed that stratified sampling designs can lead to sub-

stantial efficiency gain in case-cohort studies by employing the weighted versions of

12



the pseudolikelihood methods. In addition, Kulich & Lin (2004) introduced the com-

bined doubly weighted estimator (CDW), which is a linear combination of the class

of augmented estimators described in Robins et al. (1994) and Borgan & Goldstein

(1995) estimators. Thus, the CDW estimator is protected against a deterioration of

efficiency below that of the Borgan et. al. estimators due to an incorrectly specified

model (Kulich & Lin, 2004). Mark & Katki (2006) proposed a simple estimator

based on inverse-probability weighting (Horvitz, 1952), which they refer to as the α̂-

estimator, reflecting that the probability of being included in the sample is estimated.

In addition, Nan (2004) proposed an estimator for case-cohort designs with discrete

covariates by solving the efficient score equations using a one-step Newton-Raphson

approximation.

All the aforementioned estimators seek to efficiently estimate the association pa-

rameters from a case-cohort design by using the Cox proportional hazard model.

Although the CDW estimator has appealing asymptotic properties, it may not al-

ways perform well in finite samples. Furthermore, it is computationally complex, and

often infeasible to implement, and the estimator becomes unstable when the subsam-

ple control becomes small (Mark & Katki, 2006). In addition, the efficiency gain of

the combined doubly weighted estimator depends on whether a fully observed contin-

uous or binary covariate is observed at baseline. That is, fully observed continuous

covariates achieve more efficiency compared to fully observed binary covariates.

The α̂-estimator proposed by Mark & Katki (2006) relaxes the requirement that

the selection of subjects into the subsample be independent with known probabilities.

It is similar to the usual inverse-probability weighted Horvitz-Thompson estimator

(Breslow et al., 2009). The authors replaced the sampling probability α with its

maximum likelihood estimates α̂. The efficiency gain of the α̂-estimator depends on

the assumed correctness of the logistic model used to estimate α. The estimation
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procedure ignores the first phase information, and hence there is further room for

efficiency gain.

In this chapter, we present a semiparametric locally efficient estimator for an-

alyzing case-cohort studies that do not require strong model assumptions and yet

achieve efficiency gain over α̂-estimator. We derive the most efficient estimator along

the lines of the semiparametric theory of Robins et. al (1994) by restricting ourselves

to a subclass of estimators which are regular and asymptotically linear (Newey, 1990).

Our proposed estimator is an asymptotically linear estimator which is not only easily

computable, but also the most efficient within this subclass of estimators, and enjoys

nice asymptotic properties.

In the next section, we present the model, notation, and assumptions used

throughout this chapter. In Section 3.2, we derive a class of estimating equations

for analyzing case-cohort studies. These class of estimators are regular and asymp-

totically linear. Section 3.3 presents our proposed locally efficient estimator. We

demonstrate how to draw inference on the regression parameters on our proposed lo-

cally efficient estimator (LEE). Also, we show that LEE has the smallest asymptotic

variance among all the class of restricted asymptotic linear (RAL) estimators. Sec-

tion 3.4 shows our simulation experiment comparing our proposed estimator to the

α̂-estimator. Finally, Section 3.5 discusses the analysis of the Wilm’s tumor data.

3.2 MODEL, NOTATION, AND ASSUMPTIONS

Let T be the failure time, C be the potential censoring time and Z be the vector of

covariates. Suppose that T is conditionally independent of C given Z and that the
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conditional distribution of T given Z follows the Cox (1972) hazards model

λ(t|Z) = λo(t)exp(β
TZ) (3.2.01)

where λ(t|Z) is the conditional hazard for failure given the covariate history up to

time t, β is a vector-valued parameter, and λo(t) is an unspecified baseline hazard

function. We will often write λ(t|Z) as λ(t) for brevity. Our goal is to draw inference

about β from data observed through a case-cohort sampling scheme.

The case-cohort design evaluates some covariates on the overall cohort and mea-

sures expensive covariates on the subcohort of controls and all cases. Let the observed

data be denoted by

{∆i, Ui, (1−∆i)ξi, {∆i + (1−∆i)ξi}Zi,Wi}

i = 1, · · · , n, where ∆i = I(Ti ≤ Ci), the indicator for cases, Ui = min(Ti, Ci) the

observed time, ξ is the indicator for the controls (∆i = 0) who are in the subcohort,

Zi be the covariate of interest that is observed for all individuals in the subcohort

(∆i = 1) or (1 − ∆i)ξi = 1, or equivalently, ∆i + (1 − ∆i)ξi = 1, and Wi is the

other covariates observed for the i-th individual. We assume that the cohort study

involves n individuals.

Inference for Cox model with simple random sampling follows a partial likelihood

approach. Since our method primarily relies on the influence function from this

process, we briefly describe the procedure in this section. Suppose the exposure Zi

is observed on all individuals in the sample. The partial likelihood score equation

for estimating β in such case is given by

n
∑

i=1

Ti
∫

0

(Zi −E(u, β))dNi(u) = 0 (3.2.02)
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where

E(u, β) =

n
∑

i=1

[Yi(u)Ziexp(β
TZi)]

n
∑

i=1

[Yi(u)exp(βTZi)]

is the weighted average of the exposure vector Zi among those who are at risk at time

u, Yi(u) = I(Ui ≥ u) be the at risk indicator at time u, and Ni(u) = ∆iI(Ui ≤ u),

i = 1, 2, · · · , n; τ is a fixed time chosen to limit the analysis to a follow-up time

beyond which there is still a reasonable number at risk. The solution of β, β̂PL from

Equation (3.2.02) is known to follow an asymptotic normal distribution. Moreover,

one can write

n1/2(β̂PL − βo) = n−1/2

n
∑

i=1

ϕi + op(1),

where

ϕi = I−1
i (βo)

τ
∫

0

{Zi − E(u, βo)}dMi(u), (3.2.03)

is the influence function of β̂PL, with

E(u, β) =
s1(u, β)

so(u, β)
=

E[Yi(u)Ziexp(β
TZi)]

E[Yi(u)exp(βTZi)]
,

Ii(β) = E

[{

τ
∫

0

(Zi − E(u, β))dMi(u)

}

×

{

τ
∫

0

(Zi − E(u, β))dMi(u)

}T]

,

where Mi(u) = Ni(u)−
u
∫

0

λ(u|Zi)Yi(u)du is the martingale process corresponding to

the hazard function λ(u|Zi), and the death and at-risk processes Ni(u) and Yi(u)

respectively; op(1) is a term that converges to zero in probability as n approaches

infinity.

In the case-cohort sampling, however, not all the exposure variables are measured

on all individuals. Therefore, it is not possible to estimate β from Equation (3.2.02).
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To account for the variable probability of being included in the subsample, Equation

(3.2.02) is usually weighted by the inverse of the probability of inclusion. In what

follows, we first describe common approaches to estimating β from the case-cohort

sampling, and their limitations, and then we describe our proposed estimator.

