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ABSTRACT 

Cancer immunosurveillance is the body’s sentinel mechanism of recognizing and eliminating 

malignancy. Specifically, the immune system can mount a response against cancer through the 

recognition of tumor associated antigens (TAA). While studying two TAAs, MUC1 and cyclin 

B1, our group discovered T cell and antibody responses specific for these abnormal molecules not 

only in cancer patients but also in healthy individuals with no cancer history. While seeking to 

explain why TAA specific responses exist in healthy people, our group and others’ epidemiologic 

studies revealed that individuals who had a history of febrile pathogenic infections had a lower 

risk of cancer development. These results led us to hypothesize that non-malignant events such as 

influenza infection, elicit abnormal expression of multiple self-antigens on infected cells and 

specific immune memory against those antigens.  Abnormal expression of the same antigens on 

tumor cells triggers specific immune responses and provides adaptive immune memory to 

participate in tumor surveillance. Rather than classifying these abnormal molecules common to 

virus infected and malignant cells as TAAs, they should be recognized as disease associated 

antigens (DAA). I first tested this hypothesis in MUC1Tg mice and found that, influenza infection 

induces abnormal MUC1 expression in the lung, MUC1 specific CD8+ T cells, and that influenza 

experienced mice control MUC1+ tumor growth. I next addressed if this infection model could 

lead to the identification of other DAA. I modified the mouse model by using C57BL/6 mice, using 

two influenza virus strains as the stronger pathogenic insult to the lung and using a lung tumor 

Lewis Lung Carcinoma (3LL) as the tumor challenge. Through the use of 2D-Difference Gel 

Electrophoresis to resolve and identify tumor proteins detected deferentially by pre- and post-

infection mouse sera, I selected from over 120 proteins five specific molecules (DAAs) for further 
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study: GAPDH, Histone H4, HSP90, Malate Dehydrogenase 2 and Annexin A2.  Western blot 

analysis confirmed their overexpression in two mouse tumor cell lines and in flu-infected lungs 

compared to healthy lungs. Additionally I confirmed that antibodies and CD8+ T cell specific 

responses were generated against these 5 DAAs following flu infection. Lastly, animals vaccinated 

with peptide derived from these candidate DAA demonstrated a prolonged delay in tumor growth. 

Better understanding of early life events that prepare the immune system to protect individuals 

against known and unknown pathogens as well as future malignancies will help direct vaccines 

towards strengthening life-long immunosurveillance. Importantly, these findings support the use 

of vaccines based on DAAs/TAAs for cancer prevention.  
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1.0  INTRODUCTION 

1.1 CURRENT VIEWS ON CANCER IMMUNOSURVEILLANCE 

1.1.1 Development of the Tumor Immunosurveillance Concept  

The idea that the immune system could recognize and eliminate tumors first came about during 

the early 1900s. Paul Ehrich proposed that tumor occurrence in organisms with long lifespans 

would be much higher if the immune system were not present to keep tumor outgrowth under 

control (1). Burnett and Thomas formulated this proposal into the concept of tumor 

immunosurveillance, which defines that adaptive immunity is the major mechanism responsible 

for protecting immunocompetent individuals against cancer (2-5). Not long after the proposal, the 

idea of cancer immunosurveillance came under heavy scrutiny. The biggest setback came from 

Stutman et al. who demonstrated that rates of carcinogen-induced or spontaneous tumors in 

immunocompetent wildtype mice were similar to immunocompromised nude mice (6). Nude mice 

lack a thymus and as a result have impairment in producing mature T cells. Therefore, it was 

expected that cancer rates in these immunocompromised mice would be higher than their 

immunocompetent counterparts. Subsequently the tumor immunosurveillance theory was 

discredited and abandoned for quite some time. It was not until the advent of gene knockout 
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technology that provided better mouse models and other new testing modalities that the 

immunosurveillance theory was revived and accepted. 

 In the 1990s, many experimental outcomes led to renewed interest in tumor 

immunosurveillance. Dighe et al. demonstrated that Interferon-γ (IFN-γ) plays an important role 

in the elimination of tumors. Specifically, they showed enhancement in tumor growth through the 

use of IFN-γ neutralizing antibodies in tumor bearing animals or challenging animals with an IFN-

γ dominant-negative tumor (7). In studies using knockout technology, IFN-γ receptor knockout 

mice showed an increase in susceptibility to transplantable and spontaneous tumor growth. 

Downstream in the IFN-γ signaling cascade, molecules such as Signal Transducer and Activators 

of Transcription-1 (STAT-1) were tested as well. STAT-1 knockout mice were shown to be more 

susceptible to tumor growth (8). One of the biggest pieces of evidence supporting tumor 

immunosurveillance came from the use of RAG2-/- mice that lack T cells, B cells, and Natural 

Killer T (NKT) cells (9). RAG2-/- mice were highly susceptible to 3-methylcholanthrene (MCA)-

induced sarcomas. Tumor growth was further enhanced in RAG2-/- and STAT1-/- (RkSk) double 

knockout mice. Additional studies using Perforin-/- mice (a cytolytic molecule involved in NK and 

CD8+ T cell killing) or using mice depleted of NK or NKT cells showed that these cells participate 

in immunosurveillance (10, 11). These new data explained why Stutman et al. observed similar 

rates of carcinogenesis between nude and wildtype animals. Nude mice do not have T or B cells, 

but they do have NK cells capable of playing a critical role in immune surveillance. These data 

further strengthened the notion that tumor immunosurveillance is a real and necessary sentinel 

immune process. 
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1.1.2 Cancer Immunosurveillance Defined as Cancer Immunoediting 

The concept of cancer immunosurveillance underwent modifications beginning in the early 2000s. 

Evidence began sprouting up that the immune system shapes and sculpts the immunogenicity of 

tumors. This process became known as tumor immunoediting (12). Three distinct and highly 

dynamic periods exist during tumor/immune system interaction: Elimination, Equilibrium, and 

Escape. The aforementioned periods called the 3E’s can proceed sequentially or directly enter into 

any one of the periods at any point. The directionality of the phases can be affected by such external 

factors as aging, immunotherapies, and environmental stressors.  

1.1.2.1 Elimination 

The Elimination phase of immunoediting involves cells of both the innate and adaptive immune 

system recognizing and killing tumors prior to clinical manifestation. Cells of the innate immune 

system such as NK cells, macrophages, γδ T cells, and NKT cells are the first responders at the 

site of tumorigenesis and adaptive immune cells such as T and B cells are late responders (13). If 

the tumor is destroyed, elimination represents the endpoint of immunosurveillance. If the tumor is 

incompletely destroyed, remains dormant, or continues to grow, the tumor/immune system 

interaction may enter a state of equilibrium or escape. One way that the immune system recognizes 

tumors is through tumor associated antigens (TAA). TAAs are molecules that are abnormally 

expressed by tumor cells. CD4+ and CD8+ T cells can recognize processed tumor antigens 

presented in the context of Major Histocompatibility Complex (MHC) class II and I, respectively. 

B cells recognize cell surface tumor antigens or soluble TAA and trigger antigen specific antibody 

responses. TAA can be classified a number of different ways based on their characteristics. Many 

of the antigens discovered can belong to multiple categories. Categories include mutated proteins, 
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tissue specific or cell differentiation molecules, aberrantly processed molecules, embryonic 

molecules abnormally expressed in adult cells, overexpressed normal proteins and proteins derived 

from oncogenic viruses. 

Mutated antigens are products of genes that are mutated through spontaneous mutations, 

chemical carcinogens, or physical carcinogens. Some of these antigens are derived from tumor 

suppressor genes or oncogenes. They contain substituted amino acids, truncated or lengthened 

amino acid sequence, or completely different sequences all together. Some examples of mutated 

tumor antigens include p53, EGFR, and K-ras (14, 15).  

Differentiation antigens are specifically expressed by a particular cell type or cell 

differentiation stage. These antigens are expressed on both normal and malignant cells of the same 

lineage. Some of the best known differentiation antigens are from the melanocyte lineage and 

expressed on melanoma cells. They include tyrosinase, gp100 and Melan-A/MART-1 (16, 17). 

Tumor antigens can also arise as a result of abnormal post-translational modifications 

including glycosylation, phosphorylation, and deamidation among others (18). An example of an 

antigen that is hypoglycosylated compared to its normal counterpart in healthy cells is MUC1 (19). 

Tumor antigens that are a result of abnormal phosphorylated are termed phosphoantigens. They 

can be presented on MHC class I or II in tumors as a result of dysregulation in protein kinases and 

other normal cellular pathways in cancer. This dysregulation commonly leads to an accumulation 

of phosphopeptides that may be aberrantly expressed antigens in MHC pathways.  Examples of 

phosphoantigens are p-β-catenin (phospho-β catenin) (20) and p-MART-1 (phospho-MART-1) 

(21).  

Cancer Testis (CT) antigens are examples of tumor antigens generated by unscheduled 

expression of developmentally related molecules. They are normally only expressed in germ-line 
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cells and trophoblasts and silent in all other normal tissue in adulthood. When malignant 

transformation occurs, tumors may begin to express these antigens. To date, these antigens have 

been found in an array of tumors including melanoma, breast, bladder, and lung cancer. Examples 

include New York Esophageal Squamous Cell Carcinoma-1 (NY-ESO1), synaptonemal complex 

protein 1 (SCP1), and melanoma antigen family A, 1-7  (MAGE1-7) (22).  

Tumor antigens can also be generated by overexpression of normal molecules that have 

low or tightly regulated levels of expression in normal cells but have extremely high levels of 

expression in cancerous cells. Examples include Her-2, MUC1, CEA, and Cyclin B1 (16, 17). 

Oncogenic viral antigens, that are perceived in a similar fashion as tumor antigens, are 

virus-encoded proteins utilized at some point in the virus life cycle in infected cells that overtime 

transform into malignant cells. Viruses such as Hepatitis B and C, which commonly result in 

hepatocellular carcinoma, and human papillomavirus (HPV), which is a driver of cervical and head 

and neck cancers, encode their viral antigens in the infection and oncogenic processes. Preventing 

these viral infections can reduce or eliminate the risk of certain cancers. Major targets in vaccine 

development against these oncogenic viruses currently include the L1 capsid protein and on going 

studies on developing vaccines based on the envelope proteins E6 and E7 from HPV and Hepatitis 

B surface antigen (HBsAg) from Hepatitis B Virus (16, 17). 

 Identification and subsequent classification of tumor antigens remain an important aspect 

in understanding and aiding in the attempts to strengthen immune responses against cancer. With 

greater understanding of the types of molecules tumors express or the viral proteins involved in 

virus pathogenesis, better and more targeted immunotherapies can be developed to promote 

antigen specific responses in vivo. Currently, Sipuleucel-T and the HPV vaccine, Gardasil, 

represent successful FDA approved therapies to elicit antigen specific immune responses against 
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cancer or viruses that lead to the development of cancer, respectively. In 2010, Sipuleucel -T was 

approved to treat hormone castration resistant metastatic prostate cancer (23). Sipuleucel-T 

consists of prostatic acid phosphatase (PAP), a prostate cancer antigen, fused to granulocyte-

macrophage-colony stimulating factor (GM-CSF). It is used on autologous dendritic cells (DC) 

enriched from peripheral blood mononuclear cells (PBMCs) to stimulate an immune response 

against PAP. The treated DCs are then transfused back into the individual. This represented the 

first FDA approved cell based immunotherapy.  

Gardasil is a HPV vaccine effective against HPV types six, 11, 16, and 18. These HPV 

types are responsible for 70% of cervical cancers and some vaginal and vulvar cancers (24). The 

vaccine is comprised of major capsid protein L1 from each of the aforementioned HPV types. 

Vaccination against these HPV subtypes leads to the induction of antibodies specific for L1. The 

antibodies can then neutralize HPV preventing the infection from taking place and essentially 

protecting from HPV induced cervical and head and neck cancers. Although this is a tremendous 

step towards cancer prevention, the vast majority cancers are of non-viral origin. Therefore there 

is still a need to advance not only therapeutic but also prophylactic cancer vaccinations to promote 

the elimination of tumors. Such studies are underway with the tumor antigen MUC1 (25).  

1.1.2.2 Equilibrium 

Equilibrium represents a state of functional inactivity of tumors. It is here that immune system and 

tumor cell growth are dynamically balanced. It is suggested that there are two types of equilibria. 

One type involves a cancer entering into a dormant quiescent state in which neither cell death or 

cell division is occurring (26). The second type is where tumor cell death and division occur at the 

same rate resulting in no net growth of the tumor (27, 28). Because the immune system cannot 

completely eliminate the tumor, immune selection occurs due to the accrual of mutations that can 
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eventually lead to tumor escape variants (29). For example, in a select number of melanoma 

patients who relapse following treatment with a NY-ESO-1 vaccine, histological analysis reveled 

loss of NY-ESO-1 and HLA expression. This observation demonstrated that 

immunoselection/immunosculpting occurred to make the tumor less detectable (30, 31).   

Empirical evidence in humans supports the idea of an equilibrium phase. For example, cancers 

were found in transplanted organs of immunosuppressed recipients when there was no evidence 

of malignancy in the original donors (32-34). It was assumed that these tumor cells were dormant 

in the immunocompetent donor but once the immune environment changed to an 

immunosuppressed recipient, tumor outgrowth occurred. An equilibrium state can also be inferred 

when examining the premalignant state of monoclonal gammopathy of undetermined significance 

(MGUS) and full blown malignancy of multiple myeloma. CD4+ and CD8+ T cell MGUS specific 

responses against autologous MGUS cells exist in MGUS patients yet T cell specific responses are 

non-existent in multiple myeloma patients against myeloma cells (35). MGUS could represent the 

equilibrium state in which the immune system has malignancy under control until other 

factors/instability leads to escape, which is represented as multiple myeloma. The first concrete 

evidence distinctly pointing out the existence of the equilibrium phase was in 2007 (36).  Koebel 

et al. subjected wildtype mice to low dose treatments with MCA. A very small portion of these 

animals went on to develop tumors. However, when the same wildtype mice were depleted of 

adaptive immunity components, CD4, CD8 T cells, IL-12 and IFN-γ, sarcomas progressively grew 

out in roughly 50% of animals at the site of MCA injection compared to control treated group (29). 

This did not occur in mice depleted of NK cells, blocked for NK cell recognition via NKG2D, or 

disrupted in NK cell killing via TNF-related apoptosis inducing ligand (TRAIL). Koebel et al. also 

demonstrated that the tumors that developed were not from de novo cancer cells but instead, pre-
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formed primary cancer cells that progressed from equilibrium to edited escape tumors. These 

pieces of evidence furthered the distinction between tumor elimination and equilibrium. 

Elimination needs both the innate and the adaptive immunity whereas equilibrium only requires 

adaptive immunity. 

 

1.1.2.3 Escape 

Tumor Escape is defined by the evasion of immune system recognition, control, and/or destruction, 

representing a failure of immunosurveillance. Escape occurs when the immune system loses 

recognition of the tumor through loss of tumor antigen or MHC, the immune system is suppressed 

by the tumor microenvironment, or there’s an increase in the tumor’s resistance to killing. The 

tumor microenvironment leads to the creation of extrinsic immunosuppressive mechanisms. 

Specifically, immunosuppressive cells such as T-regulatory cells (Tregs) and myeloid derived 

suppressor cells (MDSCs) are created, sustained, or recruited to the tumor. Natural and induced 

CD4+ CD25+FoxP3+Tregs can migrate to the site of the tumor. Once at the tumor site, Tregs can 

secrete inhibitory cytokines, TGF-β and IL-10, consume IL-2 preventing proper T effector cell 

function (37), kill effector T cells through TRAIL (38) and Granzyme B (39) mechanisms, and 

induce professional antigen presenting cells (APCs) such as DCs to become tolerogenic and 

express IL-10, IDO, and TGF-β (40). Myeloid Derived Suppressor Cells are a heterogeneous 

population of immature myeloid cells that have substantial suppressor function. MDSCs are found 

both in the periphery as well as at the site of the tumor. These cells secrete arginase I, which leads 

to depletion of L-arginine preventing proliferating effector T cells from using them, IL-10, TGF-

β, and reactive oxygen species as well as induce Tregs  (41). MDSCs also express galectin 9, which 
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binds to Tim-3 on T cells inducing apoptosis and have the ability to nitrate T cell receptors and 

chemokine receptors, making them dysfunctional (42, 43).  

In addition to cellular mediators of immune suppression, tumors also constantly produce 

molecules that create an environment to ensure their survival. As tumors grow, they produce even 

more growth factors and other substances that are advantageous to the tumor and detrimental to 

the immune system. For instance vascular endothelial growth factor (VEGF) is commonly secreted 

by tumors for angiogenesis. VEGF secreted by tumors also induces programmed death ligand 1 

(PD-L1) on dendritic cells leading to suppression of T cell activation (44). Other soluble 

immunosuppressive factors include TGF-β, galectin, Indolamine-2,3-Dioxygenase (IDO), and IL-

10 (45).  Inherent genomic instability in cancer can lead to antigenic loss variant cells and 

subsequent tumor outgrowth. Cancer cells that acquire defects in steps of the antigen presentation 

pathway escape immune cell recognition via MHC class I. For example, cancer cells that are 

defective in proteasome subunits LMP2 (46) and LMP7 (47), TAP1, β2m, MHC class I itself (48), 

or responsiveness to IFN-γ can lead towards escape. Tumors can induce T cell anergy through lack 

of appropriate co-stimulatory signals. Lack of appropriate second signal co-stimulatory molecules 

prevents cytotoxic T-lymphocyte (CTL) mediated killing. Expression of negative co-stimulatory 

molecules such as PD-L1 (49), HLA-G (50), and HLA-E (51) prevents tumor killing by CTLs and 

NK cells. Tumors can escape NK cell recognition through upregulation of cellular microRNAs 

promoting the loss of NKG2D ligands (52). Escape can also be mediated by upregulation of anti-

apoptotic molecules BCL-XL and FLIP (53, 54) or mutations of death receptors TRAIL-R (55) 

and Fas (56). 
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1.1.3 Tumor Associated Antigen Specific T cells and Antibodies in Cancer Patients and 

Healthy Individuals  

Although cancer is mainly a disease caused by genetic and epigenetic changes, many of the 

identified antigen specific response are directed towards abnormally expressed self antigens rather 

than mutated self-antigens. These self-antigens expressed by tumors are classified as TAA. 

Antibodies and T-cell TAA specific responses are commonly found in cancer patients with a wide 

variety of malignancies. In many of these studies, immune responses are monitored to investigate 

the effectiveness of a therapeutic agent in inducing antigen specific responses. For instance, TAA 

specific antibodies and/or T-cell responses are assayed prior to therapeutic intervention in cancer 

patients as well as post treatment. In almost all instances, healthy donors who assumingly have no 

pre-existing TAA responses are used as a comparison.  

One particular study examined the quantity and quality of the TAA glycoprotein 5T4 in 

colorecetal cancer patient. In this study, the group discovered that IFN-γ producing CD4+ T cells 

not only existed in colorectal cancer patients but remarkably existed in 100% of healthy individuals 

tested. Furthermore, these 5T4 specific CD4+ T cells were from the CD45RO+ memory pool of T 

cells. This was not the only study that suggests the existence of TAA specific responses in healthy 

individuals (57).  

In a study from our group examining the TAA cyclin B1, >40% of healthy individuals had 

cyclin B1 IgG antibodies above the average levels. The predominant IgG subclass was IgG3, 

which is strongly associated with Th1 mediated immunity (58). Since age is associated with greater 

risk of malignancy, age was examined as a surrogate of underlying cancer. There was no 

correlation between age and cyclin B1 antibody levels, indirectly ruling out the possibility of 

undiagnosed cancers, which would not be expected to occur early in life, causing these elevated 
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antibody levels. Memory CD8+ and CD4+ T cells specific for cyclin B1 were also detected in 

healthy people (59).  

Kallikrein 4 is a serine protease that is overexpressed in prostate cancer. One group 

discovered an immunogenic peptide in the signal sequence region of kallikrein 4 that was naturally 

processed and presented on HLA-A*0201. CD8+ T cells recognizing the kallikrein 4 peptide were 

found in prostate cancer patients and healthy individuals. Clones of the kallikrein 4 specific CD8+ 

T cells from both were able to kill CAOV3 ovarian cancer cells and weakly lyse LnCAP prostate 

cancer cell lines. The difference in CD8+ mediated killing was likely due to MHC class I cell 

surface expression (60).  

OCT-4 is an embryonic stem cell transcription factor that is overexpressed on many germ 

line tumors. Studies by Dhodapkar et al. investigated the presence of OCT-4 specific T cells. In 

their studies they defined OCT-4 reactive individuals as those who produce Interferon γ inducible 

protein-10 (IP10) in the supernatant of in vitro cultures. This study demonstrated the presence of 

OCT-4 specific CD4+ T cells in 83% of healthy individuals assayed (N=30). These OCT-4 specific 

CD4+ T cells were shown to be from the CD45RO+memory pool (61). 

The unexpected observation of responses to TAA in healthy individuals was made in other 

studies examining TAA such as MUC1 (62, 63), P53 (64-66), MAGE A10(67), Melan-A/MART1 

(68), NY-ESO-1 (69), Cytochrome P450 1B1 (70), WT1(71), various phosphopeptides (72), and 

Telomerase (73). Although many of the T cell and/or antibody specific responses are low, they are 

not absent in healthy individuals. This likely indicates that some previous event(s) led to an 

immune response specific for the previously mentioned TAAs. While underlying neoplastic events 

that were eliminated by the immune system cannot be ruled out, our own studies and others point 

towards non-malignant events inducing immune responses against TAA. 
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1.1.4 Febrile Childhood Infections and Cancer Immunosurveillance 

Modified from Iheagwara UK, Beatty PL, Chan S, Rigatti LH, Ross TM, and Finn OJ. MUC-1 as 

a therapeutic target in cancer: programming the immune system through childhood infections”, In: 

Reese R, editor. Cancer Immunology and Immunotherapy. Oxford University Press; 2014. In 

press. Copyright permission is kept on file with Uzoma K. Iheagwara 

 

 

The idea of febrile infections conferring protection against the development of tumors began to 

develop in the late 19th and early 20th century. Initially, anecdotal evidence based on physicians’ 

observations and examination of medical histories of patients suggested beneficial effects of 

infections on cancer risk.  More formalized data collection followed and in 1912 a study 

demonstrated that United States and Canadian Native American populations that had six times 

higher mortality rate from infectious disease had a lower rate of mortality from cancer (74).  In 

1916, another study examined mortality rates in New York, Boston, Philadelphia, and New 

Orleans from 1864-1888 and 1889-1913. Over these two time periods, deaths from infectious 

disease decreased while simultaneously cancer death rates increased by over 55%. In more 

contemporary times, a study examined the relationship between cancer and infectious disease rates 

in Italy (75). The authors proposed that there were four factors to consider when investigating 

possible causality in this relationship: 1. Consistency and strong associations among studies, 2. 

Temporality of the association, 3. True plausibility when considering the field of research, and 4. 

A dose response relationship between agent and disease. According to them, temporality was the 
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most important aspect in determining association. With this as a guide, they attempted to resolve 

the conflict between evidence that infections cause cancer versus evidence that infections can 

prevent cancer.  Establishing a stricter temporal relationship between observations of a decrease 

in infections in Italy and observation of an increased cancer rate confirmed that in the first half of 

the 20th century the cancer increase indeed followed the decrease in infectious disease rates (75).  

As evidence began to mount in favor of infections having a beneficial effect on preventing 

cancer, so did anecdotal evidence that concurrent febrile infection in cancer patients led to a better 

cancer control. Dr. William Coley was the first to administer infectious agents to a substantial 

number of cancer patients. Coley administered a mixture of heat killed Streptococcus pyogenes 

and Serratia marrescens to late-stage sarcoma patients. This mixture, known as Coley’s Toxins, 

lead to cancer remissions in many sarcoma patients (76). Even today, infection of the bladder with 

Mycobacterium bovis Bacillus Calmette-Guerin (BCG) is the treatment of choice for patients with 

non-muscle invasive bladder cancer (77). These bacterial infectious agents are thought to act as 

adjuvants enhancing ongoing anti-tumor immune responses.  While this may be the case, infections 

might play other roles in the development of anti-tumor immune responses. These novel roles of 

infections will be investigated later in this dissertation.  

In exploring relationships between childhood infections and cancer, the majority of studies 

focused on influenza, measles, mumps, pertussis/whooping cough, chicken pox, scarlet fever, 

rubella, and diphtheria. A study done in 1966 was designed to examine the relationship between 

exposure to X-ray radiation and hormonal therapy and increasing mortality rates from ovarian 

cancer. 97 patients with ovarian cancer and 97 controls with benign ovarian tumors were recruited 

and a thorough medical history was obtained. In the final analysis, X-ray radiation and hormone 

therapy were not found to have an impact on ovarian cancer mortality rates. Unexpectedly, 
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however, individuals who had reported a past history of mumps parotitis had a significantly 

reduced risk of ovarian cancer (p=0.0007)(78). This study was the first to suggest that mumps 

infection could lead to lower incidence of ovarian cancer. The mechanism, however, remained 

unknown until Cramer et al proposed an immune mechanism in 2010 (62). 

In 1977, another study addressed possible causes for the rising incidence of ovarian cancer. 

300 women with laparotomy-confirmed ovarian cancer were recruited in 17 medical centers. They 

were administered a questionnaire that included inquiries on X-ray exposure, pregnancies, 

smoking, chronic illness, history of acute infections, contraception use and prior surgeries, among 

others. The study included two control groups: 1. Gynecological patients in the hospital for reasons 

other than suspected ovarian cysts or tumors and 2. A group of women in the community provided 

from a list generated by general practitioners. These two control groups were provided with the 

same questionnaire as the case group. When the data was compiled, many women diagnosed with 

ovarian cancer reported fewer past bouts of mumps, measles, chicken pox, and rubella. The study 

also displayed a statistically significantly reduced relative risk of developing ovarian cancer in the 

second control group among women who had a history of measles (Relative Risk (RR)=0.47), 

mumps (RR=0.61), rubella (RR=0.62), and chicken pox (RR=0.66) (79). A recent retrospective 

review confirmed the outcome of reduced risk for ovarian cancer correlating with those four 

infections (74).  

Kömel et al. performed a case control study in 1992 in support of his hypothesis that 

childhood and/or adulthood febrile infections influenced a higher risk of melanoma. The study was 

carried out at the University of Göttingen on 139 newly diagnosed melanoma patients whose 

primary tumor was removed between January 1988 and September 1991. The study also included 

271 controls recruited from a pool of Ophthalmology and Dermatology clinic patients whose 
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diseases were not related to malignant melanoma. Both cases and controls were age and gender 

matched. These groups were administered questionnaires to collect information on frequency and 

temperature of febrile infections experienced as well as questions on childhood, adulthood 

infections, and common infections within the 5 years of melanoma diagnosis. Group one in the 

study consisted of individuals who had one or more of the following: measles, mumps, rubella, 

chicken pox, scarlet fever, diphtheria, whooping, and tonsillectomy performed prior to the age of 

13 (assumed to have tonsillitis). Group two were individuals who had infections in adulthood 

associated with fever that included hepatitis, tuberculosis, erysipelas, chronic infectious diseases, 

febrile abscess, furunculosis, wound infections, tropical diseases, and other fever producing 

diseases. Common diseases accompanied by a fever within the five years of melanoma diagnosis 

(group three) included gastroenteritis, influenza/common cold, pneumonia, herpes simplex virus 

1, and “other trivial diseases” associated with fever.  Individuals in Group one were not found to 

have statistically significantly reduced risk of melanoma. However, Group two with the history of 

chronic infectious diseases (adjusted Odds Ratio (OR)=0.32) and febrile 

abscesses/furunculosis/wound infections (adjusted OR=0.21), were found to have a significantly 

reduced risk for melanoma. Individuals in group three, particularly with a history of 

influenza/common cold (adjusted OR=0.32) and HSV1 (adjusted OR=0.45) also had significant 

risk reduction for melanoma.  There was also evidence of the cumulative effects of multiple febrile 

infections compared to never experiencing a serious febrile infection. The study showed that more 

fevers experienced in group two (p=0.01) and group three (p=0.0001) translated to a significant 

risk reduction. Although the calculated risk for melanoma was not significantly reduced in group 

one, childhood diseases such as chicken pox, measles and mumps had odds ratios <1 indicating a 

possible reduction of melanoma risk (80).   
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A repeat of this study on a larger number of cases included 603 melanoma patients from 

11 medical centers linked via the European Organization for Research and Treatment of Cancer 

(EORTC) Melanoma Cooperative Group. The control group included 627 individuals who were 

age matched and selected from the same neighborhoods of the melanoma cases. Individuals in this 

study were grouped according to a history of severe diseases (group one- hepatitis, tuberculosis, 

Staphylococcus aureus infections, urinary tract infections, sepsis, meningitis, rheumatic fever, 

cholecystitis, and erysipelas), and less severe infections suffered five years prior to primary tumor 

removal (group two- influenza, infectious enteritis, bronchitis, pneumonia, and HSV). Results 

from this study confirmed the relationship between strong febrile infections accompanied by a 

body temperature above 38.5°C, and risk reduction for melanoma (81).  

Association between gliomas and Varicella-Zoster Virus (VZV) was examined in the San 

Francisco Bay Area Glioma Study.  Individuals were questioned on their shingles and chicken pox 

histories. These diseases caused by VZV were of particular interest for a link to glioma due to the 

virus having neurological sequela. The group found that glioma patients were less likely to have 

had a history of shingles or chicken pox compared to the control group. In order to have a more 

reliable proof of infection than self-reporting, a repeat of this study was performed on newly 

diagnosed glioma patients from whom the self-reported history of having chicken pox was 

obtained and confirmed serologically by positivity for anti-VZV antibodies. Data obtained on 462 

glioma subjects and 443 controls matched for age, sex, and ethnicity demonstrated a reduced risk 

for developing glioma in individuals with a history of VZV (OR=0.4). The importance of having 

a more reliable measure than self-reporting, such as serologic markers for this type of studies was 

justified by the difference in this study between self-reported chicken pox infections and 
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seropositivity for VZV. Individuals who were IgG seropositive for VZV had a reduced risk 

(OR=0.6) for having a glioma (82).  

Albonico et al. studied a cohort of cancer patients with solid epithelial tumors diagnosed 

by 35 general practitioners in Switzerland, matched them according to age, gender, and physician 

with a recruitment limit of 20 patients/physicians office. A total of 410 patients were administered 

questionnaires that requested information on age, gender, history of febrile childhood infections 

(in this study defined as measles, mumps, scarlet fever, pertussis, rubella, and chicken pox), and 

frequency of other infections that resulted in fever >39°C prior to the age of 21. Additionally, 

when answering questions specifically on febrile childhood infections; answering options were 

limited to “yes”, “uncertain yes,” “uncertain no,” and “no” in order to reduce recall/memory bias. 

Almost 50% were breast cancer patients and therefore the final analysis was carried out on breast 

cancers vs. non-breast cancers. Analysis was also divided according to age ≤60 vs. >60.  Ultimately 

the study found a statistically significant reduction of risk of solid malignancy in individuals who 

had a history of chickenpox (p=0.044) or rubella (p=0.0003) (83). The risk was further lowered 

with the increased number of infections. Curiously these results were obtained only in the 50% of 

individuals who had cancers other than breast cancer. Cancer risk reduction due to the history of 

febrile diseases did not hold for breast cancer patients, leading the authors to suggest that beneficial 

protection provided by childhood infections might be body site specific.  