Almost all existing estimators for analyzing case-cohort studies are based on score

equations similar to Equation (3.2.02). In a typical case-cohort setting, it takes the

form
n

∑

i=1

τ
∫

0

(Zi − Ec(u, β))dNi(u) = 0 (3.2.04)

where

Ec(u, β) =

n
∑

i=1

ξi
αi
Yi(u)Ziexp(β

TZi)

n
∑

i=1

ξi
αi
Yi(u)exp(βTZi)

is the at-risk average of the exposure vector Zi, and αi is the sampling fraction

which is estimated from true or estimated sampling probability. Various proposals

for obtaining the sampling weight, αi, have been published, yielding different case-

cohort estimators (Kulich & Lin, 2004). In particular, the α̂-estimator is obtained

by solving the equation

n
∑

i=1

{

∆i +
(1−∆i)

α̂i
ξi

}

τ
∫

0

(Zi −Ec(u, β))dNi(u) = 0 (3.2.05)

This estimator replaces the sampling probability αi by its maximum likelihood esti-

mate α̂i in a correctly specified model. Since the estimation procedure in Equation

(3.2.04) eliminates subjects with incomplete data, all existing estimators that incor-

porate the pseudoscore in Equation (3.2.02) for analyzing case-cohort study including

the α̂-estimator, use only the second phase subjects, while ignoring the first phase

information. This leads to loss of efficiency.
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To account for the missing covariates which result from ignoring the first phase

information in the estimation in Equation (3.2.04), Robins et al. (1994), Laan &

Robins (2003), and Nan (2004) have proposed estimators that augment the full

data influence function, ϕi, by projecting it onto the orthogonal complement of the

nuisance tangent space. In particular, the estimator proposed by Nan (2004), is

obtained by a one-step Newton-Raphson approximation, solves the efficient score

equation with initial values from existing estimators. In our notation, this estimator

has influence function

{

∆i +
(1−∆i)

αi
ξi

}

ϕi +

{

1−∆i −
(1−∆i)

αi
ξi

}

E
{

ϕi|data
}

, (3.2.06)

where E
{

ϕi|data
}

indicates the expectation of the full data influence function given

the observed data. The expectation in Equation (3.2.06) contains population quan-

tities which are often intractable, and without additional assumptions on the full

data model and censoring mechanism, can not be be reasonably estimated with fi-

nite samples (Van der Laan et al., 2003 p.35). As a result, in the section that follows,

we propose an estimator that restricts the influence function to a class of estima-

tors that are regular and asymptotically normally distributed. Our proposed locally

efficient estimator (LEE) is built on the semiparametric efficiency theory [Tsiatis,

2006] contains quantities that are easy to calculate, and is more efficient than the

α̂-estimator.

3.3 PROPOSED LOCALLY EFFICIENT ESTIMATOR

In this section, we describe the procedure in deriving our proposed estimator. We

restrict ourselves to the class of estimators that are regular and asymptotically linear
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(RAL) (Newey, 1990). Following the theory of inverse-weighting and the semipara-

metrics, all influence functions for case-cohort estimator of β can be written as

{

∆i +
(1−∆i)

αi
ξi

}

ϕi +

{

1−∆i −
(1−∆i)

αi
ξi

}

g[F(Ti)], (3.3.01)

where ϕi is as defined in Equation (3.2.03), and F(t) is the history of covariates up

to time t. The optimal influence function that gives rise to semiparametric efficient

estimator is given by Equation (3.2.06). However, it is not easy to implement in

practice due to its complex structure with intractable expectations. Alternatively,

we restrict the class by setting g(·) as a linear function of the data indexed by a

vector parameter γ, namely,

g[F(Ti)] = γTH(Ti),

where H(Ti) is a vector function of the covariates. In other words, we start with the

influence function

Ψi =

{

∆i +
(1−∆i)

αi
ξi

}

ϕi + (1−∆i)

(

αi − ξi

αi

)

γTH(Ti), (3.3.02)

The influence function (3.3.02) is indexed by the q−dimensional vector parameter

γ. Choice of this vector parameter γ will determine how efficient the corresponding

estimator will be. Therefore, the problem of finding the estimator with the minimum

variance is equivalent to finding optimal γ for which the variance of Ψi in (3.3.02) is

minimum. Also, the influence function for the α̂-estimator belongs to this class with

γ = 0. Therefore, optimal influence function in this class will be more efficient than

the influence function for α̂-estimator.

Let us define K(u) = Pr(Ci > u) and M c
i (u) = N c

i (u) −
u
∫

0

λc(t)Yi(t)dt be the

martingale associated with the censoring process, where N c
i (u) = I(Ui ≤ u,∆ = 0),
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and λc(u) is the hazard rate for the censoring distribution. Then plugging in ϕi from

Equation (3.2.03) and using Gill (1980) equality

∆i

K(Ti)
= 1−

Ti
∫

0

dM c
i (u)

K(u)
,

we can express Equation (3.3.02) as

{

K(Ti)−K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
+

ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

×I−1
i (β)

τ
∫

0

(Zi − E(u, β))dMi(u) +

{

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
−

ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

× γTH(Ti)

(3.3.03)

To find the optimal influence function, as in Robins et al. (1994), we consider the

Hilbert space H consisting of all zero-mean random functions of the observed data

with finite variance equipped with the covariance inner product. Within this space

we define the closed linear subspace U consisting of random functions

Ui =

{

1−K(Ti)+K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
−

ξi

αi

[

1−K(Ti)+K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

×γTH(Ti).

(3.3.04)

Our aim is to find the γ which minimizes the variance of Equation (3.3.03), or

equivalently, to find the element in U which is at the minimum distance from

Vi =

{

K(Ti)−K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
+

ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

×I−1
i (β)

τ
∫

0

(Zi − E(u, β))dMi(u).

(3.3.05)
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By the projection theorem for Hilbert spaces (Tsiatis, 2006, pp.13-19), and the

results presented in the Appendix, we deduce that the optimal γ is given by

γopt = E
[

ζiH(Ti)H
T (Ti)

]−1
E
[

H(Ti)ηi
]

(3.3.06)

where

ζi = −

(

1−
ξi

αi

+
ξi

α2
i

){

(1−K(Ti))
2 −K2(Ti)

Ti
∫

0

λc(u)S(u)

K(u)
du

}

and

ηi = K(Ti)I
−1
i

[{

(1−K(Ti))

(

1−
ξi

αi
+

ξi

α2
i

)

−K(Ti)

(

1−
ξi

αi

)}

Ti
∫

0

(Zi − E(u, β))λc(u)λ(u)S(u)du

+K(Ti)

(

1−
ξi

αi
+

ξi

α2
i

)

Ti
∫

0

(Zi − E(u, β))

K(u)
λc(u)λ(u)S(u)du

]

.

Thus the optimal influence function is given by (3.3.02) with γ replaced by γopt.