Additional studies on patients with many different cancers came up with similar results 

(74, 83, 84).  One case-control study demonstrated that chicken pox and pertussis infections 

lowered risk for stomach, breast, colorectal, and ovarian cancer (84).  Furthermore, an increase in 

frequency of cold and flu infections experienced also decreased risk for these cancers. We found 

only two studies that obtained opposite results (74, 85). Chickenpox (OR=2.09) and mumps 
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(OR=2.61) were shown to increase the risk of cancer. As a result, Hoffman et al proclaimed that 

‘no final statement could be made on the association of childhood diseases or fever and cancer 

should be made.’ It is difficult to compare these two studies with the majority of studies described 

above and come up with a reasonable explanation for the different outcome. However the majority 

of studies published before and after Hoffman et al. findings support the link of a history of 

infections to decreased cancer risk. 

Not all studies examining the relationship between infections and cancer deal with solid 

malignancies. Increasingly reports and studies are demonstrating an increased risk for acute 

lymphoblastic leukemia (ALL) with decreased exposure to childhood infections. Currently no 

specific pathogen has been implicated in lowering the risk of ALL development. Evidence 

continues to point towards a ‘delayed infection hypothesis’- that ALL risk increases with the delay 

in exposure to certain infections early in life.  

The study by Urayama et al. looked at different indicators in addition to infection in order 

to firmly establish that it is the early childhood infections that lower the risk of ALL. Specifically 

the study examined simultaneous effects of: 1. Birth order, 2. Day-care attendance, and 3. Common 

childhood infections. Subjects between the ages of 1-14 were enrolled in the Northern California 

Childhood Leukemia Study (NCCLS) conducted from 1995 to 2008. Approximately, 669 ALL 

subjects (284 non-Hispanic whites and 385 Hispanics) and 977 controls (458 non-Hispanic whites 

and 519 Hispanics) were selected to address the relationship to socio-demographic differences. 

ALL positive status was defined as a diagnosis of CD10+CD19+ALL between the ages of two to 

five. Cases and controls were compared separately for each ethnicity due to inherent differences 

in daycare utilization and family size. The group found that non-Hispanic white children who 

attended daycare by six months of age (p=0.046) and who had one or more, older siblings 
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(p=0.004) had lower risk for ALL. Also both Hispanic (OR: 0.48 [0.27-0.83]) and non-Hispanic 

white (OR: 0.39 [0.17-0.91]) children had a decreased odds ratio for having ALL if they had an 

ear infection before the age of six months (86).  Additional social contact measures in Hispanic 

children did not demonstrate decreased risk for ALL. Other studies examining the traditional 

measures of childhood infections (measles, chickenpox, mumps, rubella, and pertussis) were also 

found to play a protective role against the development of other non-solid malignancies such AML 

and CLL in adulthood (87). 

Anic et al. utilized similar indirect measures of infection risk with a study on adult glioma 

risk (88). This study examined glioma risk with birth order, family size, birth weight, season of 

birth, and breast-feeding history. The study recruited 889 adult glioma patients 18 years or older 

that were less than 3 months from glioma resection. All glioma case participants were recruited 

from neurosurgery and oncology clinics from southeastern universities and cancer center. About 

903 non-blood related brain tumor free individuals from the same communities were used as case 

controls. Individuals were subjected to interviewer questionnaires to collect data on cancer risk. 

Anic et al. found that individuals who had any siblings (OR = 0.64; p = 0.020) or older siblings 

(OR = 0.75; p = 0.004) were at a lower risk of developing a glioma (88). All other risk factors 

tested were not significant. 

Another study specifically dealing with Non-Hodgkin’s Lymphoma (NHL), investigated 

the relationship between cancer and direct (i.e. self reported infection exposure) or indirect (i.e. 

family size, birth order, day care attendance etc.) measures of exposure to infection. NHL rates 

were rising by 3-4% in the developed world and it was hypothesized that this increase could be 

due to delayed infections leading to immune dysregulation (89). To test this, 1388 NHL patients, 

354 Hodgkin’s Lymphoma patients, and 1718 healthy controls were recruited in Italy and 

 19 



questioned on their family size and history of acute and chronic infectious diseases as well as 

autoimmune disease. This particular study found that individuals were at an increased risk for NHL 

if exposure to their first bacterial or viral infection was delayed to after the age of four. Smaller 

family size also appeared to be greater risk factor for NHL (89). 

Contracting a live pathogen is not the only way of providing protections against cancer. 

Vaccination with attenuated pathogens may also lower cancer risk. One group conducted a study 

on 542 malignant melanoma patients assessing the effect of vaccination practices on survival (90). 

The particular childhood vaccinations of interest, BCG and Vaccinia, were common until the late 

1970s and 1980s.  Although these patients already were dealing with cancer, valuable information 

was gathered. According to Kaplan-Meier analysis, melanoma patients immunized as children 

with BCG and/or Vaccinia survived much longer than their unvaccinated counterparts. At five 

years following malignant melanoma diagnosis, vaccinated group’s survival was about 75% 

compared to approximately 50% in the unvaccinated group. Whether BCG and Vaccinia 

vaccination were considered separately or jointly, the hazard ratio for death in melanoma patients 

was decreased compared to unvaccinated patients. The study also analyzed the relationship 

between the number of reported bouts of infection and length of survival. As number of infections 

(that included osteomyelitis, mastitis, abscess, or furuncle) increased, the hazard ratio decreased 

yielding a significant difference in survival irrespective of whether the infections were 

accompanied by elevated temperature (p-value=0.004). 
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1.1.5 Summary 

Cancer Immunosurveillance is real and accepted mechanism utilized by the immune system to kill 

tumor cells and restore normal tissue function. The adaptive immune system recognizes abnormal 

self molecules on tumors called TAA. In addition to cancer patients, TAA specific responses are 

also found in healthy individuals. In efforts to explain the presence of TAA specific responses in 

healthy people, epidemiology studies were queried and a large consensus of the studies indicated 

that a history of febrile infections correlates with decreased cancer risk. A formal biological link 

between febrile infections and cancer risk, first addressed by studies of Cramer, Finn and 

colleagues (62, 63, 91), needs to be explored further to provide additional explanation for the 

existence of TAA specific responses in healthy people and their role in tumor immunosurveillance.  
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1.2 INTRODUCTION TO THE PROJECT 

Our lab previously demonstrated that healthy individuals have humoral and T-cell responses to 

various tumor associated antigens (TAA) such as cyclin B1 and MUC1. Currently it is unknown 

why there are memory responses to TAA in healthy individuals. This finding and other 

epidemiology studies suggested that early exposure to febrile infections decreases cancer risk. 

Currently there are no formal experimental studies or animal models that explain the mechanism 

by which prior infections can lead to a decrease in cancer risk. I therefore hypothesized that 

infections and accompanied acute inflammation early in life could cause abnormal expression of 

some self-antigens and induce specific immune memory against those antigens.  Abnormal 

expression of the same antigens on tumor cells later in life could trigger infection-induced immune 

memory responses against these antigens and provide anti-tumor immunosurveillance. Rather than 

classifying these abnormally expressed molecules common to virus infected or malignant cells as 

TAA, they should be recognized as disease associated antigens (DAA). My thesis project was 

designed to test this hypothesis in a mouse model and provide evidence for an overlap between 

TAA and DAA. 

The specific aims of my thesis work were: 

Specific Aim 1: Validate influenza infection in mice as a disease model that will show changes in 

expression of self-antigens of interest and explore methodology that would allow identification of 

new antigens abnormally expressed during viral infection. 

Specific Aim 2: Characterize molecularly and determine immunogenicity of epithelial cell 

proteins that are abnormally expressed in the lung during influenza infection. 

o Sub-Aim 2.1: Identification of abnormally expressed, immunogenic self 

molecules.  
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o Sub-Aim 2.2: Determine if experiencing multiple influenza infection affects 

tumor growth kinetics 

Specific Aim 3: Determine in vivo if immunization with one or more of the post-infection proteins 

confers protection against tumor challenge or influenza in vivo. 

o Sub-Aim 3.1: Tumor immunosurveillance 

o Sub-Aim 3.2: Virus immunosurveillance 
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2.0  METHODS FOR DISEASE ASSOCIATED ANTIGEN DISCOVERY  

2.1 ESTABLISHING THE PATHOGEN AND TUMOR IMMUNOSURVEILLANCE 

MODEL  

Numerous epidemiologic studies described above have suggested the link between the history of 

febrile infections and lowered cancer incidence. To date, there have been no experimental efforts 

to define the underlying mechanisms. What was lacking were appropriate animal models that 

would allow mechanistic studies. As part of my thesis project, I set out to test and validate a mouse 

model in which these studies could be pursued. My initial focus was on a single TAA, MUC1, for 

which there was sufficient evidence from both epidemiologic studies as well as in vitro 

immunologic testing, that it satisfies the criteria for a DAA due to changes of its expression not 

only on human epithelial tumors but also during acute infections.  The ability to recreate these 

changes in a mouse model as part of specific aim one, was intended to serve as a validation that a 

similar mouse model might reveal other DAA. I chose either MUC1 transgenic (MUC1Tg) mice 

(on a C57BL/6 background) or C57BL/6 WT mice and for a pathogenic insult I selected murine 

adapted strains of influenza virus were. The influenza virus is a cytopathic virus that infects lung 

epithelium. Once infected, mice become feverish and lethargic, clear the virus, and recover. In our 

model, we planned to infected animals twice with two different strains of influenza to provide both 

the priming event and a boosting event to generate a maximal immune response against infection-

induced abnormal self antigens. In the MUC1 antigen specific model we used, as a tumor 

challenge, mouse lymphoma cell line RMA stably transfected with MUC1 (RMA-MUC1). 
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For the continuation of the studies designed to detect other DAA, we focused on antigenic 

changes in flu-infected lung epithelial cells that could be expected to generate immune responses 

to abnormally expressed epithelial cell antigens preferentially expressed on epithelial cell tumors. 

So for the tumor challenge in those studies I selected two mouse epithelial tumor cell lines, the 

Lewis Lung Carcinoma (3LL) line and the IG-10 line. In order to identify abnormally expressed 

disease associated antigens following influenza infection, we planned to collect mouse sera pre- 

and post-influenza infection to determine what antigens were newly recognized by post-infection 

antibodies. In the following chapter, methods for antigen identification are reviewed and the 

rationale/methodology for DAA discovery discussed.  

2.2 REVIEW OF ESTABLISHED TAA DISCOVERY METHODS AND SELECTION 

OF BEST METHOD FOR DAA IDENTIFICATION  

Discovery and screening for potential tumor antigens is pivotal for producing targeted 

immunotherapies and increasing our knowledge of tumor immunosurveillance. Most techniques 

involve use of T cells and antibodies as screening tools. Several variations of these tools currently 

exist. Options include tumor cell line/autologous T cell screening, serological analysis of 

recombinant cDNA expression libraries (SEREX), biochemical approaches (with mild acid elution 

of peptides bound on MHC class I), and computer algorithms from reverse immunology (defined 

as predictive identification of possible immunogenic peptides via gene or protein sequences). 

Tumor cell line and autologous T cell screening involve multiple steps. Tumor cells are co-

cultured with autologous T cells. Once stimulated, the T cells are used to screen target cells that 

are transfected with tumor cell cDNA. Killing of the target cells indicates tumor antigen production 
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and processing in the target cell. Subsequently overlapping synthetic peptides can be then 

employed to better characterize the antigenic peptide region. SEREX involves using cancer patient 

sera to screen proteins from cDNA expression libraries derived from tumors. Common biological 

chemical approaches involve taking tumor cells derived from cell lines or cancer patients and 

eluting peptides bound on MHC class I molecules with a mild acid. These peptides are then 

subjected to liquid chromatography and mass spectrometry to identify the eluted antigens. In 

another approach, reverse immunology can be used to identify candidate antigens. In order to make 

use of this technique, one must already have a protein of interest. The protein is then analyzed 

through predictive computer algorithms such as the Immune Epitope Database (IEDB) or 

SYFPEITHI database to identify peptide sequences that might bind to MHC class I or II. High 

affinity peptides can then be synthesized, loaded onto dendritic cells for in-vitro priming of 

autologous T cells. Once these T-cells are primed, they can be co-cultured with tumor cells to look 

for immunogenicity. 

Two other methods have been described for identifying novel TAA. The first method 

involves the use of 2D-SDS PAGE Gel Electrophoresis followed by western blotting. In this 

method, tumor proteins derived from whole cell lysates are separated according to isoelectric point 

(pI) in the first dimension on the gel followed by molecular weight separation in the second 

dimension. A second gel is run concurrently with the same sample. Proteins from the gel are 

immunoblotted with sera under study. Spots appearing in the blot that differentiate one set of sera 

from another can be either sent for proteomics identification or used as a guide in selecting protein 

spots for mass spectrometry analysis from concurrently run parallel gels. In other methods, sera 

can be used in immunoprecipitation experiments to pull down bound proteins that can then be run 

on 2D gels for further characterization.  
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Figure one shows an example of this technique used to identify differences in tumor cell 

lysate recognition between sera pre and post infection. From previous projects in the lab, our group 

had sera from two groups of animals: 1. Mice immunized against ultraviolet inactivated modified 

vaccinia ankara (UV-MVA/UV-MVA) (control group) and 2. Mice infected with a mouse pox 

virus, ectromelia (UV-MVA/Ectromelia). UV-MVA vaccination was used to ensure that mice 

from those experiments survived the ectromelia infection. LO2, a murine lymphoma cell line 

derived from a C56Bl/6 p53-/- mouse, tumor lysate was run on two 2D gels. LO2 tumor was used 

to keep consistency with previous projects from the lab. Once proteins were transferred onto PVDF 

membranes, each set of pooled sera was immuno-blotted onto the membranes. Although detectable 

differences were found between each set of sera, 2D western blotting proved to be too inconsistent 

between gels and blots to confidently compare and identify true differences in spots. 

In subsequent sections, I describe the history and modification of the above 2D gel 

technique for use in our mouse model for identification of new DAA.  
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Figure 1 2D-blot of LO2 lysate.  

Sera were obtained from mice immunized against Ultraviolet Inactivated Modified Vaccinia 

Ankara (UV-MVA/UV-MVA) (control group) or from mice infected with a mouse pox virus, 

ectromelia (UV-MVA/Ectromelia). Two sets of sera were isolated and pooled together and blotted 

against the LO2 tumor lysate. 1st dimension run on 7cm IPG strip pH 3-10 immobilized non-linear 

gradient (NL). Black arrows indicate new spots recognized following ectromelia virus exposure. 
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2.2.1 History of Difference Gel Electrophoresis (DIGE) 

The convention for comparing two sets of proteins in the 1980s was to run parallel two-

dimensional gels (2D-gels). Issues with consistency proved to be problematic. Recognizing this 

problem, Dr. Jonathan Minden, Carnegie Mellon University, came up with the idea to label each 

set of samples through a chemical reaction and combine the two samples to be run on one 2D-gel 

(92). 

 Three types of labels were tested: 1. Radioactive probes, 2. Color probes, 3. Fluorescent 

probes. Radioactive probes were too difficult to differentiate between various radiolabels. 

Additionally these probes required long exposure times. Color probes only worked when copious 

amounts of proteins were available. This left fluorescent tags as the best choice for labeling 

proteins especially in low concentrations. Advantages included being able to synthesize multiple 

probes with different spectra and only small amounts of the probes were needed in labeling 

reactions (92). 

 The next issue was the selection and coupling of fluorescent tags. Minden created a set of 

criteria needed to execute his idea. The tags needed to be: 1. Similar in size and charge, 2. pH 

insensitive due to the wide range of pH during the isoelectric separation step in 2D-gels, and 3. 

Should not alter the intrinsic charge of the proteins. Amino acids lysine and cysteine were chosen 

as possible coupling sites on protein. These two amino acids were the most reactive of all the other 

amino acids. Minden initially focused on lysine since it was not known at the time how many 

proteins would contain at a minimum one cysteine. Lysine contained an attractive amino group 

amenable to coupling reactions. However, coupling reactions would leave the lysine with a neutral 

charge as opposed to its natural positive charge. Therefore Minden decided that the probe needed 

to have a quaternary amine that would leave all protein’s lysine’s with a normal net positive charge 
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therefore not disrupting protein migration patterns during isoelectric focusing in 2D 

Electrophoresis (92). These decisions among other creations by Jonathan Minden would set the 

stage for the establishment of Difference in Gel Electrophoresis (DIGE) technique (93). 

2.2.2 Labeling  

2.2.2.1 Minimal Labeling 

There are two primary ways to label protein samples: minimal labeling and saturation labeling. 

Here we will discuss the former. Cyanine (Cy) dyes have distinct wavelengths. Cy3 has an 

excitation maximum of 553 and an emission wavelength of 569. Cy5 has an excitation maximum 

of 645 and emission max of 664. Minimal labeling involves using cyanine dyes (Cy3 N-

hydroxysuccinimidyl (Cy3-NHS), and Cy5 N-hydroxysuccinimidyl (Cy5-NHS) DIGE fluors) to 

label cysteines in the protein sample. Specifically N-hydroxysuccinimidyl (NHS) ester group on 

the dye reacts to form a covalent bond with the epsilon amino group of lysine in the sample protein 

(Fig. 2). The amino acid lysine has an inherent +1 charge. Therefore, to keep the overall charge at 

+1 following amide linkage, the CyDyes have a +1 charge. This prevents any potential change in 

natural protein migration during isoelectric focusing 1st dimension separation in 2D-gel 

electrophoresis. It is important to note that all protein samples to be tested must be between pH 8-

9. The dyes will not bind below pH 8 and multiple labelings may occur with a pH over 9. 

An important aspect of minimal labeling is keeping the sample to dye ratios constant. As a 

result, only 1-2% of the available lysines on proteins are labeled and only single lysine per protein 

molecule. Increasing the amount of dye may cause multiple labels on one protein and thus altering 

their migration during 2D gel electrophoresis and prevent appropriate protein identification in 

downstream applications.   
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In our studies we chose against using minimal labeling as our approach to discovering 

abnormally expressed antigens during viral infection. For our purposes, we needed a labeling 

method that would label virtually all of our immunoprecipitated protein sample. Differences in our 

samples may be so small that we would miss them using this minimal labeling. Therefore we 

turned our attention to an alternative labeling method, saturation labeling.  
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Figure 2: Minimal labeling reaction 

Fluorescent cyanine dyes (Cy3-NHS and Cy5-NHS) containing an ester reactive group can react 

with the epsilon amino group on lysine to form a covalent amide bond to proteins of interest. This 

results in the fluorescent labeling of proteins. 

© GE Healthcare - All rights reserved, GE Healthcare UK Limited Amersham Place Little 
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2.2.2.2 Saturation Labeling 

Saturation labeling is used to label samples that are scarce or precious. Saturation labeling can be 

applied to protein samples as low as 5ug. This labeling involves CyDyes that have been modified 

to contain maleimide group. Cy3-maleimide (Cy3-mal) and Cy5-maleimide (Cy5-mal) saturation 

dyes covalently bind to the thiol group on cysteine residues of the protein sample (Fig. 3). This 

thioester linkage is applied to all cysteine groups in the protein samples. Both Cy3-mal and Cy5-

mal are relatively small at 680Da and have a neutral charge meaning that both sets of protein 

samples can successfully co-migrate and differential spot analysis can still be performed, although 

the pattern will be different compared to Cy3-NHS and Cy5-NHS samples. Saturation labeling 

was appropriate for our purposes due to our limited samples.  
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Figure 3: Saturation labeling reaction 

Disulfide bonds on proteins of interest are first denatured with TCEP. The denatured proteins can 

now react with fluorescent cyanine dyes (Cy3-mal and Cy5-mal) containing an malimide reactive 

group can react with the cysteines to form a covalent thioester bonds to proteins of interest. This 

results in the fluorescent labeling of proteins. 

© GE Healthcare - All rights reserved, GE Healthcare UK Limited Amersham Place Little 

Chalfont Buckinghamshire England HP7 9NA 
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3.0  TUMOR ASSOCIATED ANTIGEN MUC1 IS A DISEASE ASSOCIATED 

ANTIGEN IMPORTANT FOR CANCER IMMUNOSURVEILLANCE  

Modified from Iheagwara UK, Beatty PL, Chan S, Rigatti LH, Ross TM, and Finn OJ. MUC-1 as 

a therapeutic target in cancer: programming the immune system through childhood infections”, In: 

Reese R, editor. Cancer Immunology and Immunotherapy. Oxford University Press; 2014. In 

press. Copyright permission is kept on file with Uzoma K. Iheagwara 

 

3.1 ABSTRACT 

There is ample evidence that the immune system recognizes cancer as abnormal and halts tumor 

growth or eliminates tumors through recognition of tumor antigens, abnormally expressed self 

molecules. MUC1 tumor antigen is abnormally expressed on mouse tumors and in different human 

cancers.  The same abnormal expression (overexpression, hypoglycosylation, loss of polarization) 

of MUC1 is found in non-malignant conditions, such as viral and bacterial infections and chronic 

inflammation. Epidemiological studies that identify cancer risk have demonstrated that a history 

of febrile childhood diseases lowers lifetime risk for a variety of cancers. We propose that these 

diseases enhance cancer immunosurveillance through generating immune responses and immune 

memory for abnormally expressed self antigens. In the current study we tested this hypothesis in 

a mouse model of cancer immunosurveillance by studying the effect of a repeated infection of 

MUC1 transgenic mice with influenza virus on the growth of a MUC1 expressing tumor. MUC1 
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transgenic mice infected with influenza virus transiently express abnormal MUC1 in their lungs 

and develop immune responses and immune memory.  When challenged with a MUC1+ tumor, 

influenza experienced mice control MUC1+ tumor much better than influenza naïve mice. We also 

show that eliciting anti-MUC1 immunity with a vaccine lessens the intensity and pathology of 

influenza infection. 

3.2 INTRODUCTION 

Cancer takes several years and sometime decades to develop. Studies in animal models and 

cancer patients have provided evidence that the immune system can recognize cancer cells and 

halt their growth or eliminate them through a complex and varied process of immunosurveillance 

(94). This process depends on the specific recognition of abnormal molecules (tumor antigens) 

expressed by cancer cells and on appropriate activation and balance between innate and adaptive 

immunity. This occurs both systemically and in the tumor microenvironment.  Therefore, in some 

instances, an anti-tumor response can result in increased T cell infiltration into a tumor and control 

of its progression, resulting in increased survival. Alternatively, tumor growth continues and 

coexists with evidence of adaptive anti-tumor immunity that is affected by profound adaptive and 

innate immune suppression mechanisms such as regulatory T cells (Treg) and myeloid derived 

suppressor cells (MDSC) (95-97). The difference between these two outcomes can be a result of 

many individual differences between tumors (even of the same tissue type) and between patients. 

One of the important differences that could determine the cancer outcome is the individual’s 

history of pathogenic events, especially those occurring in early life. Such events may expose the 

immune system to some of the same abnormal molecules, which are classically characterized as 
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tumor associated antigens (TAA) that occur in cancer.  The immune memory of such molecules 

could later in life contribute to elimination of tumor or control of tumor growth (Fig. 4).  

MUC1 is a glycoprotein that is expressed at low levels on the apical surface of normal 

epithelial cells (19). The extracellular domain of MUC1 is characterized by a variable number of 

tandem repeats (VNTR) region consisting of a tandemly repeated 20-amino acid sequence 

PDTRPAPGSTAPPAHGVTSA. In healthy epithelia the VNTR is highly glycosylated on serines 

and threonines with long and branched O-linked carbohydrates and the molecule is localized to 

the apical surface of ductal epithelial cells. In ductal epithelial adenocarcinomas, such as those of 

the breast, pancreas, ovary, colon and lung, MUC1 loses its apical polarization and becomes 

overexpressed and hypoglycosylated thus taking on a very different appearance and function than 

on normal cells (19).  The reduced glycosylation exposes the peptide backbone that can then be 

processed by antigen presenting cells in the draining lymph nodes into peptide epitopes as well as 

glycopeptide epitopes with truncated glycans and presented to T cells (98, 99). T cells and 

antibodies specific for these epitopes can be found in cancer patients (100-103).  MUC1 specific 

antibody and T cells effect on cancer development prior to diagnosis can only be postulated, 

however, their presence at diagnosis has been associated with better disease outcome (104, 105).  

While studying MUC1-specific immunity in cancer, we made an important observations 

that the same hypoglycosylated ‘tumor’ form of MUC1 is expressed also at sites of chronic 

inflammation of epithelia, such as inflammatory bowel disease in the colon and mastitis in the 

breast, or endometriosis in the uterus (101, 106, 107). We also found expression of the tumor form 

of MUC1 in the salivary gland during mumps infection (62). Individuals with a history of having 

one or more of these non-malignant but inflammatory conditions also had MUC1-specific immune 

memory.  Most importantly, these events and anti-MUC1 immunity correlated with a significant 
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reduction of risk for developing ovarian cancer (representative epithelial adenocarcinoma) (63). 

Based on these data we hypothesized that individuals with an immune memory for abnormally 

expressed MUC1 on cancer and other pathologies that affect various tissues, might be those with 

evidence of successful immunosurveillance (cancer elimination or cancer that is infiltrated with T 

cells that control its growth or metastasis).  We wanted to test this hypothesis in a mouse model of 

cancer immunosurveillance by studying the effect of a repeated infection of MUC1 transgenic 

mice with influenza virus on the growth of a MUC1 expressing tumor. More specifically, we asked 

if influenza infection would lead to abnormal expression (non-polarized overexpression and 

hypoglycosylation) of MUC1 in the affected lung and if it would elicit MUC1-specific immune 

memory that would control growth of MUC1 positive tumors. 

We show that influenza infection leads to changes in MUC1 in the lungs of infected mice 

and induction of MUC1-specific immune response that can delay MUC1+ tumor growth. We also 

show that eliciting anti-MUC1 immunity with a vaccine can lessen the intensity and pathology of 

influenza infection. 
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Figure 4: A new model of tumor immunosurveillance  

(A) Epithelial cells that are infected by a virus express viral antigens and also self antigens 

abnormally expressed as a consequence of viral infection. These antigens are released into the 

lymphatics as soluble proteins or through tumor cell apoptosis and necrosis and picked up by 

antigen presenting cells (APC) that prime naïve CD4+ and CD8+ lymphocytes in the draining 

lymph node. Antibodies recognizing these antigens are also produced by B cells. Memory CD4+ 

and CD8+ T cells, memory B cells and newly formed antibodies are generated specific for viral 

antigens and for abnormal self antigens. (B) A tumor expressing abnormal self antigens can be 

bound by the previously formed antibodies as well as activate the memory T and B cells leading 

to its elimination or better control of its growth. 
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3.3 METHODS AND MATERIALS 

Mice 

Wild type C57Bl/6 mice were purchased from the Jackson Laboratory (Bar Harbor, ME). MUC1 

transgenic mice on a C57Bl/6 background were developed by Dr. S.J. Gendler (The Mayo Clinic, 

Scottsdale, AZ). Both were bred at the University of Pittsburgh and treated according to guidelines 

from the Institutional Animal Care and Use Committee (IACUC). All experiments were approved 

by the IACUC. 

 

Virus Infection 

Mice were anesthetized using a mixture of Ketamine and Xylazine and intranasally inoculated 

with mouse-adapted H1N1, A//PuertoRico/8/1934 virus (PR8) at 15-18 weeks of age. At three 

weeks post-PR8 infection, mice were infected the second time with H1N1 

A/NewCaledonia/20/1999 virus (NC). Virus titration was performed on lungs of Wt mice infected 

with different concentrations of PR8 and NC viral strains according to published protocol (108).   

 

Peptide synthesis and in vitro glycosylation 

The TnMUC1 100-mer peptide used for immunization corresponds to five tandem repeats of the 

20–amino acid sequence HGVTSAPDTRPAPGSTAPPA from the extracellular VNTR region of 

MUC1. Enzymatic addition of GalNAc to the peptide was done using recombinant UDP-GalNAc 

polypeptide N-acetyl-galactosaminyltransferases rGalNAc-T1 as previously described (109). 

MUC1 glycopeptide MUC1-10-5GalNAc is from the same VNTR region but 10aa in length 

(SAPDTRPAPG) with the glycosylated T residue in the five positions. The peptides were 

synthesized at the University of Pittsburgh Genomics and Proteomics Core Laboratories. 
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Vaccine protocol 

Mice in the vaccine group received 20 μL intranasally (10 μL/nare) of 30 μg of TnMUC1 100-mer 

peptide mixed with three μg of adjuvant E6020 (synthetic, attenuated Toll-like receptor-4 agonist 

provided by Eisai Research Institute, Andover, MA) (110, 111). 

Mice were boosted twice at two-week intervals.  

 

Immunohistochemistry 

Tissue paraffin sections (5μm thick) were deparaffinized by baking overnight at 59°C. Endogenous 

peroxidase activity was eliminated by treatment with 30% H2O2 for 15 min at room temperature. 

Antigen retrieval was done by microwave heating in 0.1% citrate buffer. Nonspecific binding sites 

were blocked with Protein Blocking Agent (Thermo-Shandon). The anti-MUC1 antibody HMPV 

(BD Pharmingen) recognizes all forms of MUC1 by binding the epitope APDTR in the VNTR 

region in a glycosylation-independent manner. The anti-MUC1 antibody VU-4H5 (Santa Cruz 

Biotechnology) recognizes the epitope APDTRPAP in the VNTR region of hypoglycosylated 

MUC1. Staining was done by the avidin-biotinperoxidase method with a commercial kit 

(Vectastain ABC kit, Vector Laboratories). Color development was done using a 3,3′-

diaminobenzidine kit (BD Pharmingen). 

 

Flow cytometry 

Isolated cells from spleens were washed and resuspended in fluorescence-activated cell sorting 

buffer (2% fetal bovine serum in PBS) and plated at 0.5 × 106 to 1 × 106 per well. Surface Fc 

receptors were blocked with the addition of anti-CD16 (BD Biosciences) and incubated for 20 
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min. Cells were stained with anti-CD3, anti-CD4, anti-CD8, (BD Biosciences).  DimerX, Soluble 

Dimeric Mouse H- 2Kb:Ig Fusion Protein (BD Biosciences) was used according to the 

manufacturer's protocol to detect MUC1-specific CD8 T cells. Cells were analyzed on a LSR II 

flow cytometer (BD Biosciences), running FACSDiva software. 

 

Microscopy and image acquisition 

Histology sections were observed using an Olympus BX40 microscope. Images were acquired 

using a Leica DFC420 camera and Leica Application Suite version 2.7.1 R1. 

3.4 RESULTS AND DISCUSSION 

Abnormal expression of MUC1 in flu-infected lungs 

Human MUC1 Tg mice express low levels of the fully glycosylated (normal) MUC1 on the surface 

of lung epithelial cells (112). We examined the effect of an acute viral infection on MUC1 

expression in the lung as well as the effect of MUC1 expression on the pathology accompanying 

lung infection.  We infected MUC1Tg mice with influenza virus and compared the results of the 

infection with flu-infected wild type (Wt) mice that do not express human MUC1. Both strains of 

mice were intranasally inoculated with mouse-adapted H1N1 A/PuertoRico/8/1934 (PR8) virus. 