Consequently, we can obtain the optimal estimator of β, β̂LE, by solving

n
∑

i=1

Ψ̂i =

n
∑

i=1

[{

∆i +
(1−∆i)

αi
ξi

}

ϕ̂i +

{

1−∆i −
(1−∆i)

αi
ξi

}

γ̂optTH(Ti)

]

= 0,

(3.3.07)

where we estimate the following quantities as follows:

ϕ̂i = Î−1
i (β̂LE)

τ
∫

0

{Zi − Ec(u, β̂LE)}{dNi(u)− Yi(u)λ̂
c(u)du}, (3.3.08)

21



Îi(β) =

[{

Ti
∫

0

(Zi − Ec(u, β){dNi(u)− Yi(u)λ̂
c(u)du}

}

×

{

Ti
∫

0

(Zi −Ec(u, β){dNi(u)− Yi(u)λ̂
c(u)du}

}T]

,

(3.3.09)

γ̂opt = E
[

ζ̂iH(Ti)H
T (Ti)

]−1
E
[

H(Ti)η̂i
]

, (3.3.010)

ζ̂i = −

(

1−
ξi

αi

+
ξi

α2
i

){

(1− K̂(Ti))
2 − K̂2(Ti)

Ti
∫

0

λ̂c(u)Ŝ(u)

K̂(u)
du

}

, (3.3.011)

η̂i = K̂(Ti)I
−1
i (β)

[{

(1− K̂(Ti))

(

1−
ξi

αi
+

ξi

α2
i

)

−K(Ti)

(

1−
ξi

αi

)}

τ
∫

0

(Zi − Ec(u, β̂LE))λ̂
c(u)λ̂(u)Ŝ(u)du

+K̂(Ti)

(

1−
ξi

αi
+

ξi

α2
i

)

τ
∫

0

(Zi −Ec(u, β̂LE))

K̂(u)
λ̂c(u)λ̂(u) ˆS(u)du

]

,

(3.3.012)

λ̂c(u) =
dN c

i (u)

Yi(u)
, (3.3.013)

λ̂(u) =
dNi(u)

Yi(u)
, (3.3.014)

and Ŝ(u) is the survival function estimated by the product limit estimator. Note

that even though the hazard λ(u|Zi) and the survival S(u|Zi) are dependent on

covariates, for simplicity, in estimating ζi and ηi, we ignored the covariates and

22



simply used Nelson-Aalen and product limit estimator to estimate them. This leads

to an estimator for β that is consistent and asymptotically normal. The variance of

β̂LE can be estimated by

var(β̂LE) =

n
∑

i=1

Ψ̂2
i

n2
. (3.3.015)

3.4 SIMULATION STUDY

Simulation experiments have been carried out to evaluate the large sample properties

of our proposed efficient estimator LEE. For comparisons, we also assessed the α̂-

estimator, and then we used the full data Cox estimator as a reference estimator.

The simulation set up is very similar to that described by Kulich & Lin (2004).

Our simulation study involves three covariates, a binary covariate Z1 with Pr(Z1 =

1) = p, and two continuous covariates Z2 ∼ N(0, 0.52), and log(Z3) ∼ N(cz2, 0.5
2)

conditional on Z2 = z2, and we set p = 0.5 and c = 0.2. Thus, our model contains

three parameters: one for binary covariate Z1, and two for continuous covariates Z̃2

and Z3. Also, the failure times are generated from the exponential distribution, and

the censoring times are generated from a uniform distribution independent of the

survival data. We choose 3,000 subjects in the study cohort and the subsample are

drawn from the entire cohort.

Simulation results presented are for exp(β1) = 1.3, exp(β2) = 1.2, and exp(β3) =

1.2 corresponding to Z1, Z̃2 and Z3 respectively. We assumed that Z1 and Z3 were

observed at phase one, while Z2 was only observed at phase two. We generated

a surrogate variable Z̃2 ≡ Z2 + ǫ for every subject, where ǫ is normal with mean

zero independent of Z2. We note that Z2 and Z̃2 have correlation equal to either
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0.71 or 0.93. We designated the vector function of covariates, H(Ti), as Z̃2 and Z3.

Simulation results are based on 1,000 replications.

Table 1: Estimator, Monte Carlo standard deviations (MCSE) and relative efficien-

cies (RE) of LEE and α̂-estimators with Corr(Z2, Z̃2) = 0.71. True Relative Risks

are exp(β1) = 1.3, exp(β2) = 1.2, and exp(β3) = 1.2.

Full data Cox LE estimator α̂-estimator

Event Rate:(n)Variable Estimate (MCSE) Estimate (MCSE) RE Estimate (MCSE) RE

10% : 1275 Z1 1.331(0.140) 1.339(0.145) 0.93 1.320(0.150) 0.87

Z̃2 1.201(0.099) 1.206(0.102) 0.94 1.197(0.109) 0.82

Z3 1.155(0.083) 1.158(0.085) 0.95 1.151(0.089) 0.87

20% : 1537 Z1 1.868(0.096) 1.876(0.100) 0.92 1.887(0.104) 0.85

Z̃2 1.486(0.076) 1.483(0.078) 0.95 1.477(0.084) 0.82

Z3 1.107(0.083) 1.111(0.086) 0.93 1.112(0.088) 0.89

Table 1 presents the estimators and relative efficiencies for the different estima-

tors. The first row shows the results of 10% event rate for all three estimators. This

means that after including all the cases, we obtained 1275 samples for analysis. We

set the full data Cox as the reference category, and compared both our proposed lo-

cally efficient estimator (LEE), and the α̂-estimator to the full data Cox model. The

relative efficiencies have been calculated by using the ratio of the Monte Carlo means-

squared errors. For instance, the entry 1.320 (0.150), RE = 0.87 for α̂-estimator in

row one of Table 1 refers to the case where with a sample size of 1275, Monte Carlo

mean of relative risk estimates for the covariate Z1 is 1.32, showing a bias of 0.03.

The ratio of the Monte Carlo mean-squared error of the full data Cox model to that

of the α̂-estimator is 0.87. Thus, the α̂-estimator in this case is 13% less efficient
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compared to the full data Cox estimator. In contrast, for the same scenario, the LE

estimator has Monte Carlo mean of 1.339 and a relative efficiency of 0.93, showing a

bias of 0.01. This suggests that the LE estimator is only 7% less efficient compared

to the full data Cox estimator. Furthermore, comparing the estimators show that

the efficiency gain of the LE estimator over the α̂-estimator is approximately 95%.

In addition, for the variable Z̃2 the LE estimator has Monte Carlo mean estimate of

1.206 and a relative efficiency of 0.94 compared to the α̂-estimator, which has Monte

Carlo mean estimate of 1.197 and relative efficiency of 0.82. In terms of efficiency

gain for the Z̃2 variable, the LE estimator gains 87% efficiency over the α̂-estimator.

For the variable Z3, the LE estimator has Monte Carlo mean estimate of 1.158 and

relative efficiency of 0.95, compared to the α̂-estimator which has Monte Carlo mean

estimate of 1.151 and a relative efficiency of 0.87. This suggests an efficiency gain of

92% of the LE estimator over the α̂-estimator. From the relative efficiencies of the

two methods, it is evident that our proposed estimator always performs better. Also,

when we increased the event rate by sampling 20% from the controls (n= 1537), a

similar trend is observed. The LE estimator performs better and, therefore, more

efficient than the α̂-estimator.
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Table 2: Estimator, Monte Carlo standard deviations (MCSE) and relative efficien-

cies (RE) of LEE and α̂-estimators with Corr(Z2, Z̃2) = 0.93. True Relative Risks

are exp(β1) = 1.3, exp(β2) = 1.2, and exp(β3) = 1.2.