All mice had body weight recorded and were inspected for general health condition following PR8 

infection. We observed that both groups began to lose weight between days four and six post- 

infection; however, Wt mice lost significantly more weight at days four, six, and ten compared to 

MUC1 Tg mice (Fig. 5A) and this resulted in several Wt mice being removed from the protocol 

and sacrificed early. Wt mice experienced maximum weight loss at day ten and started to rebound 
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at day 12 but did not recover to their original body weight until day 30. MUC1 Tg mice 

experienced maximum weight loss at day eight and recovered to their original body weight by day 

14.  

Given the significant difference in weight loss that suggested milder infection in MUC1 

Tg mice, we questioned whether the presence of MUC1 on the surface of the lung epithelia might 

have simply interfered with virus entry into the cell.  We had previously published that this indeed 

occurs during adenovirus infection and that MUC1 can hamper adenovirus-mediated gene therapy 

(113). Infected mice were sacrificed at day three post infection and virus titers in mouse lungs 

were determined in both groups. We found little difference in the virus titer between MUC1 Tg 

and Wt mice at that time point (Fig. 5B).  We then sacrificed mice at day eight post-infection to 

determine if both groups were clearing the virus at similar rates. Four of four Wt mice and two of 

four of MUC1 Tg mice had cleared the infection by that time (Fig. 5B). These results suggested 

that MUC1 was not playing a role in either the initial infection or in virus clearance. 

To look at potential changes in MUC1 expression, especially the hypothesized increase in 

expression of the abnormal hypoglycosylated form, we examined by immunochemistry lung tissue 

sections from flu-infected and from age-matched uninfected MUC1 Tg mice. We used two 

different anti-MUC1 antibodies to detect different forms of MUC1: anti-MUC1 HMPV that 

recognizes all forms of MUC1 regardless of the glycosylation pattern and antibody VU-4H5 that 

recognizes only the hypoglycosylated ‘tumor’ form of MUC1. Figure 5C shows representative 

examples from both groups. MUC1 expression in uninfected MUC1 Tg mice is restricted to a thin 

brown line on the apical surface of bronchiolar epithelial cells (top left) with no expression of the 

hypoglycosylated ‘tumor’ MUC1 (top right). In contrast, MUC1 expression was dramatically 

increased in acutely infected bronchiolar epithelial cells (bottom left).  Higher magnification shows 
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loss of apical polarization and high level of cytoplasmic MUC1 that is in the hypoglycosylated 

‘tumor’ form (bottom right). This staining pattern is consistent with the pattern observed in 

neoplastic lung tissue.  
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Figure 5: Influenza infection in MUC1Tg and WT mice  

(A) Following infection with a sublethal dose of PR8 virus, mice were evaluated for weight loss. 

* P < 0.05, ** P < 0.01, *** P < 0.001. (B) Influenza virus titer was evaluated day three post-PR8 

and day eight post-PR8 infection in lung supernatants of MUC1 Tg (black circles) and Wt (open 

circles) mice by plaquing on MDCK cells. (C) Immunostaining of pre- and post-PR8 infected lung 

tissue. HMPV Ab is glycosylation independent and VU-4H5 is glycosylation dependent. (D) 

Splenocytes from post-PR8 infected MUC1 Tg and Wt mice were stained with MUC1 peptide-

loaded H2Kb-Ig dimer. Figure based on experiments performed by Dr. Pam Beatty with assistance 

by the author. 
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Flu infection elicits MUC1-specific CD8 T cells and delays MUC1+ tumor growth 

We next wanted to examine if the difference in expression and glycosylation of MUC1 in infected 

lungs during flu infection could lead to MUC1-specific immunity. To answer this question we 

looked for MUC1-specific CD8+ T cells in spleens of infected MUC1 Tg mice. We isolated spleen 

cells from both MUC1 Tg and Wt mouse at day 12 post-PR8 infection and stained them with anti-

CD3, anti-CD4 and anti-CD8 antibodies and with MUC1 peptides-loaded MHC class I H-2Kb 

DimerX (BD Biosciences). DimerX is MHC-Ig fusion protein that when loaded with peptide can 

bind to antigen specific T cell receptors on antigen-specific CD8+ T cells (114). DimerX was 

loaded with either the MUC1–8mer peptide (SAPDTRPA) or MUC1–10mer (SAPDTRPAPG) 

glycopeptide, both derived from the VNTR region. The MUC1–10mer glycopeptide has the 

GalNAc glycan attached to the threonine at position five. Unloaded DimerX and peptide loaded 

DimerX staining of T cells from infected Wt mice were used as negative controls. We detected a 

two-fold increase in MUC1-10mer specific CD8+ T cells compared to unloaded DimerX 

background staining in flu infected MUC1 Tg mice (Fig 5D). No difference was detected between 

MUC1-10mer loaded DimerX and unloaded DimerX background staining in Wt mice. No MUC1-

8mer-specific CD8+ T cells were detected in either group.    

Next we asked whether this MUC1-specific immune response could suppress MUC1 

positive tumor growth. Our expectation was that a MUC1 expressing tumor would reactivate the 

MUC1-specific memory response that had been generated during the influenza infection, which 

might result in some control of tumor growth. Wt and MUC1 Tg mice were inoculated with PR8 

virus followed by NC virus three weeks later.  We used repeated infection to better mimic what 
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might occur in people who are exposed to multiple infections and acute inflammatory events over 

a life time, each serving as a booster of immune memory. Mice were allowed to fully recover from 

the second infection and rested for 80 days to allow for the development of immunological 

memory. Mice were then challenged with the MUC1-transfected lymphoma cell line RMA-MUC1 

and the parental line RMA and tumor growth compared between previously infected and 

uninfected mice.  We observed little difference in the growth of the MUC1- tumor RMA between 

infected and uninfected Wt mice (Fig. 6A). There was also no difference in RMA/MUC1 tumor 

growth between infected and uninfected Wt mice (Fig. 6C). In addition, we compared RMA tumor 

size (Fig, 6E) and RMA/MUC1 tumor size (Fig. 6F) at day 16 post-tumor challenge between 

infected and uninfected Wt mice and found no differences. Influenza’s lack of an effect on tumor 

growth in wildtype animals may be due to a couple of factors. Influenza infection may not have 

been severe enough due to the second influenza exposure being of the H1N1 subtype. Also the use 

of a lymphoma cell line may not be optimal in the wildtype mouse setting due to the possibility 

that lymphoma antigens might be different enough from an epithelial tumor thus preventing any 

immunological memory developed following influenza exposure from being effective. In MUC1 

Tg mice, however, we observed delayed growth of the RMA tumor in three out of five influenza 

infected MUC1 Tg mice compared to uninfected MUC1, especially evident between days eight 

and 12 (Fig. 6B). The comparison of tumor size at day 15 was not significantly different between 

infected and uninfected MUC1 Tg mice (Fig. 6G). In contrast, we observed a dramatic difference 

in RMA/MUC1 tumor growth (Fig. 6D) and statistically significant difference in RMA/MUC1 

tumor size at day 15 between influenza infected and uninfected MUC1 Tg mice (Fig. 6H).  
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Figure 6: Tumor growth in post-PR8 infected MUC1Tg and Wt mice  

(A-D) Tumor growth curves in MUC1 Tg and Wt mice. (E-F) Tumor size in Wt mice at day 16 

post-tumor challenge. (G-H) Tumor size in MUC1 Tg. mice at day 15 post-tumor challenge.* P < 

0.05, ** P < 0.01, *** P < 0.001. Figure based on experiments performed by Dr. Pam Beatty with 

assistance by the author. 
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Anti-MUC1 immunity elicited by vaccination attenuates flu virus infection  

We have previously tested the efficacy of MUC1 vaccines for protection from MUC1 

positive tumor challenge (115). Given that we observed that influenza infection changes MUC1 

expression and elicits MUC1 immunity we wanted to know if a similar anti-MUC1 immune 

response induced through vaccination would have an effect on the extent and duration of influenza 

infection in MUC1 Tg mice. The assumption was that influenza virus infected cells would express 

abnormal MUC1 and be targeted for destruction by vaccine-induced MUC1-specific T cells. 

MUC1 vaccine consisted of a synthetic 100-mer glycopeptide TnMUC1 corresponding to five 20–

amino acid tandem repeats of MUC1, glycosylated in vitro with the tumor-associated glycan 

GalNAc, plus E6020 adjuvant, a synthetic, attenuated Toll-like receptor-4 agonist that promotes 

both systemic and mucosal immunity (110, 111). The vaccine group received nasal administration 

of the MUC1 vaccine on day zero followed by a booster two weeks later. Mice were inoculated 

with PR8 virus three weeks following the booster. Age-matched non-vaccinated MUC1 Tg mice 

were also inoculated with PR8 virus and both groups were monitored for weight loss and flu 

symptoms. We observed that both groups began to lose weight at the same time point between 

days four and six post-PR8 infection, however, weight loss was dramatically different between the 

two groups. Non-vaccinated mice lost significantly more weight by day eight compared to 

vaccinated mice (Fig. 7A).  Both groups began to rebound between days eight and ten and both 

groups recovered to their original body weight at day 30. We compared lung pathology between 

the two groups and found less pathology in lungs from the vaccinated group compared to the non-

vaccinated group (Fig. 7B). In addition, the inflammatory infiltrate into the lung was dramatically 

different between the two groups. Lungs from the vaccinated group had a predominant CD3+ T 
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cell population and foamy macrophages within alveolar spaces. In comparison, the untreated group 

had a more intense mixed inflammatory cell infiltrate with hemorrhage, large areas of atelectasis, 

and regions with multifocal type II pneumocyte hyperplasia (Fig. 7C).  

Several mechanisms may be postulated to explain our findings: 1) infections may provide 

adjuvant/immunostimulatory effects to increase recognition of abnormally expressed self 

molecules (disease associated antigens, DAA) and generate adaptive immunity that can later assist 

in tumor elimination via the same antigens (a.k.a. tumor associated antigens, TAA); 2) there may 

also be antigenic cross-reactivity between antigens derived from pathogens and TAA on tumor 

cells; and 3) previous infections may influence types of immunity elicited by subsequent 

infections, e.g. Th1 vs. Th2, as proposed by the Hygiene Hypothesis (116).  The work done by our 

group favors the first scenario in support of the hypothesis that immune responses generated early 

in life against abnormal self antigens encountered during febrile viral or bacterial infections and 

transient acute inflammations carry out cancer immunosurveillance (Fig. 4).  

The published studies by us and others and the new data we presented are consistent with 

our hypothesis that an important general mechanism of immunosurveillance against cancer and 

other diseases is through generation of immune memory early in life against abnormal self 

molecules generated during pathogenic events in a particular organ or tissue. During the early 

process of malignant transformation similar changes are recapitulated leading to an anti-tumor 

immune response that is actually a memory response to abnormal self. 

Collectively, these studies have far reaching implications on the way we view tumor 

antigens and anti-tumor immunity. If the above hypothesis is supported by future studies, it would 

not only establish the importance of acute infections in boosting tumor immunosurveillance, but 

would also represent a paradigm shift in the way we think about infections and cancer. This may 
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lead to the development of new methods to elicit and boost an anti-tumor immune response. It is 

likely that further studies will reveal additional associations between cancer and many diseases 

and the antigens connecting them. Prophylactic vaccines against these disease associated antigens 

that are also tumor associated antigens could be expected to generate immune memory early in life 

for a broad protection from all diseases, including cancer. 
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Figure 7: Anti-MUC1 immunity elicited by vaccination attenuated flu virus infection 

A) Vaccinated MUC1 Tg. mice were evaluated for weight loss following a sublethal dose of PR8 

virus. * P < 0.05, ** P < 0.01, *** P < 0.001. (B) H&E stained lung tissue from untreated or 

vaccinated MUC1 Tg. mice following MUC1 Tg. PR-8 infection. (C) Immunostained lung tissue 

from untreated or vaccinated MUC1 Tg. mice following MUC1 Tg. PR-8 infection. Figure based 

on experiments performed by Dr. Pam Beatty with assistance by the author. 
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4.0  INFLUENZA VIRUS INFECTION ELICITS ANTIBODIES AND T CELLS TO 

HOST CELL ANTIGENS PREVIOUSLY IDENTIFIED AS TUMOR ASSOCIATED 

ANTIGENS 

Data in this chapter are adapted from Iheagwara, UK, Beatty, PL, Van, PT, Ross TM, Minden, JS, 

Finn, OJ. 2013. “Influenza virus infection elicits antibodies and T cells to host cell antigens 

previously identified as tumor associated antigens: a new view of cancer immunosurveillance”, 

Cancer Immunology Research. Copyright 2013. American Association of Cancer Research. 

Copyright permission is kept on file with Uzoma K. Iheagwara 

 

4.1 ABSTRACT 

Most TAAs are self-molecules that are abnormally expressed in cancer cells and thus become 

targets of anti-tumor immune responses. Antibodies and T cells specific for some TAA have also 

been found in healthy individuals and associated with lowered lifetime risk for developing cancer. 

Lower risk for cancer has also been associated with a history of febrile viral diseases. We 

hypothesized that virus infections could lead to transient expression of abnormal forms of self 

molecules, some of which are TAAs, and facilitated by the adjuvant effects of infection and 

inflammation, elicit specific antibodies and T cells and lasting immune memory against those 

antigens simultaneously with immunity against viral antigens. Such infection-induced immune 

memory for TAA would be expected to provide life-long immune surveillance of cancer. Using 
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influenza virus infection in mice as a model system, we tested this hypothesis and demonstrated 

that influenza experienced mice control 3LL mouse lung tumor challenge better then infection 

naive control mice. Using 2D-Difference Gel Electrophoresis (2D-DIGE) and mass spectrometry, 

we identified numerous molecules on the 3LL tumor cells recognized by antibodies elicited by two 

successive influenza infections, some of which were already known tumor antigens. We studied 

in more detail immune responses against GAPDH, Histone H4, HSP90, Malate Dehydrogenase 2 

and Annexin A2, which were all overexpressed in influenza infected lungs compared to normal 

lungs, as well as in tumor cells. Lastly, we show that immune responses generated through 

vaccination against peptides derived from these antigens correlated with improved initial tumor 

growth control.    

4.2 INTRODUCTION 

Many cancers are a result of genetic mutations and epigenetic modifications leading to cellular 

transformation (117). One of the important cancer cell extrinsic mechanisms that allows or 

prevents tumor outgrowth is tumor immunosurveillance, the ability of the immune system to 

recognize abnormal cells (12). Successful tumor immunosurveillance leading to tumor elimination 

involves, among other immune mechanisms, recognition by B and T cells of tumor-specific or 

tumor associated antigens.  T cells recognize tumor antigens presented on Major 

Histocompatibility Complex (MHC) class I and II molecules and kill tumor cells via lytic granule 

release (CD8+ T cells) or promote cellular and humoral responses through production of cytokines 

(CD4+ T cells). TAA specific antibodies can bind to tumor cells and lyse them with the help of 

complement or facilitate their killing by T cells and natural killer (NK) cells through antibody 
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dependent cellular cytotoxicity (ADCC) (118, 119).  Molecular and biochemical characterization 

of numerous tumor antigens has led to a better understanding of targets that are especially 

important for immunosurveillance and facilitated development of immunotherapeutic strategies 

directed against those targets.  

Cancer patients have circulating tumor specific antibodies and T cells that have been used 

as reagents to characterize individual tumor antigens (120-123). Immune responses to several 

TAA, when present at diagnosis, have been correlated with a favorable prognosis. Even when 

target antigens are not known, infiltration of tumors by activated T cells has correlated with better 

prognosis and longer disease free and overall survival (124). Nevertheless, a diagnosis of cancer 

is a sign that the cancer has escaped immune control. The newest approaches in cancer 

immunotherapy are directed towards regaining immune control by drug-targeting both the cancer 

and the immune system (125). 