Full data Cox LE estimator α̂-estimator

Event Rate:(n)Variable Estimate (MCSE) Estimate (MCSE) RE Estimate (MCSE) RE

10% : 1201 Z1 1.328(0.147) 1.336(0.149) 0.97 1.318(0.151) 0.95

Z̃2 1.196(0.101) 1.198(0.104) 0.94 1.191(0.108) 0.87

Z3 1.151(0.081) 1.154(0.084) 0.93 1.149(0.089) 0.83

20% : 1425 Z1 1.866(0.095) 1.878(0.100) 0.90 1.891(0.103) 0.85

Z̃2 1.484(0.076) 1.490(0.078) 0.95 1.487(0.082) 0.86

Z3 1.106(0.083) 1.112(0.085) 0.95 1.111(0.088) 0.89

Likewise, Table 2 shows the relative efficiency of our proposed estimator com-

pared with other estimators, while varying the correlation coefficient from 0.71 to

0.93. We notice that the differences in correlation has little effect on the overall re-

sults. This holds true for all three estimators. However, the higher the event rate the

(i.e 10% to 20%), the higher the relative efficiencies of case-cohort estimators com-

pared to full-cohort estimator. The MCSEs are certainly smaller for higher event

rate as the effective total sample size is larger compared to lower event rate.
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3.5 ANALYSIS OF WILM’S TUMOR DATA

Wilm’s tumor is a rare type of kidney cancer that occurs in children. Many factors

contribute to the survival or relapse of this tumor. Some of the factors include:

age at diagnosis, stage of diagnosis of disease (usually 4 stages), histological type of

tumor, and the tumor diameter. We dichotomized the stage variable by combining

stages I and II into one group and stages III and IV into another group. There are

six parameters in our model excluding the intercept term. We have two interaction

variables: histology and the continuous age variable, and the stage and tumor diam-

eter variables. A total of 3915 patients were enrolled into the Wilm’s Tumor Study

[D’Angio et al, 1989]. We assume that all covariates except histological group are

observed at phase one. Also, we assign the vector function of covariates, H(Ti) as

age and stage variables. We illustrate the proposed LE estimator by analyzing data

from the Wilm’s tumor study. Thus, after the second phase sampling we obtain 660

control subjects and 669 cases. As a result, a total of 1329 observations are analyzed.

Results in Table 3 show that the for each centimeter increase in tumor diameter,

the relative risk of death is 1.06 for patients in stage I-II. This represents a 6%

increase in risk of death per 1 unit increase in tumor diameter for individuals in this

group. However, individuals in stage III-IV have a slightly lower risk (RR=0.98).

Thus, an increase in tumor diameter for persons in stage I-II can be fatal but not

for persons in stage III-IV. This is may seem counter-intuitive, however it is because

individuals in stage III-IV are already at higher risk of dying from cancer and so

an additional increase in diameter of the tumor would not necessarily determine

the survival or otherwise death of the patient. The age effect is amplified among

patients with unfavorable histology compared to those with favorable histology. For

every year increase in age, the risk for a person with unfavorable histology increases
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Table 3: Analysis of Wilm’s Tumor Data Using LE Estimator.

Variable Relative Risk SE CI

Tumor Diameter (per cm):

For Stage I-II patients 1.06 0.015 (1.03, 1.09)

For Stage III-IV patients 0.98 0.013 (0.95, 1.01)

Stage III-IV vs Stage I-II:

At tumor diameter = 5cm 0.71 0.065 (0.58, 0.84)

At tumor diameter = 11.5cm 0.43 0.096 (0.24, 0.61)

At tumor diameter = 20cm 0.22 0.086 (0.05, 0.39)

Age effect (per year):

With Favorable Histology 0.95 0.034 (0.89, 1.02)

With Unfavorable Histology 1.10 0.018 (1.07, 1.13)

Unfavorable vs Favorable Histology:

At age = 1 year 0.95 0.001 (0.95, 0.96)

At age = 3.5 years 0.66 0.086 (0.49, 0.83)

At age = 10 years 0.26 0.037 (0.19, 0.32)

by 10% (RR =1.10, CI =(1.07,1.13)) whereas for a person with favorable histology,

age is not statistically significant. We show the interaction of age and histology,

and stage and tumor diameter side by side in Figure 2.

As patients become older, the risk of death becomes higher for patients in the

unfavorable histology group compared to patients in the favorable histology group.

Relative risk of death in Stage III-IV compared to that in Stage I-II depends on the
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Figure 2: Relative risk of stage III-IV vs stage I-II as a function of tumor diameter

(left panel), and relative risk of unfavorable vs favorable histology as a function of

age (right panel).

diameter of tumor such that for smaller tumor diameter the relative risk is close to

one whereas for larger tumor size, the Stage I-II patients are at greater risk of death

compared to Stage III-IV patients (Figure 2).
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3.6 DISCUSSION

In this chapter, we have derived an expression for the most efficient estimator for the

restricted asymptotically linear estimators for analyzing case-cohort designs. The

proposed LE estimator works well for both binary and continuous covariates. The

LE estimator is guaranteed to gain efficiency over other available estimators such as

CDW estimators or the estimators proposed by Mark & Katki (2006). In particular,

the LE estimator is more efficient than the α̂-estimator. Our proposed estimator uses

all the first phase information, and therefore, for inferential procedures, our estima-

tor will give more accurate results than existing ones. Furthermore, our proposed

estimator contains quantities that are easy to calculate, and has nice asymptotic

properties.

On the contrary, the efficiency of the α̂-estimator depends on whether we have

completely observed continuous covariates versus completely observed binary covari-

ates. Not only that but also, the efficiency of the α̂-estimator depends on the cor-

rectness of the assumed logistic model, while the efficiency of LEE does not depend

on whether the observed covariates are binary or continuous. Through simulations

and data analysis, we have shown that the efficiency gain of the LE estimator is sub-

stantial. Also, the LE estimator is consistent and asymptotically normal. In Chapter

4, we implement the LE estimator that handles time-dependent covariates.
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4.0 A SIMPLE LOCALLY EFFICIENT ESTIMATOR FOR

RELATIVE RISK FOR TIME-DEPENDENT VARIABLES IN

CASE-COHORT STUDIES

In survival analysis, a frequently used method of associating covariates with the time

of failure is Cox regression (Cox, 1972; Andersen & Gill, 1982). The Cox proportional

hazard model can be written as

λi(t) = λo(t)exp(β
TZi) (4.0.01)

where λi(t) is the hazard at time t of the i-th individual, λo(t) is the baseline hazard

at time t, Zi is a vector of covariate values corresponding to the i-th individuals,

and β is a vector of coefficients. The Cox model defined in Equation (4.0.01) is

very popular because it is robust to distributional assumption of the survival time

and can be utilized in many situations (Liu et al., 2010). Although the baseline

hazard, λo(t), is left unspecified, we can estimate β and thus compute the hazard

ratio. This is because the baseline hazard does not depend on Z, but only on t.

In addition, the baseline hazard can be regarded as infinite dimensional, while our

parameter of interest, β, is finite dimensional. As a result, the Cox model is a classic

semiparametric model. Hence, it requires few model assumptions.

To make inference on the regression parameters, Cox (1972) developed a non-
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parametric method called partial likelihood. Estimation of the parameter values is

obtained by use of maximum partial likelihood estimation. The partial likelihood for

Cox model is given by

Lp =
n
∏

i=1

[

exp(βTZi)
∑

j∈R(ti)

exp(βTZj)

]∆i

, (4.0.02)

where ti denotes the failure time for the i-th individual, R(ti) is the number of people

at risk of experiencing an event at time ti, that is, the risk set, and ∆i is an indicator

for a case (∆i = 1) or censored (∆i = 0) individuals. It should be noted that the

partial likelihood estimation described in (4.0.02) is valid only when there are no

ties in the data set. That is, time is assumed to be continuous and no two subjects

have the same event time (Klein & Moeschberger, 2005). Several methods have been

proposed to handle situations where there are ties in the data set. For example,

Breslow (1974) suggested replacing the term
∑

j∈R(ti)

exp(βTZj) in the denominator in

Equation (4.0.02) by
(

∑

j∈R(ti)

exp(βTZj)

)di

,

where di is the number of events occurring at time ti. The denominator corresponds

to the sum of all hazards at ti for all individuals who were at risk at time ti, while

the numerator is the hazard for individual i at time ti. This approach is known as

the Breslow approximation. Also, Efron (1977) extended the Breslow approximation

to situations where there are large number of ties. Like the Breslow approximation,

Efron’s method will yield estimates of β which are biased toward zero when there are

many ties (Pugh, 1993). In fact, the Efron method gives much more closer estimates

than the Breslow approximation. In addition, Kalbfleisch & Prentice (1978) derived a

likelihood involving only β and Z, excluding λo(t), based on the marginal distribution
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of the ranks of the observed failure time. By this approach, all possible orderings of

the tied events are calculated, and prababilities of each are summed. Usually, this

approach is referred to as the exact method. It is the most complex, but also the

most accurate (Pugh, 1993).

Several methods have been proposed to extend the Cox proportional hazard

model in (4.0.01) to time-dependent covariates. The Cox regression model specifies

the intensity function for the observed time counting process Ni for a time-dependent

covariate vector Z(t) evaluated at time t as

λ(t|Z(t)) = λo(t)exp(β
TZ(t)) (4.0.03)

where λo(t) is an unspecified baseline hazard function, λ(t|Z(t)) is the conditional

hazard for failure given the covariate history up to time t, and β is a vector-valued

parameter. Evidently, Equation (4.0.03) generalizes the Cox regression model de-

fined in (4.0.01). A key feature in (4.0.01) is proportionality of hazard functions

for individuals with different covariates is lost in (4.0.03). Different authors have

considered variable-influence covariates in models similar to Equation (4.0.03), but

only under rather stringent assumptions on the functional form of β.

Fisher & Lin (1999) described the advantages of using the Cox proportional

hazards regression model with time-dependent covariate. A time-dependent covariate

is defined as a variable whose value for a given individual may change over time. The

modeling of time-dependent covariates involve the choice of a functional form and this

may require some deep biological insights (Liu, et al. 2010). Kalbfleisch & Prentice

(2002) distinguished between external and internal time-dependent covariates. An

external time-dependent covariate is one that is not directly related to the failure

mechanism. An example would be an individual’s age in a long-term follow-up study.

On the contrary, an internal time-dependent covariate is a value over time generated
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by the individual under study. An example would be blood pressure measured over

the course of a study.

The estimation and inference for the Cox proportional hazard model for time-

dependent covariates defined in Equation (4.0.03) have been studied by several au-

thors. For example, Zucker & Karr (1990) proposed estimating the regression param-

eter function β, by maximizing a penalized version of the partial likelihood. Using a

penalized likelihood technique, their estimator allowed β to be infinite dimensional.

Thus, they outlined a computational approach appropriate for the maximization of

the partial likelihood. Their technique, however, applies to only large sample sizes

(Murphy, 1993). Also, Hastie & Tibshirani (1990) described a general framework

of varying-coefficient models for survival data. They proposed an estimator that

allowed the regression coefficients to change smoothly with the value of other vari-

ables. Their estimator is based on a penalized least squares criterion that imposes

restrictions on the coefficient functions. In addition, Murphy & Sen (1991) proposed

an estimator similar to that described by Zucker & Karr (1990), which also allowed

the regression parameter β to be infinite dimensional. Their estimator, however,

relies on maximization of the likelihood estimator based on simple histogram sieves.

Other methods that have been proposed based on Cox proportional hazard model

with time-dependent covariates involve assessing the model adequacy and goodness-

of-fit measures. These methods seek to handle the violation of the proportional

hazard model assumption, which occurs in a Cox proportional hazard model with

time-dependent covariates. For example, Grambsch & Therneau (1994) visualized

the parameter function as a smooth function, and fitted a weighted least squares line

to the residual plots. The estimator proposed by Marzec & Marzec (1997) used a

chi-squared type goodness-of-fit test to handle the violation of the proportional haz-

ard assumption, while Cai & Sun (2003) developed an estimator that transformed
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the regression parameter into a smooth coefficient function. Thus, the estimator pro-

posed by Cai & Sun (2003) can be used as a diagnostic tool to handle the departures

from the proportional hazard model.

In this chapter, we present a semiparametric locally efficient estimator for an-

alyzing case-cohort studies involving time-dependent covariates that do not require

strong model assumptions. The basic idea is the same as that described in Chapter

3, except that we introduce time-dependent covariate vectors in the model. In the

next section, we introduce the model, notation, and assumptions used throughout

this chapter, and we derive a class of estimating equations that allow time-dependent

covariates in a case-cohort design. Section 4.2 discusses our proposed locally efficient

estimator (LEE). In Section 4.3, we test our proposed estimator by running two

simulation studies. The first simulation study incorporates a binary time-dependent

covariate, while the second simulation study uses a continuous time-dependent co-

variate.

4.1 MODEL, NOTATION, AND ASSUMPTIONS

Let T be the failure time, C be the potential censoring time, and Z be a vector of

covariates, possibly time dependent. Suppose that T is conditionally independent of

C given Z, and that the conditional distribution of T given Z(t) follows Cox (1972)

proportional hazards model

λ(t|Zi(t)) = λo(t)exp(β
TZi(t)),

Suppose that we have n individuals in the study, such that the data consists of

{Ui,∆i, Zi(tj), j = 1, · · · , mii = 1, · · · , n, }
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where mi ≤ Ui, ∆i indicates the status of the observed event, taking a value of 1

for observing a real failure event and 0 otherwise. At a specific time t, let R(t) =

{i : Ui ≥ t} denote the risk set. As described in Chapter 3, the case-cohort design

evaluates some covariates on the overall cohort and measures expensive covariates on

the subcohort of controls and all cases. In a simple random sampling design, where

Zi(t) is observed for all individuals in the sample, the estimation of β can be done

by maximizing the partial likelihood

L(β) =

n
∏

i=1

[

exp(βTZi(ti))
∑

j∈Ri

exp(βTZj(ti))

]∆i

, (4.1.01)

where Ri ≡ R(ti) is the set of individuals who are at risk at time ti. The partial

likelihood score function incorporating time-dependent covariates is given by

U(β) =

n
∑

i=1

∆i

{

Zi(ti)−

∑

j∈Ri

exp(βTZj(ti))Zj(ti)

∑

j∈Ri

exp(βTZj(ti))

}

(4.1.02)

where
∑

j∈Ri

exp(βTZj(ti))Zj(ti)

∑

j∈Ri

exp(βTZj(ti))

is the population weighted average of the covariates of individuals at risk at time ti.