DNA sequencing has shown that tumors have on average a dozen or more individual 

mutations that could generate new epitopes highly specific for each individual’s tumor, known as 

tumor-specific antigens (126). While tumors could express these epitopes as targets and adoptive 

transfer of T cells or antibodies could lead to their recognition and elimination, spontaneous 

immune responses to such epitopes (e.g. mutated Kras, EGFR or p53) have not been found with 

the regularity that could be expected from the frequency of these mutations (127). Instead, the 

majority of anti-tumor immune responses are against non-mutated self antigens, which are in 

various ways abnormally expressed on tumor cells and thus named TAA. These include molecules 

that on tumors compared to normal cells are either overexpressed [e.g. Her-2neu (128), MUC1 

(19), CEA (129), Cyclin B1 (120)], show unscheduled expression [e.g. oncofetal antigens α-

fetoprotein (130), cancer-testis antigens NY-ESO1 (131), Mage 1-7 (132)], or undergo different 
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posttranslational modifications (glycosylation or phosphorylation)[e.g. hypoglycosylation of 

MUC1 (19) or aberrant phosphorylation of β-catenin (21)]. Abnormal expression of many of these 

antigens can be seen early in the process of tumor development on premalignant precursors of 

various cancers (106, 121).  

Several large epidemiological studies have been published showing that a history of febrile 

childhood infections is correlated with a reduced life-time risk of many different cancers (74, 81, 

86). The mechanisms underlying this protective function were unknown.  At the same time, 

observations were being made that healthy individuals with no previous history of cancer can have 

antibodies and/or T cells specific for several well-known TAA (59, 133). For example, we found 

that the TAA MUC1 was expressed in the tumor form (overexpressed and hypoglycosylated) on 

salivary gland ducts during mumps parotitis infection (62), on breast ducts during lactation and in 

lactational mastitis (101), and in inflammatory bowel disease (106). We further showed that the 

presence of anti-MUC1 IgG in women that experienced early in life one or more of these events, 

correlated with a significantly lower ovarian cancer risk (91).  

In this study we present the first attempt to recapitulate these observations in a mouse 

model.  Having an experimental model allowed us to start testing our hypothesis that immunity 

and immune memory against abnormal self antigens, known as TAA, is not elicited in response to 

their de novo expression on tumor cells or premalignant lesions that develop late in life, but rather 

it is elicited early in life in response to their expression during acute inflammations accompanying 

viral and other infections. When some of the same self antigens are abnormally expressed on 

premalignant lesions or tumor cells, they can be recognized by infection-primed immune memory 

responses leading to tumor elimination or enhanced tumor control. We show that mice that 

experience two infections with two different influenza viruses develop immunity to self antigens 
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abnormally expressed on infected lungs, which correlates with their ability to control growth of a 

transplantable lung tumor that abnormally expresses those same self antigens. We analyzed in 

detail infection elicited immune responses to five such antigens: Glyceraldehyde-3-Phosphate 

Dehydrogenase (GAPDH), Histone H4, Malate Dehydrogenase 2 (MDH2), Annexin A2, and Heat 

Shock Protein 90 (HSP90).  They were all recognized in tumor cell lysates by post-infection sera.  

We show that they are all overexpressed in tumor cells, as well as in influenza virus-infected lungs 

compared to healthy lungs, and that influenza virus infection generates antibody and CD8+T cells 

specific for these antigens. We demonstrate that immunization of mice with peptides derived from 

these antigens protects them effectively against a tumor challenge. 

4.3 METHODS AND MATERIALS 

Mice, tumor cell lines, and influenza virus 

Six to eight week old female C57BL/6 wildtype (WT) mice were purchased from The Jackson 

Laboratory (Bar Harbor, ME) and maintained in the University of Pittsburgh Animal Facility. All 

animal protocols were in accordance with IUCAC guidelines at the University of Pittsburgh. Lewis 

Lung Carcinoma cell line (3LL), a murine lung epithelial tumor, was maintained in c-DMEM 

media containing 10% heat inactivated fetal calf serum (FCS), 1% Non-essential Amino Acid, 1% 

Penicillin/Streptomycin, 1% Sodium Pyruvate, 1% L-glutamine, 0.1% 2-mercaptoethanol. IG10, 

an epithelial tumor cell line derived from mouse ovarian epithelium, was cultured as previously 

described (134).  
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Influenza Virus Infection and Tumor Challenge 

All mice were anesthetized with Ketamine (100mg/mL)/Xylazine (20mg/mL) solution. Mice were 

infected intranasally with 1.25x103 pfu of H1N1 Influenza A/Puerto Rico/8/34 (PR8) virus and re-

infected 35 days later with 1.25x103 pfu of H3N2 Influenza A/Aichi/2/68 (Aichi) X-31 virus. 

Percent weight loss was classified as a measure of successful infection. Subsequently, mice were 

weighed at two-day intervals. On day 60 following the first infection, mice were injected 

subcutaneously in the right hind flank with 1x105 3LL tumor cells. Tumor length and width were 

measured every two days using calipers. Mice were kept until tumor diameter reached 20 mm, 

tumors became severely ulcerated, or otherwise advised by the University of Pittsburgh animal 

facility. 

 

Staining of tumor cells with pre and post infection sera  

Four days prior to primary influenza infection, mice were bled to obtain their pre-infection sera 

antibody repertoire. Ten days following secondary infection, mice were bled to obtain post-

infection sera antibodies. Prior to staining, both sets of sera were diluted 1:62.5 in PBS. 2x105 3LL 

and IG10 tumor cells were plated in a 96 well plate and stained with 100uL of pre or post-infection 

sera on ice for one hour. Cells were then stained with FITC conjugated Rat anti-mouse IgG2a (BD 

Bioscience) as the secondary antibody on ice for 30 minutes. Cells were fixed thereafter in 1.6% 

paraformaldehyde and samples were run on LSRII flow cytometer. 

 

Affinity purification of 3LL antigens 

Total cell lysate was generated from 50x106 3LL cells in 300uL NP-40 lysis buffer (0.5% NP40, 

0.5% Mega 9 (octylglucoside), 150 mM NaCl, 5 mM EDTA, 50 mM Tris pH 7.5, 2 mM PMSF, 5 
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mM iodoacetamide, and Protease Inhibitor (Roche)). Lysates were subsequently pre-cleared by 

adding Protein G Sepharose beads (Sigma-Aldrich, Inc, St. Louis, MO) and incubating the mixture 

for one hour at 4° C on an orbital shaker. Protein G beads were removed by centrifugation at 1200 

rpm prior to affinity purification. Protein G HP Spin Trap Columns and Buffer Kits (GE Healthcare 

UK) were used following manufacturer’s protocol with the following modifications. In brief, pre-

infection and post-infection sera were pooled separately from mice (n=6) and each set of sera was 

poured over multiple protein G columns (100 µL per column). Columns were washed with the 

provided wash buffer and 50 mM dimethyl pimelimidate dihydrochloride (DMP) was added to 

covalently cross-link bound antibodies from each set of sera to the protein G columns, as described 

in the manufacturer’s protocol. This was done to ensure that only bound protein fractions were 

eluted from the columns and not the antibodies. 400 µL of 3LL tumor lysate was then added to 

both pre-and post-infection sera columns and incubated overnight at 4° C on an orbital shaker. The 

following day columns were washed with TBS (50 mM Tris, 150 mM NaCl, pH 7.5) and bound 

proteins were eluted off the columns with 0.1 M glycine provided from the kit with 2 M urea, pH 

2.9. Pooled proteins from pre-infection antibody columns and post-infection antibody columns 

were concentrated and buffers were exchanged from the elution buffer to 2D-gel buffer (7 M urea, 

2 M thiourea, 4% CHAPS, 10 mM DTT, 10m M HEPES, pH 8.0) using 5000 MWCO Vivaspin 

columns (Sartorious Stedim Biotech, Goettingen, Germany). 

 

2D-DIGE and Liquid Chromatography/Mass Spectrometry (LC/MS) analysis 

The immunoprecipitated proteins were subjected to Difference Gel Electrophoresis (DIGE) (93) 

to identify proteins largely or uniquely precipitated by post-infection sera. Protein labeling, 

Isoelectric Point Focusing (IEF), and 2nd dimension SDS-PAGE were conducted as previously 
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described (135) with some modifications. In brief, 2.5µg of pre-infection proteins and post-

infection proteins were reduced in 10 mM Tris(2-carboxyethyl)phosphine (TCEP, Sigma) for 60 

minutes in the dark at 37°C. 10 mM CyDye DIGE Fluor Cy3 or Cy5-maleimide saturation dyes 

(GE Healthcare, Uppsala, Sweden) diluted in Dimethylformamide (DMF) (Sigma), which label all 

available TCEP reduced cysteines on all proteins, were added to each sample for 30 minutes at 

37° C. Labeling was quenched with 7M Dithiothreitol (DTT). Samples were then combined and 

immobilized pH gradient (IPG) buffer (GE Healthcare) was added at 1µL/40µL of sample. 

Labeling of the two samples was reversed (reciprocal labeling) and run concurrently on a 2nd gel 

to eliminate dye-dependent differences. Proteins were separated in the 1st dimension on 13cm pH3-

10NL IPG strips on an IPGphor apparatus (GE Healthcare) for 35000 Volt-hours. The samples 

were then separated on 2nd dimension SDS-PAGE in pre-cast 10-20% gradient polyacrylamide 

gels encased in low fluorescent glass (www.precastgels.com) in standard Tris-Glycine-SDS 

running buffer. Fluorescent images of reciprocal gels were taken as previously described (135). 

The Bioinformatics Analysis Core of the University of Pittsburgh Genomics and Proteomics Core 

Laboratories analyzed resultant fluorescent images and selected spots that were then cut from the 

gels and identified via Nano LC-ESI-MS/MS, as previously described (136).  

 

Western blot and densitometry analysis 

Lung tissues were homogenized with a two mL dounce homogenizer and total lysates were 

obtained in NP-40 lysis buffer. The same procedure was applied to generate total cell lysates from 

3LL and IG-10 tumor cells. Prior to Western blotting, protein amounts were determined via 

Bradford assay. 50 µg of protein from various groups were separated on 10% TGX pre-cast gels 

(Bio-Rad) and immunoblotted onto PVDF membranes. The following antibodies were used to 
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probe for their respective proteins on separate blots: anti-HSP 90α/β (1:100, Santa Cruz 

Biotechnology, Santa Cruz, CA), anti-Annexin II (1:100, Santa Cruz Biotechnology, Santa Cruz, 

CA), anti-Histone H4 (1:1000, Abcam, Cambridge, MA), anti-GAPDH (1:1000, Abcam, 

Cambridge, MA), anti-Malate Dehydrogenase 2 (1:100, Abcam, Cambridge, MA), anti-Actin 

(1:15000, Sigma-Aldrich, Inc, St. Louis, MO), goat anti-mouse HRP (1:5000, Santa Cruz 

Biotechnology, Santa Cruz, CA), goat anti-rabbit HRP (1:5000, Santa Cruz Biotechnology, Santa 

Cruz, CA). All Western blots were scanned on Kodak Image Station 4000MM and band 

densitometry analysis was performed on all blots using Image J (NIH, Bethesda, MD). All bands 

were normalized according to their actin control. Once normalized, all experimental bands lanes 

were directly compared to a normal uninfected mouse lung.  

 

ELISA 

15 μg/mL of one of the following proteins were coated on Immulon 4HBX ELISA plates (Thermo 

scientific) in duplicate wells to examine differences in antibody recognition between pre- and post-

infection sera: MDH2 (Novus Biologicals, Littleton, CO), GAPDH (Abcam, Cambridge, MA), 

Histone H4 (New England Biolabs, Ipswich, MA), HSP90a (Abcam, Cambridge, MA), Annexin 

A2 (Novoprotein, Summit, NJ). Human proteins were used due to their high conservation between 

mouse and human. Duplicate wells that were not coated with antigen served as controls for non-

specific binding. Plates were then placed on an orbital shaker overnight at 4° C. The next day pre- 

and post-infection sera were diluted (1:62.5) in PBS, added to ELISA plates, and placed on an 

orbital shaker for two hours at room temperature. Plates were washed and 0.3% Hydrogen 

Peroxide was added wells to block background peroxidase activity. Plates were washed and rat 

anti-mouse IgG-HRP (1:500) was added. Plates were again washed and TMB substrate was added 
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for 15 minutes and 2N Sulfuric Acid was added to stop the developing signal. ELISA plates were 

then read at 450 nm on a Gen 5 plate reader. Data were represented using the average of duplicate 

antigen-coated wells after subtracting out the no antigen control wells.  

 

Peptide identification and MHC-I binding assays 

Candidate peptide sequences were identified using the Immune Epitope Database (IEDB) MHC-I 

binding predictor program with a percentile rank of five or less (137). MDH251-260 

(MAYAGARFVF), GAPDH300-310 (ALNDNFVKLIS), Annexin A2184-191 (SVIDYELI), H487-95 

(VVYALKRQG), Histone H4 with an amino acid substitution (H4-sub VVYAFKRQG) peptides 

were synthesized by the Peptide Synthesis Core of the University of Pittsburgh Genomics and 

Proteomics Core Laboratories as previously described (138). Peptide binding to MHC class I was 

verified by performing RMA-S MHC-Class I stabilization assays. In short, 2x105 RMA-S cells, a 

TAP deficient cell line, were plated in a 96 well plate. The cells were cultured overnight at 29° C. 

Unloaded RMA-S cells served as controls. Each peptide candidate was added in triplicate to the 

plate from 10-4 M to 10-7 M for two hours and 30 minutes in a 29° C incubator. Cells were placed 

in a 37° C incubator for one hour and 30 minutes. RMA-S cells were fixed in 1.6% 

Paraformaldehyde and then stained with anti-H2-Kb or anti-H2-Db (BD Bioscience). Samples were 

run on the LSR II Flow Cytometer (BD Bioscience) and analyzed using FACS Diva Software (Fig. 

12). 

 

Antigen specific T cell detection 

Animals were sacrificed six days following the second influenza infection. Lungs and spleens were 

harvested and cells isolated as previously described (139). 1x106 cells from each set of tissues 
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were stained with anti-CD3, anti-CD4, and anti-CD8 antibodies (BD Bioscience). Dimer-X 

soluble dimeric mouse H-2Kb:Ig Fusion Protein and H-2Db:Ig Fusion Protein (BD Bioscience) 

were used according to the manufacturers protocol to detect MDH251-260, GAPDH300-310, Annexin 

A2184-191, H487-95, PA224-233 (GenScript USA, Piscataway, NJ), and NP147-155 (GenScript USA, 

Piscataway, NJ) antigen specific CD8+ T cells. 100,000 events were collected and samples were 

run on the LSR II Flow Cytometer (BD Bioscience), gated (Fig. 13) and analyzed using FACS 

Diva Software.  

 

Vaccination and Tumor Challenge 

D1 dendritic cells (DC) are an established growth factor dependent immature DC line (140). D1 

DC were grown and maintained as previously described and used in all vaccinations (140). 

1.25x106 D1 DCs/ mouse were cultured in six well plates, loaded separately with 100 μg of 

MDH251-260, GAPDH300-310, Annexin A2184-191, or H487-95, and matured with 12.5 μg/mL of Poly 

IC:LC adjuvant. 0.25x106 D1 DCs loaded with individual peptides were pooled together for a total 

number of 1x106D1 DCs. An additional 50 µg of each soluble peptide per mouse was added to the 

mixture and injected into mice in the right hind flank. Unloaded, Poly IC:LC matured D1 DCs 

were injected in control mice. Animals were vaccinated at week zero, week two, and week six. 

They were challenged with 1x105 3LL cells in the right hind flank two days following week 6 

vaccination. Tumor length and width were measured at two-day intervals using calipers.  

 

Data Analysis 

Statistical analysis was performed using GraphPad Prism v6.0 software (GraphPad Inc. San Diego, 

CA). Results were represented as means ± standard error of the mean (SEM). Statistical means 
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and significance were analyzed using unpaired two-tailed student’s t test. Kaplan-Meier survival 

curves were analyzed with the log rank test. Significance for all experiments was defined as the 

following: * p<0.05, ** p<0.01, *** p<0.001. 