The maximum partial likelihood estimator β̂ is the solution of U(β) = 0

Our goal is to adapt the above expression in Equation (4.1.02) to a case-cohort

sampling design. When the exposure Zi(t) is observed on all individuals in the sam-

ple, the expression in (4.1.02) can be re-written as stochastic integrals with respect

to the counting process as follows:

U(β) =
n

∑

i=1

τ
∫

0

[Zi(u)− E(u, β)]dNi(u), (4.1.03)
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where

E(u, β) =

n
∑

i=1

Yi(u)Zi(u)exp(β
TZi(u))

n
∑

i=1

Yi(u)exp(βTZi(u))

is the population weighted average of the exposure vector Zi(u) among those who

are at risk at time u, Yi(u) = I(Ui ≥ u) be the at risk indicator at time u, and

Ni(u) = ∆iI(Ui ≤ u), i = 1, 2, · · · , n; τ is a fixed time chosen to limit the analysis

to a follow-up time beyond which there is still a reasonable number at risk. The

solution of β, β̂PL from Equation (4.1.03) has been shown to follow an asymptotic

normal distribution (Fisher & Lin, 1999). In fact, β̂PL is a consistent estimator of β.

The expectation of the terms inside the integral from Equation (4.1.03) equals zero.

Furthermore, one can write

n1/2(β̂PL − βo) = n−1/2
n

∑

i=1

χi + op(1),

where

χi = I−1
i (βo)

τ
∫

0

{Zi(u)− E(u, βo)}dMi(u), (4.1.04)

is the influence function of β̂PL, with

E(u, β) =
s1(u, β)

so(u, β)
=

E[Yi(u)Zi(u)exp(β
TZi(u))]

E[exp(βTZi(u))]
,

Ii(β) =
−∂2logL(β)

∂β∂βT
=

n
∑

i=1

τ
∫

0

V(u, β)dNi(u), (4.1.05)

where

V(u, β) = [Zi(u)− E(u, β)]⊗2
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with b⊗2 = bbT for a vector b, and Mi(u) = Ni(u) −
u
∫

0

λ(u|Zi(u))Yi(u)du is the

martingale process corresponding to the hazard function λ(u|Zi(u)), and the death

and at-risk processes Ni(u) and Yi(u) respectively; op(1) is a term that converges to

zero in probability as n approaches infinity.

In the case-cohort sampling design, it is not possible to estimate β from Equation

(4.1.03) because exposure measurements are not obtained on all individuals. Usually,

the score Equation (4.1.03) is modified as

U(β) =
n

∑

i=1

τ
∫

0

[Zi(u)− Etc(u, β)]dNi(u), (4.1.06)

to make it applicable to the case-cohort sampling where

Etc(u, β) =

n
∑

i=1

ξi
αi
Yi(u)Zi(u)exp(β

TZi(u))

n
∑

i=1

ξi
αi
Yi(u)exp(βTZi(u))

is the weighted at-risk average of the exposure vector Zi(u) over the subcohort sam-

ple weighted by the sampling fraction αi, and ξi is a binary indicator for the controls.

Unfortunately, the estimation procedure in (4.1.06) eliminates all subjects with in-

complete data. As a result, estimation procedures based on (4.1.06) lead to the loss

of efficiency. In the next section, we propose a locally efficient estimator (LEE).

The LE estimator is asymptotically normally distributed, and it is built on the semi-

parametric efficiency theory (Wahed, 2006). Also, the LE estimator uses all the

first phase covariate information under a case-cohort sampling design. Therefore, it

is guaranteed to be more efficient than any estimator built on the pseudoscore in

Equation (4.1.03).
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4.2 LOCALLY EFFICIENT ESTIMATOR

In this section, we explain how our proposed estimator is derived. We restrict our-

selves to the class of estimators that are regular and asymptotically linear (RAL)

(Newey, 1990). Applying the theory of inverse weighting and semiparametrics, all in-

fluence functions for case-cohort estimator of β involving time-dependent covariates

can be written as

{

∆i +
(1−∆i)

αi

ξi

}

χi +

{

1−∆i −
(1−∆i)

αi

ξi

}

g[F(Ti)], (4.2.01)

where χi is as defined in Equation (4.1.04), and F(t) is the history of covariates up

to time t. The influence function defined in (4.1.04) contains quantities that are not

easy to implement. Therefore, we set g(·) as a linear function of the data indexed

by a q-dimensional parameter γ, by restricting the class, leading to

g[F(Ti)] = γTH(Ti),

where H(Ti) is a vector function of the covariates. In other words, we start with the

influence function below

Ψi =

{

∆i +
(1−∆i)

αi
ξi

}

χi + (1−∆i)

(

αi − ξi

αi

)

γTH(Ti). (4.2.02)

Suppose K(u) = Pr(Ci > u) and M c
i (u) = N c

i (u)−
u
∫

0

λc(t)Yi(t)dt is the martingale

associated with the censoring process, where N c
i (u) = I(Ui ≤ u,∆ = 0), and λc(u)

is the hazard rate for the censoring distribution. When we plug in ϕi from Equation

(4.1.04) and using Gill (1980) equality

∆i

K(Ti)
= 1−

Ti
∫

0

dM c
i (u)

K(u)
,
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we are able to write Equation (4.2.02) as

{

K(Ti)−K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
+

ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

×I−1
i (β)

τ
∫

0

(Zi(u)− E(u, β))dMi(u) +

{

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
−

ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

× γTH(Ti)

(4.2.03)

As described in Chapter 3, we consider the Hilbert space H consisting of all mean

zero random functions of the observed data with finite variance equipped with the

covariance inner product. We define a closed linear subspace U , within this space,

consisting of random functions

{

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
−

ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

× γTH(Ti).

(4.2.04)

Our goal, again, is to find the γ which minimizes the variance of Equation (4.2.03).

Specifically, we find the element in U which is at the minimum distance from

{

K(Ti)−K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
+

ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

×I−1
i (β)

τ
∫

0

(Zi(u)− E(u, β))dMi(u).

By the projection theorem for Hilbert spaces (Tsiatis, 2006, pp.13-19), we derive

that the optimal γ is given by

γopt = E
[

ζiH(Ti)H
T (Ti)

]−1
E
[

H(Ti)ηi
]

(4.2.05)
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where

ζi = −

(

1−
ξi

αi
+

ξi

α2
i

){

(1−K(Ti))
2 −K2(Ti)

Ti
∫

0

λc(u)S(u)

K(u)
du

}

and

ηi = K(Ti)I
−1
i (β)

[{

(1−K(Ti))

(

1−
ξi

αi
+

ξi

α2
i

)

−K(Ti)

(

1−
ξi

αi

)}

Ti
∫

0

(Zi(u)− E(u, β))λc(u)λ(u)S(u)du

+K(Ti)

(

1−
ξi

αi
+

ξi

α2
i

)

Ti
∫

0

(Zi(u)− E(u, β))

K(u)
λc(u)λ(u)S(u)du

]

.

Thus the optimal influence function is given by (4.2.02) with γ replaced by γopt. As

a result, we can obtain the optimal estimator of β, β̂LE , by solving

n
∑

i=1

Ψ̂i =

n
∑

i=1

[{

∆i +
(1−∆i)

αi
ξi

}

χ̂i +

{

1−∆i −
(1−∆i)

αi
ξi

}

γ̂optTH(Ti)

]

= 0,

(4.2.06)

where the above quantities are estimated as:

χ̂i = Î−1
i (β̂LE)

τ
∫

0

{Zi(u)−Etc(u, β̂LE))}{dNi(u)− Yi(u)λ̂
c(u)du}, (4.2.07)

Îi(β) =

n
∑

i=1

∆i

[

G2i −G1iG
T
1i

Goi

]

(4.2.08)

where G2i = exp(β̂TZj(ti))Zj(ti)Zj(ti)
T , G1i = exp(β̂TZj(ti))Zj(ti), and Goi =

exp(β̂TZj(ti))

γ̂opt = E
[

ζ̂iH(Ti)H
T (Ti)

]−1
E
[

H(Ti)η̂i
]

, (4.2.09)
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λ̂c(u) =
dN c

i (u)

Yi(u)
, (4.2.010)

λ̂(u) =
dNi(u)

Yi(u)
, (4.2.011)

ζ̂i = −

(

1−
ξi

αi

+
ξi

α2
i

){

(1− K̂(Ti))
2 − K̂2(Ti)

Ti
∫

0

λ̂c(u)Ŝ(u)

K̂(u)
du

}

, (4.2.012)

η̂i = K̂(Ti)I
−1
i (β)

[{

(1− K̂(Ti))

(

1−
ξi

αi

+
ξi

α2
i

)

−K(Ti)

(

1−
ξi

αi

)}

Ti
∫

0

(Zi(u)−Etc(u, β̂LE))λ̂
c(u)λ̂(u)Ŝ(u)du

+K̂(Ti)

(

1−
ξi

αi
+

ξi

α2
i

)

Ti
∫

0

(Zi(u)− Etc(u, β̂LE))

K̂(u)
λ̂c(u)λ̂(u)Ŝ(u)du

]

,

(4.2.013)

and Ŝ(u) is the survival function estimated by the product limit estimator. This leads

to an estimator for β that is consistent and asymptotically normal. The variance of

β̂LE can be estimated by

var(β̂LE) =

n
∑

i=1

Ψ̂2
i

n2
. (4.2.014)
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4.3 SIMULATION STUDY

We adapt the algorithm described by Hendry (2013) to generate survival times that

follow a Cox proportional hazards model with time-dependent covariates. To assess

the large sample properties of our proposed locally efficient estimator (LEE), we

conduct two simulation studies. In the first simulation, we generate a binary time-

dependent covariate Z1. Suppose that Z1 represents whether a person had surgery

or no surgery. This means that once an individual has the event (i.e. surgery), their

event status remains constant for the rest of the study. Time to surgery, So, follow

a uniform, U(0,20), distribution. The failure time T is generated from a piecewise

exponential distribution, while the observed time Ui is obtained by using rejection

sampling to randomly accept each value such that TSo ≤ 20. We set Z1 = 1 if Ui is

greater or equal to So, and zero otherwise to indicate whether there was a surgery or

not before failure or censoring. We have 1000 observations. Table 4 presents a sample

simulated data set that shows the data structure for the binary time-dependent

covariate. Also, we generate continuous covariate Z2 ∼ U(0, 1) independent of Z1.

Therefore, our model in the first simulation study contains two parameters: one

binary time-dependent covariate Z1 and a continuous covariate Z2. The first row

of Table 4 represents the time a subject enters the study. For example, subject 1

initially enters the study at time 0, and after the first interval, the binary-dependent

covariate Z1 is zero. This means that subject 1 does not have an event (i.e. surgery)

at this time interval. However, on the second row the interval shows that subject

1 has an event, and once an event occurs, it stays the same for the rest of the

follow-up. Also, notice that the covariate Z2 remains the same at each time point

since it is not time-dependent. On the contrary, subject 2 does not have an event

in the first two intervals, but an event is recorded at the third interval. Once an
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Table 4: Sample Simulated Data Set For Binary Time-dependent Covariate Z1 and

Continuous Covariate Z2.

Subject Ui ∆i Z1 Z2

1 9.03 0 0 0.19

1 9.03 1 1 0.19

1 9.03 1 1 0.19

1 9.03 1 1 0.19

1 9.03 1 1 0.19

1 9.03 1 1 0.19

1 9.03 1 1 0.19

1 9.03 1 1 0.19

2 5.32 0 0 0.13

2 5.32 0 0 0.13

2 5.32 1 1 0.13

2 5.32 1 1 0.13

2 5.32 1 1 0.13

2 5.32 1 1 0.13

event is recorded for subject 2, it remains the same for the rest of the follow-up

study. Similarly, the Z2 covariate value for subject 2 remains constant over time

since it is not time-dependent. In the second simulation setup, we generate a

continuous time-dependent covariate Z3 ∼ U(−0.5, 0.5) and a binary covariate Z4

with Pr(Z4 = 1) = 0.5. Likewise, Table 5 shows a sample simulated data set for the
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Table 5: Sample Simulated Data Set For Continuous Time-dependent Covariate Z3

and Binary Covariate Z4.

Subject Ui ∆i Z3 Z4

1 8.65 1 -0.01 0

1 8.65 1 -0.08 0

1 8.65 1 -0.47 0

1 8.65 1 -0.30 0

1 8.65 1 0.05 0

1 8.65 1 0.01 0

1 8.65 1 -0.14 0

1 8.65 1 -0.17 0

1 8.65 1 0.16 0

1 8.65 1 -0.19 0

1 8.65 1 0.27 0

1 8.65 1 -0.24 0

2 5.18 1 -0.01 1

2 5.18 1 0.39 1

2 5.18 1 -0.20 1

2 5.18 1 -0.45 1

2 5.18 1 0.06 1

2 5.18 1 -0.46 1

2 5.18 1 0.12 1

45



continuous time-dependent covariate Z3 and a binary covariate Z4. From Table 5 we

notice that the continuous time-dependent covariate Z3 changes for every interval.

Thus, our model in simulation study 2 contains two parameters: one continuous

time-dependent covariate Z3 and a binary covariate Z4.

Results for simulation study 1 (Table 6) are presented for exp(β1) = 0.9 and

exp(β2) = 1.0 corresponding to Z1 and Z2 respectively. We assume that Z2 is ob-

served at phase one, while Z1 is only observed at phase two. In addition, we designate

the vector value function of covariates, H(Ti), as both Z1 and Z2. Simulation results

are based on 500 replications. Table 6 presents the estimated coefficients and Monte

Carlo mean-squared errors (MCSE) for the full cohort by running a Cox model with

time-dependent covariates compared to our proposed estimator. From Table 6 we

see that the full-cohort estimator reports a relative risk of death after surgery com-

pared to the relative risk of death before surgery as 1.23. Similarly, the LE estimator

reports a relative risk of death for the binary time-dependent covariate Z1 as 1.27,

with Monte Carlo mean-squared error 0.106. A similar trend is observed in Table 7

when we treat the time-dependent covariate as continuous. The full-cohort estimator

shows a relative risk of 1.28 and MCSE of 0.158 for the continuous time-dependent

covariate Z3, while the LE estimator shows a relative risk of 1.36 and its correspond-

ing MCSE as 0.162.