4.4 RESULTS 

 

Influenza virus infection induces antibodies to multiple host cell antigens, some of which 

are known TAA 

Mice were infected with influenza virus PR8 and then 35 days later with the second influenza 

strain Aichi, as described in Materials and Methods. Mice experienced general signs of malaise 

and lost close to 20% of starting body weight in the first week following each infection.  By seven 

to eight days post infection, mice began to recover and by days 16-18 their weight returned to 

baseline (Fig. 8A). Day 25 post second infection, animals were injected subcutaneously with 3LL 

tumor cells. Tumors became palpable eight days post injection (Fig. 8B). At day 14, tumor growth 

kinetics between influenza experienced animals and the naïve mock infected group began to 

diverge. Tumors in influenza-experienced animals grew slower from days 14 to 22.  On day 16 the 

average tumor size in influenza-experienced mice was 20.67 mm2 versus the size in the control 

group of 51.63 mm2. The size difference was still significant at day 18 when the average tumor 

size in the influenza-experienced group was 31.78 mm2 compared to 73.25 mm2 in the control 

mice. 

We examined the post-infection sera for the ability to stain 3LL tumor cells, which would 

suggest that flu infections generated antibodies against, among others, tumor cell surface proteins. 
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In the experiment illustrated in Figure 8C, we obtained sera from mice (n=7) pre and post influenza 

infection. Tumor cell surface staining was performed with individual sera and the results were 

pooled into pre and post infection groups and represented as an average value. Average Mean 

Fluorescence Intensity (MFI) of staining of 3LL tumor cells with post-infection sera was 

significantly higher compared to pre-infection sera. The same result was obtained staining another 

mouse epithelial tumor cell line IG10 with the same sera.   

To identify molecules specifically recognized by post-infection sera, pre- and post-

infection antibodies were bound to Protein G columns for affinity purification of proteins from 

3LL tumor cell lysates.  Tumor proteins bound to the antibody columns were eluted, labeled with 

two different Cyanine-based saturation dyes and resolved by 2D-DIGE as described in Materials 

and Methods. In a concurrently-run reciprocal gel, labeling was reversed such that the sample 

previously labeled with Cy3 was labeled with Cy5 and vice versa. Gel images were false-colored 

for analysis: green for Cy3, red for Cy5. Overlays were then created using Delta2D software, where 

proteins unique to one sample appeared either green or red, while proteins common to both samples 

appeared yellow (green and red combined). Figure 9 shows the gel used to identify antigens 

described below. Green dots belong to proteins eluted from pre-infection antibody columns while 

red dots represent proteins eluted from post-infection antibody columns. Spots that were deemed 

to be most remarkable (yellow circles) were cut out and subjected to mass spectrometry analysis 

and protein sequencing. Many proteins with a wide variety of functions were identified.  Those 

included voltage dependent ion channels, proteasome subunits, mitochondrial and cytosolic 

enzymes, heat shock proteins and structural proteins (Table 1). We selected four identified 

proteins: Histone H4, Malate Dehydrogenase 2 (MDH2), Annexin A2, Glyceraldhyde-3-

Phosphate Dehydrogenase (GAPDH) and Heat Shock Protein 90 (HSP90) for further study (Table 
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2).  Several previous reports based on methods and approaches unrelated to ours had already 

identified these molecules either in tumor bearing mice or in cancer patients as tumor associated 

antigens (141-145).  
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Figure 8: Influenza virus infection delays tumor growth at early time points.  

(A) Animals were intranasally infected with PR8 and Aichi influenza viruses on day zero and day 

35 respectively. Mice were weighed every two days. (B) Influenza experienced animals and naïve 

animals were challenged subcutaneously with 1x105 3LL tumor cells in the right hind flank. Tumor 

length and width were measured every two days using calipers. Data are representative of two 

experiments with at least 8 mice per group and are expressed as means ± SEM. (C) Sera from 

animals (n=7) four days prior to PR8 infection (pre-infection) and ten days after Aichi infection 

(post-infection) were diluted 1:62.5 and used to stain 3LL and IG10 tumor cells. Cells were 

subsequently stained with FITC conjugated goat anti-mouse IgG2a antibody and analyzed on the 

LSRII flow cytometer. Results are shown as Mean Fluorescent Intensity (MFI). * p<0.05, ** 

p<0.01, *** p<0.001 
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Figure 9: Influenza infection induces antibodies against specific proteins of tumor cells. 

3LL tumor lysates were affinity purified on protein G columns to which post-infection and pre-

infection antibodies were covalently bound and eluted proteins compared by 2D-DIGE gels. Green 

spots belong to proteins eluted from pre-infection antibody columns and red spots from post-

infection antibody columns. Yellow color marks overlapping spots. Yellow circles indicate spots 

picked for sequencing. Spots were chosen according to image analysis provided by the University 

of Pittsburgh Bioinformatics Analysis Core (BAC) of the Genomics and Proteomics Core 

Laboratories.  
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Table 1: List of identified proteins from selected post-precipitate spots.  

Candidate proteins from spots, selected according to image were sequenced via liquid 

chromatography/mass spectrometry analysis. Protein sequences were identified using SEQUEST 

by the University of Pittsburgh Bioinformatics Analysis Core (BAC) of the Genomics and 

Proteomics Core Laboratories 
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Table 2: Biological characterization of selected tumor antigens detected by post infection 

antibodies
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Overexpression of GAPDH, Histone H4, MDH2, Annexin A2, and HSP90 in tumor cells and 

influenza virus infected lungs leads to specific immunity 

We hypothesized that post-infection antibodies against these proteins were elicited due to 

differences in their expression in infected versus normal lungs, which would be consistent with 

their abnormal expression in tumors.  Western blot analysis showed that these proteins were 

constitutively overexpressed in both epithelial tumor cell lines, 3LL and IG10, and also at various 

time points in flu-infected lungs (2-7.5-fold higher compared to healthy lungs) (Fig. 10). 

Expression of GAPDH in influenza-infected lungs appeared to be the highest at day three post 

infection. Histone H4 protein levels were constitutively elevated in tumor cells and at all time 

points post flu infection by 5 to 7-fold higher than in normal lung.  MDH2 levels were elevated at 

12 hours post infection and decreased to normal levels at day three post infection. Annexin A2 

remained three-fold higher than in normal lung at all time points. HSP90 protein level was the 

highest at day two post infection. 

Even though these antigens were identified by affinity purification on post-infection sera 

bound to Protein G columns, we wanted to confirm in another assay the specificity of post-

infection antibodies for each of these individual molecules. Figure 11 shows that in most mice 

there was an increase post-infection in IgG specific for GAPDH, Histone H4, MDH2, Annexin A2 

and HSP90α as determined by ELISA.  

Influenza virus infection also induced an increase in CD8+ T cells for all of these antigens. 

Spleens and lungs were harvested from mice six days after the second influenza infection and from 

uninfected control mice. Peptides GAPDH300-310 (ALNDNFVKLIS), Annexin A2184-191 

(SVIDYELI), MDH251-260 (MAYAGARFVF), Histone H487-95 (VVYALKRQG), Histone H4 with 

an amino acid substitution (H4-sub VVYAFKRQG) (142), were selected from the Immune 
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Epitope Database (IEDB) and confirmed to bind to MHC-I in RMA-S stabilization assays (Fig. 

12). Each peptide was loaded onto DimerX H-2Kb or H-2Db molecules and used to detect specific 

CD3+CD8+ T cells. There were no CD8 T cells specific for these peptides in lungs and spleens of 

uninfected control mice but in flu-experienced animals they were present in similar numbers to the 

flu-specific T cells (Fig. 14).  The highest numbers both in the lungs and in the spleens were H2-

Kb restricted GAPDH specific and H2-Db restricted MDH2 specific T-cells.  
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Figure 10: Histone H4, MDH2, GAPDH and HSP90 are elevated in epithelial tumor cells 

lines and influenza infected lungs. 

Histone H4, MDH2, GAPDH and HSP90 are elevated in epithelial tumor cells lines and influenza 

infected lungs. Whole cell lysates were generated from 3LL and IG10 cell lines and from normal 

and influenza infected lungs. 50μg of protein was loaded on each gel, resolved by electrophoresis 

and transferred onto PVDF membranes. Membranes were blotted using antibodies against 

GAPDH, Histone H4, MDH2, Annexin A2, and HSP90. Actin loading controls were used to 

normalize each band. Densitometry analysis was performed using ImageJ. All lanes were 

compared to Normal Lung. Data are representative of two experiments. 
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Figure 11: Antibodies specific for GAPDH, Histone H4, MDH2, Annexin A2 and HSP90α 

increase following influenza infection. 

Pre-infection sera (four days prior to the first infection) and post-infection sera (ten days post 

second infection) were assayed on ELISA plates in duplicate wells coated with individual proteins. 

Uncoated wells served as non-specific binding controls and their values were subtracted from 

values in matching antigen-coated wells. Results are represented as mean optical density (OD) ± 

SEM of two experimental repeats with an n=7. 
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Figure 12: TAA peptides bind to MHC-I  

(A) Peptide position and sequence as well as H-2Kb and H-2Db binding prediction value. (B) RMA-

S cells were incubated overnight at 29°C in 96-well microtiter plates. The next day, peptides were 

added to cells in triplicate wells in concentrations ranging from 10-4M to 10-7M and incubated at 

29°C for 1 hour and 30 minutes. Unloaded RMA-S cells served as negative controls and OVA257-

264 and NP366-374 loaded RMA-S cells served as positive controls. Plates were subsequently placed 

at 37°C for two hours and 30 minutes. Expression of Kb and Db was analyzed by flow cytometer. 

X-fold increase was calculated as follows: peptide loaded RMA-S cell median fluorescent 

intensity/unloaded RMA-S cell median fluorescent intensity.                               
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Figure 13: Example gating strategy of antigen specific CD3+CD8+Dimer-X+ T cells.  

Splenocytes and lung cells were processed and stained with anti-CD3, anti-CD4, and anti-CD8 

antibodies (BD Bioscience). Dimer-X soluble dimeric mouse H-2Kb:Ig Fusion Protein and H-

2Db:Ig Fusion Protein (BD Bioscience) were used according to the manufacturers protocol to 

detect MDH251-260, GAPDH300-310, Annexin A2184-191, H487-95, PA224-233 (GenScript USA, 

Piscataway, NJ), and NP147-155 (GenScript USA, Piscataway, NJ) antigen specific CD8+ T cells. 

100,000 events were collected and samples were run on the LSR II Flow Cytometer (BD 

Bioscience). Cells were first gated on SSC-A and FSC-A. Cells within this gate were analyzed for 

CD3+ cells and then for CD8+ cells. CD3+ and CD8+ T cells staining with either Dimer-X (Kb) or 

Dimer-X (Db) loaded with various peptides were then gated and analyzed using FACS Diva 

Software.            
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Figure 14: Antigen-specific CD8+ T cells increase in lungs and spleens following influenza 

infection.  

Mice were infected with PR8 and Aichi Influenza viruses or mock PBS infected on day zero and 

day 35 respectively. Six days after the second infection spleens and lungs were harvested and 

analyzed by Flow Cytometry for the presence of T cells staining with the Dimer-X reagent (as 

described in Methods and Materials). Data are representative of two experimental repeats of least 

n=3 animals per group and are expressed as means ± SEM. 

 77 



 

 

Vaccination with DC loaded with the new TAA peptides delays tumor growth and promotes 

survival 

We loaded the D1 dendritic cells with MDH2251-260, GAPDH300-310, Annexin A2184-191, and H487-

95 and vaccinated mice as described in Materials and Methods. Control mice were vaccinated with 

unloaded D1 cells. Two days following the second boost, mice were challenged subcutaneously 

with 3LL tumor cells. In vaccinated animals tumor growth began to slow down significantly by 

day twelve (Fig. 15A) resulting in all the vaccinated animals still surviving at day 40, compared 

to only two animals surviving in the unloaded DC vaccinated controls (Fig. 15B). On day twelve, 

average tumor size in peptide loaded DC vaccinated animals was 10.67 mm2 compared to 30.67 

mm2 for the controls.  

 

 

 

 

 

 

 

 

 

 

 

 78 



 

 

 

 

 

 

 

Figure 15: Vaccination with GAPDH, Histone H4, MDH2, and Annexin A2 peptides loaded 

on DC confers early protection and prolonged survival against 3LL tumor challenge.  

(A) Mice were vaccinated in the right hind flank with 1x106 D1 cells/mouse (a pool of 2.5x105 D1 

dendritic cells/peptide) at week zero week two, and week six. Control mice received the same 

number of unloaded D1 DC at the same time points. Two days after the week six booster, animals 

were challenged subcutaneously with 1x105 3LL tumor cells in the right hind flank. Tumor growth 

was measured with calipers at two-day intervals and expressed as length x width (mm2). (B) 

Survival post tumor challenge. Data are representative of two experiments with at least n=8 mice 

per group and are expressed as means ± SEM. 
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4.5 DISCUSSION 

The data we present here, adds a new dimension to our understanding of the process of cancer 

immunosurveillance and its targets.  We show that immune responses against abnormally 

expressed self antigens, many of which have been characterized as TAAs, are generated during 

non-malignant infectious inflammatory events that occur much earlier in life than malignancies.  

We propose that immune memory for these antigens is later recruited for cancer 

immunosurveillance. 

We used a mouse model to demonstrate that two bouts with influenza virus infection led 

to the ability to slow down tumor growth.  This effect was small and transient, which may be all 

that could be expected from a limited exposure of the mice to this one type of infection and no 

other pathogens prior to that due to the pathogen free conditions that they are kept in. The 

significance of this small delay, however, was confirmed by our ability to show induction of 

antibodies against multiple molecules in the tumor cell lysate. Focusing on five antigens identified 

by infection-elicited antibodies, GAPDH, Histone H4, MDH2, Annexin A2, and HSP90, we 

showed that they were abnormally expressed (overexpressed) in flu infected lungs and in mouse 

epithelial tumor cell lines, and that in addition to IgG the flu infection induced antigen-specific 

CD8 T cells against these molecules. As predicted by our hypothesis, vaccination with peptides 

derived from GAPDH, H4, MDH2, and Annexin A2 led to a much more profound slowing down 

of tumor growth compared to the infection, and to prolonged survival of tumor bearing animals.   

Other viral infections may be capable of inducing TAA specific antibodies and T cells. 

Vaccinia Virus (VV) and Lymphocytic Choriomeningitis Virus (LCMV) infected mice were 

previously reported to develop antibodies against many host cell antigens, some of which are 

orthologues of human TAAs (146). Human fibroblasts infected with varicella-zoster virus (VZV) 
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or human cytomegalovirus (CMV) overexpress cyclin B1 in the cytoplasm in a similar fashion to 

tumor cells where cyclin B1 was identified as a TAA (147, 148). Cyclin B1 has been found in 

VZV virions as well (149). Many healthy individuals, presumably having experienced these 

infections, have cyclin B1-specific IgG and memory T cells (59). It has been reported that GAPDH 

and Annexin A2 are found in influenza virions produced by infected epithelial cell lines Vero and 

A549 (150). HSP90, Annexin A2, and GAPDH were also found within human CMV particles 

(151).  A study examining the measles virus effect on presentation of self-peptides on MHC class 

I during infection showed that two abundant self-peptides on HLA-A*0201 measles infected cells 

could induce auto-reactive CD8+ T cells. One of the peptides identified was HSP90β570-578 

(ILDKKVEKV)(152).  HSP90β570-578 peptide has been found to be expressed in melanoma cell 

lines as well (153). It is possible that these “auto-reactive” T cells contribute to increased tumor 

immune surveillance. None of these observations were followed by experiments to test the 

potential anti-tumor effects of either the viral infections or the immune responses against the 

identified molecules, with the exception of cyclin B1 that we showed was a target of anti-tumor 

immune responses (59). 