Also, in simulation 2 (Table 7) the binary covariate Z4 reports MCSE of 0.094

when the time-dependent covariate Z3 is treated as continuous compared to an MCSE

of 0.150 when the time-dependent covariate Z1 is treated as binary. Overall, the

values are quite close considering the fact that our proposed estimator does not use

the full-cohort unlike the Cox model.

Results for simulation 2 are presented for β3 = 1.3 and β4 = 0.9 corresponding to

Z3 and Z4 respectively. In the case-cohort sampling design for this simulation setup,

46



Table 6: Simulation 1 Results Showing The Estimator, And Monte Carlo Standard

Deviations (MCSE) For The Full-cohort And Our Proposed LE Estimator. True

Relative Risks Are exp(β1) = 1.2, and exp(β2) = 1.1.

Full-Cohort LEE

Variable Estimate MCSE Estimate MCSE

Z1 1.23 0.095 1.17 0.101

Z2 1.12 0.150 1.06 0.156

we assume that Z4 is observed at phase one, while Z3 is only observed at phase two.

Also, the vector function of covariates, H(Ti), are presented by Z3 and Z4. Table 7

shows the estimated coefficients and Monte Carlo mean-squared errors (MCSE) for

the full data cohort compared with our proposed LE estimator.

Table 7: Simulation 2 Results Showing The Estimator, And Monte Carlo Standard

Deviations (MCSE) For The Full-cohort And Our Proposed LE Estimator. True

Relative Risks Are exp(β3) = 1.3, and exp(β4) = 0.9.

Full-Cohort LEE

Variable Estimate MCSE Estimate MCSE

Z3 1.28 0.158 1.32 0.161

Z4 0.92 0.094 0.94 0.099
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4.4 DISCUSSION

In this chapter, we show how to derive the most efficient estimator for analyzing a

case-cohort design with time-dependent covariates. Our proposed estimator is built

on the semiparametric efficiency theory, and restricts to the class of asymptotically

linear estimators. We show that our estimator is consistent and asymptotically

normally distributed. The proposed LE estimator contains quantities that are easy

to calculate, and works well for both binary time-dependent and continuous time-

dependent covariates.

The major difficulty with time-dependent covariates in a case cohort model frame-

work is computing. At each event (i.e. surgery) time, we need to know the exact

value of the covariate at that event time for all individuals at risk. Evidently, this

complicates the management, collection, and storage of such data.

4.5 PUBLIC HEALTH SIGNIFICANCE

The usual cohort design is very expensive to conduct and also inefficient. As the

solicitation of funding to conduct research becomes increasingly challenging, it is

imperative for researchers to develop sophisticated but highly efficient methods to

reduce the cost of research. This dissertation demonstrates the importance of using

innovative methodology to reduce cost associated with research.
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APPENDIX

DERIVATION OF γOPT

Define the filtration F(u) as the increasing sequence of sub−σ−algebras

F(u) = σ{Ni(s), N
c
i (s), Zi, 0 ≤ s ≤ u, i = 1, · · · , n},

and H1i(·) and H2i(·) are predictable functions with respect to F(u). Unless other-

wise stated, this is the filtration with respect to which all the martingales are defined

in this dissertation. In order to derive the optimal gamma we use the following results

which follow from theorem 2.4.4 in Fleming and Harrington (1991).

Under the assumption of independent censoring

E

[

Ti
∫

0

H1i(u)dMi(u)×

Ti
∫

0

H2i(u)dM
c
i (u)

]

=− E

[

Ti
∫

0

H1i(u)H2i(u)Yi(u)λ(u)λ
c(u)du

]

=− E

[

Ti
∫

0

H1i(u)H2i(u)λ
c(u)λ(u)S(u)du

]

,

(A.0.01)
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E

[

H1i(u)

∫ Ti

0

H2i(u)dM
c
i (u)

]

= E

[

H2i(u)

Ti
∫

0

H1i(u)dMi(u)

]

= 0, (A.0.02)

and

E

[

Ti
∫

0

H1i(u)dM
c
i (u)×

Ti
∫

0

H2i(u)dM
c
i (u)

]

= E

[

Ti
∫

0

H1i(u)H2i(u)λ
c(u)K(u)S(u)du

]

.

(A.0.03)

From the discussion in Section 3.3, the optimal influence functions, or equiva-

lently, the optimal γ is obtained by projecting Vi in Equation (3.3.05) on U defined

by the elements Ui in Equation (4.1.03). By the projection theorem, the optimal

gamma (γopt) must satisfy

E

[

[{

K(Ti)−K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
+

ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

×I−1
i (β)

τ
∫

0

(Zi − E(u, β))dMi(u) +

{

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)
−

ξi

αi

[

1−K(Ti)

+K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

× γoptTH(Ti)

]

×

[{

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

−
ξi

αi

[

1−K(Ti) +K(Ti)

Ti
∫

0

dM c
i (u)

K(u)

]}

× γTH(Ti)

]

]

= 0

(A.0.04)

Since Equation (A.0.04) has to be true for any γ, we set γ = 0 and solve Equation

(A.0.04) for γopt using iterative conditional expectation. Consequently, we obtain
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γoptE

[

−

(

1−
ξi

αi
+

ξi

α2
i

){

(1−K(Ti))
2 −K2(Ti)

Ti
∫

0

λc(u)S(u)

K(u)
du

}]

= E

[

K(Ti)I
−1
i (β)

[{

(1−K(Ti))

(

1−
ξi

αi
+

ξi

α2
i

)

−K(Ti)

(

1−
ξi

αi

)}

τ
∫

0

(Zi − E(u, β))λc(u)λ(u)S(u)du

+K(Ti)

(

1−
ξi

αi
+

ξi

α2
i

)

τ
∫

0

(Zi − E(u, β))

K(u)
λc(u)λ(u)S(u)du

]

(A.0.05)

Therefore, by solving Equation (A.0.05) for γopt we obtain

γopt = E
[

ζiH(Ti)H
T (Ti)

]−1
E
[

H(Ti)ηi
]

(A.0.06)

where

ζi = −

(

1−
ξi

αi
+

ξi

α2
i

){

(1−K(Ti))
2 −K2(Ti)

Ti
∫

0

λc(u)S(u)

K(u)
du

}

and

ηi = K(Ti)I
−1
i

[{

(1−K(Ti))

(

1−
ξi

αi
+

ξi

α2
i

)

−K(Ti)

(

1−
ξi

αi

)}

τ
∫

0

(Zi − E(u, β))λc(u)λ(u)S(u)du

+K(Ti)

(

1−
ξi

αi

+
ξi

α2
i

)

τ
∫

0

(Zi − E(u, β))

K(u)
λc(u)λ(u)S(u)du

]

.
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