The same protective effect of influenza virus primed immunity specific for abnormally 

expressed self-antigens that we showed here, could be a collateral benefit of other viral, bacterial 

and parasitic infection or various acute inflammatory conditions of unknown etiologies. Therefore, 

we propose that the molecules abnormally expressed in these different disease states and also in 

cancer cells, that are currently referred to as TAAs, should be renamed disease associated antigens 

(DAA) (154). Pre-existing immune responses to several known tumor antigens that are candidate 

DAAs have been reported to increase the odds of successfully eliminating spontaneously arising 

tumors (91).  The arrival of memory DAA-specific T cells to the site of the tumor as a secondary 
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immune response could promote priming of tumor-specific responses directed against individual 

mutations and epitope spreading, adding to the efficacy of immunosurveillance. If DAAs specific 

immune memory is lacking or weak due to limited early exposures to infections, this may lead to 

establishment of chronic inflammation at the tumor site due to unopposed innate immune 

responses, which is likely to promote tumor development. Better understanding of events early in 

life that prepare the immune system to protect an individual against known and unknown 

pathogens as well as future malignancies, will help direct vaccines and other immune manipulation 

towards strengthening rather than impairing the establishment of life-long immunosurveillance. In 

addition, these findings support the use of vaccines based on DAAs/TAAs for cancer prevention. 
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5.0  SIGNIFICANCE OF THIS NEW VIEW OF CANCER 

IMMUNOSURVEILLANCE 

My thesis work provides experimental support to the epidemiological evidence that experiencing 

infections early in life provides protection from cancer later in life. Understanding the basic 

mechanisms of the formation of tumor immunosurveillance is of public health importance. For 

example, as tumors progress and grow out, they tend to create pro tumor growth and 

immunosuppressive environment. Currently, most antigen based immunotherapeutic interventions 

are tested in individuals diagnosed with late stage cancers. Additionally, many of these individuals 

have failed all other interventions. By this time, the immunotherapy is largely ineffective. 

Concentrating on prophylactic vaccinations against the most important or relevant DAAs in a 

tumor free or premalignant state may prove to be the more effective cancer control strategy. The 

most important DAAs might be defined as: 1. DAA that are expressed on the most common 

cancers, 2. Antigens that are expressed by cells affected by various pathogens and not just one 

particular antigen, and 3. DAAs that elicit the most robust T cell and antibody memory responses. 

Experiencing certain pathogenic events might be predictive of future protection from 

cancer of a certain cell type. For example, individuals who self report infections or have serum 

antibodies specific for varicella zoster virus (VZV) have a lower incidence of gliomas (82). 

Individuals who have never experienced VZV may not have this same protection against gliomas 

or other brain cancers. Preventative vaccination of VZV inexperienced people with DAAs 

associated with specific with VZV could provide same beneficial protective coverage of gliomas. 

Also tumor cell origin may be a factor as well. A pathogen infecting cells of epithelial origin may 

provide increased tumor immunosurveillance for epithelial tumors.  
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Cancer incidence in the United States between 1974 and 1992 appeared to increase 

annually (155). Although incidence has since stabilized or decreased for cancer overall, incidence 

of certain cancers (liver, kidney, thyroid, pancreas, and melanoma) (156-158) continue to rise. 

These trends likely could be due to factors such as improved detection modalities, general increase 

in cancer awareness, and an increase in the lifespan of the population; other explanations cannot 

be ruled out. One explanation for increased incidence might be due to the implementation of 

childhood vaccination programs and resultant decrease of classical childhood illnesses such as 

measles, mumps, and rubella (91, 159). While my work should not be used to suggest stopping 

vaccinations against dangerous pathogens, it does suggest the possibility of vaccinating against 

DAA instead of specific pathogens for a broad protection against multiple diseases.  

5.1 REMAINING QUESTIONS 

In my model system, I examined the effects on having experienced influenza infection on tumor 

growth at an uninfected subcutaneous site in the animal. The site of prior infections might prove 

to be the most protected site as a preferred target of tumor immunosurveillance. Presumably since 

influenza infection induced overexpression of DAA in the lung, immune memory cells may 

preferentially migrate there and responses to tumor growth in the lung may be greater. One way I 

have begun to address this question is by using luciferase expressing Lewis Lung Carcinoma cells 

(LLC-luc) in a metastatic lung model. Tumor burden in lungs of naïve or influenza experienced 

animals can be assayed using an In Vivo Imaging System (IVIS) to measure bioluminescence. I 

expect that metastatic tumor burden in the lungs of flu experienced animals will be lower than 

naïve control animals. Initial results of this approach are shown in the Appendix. 
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My model system currently involves the transplantable 3LL tumor model. It is unknown if 

previous flu exposure has an effect on spontaneous tumor growth. To address this, our group and 

others have developed a colitis associated-colorectal cancer model with MUC1Tg animals where 

inflammation can be induced by dextran sulfate sodium (DSS) (160) and colorectal cancer 

developed with azoxymethane (AOM) (161). Therefore, colons from flu experienced animals and 

naïve animals can be histologically examined and quantified for the presence of tumor. It is 

expected that previous viral infections will yield early protection and prevent tumor outgrowth.  

It is not known which immune effectors, antibodies or T cells, are most critical to initial 

protection against tumor growth. This question can be addressed by adoptively transferring either 

post-infection sera, B cells, or T cells from a flu experienced animal into a flu naïve animal, 

challenging that animal with 3LL tumor and measure tumor growth. Alternatively the role of CD4 

or CD8 T cells in flu-infected animals can be examined using CD4 or CD8 T cell depleting 

antibodies prior to and during tumor challenge. 

I demonstrated that there was an increase in antibodies specific for selected DAA. I also 

demonstrated an increase in post infection sera antibodies recognizing tumor cell surface antigens 

compared to pre infection. I did not examine these antibodies for their ability to induce antibody 

dependent cellular cytotoxicity (ADCC) or complement dependent cytotoxicity (CDC).  

It would also be of interest to look at circulating inflammatory cytokines such as IFN-γ and TNF-

α following multiple exposures to influenza. Some studies examining herpes viral latency 

providing protection from bacterial infection demonstrated that protection was mediated through 

elevated levels of inflammatory mediators rather than CD8+ T cells(162, 163). Although our 

systems are quite different, this could be an important mechanism of increasing general tumor 
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immune surveillance or providing enough of an immunostimulatory environment to induce 

stronger immune response against DAA. 

Antibodies and CD8+ T cells specific for GAPDH, Histone H4, MDH2, HSP90, and 

Annexin A2 were generated in mice following influenza infection. The exact mechanism for how 

immune responses against these DAA are formed remains to be determined. One possibility could 

be through lytic release of these molecules in the setting of inflammation during viral infection. 

Another possibility could be by incorporation of these DAA in virus particles and subsequent 

infection of APCs (151, 164-169). Annexin A2 aids influenza viral replication through converting 

plasminogen to plasmin that in turn promotes the cleavage of HA0 to HA1 and HA2 (170, 171). 

HSP90 promotes virus propagation thorough assisting the nuclear import and assembly of 

influenza polymerase protein (172). In fact HSP90 and Annexin A2 may have to be recruited to 

virions for the virus to make use of them. Passenger antigens might also find there way into the 

virus particles by chance. Influenza virions commonly bud from lipid rafts (173, 174). Annexin 

A2 as well as GAPDH and other molecules can be found at these lipid rafts (175-177). Therefore 

as the virus buds off the infected cell, they take along passenger antigens or even peptide-MHC 

complexes that could be available for cross presentation (178, 179). This might also explain why 

the majority of antigens we identified and/or studied are intracellular molecules; although there is 

evidence of cell surface expression of Annexin A2 and GAPDH, (143, 180).  

One of the biggest challenges will be to design appropriate models to test other non-

malignant inflammatory events such as bacterial or fungal infections and chronic inflammations 

for induction of DAA and increase in tumor immunosurveillance. Exploring these different 

pathologic non-malignant conditions in appropriate model systems would strengthen our 

hypothesis. In addition, DAA prophylactic vaccination effects on viral immunosurveillance have 
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not been adequately addressed (Appendix B). It is interesting to note that viral infections can affect 

self peptide presentation on MHC class I. In one study using, influenza infected HeLa cells, many 

of the peptide repertoire presented on MHC class I either increased or uniquely presented several 

peptides compared to non-infected cells (181). Annexin A2 and HSP90 peptides in particular were 

uniquely presented on MHC class I molecules on flu-infected cells. Influenza virus is not the only 

virus capable of altering proteome expression. HIV virus also induces increased expression of 

several self peptides and CTL activity against cells expressing the self antigen (182, 183).  

Expression of DAA on virally infected cells may mark cells to be destroyed by the immune system 

in the proper setting. The ultimate outcome of confirming this new immune surveillance 

hypothesis is that it might lead to a universal vaccine providing protection against cancer and 

against pathogens thus eliminating the need for pathogen specific or cancer specific vaccinations 

(see model in Fig.16). 
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Figure 16: Proposed impact of DAA-specific immunity on immunosurveillance.   

Naïve T and B cell clones, each capable of recognizing one of a millions different antigens by their 

unique antigen receptors, become primed, expand in number and generate immune memory 

specific for DAA transiently expressed during various acute inflammatory non-malignant events. 

(A)When a tumor begins to grow and express some of the same DAA, the immune memory 

response kicks into an effector response, memory T and B cells proliferate much faster than naïve 

cells and the tumor is eliminated. (B) The same result as in (A) can be achieved by prophylactically 

vaccinating individuals with the best or most commonly expressed DAA in lieu of an exposure to 

pathogens in order to produce immune memory against DAA for effective tumor 

immunosurveillance. (C) Vaccination against DA can also generate effective immunosurveillance 

against pathogen-infected cells. 
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APPENDIX A: Influenza Effects on Tumor Metastasis to the Lung 

We have demonstrated that influenza infection delays tumor growth at a subcutaneous site. 

Immune responses to DAA may have the strongest impact at the site of infection. We therefore 

sought to address if prior influenza exposure impacts metastatic tumor growth in the lung. To 

answer the question we flu infected animals twice at day zero and day 35 after initial exposure. 

PBS mocked infected animals served as naïve controls. 25 days after second influenza infection, 

intravenous (I.V.) tail vein injections were performed with 5x105 luciferase expressing Lewis Lung 

Carcinoma (LLC-luc) cells. Imaging the dorsal aspect of the thorax reveled a trend of less tumor 

burden in lungs of flu experienced animals (Fig 17A). Closer examination at day 28 post tumor 

challenge (Fig 17C) revealed a significant difference between groups. Although imaging the 

ventral side of the thorax did not reveal any differences, dorsal imaging is likely more accurate in 

terms of signal specificity to the lung due to the lungs being more superficial in the dorsal position 

(Fig 17B). These results are consistent with our previous findings using the subcutaneous tumor 

challenge. Although we cannot say definitively that lung metastasis (due to initial lung seeding at 

the time of intravenous challenge or secondary tumor metastasis from tumors seeded from another 

organ) was different between groups because of DAA immune responses due to flu exposure, our 

previous studies strongly suggest that DAA immunity was likely the protective factor.  
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Figure 17: Influenza experienced animals have less lung metastases compared to naïve 

controls  

(A-C) Animals were intranasally infected with PR8 and Aichi influenza viruses on day zero and 

day 35 respectively. Influenza experienced animals and naïve animals were challenged intravenous 

with 5x105 3LL tumor cells via tail vein injection. Tumor lung metastasis was measured Imaging 

of animals began 16 days after tumor challenge. Ten minutes prior to In Vivo Imaging System 200 

(IVIS 200) imaging animals injected with D-luciferin (Caliper Life Sciences) (150mg/kg). 

Animals were imaged and analyzed with the living image software (Xenogen). Bioluminescence 

(Flux Signal in p/sec/cm3/sr) was measured by drawing ROI on the dorsal (A, C) or ventral (B) 

sides of the thorax for lung metastasis. Data are representative of one experiments with at least 10 

mice per group and are expressed as means ± SEM. Bioluminescence is measured as Flux Signal 

(p/sec/cm3/sr). * p<0.05, ** p<0.01, *** p<0.001 
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APPENDIX B: Viral Immunosurveillance  

B.1.1 Tumor lysate and DAA pulsed DC vaccination affects viral infection kinetics 

We have previously established that viral infection can induce the abnormal expression of DAA 

and immune responses against those same DAA. Since immune responses against DAA are 

important in bolstering tumor immunosurveillance, we hypothesized that immune responses 

against DAA are an important mechanism in bolstering viral immunosurveillance by targeting and 

eliminating virus infected cells. To test this hypothesis we vaccinated animals with DCs pulsed 

with 3LL tumor lysate (Fig 18) or DAA peptides previously described in chapter four (Fig 18) and 

intranasally infected animals with PR8 influenza virus. There was no difference in viral replication 

between lysate vaccinated or unvaccinated groups at day 3 post flu infection (Fig 18A). This result 

was only a snapshot of the virus infection therefore we believed it was more prudent to follow flu 

infection over a two to three week period. As an indirect measure of influenza infection severity, 

we measured percent weight loss in three groups of animals: PBS, Unloaded DC, and loaded DC 

(pulsed with 3LL lysate) (Fig 18B,C). Kinetics of influenza disease severity appears to be 

accelerated in the lysate loaded DC group. There was a significant difference in weight loss 

between PBS and tumor lysate pulsed DC groups as well as Unloaded DC and PBS groups (Fig 

18D). Additionally, lysate loaded DC vaccinated group appears to recover to their baseline weight 

at an earlier time point than the other groups.  We then decided to assay the effect of vaccinating 

animals with DC’s pulsed with DAA previously described in chapter four. We saw a significant 

difference in weight loss between DCs pulsed with DAA and unloaded DC groups (Fig 19A,B). 

At this point it is difficult to say with certainty that lysate pulsed DC or DAA pulsed DC 
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vaccination is protecting animals from flu infection. In fact disease severity may be worse. 

However weight loss may be attributed to increased immunopathology caused by memory 

responses mounted against antigens in the lysate/selected DAA to eliminate virus infected cells 

rather than virus infection itself. More studies need to be done specifically looking at lung 

histology sections as well as virus plaque assays at various early time points.  

 92 



 

Figure 18: Vaccination with 3LL lysate loaded DC effects viral infection dynamics and 

accelerated weight loss in flu infected animals 

(A) Mice were vaccinated in the right hind flank with 1.5x106 D1 cells/mouse pulsed with 3LL 

lysate from 3x106 at week zero, week two, and week six. Control mice received the same number 
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of unloaded D1 DC at the same time points. Two days after the week six booster, animals were 

infected with 1.25x104 pfu PR8 influenza virus.  Animals were sacrificed 3 days following flu 

infection and viral plaque assays were performed. (N=6) (B,C)  Animals were vaccinated as 

described above. Two days after the week six booster, animals were infected with 1.25x104 pfu 

PR8 influenza virus. Mouse weight was measured at two day intervals. (B) Individual mouse 

weight loss. (C) Pooled mouse weight loss. (D) Graph of weight loss at day 4 post infection. 

Data are representative of two experiments with at least n=8 mice per group and are expressed as 

means ± SEM. 
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Figure 19: Vacation with GAPDH, Histone H4, MDH2, and Annexin A2 peptides loaded on 

DC accelerated weight loss in flu infected animals.  

(A) Mice were vaccinated in the right hind flank with 1x106 D1 cells/mouse (a pool of 2.5x105 D1 

dendritic cells/peptide) or intranasal with 2.5ug/protein with 12.5ug Poly IC:LC at week zero, 

week two, and week six. Control mice received the same number of unloaded D1 DC at the same 

time points. Two days after the week six booster, animals were challenged intranasal with 1.25x104 

pfu PR8 influenza virus. Mouse weight was measured at two day intervals. (B) % Original weight 

on day six post infection was measured and compared across groups. Data are representative of 

two experiments with at least n=8 mice per group and are expressed as means ± SEM. 
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